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ABSTRACT

The structural survivability of shipboard mast/antenna systems subjected to underwater
explosion can be “designed in,” through the determination of the structural dynamics of
the mast/antenna system. This thesis details the specialized application of accurate and
efficient analytic methods for the structural dynamic design analysis of shipboard
mast/antenna systems. Investigated herein are a class of substructuring methods, generally
referred to as component mode synthesis methods, which provide for the rapid calculation
of dynamic response of the mast/antenna structural system to weapons effects.
Additionally, the methods also provide for the simulation of live fire testing. The methods
allow the individual antennae and the mast each to be independently modeled, arbitrarily
combined, and the combined system dynamic response rapidly calculated to determine the
structural survivability of a proposed mast/antenna configuration. This rapid and
“modular” component-based analysis capability is specifically tailored for interactive

computer-aided design analysis of shipboard mast/antenna systems.
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A Coefficient of a sinusoidal amplitude

B Coefficient of a sinusoidal amplitude
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{F} Vector of point forces/moments on the coupled system in the modal
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{Fo} Vector of internal point forces/moments in the physical coordinate
system

[G] Flexibility matrix
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Identity matrix
Stiffness and mass matrices

Vector of generalized coordinates

Vector of velocities in the generalized coordinate system
Vector of accelerations in the generalized coordinate system
Vector of displacements in the modal coordinate system
Vector of velocities in the modal coordinate system

Vector of accelerations in the modal coordinate system
Matrix of reactions

Transformation matrix used to reduce component mass and
stiffness matrices

Linearly independent vector

Linearly independent and orthogonal vector

Vector of absolute displacements in the physical coordinate system
Vector of velocities in the physical coordinate system

Vector of accelerations in the physical coordinate system

Diagonal matrix of natural circular frequencies squared (rad/sec)’
Scalar used in Gram-Schmidt Formulation used to extract
components of a linearly independent vector which lies in the vector
space of another linearly independent vector

Scalar representing a natural circular frequency (i.e. an eigenvalue)
expressed in (rad/sec)’




[#°] Matrix of static constraint mode shapes

"] Matrix of free interface normal modes
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s system
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X first derivative
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C.C. Computational Cost

CMS Component Mode Synthesis
DOF Degree of Freedom

FE Finite Element
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L. INTRODUCTION

This thesis documents the development of analytic methods for maximizing the combat
survivability of shipboard structural systems subjected to weapons effects. Survivability
will be improved through the characterization of the mast/antenna system structural
dynamics and the development of specialized design analysis tools for the prediction and
minimization of dynamic response due to weapons effects. The objective is improved
system combat survivability.

Additionally, the methods will be developed in the context of the analytical simulation
of live fire test and evaluation (LFT&E) for shipboard systems. Those shipboard structural
systems which undergo linear elastic dynamic response due to live fire effects can be
evaluated for live fire survivability using the simulation methods to be developed, thereby
eliminating the need for actual LFT&E for these systems. Alternatively, these simulations
will be of benefit in the planning of actual live fire test and evaluation (LFT&E) programs.
The results herein focus on shipboard mast/antenna structures. Shipboard mast/antenna
systems must be designed to withstand moderate to severe shock loading induced by
underwater explosion (UNDEX) of conventional or nuclear type. The UNDEX delivers
devastating forces to the targets in the form of incident shock wave pressure, gas bubble
oscillation, cavitation closure pulses, and various reflection wave effects. These shock-

induced forces then propagate through the ship to the various systems, equipment, and




top-side structures including the mast and antennae. The response of the mast and
antennae to the UNDEX shock wave is basically linear elastic and vibrational ir.-nature.
The mast and antennae tend to vibrate at their fundamental natural frequency, or at a low
range of natural frequencies. The maximum amplitude of the vibration usually occurs after
the shock wave passes the ship. The shock response wave form is remarkably different at
various levels within the ship. In essence, the ship acts as a low pass structural filter which
alters the characteristics of the propagating shock wave from one possessing high
frequency components to one that contains relatively low frequency components [Ref. 1:p.
2]. Thus, the shock survivability of the mast/antenna system, which is located top-side, is a
vibration problem in which relatively low frequency equipment support excitations are
observed. The emphasis on design analysis relates directly to the survival of the mission
critical systems on the platform. The ability of the naval vessel to carry out its mission
after being subjected to an UNDEX threat depends on the survivability of these systems,
and specifically the mast/antenna system. Combat survivability of new systems, such as the
mast/antenna system can be “designed in” by accounting for the structural dynamics of the
system during the design process. The methods developed herein focus on the the
structural dynamics of the mast/antenna systems, so that their combat survivability,can be
directly addressed in the design process. Additionally, the methods will make possible the
improvement of survivability of existing systems. For example, survivability can be
improved by dynamically tuning and relocating antennae base? on the application of the

methods to be described.




A. BACKGROUND

The dynamic response of a shipboard antenna is dependent on the dynamic interaction
of the antenna with the mast during response to weapons effect. Large dynamic loads in
an antenna can result if (a) the antenna is mounted on the mast at a location with large
accelerations due to weapons effects, or (b) the antenna has its natural frequencies in close
proximity to the excited natural frequencies of the mast. In recent years, the Navy has had
frequent occurrences of shipboard antennae systems failing structurally after being
subjected to shock due to weapons effects [Ref. 2]. In order to design these structural
systems (i.e. mast and antennae) for minimum dynamic response and hence maximum
survivability, the structural dynamic parameters which determine the dynamic response of
the system must be accurately quantified. The primary structural dynamic parameters to be
determined are the modal parameters (i.e. natural frequencies, mode shapes, modal mass
and damping) of the mast and the various individual antenna. The modal parameters are
required to characterize the structural dynamics of each substructure, e.g. the mast and
each antenna, and hence characterize the dynamics of the combined structural system.
Given an accurate coupled system analytic dynamics model, weapons-induced dynamic
response can then be predicted, and system designs can be evaluated and optimized with
respect to survivability. The coupled system analytic dynamics model can serve as the

basis for the computer simulation of LFT&E.




