

AD	

CONTRACT NO: DAMD17-92-C-2097

TITLE: PCR (POLYMERASE CHAIN REACTION) TESTING FOR LEISHMANIASIS

SUBTITLE: Services to Develop, Standardize, and Validate Polymerase Chain Reaction (PCR) Protocols for the Detection of Leishmaniasis in Clinical Samples

PRINCIPAL INVESTIGATOR: Frank A. White, III, Ph.D.

CONTRACTING ORGANIZATION: SRA Technologies, Inc.

SRA Technologies, Inc. 9620 Medical Center Drive Rockville, Maryland 20850

REPORT DATE: October 20, 1993

TYPE OF REPORT: Midterm Report

PREPARED FOR: U.S. Army Medical Research, Development, Acquisition and Logistics Command (Provisional), Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

(

DTIC QUALITY INSPECTED 1

94 6 24 127

REPORT D	DOCUMENTATION P	AGE	Form Approved OMB No. 0704-0188
Public reporting burden for this collection of gathering and maintaining the data needed, a collection of information, including suggestio Davis Highway, Suite 1204, Arlington, VA 222	information is estimated to average 1 hour per ind completing and reviewing the collection of i ns for reducing this burden to Washington Hea 22-332, and to the Office of Management and	response, including the time for re information. Send comments rega adquarters Services, Directorate for Budget, Paperwork Reduction Proj	viewing instructions, searching existing data sources, rding this burden estimate or any other aspect of this i information Operations and Reports, 1215 Jefferson ect (0704–0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave bla		3. REPORT TYPE AN	
	20 Oct 93	Midterm Rep	port (9/21/92 - 9/20/9
	Polymerase Chain R		5. FUNDING NUMBERS
	asis: Services to	- ·	- · · · ·
	Validate Polymerase		
	or the Detection of	Leishmaniasi	DAMD17-92-C-2097
6. AUTHOR(S) in Clinica	il Samples		
Frank A. White, Il	I, Ph.D.		
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
			REPORT NUMBER
SRA Technologies,			
9620 Medical Cente			
Rockville, Marylar	id 20850		
	PRICE MARAPICE AND ADDREPPICE		
	GENCY NAME(S) AND ADDRESS(ES Research, Developm		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
	ogistics Command (P		
Fort Detrick	gistics command (P	rovisional),	
Frederick, Marylar	ad 21702-5012		
riederick, Marylan			-
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY			12b. DISTRIBUTION CODE
Approved for publi			
distribution unlim	nited		
13. ABSTRACT (Maximum 200 wo	rds)		
	,		
The disease Leish	maniasis, endemic in A	frica, South Wes	t Asia. and South
America, is cause	d by transmission of a	parasite of the	Leishmania
species via the b	ite of an infected san	dfly. The sever	ity of the disease
ranges from cutan	eous lesions to a freq	uently fatal vis	ceralization of
the internal orga	ns unless treated at a	n early stage.	Detection of the
	difficult due to very		
	Existing tests for L		
	e high (50%) false neg		
development of a	rapid polymerase chain	reaction (PCR)	based diagnostic
	ing 1 infected cell in		
blood. The test	has an accuracy greate	r than 92%, and	a false negative
rate of less than	87, when validated ag	ainst known clin	ical samples.
14. SUBJECT TERMS			15. NUMBER OF PAGES
	erase Chain Reactio	n, Test, RAD	I I
			16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIF	CATION 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Unclassified	Unclassified	Unclassifie	
NSN 7540-01-280-5500			Standard Form 298 (Rev 2-89) Prescribed by ANSI Std 239-18

Opinions, interpretation, conclusions and recommendations are those of the author and not necessarily endorsed by the U.S. Army

() Where copyrighted material is quoted, permission has been obtained to use such material.

() Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

() Citation of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement of approval of the products or services of these organizations.

() In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animal," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985)

() For the protection of human subjects, the investigator(s) have adhered to policies of applicable Federal Law 45 CFR 46.

(\checkmark) In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

4. Quito Signature

Set 18 1993 Accesion For NTIS CRA&I DTIC TAB Unannounced n Justification By Distribution / Availability Codes Avail and / or Dist Special

Table of Contents

.

1.	Objectives	1
2.	Introduction	2
	Assay	34
	2.1.2 Mechanical/Physical Barriers to Contamination	4
	Positives	7
	2.1.6 Design of PCR Primers and Probes	
3.	Methods and Results	10 10
	Separation	11 11
	3.1.3 PCR Cycling Conditions	12
	3.2 PCR Product Detection	13
	3.2.1 Capture Plate Procedure	14 15
	3.3 PCR Primer Selection and Development	16
	Table 1. Sequences of Leishmania Specific PCR	
	Primers	18
	using the minicircle-specific PCR primers Table 3. Sensitivity of various primer sets	20
	against L. Tropica	21
	Substitutions	21
	3.4 Decatenation of <i>Leishmania</i> kDNA minicircles 3.4.1 Decatenation Protocol	25 25
	3.4.1.1 Results of the Decatenation	
		25 26
	Experiments	20
4.	Conclusions	30
5.	Bibliography	33
6.	Figures	37 38 39
7.	Appendix	41

1. Objectives

As set forth in the Statement of Work for contract DAMD17-92-C-2097 entitled "Services to develop, standardize, and validate polymerase chain reaction (PCR) protocols for the detection of Leishmaniasis in clinical samples", the objective of this study is comprised of two phases. In the first phase, the contractor shall "Develop and standardize the technology known as the polymerase chain reaction (PCR) for the detection of leishmaniasis in clinical samples". Phase II defines the task of the contractor to "validate PCR testing protocols developed as a result of the first objective in a large select military population of approximately 2,500 to 3,000 individuals". At this point in time, Phase I of the study is nearly complete, but Phase II has not yet started. Taking this into consideration, this Midterm report will be confined to the objectives stated for Phase I of the study and the progress made toward those goals.

2. Introduction

Leishmaniasis is a zoonotic disease which afflicts over 12 million persons throughout the tropical and subtropical regions of the world. Over 400,000 new infections of this clinically ill-defined group of diseases are diagnosed yearly, and the actual infection rate in developing nations may be significantly higher. This disease has been a particular concern following Operation Desert Storm (ODS) (1).

The etiologic agent of leishmaniasis is a protozoan of the genus *Leishmania*. *Leishmania* are grouped broadly into the New (*L. mexicana* and *L. braziliensis* complexes) and Old (*L. donovani* and *L. tropica*) World species. Four species and at least 15 subspecies are generally recognized. All are similar in morphology and life history. The parasites which infect humans are transmitted by the Old and New World sandflies, *Phlebotomus* and *Lutzomyia*. In the insect vector, the protozoan is found as the flagellated or promastigote form. Upon introduction into the human host, and if phagocytized by a macrophage, the parasite transforms into the non-flagellated, ovoid form, the amastigote.

Three major types of pathologies result from active infection with *Leishmania*. Cutaneous leishmaniasis is characterized by fairly localized cutaneous lesions. If the organism spreads from the site of infection to the nasal cavity and naso-pharyngeal region, the severely disfiguring mucocutaneous leishmaniasis can result. The most severe form of the disease occurs if the parasite metastasizes through the reticuloendothelial system, to infect the spleen, bone marrow, and other tissues. Visceral leishmaniasis, or kala-azar, is frequently fatal, if untreated.

Increased travel between the industrialized countries of the West and the developing nations, by businessmen and tourists, mandates the development of more appropriate tools for laboratory diagnosis

of this potentially very serious disease. Effective drug treatments to control the infection are available, but a proper diagnosis is required before starting treatment. To apply laboratory diagnostic methods in developing nations, simplified assay formats are desirable. A further reason to pursue development of nucleic acid based tests which are simplified and amenable to large scale screening is the potential for dissemination of these and similar parasitic infections through the blood donor pool.

For the purposes of this study, the primary interest is in Old World species as these are the organisms native to the geographic region where ODS took place. The strains *L. Tropica*, *L. Major*, and *L. Donovani* predominate in south west Asia, and are the 3 species against which most of the PCR primer sets described in this report were tested. When patient samples were used as positive controls, the majority of these were from geographic regions where *L. Donovani* predominates. During the course of this contract however, several New World species have also been examined, as well as patient samples from South and Central America.

2.1 Background on the Polymerase Chain Reaction (PCR) Assay

In order to better appreciate the methodologies utilized in this contract, some general information on the Polymerase Chain Reaction (PCR) is provided here, along with the rational used in doing PCR in a clinical setting and the algorithm used to test the samples under this contract.

The polymerase chain reaction (PCR) is *in vitro* DNA replication. Rather than the DNA double helix being unwound by replicationassociated enzyme complexes, DNA is heat-denatured in the presence of thermostable DNA dependent DNA polymerase, oligonucleotide primers complementary to target sequences to be amplified, and deoxynucleoside building blocks for DNA synthesis. Alternating cycles of denaturation, primer annealing (hybridization), and extension, result in the accumulation of double-stranded DNA fragments of discrete length, termed amplicons. This process operates under defined conditions and for a limited number of cycles as a quantitative exponential amplification of the target sequences. PCR thus results in a vast increase in copies of the target sequence and probably constitutes the most sensitive analytical technique currently available for molecular diagnostics, being capable of detection of a single copy of nucleic acid per reaction.

2.1.1 Quality Control For PCR

The exquisite sensitivity of PCR coupled with its ability to amplify DNA sequences many million fold can lead to false positive reactions due to contamination with amplifiable DNA not derived from the specimens to be tested. Such contaminating DNA generally is derived from two possible sources: native DNA template introduced through specimen cross-contamination or previously amplified amplicons. SRA has more than 5 years experience using PCR in both a diagnostic and a developmental testing atmosphere, and is well versed in techniques required to minimize or eliminate the chances of contamination from both sources. As a consequence of meticulous implementation of the techniques described in this section, for example, during three years of testing, our PCR laboratory has never reported a confirmed false positive HIV-1 test result to the WRAIR, Department of Retrovirology. To date under the provisions of this contract, the same performance record exists for Leishmania PCR testing when using known samples.

2.1.2 Mechanical/Physical Barriers to Contamination

Procedures have been given in the literature for avoiding false positives in PCR (2). In SRA's PCR laboratory, all PCR reagents are tested prior to use for contamination with amplifiable DNA. Single-use aliquots are then frozen for future use with specimen diagnostics. Sample preparation, PCR reaction setup, and PCR product analysis are all performed in separate rooms with dedicated equipment, including certified Biosafety cabinets equipped with HEPA filters for all steps involving potentially infectious materials. For all pipetting steps prior to specimen amplification, either positive displacement pipettors with singleuse tips and pistons or special commercially-available pipet tips with an aerosol-barrier are used.

Positive controls to be included in each PCR run are samples which are reproducibly detectable, but not of excessively high copy number, to avoid generating extremely high amounts of PCR product.

A negative control for sample preparation is included with each panel of specimens tested. Negative controls for contamination during reaction set-up consist of DNA from specimens known from previous testing to be negative for the sequences being amplified. Such negative controls are inserted between each set of specimen duplicate reactions. Spacial proximity of negative controls to specimen reactions is essential to control for contamination arising through handling and/or aerosol generation during reaction set-up.

2.1.3 Biochemical Methods to Prevent False Positives

DNA polymerases are unable to distinguish native DNA templates from previously-amplified PCR products. Recently, several techniques have been suggested for either inactivating amplicons or modifying them to render them unamplifiable, though still available for hybridization to specific probes. Such techniques include gamma irradiation of reaction mixes prior to PCR (3), UV crosslinking of amplified DNA (4), digestion of PCR reaction mixes with nucleolytic enzymes prior to specimen addition (5), treatment of amplified products with isopsoralens which form monoadducts and thus prevent re-amplification (6), or a method analogous to the excision repair system of living cells, utilizing the enzyme uracil-N-glycosylase (uracil DNA glycosylase, UNG) (7).

In the course of our work for WRAIR, Department of Retrovirology, we have evaluated UV irradiation, isopsoralen inactivation of PCR products, and the use of UNG; in our experience, UNG is more efficient and presents a more generally applicable method for PCR product carryover prevention. In this method, dUTP substitutes for dTTP in all PCR reactions, and UNG is included in all PCR Prior to temperature cycling, this moderately heat reactions. stable enzyme selectively excises uracil residues which have been incorporated into DNA during previous amplifications. During the initial heating step in PCR, the DNA backbone of any contaminating previously amplified material is broken at these apyrimidinic sites, thus preventing the U-containing DNA from serving as a template for polymerization. Since native DNA templates do not contain U residues and since Tag DNA polymerase efficiently incorporates dUTP as well as dTTP during PCR, this technique can be made to operate without decreasing sensitivity or specificity of PCR reactions. Pretreatment of all PCR reactions eliminates the most common cause of a false positive result - carryover of amplified DNA from a previous amplification. SRA has incorporated this technique into PCR protocols for the amplification of HIV-1 and HTLV-I/II, as well as all PCR methods which have been used by us to amplify Leishmania sequences.

2.1.4 Design of an Appropriate Testing Algorithm

In the course of conducting PCR testing prior to the advent of UNGmediated carryover prevention, we found it necessary to design PCR testing algorithms to minimize the chance of false positive test results arising from PCR product contamination (8). Specifically, we have tested (and continue to test) all specimens as duplicate reactions plus a negative control spatially unique to the duplicate

reaction set, with a primary primer set. Reaction products are subjected to hybridization analysis using an oligonucleotide probe to sequences bracketed by but not overlapping the primers. Α result of "reactive" is then defined as the detection of specific hybridization signal in both duplicates, with no specific signal in the corresponding negative control reaction. The detection of specific hybrids in only one duplicate is defined as a result of "non-diagnostic," necessitating repeat testing. "Non-reactive" refers to the absence of specific signal in both duplicates, with low copy number positive controls being detected. In spite of the introduction of sophisticated biochemical methods for detection of product cross-contamination, the ever-present possibilities for operator error support the continued use of carefully-designed PCR testing algorithms.

2.1.5 Optimization of Reaction Parameters

In addition to the techniques designed to eliminate contamination and resulting false positives, all PCR reactions are optimized for both specificity and product yield. These procedures include empirical determination of optimal oligonucleotide ratios and concentrations, magnesium ion concentration, Tag polymerase concentration. and annealing temperature. Despite these precautions, some non-specific annealing of PCR primers does occur, even with single copy gene detection, and more so with the detection of retrovirus or parasite DNA in the presence of a high background of human genomic DNA. Since annealing of primers to template is not 100% specific under all conditions encountered during the course of a PCR reaction, it is necessary to adjust reaction conditions to maximize synthesis of specific product.

While post-PCR hybridization detection ensures that non-specific products will not be detected, the synthesis of these spurious amplicons affects the amplification process. Non-specific reaction products do incorporate PCR primers such that subsequent

amplification cycles result in their specific amplification as "quasi-specific" templates. This detracts from the overall efficiency of the reaction, as both non-specific and specific products compete for primer and <u>Tag</u> binding. Careful adjustment of reactant concentrations to strike a balance between maximization of primer hybridization and minimization of non-specific annealing can significantly increase PCR product yield and also extend sensitivity into the < 10 copy range. In our experience, with some primer sets, rigorous optimization can extend the detection limit 2 to 3 orders of magnitude. SRA has pioneered the development of HPLC protocols for quantitation of PCR products (9). The analytical precision of HPLC analysis allows more precise determination of PCR product yield, with very fast turnaround, often allowing complete optimization of reaction conditions for a new primer set within two days.

At the start of this contract, HPLC was used to evaluate PCR reaction products. While it has the aforementioned advantages of precise quantitation, it does not have the sensitivity of our microplate based capture assays which we now use. A basic protocol for using the HPLC for PCR product detection is provided, however, in the Methods and Results section because of its use initially for this protocol.

