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Abstract

An analytical study is performed to determine the dynamic response, natural frequencies

and mode shapes, of deep composite cylindrical shells, including the effc't of through the

thickness shear strain. The DSHELL finite element program is used to predict the first

four natural frequencies and the results are compared to a reference using the Galerkin

technique. The program was extended to problems considering simply supported-free

boundary conditions. As is well know, the free boundary is rather difficult to represent

using the Galerkin technique approach. The mode shapes are created by plotting a

surface-contour plot of the eigenvector output from DSHELL.

A linear, free vibration analysis was performed on two composite panels in which damping

effects were assurned negligible. The analyzed panels are made of graphite/epoxy (Gr/Ep)

material, having different ply orientations. The first panel, used as a baseline in this study,

has an arclength, longitudinal length, and radius of curvature of 12 inches, 11 inches, and

12 inches respectively. A [0o/-45o/+45o/90o]s ply orientation under the simply

supported-free boundary condition was considered. Comparisons between this baseline

panel, using DSHELL, with previous holographic experimentation and analytical studies

( STAGSC- 1 finite element program was previously incorporated ) were found to

correlate well. The percent difference was observed to be less tha 8% in all cases.

Also, it was found that accurate modeling of the composite shell panel was dictated by the

natural frequencies and mode shapes. From this study, four nodes have to be positioned

per each half sine wave formed in the eigenvectors.
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For the second panel, the curvature and the span to thickness ratio were varied in order to

measure effects on two ply orientations, [0o/900]s and [-45o/+45O]s, under two boundary

conditions, all edges simply supported and simply supported-free. The result showed that,

as the shell becomes deeper, the frequency becomes smaller.

Also, findings show that as curvature increases, the natural frequencies for both laminates

increases. The effect of increasing the thickness was more evident at the shallower end of

the composite shell. The shear effect was evident for small values of span to thickness

ratios and large curvature under the two boundary conditions studied. The percent

difference between DSHELL and the Galerkin technique was generally less than 10% in

all cases compared. For this study, DSHELL proved to be a very useful engineering tool.

xii



List of Symbols

Symbol

a Length in the x direction

b Length in the y direction

c System damping

E Young's Elastic Modulus

F External applied force

G Shear Modulus

h Laminate thickness

k Stiffness of System

K Stiffness Matrix

m Mass of System

M Consistent Mass Matrix

N Shape Function Matrix

R Radius of Curvature

t time

u Displacement in the x coordinate direction

v Displacement in the s coordinate direction

w Transverse displacement in the z coordinate direction

W,1 Slopew/ )x at the node

W12 Slopeaw/a)s at the node

x



* Characteristic eigenvector of a system

0 Matrix of characteristic eigenvectors

X. Characteristic cigenvalue of a system

A Matrix of characteristic eigenvalues

Vi Poisson's Ratio

p Mass density

Curvilinear coordinates of the surface

Domain of the midsurface

T, Rotation of the normal to the shell surface

in the x direction ( about the s axis )

T 2  Rotation of the normal to the shell surface
in the s direction (about the xaxis)

xi



Abstract

An analytical study is performed to determine the dynamic response, natural frequencies
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material, having different ply orientations. The first panel, used as a baseline in this study,

has an arclength, longitudinal length, and radius of curvature of 12 inches, 11 inches, and
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For the second panel, the curvature and the span to thickness ratio were varied in order to

measure effects on two ply orientations, [0o/90o]s and [-45o/+45o]s, under two boundary

conditions, all edges simply supported and simply supported-free. The result showed that,

as the shell becomes deeper, the frequency becomes smaller.

Also, findings show that as curvature increases, the natural frequencies for both laminates

increases. The effect of increasing the thickness was more evident at the shallower end of

the composite shell. The shear effect was evident for small values of span to thickness

ratios and large curvature under the two boundary conditions studied. The percent

difference between DSHELL and the Galerkin technique was generally less than 10% in

all cases compared. For this study, DSHELL proved to be a very useful engineering tool.

Xiil



EFFEC'TS OF THICKNESS AND CURVATURE ON THE NATURAL
FREQUENCIES OF CYLINDRICAL COMPOSITE SHELLS

L Introduction

Composite materials have reached great acceptance in many technological fields. Due to

their superior strength-to-weight and stiffness-to-weight ratios compared with traditional

alloys, composite materials are ideal for aerospace structure applications.

Composites are typically formed in layers with the high strength propetes usually

oriented in the in-plane directions. Thus, composites can be made lighter and thinner than

conventional isotropic materials. Another advantage of composites is that a laminate can

be designed to satisfy a particular case, that is, the layup can be "formed" to get the

steg and stiffness required in a specific application.

Cbmposite shell structures have been widely used in aerospace applications. Wing skins

and fuselage panels are some examples of these applications. They are also called thin-

shell structures. The excessive vibration in these structures could cause fatigue failure or
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shorten their useful life, and thus dynamic analysis becomes important in order to prevent

collapse of these thin-shell structures. Since the strength varies from ply to ply in a

laminate, composite materials are complicated to analyze, therefore numerical techniques

must be considered in order to solve these problems.

1.1 Baekground

Much work has been done in the area of composite cylindrical shells over the last few

years. It has long been known that Classical Plate Theory, based on the Kirchhoff-Love

hypothesis, tends to produce large errors when dealing with comPosite materials. The

Kirchhoff-Love hypothesis assumes that straight lines normal to the undeformed shell

midsurface remain straight and normal. In other words, transverse shear strains are

neglected, resulting in overestimates of the natural frequencies.

Reissner was the first to recognize the need to include the effects of transverse shear

effects; Mindlin followed, and added the effects of rotatory inertia. The so called

Reissner-Mindlin theory assumes that while cross sections remain plane, they are allowed

to rotate. This theory, however, does not satisfy the boundary conditions of zero

transverse shear on the top and bottom surfaces of the shell. That requires application of

a correction factor, and is commonly accepted.

Reddy [ 13,14] assumed that the displacements of the midsurfaces are cubic functions of z.

This leads to a parabolic distribution for the transverse shear strain, and does not require
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a correction factor. Linneman and Palazotto [12] used this approach in developing

solutions for the natural frequencies for symmetric cylindrical composite shells.

The dynamic response of cylindrical composite panels has been investigated, here at AFRT,

in previous studies. Walley [24] studied the dynamic response of a curved

Graphite/Epoxy (Gr/Ep) panel clamped all around with centered cutouts ( 2" x 2", 2" x 4",

4" x 4" ). Cyr [4], using the same panels, studied the effect of cutout orientation on the

natural frequencies and mode shapes of those panels. Levraea [7], using a finite element

code called STAGSC- 1, investigated the eccentricity effects of square cutouts on the

natural frequencies and mode shapes of curved composite panels. And Silva [16]

investigated a composite cylindrical shell panel under transverse load with through the

thickness and snapping. Tsai and Palazotto [22] investigated the non-linear vibration of

cylindrical shells with high-order shear deformation theory.

1.2 Objectives.

Using certain panel geometries, this study will investigate the thickness effects on the

natural frequencies and mode shapes for different boundary conditions and different ply

orientation.

There were two different size panels considered in this study, the first one used for

comparison had an arclength, height and radius of curvature of 0.305 m (12 inches),

0.2794 m (Il inches) and 0.305 m (12 inches) respectively. One ply lay up was analyzed,

[00/-45o/+450 /900 ]s in which each ply had a thickness of 0.000127 m (0.005 inches),
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giving a total of 0.0002 m (0.08 inches) in panel thickness. The second panel had an

arclength, height and radius of curvature of 0.508 m (20 inches); two ply orientations

wer analyzed, [0O/90°]s and [-45o/+45O]s. Each ply was 0.00635 m (0.25 inches)

thick, giving a total panel thickness of 0.0254 in (1 inch).In order to facilitate ply

notation, the panels mentioned will be called Panel 1, Panel 2a and Panel 2b respectively.

The boundary conditions considered for both panels were Simply Supported along the

vertical edges and free along the horizontal edges (SFSF), and Simply Supported all

Around (SS). The DSHELL finite element code was used to predict the first four natural

frequencies. The dynamic capability of this program, in predicting the natural frequencies

and mode shapes, was evaluated by comparing to a reference using the Galerkin

technique.

13 Analytical Approach.

The numerical analysis was conducted using the DSHELL computer code. Previous

analyses have been successfully conducted at AFIT using this finite element program but

never a dynamic frequency response of cylindrical composite shells.

DSHELL assumes a parabolic shear strain which varies through the shell thickness and

vanishes at the top and bottom surface. Although classical plate and shell theory for thin

isotropic structures ignore shear stress through the thickness, it is not appropriate to do so

with composite shells. The coupling of extensional, bending, and shear strain must be
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taken into consideration.