B. OVERVIEW OF THE SUBSTRUCTURE APPROACH TO THE DESIGN
ANALYSIS OF MAST/ANTENNA SYSTEMS

The methods described herein are directed at the automated design analysis of
mast/antenna systems. The methods provide accurate estimates of the modal parameters
for a mast/antenna structural system, and therefore will provide accurate estimates of the
dynamic response due to weapons effects. Generally referred to as “component mode
synthesis,” these substructuring methods make use of independent finite element models
for the mast and each antenna. In order to allow a designer to rapidly assess for
survivability a large number of candidate mast/antenna system designs, the methods are
computationally efficient as well as accurate. With respect to mast/antenna systems, the
component mode synthesis process will allow a designer to analytically “install” the
various antenna models into the mast model, and rapidly calculate coupled mast/antenna
system UNDEX dynamic response. When incorporated into a computer-aided design
environment, the complexities of the calculation will be transparent to the designer, and
will allow the incorporation of self-checks and protection against user error and misuse.
The substructure approach to mast/antenna structural dynamic analysis can be briefly
outlined as follows:

* A designer either finds the dynamic characteristics of the various antennae to be

installed from a “catalog™ (database) of antenna modal parameters, or calculates
individual antenna modal parameters from a finite element model of the antenna. The

modal parameters of the antenna constitute the antenna dynamic model.




+ The various antennae dynamic models are analytically coupled with the mast model,
and the dynamic response of the coupled mast/antenna sysem due to weapons effects
is calculated. If unacceptable dynamic response levels are calculated, the various
antennae models can be rapidly repositioned on the mast, or exchanged with other
antennae, and the new dynamic response calculated.

This scheme has several significant advantages for the automated design analysis of
mast/antenna systems. The primary advantages include:

« The ability of these methods to treat the mast and antennae as “substructures,” and
arbitrarily and repeatedly combine them for the rapid calculation of dynamic
response will make possible the evaluation of a greater number of mast/antenna
configurations, and hence will greatly facilitate the determination of an optimal
configuration with respect to combat survivability.

« The various masts and antennae are fabricated by various independent contractors.
The component mode synthesis method allows the separate modeling of the mast
and antennae, and therefore naturally preserves the independence of the contractors.

» The formulations to be described are modal, and therefore can function equally well
with analytically derived modal parameters, or with modal parameters identified in a
vibration test.

The analytic methods for the generation of the coupled mast/antenna model are the

foéus of this work. To be evaluated in this report are several component mode methods

for substructure synthesis: the Craig-Bampton method and two residual flexibility




formulations. The methods are specialized for the mast/antenna analysis problem, and their
relative merits compared in the context of combat survivability. The methods are : ased on
the modal representation of components; that is, rather than representing a structure using
the mass and stiffness matrices generated in a finite element model, these methods employ
various classes of “mode shapes” to represent the substructures or components. For
example, the familiar normal modes of vibration are one class of mode shape used.

The computational efficiency of these methods, which is critical to their effectiveness
in a computer aided design environment, comes from their ability to accurately describe a
component with a minimum number of mode shapes. The sections of this report which
follow will describe the above mentioned synthesis formulations, and demonstrate their
relative accuracy and efficiency in the calculation of the dynamic response of a small yet
representative mast/antenna model, subjected to a variety of applied harmonic forces as
well as deck accelerations and displacements. The model used, which includes a mast and
a single antenna, is of a small size compared with that required to represent an actual
mast/antenna structures. However, the model has all the features necessary to allow the
assessment and critical analysis of the component mode synthesis methods.

Specifically, the three synthesis methods will each be used in the following analyses:

(1) Calculation of mast/antenna coupled system modal parameters: This is the
fundamental assessment of a method’s accuracy. Prior to performing the synthesis, modal
parameters are calculated for the antenna model and the mast model. The appropriate

component representation is generated and the mast/antenna system is synthesized. The




coupled system natural frequencies are calculated and are compared with the natural
frequencies calculated using a standard finite element procedure. The standard finite
element procedure means the assembly of a single model representing the total
mast/antenna system. A comparison of floating point operations (FLOPS) accumulated in
all cases is also provided. This comparison will demonstrate the computational advantage
of the synthesis methods, an advantage critical to the developent of an automated design
analysis system.

Using the synthesized mast/antenna model, the following analyses are presented:

(2) Calculation of antenna peak displacment due to harmonic forcing: A simple
harmonic forcing function is applied to the mast and the peak displacement of the antenna
free end (“tip”) is calculated, again using all three component mode synthesis methods, as
well as using a standard finite element procedure.

(3) Caiculation of mast/antenna interface internal stresses due to harmonic
forcing: A simple harmonic forcing function is applied to the mast and the bending
moment and shear loads in the mast/antenna connection are calculated. Note that these
internal loads are directly proportional to stress, and hence are the critical quantities which
must be calculated in order to assess structural survivability. These calculations are
repeated for all three sythesis formulations, as well as for the standard finite elemeni

procedure.




IL FORMULATION OF FINITE ELEMENT MODEL AND GENERAL
COMPONENT COUPLING PROCEDURES

The theory presented herein is taken directly and exclusively from reference [12].
As discussed in the Introduction, the finite element (FE) procedure will be employed to
generate mathematical models of the components (substructures) involved, namely the
mast and the antenna. The FE procedure produces stiffness, mass, and less commonly,
damping matrices which represent the structural dynamics of each components. In order to
faithfully capture the geometric and material complexities of these components, the finite
.element discretization must necessarily involve many degrees-of-freedom (DOF), and
hence \1e above mentioned system matrices can be quite large. The time and cost
associated with the extraction of the modal paramters (natural frequencies, mode shapes,
and modal mass) from these large matrices precludes the performance of the repeated
design analyses required to arrive at an optimal design. The component mode synthesis
methods bypass the repeated extraction of the modal parameters for a complete
mast/antenna system by directly using the modal parameters calculated for each
component. The calculation for the component “modes” is performed once for each
component, and the total system dynamics are synthesized using the various sets of modes
so calculated. The synthesis methods not only provide very accurate predictions of
dynamic response, but also provide a substantial decrease in the time required to compute

dynamic response, hence allowing the performance of additional design analysis iterations.




A. FINITE ELEMENT FORMULATION

Although FE modeling typically involves the full range of element types available (e.g.
beam, plate, shell), for purposes of this thesis the antenna and the mast will each be
modeled using beam elements only. This model, although simple, is all that is necessary to
investigate the various component coupling procedures. All methods presented herein are
applicable to any structural model, and the results and conclusions presented are directly
applicable to the analysis of structural systems of any complexity.

Traditionally, the mast and antennae are modeled together as a system. Alternatively,
the mast and antennae can be modeled separately. By modeling the mast and antennae
separately, several benefits arise:

e Masts and antennae are generally fabricated by different defense contractors.
Therefore, modeling the mast and antennae separately would best preserve this
independence.

e Modeling the mast and antennae separately would permit the development of a
single data file containing only mast design specifications, and several separate data
files containing antennae design specifications, one datafile for each antennae.
With this modular, component-based approach comes the flexibility of exchanging
antennae and/or changing antennae placement. This allows the rapid assessment of
many mast and antennae configurations for dynamic response characteristics.