2.1.6 Design of PCR Primers and Probes

Design of synthetic oligonucleotide primers and probes is facilitated by the use of computer software dedicated to that purpose (e.g., OligoTM, National Biosciences; Primer DetectiveTM, Clontech). After candidate sequences are designed, these sequences are compared to DNA sequences of both related and unrelated organisms by computer homology searchs from the Genbank database using the Lasergene DNAStar program running on a Macintosh IIci. These preliminary steps reduce the chance of PCR artifacts (primerdimers) due to primers that share significant sequence homology, or secondary structure that would reduce the overall efficiency of the PCR amplification. In addition, with highly variable sequences or sequences which are only partially known (e.g., *Leishmania* minicircle kDNA), it has been suggested that PCR primers preferentially end in 3'-T, to minimize the effects of possible 3'mismatch (10). Other strategies to lessen the effect of random non-homologies with the target sequence include the synthesis of primers with degenerate positions and/or inosine substitutions (11). However, excessive degeneracy should be avoided, in order to maintain specificity. We have exploited this later technique in the design of some "second generation" primers that show improved detection of New World *Leishmania* strains in our testing.

In the case of *Leishmania*, almost 20 different PCR primer combinations have been evaluated to date. These include multiple sets that amplify sequences found in the kinetoplast (kDNA) minicircles, one set directed against sequences found in the kDNA maxicircles (equivalent to mitochondrial DNA), one set directed against ribosomal RNA sequences (rRNA), and one set specific for conserved sequences from one nuclear gene (DHFR). Finally, it should be noted that, even though primer and probe sequences have been carefully chosen based on predicted homology to the desired sequences and the lack of homology to other (especially human) sequences in GenBank, it is still necessary to test these primers sets against actual specimens of related and unrelated organisms. This has been done for all primer sets that show acceptable sensitivity against the *Leishmania* strains of interest.

3. Methods and Results

While there has been significant improvement in the sensitivity of the PCR detection protocol over the course of the first year of this contract, the basic elements of the procedure are used commonly for many of the PCR protocols used by SRA. The sample preparation steps and basic PCR protocol remain essentially unchanged from the beginning of the contract, as they have already been validated for other protocols. The capture plate procedure for PCR product detection was developed for other applications and was adapted to this use solely by the design and implementation of the Leishmania-specific probes. The PCR reaction and detection protocols are given in the following sections, with a detailed discussion of the results of the various PCR primer sets tested to date following the protocols.

3.1 Sample Preparation

The sensitivity of PCR permits the detection of the low level of parasites in the peripheral blood, at least during active infection. In many cases, however, peripheral blood samples from a given individual were negative, while splenic or bone marrow aspirates were positive by PCR. Although the major specimen type is whole blood, the protocol given below works equally well for bone marrow and splenic aspirates, as well as cutaneous lesion lavage specimens, thus simplifying the overall test.

We have successfully employed differential lysis for the selective removal of RBC's from blood and bone marrow samples prior to DNA extraction for PCR. This method is based on the specific RBC-lytic activity of saponin, and is quite simple, requiring only the use of a tabletop centrifuge. The blood is gently mixed with 0.3% saponin (Mallinckrodt) in slightly hypotonic saline and allowed to remain at ambient temperature for 5 minutes, during which time RBC's are lysed. Centrifugation recovers leukocytes, which are again washed with saponin to remove residual RBC's. The final cell pellet contains total leukocytes, and appears to be free of inhibition to the PCR, by either heme or the saponin itself. The cell pellet is then lysed by the addition of proteinase K, and, following heat inactivation of the proteinase K, the crude lysate can be used directly in diagnostic PCR reactions.

3.1.1 Sample Preparation by Total Leukocyte Separation

- 1. For specimens received in Leukoprep tubes
 - a. Centrifuge at 3000 rpm for 20 min. Pipet off the supernatant into a 50mL polypropylene centrifuge tube
 - b. Count cells using Zapaglobin. (40μ L specimen + 20mL Isoton II + 5-6 drops Zapaglobin)
 - c. Add 20mL of 0.1% saponin in 0.6% NaCl. Mix well by inversion. Maintain at room temperature 5 min.
 - d. Centrifuge at 1500 rpm for 15 min. Decant the supernatant.
- 2. Whole Blood specimens
 - a. Count cells using Zapaglobin. (40μ L specimen + 20mL Isoton II + 5-6 drops Zapaglobin)
 - b. Add 10 volumes of 0.1% saponin in 0.6% NaCl. Mix well by inversion. Maintain at room temperature 5 min.
 - c. Centrifuge 1500 rpm for 15 minutes. Decant the supernatant.
 - d. Resuspend the pellet with 15mL 0.1% saponin in 0.6% NaCl
 - e. Centrifuge 1500 rpm for 15 minutes. Decant the supernatant.

3.1.2 Cell Lysis

1. Use the cell count taken at the beginning of this procedure and determine lysis buffer volume for 30 X 10⁶ cells/ml. Add the determined volume of lysis buffer containing 2X proteinase K. Vortex briefly.

- 3. Incubate in water bath at 55°C 60°C. for 1 h. Vortex briefly. If a large number of cells are being lysed, it may be necessary to vortex several times during this hour or extend the incubation time.
- 4. Transfer lysate to 1.5 mL screw-cap microcentrifuge tube. Label tube with specimen number, date lysed, tech initials.

NOTE: Lysates prepared by this protocol should be labelled with an "S."

- 5. Heat-inactivate the proteinase K by keeping the tubes at 95°C for 15 min. in dry-bath.
- 6. Quench on ice. Store at -20°C in freezer boxes in pre-PCR lab.

3.1.3 PCR Cycling Conditions

1. Prepare lower layer PCR mix as follows:

H ₂ O 10X buffer (Promega) MgCl(25mM) dNTP (AUCG) UNG JW11/b-JW12 (10µM each)	10.9 µl 4.0 µl 4.0 µl 16.0 µl 0.1 µl 5.0 µl	
	40.0 µl	TOTAL

2. Prepare an upper layer PCR mix as follows:

H2O 10X buffer (Promega) UNG Taq polymerase	7.9 μl 1.0 μl 0.1 μl 1.0 μl	
	10.0 µl	TOTAL

- 3. Aliquot 40 μ L of the lower mix to each tube.
- 4. Add one bead of ampliwax. Number tubes. Place in the heating block at 65°C for up to 5 minutes to melt the wax. Allow to cool.
- 5. Pipet 10 μ L of the upper mix in the tube.
- 6. Add 50 μ L of the appropriate specimen lysate to each tube. Do not add positive control template in the pre-PCR lab.
- 7. In the positive control lab add 50μ L Leishmania copy 1, 10, 100 to the appropriate PCR tubes.

8. Immediately carry the reactions to the cycler. Proofread the program before starting. Fill out cycler log book.

CYCLER CONDITIONS PRIMERS JW 11/12b Time Delay file 5'0" 94°C Step Cycles 97°Ĉ 0'15" 55°C 1'0" 72°C 1'0' CYCLES 10 Step Cycles 0'15" 92°Ĉ 1'0" 55°C 72°C 1'0' CYCLES 30 _____ SOAK 72°C

NOTE: products be frozen immediately on removal from the cycler, unless they can be assayed within 1 h due to the presence of undenatured UNG and it's ability to degrade PCR products at room temperature and 4° C over time.

3.2 PCR Product Detection

PCR products may be analyzed using the affinity-based hybrid capture assay. We have used two slightly different detection systems with equivalent results. These utilize either an Alkaline Phosphatase (AP) labeled specific oligonucleotide and a chemiluminescent substrate (Lumiphos), or the same oligo labeled with Horseradish Peroxidase (HRP) and a colorimetric substrate (OPD, TMB). The sensitivity obtained with either probe system is approximately equivalent. Both can be read in automatic plate readers or luminometers that are readily available. One distinct advantage with using and HRP probe is that the color produced from even 3 to 10 initial copies, after 40 cycles of amplification, is readily discernible by eye. Thus, it becomes possible to interpret results visually, by comparison with standards. Such an approach

is acceptable for qualitative, though not quantitative, assays, and may be advantageous for application in developing nations. An example of the sensitivity of this system is given in Figure 1. showing the detection of L. Tropica by PCR using the AP-labeled probe and capture plate system.

3.2.1 Capture Plate Procedure

For simplicity, only the Alkaline Phosphatase-coupled protocol is described here. The primary differences include, obviously, use of a horseradish peroxidase (HRP) labeled oligonucleotide probe, OPD or TMB for colorimetric detection, and the use of clear rather than opaque plastic microwells in an ELISA-type plate reader rather than a luminometer. A diagram of the principles of operation of the capture plate is given in Figure 3 at the end of this report.

- 1. Prepare an avidin-coated and blocked microwell plate according to the following procedure.
 - a. Pipet 120 μ l of 100 g/ml avidin D (Vector Labs) into each well of a high-binding plate (e.g., MaxiSorp, Nunc; Immulon 4, Dynatech). Incubate overnight at ambient temperature.
 - b. Remove the solution, and wash 4 times with Wash Buffer (1% Tween 20 in PBS).
 - c. Pipet 200 μ l of 1% casein (Hammarsten Grade, BDH) in PBS into each well. Incubate for 1 h to overnight at ambient temperature.
 - d. Remove the solution. Store the plate frozen, under which conditions it remains stable for at least several weeks.
- 2. Heat denature PCR products by incubation at 95°C for 5 min., followed by quick-cooling to approximately 4°C.
- 3. Pipet 90 μ l of Hybridization Buffer (1% casein in PBS) containing 1 pmol of AP- or HRP- conjugated probe JW14 (Synthetic Genetics) into each well.
- 4. Pipet 10 μ l of PCR product into the appropriate well.

- 5. Incubate at 42°C for 20 min. to allow both hybridization and capture.
- 6. Remove the hybridization solution and discard. Wash the plate 4 times with Wash Buffer.
- 7. Pipet 100 μ l LumiPhos into each well. For HRP-labeled probes, 100 μ l of either OPD or TMB are used as the substrate.
- 8a. AP-labeled Probes: Incubate at 37°C for 30 min. Read immediately in the ML1000 microplate luminometer (Dynatech).
- 8b. HRP-labeled Probes: Incubate at room temperature for 5-15 min (depending upon the substrate used) and OD is read in a Molecular Devices ELISA plate reader.

3.2.2 PCR Product Detection by HPLC

1. Inject 30 μ l of each PCR product onto a TSK-DEAE NPR column. For greater precision, an automatic sample injector should be used, such as the ISS-200 (Perkin Elmer).

2. The following gradient (requiring approximately 9 minutes per run) is used to separate specific and non-specific PCR products:

- a. Equilibrate column 5 minutes at 46% A.
- b. Ramp linearly to 54% A over 0.1 minute following injection.
- c. Ramp linearly to 60% A over 3.9 minutes.
- d. Ramp linearly to 75% A over 1 minute.
- e. Return to 46% A over 0.1 minute.

Buffer A: 25 mM Tris-Cl, pH 9.0, 1.0 M NaCl 1% acetonitrile Buffer B: 25 mM Tris-Cl, pH 9.0 1% acetonitrile

- 3. Products are detected by UV absorbance monitoring at 260 nm.
- 4. Integration of chromatographic peaks is by an automatic integrator (Perkin Elmer Nelson Model 1020). Specific peaks are identified by characteristic retention times as compared with strong positives and molecular weight standards (2.5 μ g of 250 μ g/ml HaeIII digest of pBR322).

5. If quantitation is desired, data should be plotted as "peak area vs. log initial copy number." A linear plot should be obtained over the range of 30 to 30,000 initial DNA template copies. Linear regression permits the estimation of copy number in unknown samples.

3.3 PCR Primer Selection and Development

The principle area of development for this contract has been in the design and testing of various Leishmania-specific PCR primer and probe combinations. For all designs, the following rational was used. Since the *Leishmania* parasites are suspected to be present in very low numbers in peripheral blood of infected individuals, it was deemed that maximal sensitivity was the key requirement for the assay.

Toward this end, it was reasoned that directing the PCR primers against a "pre-amplified" target was, if possible, the best way to increase signal strength, and hence assay sensitivity, going into the PCR reactions themselves. Then the reaction conditions would be optimized as described previously in the Introduction, to produce the maximum specific yield from each primer set. For these reasons, several PCR primer sets directed against *Leishmania* target sequences that exist in more than one copy per parasite were designed. These included sequences in the ribosomal RNA (rRNA) genes, present in 5-20 copies per organism, nuclear Dihydrofolate Reductase (DHFR) genes, that exist in 2-10 copies per parasite, certain maxicircle sequences, present in 10-100 copies per organism, and several different minicircle sequences.

The minicircle sequences offer the highest possible target number as they are present in 100-10000 copies per organism. One significant problem targeting minicircle sequences, however, is the extreme sequence heterogeneity and the observation that multiple distinct "families" of minicircles exist not only within a given parasite, but also between differing species of Leishmania, with the largest differences found between the New World and Old World strains. A diagram showing a comparison of the "conserved" sequence regions of a number of *Leishmania* strains is given in Figure 2 in the Appendix of this report. A summary of the sequences tested is given in Table 1 on the following page.

Primer Name	Primer Sequences	Primer Location	
JW11	CCTATTTTACACCAACCCC (C/T) AGTTT	minicircle	
JW12	CGGGTAGGGGCGTTCIGCGAAA (A/T) T	minicircle	
TW01	GCGTCTCCGACCCTCATCTTCAAGG	DHFR (nuclear)	
TW02	GACACCCTCCTCTCTCTATACGGC	DHFR (nuclear)	
TW03	ATTGAAATAATAAAAGGTTCGAGC	maxicircle	
TW04	AATTACAAATAATAGATCCTIGCG	maxicircle	
JW16	GAATTCGATTTTCGCAGAACGCCCCT	minicircle	
JW17	GAATTCAAACTGGGGTTGGIGIGIAAAAT	minicircle	
R222	TATIGGAGATTATGGAGCIG	rRNA gene	
R332	GGCCGGTAAAGGCCGAATAG	rRNA gene	
LK1S	CCTATTTTACACCAACCCC	minicircle	
LK2R	GGGTAGGGGGGTTCIGCGA	minicircle	
LS1 GGGGTTGGTGTAAAATAG mini		minicircle	
LS2	CCAGTTTCCCGCCCCG	minicircle	
B1	GGGGTTGGIGTAATATAGIGG	minicircle NW	
B2	CTAATIGIGCACGGGGGGGG	minicircle NW	
B3 CCCGACATGCCTCTGGGTAG m		minicircle NW	
PROBE P1	CAGAAACCCCGTTCAAAAAT	minicircle NW	
JW-11-i CCTATTTTACACCAACCCCLAGTTT minicire		minicircle	
JW-12-i CGGGTAGGGGGGGTTCIGCGAAAIT minicircle		minicircle	
C-JW11-1	CCTATITTACACCAACCCCIAITTI	minicircle	
C-JW11-2	CCTATITTACACCAACCCCIAITT	minicircle	
C-JW11-3 CCTATITTACACCAACCCCIAI minic		minicircle	
C-JW12-1 CGGGIAGGGGGGTTCTGCGAAAI		minicircle	
C-JW12-2 CGGGTAGGGGGGTTCTGCGAAAA		minicircle	
C-JW14-1 ATTGAACGGGITTTCTGTATICITTTTCGAA min		minicircle	
C-JW14-2 ATTIGAACGGGITITCIGIAIICIATTITTIGAA minicir		minicircle	
C-JW14-3 GAACGGGITTTCIGIAIICIATTTTCGITTTT minici		minicircle	
JW-21	JW-21 TGAACGGGITTTCTGIAIICATTT minicircle		
J₩-22	GGGTTGGTGTAAAATAGGICIG	minicircle	
JW-24	CATTITICIIITTICGCAGAACGCCCCTACC	minicircle	

Table 1. Sequences of Leishmania Specific PCR Primers.