DSHELL contains a built-in grid generator which was used to generate all of the finite

element meshes required for this investigation. This program was selected for use in this

study to continue verification of its dynamic capabilities.
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I. Theory

Most aerospace structures arn considered continuous systems and have distributed

material properties. An aircraft wing can be considered as a beam with nonuniform mass

per unit length and flexural stiffness while a fuselage panel can be treated as a cylindrical

shell. Problems concerning the vibration of shells are considerably more complicated than

their counterparts for beams or plates. Primarily, this is caused by the effects of the

curvature on the shell equations and thus on the dynamic behavior. For shells, membrane

and flexural deformations are coupled, and any theory must consider these effects

simultaneously.

U1 Natural Frequencies of Shells

In the classical laminated shell theory, through the thickness shear deformation is

neglected according to the Kirchhoff-Love hypotesis that plane cross sections remain

plane before and after deformation. Mindlin introduced a theory that allowed the cross

section remain plane but rotate from the normal with respect to the mid-surface after

deformation. The assumption of no cross sectional warping introduces error, especially at

the top and bottom surfaces, since the boundary condition of zero transverse shear is not

matched.

Reddy [131 introduced a new theory in which the displacements of the mid-surface were

cubic functios of z. This lead to a parabolic transverse shear distribution wherein the
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strains are maximum at the shell mid-surface and are zero at the top and bottom surfaces,

satisfying the required thickness boundary condition. Fig 2-1, shows the transverse shear

conceptsdisscussed above.

BEFORE DEFORMATION
Plane Cross Section

AFTER DEFORMATION

Kirchhoff Theory

Mindlin Theory

Parabolic Theory

Fig. 2.1 Transverse Shear Strain Theories

To achieve the desired parabolic shear distribution, a higher order displacement field is
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required. This theory has been studied by Reddy [13] and also by Palazotto and Dennis

[ 11]; both have presented higher order shear theories incorporating transverse shear

effects, and this is certainly the most important feature of DSHELL. Tsai and Palazotto

[22] incorporated the capability to performed dynamic analysis into this approach.

A description of the main features involved in DSHELL will be explained in order to

clarify the theory behind this finite element program.

2.2 The K and M matrixes

This section is directed to the development of the appropriate vibration equations.

The governing equation for the dynamic behavior of a continuous system, derived from

the Hamilton's principle is [10:44]

meX(t) + c i(t) + k X(t) = F(t) (2.1)

where m = system mass X(t) = displacement

c = system damping i(t) = velocity

k = system stiffness X(t) = acceleration

t = time F(t) = external forcing function

For free vibration there are no applied forces and therefore F (t) = 0. Structural damping

is based on the energy losses caused by internal friction as the panel deforms and is

proportional to the amplitude of displacement [ 10:402]. The extremelly small
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displacements that take place in these cases, compared with the large stiffness of the

system [21], justified neglectf ig the damping effects, therefore c = 0. Thus, equation

(2.1 ) becomes

m X(t) + k X(t) = 0 continuous system (2.2)

The [K] matrix, for an element modeling a composite material panel considering large

displacements, is given by [22]

K (u) = Ko + K1(u) + K2 (u)' (2.3)
2 3

where Ko is a constant stiffness matrix, K, is a stiffness matrix related to linear

displacement, and K2 is a stiffness matrix related to quadratic displacement. For this

analysis, the Ko matrix will be the only component used. The consistent mass matrix is

obtained from [22]

M -, p [N]T [R]T [R] [N] dt dfl (2.4)

wheregkl and ýk are positions at the top and bottom of the k th layer, f0 is the domain of

the mid surface and L denotes the number of layers in the laminate. [R] is a matrix that is

a function of ý only. A full discussion this matrix is referred to reference [221, where
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[NJ is the shape function matrix and p is mass per unit volume (density). The consistent

mass formulation results in a fully populated, positive definite mass matrix.

The finite elment method requires the discretization of a continuous system into small

elements in which the deformed geometry is represented by displacements at selected

locations (nodes) within the body. Equation ( 2.2 ) can be written as

[M] (d) + [K] (d) = 0 discrete system (2.5)

where [M] = mass matrix (d) = nodal displacement vector

[K] = stiffness matrix (d = nodal acceleration vector

For harmonic vibration it is assumed that all nodal DOF are in phase and that ( d )in

Equation 2.5 is given by [3:3081

(d] = (do) e"' (2.6)

where do is the displacement amplitude, w is circular natural frequency, and t is time.

Substituting Equation 2.6 into Equation 2.5 gives

[K] (do) _ 02 [M] (do) = 0 (2.7)

Rearranging and changing notation, one obtains
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[K - .,M] (*•) = 0 (2.8)

where X, - c0•2 ((rad/sec) 2) and the brackets have been dropped off of K and M for

convenience (K and M are still matrices). For linear vibration analysis, K and M are

independent of displacement and frequency. Xj is the eigenvalue and (*,) is the

eigenvector (mode shape) for the ith mode. Each eigenvector will represent a unique

shape but with arbitrary amplitude.

Equation 2.8 represents the generalized eigenvalue problem for linear free undamped

vibration [1:517]. If K and M are (n x n) matrices, then the solution to Equation 2.8

yieldsX. and (+j) for i = 1, 2, 3, ...n. The eigenvectors are independent and thus form a

basis for the eigenspace [1:49]. The eigenvectors can be arranged into a (n x n) modal

matrix given by

(= [(*1)}4 2) .-.. } (2.9)

where the columns of the modal matrix are the eigenvectors of the system. This allows

Equation 2.8 to be written as [1:558]

KO = MOA (2.10)

Here, A is a diagonal matrix of the cigenvalues, Xii and their location along the diagonal is

determined by X11 <;L, < ... < X... The location of ( €) within 0 must be consistent
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with the location of X, in A; that is, ( *) is the corresponding vector for X..

To solve the eigenvalue problems DSHEUL uses a subspace iteration scheme. The

procedure implemented in DSHELL is based on the subspace iteration method developed

by Bathe [1:672-682].

2.3 Subspace Iteration Method.

The purpose of this section is to discuss the subspace method incorporated in the

DSHELL code to find the eigenvalue-eigenvector. Appendix Aindicates some additional

details.

The basic objective in the subspace iteration method is to solve for the lowest p

eigenvalues and corresponding eigenvectors satisfying [1:672]

KO = MOA (21

where A = diag (A1) and 0 = 0,12, ... ,•p I

In addition to Equation ( 2.11 ), the eigenvectors also satisfy the orthogonality conditions

4 TKb = A; oTMo = I (2.12)

where I is an unit matrix of order q because 0 stores only q eigenvectors. The first
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relaion is a necessary and sufficient condition for the vectors in 0 to be eigenvectors, but

the eigenvector orthogonality conditions in the second expression are necessary but

not sufficient.

The number of modes desired are "p", by using subspace iteration the reduced number

of "p" eigenvectors are simultaneously obtained. The procedure modifies Bathe's

subspace method in order to enhance convergence.

Subspace iteration reduces an ( n x n ) eigensystem into a ( n x q) system where "q" is as

defined before. The subspace refers to the space spanned by the reduced set of

eigenvectors space [1:6751. If the subspace which is spanned by the reduced eigenvectors

is denoted Eq , then the starting iteration vector can be thought of as spanning the E1

subspace. As iterations are performed, the E. (k=l, 2,3,..., q) space approaches the Eq

space. The Eq space is in effect spanned when the desired accuracy has been obtained.

The following gives an outline of the eigensolution technique used by DSHELL. First, a

preliminary set of independent vectors is chosen which spans a subspace of the complete

set of eigenvectors determined by the actual number of vectors desired ( i.e. 2p or p + 8

which ever is smaller ). Next, an inverse power method ( inverse iteration ) with shifting is

performed ( the shifting is used to overcome any matrix singularities). This transforms

the Ek space into E.., space. Now the projections of K and M are found on the new

reduced eigenspace ( subspace Ek,+ ) yielding Kk+l Kk+, and Mk+l respectively [7]. The
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reduced ( n x q) eigenvalue problem is solved using Householder's Method with a LR

algoithm. Finally, a check for convergence of the cigenvalues is made and the process

repead until adequate convergence has been obtained. The criteria for deueing

convergence is based upon the "k + I" iteration eigenvalues being compared to the "k"

iteation eigenvalues. If the relative error is below a predetermined threshold then

convergence is assumed.

2.4 Thickness and Curvature Parameters.

In considering a cylindrical shell, there are two geometric parameters by which a shell can

be described. The ratios 8/c and 8A are used to explain the deepness and thickness of the

shell respectively in subsequent sections. The following figure shows a typical shell

element in which these parameters are given.

h

Fig 2.2 Typical Shell Element

From fig. 2.2, 8 is the offset distance measured from the cord line to the datum surface of

the shell, h is the thickness of the shell and c is half the distance of the cord.
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The concept of deepness and shallowness is very useful when dealing with shells. A shell

is considered shallow when the ratio 8/c is small, usually 8/c <1/4, [11:202]. A shell with

6/c t 1/4 is considered deep. A deep shell has more coupling between displacements

functions. The in-plane displacements u and v are affecting the rotation about a normal

to the shell surface. DSHELL includes these effects, and thus it is possible to determine

when they are of importance by studying eigenvector relations. In addition, a shell may

be considered thick when the ratio 8/h < 1 [11:203].