By modeling the mast and antennae separately, the computational efficiency increases as

compared to modeling the mast and antennae together. This computational advantage is




due to the fact that the cost associated with the calculation of the modal parameters for a
single structural model is proportional to the cube of the number of DOF of th~ model
[Ref. 3: p. 231]. The calculations performed herein demonstrate this comparison between
a total mast/antenna model and a model derived from the synthesis of mast and antenna
substructure models. The benefit is associated not just with the calculation of the modal
parameters, but also with the calculation of dynamic response to assess UNDEX
survivability.

B. GENERAL COMPONENT COUPLING PROCEDURES

The term “component mode synthesis™ refers to the manner in which each substructure
is mathematically represented prior to coupling, and is based on a truncated modal
expansion. This representation is most familiar in the context of the calculation of dynamic
response. Here, the dynamic response of a structure can be written as a linear combination
of the mode shapes calculated for the structure. If the frequency range of excitation is
contained in the frequency range of the calculated modes, then the dynamic response
calculated using the modes will be of acceptable accuracy. Of course, the question of how
many modes to retain is non-trivial and problem specific. However, the computational
efficiency of a modal approach to structural dynamics including the component mode
synthesis methods to be presented, comes from the retention of a number of modes which
constitute a mathematical model much smaller than the original mass and stiffness matrices

from which the modes were calculated.
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Component mode synthesis makes use of several types of vibrational mode shapes,
distinguished by the boundary conditions imposed on the substructure prior to the
calculation of these mode shapes. In addition to these vibration mode shapes, the various
component mode synthesis methods require additional types of mode shapes to be
calculated and included with the vibrational modes. Therefore, the term "component mode
synthesis” (CMS) is a suitable name: a single structure is synthesized from separate
substructures and each substructure is mathematically represented by an appropriate set of
mode shapes, calculated from the finite element model of each substructure. The following
are definitions of the various types of mode shapes that are used in the component mode
synthesis formulations investigated herein.

1. Free Interface Normal Modes

The free interface normal modes are the modes of the component when
unrestrained at all interface DOF. From the LIST OF SYMBOLS AND
ABBREVIATIONS, the interface coordinates are denoted by the subscript "I" and the
internal coordinates are denoted by the subscript "O". The interface coordinates are the
coordinates where the substructures are coupled. The internal coordinates are all
coordinates that are not interface coordinates. Free interface normal modes are calculated

by solving the following eigenvalue problem:

(K-n-MIp"} ={0} (1)
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The stiffness and mass matrices in Eq. (1) are partitioned as follows:

a-fe ] vl
The number of equations defined by Eq. (1) is equal to the number of rows or
columns in the mass and stiffness matrices. The number of columns or rows in [K] or [M]
equals the number of DOF of the component in physical coordinates.
2. Fixed Interface Normal Modes

The fixed interface normal modes are the modes of the component restrained at its

interface DOF. The fixed interface normal modes have the following form:

m-[5 |

The upper partition of the fixed interface normal modes, or {rﬁ N }, is obtained from the

solution to the following eigenvalue problem:

Koo - A Moo Jp ¥ } =10} @

In words, the matrix of fixed interface normal modes is a partitioned matrix
consisting of the matrix of mode shapes obtained in the solution to Eq. (2) in the upper
partition, and a matrix of zeros in the lower partition. The zeros imply zero displacement

at the interface. The number of rows in the matrix of zeros is equal to the number of
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interface coordinates, while the number of columns is equal to the number of internal
coordinates of the substructure.

Both the upper partition of the fixed interface normal modes and free interface
normal modes are unity modal mass normalized such that the following property is

satisfied:
[T Moo F¥] =l 3)
[ T IMIfe~] =(1] )

3. tatic Constraint Modes
Static constraint modes are calculated by enforcing a unit deflection on each
interface DOF while holding all other DOF restrained. Calculating the resulting
displacements of the internal coordinates defines the static constraint modes. Thus, the set

of static constraint modes is defined by the equation:

00 KOI (o} = o1 ( 5)
KIO Kﬂ In Rn
where [R ;] is the matrix of “reactions” at the interface or “I” coordinates.

From the top row partition:

[¥] =[K3Kq ] (6)
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If it can be assumed that no external forces or inertial forces are applied to the internal
DOF, as in a static's problem, the matrix of static constraint mode shapes, or [#€], ar:

represented by the following equation:

w1= [ =[5

where [®€ Jis the static constraint mode matrix.
4. Rigid Body Modes
Rigid body modes are possessed by systems that are not restrained. Rigid body
modes have zero frequency. They can be solved for using Eq. (2). They can also be
solved for in the same way that static constraint modes are solved, provided that the
number of coordinates retained is equal to the number of rigid body modes. The
eigensolver in MATLAB™, the software that was used in the examples in Chapters IV
and V, is ineffective in producing rigid body modes using Eq. (2). The rigid body modes
and associated frequencies as calculated by MATLAB using Eq. (2) possess a complex
part. Therefore, rigid body modes can be obtained using Eq. (5). However, it was
determined when applying the property in Eq. (4), the orthogonality property, that the
rigid body modes are linearly independent but not orthogonal with respect to the mass
trix. To produce orthogonal mode shapes from a set of mode shapes that are linearly
independent a theory from linear aigebra, the Gram-Schmidt theory [Ref 4: p. 165], was

invoked. The Gram-Schmidt theory will now be presented.
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Given three linearly independent vectors {v,},{vz},& {v,} (three vectors are

selected because there are three rigid body modes. In general, six vectors would need to

be made orthogonal corresponding to six rigid body modes) that three linearly independent

and orthogonal vectors, {Vl }{\7’2 h {\73 } can be obtained as follows:

Let {‘7!}'—‘{"1 }

Find a vector {\7, } such that the following orthogonality property is satisfied

f.} mify, Jo ®)
To satsify the requirements of Eq. (8), {\72 } will be defined by:
{‘72} ={Vz }‘“‘ {‘71} ®

where o is a scalar that is used to extract the components of {w‘i,} that lie in the vector

space of {v2 }

Substituting Eq. (9) into Eq. (8) the following relation is obtained:

{, %) MI, } =0 (10)

Expanding Eq. (10), the following relation is obtained:

AT AU ALY ()
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From Eq. (11) « is obtained as follows:

o _{Vz }T[M]{Vl} (12)
{‘71 }T [M]{v,}

By substituting Eq. (12) into Eq. (9), the second linearly independent and orthogonal
vector {V, } is obtained.