The sequences of the individual primers are given in the first section of the table, along with the target of amplification. In the JW11&12 primer set, the sequences indicated in parenthesis are mixed base positions in the synthetic oligonucleotides. The I in several other sequences indicate an inosine (I) base at that position, that allows hybridization with any other base. An NW in the amplification target site indicates those sequences are specific for New World Leishmania strains. The JW and TW series of primers were designed in-house at SRA Technologies utilizing computer software for PCR primer design (Primer Detective, Oligo) and evaluated against potential cross-reactive sequences in Genbank using the Lasergene DNAstar molecular biology software package running on a Mac IIci. The sources of the other primer sequences R222/332; ref (12). LK1S/2R; Personal are as follows: communication from G. van Eys to Maj. E. Nuzum. LS1/LS2; ref (13). Summaries the sensitivity of all other primers evaluated to date are given in Tables 2 and 3 that follow.

To date, the most consistent and sensitive primer set against the strains of Old World *Leishmania* examined is the JW 11&12 PCR primer pair. The detection limits of that PCR primer set are given in the following table when compared against control strains of *Leishmania* parasites. A plus (+) indicates that signal at least 5 fold above assay background was consistently obtained against that species, with lower numbers indicating greater sensitivity.

Species	# Leishmania Detected (JW 11/12)			
	1000	100	10	1
746	+	+		
842	+			
1031	+	+	+	+
1041	+			
1063	+	+	+	+
1077	+	+	+	
2053	+	+		
669	+			
7Y6	+	+	+	
1003	+	+		
2086a	+	+	+	
2086b	+	+	+	

Table 2. Detection of Various Leishmania Species using the minicircle-specific PCR primers JW11/12 .

The next table indicates the sensitivity of various primer combinations against the control strain of L. Tropica used for these evaluations (1063). The sensitivities of the various combinations of inosine-substituted primer sets are too complex for this table and are given separately in 3 figures at the end of this report.

Primer Combinations	Detection Limits on L. Tropica
JW11/12	Less than 1 parasite
TW03/04	Approximately 100 parasites
TW01/02	Greater than 1000 parasites
R222/332	Greater than 1000 parasites
JW16/17	Greater than 1000 parasites
LK1S/2R	Greater than 1000 parasites
LS1/2	Greater than 1000 parasites
B1/B2	Greater than 1000 parasites
JW111/JW121	Less than 1 parasite
JW21/JW22	Approximately 100 parasites *

Table 3. Sensitivity of various primer sets against L. Tropica

As can be readily seen from the previous tables, the primer set JW 11&12 is very sensitive when tested against *L. Tropica*, and by extension due to the accuracy of detection when used against control samples from Kala-Azar patients, *L. Donovani* (presumably the causative agent of Kala-Azar). Its sensitivity is, however, fairly limited when tested against other strains, particularly New World strains, of Leishmania, as seen in Table 2 (eg. 842, 669). Other primer sets tested to date are significantly less sensitive when tested against *L. Tropica* parasites than the JW 11&12 set, as seen in the preceding table (Table 3). The asterisk (*) given for primer set JW21/JW22 indicates a preliminary result as testing is not yet completed on that primer set.

3.3.1 PCR Primers with Multiple Inosine Substitutions

During the course of Phase I of this study, a number of samples from South and Central America, both as controls and as patients with suspicious disease, were provided for testing. It became readily obvious when testing against control strains provided by MAJ M. Grogl that the sensitivity of the basic JW11&JW12 PCR primer set was much better against Old World than the New World strains. It was the opinion of the Leishmania Working Group that in addition to the original requirement for a PCR based detection test that was sensitive against the Old World strains prevalent in South West Asia, it would be useful to have a test usable against at least some of the New World strains of *Leishmania* for use with patient samples obtained from service personnel stationed in South and Central America. Toward these ends, it was decided to try designing PCR primers with multiple inosine substitutions at those DNA base positions that differ between characterized New and Old World *Leishmania* strains (see Figure 2). A collection of inosinesubstituted primers based on the most sensitive PCR primer set tested to date (JW11&12) was developed and tested in various pairwise combinations.

The results of those tests are given in 3 charts comparing the pairwise combinations of these primers (Figures 4, 5 and 6) given at the end of this report. These combinations were tested using our optimized PCR protocol and the HRP-coupled capture plate assay against 10 and 100 copy equivalents of parasite DNA for each of 3 control species (L. Tropica, L. different Donovani. L. Higher signal indicated greater PCR yield, and Braziliensis). therefore greater sensitivity of that particular PCR primer combination against the species of Leishmania in question.

Briefly summarized, the more conservatively inosine-substituted primers give at least equivalent sensitivity (detection of a single parasite equivalent) to the JW 11&12 primer set for the species L. *Tropica* and in most cases L. *Donovani*. Some of the more extensively inosine-substituted primers give increased sensitivity against the New World strain L. *Braziliensis*, but show reduced signal when tested against the Old World strains of L. *Tropica* and L. *Donovani*. Based on these results, it was decided that since sensitivity against the Old World strains was of primary importance, the use of the more extensively inosine-substituted primers (eg. C-JW11-3/C-JW12-1) would be restricted to samples with origins in geographic regions where New World stains of Leishmania predominate.

We have completed testing of all possible combinations of these inosine-substituted primers and obtained a pair that is slightly better in terms of product yield (strength of the positive reaction) and increased cross-reactivity against the largest number of both New and Old World *Leishmania* species than the original JW 11&12 primer set. The original primer set (JW 11&12) and the new "optimized" set (JW 11-2 & 12-i) are compared below. The sequence differences are indicated in **bold italics**. The A/T indicates a mixed base composition at this position.

- JW-11 CCTATTTTACACCAACCCCA/TAGTTT
- JW-12 CGGGTAGGGGGGGTTCTGCGAAAA/TT
- JW-11-2 CCTATITTACACCAACCCCIAITT
- JW-12-i CGGGTAGGGGGGGTTCTGCGAAAIT

This second primer set, while not sufficiently different to be a truly independent second set, is apparently optimized for better cross-species amplification, particularly on some of the New World species.

An additional idea for a primer set has been explored recently. While it was requested in the contract Statement of Work that at least 2 PCR primer sets should be developed, it has not been possible to find 2 truly independent primer sets of approximately equivalent sensitivity. Working within the constraints placed on PCR primer selection due to limited DNA sequence homology across strains, and alternate idea is being pursued. Specifically, the idea of developing a second, partially overlapping but distinct minicircle primer set for use against Old World strains. This set is composed of PCR primers JW21, JW22, and probe JW24, with the sequences indicated in Table 1 seen previously. The basic idea for this primer set takes advantage of a small conserved region downstream (3') of the site of the JW12 primer, on the same strand (see Table 2). By biotinylating and shortening the JW14 probe slightly, in order to bring its T_m closer to that calculated for the new primer, termed tentatively JW 22, a primer pair yielding an approximately 140 bp product is produced. A probe can be constructed by lengthening the original JW 12 sequence, making its reverse complement (so it binds to the other, biotinylated strand) and coupling it to HRP. Other arrangements might also be possible by switching which primer is biotinylated, and reversing the probe sequence.

One advantage of this approach is that a second, independent PCR product can be made, still using the conserved sequences in the kDNA minicircles. The partial overlap would prevent false reactions due to amplification of carry-over products from the other primer set; only 1 of the 2 primers needed to amplify the sequence is capable of binding to the PCR product of the other set. Utilizing variations of the same sequences should permit more rapid PCR optimization as well. Most importantly, it should provide us with another primer set with which to test patients exposed to Old World Leishmania.

One potentially significant disadvantage is that the downstream "conserved" sequence is only conserved in Old World strains. It is significantly different in the kDNA sequences from New World strains that we have been able to examine. The would almost assuredly render this new primer set ineffective against New World *Leishmania* strains. This primer set is currently under evaluation and optimization in our laboratories. Initial results have been disappointing in terms of sensitivity when compared to the basic JW 11&12 primer set, but it is hoped that by varying reaction conditions and/or slightly modifying the PCR primer sequences, increased sensitivity will be seen.

3.4 Decatenation of Leishmania kDNA minicircles

Additional experiments were done to further increase the sensitivity of the PCR detection test. One set of experiments proposed in SRA's response to the contract proposal was the use of procedures to "decatenate" the *Leishmania* kinetoplast DNA, theoretically releasing most of the minicircle and maxicircle DNA fragments into solution. This could potentially increase the chance of detection of *Leishmania* parasites by making more target DNA templates accessible for PCR. After evaluating a number of potential treatments our results are reported below.

3.4.1 Decatenation Protocol

Equal quantities of *Leishmania* parasite lysates were used for each treatment. Controls were lysates stored at -20°C or 4°C overnight (no difference was seen at either temperature). Treatments included;

- 1. Incubation at 37°C overnight.
- 2. Digestion with the restriction enzymes Dra I, Eco RI, or Bam HI at 37°C overnight using 20-50 units of enzyme. These enzymes have each been reported to introduce a single specific cut in some minicircles, linearizing the DNA.
- 3. Treatment with Topoisomerase II (20 units) overnight at 37°C. Topoisomerase II introduces double stranded transient breaks in DNA allowing decatenation of concatenated circles and reduction of supercoiling induced torsional strain in circular molecules, facilitating denaturation of the circular DNA.
- 4. Limited digestion with an inorganic Iron nuclease to introduce random double stranded breaks in all DNA present in the reaction.
- 5. Following treatments, each lysate was serially diluted 10 fold to give a range of 10 to 0.001 parasite equivalents, and subjected to PCR analysis as described.

3.4.1.1 Results of the Decatenation Experiments

Unfortunately, multiple experiments failed to show any significant difference in PCR product yield, and hence sensitivity of the reaction, when compared to untreated controls with the equivalent amounts of input DNA. All differences were within +/- 20% of the signal produced by the untreated controls at each dilution point, and were not constantly repeatable from experiment to experiment when using different batches of parasite lysates and/or enzymes (data not shown). Based on these results, we think further experimentation along these lines in not warranted. Our efforts will focus on finding additional PCR primer sets with equivalent sensitivity to the minicircle set JW 11&12.

3.5 Heterologous DNA Testing

It was suggested in the Statement of Work and by the Leishmania Working Group that we test a variety of heterologous DNAs using our PCR detection technique to ensure specificity of the primers and probes being used. A list of possible organisms was provided by the Leishmania Working Group and included the following;

Trypanosoma cruzi, T. gambiense, T. rhodesiense T rangeli. Leptomone, Crithidia, Herpetomonas, Toxoplasma, Plasmodium falciparum, Babesia, Pneumocystis carinii, Herpes, Salmonella, Histoplasma capsulatum, Mycobacterium tuberculosis, HIV, and Hepatitis B and C.

After receiving information from MAJ Grogl regarding the availability of certain heterologous DNAs from the ATCC, we obtained the necessary permit applications to purchase samples of these organisms as many of them are classified as Class II, III, and IV pathogens. Testing the DNA obtained by protocols appropriate for DNA isolation from each type of organism at $1\mu g$ concentrations in our standard PCR reactions did not produce any detectable signal from any of the organisms listed. Additional tests against blind negative control patients with Malaria and

several other tropical diseases also produced no false positive reactions, indicating that the current PCR primers and conditions are specific for *Leishmania* kDNA and do not cross-react to any significant degree with the heterologous DNAs tested. Any additional primer sets that produce promising results when tested against the appropriate *Leishmania* controls will also be tested against samples of these heterologous DNAs to ensure specificity.

3.6 PCR Results on Patient Samples

During the course of Phase I of the contract, a number of patient samples have been received and tested using the PCR protocols described in this report. A complete listing of all samples tested to date is included in the Appendix of this report.

These samples fall into several categories including positive and negative control samples obtained from patients with known diseases including Kala-Azar, Malaria, HIV infection, etc, canine samples used for potential animal model work, spiked controls, and a large number of "rule out" patient samples. This latter category is comprised of samples (blood, bone marrow, and on occasion, spleen, liver and other tissue specimens) from patients who present with clinical symptoms that may indicate *Leishmania* infection.

While the unknown patient samples comprise the most important aspect of the assay development, they are also the hardest to evaluate in terms of test accuracy. A large number of the unknown patient samples have tested negative, while a few have tested positive. In all cases of a positive result, the diagnosis has been confirmed by clinical data such as IFA, culture, etc (LTC E. Nuzum, personal communication). Some of the negative PCR results can be considered "biological false negatives". That is, the negative PCR result is false negative caused by the "biology" of the infection; in some cases, very few or no circulating parasiteinfected cells are present in the patient samples, as is the case following successful treatment. This is particularly true also for samples from patients having cutaneous lesions but no visceralization of the disease. From such patients, aspirates of the lesion itself test positive for PCR while peripheral blood samples test negative.

This result is to be distinguished from a "technical false negative" which is defined as a sample that does have some level of Leishmania DNA in it, but presents a false negative result when tested by PCR. These results are extremely rare (less than 4% to date) and may be explained in several ways. As indicated previously (Figures 4, 5 and 6) different species of Leishmania exhibit differing limits of detection using our current PCR It is possible that in some cases, the particular protocol. species of Leishmania present in a given sample is at a level undetectable using our current primer sets. Another possible explanation is the presence of inhibition in the patient sample that prevents PCR amplification of the Leishmania DNA present in This possibility has been evaluated in all "false the sample. negative" results seen to date by re-assaying the sample with a fixed level of Leishmania control DNA spiked into the sample. In all cases, the spiked DNA was detected with approximately the same signal strength as seen from a parallel reaction containing the same level of Leishmania control DNA in reaction buffer, effectively ruling out the presence of significant inhibition in those samples.

During the course of Phase I of this contract, a number of blind negative samples have been assayed. To date, the false positive rate is 0% (0/15 samples tested). Several samples from patients with Malaria or other tropical diseases prevalent in the region where the *Leishmania* parasites are found were also tested. In all cases, no reaction was seen (0% false positive). These results are indicative of the care with which PCR is conducted in our laboratory and the effectiveness of the containment procedures, described in the Introduction, in place to prevent contamination from various sources in our laboratories, and the specificity of the PCR reactions.

When assaying blind control samples (total of 64 tested to date) obtained from several locations (Kenya, India, Brazil) of patients with Kala-Azar disease at various stages, the following statistics were obtained (provided by COL J. Berman); When samples come from patients prior to therapy, between 92-96% of samples are positive by our PCR assay, with a false negative rate of 4-8% percent, depending upon the source of the patient sample. If the patient has completed therapy by 2-6 months, 0-4 patients (0%) are positive, indicating the effectiveness of the therapy at removing detectable levels of Leishmania DNA from peripheral blood. The detection rate for purely cutaneous disease is approximately 11% (1 out of 9), indicating the absence of detectable Leishmania DNA in peripheral blood if the disease is confined to skin lesions. If aspirates are taken of cutaneous lesions, these samples do test positive using our PCR protocol, indicating presence of parasite DNA in an actively infected lesion.

4. Conclusions

The need for sensitivity in detecting the very low levels of Leishmania present in peripheral blood suggests that the optimal target sequence would be "pre-amplified", such as DNA present in multiple copies in each parasite. The kinetoplast DNA (kDNA) found in Leishmania and related organisms presents a good example of this kind of target. One inherent limitation this target sequence presents, however, is the genetic diversity of the sequences present in kDNA. Differences exist over the largest amount of this sequence, not only between different species of Leishmania, but also potentially within a given organism. The concatenated nature of the target, where some minicircles may not be available to the PCR primers, presents yet another potential problem reducing sensitivity for the PCR reaction. Within these limitations, some regions of conserved DNA sequence have been observed across multiple Leishmania species, although there is more similarity between New World species and Old World species than there is across these divisions.