According to the objectives of this study, the effects of thickness and curvature on

composite cylindrical panels will be evaluated, therefore the following figure, considering

the case of the [0o/90o0s ply orientation, with b/h = 20 under the simply supported all

wound boundary condition (discussed in Chapter IV), will help to visualize when a shell is

considered thick and or deep.
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FIg 2-3 Typical behavior of the Fundamental Frequency for the [0o/90oJs ply
orientation, Simply Supported all around Boundary Condition.

The following table shows the values for 8/c and 8/h ratios for the interval b/h and the

curvatures showed in the figure above. The geometry of the shell and the parameters

6/c and f/h involved are given in figure 2-2.

R=20 O = /R 8 =R(1-cos0/2) c 6/c &/h

b/h = 10 28.640 0.62 4.95 0.125 0.621
Mi= 20 57.290 2.45 9.58 0.254 2.44
b/h = 30 85.940 5.36 13.62 0.393 5.36
b/h = 40 114.590 9.19 16.83 0.546 9.19
b/h = 50 143.240 13.70 18.97 0.722 13.70

R = 200 0 = s/R 6= R(l-cose/2) c 5/c 8/h
b/h = 10 2.860 0.062 4.97 0.0125 0.062
b/h = 20 5.730 0.249 9.97 0.0252 0.249
b/h = 30 8.590 0.562 14.98 0.0375 0.562
b/h = 40 11.460 0.999 19.96 0.050 0.999
b/h = 50 14.320 1.427 23.84 0.0598 1.427

Table 2-1. Geometric Parameters of the Composite Shells
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Accoting to this table, for a radius R = 20, a shell with a span equal to ten (b/h = 10)is

shallow (8/c = 0.125), but also, at the same time, this shell can be considered thick since

8)h = 0.62. As the span increases, the shell becomes deeper since 8/c is greater than 0.25

but also it becomes thinner. For a radius of curvature R = 200, no matter what the span

b, the shell is called shallow. It can be considered thin only for values b/h > 40.

The curvature also has importance in the behavior of the frequency response for the case

of cylindrical shell panels. According to fig. 2-3, as the radius of curvature decreases to

h/R = 1/20, the frequency increases. This behavior is due to the fact that the in-plane

displacements, u and v, have more effect on the natural frequencies when the panel

becomes deeper (when the radius of curvature decreases). Then for the ratio h/R =

11200, these effects are practically negligible. In order to understand this statement, the

next figures show the magnitude of the in-plane displacements for the case of the

[-45o/+45O]s laminate, simply supported-free boundary condition and b/h =20 for two

radius of curvature: 1/20 and 1/200.

udisplacement v displacement w displacement

Fig. 2-4 In-Plane Displacements for the [0o/90o]s laminate, Simply
Supported-Free Boundary Condition, b/h = 20, h/R = 1/20.
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u displacement v displacement w displacement

Fig. 2-5 In-Plane Displacements for the [00/9 s laminate, Simply
Supported-Free Boundary Condition, b/h = 20, h/R = 1/200.

From the output of DSHELL, it was found that for h/R = 1/20, u = 0.0522 w.

and v. = 0.246 w. , while for the ratio h/R = 1200, u.. = 0.00522 w. and

v. = 0.0245 w. It means that the in-plane displacements contribute ten times more

to the overall eigenvector-eigenvalue solution for the h/R = 1/20 than the ratio h/R =

1/200. It should be noted that the DSHELL program is always developing eigenvectors

and eigenvalues in which all the degrees of freedom are considered, as oppose to analyses

in which in-plane displacement and rotatory inertias are suppressed. Thus, by looking at

the maximun ordinate of the respectivedisplacements functions, one can obtain an

appreciation of the overall contribution to the global eigenvector. The same thing was

also observed for the rotation contribution T, and TP2.
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I.L Flnit Element Analysis and Modelling

3.1 Panl Properties, Geometry and Assumptions.

The material properties and geometry of the panels are explained in this section. The

analyzed panels are made of graphite/epoxy (Gr/Ep) material, they are cylindrical in shape

and have different ply orientation. For consistency with previous works [7,81 a quasi-

isotropic [0o/-45o/+45o/90O], [0o/j90 0]s, and [-45o/+45O]s ply layup were selected.

They will be referred as Panel 1, Panel 2a and Panel 2b respectively. Table 3-1 lists the

material properties for the panels referred above; the properties for Panel # I were

obtained from experimentation [7] while the properties for Panel # 2 were taken as they

were assumed using the Galerkin technique.

Mechanical Properties Panel # 1 Panel #2 a and b

E1 [GPaj 141.06 144.79

E2 [GPa] 9.238 9.652

Ga2 [GPaJ 5.955 4.136

G. [GPa] 5.955 4.136

G, [GPa] 2.977 2.068

v2_ 0.3131 0.300

va 0.0205 0.020

p [Kg / m3] 1612.02 1522.3

Table 3.1 Material properties of Composite Panels
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In Panel I each ply was 1.27 x 10-4 m thick resulting in a panel thickness of 0.002 m.

Panels 2a and 2b had a ply thickness of 0.00635 m, resulting in a panel thickness of

0.0254 m.

The curvilinear orthogonal coordinate system and nomenclature used in this formulation

of the laminated cylindrical shell is shown in Fig. 3-1. The x-axis lies along the straight

dimension of the panel; the s-axis follows the circumference, and the z-axis is everywhere

normal to the shell middle surface, positive toward the center of curvature. The surface

formed by the x and s axes lies in the center of the thickness of the panel, so the thickness

coordinate is negative on the outer surface and positive on the inner surface.

Displacements along the x, s and z axes are u, v and w respectively. The angle * specifies

the orientation angle of eac!i pky in the laminate. The effective panel dimensions are

defined as the dimensious of that portion of the panel free to vibrate.

&R

Fig 3-1. Shell Panel Dimensions and Coordinate System
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Two boundary conditions were analyzed for both panels: Simple Supported-Free ( SFSF;

circumferential edges are free ) and Simply Supported all around ( SS ). The panel

characteristics cited in this section were used to create part of the finite element models

(input data).

3.2 DSHELL Program

According with the finite element analysis, the modelling of cylindrical shells have been

done through the following theores:

a ) Flat Elements: Plane bending elements with plane membrane elements

b) Curved Elements: Classical shell theory

c ) Mindlin type elements: special forms of solid elements

The DSHELL finite element program, used in the present study, uses the type of elements

described in part (c). This finite element code was originally written by S. Dennis [11] and

modified by C. T. Tsai and Palazotto [22]. The uniqueness of the DSHELL program is

that shear strains are assumed to vary parabolically through the thickness of the shell,

vanishing at the top and bottom surface, large displacements and rotations are considered.

DSHELL also incorporates material linearity. In structural applications, materials are

normally restricted to the linear elastic region [6]. This implies that any fiber breakage

during large displacements and rotations is ignored.
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The majority of past efforts has dealt with static analysis or with the dynamic analysis but

without taking account of the eigenvector problem. Therefore, this thesis will serve to

further validate the dynamic modeling capabilities of the DSHELL program. A linear,

free vibration analysis was conducted on the Gr/Ep circular cylindrical panels. For free

vibration analysis, DSHELL outputs the desired natural frequencies and corresponding

eigenvectors. They represent the mode shapes of the panel.

The user has the capability of selecting the type of element under study : plate or

cylindrical shell, number of nodes per element and type of analysis: nonlinear, linear or

eigenvalue problem. Also the number of natural frequencies required and type of

laminate can be set. In addition, the built-in mesh generator was used to establish the

finite element grid for all the panels.

The user can determine the number of elements in the x and y direction, the grid spacing in

the same coordinate directions and DSHELL determines the nodal coordinates and

connectivity matrix. Any of the degrees of freedom at each node can be restrained

according to the boundary conditions desired. Finally, the material properties must be

input: density, Young's modulis, shear modulus, Poisson's ratio, number of plies, ply

orientation angles, ply thickness and circular cylinder radius. For the type of analysis

performed and the panel geometries investigated, DSHELL proved a straight forward

implementation.
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3.3 Element Selction.

The DSHELL finite element program uses a 36 DOF element developed by Dennis [ 11

and pictured in Fig 3-2. The seven displacements functions u, v, w, w,1 ,w, 2 , IlT and 'T2

are considered in each element. The mid-side nodes have only the two inplane degrees of

freedom u and v. Lagrangian bilinear interpolation is used for 'TP and 'P2, quadratic

interpolation is used for u and v, while non conforming Hermitian interpolation is used

for w, w,1 and w.2 . Although a shell is three dimensional, a two dimensional formulation

is used to model a thin shell.

W V 7;

IU

Fig 3-2. 36 DOF Isoparametric shell element
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where e = x/a andj = s lb, the natural curvilinear coordinates of the surface

u is the displacement in the x coordinate direction

v is the displacement in the s coordinate direction

w is the transverse displacement in the z coordinate direction

w,, is the slope ow/wJx at the node

w,2 is the slope c)w/ )s at the node

'IF, is the rotation of the normal to the shell midsurface in the x direction

( about the s axis )

'I'a is the rotation of the normal to the shell midsurface in the s direction

( abot the x axis )

The overall equation defining the isoparametric discretization of the continuum

displacements into discrete displacements is obtained by [19]

IuI = [N] (q)

(7xl) (7x36)(36x 1)

3.4 Convergence Study.

A convergence study was carried out for the dynamic response of composite panels.