Now there are two linearly independent and orthogonal vectors with respect to the

mass matrix. A third linearly independent and orthogonal vector will now be determined.

Using the same formulation as above, a vector {\7, }is defined as follows:

{‘."3}={"3}’5 {‘72}"7{‘71} (13)

where 8 and v are scalars that are used to extract the components of {V,} and {V,}

respectively that lie in the vector space of {v 3 }

Using the properties of orthogonality the following relations must be satisfied:

&F g }=o a4)
{va}T[M]{Vz} =0 (15)
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Substituting Eq.(13) into both Eq.(14) and Eq.(15) the following relations are obtained:

&, -6v, -, J IMIf, } =0 (16)
{V: -6‘72 “Yvn }T[M]{Vz}=0 a17)

By expanding Eq.(16) and Eq.(17). the following relations are obtained:

{uF v =8 &.F M} . M} (18)
{v, }T[M]{Vz}=3 {‘72 }T[M]{Vz} +y {“"1 }T[M]{Vz} (19)

Solving Eq.(18) and Eq.(19) simultaneously the following expressions are obtained for 8
and v:

o G Ho vy} F M 3 F v } 20
AN VTR AN A YA

Ay it b MG e M)
v v B e ) T v )

Substituting Eq. (20) and Eq. (21) into Eq. (13), the third linear independent and
orthogonal vector {\73} is obtained.

Therefore, rigid body modes will be solved for using Eq. (5) and the Gram-Schmidt

procedure derived above.
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S. Residual Flexibility Modes
Before defining "residual” flexibility, the concept of flexibility must first be .!efined.
The flexibility of a restrained structure (i.e. a structure whose stiffness matrix is of full
rank) is the inverse of the stiffness of the structure. By inverting the stiffness matrix, one

obtains the flexibility matrix as follows:

[G] =(K]™ (22)

Equation (22) can also be written as follows:
G VYN (23)

The residual flexibility matrix is obtained from the flexibility matrix, the kept free interface

normal modes, and the inverse of the natural frequencies as follows:
[6*] =[6] {2, A, | [2."] ={#,"]'A0 ] [ (24)

The residual flexibility modes are the portion of the exact static flexibility shapes that are
not represented by a set of retained modes. Residual flexibility modes require the
knowledge of other modes that are retained in the model and are dependent upon the
retained modes. There are two ways to calculate the residual flexibility modes.

1) If the structure is grounded, such as the mast, then the stiffness matrix is full
rank and invertible. By post-multiplying Eq. (24) by E”] one obtains the residual
n
flexibility modes for restrained substructures.
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¥ =[G"]- E] (25)

2) However, If the component is not grounded before assembly, such as an
antenna, then an inertia relief solution must be calculated to determine the flexibility matrix

as follows:
[G] =fi- ¥ M] -[K - [i-¥*¥*"M] 26)

where ¥* are the rigid body modes of the structure.
[K *]is formed by inverting the restrained or internal partition of the stiffness matrix in the

following way:

0
[K ‘] =B K -1] 27

This "new" [G] or flexibility matrix is free of rigid body modes. The Craig-Chang
formulation, which will be presented in Chapter III uses free-interface normal modes and
residual flexibility modes. The residual flexibility modes of unrestrained substructures are
obtained from the neglected or deleted free interface normal modes just like they were
obtained from a substructure that is restrained. The only difference is that the flexibility
matrix obtained in Eq. (26) is used. Residual flexibility modes are calculated by computing

the static flexibility and subtracting the flexibility due to the retained modes. The residual
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flexibility modes are obtained from the flexibility matrix in Eq. (26) in the same way that
they were obtained in Eq. (25):

[¥] =[G"]- E] (28)

n
It is noteworthy to state that by performing the operation in Eq. (25) and Eq. (28) that the
“OI” and “II” partitions of the residual flexibility matrix are extracted to form the residual
flexibility modes.

C. BRIEF HISTORICAL REVIEW

The following is a brief historical background in the development of component mode

synthesis:

e [1965] In his paper, Dynamic Analysis of Structural Systems by Component
Modes, Hurty developed the first substructure coupling method. His technique
involved fixed interface normal modes, rigid-body modes, and static constraint
modes. [Ref. 5]

e [1967] Bamford first introduced the concept of flexibility modes in his paper 4
Modal Combination Program for Dynamic Analysis of Structures. [Ref. 6]

o [1968] In Coupling of Substructures for Dynamic Analysis, [Ref. 7] Craig &
Bampton extended Hurty's concepts by showing that rigid-body modes did not
need to be separated from static constraint modes, but could be calculated using




the same procedure. The Craig-Bampton procedure is one of the techniques used
in this study.

o [1969] Goldman, in his paper Vibration Analysis of Dynamic Partitioning [Ref. 8)
and Hou, in his paper Review of Modal Synthesis Techniques and a New
Approach, [Ref. 9] first introduced the use of free-interface normal modes.

e [1971] MacNeal used both free-interface normal modes and residual flexibility
modes to couple substructures. He also suggested the use of staticaily derived
modes in describing substructure motion. These methods were introduced in his
paper A Hybrid Method of Component Mode Synthesis. [Ref. 10] The MacNeal
method is another technique that will be analyzed in this study.

e [1977] In his Doctoral Dissertation, A General Procedure for Substructure
Coupling in Dynamic Analysis, [Ref. 11] Chang, under the guidance of Craig,
showed how both free-interface normal modes and residual flexibility modes could
be employed to couple substructures. The Craig/Chang procedure is the third and
final substructure coupling technique to be examined in this study.

Now that the mode descriptions have been defined, and a brief history of when the
various methods of CMS were developed, the three methods to be examined in this study
can now be derived. It is the intent of Chapter III to describe the three CMS techniques

and how the various mode shapes are employed to synthesize substructures into a system.
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Il. COMPONENT MODE SYNTHESIS FORMULATIONS
The theory presented herein is taken directly and exclusively from references [11 and 12).

A. CRAIG-BAMPTON FORMULATION

There are three substructure coupling procedures that serve as potential candidates to
be used in the mast/antenna synthesis. The Craig-Bampton formulation, the Craig-Chang
residual flexibility method, and the MacNeal residual flexibility method. In this section,
the Craig-Bampton formulation will be presented, while in Section B the Craig-Chang and
MacNeal residual flexibility methods will be presented together because of the similarities
in the methods.