Utilizing DNA sequence information and computer homology searches, multiple PCR primers have been designed within these kDNA sequences, and tested to produce specific PCR products with no significant cross-reaction with non-Leishmania DNA. The reaction conditions have been optimized to detect single copy parasite equivalents in peripheral blood and tested with blinded control patient samples from various geographical locations. The current test is capable of detecting *Leishmania* in these patient samples at very low levels with very good confidence in the result.

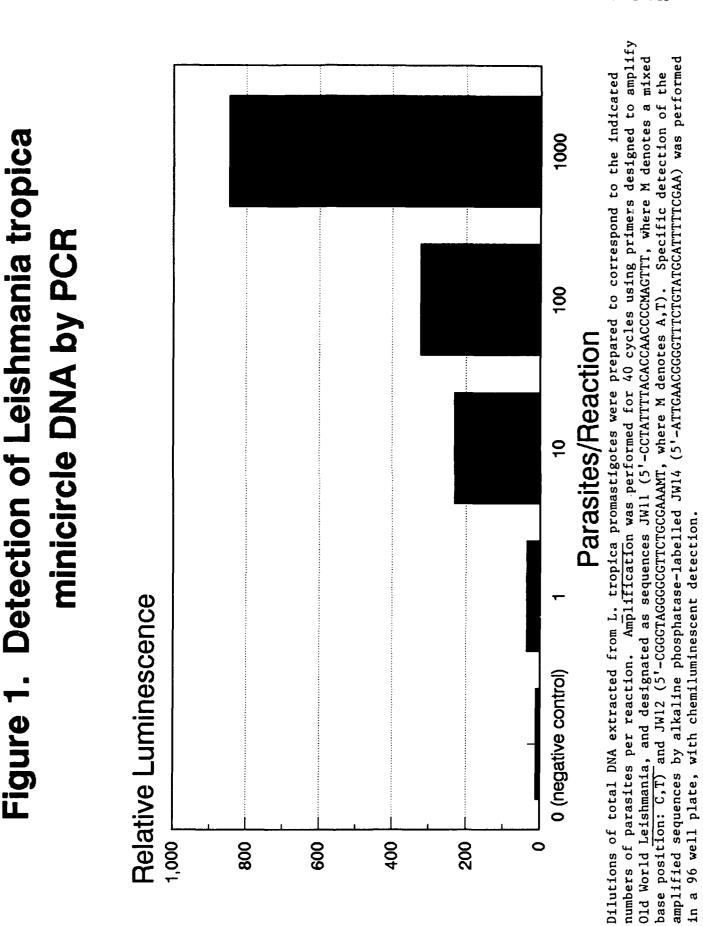
Based on the results obtained to date during the first year of this contract, SRA Technologies has developed and is in the process of validating a sensitive and specific PCR based diagnostic test against Leishmaniasis. While we have not yet received large numbers of patient samples to screen for *Leishmania* infection, and there are certain biological factors regarding the low level of Leishmanial DNA present in peripheral blood in some cases, we are confident that the test can be used on the patient samples as proposed in the original Request for Proposal.

Among the information gained so far as a result of our development and validation of the assay, are novel observations regarding the level of Leishmania parasites (as indicated by the presence of Leishmania DNA detectable by the PCR assay). It is evident even from our limited number of samples, that Leishmania are either absent, or present in extremely low levels (less than 1 parasite or infected cell in 8 mls of blood) in cases of cutaneous disease, or in patients during and after suitable anti-Leishmanial therapies. These biological effects may limit the use of any test that detects Leishmania in peripheral blood to cases of visceral disease prior to treatment. The test could be used, however, to monitor the success of therapy due to the observation that the parasites are largely cleared from circulation following successful therapy. Despite these limitations, the PCR based test described in this report exhibits sensitivity to a single parasite equivalent or a single infected cell in 8 mls of blood, as demonstrated by spiking control experiments.

Additional work on developing a second diagnostic primer set is continuing despite disappointing results with almost all of the possible primer sets designed to date. In order for a second primer set to be truly useful, it must possess several characteristics. It must be of approximately equivalent sensitivity as the primary set, in order to function in a confirmatory role. If the sensitivity is significantly different between the two sets, discordant results become impossible to resolve due to the chance that one primer set is able to pick up a low level of infection while the other is not. Accordingly, all primer sets should exhibit similar cross-reactive sensitivity, both in terms of detecting multiple Leishmania species while not

producing false positive results with heterologous DNA samples. Discordance of results between multiple primer sets is impossible to resolve if either of these two possibilities exists as well. Finally, the two primer sets should not produce cross-reactive PCR products to reduce the chance of cross-contaminating the PCR reactions, leading to false positive results.

For the second year of this contract, SRA Technologies proposes to continue assay development and control sample testing as directed by the Leishmania Working Group. It is anticipated that at some time in the near future, the Group will provide large numbers of potentially infected patient samples for screening using our PCR test. Several manuscripts detail the application of this technology for the detection and diagnosis of Leishmanial infections are currently in preparation.


5. Bibliography

- CDC. 1992. Viscerotropic leishmaniasis in persons returning from Operation Desert Storm - 1990-1991. CDC Morb. Mort. Rep. 41:131-143.
- Rwok, S. 1990. Procedures to minimize PCR-product carryover, p. 142-15. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.), PCR protocols. A guide to methods and applications. Academic Press Inc., San Diego, CA.
- 3. Deragon, J. M., D. Sinnett, G. Mitchell, M. Potier, and D. Labuda. 1990. Use of gamma irradiation to eliminate DNA contamination for FCR. Nucleic Acids Res. **18**(20):6149.
- 4. Sarkar, G., and S. S. Sommer. 1990. Shedding light on PCR contamination. Nature 343(4):27.
- 5. Zhu, Y. S., S. T. Isaacs, C. D. Cimino, and J. E. Hearst. 1991. The use of exonuclease III for polymerase chain reaction sterilization. Nucleic Acids Res. **19**(9):2511.
- Cimino, G. D., K. C. Metchette, J. W. Tessman, J. E. Hearst, and S. T. Issacs. 1991. Post-PCR sterilization: a method to control carryover contamination for the polymerase chain reaction. Nucleic Acids Res. 19(1):99-107.
- Longo, M. C., M. S. Berninger, and J. L. Hartley. 1990. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 93(1):125-128.
- 8. Wages, J. M., M. Hamdallah, M. A. Calabro, A. K. Fowler, C. N. Oster, R. R. Redfield, and D. S. Burke. 1991. Clinical

performance of a polymerase chain reaction testing algorithm for diagnosis of HIV-1 infection in peripheral blood mononuclear cells. J. Med. Virol. **33**:58-63.

- 9. Katz, E. D., W. Bloch, and J. Wages. HPLC quantitation and identification of DNA amplified by the polymerase chain reaction (poster presented at V San Diego Conference. "Nucleic Acids: New Frontiers." Nov. 1990.
- 10. Kwok, S., D. E. Kellogg, N. McKinney, D. Spasic, L. Goda, C. Levenson, and J. J. Sninsky. 1990. Effects of primer-template mismatches on the polymerase chain reaction; Human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 18(4):999-1005.
- Cassol, S., T. Salas, N. Lapointe, M. Arella, J. Rudnik, and M. O'Shaughnessy. 1991. Improved detection of HIV-1 envelope sequences using optimized PCR and inosine-substituted primers. Mol. Cell. Probes. 5:157-160.
- 12. van Eys, G. J., G. J. Schoone, N. C. Kroon, and S. B. Ebeling. 1992. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol. Biochem. Parasitol. 51(1):133-142.
- 13. Smyth, A. J., A. Ghosh, M. Q. Hassan, D. Basu, M. H. L. De Bruijn, S. Adhya, K. K. Mallik, and D. C. Barker. 1992. Rapid and sensitive detection of Leishmania kinetoplast DNA from spleen and blood samples of kala-azar patients. Parasitology. 105:183-192.

34

SRA Technologies Proprietary Application

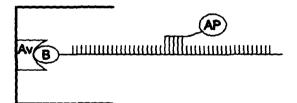
Figure 2. Sequence Alignment of Conserved Region of Leishmania Minicircle kDNA.