This study was conducted using the 36 DOF element described before and Panel # I
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(explained in section 3.1). This panel had been analyzed before [7], using the STAGSC-1

finite element code, and experimentally by Holographic Interferomerty. Since results

from these methods were available, this panel, under its respective boundary condition,

was chosen only to prove the precision of the DSHELL code in predicting the natural

frequencies and mode shapes.

The DSHELL built-in grid generator was used to create all element meshes. This

resulted in meshes composed of rectangular elements. The following pattern was used:

the number of elements or nodal divisions in the s direction (according to fig. 3-1) was

varied while the number of elements in the x axis kept constant. Then, when the number

of elements in the s direction were kept constant, the number of elements in the x axis

were varied.

Fig 3-3 shows the behavior of the frequencies when the number of divisions in the x axis

were 10, 15 and 30 elements respectively. It is seen from these curves that, as the

number of elements increase the difference between reference [7] and this analysis

becomes smaller.

Fig 3-4 show the behavior of the frequencies when the divisions in the s direction were

varied, the same intervals were analyzed and now the first two modes were affected when

more than 15 divisions were used in that direction. The higher modes converged to the

reference solution.
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Fig 3-4 Percent Difference in the Frequencies by Varying the s axis

According to this analysis, ten divisions should be used in the x axis while fifteen elements

were required in the s direction. When these results were combined in a mesh, the

solution converged to the reference study and the average difference was about 4%.
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xR

Fig. 3-5 Typical 10 x 15 Element Mesh

Some other mesh combinations were used and they are included in the next table.

Mode Holographic Mesh Mesh Mesh Mesh

Number Interferometry 8 x20 10 x15 11 x 12 5 x 40

1 108.70 95.36 102.83 104.8 91.62

2 203.3 208.42 199.92 219.3 181.67

3 235.1 248.21 252.60 268.2 259.64

4 369.4 368.37 370.24 398.2 389.21

Table 3-2 Natural Frequencies (Hz) from Convergence Study for Panel # 1
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Figure 3-6 and 3-7 show the mode shapes obtained for two meshes analyzed: the mesh

used and the reference.

First Mode Shape Second Mode Shape

Third Mode Shape Fourth Mode Shape

Fig 3-6. Mode Shapes for Panel # 1 according to the reference
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It was noticed also, from the convergence analysis, that it is necessary to have about four

eleients or divisions per each half-sine wave of modal displacement in order to obtain the

precise mode shapes, this is also convenient for the eigenvalue solution.

It must be pointed out that there is an effect of the eigenvector space on the natural

frequencies and mode shapes. In order to solve the eigenvalue-eigenvector problem,

DSHELL uses, as it was explained before, the subspace iteration method. This algorithm,

according to the number of cigenvalues requiered p, generates the number of starting

iterationvectorsq,whereq>p (actually q =2p). DSHELL had been working with 10

starting iteration vectors, and it seems that they were " enough for solving the present

problem, therefore and adjustment was made in order to obtain good results and actually

the number of starting iteration vectors has been increased to fourteen and with that

number, the solutions obtained were satisfactory. In order to show the change accuracy,

the following eigenvectors using q = 10 and 14 are compared for a particular shell, as

shown, considering the higher modes.

One will notice the improvement for q = 14, furthermore, a table comparison of the

frequencies is also shown. It becomes apparent, that for certain cases a q= 14 vectors

was satisfactory and thus this was used throughout.

3-12



(a) Using 10 vectors b) ng 14 vectors

Fig 3-8. Third mode shape, [00/9001s ply orientation, Panel *2,
All Edges Simply Supported Boundary Condition,
b/h=20andh/R=lt2O using q=10and 14.

Also the following table shows the effects of increasing &le number of vector iteration

from q= 10 to q= 14 on the third and fourth mode for the especified case.

10 VECTORS 14 VECTORS
b/h =10 Mode#3 Mode#4 Mode # 3 Mode # 4

h/R = 1/20 20398.18 20399.97 20461.18 20498.97
h/R= 150 20397.15 20398.14 20375.15 20419.14
h/R =1/200 20395.14 21534.41 20309.14 20362.41

b/h =15 Mode#3 Mode # 4 Mode#3 Mode#4
h/R = 1/20 13598.94 13607.48 13598.58 13617.48
h/R = 1/50 13596.58 13598.38 13568.24 13586.38
h/R = 1/200 13500.43 13578.20 13500.43 13579.20

b/h =20 Mode # 3 Mode # 4 Mode # 3 Mode # 4
h/R = 1/20 10205.80 10297.55 10208.94 10397.55
h/R = 1/50 9314.28 10269.94 9315.28 10269.99
h/R = 1/200 9088.64 10193.29 9089.63 10195.19

Table 3-3. Comparison between the Third and Fourth Natural Frequencies,
b/h = 10, 15 and 20, using q = 10 and q = 14 vectors.
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IV. Re@ls and o

The primary objective of this thesis was to euxmine the thickness and curvature effects on

the dynamic response ( natural frequencies and nxme shapes ) of the circular cylindrical,

Gr/Ep composite shells, using the DSHELL finite element program. Also the dynamic

capabilities of this code will be evaluated by comparing to a reference using the Galerkin

technique.

Previous analyses at AMT concerning the dynamic response of solid cylindrical composite

panels have been developed using the Galerkin technique and also including a higher order

shear deformation theory (developed by Linneman & Palazotto in 1988 ).

A linear, free vibration analysis was performed on the panels described in Chapter III in

which damping effects were assumed negligible and compared to experiments.

The mode shapes were created by plotting a surface-contour plot of the cigenvector

output by DSHELL. To help visualize the mode shapes, orthographic views of the mode

shapes are included.

The resultng analytical natural frequencies for this study and the ones obtained from the

Galerkin technique are compared using a percent difference approach. In all cases, the

percent difference for a given mode was calculated using the following relation

Percent Difference = foAuu - f=M. x 100%
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whem f..L is the finite element natural frequency using DSHELL and foAmm is the

natural frequency using the Galerkin technique. Both frequencies are given in Hertz ( Hz).

Panel # 1:

This panel was selected as a baseline against which the model ( using DSHELL ) was

compared. Since analytical and experimental results were available, the comparisons made

helped us to obtained some important conclusions for further analyses.

The first consideration in analyzing the results was to look at the convergence of the

cigenvalues and the respective eigenvectors. Different mesh configurations were studied:

8 x 20, 11 x 12, 10 x 15, but only one converged to the accepted result, the 10 x 15

element mesh configuration was chosen for modelling this panel.

Table 4-1 shows the predictions provided by DSHELL for the first four natural frequencies

using the 36 DOF element and the 10 x 15 mesh configuration and the results from the

reference study [7]. The effects of the degrees of fredom, especially at the corner nodes,
on

the mode shapes was also considered. Figure 4.1 shows a typical corner node element

used in this analysis where the boundary conditions are specified.
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Natural Holographic 10 x 15 Percent

Frequency Interferometry [7] Mesh Difference

1 108,70 102,83 5.40 %

2 203,35 199,92 1.68 %

3 235,18 252,60 -7.40 %

4 349,42 370,24 -5.95 %

Table 4-1. Natural Frequencies ( Hz ) for Panel # 1
using the 10 x 15 mesh configuration

FREE EDGE

32 53
21 "

20

SIMPLE SUPPORTED EDGE 20 -"
19-&

Fig. 4.1 Typical corner top element and respective node numbering
for the 10 x 15 element mesh

Two sets of degrees of freedom were analyzed at each comer node to see the effects of

physically varying the restraint to duplicate the actual test conditions. Table 4-2 shows

the DOF used in the comer element specified above with both sets of DOF. The

behavior of the mode shapes were not affected using these two approximations.
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NODE
NUMBER u v W W, 2 j2

19 1 1 1 1 0 1 0
B.C.

Option 20 1 1 0 0 0 0 0
(a)

21 1 1 1 1 1 1 1

53 0 0 0 0 0 0 0

19 1 1 1 1 0 1 0
B.C.

Option 20 1 1 0 0 0 0 0
(b)

21 1 1 1 1 0 1 0

53 0 0 0 0 0 0 0

]Where the number I stands for a restraint DOF
and 0 stands for a free DOF. I

Table 4-2. DOF used at the corner nodes for Panel # 1

Frequency Experimental Mesh Mesh

Number Approach 10x15(a) 10x15(b)

1 108,70 102,83 78,50

2 203,35 199,92 176,07

3 235,18 252,60 209,80

4 349,42 370,24 338,05

Table 4-3. Effects of the DOF on the Natural Frequencies ( Hz)
for options (a) and (b) shown in Table 4-2, Panel # 1
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Fig. 4.2 Magnitude of the Natural Frequencies for the first four modes,
using Mesh element 10 x 15 (a), ( b ) and reference.