The Craig-Bampton reduction procedure uses a combination of static constraint
modes and fixed interface normal modes to reduce the component model. Both the static
constraint modes and the fixed interface normal modes are obtained from the finite
element substructure models. This combi:ed set of mode shapes will be used to transform
the original large order substructure mass and stiffness matrices down to a significantly

smaller size, a size equal to the number of mode shapes included in the transformation
matrix. The transformation matrix [T, ] for the Craig-Bampton formulation, contains the

shape functions as its columns as follows:

e e W3




This transformation matrix is obtained for each substructure in the system. The size of the
static constraint mode partition of the transformation matrix is always fixed because the
number of columns corresponds to the number of interface degrees of freedom. However,
the size of the fixed interface normal mode partition is not held constant. The number of
columns can range as low as one column if only one fixed interface normal mode is
retained, or as high "m" columns where "m" is the total number of internal degrees of
freedom. The size of the transformation matrix depends upon how many modes are
required to accurately represent the physical dynamic response of the system when
subjected to a forced input. Retaining fewer modes than the total possible modes available
is referred to as "modal truncation,” and provides the computational efficiency of the
method. Retaining fewer modes than the total‘ amount of modes available means fewer
calculations required in conducting the dynamic analysis. On the other hand, if the number
of modes retained are not sufficient to accurately determine the dynamic response, then
the benefits of reduced compute times do not outweigh the magnitude of error obtained in
the anaiysis. Therefore, while the benefits of modal truncation are important in shortening
compute times, they are not as important as obtaining accurate results. In terms of
computational efficiency, large benefits can be achieved using this method if only the
lower range of frequencies is of interest. This method is applicable to the mast which is
subjected to typically low forcing frequencies. By retaining a few of each of the

component modes, an accurate assessment of the dynamic response of the mast and
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antenna is obtained. The examples contained in Chapters IV and V demonstrate how by
retaining just a few modes of each substructure, accurate results are achieved.

By pre-multiplying the respective mass and stiffness matrices by the transpose of the
transformation matrix and then post multiplying the mass and stiffness matrices by the

transformation matrix, the reduced component model is obtained as follows:

K]=ff FoKa[[Keo Kal¥" KoKo] [K K] o0
' on Iu KD Kn - OD Ill Kf K?-

N _K-l K M PWN _K-l K Ml MZ-
[M'] = 00 **01 00 o1 00 **01 = ;1‘ ; (30b)
0p | My, My Ji0p Ig . M,

Carrying out the operations in Eq.(30a,b) and simplifying, the partitions of the reduced

mass and stiffness matrices are expressed as follows:

K} =[]

K? =K¥" =[]

K?! =[Ky KpKoo Ko

M; =[]

M? =M =1 Moo (KoKor) +M)]

M2 =[(KHKo) Moo (KioKor) M) My (KaoKor) +My]
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The term “reduced”, designated by the subscript “r”’, means that the resulting mass and
stiffness matrices, [K,] & [M,] are of smaller dimension than the original matrix.
Although this transformation matrix reduces the size of the component model, it does not
assemble the individual substructure models. There is a second transformation matrix that
synthesizes the substructures to produce the total system by enforcing compatibility and

equilibrium of interface coordinates and interface forces as follows:

)=t} (31a)
F'}=F) (31b)

The compatibility of interface coordinates denoted by Eq. (31a) implies that the
displacement at the interface of structure 1 equals the displacement at the interface of
structure 2. Likewise, the equilibrium of interface forces denoted by Eq. (31b) implies
that the sum of the forces at the interface are equal but acting in opposite directions.

The generalized coordinates employed in many CMS methods can be identified with
the interface DOF and the interior DOF. In order to synthesize two substructures into a
system, a linear transformation that maps the set of linearly independent coordinates, p,,

into the set of generalized coordinates “p” is defined as follows:

b} =f.}o.} (2)
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Additionally, the compatibility equation, Eq. (31a) can be written in terms of the
generalized coordinates “p” and combined to form a matrix compatibility equatio: of the

form:

€1} =0} 33)

Let the vector of generalized coordinates be partitioned into linearly independent and
linearly dependent coordinates, and partition the compatibility matrix accordingly.

Equation (33) can now be written as follows:

[Cu , Cu]{‘;‘: }={0} (34)

where subscript “d” and subscript “1” represent linear dependence and linear independence
respectively. The C,, partition of the compatibility matrix is a nonsingular square matrix.
Expanding Eq. (34), the dependent coordinates can be written in terms of the independent

coordinates as follows:

| &’d }=[—C;:,C,,]{p, } 33)

Using Eq. (35), the vector of generalized coordinates can now be given by:

ot o
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By satisfying Eq. (32), [T,] can be written as follows:

[r.] =[{:‘C"] @7

I

This transformation matrix is employed to couple the uncoupled mass and stiffness
matrices. [Ref. 12:p. 472] The coupling procedure for the Craig-Bampton formulation

will now be derived. Let

1 2
Po 2 Po

p' ={ }, ={ } (38a,b)
P I

where p,, represents the generalized internal coordinates and p, represents the generalized
interface coordinates respectively. Additionally, superscript "1" refers to substructure 1
and superscript "2" refers to substructure 2.
Define p; as the set of dependent coordinates, and let the set of linearly independent
coordinates be expressed as follows:
Po
bi}=1el (39)

Po

Rewriting the compatibility equation in terms of the generalized coordinates, Eq. (31a),

and using the relation in Eq. (38a,b) the following is obtained:

bi}-6i}=03 (40)
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Noting that the set of dependent coordinates are designated by p? and using Eq. (33), Eq.

(40) can be written as follows:

i
[(1{ 01 (1 o] 2‘.’ @1)
Po
Using Eq. (34),
[c.]=(dl [c.]=fo] 1 [o]] (42)

From Eq. (42) and using Eq. (37), the second transformation matrix is obtained as

follows:

o 1 (o
‘cica]_jM © [

[T’]=[ I ]‘ ol 1l o] “»
o [o] [

In order to be consistent with the partitioning of the mass and stiffness matrices, the

second transformation matrix can be rewritten as follows:

M [0 [o]
ol m fol
1= @ m
ol m [o]

44)




Equation (33) is now satisfied as follows:

ps| |1 [0l [o] .
pi| o m fo|°
o2 (S0l [ [m|]” (43)
p:) [ m %

The system model is obtained from an uncoupled mass and stiffness matrix. These

uncoupled mass and stiffness matrices are themselves formed from the reduced mass and

stiffness matrices from each substructure as follows:

[M.]=Ef,: ,3] .]= 0: ,f] (46a,b)

where the subscript “u” denotes “uncoupled.”