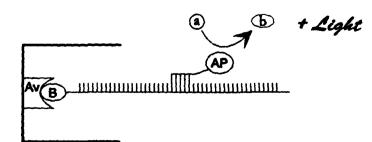
	30, 1993 5:46 PM		3							
	A-AC	C	A	ATCCCGCGAC	CACCCCCCCCTA	TTTTACACCA	ACCCCTAGTT	<u>r-cccccccc</u>	GAGGGGCCAAA	AAATGG
	10	20	30	40	50	60	70	0'8	90	100
CB-AMA . SEQ	CCAAACAAAC	GCGACCTCAA	аладааас	AAGCCCGAAG	CAGCCGCCCCTA	TTTACACCA	ACCCCCAGTT	TTCACCGCCCC	GAGCCGAA	ATTCCC
B-BRA.SEQ	AGAGGCCTAGTTTA	TCGAGTTC	-TAACCTC	ACCGAGAGTG	CGCGGCCCACTA	TATTACACCA	ACCCCTAATT	GTGCACGG	GAGGCCAAA	AAACG-
B-GUY . SEQ	AGAGGCCTAGTTCC	ACGAGAGC	-TAGCCCG	AGTCGGGGTG	CGCGGCCCACTA	TATTACACCA	ACCCCTAATT	GTCCACCCC	GAGGGCAAA	AAACG-
DB-NAJ SEQ	C-ACACAACCCG	GCCACCCCAG	AGAATTTA	ATTCCCCGAC	CCACCCGGCCTA	TTTTACACCA	ACCCCTAGTT	C-CCCCCTCC	GAGCCCAA	AAATGG
DB-PAN. SEQ	AGAGGCCTAGTTTT	GTCAATCC	-TAGCCC/	ATCCAGAGTG	CCCCCCACTA	TATTACACCA	ACCUCTAATT	GTGCACGG	CACCCCAAA	AAALG-
DB-PER.SEQ	AGAGGCCACATTTT	AATGATCC	-TAACCCG	AGTCGGGGTG	CGCGCCCCACTA	TATTACACCA	ACCCCTAATT		ABABICCARA ABABICCITAR	AAACG-
CH-ADL. SEQ	A-A			AGCCGGGGGA	GUGCCAUCCCIA	MITTACALCA	ACCCCTAGTT		AAAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AAAAA
CH-AET. SEQ	C-A			ATCCTCGAAC			ACCCCCAGII	I GINC GCC I CCC	AG-CCCA-A	AAATOC
CH-CON.SEQ	A-T			TTCCLCCCGGAC	CACCCGGCCCTA	TTACACCA	ACCCCCAGTT	ICCCCCCTCA	GGACCCGAT	TTTTGG
CH-MAJ. SEQ	T-A									
CH-TRO. SEO	C-A			ATTCCCCGAC	CACCCGGCCCTA	TTTTACACCA	ACCCCCACTT	IGCAGCCTCC	GAG-CCCACA	AAATGG
CH-IND. SEQ	C-A									
	সা আৰু আৰু প্ৰ				er 1,000 est 1				ini ini ini	
	CGATTTTCGGGGAA	TTTTTGAACG	G-GGTTTC	TGCATGCCAT	INTICOGITITIC	GCAGAACGCC	CCTACCCGGA	GGCCA-TAN	TTT-AA-TC	TCGGGC
	110	120	130	140	150	160	170	180	190	200
DB-AMA.SEO	CGAATTCCCCGAAA			TGCAC-CCAT	PPERCENTER	G-AGAACGCC	CETCCCCAC	GGGC-AGAAAG	TTTOGG	
B-BRA. SEO	CGAATTTTGGGGGGA	TTTTCAACG	G-GGTTTTC	TGTATGCCAT	TTTCGGTTTTC	CAGAACGCC	CCTACCCAGA	GCA	TG	TCGGGG
B-GUY . SEQ	TGATTITCGGGAGA	TTTTGAACG	G-GGTTTC	TGTATOCCAN	AAACGCGATTTT	CCAGAACGCC	CCTACCCAGA	жс л	TG	TCGGGT
DB-MAJ. SEO	CAATTTTCCCCCCAA	AAATCGAACG	G-GGTTTC	TGCANCCCAT	PTTTCGAATTTC	GCAGAACGCC	CCTACCCACG	GACCAGAAAA	AGTITIGA	AAT
DB-PAN. SEQ	TGATTTTCGGGCTA	TTTTGAACG	G-GGTTTC	TGTATGCCAT	FITTCGGITTIC	GCAGAACGCC	CCTACCCAGA	зсс л	TG	TCGGGT
DB-PER. SEQ	CGATTTTCGGGCTA	TT. TTGAACG	G-GGTTTC	TGTATGCCAT	ITTTGCGATTTC	CCAGAACGCC	CCTACCCAGA	3GCX	TG	TCGGGT
H-ADL. SEQ	CGATTTTTGGCAAA	ттат-саасс	G-GGTTTC	TGCATGC-AT	PTTTCGGTTTT-	GCAGAACGCC	CCTACCTGAG	GACCTAAJ	AAGAAAGCCO	GGGGGA .
H-AET. SEQ	CATTTTTGGCGGCT	TTTTGAACG	GAGOTTTC	TGCACCAT	TITTCCATTTTC	GCAGAACGCC	CCTACCCGAN	GGCTACTAG	TTTCAATCC	TCGAAC
H-CON. SEQ	CATTTTTGGCCGAA	ттат-даасо	G-GATTTC	TGCACCC-AT	PTTTCGATTTTC	CAGAACGCC	CCTACCCGGA	GCCACTAN	TTTCAATCC	
THE DOME CONC.	CATTTTTGGCCGAT	TTTTTGAACG	G-GATTIC	TGCACCC-AT	TTTTCGATTTTC	GCAGAACGCC	CCTACCCGAA	GACCAGTAA	GFTATTICU	AGCUAC
H-MAJ. SEQ	CATTTTTGGGGAAA	TTAT-GAACG	G-GATTTC	TGCACCC-AT	TTTTCACTTTTC	GCAGAACGCC	CCTACCCGCC	CACCAGAAAA	GTTTAATCC	CCCGTC .
CH-MAJ. SEQ	CATTTTTGGGGAAA CATTTTCCGCCCAA	TTAT-GAACG	G-GATTTC	TGCACCC-AT	TTTTCACTTTTC	GCAGAACGCC	CCTACCCGCC	CACCAGAAAA	GTTTAATCC	CCCGTC .
CH-MAJ. SEQ	CATTTTTGGGGAAA	TTAT-GAACG	G-GATTTC G-GATTTC	TGCACCC-AT TGTATGC-AT	ITTICACTITIC ITTICGAATITC	GCAGAACGCC GCAGAACGCC	CCTACCCGCC	CACCAGAAAA	GTTTAATCC	CCCGTC .
CH-MAJ. SEQ	CATTTTTGGGGAAA CATTTTCCGCCCAA	ттат-даасо Алат-даасо	G-GATTTC G-GATTTC	TGCACCC-AT TGTATGC-AT	ITTTCACITITC ITTICGAATITC	GCAGAACGCC GCAGAACGCC	CCTACCCGCC	CACCAGAAAA GGCTACTACA	AGTITANTCO	CCCGGAC
CH-MAJ. SEQ	CATTTTTGGGGAAA CATTTTCCGCCCAA	ттат-даасо ааат-даасо тасассаасо	G-GATTTC G-GATTTC	TGCACCC-AT TGTATGC-AT TGCCGCC	TTTTCACTTTTC TTTTCGAATTTC	CAGAACGCC	CCTACCCGCC CCTACCCGGA	CACCAGAAA GGCTACTAC	XGXGTGCGCG	CCCGAC
CH-MAJ.SEQ CH-TRO.SEQ	CATTTTTCGGGAAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210	ттат-даасо Алат-даасо Тасассаасо 220	G-GATTTC G-GATTTC CCCCAGTT 230	TGCACCC-AT TGTATGC-AT TGCCGCC 240	TTTTCACTITIC TTTTCGAATTTC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	GCAGAACGCC GCAGAACGCC GCCTAGTTTC 260	CCTACCCGCC CCTACCCGGA ACCAATXC 270	CACCAGAAA GGCTACTACA AACCXGAGTC 280	AGTITAATCO ATGCCAATTCO XGXGTGCGCC 290	CCCGAC
CH-MAJ.SEQ CH-TRO.SEQ	CATTTTTCGGGAAA CATTTTCCGCCCAA CGTCCGGCCCTAITT 210 CGGGTCCATT	ТТАТ-GААСО АААТ-GААСО <u>ТАСАССААСО</u> 220 ГТ	G-GATTIC G-GATTIC <u>CCCCAGTT</u> 230 TCAG	TGCACCC-AT TGTATGC-AT TGCCGCC 240 GCCAF	ГТТТСАСТТТТС ГТТТССААТТТС П З 200 	GCAGAACGCC GCAGAACGCC GCCTAGTTTC 260 ACGCGACCTC-	ССТАСССССС ССТАСССССА <u>АССААТХС</u> 270	CACCAGAAAA GGCTACTACA AACCXGAGTC 280 AAACAAGCCC	AGTITAXICCO ATGCCAATTCO XGXGTGCGCC 290 IGAAGCAGCCC	CCCGAC CCGGAC <u>SXCCXX</u> 300 G-CCCN 2
CH-MAJ.SEQ CH-TRO.SEQ DB-AMA.SEQ DB-BRA.SEQ	CATTTTTCGGGAAA CATTTTCCGCCCAA CGTCCGCCCTAITT 210 CGGGTCCATTI AGTACGATTI	TTAT-GAACG AAAT-GAACG TACACCAACC 220 TT	G-GATTIC G-GATTIC CCCAGTT 230 -TCAG FTT	TGCACCC-AT TGTATGC-AT <u>TGCCGCC</u> 240 GCCAF FATGA	ТТТТСАСТТТТС ТТТТССААТТТС — — — — — — — — — — — — — — — — — — —	GCAGAACGCC GCAGAACGCC GCCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA-	ССТАСССССС ССТАСССССА 	CACCAGAAAA GGCTACTACA AACCXGAGTC 280 AAACAAGCCC AACCTCAGCG	AGTITAATCCC ATGCCAATTCC XGXGTGCGCC 290 GAAGCAGCCC AGAGTGCGCC	SCCCGAC SXCCXX 300 G-CCCN 2 GCCCA 2
CH-MAJ.SEQ CH-TRO.SEQ DB-AMA.SEQ DB-BRA.SEQ DB-GUY.SEQ	CATTITICGGGAAA CATTITICGCCCAA CGTCCGGCCCTAITI 210 CGCGTCCATTI AGTACGATTI GGTACGATTI	TTAT-GAACG AAAT-GAACG TACACCAACC 220 TT	G-GATTTC G-GATTTC <u>CCCCAGTT</u> 230 TCAG FTT FTT	TGCACCC-AT TGTATGC-AT <u>TGCCGCC</u> 240 GCCAP FATGA FATGA	ТТТТСАСТТТТС ТТТТССААТТТС ТТТТССААТТТС В З ЯПСИ 250 ГААСССАААСАА. АТАСАССАА 	GCAGAACGCC GCAGAACGCC GCCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTCC-	CCTACCCGCC CCTACCCGGA 	CACCAGAAAA GGCTACTACA AACCAGAGTC 280 AAACAAGCCC AACCTCAGCG AGCCCGAGTC	AGTITAATCCC ATGCCAATTCC XGXGTGCGCC 290 IGAAGCAGCCCC AGAGTGCGCCC GGGGTGCGCCC	SXCCXX 300 GCCCA GCCCA GCCCA
CH-MAJ. SEQ CH-TRO. SEQ DB-AMA. SEQ DB-BRA. SEQ DB-GUY. SEQ DB-MAJ. SEQ	CATTFTTGCGCCAAA CATTFTCCCGCCCAA CGTCCGGCCCTATT 210 CCGGGTCCATT AGTACGATTT GGTACGATTT GGTACGATTT	TTAT-GAACG AAAT-GAACG TACACCAACC 220 IT	G-GATTTC G-GATTTC 230 TCAG FTT G-CACAACC	TGCACCC-AT TGTATGC-AT <u>TGCCGCC</u> 240 GCCAF FATGA CGGCC	ТТТТСАСТТТТС ТТТТСGААТТТС ПТТТСGААТТТС ПТТТСGААТТТС ПТТТСGААТТТС 250 ААССССАААСАА. АТАGAG АССССАGAGAA	GCAGAACGCC GCAGAACGCC GCCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTCC- TTTAATTCCCC	ACCAATXCT 270 CAAAAAA TCGAGTTCT ACGAGAGCT GACC	CACCAGAAAA GGCTACTACA AACCXGAGTC 280 AAACAAGCCC AACCTCAGCG AGCCCGAGTC	AGTITANTCC TGCCANTTCC 290 GAAGCAGCCC AGAGTGCGCC GGGGTGCGCC CACCCG	SCCCA SCCCA 300 S-CCA SCCCA SCCCA SCCCA SCCCA
H-MAJ. SEQ CH-TRO. SEQ BB-AMA. SEQ BB-GUY. SEQ BB-GUY. SEQ BB-MAJ. SEQ BB-PAN. SEQ	CATTITICGGGAAA CATTITICGCCCAA CGTCCGGCCCTAITI 210 CGCGTCCATTI AGTACGATTI GGTACGATTI	TTAT-GAACG AAAT-GAACG 220 TT	G-GATTTC G-GATTTC 230 TCAG TCAG TCAG T ACACAACCI FTT	ТССАССС-АТ ТСТАТСС-АТ 240 СССАР ГАТСА ГАТАА ГСССС ГСАТА	ПТТСАСТТТС ПТТСААТТТС ПТТССААТТТС 250 ААСССАААСАА ААСССАААСАА АССССАСАСАА АССССАСАСААА АССССАСАСААА 	GCAGAACGCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTCC- TTTAATTCCCC GCCTAGTTTT-	CCTACCCGCA CCTACCCGGA 	CACCAGAAAA SGCTACTACJ 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC	AGTITANTCCC ATGCCAATTCC 290 GAAGCAGCCC GGGGTGCGCCC GGGGTGCGCCC AGAGTGCGCCC AGAGTGCGCCC	SCCCA SCCCA SOCCA SCCCA SCCCA SCCCA SCCCA SCCCA
CH-MAJ. SEQ CH-TRO. SEQ DB-ANA. SEQ DB-BRA. SEQ DB-GUY. SEQ DB-MAJ. SEQ DB-PAN. SEQ DB-PAR. SEQ CH-ADL. SEQ	CATTFTTGCGCCCAA CATTFTCCCGCCCAA CGTCCGCCCCTATT 210 CGGGTCCATT AGTACGATT GGTACGATT TTCCGGCATTTT TTCGGCATTTT	TTAT-GAACG AAAT-GAACG TTACACCAACG 220 TT	G-GATTTC G-GATTTC <u>CCCCAGTT</u> 230 TCAG TCAG TCAG TT CTT CTT	TGCACCC-AT TGTATGC-AT 240 GCC TATGA TATGA CGGCC TATCA TATCA	ПТТГСАСТТТГС ПТТТСGААТТТС В З ИПСТ 250 ИААСССААЛСАЛ АТЛАСАС АССССАЗАДАА 	GCTAGATTTC- CCTAGATTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTCC- TTTAATTCCC GCCTAGTTTT- GCCTAGTTTT- GCCTAGTTTT- GCCTAGTTTT-	CTACCCGGA CTACCCGGA CTACCCGGA CTACCAATXCT 270 	CACCAGAAAA GGCTACTACA 280 AAACAAGCCC AACCTCAGCG AGCCCGAGTC AGCCCAATCC AACCCGAGTC	AGTITALATCCC ATGCCAATTCC 290 GAAGCAGCCC AGAGTGCGCC GGGGTGCGCCC GGGGTGCGCCC GGGGTGCGCCC GGGGTGCGCCC GGGGTGCGCCC	CCCGAC CCGGAC <u>300</u> G-CCCN GCCCA GCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA
CH-MAJ. SEQ CH-TRO. SEQ DB-AMA. SEQ DB-BRA. SEQ DB-GUY. SEQ DB-MJ. SEQ DB-PAN. SEQ DB-PAN. SEQ DB-PAN. SEQ CH-AET. SEQ	CATTTTTCGGCCAAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210 CGGGTCCATTT AGTACGATTT GGTACGATTT GGTACGATTT GGTACGATTT GGCCCCCCTATTT CGGCCCCCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-CC-CCCAT TTGC-CCCAT TTGCACCCCCC TGGACCTAATT TGGACCTAATT TGCACCCAACC	G-GATTTC G-GATTTC 230 TCAG TT CTT CTT ACACAACC I CTT CTT CCCTAGTT CCCCAGTT	TGCACCC-AT TGTATGC-AT 240 GCC-AT TATGA TATGA TGATA TGATA TGC-CCCAAA TGCCCCGAAA TGCCCCGAAA	ТТТСАСТТТС ТТТТСВААТТТС В З 250 250 ААСССАААСАА 	GCTAGATTTC- CCTAGATTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTCC- TTTAATTCCC GCCTAGTTTT- GCCTAGTTTT- GCCTAGTTTT- GCCTAGTTTT-	CTACCCGGA CTACCCGGA CTACCCGGA CTACCAATXCT 270 	CACCAGAAAA SGCTACTACA 280 SAAACAAGCCC AACCTCAGCG AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCANTTCO 290 GAAGCAGCCC GGGGTGCGCC GGGGTGCGCC AGAGTGCGCC GGGGTGCGCC GGGGTGCGCC TCTGCATGCA	SCCCA SCCA SCC
CH-HAJ. SEQ CH-TRO. SEQ DB-AMA. SEQ DB-BRA. SEQ DB-BRA. SEQ DB-MAJ. SEQ DB-PAR. SEQ DB-PAR. SEQ DB-PER. SEQ H-ADL. SEQ CH-CON. SEQ	CATTTTTCGGCCAAA CATTTTCCGCCCAA CGTCCGGCCCATTT 210 CGGGTCCATTT GGTACGATTT GGTACGATTT GGTACGATTT AGTACGATTT GGCACCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-CC-CCCATT TCGACCCATT TGAGCTAATT TGAGCTAATT TTACACCAACG TACACCAACG	G-GATTTC G-GATTTC 230 TCAG FTT ACACAACC FTT TTT CCCTAGTT CCCCAGTT	TGCACCC-AT TGTATCC-AT 240 CCC-AT TATCA TATCA TGATCA TGATCA TGACCC-CCGAA	ТТТСАСТТТС ТТТТСВААТТТС В З 250 250 ААСССАААСАА 	GCTAGATTTC- CCTAGATTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTCC- TTTAATTCCC GCCTAGTTTT- GCCTAGTTTT- GCCTAGTTTT- GCCTAGTTTT-	CTACCCGGA CTACCCGGA CTACCCGGA CTACCAATXCT 270 	CACCAGAAAA SGCTACTACA 280 SAAACAAGCCC AACCTCAGCG AGCCCGAGTC GAACGCGGTT	AGTITALATCCC ATGCCAATTCC 290 GAAGCAGCCC AGAGTGCGCC GGGGTGCGCCC GGGGTGCGCCC GGGGTGCGCCC GGGGTGCGCCC GGGGTGCGCCC	CCCGGAC GXCCXX 300 GCCCA GCCCA GCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCGAC
CH-HAJ. SEQ CH-TRO. SEQ DB-AMA. SEQ DB-BRA. SEQ DB-GUY. SEQ DB-GUY. SEQ DB-PAN. SEQ DB-PAN. SEQ DB-PER. SEQ CH-ADL. SEQ CH-ADN. SEQ CH-DON. SEQ	CATTTTTCGGCCAAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210 CGGGTCCATTT AGTACGATTT GGTACGATTT GGTACGATTT GGGCCAGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCCATT TTGGACCCATT TTGGACCCATT TTGGACCAACC TTACACCAACC TTACACCAACC TTACACCAACC	G-GATTTC G-GATTTC 230 -TCAG TCAG TTT ACACAACC TTT CCCTAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСТАТСС-АТ ТСССССС 240 	ПТТГСАСТТТГС ПТТТСВААТТТС ПТТСВААТТТС 10 250 10 2	ICCAGAACCCC ICCAGAACCCCC ICCAGAACCCCC 260 ACGCGACCTC- CCCTAGTTTA- CCCTAGTTTA- CCCTAGTTTA- CCCTAGTTT- CCCACATTTT- CCCACATTTT-	CCTACCCCCA CCTACCCGCA CCTACCCGCA CCTACCCGCA 270 	CACCAGAAAA SGCTACTACA 280 SAAACAAGCCC AACCTCAGCG AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCANTTCO 290 GAAGCAGCCC GGGGTGCGCC GGGGTGCGCC AGAGTGCGCC GGGGTGCGCC GGGGTGCGCC TCTGCATGCA	ECCUTC CCGGAC 3XCC2X 300 3-CCCN 3GCCCA 3GCCCA 2GCCCA 2CCCCA 2CCCCA 2 CCCCCA 2 CCCCCA 2 CCCCCA 2 CCCCCA 2 CCCCCA 2 CCCCCA 2 CCCCCA 2 CCCGAC
H-HAJ. SEQ H-TRO. SEQ B-AMA. SEQ B-BRA. SEQ B-GUY. SEQ B-PAN. SEQ B-PAN. SEQ H-ADL. SEQ H-ACT. SEQ H-CON. SEQ H-CON. SEQ H-MAJ. SEQ	CATTTTTCGGCAAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210 CGGGTCCATTT AGTACGATTT GGTACGATTT GGTACGATTT GGTACGATTT CGCCCGGCCTATTT CACCCCGGCCTATTT CACCCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AACCCGAGTC GAACGCGGTT	IGTTRATICO INFOCANTICO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCC GGGGTGCCCCC TCTGCATGCA CC	ECCUTC CCGGAC 300 3-CCCN 2 300 3-CCCN 2 300 3-CCN 2 30
CH-HAJ. SEQ CH-TRO. SEQ DB-AMA. SEQ DB-BRA. SEQ DB-BAJ. SEQ DB-PAN. SEQ DB-PAN. SEQ DB-PFR. SEQ CH-AET. SEQ CH-AET. SEQ CH-CON. SEQ CH-CON. SEQ	CATTTTTCGGCCAAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210 CGGGTCCATTT AGTACGATTT GGTACGATTT GGTACGATTT GGGCCAGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AACCCGAGTC GAACGCGGTT	IGTTRATICO INFOCANTICO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCC GGGGTGCCCCC TCTGCATGCA CC	ECCUTC CCGGAC 300 3-CCCN 2 300 3-CCCN 2 300 3-CCN 2 30
CH-DON, SEQ CH-MAJ, SEQ CH-TRO, SEQ DB-ANA, SEQ DB-BRA, SEQ DB-BRA, SEQ DB-MJ, SEQ DB-PAR, SEQ DB-PAR, SEQ DB-PAR, SEQ CH-CON, SEQ CH-CON, SEQ CH-CON, SEQ CH-TRO, SEQ	CATTTTTCGGCAAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210 CGGGTCCATTT AGTACGATTT GGTACGATTT GGTACGATTT GGTACGATTT CGCCCGGCCTATTT CACCCCGGCCTATTT CACCCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AACCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ECCUTC CCGGAC 300 3-CCCN 2 300 3-CCCN 2 300 3-CCN 2 30
CH-HAJ. SEQ CH-TRO. SEQ DB-AMA. SEQ DB-BRA. SEQ DB-BAJ. SEQ DB-PAN. SEQ DB-PAN. SEQ DB-PFR. SEQ CH-AET. SEQ CH-AET. SEQ CH-CON. SEQ CH-CON. SEQ	CATTTTTCGGCCAAA CATTTTCCGCCCAA CGTCCGGCCCTATT 210 CGGGTCCATT AGTACGATTT GGTACGATTT GGTACGATTT GGTCACGATTT CGCCCGGCCCTATTT CACCCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AACCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ECCUTC CCGGAC 300 3-CCCN 2 300 3-CCCN 2 300 3-CCN 2 30
CH-MAJ. SEQ CH-TRO. SEQ DB-ANA. SEQ DB-BRA. SEQ DB-GUY. SEQ DB-PAN. SEQ DB-PAN. SEQ DB-PER. SEQ H-ACN. SEQ H-ACN. SEQ H-CON. SEQ H-MAJ. SEQ	CATTTTTCGGCAAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210 CGGGTCCATTI AGTACGATTT GGTACGATTT GGTACGATTT GGTACGATTT CGCCCGGCCCTATTT CACCCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AACCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ECCUTC CCGGAC 300 3-CCCN 2 300 3-CCCN 2 300 3-CCN 2 30
H-MAJ. SEQ H-TRO. SEQ H-TRO. SEQ H-BRA. SEQ B-GRY, SEQ B-GRY, SEQ B-PAN. SEQ H-ADI. SEQ H-ADI. SEQ H-CON. SEQ H-CON. SEQ H-TRO. SEQ H-TRO. SEQ	CATTTTTCGGCCAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210 CGGGTCCATTT AGTACGATTT GGTACGATTT GGTACGATTT GGTACGATTT GGTACGATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AACCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCGAC CCCGAC 3XCC2X 3300 G-CCCN GCCCA SCCCA SCCCA SCCCA SCCCA 2 SCCCA 3 SCCCA 3 SCCCCCA 2 SCCCA 3 SCCCA SCCCA 3 SCCCA 3 SCCCA 3 SCCCA 3 SCCCA 3 SCCCA 3 SCCCA 3 SCCCA 3 SCCCA 3 SCCCA 3 SCCCA 3 SCCCA SCCCCA
H-MAJ. SEQ H-TRO. SEQ B-AMA. SEQ B-AMA. SEQ B-GUY. SEQ B-MAJ. SEQ B-FAN. SEQ B-PER. SEQ H-ADL. SEQ H-ADL. SEQ H-CON. SEQ H-TRO. SEQ B-AMA. SEQ	САТТТТТССССССАА ССТТССССССАА 210 ССССССТАТТ АСТАСССССТАТТТ ОСТАССССССАТТТ СТАССССССАТТТ ОСТАССССАТТТТ ССССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САССССССССТАТТТ САСССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ ССАТТТАСА	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AACCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCGAC CCCGAC 300 3-CCCN 300 3-CCCN 300 3-CCCN 300 3-CCCN 300 3-CCCN 300 3-CCCN 300 3-CCCN 20 30 30 30 30 30 30 30 30 30 30 30 30 30
B-AMA. SEQ B-AMA. SEQ B-BRA. SEQ B-GUY. SEQ B-GUY. SEQ B-FAN. SEQ B-PAN. SEQ B-PAN. SEQ H-ADL. SEQ H-ADL. SEQ H-TRO. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ	CATTTTTCGGCAAA CATTTTCCGCCCAA CGTCCGGCCCTATT 210 CGGGTCCATT AGTACGATTT GGTACGATTT GGTACGATTT GGTACGATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AACCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ECCORC ECCORC 300 3-CCCN 300 3-CCCN 300 3-CCCN 300 300 3-CCCN 300 3-CCCN 300 3-CCCN 2 300 3-CCCN 2 2 2 2 2 2 2 2 2 2 2 2 2
H-MAJ. SEQ H-TRO. SEQ H-TRO. SEQ H-TRO. SEQ H-B-RA. SEQ B-RAJ. SEQ B-PAN. SEQ H-ADL. SEQ H-ADL. SEQ H-ADL. SEQ H-TRO. SEQ H-TRO. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ	САТТТТТССССССАА ССТТТТСССССССАА ССТСССССССАТТТ 210 СССССССТАТТТ АСТАСССАТТТ ССТАССССССТАТТТ ССТАССССССАТТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САССССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ САСССССССТАТТТ СТАТТТТАСА СТАТТТТАСА СТАТТТТАСА	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCGAC CCCGAC 300 C-CCCN CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCGAC
H-MAJ. SEQ H-TRO. SEQ B-AMA. SEQ B-BRA. SEQ B-MAJ. SEQ B-MAJ. SEQ B-PAN. SEQ H-ADL. SEQ H-ADL. SEQ H-ADL. SEQ H-ADL. SEQ H-AT. SEQ B-AMA. SEQ B-BRA. SEQ B-BRA. SEQ B-GUY. SEQ B-GW. SEQ B-GW. SEQ		TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	22 22 22 22 22 22 22 22 22 22 22 22 22
CH-MAJ. SEQ CH-TRO. SEQ DB-ANA. SEQ DB-BRA. SEQ DB-AN. SEQ DB-AN. SEQ DB-PAN. SEQ DB-PAN. SEQ H-ADL. SEQ H-ADL. SEQ H-TRO. SEQ H-TRO. SEQ B-ANA. SEQ	CATTTTTCGGCCAAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210 CGGGTCCATTT GGTACGATTT GGTACGATTT GGTACGATTT GGTACGATTT AGTACGATTT CACCCGGCCTATTT CACCCGGCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ECCORC ECCORC 300 3-CCCN 300 3-CCCN 300 300 300 300 300 300 300 30
CH-MAJ. SEQ CH-TRO. SEQ DB-AMA. SEQ DB-BRA. SEQ DB-MJ. SEQ DB-PAN. SEQ DB-PAN. SEQ DB-PAN. SEQ H-AET. SEQ H-CON. SEQ H-CON. SEQ H-TRO. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-PAN. SEQ B-PAN. SEQ B-PAN. SEQ B-PAN. SEQ B-PAN. SEQ		TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCGAC CCCGAC 300 C-CCN 2 SCCCA 2 SCCCCA 2 SCCCA 2 SCC
H-MAJ. SEQ H-TRO. SEQ H-TRO. SEQ H-TRO. SEQ H-B-BRA. SEQ B-BRA. SEQ B-PAN. SEQ H-ADL. SEQ H-ADL. SEQ H-ADL. SEQ H-TRO. SEQ B-PAN. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-AMA. SEQ B-PAN. SEQ	CATTTTTCGGCCAAA CATTTTCCGCCCAA CGTCCGGCCCTATTT 210 CGGGTCCATTT GGTACGATTT GGTACGATTT GGTACGATTT GGTACGATTT AGTACGATTT CACCCGGCCTATTT CACCCGGCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT CACCGGCCCTATTT	TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	22 22 22 22 22 22 22 22 22 22 22 22 22
B-AMA. SEQ B-AMA. SEQ B-GUY. SEQ B-GUY. SEQ B-GUY. SEQ B-FAN. SEQ B-FAN. SEQ B-FAN. SEQ H-ADL. SEQ H-ADL. SEQ H-TRO. SEQ B-BRA. SEQ B-BRA. SEQ B-GUY. SEQ B-MJ. SEQ B-MJ. SEQ B-PAN. SEQ		TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ECCORC ECCORC 300 3-CCCN 300 3-CCCN 300 300 300 300 300 300 300 30
H-MAJ. SEQ H-TRO. SEQ H-TRO. SEQ H-TRO. SEQ H-ARA. SEQ H-ARA. SEQ H-ARA. SEQ H-ARA. SEQ H-ARA. SEQ H-ARA. SEQ H-ARA. SEQ H-TRO. SEQ H-TRO. SEQ H-TRO. SEQ H-ARA. SEQ B-AMA. SEQ B-AMA. SEQ H-TRO. SEQ H-ARA. SEQ		TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCGAC CCCGAC 300 CCCGAC 300 CCA 300 CCA 300 CCA 300 CCA 200 CCCA 200 CCCA 200 CCCA 200 CCCA 200 CCCA 200 CCCA 200 CCCA 200 CCCA 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCGAC 200 CCCA 200 CCCCA 200 CCCC
B-AMA. SEQ B-AMA. SEQ B-GUY. SEQ B-GUY. SEQ B-GUY. SEQ B-FAN. SEQ B-FAN. SEQ B-FAN. SEQ H-ADL. SEQ H-ADL. SEQ H-TRO. SEQ B-BRA. SEQ B-BRA. SEQ B-GUY. SEQ B-MJ. SEQ B-MJ. SEQ B-PAN. SEQ		TTAT-GAACG AAAT-GAACG 220 TT-C-CCATT TTGGACCCCCT TTGGACCCCCT TTGACCCCAT TTGACCCAACC TACACCAACC TACACCAACC TACACCAACC	G-GATTTC G-GATTTC 230 TCAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CAG TT CCCAGTT CCCAGTT CCCCAGTT CCCCAGTT	ТССАССС-АТ ТСТАТСС-АТ ТСССССС	ПТТСАСТТТС ПТТССААТТТС ПТТССААТТТС ПТТССААТТС 250 ААСССАААСАА АТАСАС АССССАСАСААА А-АСАС АССССАСАСААА А-АСАС А-АСАС 	GCAGAACCCC GCAGAACGCC CCTAGTTTC- 260 ACGCGACCTC- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTA- GCCTAGTTTT- GCCTAGTTTT- GCCACATTTT- TAGCGATTTTT	-CCT	CACCAGAAAA SGCTACTACA 280 SAACAAGCCC AACCTCAGCG AGCCCGAGTC AGCCCGAGTC GAACGCGGTT	IGTTRATICO INFECCAATTCO 290 GAAGCAGCCC GGGGTGCCCCC GGGGTGCCCCC AGAGTGCCCCC GGGGTGCCCCC GGGGTGCCCCCC TCTGCATGCA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ECCORC ECCORC 300 3-CCCN 300 3-CCCN 300 300 300 300 300 300 300 30