It was found that using the adequated degrees of freedom, option (a) specifically, the

panel converged in natural frequencies and mode shapes to the result obtained by using

STAGSC- 1 code and the holographic experimentation [7]. Of course, absolute

convergence could not be proven. The largest percent difference was 7.40 % (above)
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for the case of the third frequency, and the smallest was 1.68 % ( below ) for the second

natural frequency. The first mode is followed by a substantial increase in frequency to a

relatively close second and third modes, followed by another substatial increase in

frequency for the fourth mode.

The mode shapes displayed the same behavior as the ones shown in the reference study.

A graphical representation of the mode shapes for this panel is given in Figure 4.3. By

referring to this figure, it can be seen that the first mode was antisymmetric, the second

and third mode were symmetric, and the fourth mode again was antisymmetric. Therefore,

trasition from antisymmetric to symmetric modes and visa versa is accompanied by a large

increase in frequency, whereas adjacent modes which are closely spaced in frequency were

either both symmetric or both antisymmetric.

-IO0 -'0
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Third Mode Shape Fourth Mode Shape

Fig. 4.3 Mode Shapes for Panel # 1, Simply Supported-Free
Boundary Condition.

It may also be observed that this panel is deep with 8/c = and is thin since /h=

Therefore, it is expected that in-plane displacements enter the eigenvector as important

parameters while the through the thickness shear is unimportant.
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Pawcl#2:

Using the DSHELL code, this study investigated the thickness effects on the natural

frequency and mode shapes for a square panel varying the span to thickness ratio and the

curvature in order to measure effects on two ply orientations, [0o/9001s and [-45o/+45o0s

in which each ply was 0.25 inches thick, giving a total panel thickness of one inch.

Two boundaries conditions were applied: Simply Supported along the vertical edges and

free along the horizontal edges ( SFSF ) and Simply Supported all around ( SS).

Different mesh configurations were also analyzed, but the 10 x.l0 element mesh proved to

be the most adequate mesh for the present study.

NODE

NUMBER U V W w, W TI '_ 2

19 1 0 1 1 0 1 0

20 1 0 0 0 0 0 0

21 1 1 1 1 1 1 1

(32*) 0 1 0 0 0 0 0

(53*) 0 1 1 0 1 0 1

Table 4-4. Typical comer top element and the characteristic node numbering
for the 10 x 10 mesh configuration
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Table 4-4 shows the DOF used in a typical corner element for this panel, and Figure 4.4

shows the specified element (comer top) above and the respective nodes numbering.

The nodes with asteriks in that figure are only considered in the SS boundary condition.

FREE EDGE

32 53

21

SIMPLE SUPPORTED EDGE 19'

Fig. 4.4 Typical top comer element and the respective node numbering
for the 10 x 10 mesh configuration

The panels studied were square, a = b = 1, where a and b are the edges along the x and

s axis respectively; the thickness was assumed constant and for the boundary conditions

specified, different ratios of thickness to radius of curvature, h/R, were assumed ( 1/20,

1/50 and 1/200 ) and specific values of circumferential length to thickness ratios, b/h ( 10,

20, 30, 40 and 50 ) were considered.
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All Edges Siuply Supported Bouadwy Condidoin

Figure 4.5 shows the effect of curvature h/R on the natural frequencies for panel # 2,

[00/900]s ply orientation, with simply supported boundary condition.

12000

weeee l [i/R - 1/20
10000 EhR=1/60

Ah0 120

aamI
Ntkumi

Flrmquo'cy 6000
( md/ee)

4000

o~ I I I I I I I I I

0.5 C 1.5 2 2.A 3 3.5 4 4.A 5

(b/hx 10)

Fig 4.5 Curvature Effects on the First Natural Frequency, Panel # 2,
Simply Supported Boundary Condition, [00/9001s laminate

Some important trends are identified; the natural frequencies are seen to increase as h/R

is increased (smaller radius of curvature). Also the effect of increasing the span to

thickness ratio, b/h, (making the panel deeper) is seen to lower the frequencies. In

addition, for relatively "close" Boundary Conditions (shallow panels), b/h = 10, a small

difference in the magnitude of the first frequency is shown for the three span to thickness
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ratios studied; this behavior changes for relatively "further apart" boundaries, b/h > 40,

where the large differences in frequency appeared. This implies that shallow panel

response is insensitive to radius of curvature but as the panel becomes deeper the

frequency is affected by the curvature.

Figure 4.6 shows the effects of the radius of curvature on the natural frequency for the

[-45o/+45O]s laminate. The fundamental frequencies are seen to increase as h/R is

increased but the frequencies decrease by increasing the span to thickness ratio.

14MI - '

11/2

12 -- t/A

( dm 10000l

Fiequenay
(fad/seec)U

AA

0~I I I I I I I I I I

0 O.s 1 1.5 2 2.5 3 3.5 4 45 S

(bWhx 10)

Fig 4.6 Curvature Effects on the First Natural Frequency, Panel # 2,
Simply Supported Boundary Condition, [-45o/+ 4 5 0 ]s laminate
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The small difference in frequencies for "close" boundaries as seen in the last case, Fig 4.5,

is present for the [-45o/+45O]s ply orientation for h/R > 1/50 ( Fig 4.6). The larger h/R

responded with the largest frequency no matter what shallowness parameter b/h was

considered. From the figures above can be seen also that for shallow panels (&c very

small), the ft/ implies thick panel and the effects of through the thickness shear is more

noticed.

Comparisons can also be made between the natural frequencies obtained for the two

laminates. Figure 4.7 shows the tendency of the curves for the fundamental frequency

for the laminate orientations described, the value h/R =20 waq chosen for this analysis.

14000
SJ.( o/90 )G

12000 *(-45/*45)8

10000

5cuf 000Natural 80

Frequeney
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4000

2000
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a 1 2 3 4 6 6
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Fig. 4.7 Comparison for the Fundamental Frequency between the [00/90o]s and
[-45o/+45o]s laminates, Simply Supported Boundary Conditionh/R = 1/20.
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Both curves show the same behavior, the magnitude of the first frequency is higher for the

[-45o/+45O0s than the [00 /9001s laminate since that ply orientation makes the panel stiffer.

This is because of the frequency equation depends on the extensional ( A4 ) and bending

coefficients ( Dij), (18:3441, and they are higher for the [-4 50 /+4 50os than the [0o/90o1s

laminate. Also, by increasing the span to thickness ratio, the first frequency decreases in

both cases. In addition, for (b/h) < 30, the variation between the two frequencies is

significant, but as b/h increases the comparism for the two lay-ups converge.

Up to this point these results are not new. Linneman [81 examined symmetrical laminates

using two theories: Galerkin Technique and a Higher Order Shear Theory; the validation

of the results in this analysis was obtained from comparison to his results.

The values for the first natural frequency using DSHELL and the Galerkin technique for

the ratio h/R = 20 are shown below. The difference percent is also introduced. Table 4-5

shows the first natural frequency for this panel, [00/900]s laminate, with simply supported

boundary condition. The highest difference obtained between the Galerkin technique and

the DSHELL approximations was 11.34 % for the ratios b/h = 30 and h/R = 1150.

Table 4-6 also shows the first natural frequency for the [-450/+450]s laminate, same

boundary condition; the highest difference obtained between the Galerkin technique and

the DSHELL approximations was 9.40 % for the ratios b/h = 50 and h/R = 1/20, while

the lowest percent in difference was 1.08 %. The percent differences are relatively small,

therefore DSHELL with the associated model was used for subsequent conditions.
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bIh = 10 Galmrdn DWELL Differnce
Technique FEM code Percent

h/R = 120 10800 10702,7 +0,90%
h/R = 1/50 10500 10482,2 +0,17%
b/R = 11200 N.A 10441,4

b/h =20 Galeridn DSHELL Difference
Technique FEM code Percent

h/R= 1/20 4200 4016,3 +4,36%
h/R =1/50 3200 3124,4 +2,36%
h/R = 1/200 N.A 2919,2

b/h =30 Galerkin DS-ELL Difference
Technique FEM code Percent

h/R = 1/20 2950 2760,3 +6,43%
h/R = 1150 2000 1773,2 +11,34%
h/R = 1/200 N.A 1355,5

b/h = 40 Galerkin DSHELL Difference
Technique FEM code Percent

h/R = 1/20 2000 1900,3 + 4,98 %
h/R = 1/50 1450 1400,2 +3,43%

h/R = 1/200 809,3 Z

b/h = 50 Galekddn DSHELL Difference
Technique FEM code Percent

h/R = 1/20 1700 1575,8 +7,30%
h/R = 1/50 1100 1071,2 +2,62%

h/R = 1/200 N.A 570,7

(N. A = Not Available)