The coupled system mass and stiffness matrices are obtained by pre-multiplying the
uncoupled mass and stiffness matrices in Eq. (46ab) by the transpose of the
transformation matrix in Eq. (45) and then post-multiplying the uncoupled mass and

stiffness matrices by the transformation matrix.

MI-mIM L] ]G] K] (47a0)

where the subscript “s” denotes “system.”
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Carrying out the operations in Eq. (47a,b) the resulting coupled system mass and stiffness

matrices are given by:
My, O M Kix 0 O
M]=| 0 M, M KJ=|0o KL o (48a,b)
ML ML M, 0 0 K,

The respective partitions of the system mass and stiffness matrices are expressed as

follows:

Mo k]

Mie ={lix]

Ml =My =pr™" (Mbo (KKa)' +Mb)]

M, =ME" =[™ (M2 (K Ko +M3)]

My =f( KL Ko) T Mh (KL Ko ML) +My (KK )' +MY +..
(KoKor) (M2 (KgoKor)® +M2,) ML (KgoKor)® +M2 ]

Kiee =['A1, ]
K AL ]
Ky =K} KLKL'KL, K2 —KLK3 'K ]

There are a number of advantages to the Craig-Bampton component mode
representation. The first, which is especially beneficial to the analysis of the mast/antenna
system, is that the reduced DOF system contain the interface DOF explicitly. This makes

it very easy to couple mast and antenna substructures. In the figure on page 32 is an
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illustration of the mast/antenna system used for the examples in this thesis. Along the
length of the cross bar are various node positions. These node positions serve to connect
the beams that represent the cross bar, and can also serve as nodes to connect antenna to
the crossbar. By specifying different “"connection coordinates” (i.e. the "I" coordinates),
and with separate mast and antenna data files contained in the library, the engineer can
quickly couple various antennae with the mast and rapidly determine the dynamic

response.
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Figure 1: The Coupled & Uncoupled Mast and Antenna Systems
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Should the location of the antenna placement not be suitable, the engineer can specify a
new set of interface coordinates along the cross bar, plug in the antenna at ‘he new
location, and rapidly calculate a system from which a new dynamic response can be
calculated.

Because of these advantages, and because the Craig-Bampton component mode
representation tends to result in accurate system frequencies, as will be shown, this is a
widely used method. Additionally, the NASTRAN superelement scheme uses the Craig-
Bampton component mode representation with minor extensions as a solution path to the
dynamic response problem.

B. CRAIG-CHANG AND MACNEAL RESIDUAL FLEXIBILITY

FORMULATIONS

The Craig-Chang and MacNeal residual flexbility formulations will now be discussed.
Due to the similiarity in the methods, the Craig-Chang procedure will be presented first,
and the modification of this method to produce the final system of equations of the
MacNeal method will be discussed subsequently. While the Craig-Bampton representation
uses a combination of static constraint modes and fixed interface normal modes, the Craig-
Chang residual flexibility formulation combines free interface normal modes with residual
flexibility modes; thus the name: residual flexibility method. The transformation matrix
which is used to reduce the component mass and stiffness matrices contains columns of

the retained or kept free interface normal modes and residual flexibility modes.
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The transformation matrix, or [T, ], is shown as follows:

lbE el )

In the same way that the Craig-Bampton components were reduced, so to are the
Craig-Char~ ~omponents reduced except now using the transformation matrix of Eq.

(49). The rc.. _.ed mass and stiffness matrices are obtained as follows:

N N ] 2

oK w()D MOO M‘ o) § OK wOD M T M 7
= = T 50
[M] v |IMy M lleY ¥ RV, (30a)

_Pox Yoo | Koo Kot |fBox ¥oo | [Ki K}
J=lay J Pa K]Ex %Hs" x:] )

Carrying out the operations of Eq.(50a,b) the following is obtained for the respective

partitions of the reduced mass and stiffness matrices:

M; =[lxx]
M; =M:r =[om]

M =t T Mo T ] =B A oo, | [Aco ] BET

K! =['A,]
K: =K:t =[oxn]

K; =[‘I'm]T[KnI‘I'm] =[§;]§Am]-l[¢:,]r




Again, each component has its own transformation matrix. A reduction in component
matrice size is achieved by retaining less than the total number of free interface normal
modes. The number of residual flexibility mode shapes is fixed, and equals the number of
interface degrees of freedom.

It is not read.., apparent how the lower right hand partition of the reduced mass and
stiffness matrices are obtained. In Chapter II, the flexibility matrix was obtained by
inverting the stiffness matrix for a fully restrained substructure. If the substructure was
not restrained, then the flexibility matrix was obtained by performing an inertia relief
solution. However, it was also shown that the flexibility matrix could be obtained by the

following equation:
(Gl =f" LA BT 23)
Additionally, the residual flexibility matrix was defined by the following equation:
lo1=lcl fei)fa. JoiT =fesan JeiT 24)

The residual flexibility modes were obtained by post multiplying Eq. (24) by E“]. This
n

operation extracts the “OI” and “II” partitions of the residual flexibility matrix.
Additionally, the residual flexibility modes were obtained from the free interface normal

modes in the following way:

¥ =[e3 Ao JoiT [[E:']]] (51)
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Using the relation between the residual flexibility modes and the deleted free interface
normal modes in Eq. (51), the lower right partitions of the reduced mass and stiffness

matrices will now be derived.

M =[, M. B ] =Ri fao T Bof ML LA T B2T 2
Using the properties of orthogonality:

T M. Il ] =l ] (53)

Substituting Eq. (53) into Eq. (52) the lower right partition of the reduced mass matrix is
obtained as follows:

M} =5 Ao ] [Ao ] BT (54)

Likewise for the stiffness matrix, using Eq. (52) and the relationship between residual
flexibility modes and the deleted free interface normal modes, the following equation is

obtained:

K =foo Kool =B [ao [ BT K B2 f A T BET 9

Because the free interface normal modes are unity modal mass normalized, the following is
obtained:

ST K] =[Am | (56)
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Substituting Eq. (56) into Eq. (55), the lower right partition of the reduced stiffness matrix
is obtained as follows:

K =fel [ Ao | BLT (57)

Just like the Craig-Bampton formulation, each of the substructures have their own
transformation matrix. The purpose of this transformation matrix is to reduce the
respective component models before synthesis into the system model. This transformation
matrix does not synthesize the substructures. Another transformation matrix is employed
to synthesize the substructures. As in the Craig-Bampton formulation, this second

transformation matrix results from satisfying compatibility and equilibrium equations:

o=t} (58a)
hl } ='§"lz } (58b)