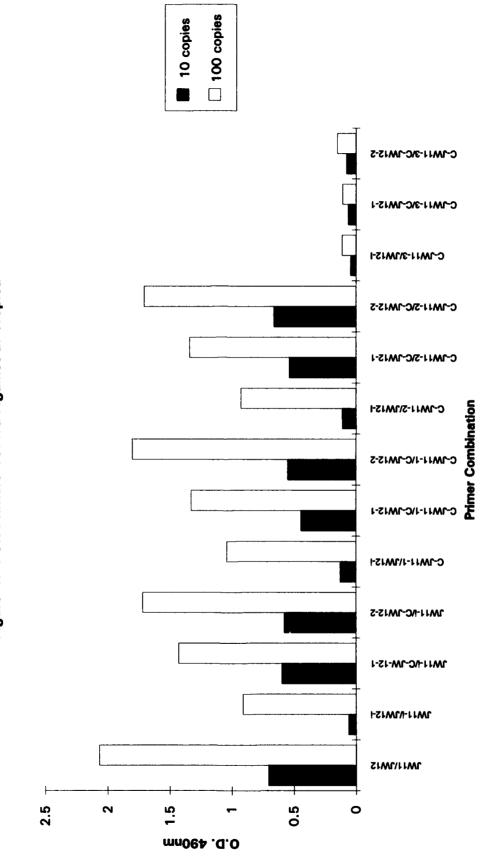
Published sequences of Leishmania minicircle conserved regions were compared using LaserGene (DNAStar, LTD), generating the underlined consensus sequence. The sequences designated "NDB" are the complementary strands to those reported by De Bruijn, et al (11); those designated "SCH" have been reported by Schoone, et al (9). The following abbreviations were used to refer to species and subspecies: AMA: <u>amazonensis</u>; BRA: <u>braziliensis</u>; GUY: <u>guyanensis</u>; MAJ: <u>major</u>; PAN: <u>panamensis</u>; PER: <u>peruviana</u>; ADL: <u>adleri</u>; AET: <u>aethopica</u>; CON: Schoone consensus sequence; DON: <u>donovani</u>.

Figure 3. Capture Plate PCR Product Analysis

O PCR reaction is run using 1 biotinylated primer Specific product is produced


(2) PCR products are denatured by heating


(3) The biotinylated strand is captured in an avidin-coated microplate well



A specific synthetic oligonucleotide coupled to Alkaline Phosphatase is allowed to hybridize to the bound PCR product

A chemiluminescent substrate is added. The breakdown of (5) this substrate produces light, which is detected by a microplate luminometer

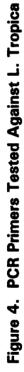
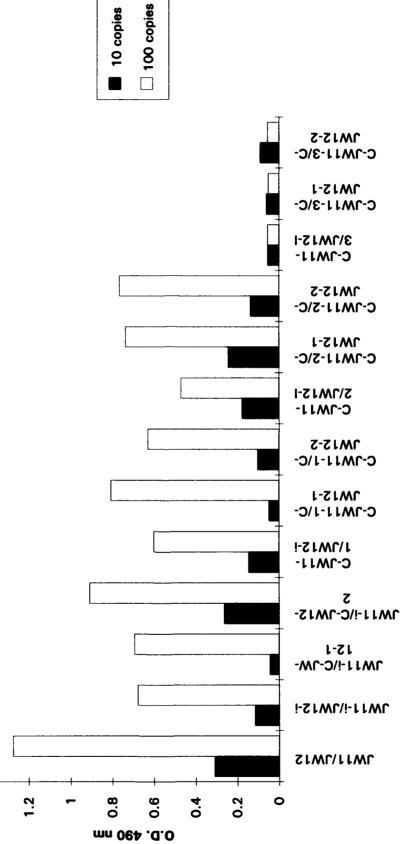
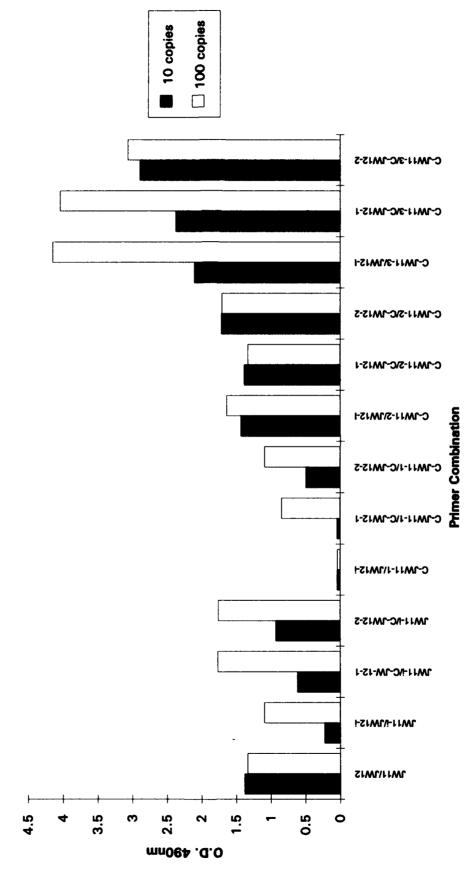