Table 4-5 Comparison between DSHELL and the Galerkin Technique for
the Fundamental Frequency, Panel # 2, [0o/ 9001s ply orientation
Simply Supported Boundary Condition.
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b/ = 10 Gaklerdn DSHELL Difference
Technique FEM code Percent

h/R = 1/20 14300 13672,2 + 4,39 %
h/R = 1/50 12900 12349,6 +4,26%
h/R = 1M200 . 12092,0 -

b/h =20 Galerkln SHELL Diffence
Technique FEM code Percent

h/R =1/20 7700 7285,9 +5,38%
h/R =1/50 4500 4389,5 +2,46%
h/R =1/200 N.A 3504,1 -

b/h = 30 GIalerdn DSHELL Diffmence
Technique FEM code Percent

h/R = 1/20 4000 3668,9 +8.28%
h/R = 1/50 3200 3165,3 +1,08%
b/R-- 1/200 N.A 1720,8

b/b = 40 Galerkin DSHELL Difference
Technique FEM code Percent

h/R = 1/20 2550 2414,9 +5,30%
h/R = 1/50 2150 2107,7 + 1,977%

h/R = 1/200 N.A 1135,6

b/h = 50 Galerkin DSHELL Diffence
Technique FEM code Percent

h/R = 1/20 2100 1902,7 +9,40%
h/R = 1/50 1500 1463,6 + 2,43%

h/R = 1/200 N.A 906,1 -

(NA = Not Availble )

Table 4-6 Comparison between DSHELL and the Galerkin Technique
for the First Frequency, Panel # 2, [-45o/+45O]s ply orientation
Simply Supported Boundary Condition.
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Although only the fundamental frequency has been included in the previous analysis, the

eigenvectors %c n dig tO the first four natural frequencies for the [OD/90o]s and

[-45o/+45o]0 laminate, for bWh = 20, with Simply Supported all edges Boundary Condition

are included in the next Figure& As stated in the modelling chapter, a subspace of 14

vectors was used throughout with a convergence tolerance on eigenvalues of 10-n, thus

twelve digit accuracy and six digit accuracy for the vector components of the eigenvector

using a Rayleigh quotient relation [21]. The convergence equation isI < 1 tol

where k is the given iteration.

Fig 4.8 shows the mode shape for the [0o/90o]s laminate, under the simply supported all

edges boundary condition, for the specific values of h/R= 1/20 and b/h = 20. The first

mode is symmetric, the second, third and fourth mode are antisymmetric.

0 0.

4 244 2 2 4

First Mode Shape Second Mode Shape
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Ibird Mode Shape Fourth Mode Shape

Fig. 4.8 Mode Shapes for Panel' #2, Simply Supported Boundary
Condition, [00/900]s lamIinate, b/R = 1/20, b/b = 20

Fig 4.9 shows the mode shape for the [-450/+450]s laminate, under the simply supported

boundary condition, for the specific values of h/R= 1/20 and b/hi =20. The first mode is

synmmmwic the second and third and fourth mode are antisymmetrc
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Fig. 4.9 Mode Shapes for Panel # 2, Simply Supported Boundary
Condition [-45o/45Ols laminate, h/R = 1/20, b/h = 20
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A complete set of results of this analysis incluiding the first four natural frequencies, for

both ply orientation and the specified boundary conditions, is given in the fdUowing

tables.

b/h-=10 Mode #1 Mode #2 Mode #3 Mode #4
h/R = 1/20 10702.72 18977.13 20461.18 20498.97
h/R-= 1/50 10482.24 18649.47 20375.15 20419.14
h/R = 1/200 10441.45 18542.59 20309.14 20362.41

b/h-=15 Mode #1 Mode #2 Mode #3 Mode#4
h/R = 1/20 5685.29 9374.52 13598.58 13617.48
h/R = 1/50 5127.56 9360.28 13568.24 13586.38
h/R = 1/200 5016.13 9266.70 13500.43 13549.20

b/h=20 Mode #1 Mode#2 Mode"#3 Mode #4
h/R = 1/20 4016.82 5524.13 10205.80 10397.55
h/R = 1/50 3124.43 5497.42 9314.28 10269.94
h/R =1/200 2919.27 5429.79 9088.64 10193.29

b/h=30 Mode #1 Mode #2 Mode #3 Mode #4
h/R = 1/20 2760.3 3036.1 4904.9 5698.4
h/R = 1/50 1773.2 2563.2 4754.5 4988.8
h/R = 1/200 1355.5 2524.7 4417.8 4708.8

b/h=40 Mode #1 Mode #2 Mode #3 Mode #4
h/R = 1/20 1900.36 2702.33 2842.59 4030.63
h/R = 1/50 1400.27 1524.24 2737.03 3137.14

h/R = 1/200 809.38 1442.29 2613.72 2836.48

b/h=50 Mode #11 Mode#2 Mode #3 Mode #4
h/R = 1/20 1575.89 1931.45 2477.51 3127.58
h/R = 1/50 1071.26 1266.30 1853.52 2233.47

h/R = 1/200 j 570.72 935.18 1757.98 1838.85

Table 4-7 First four Natural Frequencies, Panel # 2, Simply
Supported Boundary Condition, [0o/90o]s Ply orientation.
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b/h=lO 1 Mode #1 Mode#22 Mode #3 Mode #4
h/R = 1/20 13672.26 22404.69 26239.22 29104.94
h/R = 1/50 12349.65 22138.28 25899.37 28886.96
h/R = 1/200 12092.08 22076.65 25819.76 28839.93

b/h=15 Mode #1 Mode #2 Mode #3 Mode #4
h/R = 1/20 8840.34 11772.55 14737.46 18408.56
h/R = 1/50 6468.87 11367.77 13818.49 17716.12
h/R = 1/200 5919.98 11232.03 13698.42 17578.29

b/h=20 Mode #1 Mode #2 Mode #3 Mode #4
h/R = 1/20 8285.94 7427.99 10384.23 12037.38
h/R = 1/50 4389.53 6935.45 8615.55 11019.53
h/R = 1/200 3504.12 6717.43 8379.37 10777.59

b/h=30 Mode #1 Mode#22 Mode #3 Mode#4
h/R = 1/20 3668.95 6254.74 6431.54 8701.83
h/R = 1/50 3165.36 3459.07 4667.79 5666.27
h/R = 1/200 1720.89 3167.73 4026.06 5187.10

b/h=40 Mode #1 Mode #2 Mode #3 Mode #4
h/R = 1/20 2414.96 3685.05 5469.36 5625.56
h/R = 1/50 2107.75 2872.94 3512.95 3618.75

h/R = 1/200 1135.68 1859.18 2373.24 3051.14

b/h=50 Mode #11 Mode #2 Mode #3 Mode #4
h/R = 1/20 1902.79 2678.49 3873.12 4603.97
h/R = 1/50 1463.64 2356.94 2756.15 3119.88

h/R = 1/200 906.12 1245.63 1605.09 2039.39

Table 4-8 First four Natural Frequencies, Panel # 2, Simply Supported
Boundary Condition, [-450/+ 4 5 0]s ply orientation.

The next figures show the behavior of the second, third and fourth mode. They were

constructed using the data above.
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Figs 4.10 and 4.11 show the behavior of the frequencies for the second mode under the

boundary condition considered. According to these figures, the frequencies for the

[-450/+450]s laminate are higher than the ones for the [00/900]s ply orientation. The

panel stiffness is higher in the [-4 5 0 /+4 50 ]s laminate as indicated previously. Also the

effect of the through the thickness shear becomes evidently higher for the [-4 50 /+450 ]s

laminate.

Also from fig 4.11, for values b/h > 20 (deeper and thinner shells) through the thickness

shear effects decreased but the curvature effects becomes significant. Also for deeper

shells, b/h > 50, on the same value of curvature, the behavior of the curve seems to reach a

specific value, for both orientations, this value should correspond to the frequency of a

shell with no shear.

,h/R I 1/50
16000 I. -h/R -1/200J
14000

12000
Natural

Frequency 10000
(rod/mec)
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4000

2000

0 I I

0 1 2 3 4 5 6

(b/hx 10)

Fig 4.10 Curvature Effects for the Second Natural Frequency, Panel #2,
Simply Supported Boundary Condition, [00/900]s laminate.
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Fig 4.11 Curvature Effects for the Second Natuiil Frequency, Panel # 2
Simply Supported Boundary Condition, [-45o/+45o]s laminate

Figs 4.12 and 4.13 show the behavior of the frequencies for the third mode. According to

these figures the frequencies for the [-45o/+450]s laminate are higher than the ones for

the [0 0/90 0os ply orientation. The effect of the through the thickness shear is also

evidently higher in the [-4 50 /+4 5 0 ]s than in the [0o/90O]s laminate. The effect of

curvature is practically negligible for the [0o/90O]s laminate ( since the curves are very

close, but in the [-450/+450]s laminate, it becomes important.