Unlike the Craig-Bampton component mode representation where the static constraint
modes are independent of the fixed interface normal modes, the residual flexibility modes

are dependent upon the free interface normal modes, and a simple boolean matrix will not

synthesize the substructures. This second transformation matrix, or [T, ] will now be
derived.
The component equation of motion in terms of the physical coordinates is given by

IMKi} HKHx} ={F} (39
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Transforming Eq. (59) to component generalized coordinates by letting

&} =[r. ¥} (60)

the following uncoupled equations are obtained:

My Koo} K Ko } =22 T () (61a)
[Moo]bb}‘F[Km]{Pb}=[‘l'n]T{F} (61b)

where [M,«], [K“I[MDD]and [K DD]are the upper left and lower right partitions of the
reduced mass and stiffness matrices respectively, or M!,K! ,M? and K} partitions of the
reduced mass and stiffness matrices. Equations(61a,b) are uncoupled because residual
flexibility modes are obtained as linear combinations of the deleted free interface normal
modes. The deleted free interface normal modes are orthogonal to the kept free interface
normal modes. The response of the deleted generalized coordinates will now be
approximated by the pseudostatic response by ignoring the acceleration of the deleted

generalized coordinates as follows:

Koo Koo } =[%1 B3 62)

But it was shown that:

Kool =[k:] =[80 ] Ko B ] <Ee2 LA ] 5T 63)
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Equations (62) and (63) can be combined to give:
ol am] o] (o} D) =lo} (64)
Since the matrix product in Eq.(64) is nonsingular, the following must be true:

bo)=F} (65)

Using Eq. (65), the equilibrium equation, Eq. (58b), can now be written as follows:
b+ )=t} (66)

From Eq. (66) and rewriting the compatibility equation, the two constraint equations are

given by:

&}-&}=03 (58a)
b.}+61 )=} (66)

Now let the generalized coordinates “p” and the linearly independent generalized

coordinates “p,” be arranged as follows:

b)- gi $.}= {zz } (67a,b)
Px
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where the deleted generalized coordinates are dependent upon the kept generalized

coordinates.
Combining Eqs. (58a), (66a,b) and (67a,b) with [T,l, the compatibility matrix in Eq. (34)

is obtained as follows:

e e 1olEs] ] kR [-‘1’7.‘5]
(€l =Cu 1 Ca] [m m o [ (%)

From Eq. (37),

[Tz]=[{fzc“] @7

Since [C,,] was defined as a non-singular square matrix, implies that [C,, ] is invertible.

The inverse of [C,, ] is obtained as follows:

c: ]=Ek.] k] ©9)

'k1] [I’ k\‘I':)

where [k, ] =[¥. +‘If,§,)]—'.




Combining Egs. (37), (68) and (69) the second transformation matrix is obtained as

follows:

[2i] [

RIXANEXA
1= ] [o] (70)
{o] (1

As in the Craig-Bampton procedure, the uncoupled mass and stiffness matrices are

formed from the reduced component mass and stiffness matrices.

1,0 0 0 K., 0 0 0
0 M, 0 O 0 K} 0 0
M l= bD K 1= Db 71a,b
[ l] 0 0 I:(x o [ ll] o 0 Al]([( 0 ( as)
0 0 0 By 0 0 0 A

By pre- and post-muitiplying both the uncoupled mass matrix represented by Eq. (71a)
and the uncoupled stiffness matrix represented by Eq. (71b) by [T,]" and [T;]

respectively, the system equations of motion are obtained as follows:

Mll Mlz K" K|2
[M.] 21 MZZ] [ .] [KZl KZZ] ( 2a, )
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The partitions of the system mass and stiffness matrices represented by Eq. (72a,b) are

expressed as follows:
M, =[I:a< ”&ml‘p;x] K, =[\A\:;x Miqu’:x]
M, =M =['4’:;<mld’|2x] K,, =K3, ==[—<I>:;k|<l>fx]

My, [ +4Em83]

el

2 =[\A\:;g ”ﬁqu’fx]

where m, =k,(M}, +MZ;)k,. The inertia due to high order free interface normal modes
is represented by “m,.” [Ref. 12:p. 491]

As stated in the beginning of this secticn, the MacNeal component mode
representation would be presented. By neglecting the inertia due to high-order free
interface normal modes, (i.e. “m,”), one obtains the MacNeal mass and stiffness matrices

[Ref 11:p. 59] as follows:

M, =[I:<x] K, =[\A\:(x *@::ckld’;x]
M, =M;1 ={0] K =K:l = "b;kl‘pfx]
M,, =[] K, =[A, +8%k %]

As will be demonstrated through the examples, the effect of neglecting “m,” is
important when predicting the higher frequencies. The MacNeal representation is accurate
in the lower and mid frequency range, but iess accurate in the higher frequency range.

Just like the Craig-Bampton component mode representation there are several

advantages to both residual flexibility methods. By analyzing both the Craig-Chang and

42




MacNeal system mass and stiffness matrices, one can see that the final system coordinates
are just the free interface normal mode coordinates from each substructure. This resulted
from the operations that were conducted in forming the system mass and stiffness
matrices. Additionally, since the residual flexibility modes account for the static flexibility
of all modes, the methods are statically exact. The procedure is applicable to the mast and
antenna problem. Since the connection coordinates are not explicitly retained, this allows
the engineer to retain fewer mode shapes and still obtain accurate results. This benefit can
be achieved when coupling antenna systems such as the SPS-48E radar to the mast.
Unlike a whip antenna which essentially is coupled at one node, the SPS-48E radar or
similar radar are connected to the mast at more than one node. Since there are multiple
connection points, and the residual flexibility method does not retain the connection
coordinates explicitly, a reduction in compute times result, an advantage not found in

other substructure coupling procedures.

43




IV. NUMERICAL VERIFICATION

In Chapters I through III, the various types of vibrational mode shapes were defined
and used in the derivations of the three CMS formulations that are presented in this thesis.
In this chapter, some numerical convergence examples are made to compare system
natural frequencies obtained by the three CMS methods presented in this thesis.

The first example is provided solely as a validation of both the FE and CMS computer
codes. In his Doctoral Dissertation, Chang performed a numerical example by which two
fixed-free cantilevered beams were synthesized into a fixed-fixed cantilevered beam. The
beams were synthesized using the various types of CMS methods. Example 1 is a
replication of that example.