Figure 5. PCR Primers Against L. Donovani

1.4

Primer Combinations

•								
		Received		Assay				
SRA #	Туре	Date	Stdy	Date	Probe	Tube	Tube	Dx
17309	SM	15-0CT-92	LN	10-DEC-92	JW11/12		•	NEG
17310	SM	15-0CT-92	LM	10-DEC-92	JW11/12		-	NEG
17311	SM	15-0CT-92	LH	10-DEC-92	JW11/12		+	POS
17311	SM	15-0CT-92	LN	16-DEC-92	JW11/12		+	POS
17312	SM	15-OCT-92	LM	10-DEC-92	JW11/12		+	POS
17313 18117	SM	15-0CT-92	LN	10-DEC-92	JW11/12		+	POS NEG
18118	SM SM	06-NOV-92 06-NOV-92	LN LN	10-DEC-92 10-DEC-92	JW11/12 JW11/12		:	NEG
18544A	BL	23-NOV-92	LN	02-DEC-92	JW11/12		-	NEG
18544B	BL	23-NOV-92	LN	02-DEC-92	JW11/12		-	NEG
18661A	BM	24-NOV-92	LM	16-DEC-92	JW11/12	-	-	NEG
186618	BM	24-NOV-92	LH	02-DEC-92	JW11/12		-	NEG
18662	PL	24-NOV-92	LN	02-DEC-92	JW11/12		•	NEG
20027 20028	BL BM	13-JAN-93 13-JAN-93	LH LH	03-FEB-93 03-FEB-93	JW11/12 JW11/12		•	NEG NEG
20278	BL	26-JAN-93	LH	03-FEB-93	JW11/12		-	NEG
20279	BM	26-JAN-93	LN	03-FEB-93	JW11/12		-	NEG
20280	BL	26-JAN-93	LN	03-FEB-93	JW11/12		-	NEG
20281	BM	26-JAN-93	LM	03-FEB-93	JW11/12		-	NEG
20344	BL	27-JAN-93	LM	03-FEB-93	J₩11/12		+	IND
20345	BM	27-JAN-93	LM	03-FEB-93	JW11/12		-	IND
20366 20367	BL BM	28-JAN-93 28-JAN-93	LM	03-FEB-93 03-FEB-93	JW11/12 JW11/12		•	NEG NEG
20401	BL	01-FEB-93	LM	19-FEB-93	JW11/12		-	NEG
20402	BM	01-FEB-93	LM	19-FEB-93	JW11/12		-	NEG
21243	BL	03-MAR-93	LN	09-MAR-93	JW11/12		-	NEG
21244	BM	03-MAR-93	LM	09-MAR-93	JW11/12	-	-	NEG
21459	BL	10-MAR-93	LM	15-MAR-93	JW11/12		-	NEG
21460	BM	10-MAR-93	LM	15-MAR-93	JW11/12		-	NEG
21551 21552	BL BM	15-MAR-93 15-MAR-93	LM LH	25-MAR-93 25-MAR-93	JW11/12 JW11/12		-	NEG NEG
22745	BL	04-MAY-93	LM	05-MAY-93	JW11/12		-	NEG
22955	BL	12-MAY-93	LM	03-AUG-93	JW11/12		+	POS
22956	BL	12-MAY-93	LM	14-MAY-93	JW11/12		-	NEG
22957	BL	12-MAY-93	LM	13-HAY-93	JW11/12	-	•	NEG
22968	BL	12-MAY-93	LM	14-MAY-93	JW11/12		-	NEG
22969 22970	BL	12-MAY-93	LM	14-MAY-93	JW11/12		- +	NEG
22972	BL BL	12-MAY-93 12-MAY-93	LM LM	20-MAY-93 14-MAY-93	JW11/12 JW11/12		•	POS NEG
22973	BL	12-MAY-93	LM	14-MAY-93	JW11/12		-	NEG
22974	BL	12-MAY-93	LM	14-MAY-93	JW11/12		-	NEG
22975	BL	12-MAY-93	LM	14-MAY-93	JW11/12		-	NEG
22976	BL	12-MAY-93	LM	14-MAY-93	JW11/12		-	NEG
22977	BL	12-MAY-93	LM	20-MAY-93	JW11/12		+	POS
22978	BL	12-MAY-93	LM	14-MAY-93	JW11/12		•	NEG
22979 23000	BL	12-MAY-93	LM	13-HAY-93	JW11/12		-	NEG
23011	BL Bl	13-MAY-93 14-MAY-93	LM LM	14-MAY-93 15-MAY-93	JW11/12 JW11/12		-	NEG NEG
23012	BL	14-MAY-93	LM	20-MAY-93	JW11/12		-	NEG
23019	BL	14-MAY-93	LM	15-MAY-93	JW11/12		-	NEG
23046	BL	17-MAY-93	LM	20-MAY-93	JW11/12	+	+	POS
23056	BM	18-MAY-93	LM	20-MAY-93	JW11/12		+	POS
23084	BL	18-MAY-93	LM	20-MAY-93	JW11/12		-	NEG
23085 23250	BM Bi	18-MAY-93 21-MAY-93		20-MAY-93 25-MAY-93	JW11/12		•	NEG
23251	BL BL	21-MAY-93	LM LM	23-MAT-93 01-JUL-93	JW11/12 JW11/12		+	POS NEG
23324	BL	26-MAY-93	LM	27-MAY-93	JW11/12		-	NEG
23328A	BL	26-MAY-93	LN	30-MAY-93	JW11/12		+	POS
233288	BL	26-MAY-93	LM	30-MAY-93	JW11/12		+	POS

•		Received		Assay				
SRA #	Туре	Date	Stdy	Date	Probe	Tube	Tube	Dx
•••••							••••	•••
23344	BL	27-MAY-93	LH	01-JUL-93	J¥11/12	•	•	NEG
23345	BM	27-MAY-93	LH	03-AUG-93	JW11/12		-	NEG
23384A	SM	01-JUN-93	LM	02-JUL-93	JW11/12		•	NEG
233848	SM	01-JUN-93	LN	02-JUL-93	JW11/12		-	NEG
23385	8L	01-JUN-93	LH	02-JUL-93	JW11/12		-	NEG
23573	BL	07-JUN-93	LM	08-JUN-93	JW11/12		-	NEG
23574	BL	07-JUN-93	LM	08-JUN-93	JW11/12		-	NEG
23575	8L	07-JUN-93	LM	08-JUN-93	JW11/12		-	NEG
23576	BM	07-JUN-93	LM	08-JUN-93	JW11/12		•	NEG
23677 23678	BL	11-JUN-93	LM	15-JUN-93 15-JUN-93	JW11/12		•	NEG
23757	BL BM	11-JUN-93 15-JUN-93	LM	24-JUN-93	JW11/12 JW11/12			NEG NEG
23758	BL	15-JUN-93		24-JUN-93	JW11/12			NEG
23827	BL	17-JUN-93	LM LM	24-JUN-93	JW11/12		-	NEG
23828	BM	17-JUN-93	LK	24-JUN-93	JW11/12		-	NEG
23877	BL	21-JUN-93	LH	24-JUN-93	JW11/12		-	NEG
23878	BM	21-JUN-93	LH	24-JUN-93	JW11/12		-	NEG
238794	BL	21-JUN-93	LM	24-JUN-93	JW11/12		-	NEG
238798	BL	21-JUN-93	LM	24-JUN-93	JW11/12		-	NEG
23880	BL	21-JUN-93	LM	24-JUN-93	JW11/12		-	NEG
23881	BL	21-JUN-93	LM	24-JUN-93	JW11/12		-	NEG
23882	BL	21-JUN-93	LM	24-JUN-93	JW11/12		-	NEG
23883	BL	21-JUN-93	LN	24-JUN-93	JW11/12		-	NEG
23884A	BL	21-JUN-93	LM	24-JUN-93	JW11/12		•	NEG
238848	BL	21-JUN-93	LM	24-JUN-93	JW11/12		-	NEG
23885	BL	21-JUN-93	LM	24-JUN-93	JW11/12		-	NEG
23886	8L	21-JUN-93	LM	24-JUN-93	JW11/12	-	•	NEG
23887	BL	21-JUN-93	LM	24-JUN-93	JW11/12	-	-	NEG
23888	8L	21-JUN-93	LN	24-JUN-93	JW11/12	•	-	NEG
23889	8L	21-JUN-93	LM	24-JUN-93	JW11/12	-	•	NEG
23890	BL	21-JUN-93	LM	24-JUN-93	JW11/12	-	-	NEG
24068	BL	25-JUN-93	LM	07-JUL-93	JW11/12	-	-	NEG
24069	BL	25-JUN-93	LM	07-JUL-93	JW11/12		-	NEG
24070	BL	25-JUN-93	LM	07-JUL-93	JW11/12		•	NEG
24071	BL	25-JUN-93	LM	07-JUL-93	J₩11/12		-	NEG
24072	BL	25-JUN-93	LM	07-JUL-93	JW11/12		-	NEG
24073	BL	25-JUN-93	LH	07-JUL-93	JW11/12		-	NEG
24074	BL	25-JUN-93	LM	07-JUL-93	JW11/12		-	NEG
24075	BL	25-JUN-93	LM	07-JUL-93	JW11/12		•	NEG
24102	BL	28-JUN-93	LM	07-JUL-93	JW11/12		•	NEG
24125	BM	29-JUN-93	LM	07-JUL-93	JW11/12		•	NEG
24126 24127	BL BM	29-JUN-93 29-JUN-93	LM	07-JUL-93 07-JUL-93	JW11/12 JW11/12		•	NEG
24175			LM				-	NEG
24175	8L Bl	02-JUL-93 02-JUL-93	LM LN	09-JUL-93 09-JUL-93	JW11/12 JW11/12		-	NEG NEG
24177	BL	02-JUL-93	LH	09-JUL-93	JW11/12		-	NEG
24178	BL	02-JUL-93	LM	09-JUL-93	JW11/12		-	NEG
24223	8L	02-JUL-93	LM	09-JUL-93	JW11/12		-	NEG
24224	BM	06-JUL-93	LM	09-JUL-93	JW11/12		-	NEG
24454A	BL	14-JUL-93	LM	29-JUL-93	JW11/12		•	NEG
244548	BL	14-JUL-93	LM	29-JUL-93	JW11/12		-	NEG
24566	BL	21-JUL-93	LM	10-AUG-93	JW11/12		-	NEG
24567	BM	21-JUL-93	LM	10-AUG-93	JW11/12		•	NEG
24930	BL	09-AUG-93	LN	16-AUG-93	JW11/12		-	NEG
24931	BL.	09-AUG-93	LM	16-AUG-93	JW11/12		-	NEG
24932	BL	09-AUG-93	LM	16-AUG-93	JW11/12		•	NEG
24932	BL	09-AUG-93	LM	16-AUG-93	JW11/12		-	NEG
25286	BL	24-AUG-93	LM	01-SEP-93	JW11/12		•	NEG
25391	BL	30-AUG-93	LM	08-SEP-93	JW11/12		-	NEG
								-

•								
		Received		Assay				
SRA #	Type	Date	Stdy	Date	Probe	Tube	Tube	Dx
25474	••••	AT AFA AT				••••		
25475	BL BH	03-SEP-93 03-SEP-93	LH	08-SEP-93 08-SEP-93	JW11/12 JW11/12		+/- -	I ND NEG
Z0001 01		09-DEC-92	LM	10-DEC-92	JW11/12		+	POS
Z000102	81	09-DEC-92	LN	10-DEC-92	JW11/12		-	NEG
2000103	BL	09-DEC-92	LN	10-DEC-92	JW11/12		-	NEG
Z000104	BL	09-DEC 92	LN	10-DEC-92	JW11/12		+	POS
2000105	BL	09-DEC-92	LM	10-DEC-92	J¥11/12		+	POS
Z000106	BL	09-DEC-92	LH	10-DEC-92	JW11/12	+	+	POS
Z00 0107	BL	09-DEC-92	LH	10-DEC-92	JW11/12		+	POS
2000108	BL	09-DEC-92	LM	10-DEC-92	JW11/12		•	NEG
Z000109	BL	09-DEC-92	LM	10-DEC-92	JW11/12		-	NEG
2000110	BL	09-DEC-92	LM	10-DEC-92	JW11/12		+	POS
2000111 2000112	BL BL	09-DEC-92 09-DEC-92	LN	10-DEC-92 10-DEC-92	JW11/12 JW11/12		+ +	POS POS
2000112	BL	16-DEC-92	LN LN	17-DEC-92	JW11/12		+	POS
2000118	BL	16-DEC-92	LN	17-DEC-92	JW11/12		+	POS
Z000119	BL	16-DEC-92	LH	17-DEC-93	JW11/12		•	NEG
Z000120	BL	16-DEC-92	LN	17-DEC-93	JW11/12		+	POS
Z000139	BL	16-DEC-92	LM	17-DEC-92	JW11/12		+	POS
Z000140	BL	16-DEC-92	LM	17-DEC-92	JW11/12	-	-	NEG
Z000141	BL	16-DEC-92	LM	17-DEC-92	JW11/12		+	POS
2000142	BL	16-DEC-92	LM	17-DEC-92	JW11/12		-	NEG
2000143	BL	16-DEC-92	LM	17-DEC-92	JW11/12		•	NEG
Z000144	8L	16-DEC-92	LM	17-DEC-92	JW11/12		+	POS
Z000145	BL	16-DEC-92	LM	17-DEC-92	JW11/12		+	POS
Z000146 Z000161	8L 8L	16-DEC-92	LN LM	17-DEC-92	JW11/12		•	NEG NEG
Z000162	BL	30-DEC-92 30-DEC-92	LM	06-JAN-93 06-JAN-93	JW11/12 JW11/12		•	POS
Z000163	BL	30-DEC-92	LM	06-JAN-93	JW11/12		+ +	POS
Z000164	BL	30-DEC-92	LM	06-JAN-93	JW11/12		-	NEG
Z000165	BL	30-DEC-92	LM	06-JAN-93	JW11/12		+	POS
Z000166	BL	30-DEC-92	LM	06- JAN-93	JW11/12		+	POS
Z000167	BL	11-JAN-93	LM	11-JAN-93	JW11/12		+	POS
Z000168	BL	11-JAN-93	LH	11-JAN-93	JW11/12	+	+	POS
Z000169	8L	11-JAN-93	LM	11-JAN-93	JW11/12	+	+	pos
2000170	BL	11-JAN-93	LN	11-JAN-93	JW11/12		+	POS
Z000171	BL	11-JAN-93	LM	11-JAN-93	JW11/12		+	POS
2000172	BL	11-JAN-93	LM	11-JAN-93	JW11/12		+	POS
2000173	SL.	11-JAN-93	LM	11-JAN-93	JW11/12		+	POS
2000174 2000175	BL BL	11-JAN-93 11-JAN-93	LM LN	11-JAN-93 11-JAN-93	JW11/12		•	POS NEG
Z000175 Z000176	BL	11-JAN-93	LM	11-JAN-93	JW11/12 JW11/12		•	POS
2000177	BL	11-JAN-93	LM	11-JAN-93	JW11/12		-	NEG
2000178	BL	11-JAN-93	LM	11-JAN-93	JW11/12		+	POS
2000257	BL	18-FEB-93	LM	19-FE8-93	JW11/12		•	POS
2000258	8L	18-FEB-93	LM	19-FE8-93	JW11/12		•	POS
2000259	BL	19-FEB-93	LM	19-FEB-93	JW11/12		+	POS
Z000260	BL	18-FEB-93	LN	19-FEB-93	JW11/12		•	POS
Z000261	BL	18-FEB-93	LH	19-FE8-93	JW11/12		-	NEG
Z000262	BL	18-FEB-93	LH	19-FEB-93	JW11/12		-	NEG
Z000263	BL	18-FEB-93	LM	19-FEB-93	JW11/12	•	-	NEG
2000264	BL	18-FEB-93	LN	19-FEB-93	JW11/12		•	NEG
2000308	BL	11-MAR-93	LM	15-MAR-93	JW11/12		+	POS
2000309	BL	11-MAR-93	LM	15-MAR-93	JW11/12		+	POS
2000310 2000311	8L	11-MAR-93	LM	15-MAR-93	JW11/12		+	POS
2000312	BL BL	11-MAR-93 11-MAR-93	LN LN	15-MAR-93 15-MAR-93	JW11/12 JW11/12		•	NEG POS
Z000312 Z000313	BL	12-MAR-93	LM	15-MAR-93	JW11/12			NEG
2000320	BL	23-MAR-93	LN	25-MAR-93	JW11/12		+	POS
			-				•	