The same trends are also seen in figs. 4.14 and 4.15, for the fourth natural frequency.
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Fig 4.12 Curvature Effects for the Third Natural Frequency, Panel # 2,
Simply Supported Bounldar Condition, [00°/900°]s laminate
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Fig 4.12 Curvature Effects for the Third Natural Frequency, Panel # 2
Simply Supported Boundary Condition, [-4o/+45o]s laminate
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Fig 4.13 Curvature Effects for the Thir Natural Frequency, Panel #2
Simply Supported Boundary Condition, [-~450/+450]s laminate
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Fig 4.14 Curvature Effects for the Fourth Natural Frequency, Panel # 2
Simply Supported Boundary Condition, [0o/90O]s laminate
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Fig 4.15 Curvature Effects for the Fourth Natural Frequency, Panel # 2
Simply Supported Boundary Condition, [-45o/+45o]s laminate
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Also comparisons can be made between the ply orientations for the specific value of

b/R = I/2M, Figs 4.16, 4.17 and 4.18 show the behavior of the second, third and fourth

mode respectively.

It is noticed that the frequency magnitude for the [-450/+450]s ply orientation is higher

than the corresponding values for the [00/9001s laminate for the second, third and fourth

modes. In addition, for b/h > 30, the difference in frequency between both orientations

is very small.
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Fig 4.16 Comparisons between [0 0/90 0 ]s and [- 4 5 0 /+4 5 0 ]s laminate, Panel # 2
Second Natural Frequency, Simply Supported Boundary Condition
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Fig 4.17 Comparisons between [0o/90o]s and [-45o/+45o].. !minate, Panel # 2
Third Natural Frequency, Simply Supported Boundary Condition
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Fig 4.18 Comparisons between [00/9001s and [-450 /+450 ]s laminate, Panel # 2
Fourth Natural Frequency, Simply Supported Boun.. Condition
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Siaply Swpported-Free Boundary Coeditio&

The next case investigated was the Simply Supported-Free-Simply Supported-Free

Boundary Condition. The DOF applied in this boundary condition were specified in

Table 4-4. DSHELL again showed flexibility in getting the eigenvalues and the

coe.sponding mode shapes for this boundary condition, so the calculations were straight

forward.

Following the pattern used with the previous boundary condition, the same thickness to

radius of curvature ratios, h/R, were used (1/20, 1/50, 1/200) for specific values of

circumferential length to thickness ratios b/h (10, 20, 30, 40 and 50).

The next tables, Table 4-9 and Table 4-10 respectively, show the magnitude of the first

four natural frequencies using DSHELL finite element program for both ply orientation

[0o/90os, and [-45o/+45O]s.
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b/h=110 (1) Mode #1 Mode #2 Mode #3 Mode #4
hIR = 1/20 6069.1 9043.4 15759.8 16582.6
h/R = 1/50 5240.8 7259.0 15240.6 16386.6
h/R = 1/200 5063.2 6875.7 15226.7 16334.4

b/h=15 (2)1 Mode #1 Mode #2 Mode#3 Mode #4
h/R = 1/20 3961.8 6688.1 8052.4 9365.8
h/R = 1/50 2764.7 4129.6 7896.7 9256.8
h/R = 1/200 2408.6 3393.3 7605.5 9152.6

b/Ih=20 (3) Mode #1 Mode #2 Mode #3 Mode #4
h/R = 1/20 3181.3 4469.7 5575.2 5796.2
h/R = 1/50 1941.3 3125.6 4862.5 5504.1
h/R = 1/200 1431.2 2075.9 4745.3 5490.3

b/h = 30 (4) Mode # 1 Mode # 2 Mode,#3 Mode # 4
h/R = 1/20 1965.3 2497.1 2964.8 3910.8
h/R = 1/50 1375.8 2162.0 2494.3 2676.8
h/R = It200j 731.4 1122.4 2197.5 2612.5

b/h = 40 (5) Mode # 1 Mode # 2 Mode # 3 Mode #4
h/R = 1/20 1162.4 2033.7 2104.3 2585.0
h/R = 1/50 1054.2 1228.2 1654.0 2162.4

h/R = 1/200 502.5 819.1 1259.1 1530.1

b/h = 50 (6) Mode # 1 Mode # 2 Mode # 3 Mode # 4
h/R = 1/20 787.8 1503.3 1688.0 1720.2
h/R = 1/50 636.4 1047.4 1327.9 1527.7

h/R = 1/200 404.2 699.0 814.7 1011.8

Table 4-9 First Four Natural Frequencies using DSHELL, Panel # 2,
[0o/90O0s laminate, Simply Supported-Free Boundary Condition.

As expected, by using this boundary condition, the frequencies obtained are lower than the

values for the previous boundary. For both laminates, [0o/90O0s and [-45o/+45O]s,

the values of frequencies obtained are about 50% the corresponding value of frequency
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calculated for the Simply Supported all edges boundary condition.

b/h= 10(1) Mode #1 Mode #2 Mode #3 Mode #4
hR = 1/20 6851.8 10775.6 18488.0 18814.4
hI/R = 1/50 5865.1 9824.4 18172.9 18412.6
h/R = 1/200 5665.9 9644.1 18127.6 18287.9

b/h= 15 (2) Mode #1 Mode#22 Mode#33 Mode#4
h/IR = 1/20 4786.3 6671.5 9457.4 10410.5
h/R = 1/50 3205.8 5110.7 9250.4 9352.1
h/R = 1/200 2805.9 4741.0 .9111.4 9304.2

b/h=20 (3) Mode #1 Mode #2 Mode #3 Mode #4
h/R = 1/20 4147.1 4836.3 6145.7 7085.6
h/R = 1/50 2306.3 3415.1 5671.7 5852.6
h/R = 1/200 1702.4 2835.8 5455.7 5690.7

b/h=30 (4) Mode #1 Mode #2 Mode #3 Mode #4
h/R = 1/20 2310.2 3411.5 4290.7 4353.3
h/R = 1/50 1767.3 2224.6 2865.7 3263.9
h/R = 11200 883.8 1402.5 2616.1 2734.4

b/h=40 (5) Mode #1 Mode#2] Mode#3 Mode#4
h/R = 1/20 1448.2 2526.4 2916.6 3175.3
h/R = 1/50 1262.2 1586.9 2194.4 2232.0

h/R = 1/200 612.5 906.2 1582.9 1608.2

b/h= 50 (6) Mode #11 Mode #2 Mode #3 Mode #4
h/R = 1/20 951.5 1757.5 1990.1 2413.3
h/R = 1/50 760.8 1427.0 1713.0 1828.2

h/R = 1/200 503.9 692.8 1067.5 1112.9

Table 4-10 First Four Natural Frequencies using DSHELL, Panel # 2,
[-450/+450 ]s laminate, Simply Supported-Free Boundary Condition

The fundamental mode will be discussed next since it is most important in the analysis.

Figure 4.19 shows the effect of curvature h/R on the fundamental frequency for panel # 2,
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[O°/90oJs ply orientation. As it is seen, as the curvature increases, the panel becomes

deeper and stiffer and the natural frequencies increase.
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M •h/R -1/50

1ouo 000 hill = 1/20010

NCUWd 4000-
Frequency
(pad/see)a

2000 ---

A
1000

0 I I I I I
0 1 2 3 4 6 6

b/h(x 10)

Fig 4.19 Curvature Effects on the Fundamental Frequency, [0O/900]s
ply orientation, Simply Supported-Free Boundary Condition

Some tendencies are also recognized. The natural frequencies are seen to increase as h/R

is increased due to the membrane and bending coupling. Also, the effect of increasing

the span to thickness ratio, b/h, is seen to lower the frequencies. The same behavior was

noticed for the [-45o/+45o]s laminate, Figure 4-20. Both figures present basically the

same tendencies except that, the curves for the [-450/+450]s laminate are higher in

magnitude than the corresponding curve for the [00/9001s laminate as indicated

previously.
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Fig 4.20 Curvature Effects on the Natural Frequencies, Panel # 2, [-450/+450]s
ply orientation, Simply Supported-Free Boundary Condition

The next figure shows the difference in natural frequencies for both laminates. Again, the

natural frequencies for the [-45o/+45O]s laminate are higher than the value for the

[0O/90O]s orientation due to the higher stiffness and thickness effects in the first layup.

4-32



700

6000 I t16•11

ot 10190).

4000
Nduid

FrsipmW~

2000U

1000

0 I I I I I I

0 1 2 3 4 5 6
b/h

Fig. 4.21 Comparison in the First Natural Frequency between the
[00/90 0 ]s and [-45o/+45O]s ply orientations, Simply

Supported-Free Boundary Condition, h/R = 1/20

Also from this figure it can be seen that for values b/h < 30, the variation between the two

frequencies is significant but as b/h increases, the comparison for both laminates converge.