•								
		Received		Assay				
SRA #	Type	Date	Stdy	Date	Probe	Tube	Tube	Dx
					••••	• • • •		• • •
Z000321	BL.	23-NAR-93	LH	25-MAR-93	JW11/12	-	•	NEG
2000336	BL	26-MAR-93	LH	06-APR-93	JW11/12		+	POS
Z000337	.	26-NAR-93	LII	06-APR-93	JW11/12		•	NEG
Z000338	BL.	26-MAR-93	LI	08-APR-93	JW11/12		•	NEG
2000339 2000340	BL.	26-NAR-93 26-NAR-93	LN	08-APR-93	JV11/12		+ +	POS
2000341	BL BL	26-MAR-93	LH LH	08-APR-93 08-APR-93	JW11/12 JW11/12			POS NEG
2000342	BL	26-NAR-93	LN	08-APR-93	JW11/12		+	POS
Z000343	BL	26-MAR-93	LH	08-APR-93	JW11/12		+	POS
Z000344	BL	26-NAR-93	UI	08-APR-93	JW11/12		+	POS
2000345	BL	26-NAR-93	LN	08-APR-93	JW11/12		+	POS
Z000346	BL	26-MAR-93	LH	08-APR-93	JW11/12		+	POS
2000347	BL	26-NAR-93	LN	06-APR-93	JW11/12	+	+	POS
2000348	BL	26-NAR-93	LH	08-APR-93	J₩11/12		-	NEG
2000349	BL	26-MAR-93	LH	06-APR-93	JW11/12		+	PCS
2000350	BL	26-MAR-93	LH	06-APR-93	JW11/12		+	POS
2000351	BL	26-NAR-93	LN	06-APR-93	JW11/12		+	POS
2000352	BL	26-NAR-93	LN	06-APR-93	JW11/12		+	POS
2000353	BL	26-MAR-93	LM	06-APR-93	JW11/12		+	POS
2000354 2000355	BL Bl	26-MAR-93 26-MAR-93	LN	06-APR-93	JW11/12 JW11/12		+ +	POS POS
2000355	BL	26-MAR-93	LN LN	06-APR-93	JW11/12		+	POS
z000357	BL	26-MAR-93	LN	06-APR-93	JW11/12		-	NEG
200035	BL	26-NAR-93	LH	06-APR-93	JW11/12		-	NEG
200035	BL	26-NAR-93	LN	06-APR-93	JW11/12		•	NEG
200036	BL	26-NAR-93	LII	06-APR-93	JW11/12		-	NEG
2000361	8L	26-NAR-93	LN	06-APR-93	JW11/12		•	NEG
Z000362	BL	29-MAR-93	LH		JW11/12	•	•	NEG
Z000363	BL	29-MAR-93	LH		JW11/12	•	•	NEG
2000364	BL	29-NAR-93	LN		JW11/12		•	NEG
2000365	BL	29-MAR-93	LH		JW11/12		•	NEG
2000367	BL	01-APR-93	LH	05-APR-93	JW11/12		•	NEG
Z000368	BL	01-APR-93	LM	05-APR-93	JW11/12		-	NEG
2000369 2000370	BL	01-APR-93	LN	05-APR-93	JW11/12		•	NEG
2000375	BL BL	01-APR-93 05-APR-93	LN LN	05-APR-93 08-APR-93	JW11/12 JW11/12		•	NEG NEG
Z000376	BL	05-APR-93	LM	08-APR-93	JW11/12		-	NEG
2000377	BL	08-APR-93	LM	09-APR-93	JW11/12		-	NEG
2000378	BL	12-APR-93	LH	09-APR-93	JW11/12		-	NEG
2000379	BL	12-APR-93	LH	15-APR-93	JW11/12		+	POS
2000380	BL	12-APR-93	LN	15-APR-93	JW11/12		•	NEG
2000381	BL	12-APR-93	LN	15-APR-93	JW11/12	•	-	NEG
Z000413	BL	23-APR-93	LH	28-APR-93	JW11/12		-	NEG
2000414	BL	23-APR-93	LM	28-APR-93	JW11/12		-	NEG
Z000439	BL	30-APR-93	LH	05-MAY-93	JW11/12		-	NEG
2000440	BL	30-APR-93	LH		JW11/12		•	NEG
Z000460	BM	21-MAY-93	LN	25-MAY-93	JW11/12		•	NEG
2000461	BL	21-MAY-93	LM	25-MAY-93	JW11/12		•	NEG
2000466	LI	25-MAY-93	LM	26-NAY-93	JW11/12		+	POS
2000473 2000474	BL	26-MAY-93 26-MAY-93	LM	27-MAY-93	JW11/12		+	POS
2000475	BL Bl	20-MAY-93	LN	27-MAY-93 27-MAY-93	JW11/12 JW11/12	. .	+	POS POS
Z000476	8L	26-MAY-93	UI	27-MAY-93	JW11/12		+	POS
2000501	BL	09-JUN-93	LN	15-JUN-93	JW11/12		•	NEG
2000502	BH	09-JUN-93	LH	15-JUN-93	JW11/12		-	NEG
2000503	BL	11-JUN-93	LN	15-JUN-93	JW11/12		+	POS
2000504	BL	14-JUN-93	LN	15-JUN-93	JW11/12		+	POS
Z000505	BL	11-JUN-93	LH	15-JUN-93	JW11/12		+	POS
2000506	BL	11-JUN-93	LM	15-JUN-93	JW11/12		+	POS

.

•								
	-	Received		Assay	- .			-
SRA #	Туре	Date	Stdy	Date	Probe	Tube	Tube	DX
2000507	TE	11-JUN-93	LN	15-JUN-93	JW11/12		-	NEG
2000508	TE	11-JUN-93	LN	15-JUN-93	JW11/12		-	NEG
2000511	PL	24-JUN-93	LI	07-JUL-93	JW11/12		-	NEG
2000517	BL.	07-JUL-93	LI	09-JUL-93	JN11/12		-	NEG
2000518	BL.	07-JUL-93	LII	09-JUL-93	JW11/12		•	NEG
Z000519	81.	07-JUL-93	LN	09-JJL-93	JW11/12		+	POS
2000520	BL	07-JUL-93	LH	09-JUL-93	JW11/12		+	POS
Z0005 41	BL.	12-JUL-93	LH	16-JUL-93	JW11/12		+	POS
2000542	BL.	12-JUL-93	LH	16-JUL-93	JW11/12		+	POS
Z000543	BL.	12-JUL-93	LN	16-JUL-93	JW11/12		+	POS
2000550	SL.	16-JUL-93	LN	16-AJG-93	JW11/12		-	NEG
2000550 2000551	BL BL	16-JUL-93	LH LH	16-AUG-93 29-JUL-93	JW11/12		•	NEG
2000551	BL	16-JUL-93 16-JUL-93	LN	29-JUL-93	JW11/12 JW11/12		-	NEG NEG
2000558	BL	22-JUL-93	LH	10-AUG-93	JW11/12		•	NEG
Z000559	BL	22-JUL-93	LN	10-AUG-93	JW11/12		-	NEG
2000569	BL	30-JUL-93	LN	10-AUG-93	JW11/12		-	NEG
2000570	BL	30-JUL-93	LH	10-AUG-93	JW11/12	•	•	NEG
Z000572	81	30-JUL-93	LH	10-AUG-93	JW11/12		•	NEG
Z000573	BL	30-JUL-93	LH	10-AUG-93	JW11/12		-	NEG
2000574	SL.	30-JUL-93	LM	10-AUG-93	JW11/12		-	NEG
2000575	BL	30-JUL-93	LN	10-AUG-93	JW11/12		-	NEG
2000576	BL	30-JUL-93	LH	10-AUG-93	JW11/12		-	NEG
2000577	BL	30-JUL-93	LM	10-AUG-93	JW11/12		-	NEG
2000578 2000579	BL BL	30-JUL-93 30-JUL-93	LM	10-AUG-93 10-AUG-93	JW11/12 JW11/12		•	NEG NEG
Z000580	BL	30-JUL-93	LH	10-AUG-93	JW11/12		-	NEG
2000581	BL	30-JUL-93	LN	10-AUG-93	JW11/12		•	NEG
2000582	BL	30-JUL-93	LM	10-AUG-93	JW11/12		-	NEG
2000583	BL	30-JUL-93	LN	10-AUG-93	JW11/12		•	NEG
2000584	BL	30-JUL-93	LH	10-AUG-93	JW11/12		-	NEG
2000585	BL	30-JUL-93	LM	10-AUG-93	JW11/12	-	-	NEG
Z000586	BL	30-JUL-93	LH	10-AUG-93	JW11/12		-	NEG
Z000587	BL	30-JUL-93	LN	10-AUG-93	JW11/12		-	NEG
2000588	BL	30-JUL-93	LN	10-AUG-93	JW11/12		-	NEG
Z000589	BL	30-JUL-93	LN	10-AUG-93	JW11/12		+	POS
2000590	BL	30-JUL-93	LN	10-AUG-93	JW11/12		+	POS
2000591 2000592	BL BL	05-AUG-93 05-AUG-93	LN LN	16-AUG-93 16-AUG-93	JW11/12 JW11/12			NEG NEG
Z000593	BL	05-AUG-93	LN	16-AUG-93	JW11/12		•	NEG
Z000594	BL	05-AUG-93	LM	16-AUG-93	JW11/12		-	NEG
2000595	BL	05-AUG-93	LM	16-AUG-93	JW11/12		+	POS
2000596	BL	05-AUG-93	LN	16-AUG-93	JW11/12		+	POS
2000597	BL	10-AUG-93	ĹN	16-AUG-93	JW11/12	+	+	POS
Z000598	8L	10-AUG-93	LN	16-AUG-93	JW11/12	+	+	POS
2000599	BL	10-AUG-93	LH	16-AUG-93	JW11/12		+	NEG
Z000600	BL	10-AUG-93	LN	16-AUG-93	JW11/12		+	POS
Z0006 01	BL	10-AUG-93	LH	16-AUG-93	JW11/12		+	POS
Z000602	BL	10-AUG-93	LM	16-AUG-93	JW11/12		+	POS
2000603	BL	10-AUG-93	LH	16-AUG-93	JW11/12		+	POS
Z000604 Z000605	BL	10-AUG-93 10-AUG-93	LN	16-AUG-93	JW11/12		+	POS
Z000606	8L Bi	10-AUG-93	LM	16-AUG-93 16-AUG-93	JW11/12 JW11/12		+ +	POS POS
2000605 2000607	BL Bl	10-AUG-93	LH LH	16-AUG-95	JW11/12		+	POS
Z000608	BL	10-AUG-93		16-AUG-93	JW11/12		+	POS
2000609	BL	10-AUG-93	LH	16-AUG-93	JW11/12		+	POS
Z000610	BL	10-AUG-93	LN	16-AUG-93	JW11/12		+	POS
Z000611	BL	10-AUG-93	LM	16-AUG-93	JW11/12		-	NEG
Z000612	BL	10-AUG-93	LM	16-AUG-93	JW11/12		-	NEG

•								
	_	Received		Assay				
SRA #	Type	Date	Stdy	Date	Probe	Tube	Tube	Dx
Z000613	BL	10-AUG-93	LN	16-AUG-93	JW11/12		-	NEG
2000614	BL	10-AUG-93	LN	16-AUG-93	JW11/12	-	-	NEG
2000615	BL	10-AUG-93	LN	16-AUG-93	JW11/12	•	-	NEG
2000616	BL	10-AUG-93	LN	16-AUG-93		-	•	NEG
2000617	BL	10-AUG-93	LN	16-AUG-93	JN11/12		+	POS
2000618	BL	10-AUG-93	LN	16-AUG-93	JW11/12		+	POS
2000619	BL	10-AUG-93	LM	16-AUG-93	JW11/12		•	POS
2000620	BL	10-AUG-93	LM	16-AUG-93			•	POS
2000625	BL	10-AUG-93	LM	16-AUG-93	JW11/12		+	POS
2000626	BL	10-AUG-93	LN	16-AUG-93	JW11/12	-	•	NEG
2000627	BL	10-AUG-93	LM	16-AUG-93	JW11/12	•	-	NEG
2000628	BL	10-AUG-93	LM	16-AUG-93	JW11/12	-	-	NEG
2000629	BL	10-AUG-93	LM	16-AUG-93	JW11/12	+	+	POS
Z000630	BL	10-AUG-93	LM	16-AUG-93	JW11/12		+	POS
2000632	BL	10-AUG-93	LM	16-AUG-93	JW11/12		+	POS
Z000633	BL	10-AUG-93	LM	16-AUG-93	JW11/12		+	POS
Z000634	BL	10-AUG-93	LM	16-AUG-93	JW11/12		+	POS
2000635	BL	10-AUG-93	LM	16-AUG-93	JW11/12		+	POS
2000636	BL	10-AUG-93	LM	16-AUG-93	JW11/12	-	-	NEG
2000637	BL	10-AUG-93	LM	16-AUG-93	JW11/12	-	-	NEG
2000638	BL	10-AUG-93	LN	16-AUG-93	JW11/12	-	-	NEG
2000639	BL	10-AUG-93	LM	16-AUG-93	JW11/12	+	+	POS
Z000640	BL	10-AUG-93	LM	16-AUG-93	JW11/12		-	NEG
Z000641	BL	10-AUG-93	LM	16-AUG-93	JW11/12		+	POS
Z000642	BL	10-AUG-93	LM	16-AUG-93	JW11/12	-	-	NEG
Z000643	BL	10-AUG-93	LM	16-AUG-93	JW11/12	•	•	NEG
Z000644	BL	10-AUG-93	LM	16-AUG-93	JW11/12	+	+	POS
Z000645	BL	10-AUG-93	LM	16-AUG-93	JW11/12	+	+	POS
Z000646	BL	10-AUG-93	LM	16-AUG-93	JW11/12	+	+	POS
Z000647	BL	10-AUG-93	LM	23-AUG-93	JW11/12	-	•	NEG
Z000648	BL.	10-AUG-93	LM	23-AUG-93	JW11/12	+	+	POS
Z000649	BL	10-AUG-93	LM	23-AUG-93	JW11/12	+	+	POS
Z000650	BL	10-AUG-93	LM	23-AUG-93	JW11/12	+/-	-	POS
Z000651	BL	10-AUG-93	LM	23-AUG-93	JW11/12	•	•	NEG
Z000652	BL	10-AUG-93	LM	23-AUG-93	JW11/12	+	+	LND
2000653	BL	10-AUG-93	LM	23-AUG-93	JW11/12	•	•	NEG
Z000654	BL	10-AUG-93	LM	23-AUG-93	JW11/12	+	+	POS
Z000655	BL	10-AUG-93	LM	23-AUG-93	JW11/12	•	-	NEG
Z000656	BL	10-AUG-93	LM	23-AUG-93	JW11/12	+	+	POS
Z000657	BL	10-AUG-93	LM	23-AUG-93	JW11/12	-	-	NEG
2000658	BL	10-AUG-93	LN	23-AUG-93	JW11/12	+	+	POS
Z000659	BL	13-AUG-93	LH	23-AUG-93	JW11/12	-	-	NEG
Z000660	BM	13-AUG-93	LM	23-AUG-93	JW11/12	•	-	NEG
2000668	BL	13-AUG-93	LH	23-AUG-93	JW11/12	•	•	NEG
Z000669	BL	13-AUG-93	LN	23-AUG-93	JW11/12		-	NEG
Z000673	BL	17-AUG-93	LN	23-AUG-93	JW11/12	-	•	NEG
Z000674	BM	17-AUG-93	LM	23-AUG-93	JW11/12	-	-	NEG
2000675	LI	18-AUG-93	LH	23-AUG-93	JW11/12	•	•	NEG