Although only the first natural frequency has been included in the previous analysis (fig

4.19), the mode shapes corresponding to the first four natural frequency for the [001900]s

and [-45o/+45O]s ply orientation with simply supported-free boundary condition are

included in the next figures.
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From figure 4.22, it can be seen that the farst mode shape for the [00/900 1s ply orientation,

is syimmetric, the second, third and fourth mode are antisymmetric.
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Prom figure 4.23, it can be seen that the first mode shape for the [-45o/+450]s pl y

orientation, is symmetric, the second, third and fourth mode are antisymmetric, is the same

as the [00/900]s ply orientation.
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Fig 4.23 Mode Shapes for Panel # 2, [-450/+450] ply orientation, b/h =20,
h/R =1/20, Simply Supported-Free BoundaryCondition
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In the following figures the curvature effects on the second, third and fourth frequencies

for both ply orientation are shown. Figures 4.24 and 4.25 present the curvature effects

on the second natural frequency for both laminates respectively. For both laminates, the

frequency is seen to increase as h/R increases, but the frequency decreases by increasing

the distance between the boundaries. Also the frequencies for the [-450/+45o]s ply

orientation are higher than the corresponding values for the [00/90°]s laminate, for the

four frequencies, through all interval b/h analyzed.
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Fig 4.24 Curvature Effects on the Second Natural Frequency, [00/900]s
ply orientation, Simply Supported-Free Boundary Condition
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In addition, the difference in frequency among the three ratios of curvature seems to

remain constant for each ply orientation along the interval b//h study, although for closed

boundaries, b/h < 20, this difference is larger in the [00/900]s ply orientation. If these

figures are compared with the respective ones obtained for the previous boundary

(figures 4.10 and 4.11 ), it is seen that the difference in frequency among the three ratios

h/R studied, for each b/h value, is higher in the present boundary condition case for both

laminates than the corresponding ply orientation in the previous boundary.
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Fig 4.25 Curvature Effects on the Second Natural Frequency, [-45o/+45o]s
ply orientation, Simply Supported-Free Boundary Condition
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Figures 4.26 and 4.27 show the curvature effect on the third natural frequency for both

laminates respectively; frequency increases as h/R increases too, but it decreases by

increasing the distance between boundaries. Also, the effect of the boundary condition is

noticed, by comparing these figures with figures 4.12 and 4.13, corresponding to the same

frequency but simply supported all edges, the frequency magnitudes in the present case are

lower than the values for frequencies obtained for the previous boundary.
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Fig 4.26 Curvature Effects on the Third Natural Frequency, [0o/900os
laminate, Simply Supported-Free Boundary Condition
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Fig 4.27 Curvature Effects on the Third Natural lPrequency, [-450/+450]s
ply orientation, Simply Supported-Free Boundary Condition

Figures 4.28 and 4.29 show the curvature effect on the fourth natural frequency for both

laminates respectively; fr-equency increases as h/R increases too, but it decreases by

increasing the distance between boundaries. These curves follow exactly the samne trend

seen in the third mode, the effects of curvature are not observable at the shallower end of

the composite (W/h < 20), specially in the [00/900]s ply orientation, but they are more

evident at the deeper end in the [-450/+450]s ply orientation.
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Fig 4.28 Curvature Effects on the Fourth Natural Frequency, [00/9001s
laminate, Simply Supported-Free Boundary Condition
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Fig 4.29 Curvature Effects on the Fourth Natural Frequency, [-45o/+45o]s
ply orientation, Simply Supported-Free Boundary Condition
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Following the analysis made with the previous boundary condition, comparisons between

both ply orientations can also be made for h/R = 1/20.

Figures 4.30,4.31 and 4.32 show the difference between the [00/900 ]s and [-45o/+450]s

ply orientation for the second, third and fourth natural frequency for the simply supported-

free boundary condition. It is seen that the natural frequencies for the [-45o/+45o]s

laminate are higher than the corresponding frequencies for the [0o/90o]s ply orientation,

this difference is about 20%, for the three cases, and it remains approximately constant

through all the interval b/h analyzed. Also, it is evident that the effect of the through the

thickness shear on the [-450/+450]s ply orientation is greater, s.pecially at the shallower

end of the composite, although this effect becomes negligible as the deepness is increased.
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Fig 4.30 Comparison between [0o/90o]s and [-45o/+45o]s ply orientation, Second
Natural Frequency, Simply Supported-Free Boundary Condition
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Fig 4.31 Comparison between [O0/9001s and [- 4 5o/+4 5o0s laminate, Third
Natural Frequency, Simply 'pported-Free Boundary Condition

200000/0 
s

1 i00.45/d)l

16000

14000

12000
"Ndurd

Feqwency 10000
(lrad/see)

6000

4000

2000

0 1
0 1 2 3 4 5 6

(bhix 10)
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V. Concluaons and Recomendatiomn

An analytical study was carried out using the DSHELL finite element program in the

solution of dynamic response, natural frequencies and mode shapes, for curved Gr/Ep

composite panels considering through the thickness shear strain.

Based upon on the analysis developed, the following conclusions were reached.

Comparisons for a panel, used as a baseline study, with previous experimentation using

Holographic Interferometry, and analytical studies using STAGSC- 1 finite element code,

proved to be excellent. The first four natural frequencies and the respective mode

shapes obtained in this study matched completely with the results in the previous analysis.

It was found that modelling the composite shell panel was dictated by improving the

accuracy of natural frequencies and mode shapes. The result from this was that four

nodes have to be positioned per each half sine wave formed and the size of the subspace

in the eigenvalue solution was fourteen vectors in arriving at the four eigenvalues

requested.

Good results were obtained for a given panel, considering the two boundary conditions

studied, all edges simply supported and simply supported-free. The output obtained

from DSHELL was close to the results obtained from the Galerkin Technique. The

accuracy and flexibility of the program was proved.

The curvature of the composite shells were varied as was the span to thickness ratio in

order to measure the effects for each ply orientation, under the specified boundary
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conditims. The results showed that, as the shell becomes deeper the frequency becomes

smaller.

Findings show that larger curvature increases the natural frequencies for both laminates

[0/90]Js and [-45o/+45O]s due to the fact that the in-plane displacements (u and v

specially) becomes more important as the curvature increases. This was found

considering simply supported all around and simply supported-free boundary condition.

It was found also that the effect of through the thickness shear was more observable at

the shallower end of the composite shell where the panel becomes thick (81h < 1), but

this effect disappears as the curvature effects becomes predominant.

Results show that shallow shell theory is a good approximation when the 8/c ratio is less

than 0.25, but as the ratio increases the interaction of the in-plane displacements must be

considered as part of the eigenvector-eigenvalue solution.
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Appendix A: More Details Related to the Subspace Iteration Metlod

The purpose of this section is to present some additional details in the subspace method

used in the DSHELL program.

A.1 Subspace Iteration Method

The subspace iteration algorithm was developed by Bathe [1] and is explained in this

section. The goal of the subspace iteration method is to solve for the "p" lowest

eigenvalues and eigenvectors which satisfy

KO = MOA (A.1)

where f[ 01) ( 42) .... (0p) ], A=diagmatrixofeigenvalues i's(if= 1, 2, ...,p),

and K and M are the symmetric stiffness and mass matrices respectively. The starting

iterationvectors, x;, span the subspace (eigensubspace)E, and iteration continues until,

with sufficient accuracy, E_ is spanned. E. is the p-dimensional subspace spanned by the

"p "lowest eigenvectors. The starting iteration vectors should be chosen to excite those

degrees of freedom possessing large mass and small stiffness [1:682]. One method for

obtaining xj, which has been effectively used, begins by letting the first column of [MIx1

be the major diagonal of [MI. This establishes excitation of all degrees of freedom
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possessing mass. The other columns of [Mix, are unit vectors with a "1" at locations

with the smallest Kii/nii ratios. Therefore, all locations but one within these columns

contains zeros. The last column in [MIx, can be a random vector. After the starting

iteration vector is determined, iteration begins from Ek to Et+, ( E. is the eventual desired

result ), where k = 1, 2, 3, ..., n by applying

KX IM = MXk (A.2)

As used here, "n" is the number of iterations required to obtained convergence. Equation

(A.I ) is solved for X k+I by premultiplication of both sides of the equation by [K]-' to

yield

x &+ = K-I Mx t (A.3)

Next, the projections of the K and M operators on the Ek+I subspace are determined by

[P]

K÷,= x T Kx (A.4)

M•+ =r ir Mx kt(A.5)" k~l k+l

By using the above relations for K,,÷ and M,+,, the eigensystem of the 1 Ijected operators

can be solved by [1]

K +I QA+I = Mh+, Qk+1 A +, (A.6)
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Equation ( A.5 ) represents the reduced eigenvalue problem for the Ea+, subspace and can

be solved by any popular technique (DSHELL uses Householder's Method followed by a

LR algorithm) to obtained values for Qt+ and A,+,. An improved approximation to the

eigenvectors is found from [I1

x k+I = -k +I k +I ( A.7 )

This procedure is iterated until the desired convergence is obtained. This x ,+, is now

substituted into Equation (A.2 ) in place of x, and the algorithm iterated until sufficient

convergence has been obtained. Figure A-I presents a flow chart of the subspace
.6

iteration algorithm incorporated in DSHELL. In subspace iteration, the iteration vectors

are ordered such that the vectors converging to • ,•2,..-,€, are stored as the first,

second, ..., p'" columns of x ,+,, respectively. As long as no vector contained within xi

isorthogonal to any of the required eigenvectors, then as k tends to infinity, A,+,

approaches to A ( the required diagonal matrix of "p" eigenvalues ) and x ,,+ approaches

[*J (the required column matrix of "p" eigenvectors) (1]
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Fig A-1 Subspace Iteration Algorithm
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