In example 2, the mast and antenna substructures, illustrated in Figure 1, are
synthesized into the mast and antenna system. The system is synthesized three different
times using a varying amount of substructure mode shapes. The resulting natural
frequencies are obtained using MATLAB'S eigensolver. A comparison is made between
each of the methods and against a FE generated model of the mast and antenna system.
This comparison reflects both the accuracy of the three methods in predicting the natural
frequencies and the number of calculations, or floating point operations "FLOPS", that are

required to synthesize the structures and perform the eigensolution.




A. NATURAL FREQUENCY CALCULATION AND COMPARISON OF A
FIXED-FIXED CANTILEVERED BEAM FOR PURPOSES OF FINITE
ELEMENT AND COMPONENT MODE SYNTHESIS CODE VALIDAT ON.
As stated in the beginning of this chapter, the purpose of this example is to validate the

FE and CMS code which were written by the author. Figure 2 illustrates a fixed-fixed

cantilevered beam that was synthesized from two fixed-free cantilevered beams.

7

/

yd substructure 1 substructure 2 N\

Figure 2: Two Cantilevered Beam Substructures

Each substructure has two degrees of freedom at each node; one translational and one
rotational. The first substructure is represented by 4 beam elements corresponding to 8
DOF, while the second substructure is represented by 3 beam elements corresponding to 6
DOF. After synthesis, the system has a total of 12 DOF. As in Chang's example, each
method was run using a total of 4, 6, 8 and 10 DOF, or 33, 50, 67, and 83% of all
available modes. The results contained in Tables 1-4 are expressed in “Hz” and are the
exact same results that are found in Tables 12-15 of the referenced example which are
expressed in “(rad/sec) .

In analyzing the results contained in Tables 1-4, it appears, for this case, that the

Craig-Chang procedure yielded a better prediction of the natural frequencies than the
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other two formulations. The results are summarized in Figure 3: Comparison of CMS
methods with frequency (Hz) error of <= 0.1 percent for a fixed-fixed beam. In all cases,
the MacNeal procedure predicted a natural frequency in excess of fifty percent error as
compared to the standard finite element solution. This error in the predicted natural
frequency occurred when predicting the highest mode only. In general, the MacNeal
procedure predicted the lower range of natural frequencies comparatively well, but
appeared to falter when predicting the higher frequency range. A possible reason for this
occurence comes as a result of neglecting the inertia of high order free interface normal

modes, or "m," as delineated in Chapter III.
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Figure 3: Comparison of CMS Methods With Frequency (Hz)
Error of <= 0.1 Percent for “Fixed-Fixed” Beam System
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B. NATURAL FREQUENCY CALCULATION AND COMPARISON OF
MAST AND ANTENNA SYSTEM MODEL

The purpose of the first example was to validate both the FE code and the various
CMS codes. The CMS code, written in MATLAB, will accommodate the most general
FE modeling. In other words, the CMS code is written independent of the type of FE
modeling. Should the mast and antenna system be modeled by beam elements with 6
DOF/node, the CMS code can be applied to it without any modification.

In this section another numerical example which demonstrates the use of the three
component mode synthesis procedures is presented. A "mock-up” mast and antenna
system consisting of 17 elements was assembled using a standard finite element procedure
and all three component mode synthesis procedures. Although the mast/antenna system
that is used in the examples is modeled with just a few elements, the resulting models are
large enough to allow the effects of mode truncation to be assessed. Again, it is not the
intent of this report to solve a base excitation problem on a realistic mast and antenna
model, but rather to demonstrate how CMS can be used when performing dynamic
analyses for design purposes.

Just like the first example, this example compares natural frequency calculations for
the total mast/antenna system as computed using the three CMS formulations as well as
using a standard FE procedure. Tables 5-7 contain the results of this comparison. In the
tables, each row contains the estimate of a mode frequency. The first column contains the
mast/antenna system natural frequency estimates as calculated using the standard FE

procedure, and serves as the reference value against which the CMS natural frequency
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estimates are to be compared. Columns 2 through 4 contain the analogous natural
frequency estimates and percent error, as calculated from the mast/antenna syste: 1 model
synthesized using each of the three CMS procedures. Also included in the column
headings are floating point operations (FLOPS) counts which provide a measure of the
number of calculations required to assemble the mast/antenna system and calculate the
natural frequencies and mode shapes.

Table 1 presents the system frequency comparison where 18% of the available mast
modes are retained, and 22% of the available antenna modes are retained. Table 2 repeats
the calculations with 42% of the available mast modes retained and 39% of the available
antenna modes retained, and Table 3 repeats the calculations with 79% of the available
mast modes retained and 67% of the available antenna modes retained. Note that each
subsequent table presents comparisons for an increasing number of mode frequencies due
to the fact that an increase in the number of retained component modes makes possible an
increase in the number of system modes which may be calculated.

Note that in the FEM model, the FLOPS count stays fixed at slightly over 2-10°.
This is a rather small number as the model is a small model when compared to one that a
design engineer would generate for analysis of an actual mast/antenna assembly. It is
noteworthy to state that in this particular model, 0.7-10° FLOPS were expended in
computing the combination of fixed interface normal modes and static constraint modes
using the Craig-Bampton procedure. Additionally, 08:10° FLOPS were expended in

computing the free interface normal modes using the Craig-Chang and MacNeal
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procedures. Theoretically, once the various vibrational modes have been found, they need
not be calculated again. Note aiso that in all three models, these figures comprise a
significant portion of the total FLOPS.

From Tables 5 through 7, it is seen that all three methods produce excellent frequency
predictions. All three methods demonstrate sudden increases in frequency error above a
certain mode. This reveals the extent to which the retained component modes accurately
represent the dynamics of the synthesized mast/antenna system. In the MacNeal
procedure, the percentage error exceeded 100% when calculating the highest mode. This
error in predicting the highest frequency mode could possibly be attributed to neglecting
the inertia due to high-order free interface normal modes. Note that by neglecting the
inertia, that the accuracy in predicting natural frequencies is only effected at the last few
modes.

As stated in the previous paragraph, all three methods produced excellent results in
predicting natural frequencies, but with less cost in terms of number of computations as
compared to the standard FE calculation. The Craig-Chang procedure in general provided
the greatest number of natural frequencies with error less than or equal to 0.1% (in Hz)
(see Figure 4). However, the Craig-Bampton procedure yielded the same number of
frequencies with error less than or equal to 0.1% as the Craig-Chang procedure when
retaining a large of number of component modes, but at a slightly more cost than the

Craig-Chang procedure.
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V. BASE EXCITATION FORMULATIONS

In the previous section, the natural frequencies of the mast and antenna system were
calculated for increasing number of retained component modes. Natural frequencies and
mode shapes are important modal parameters and are fundamental in solving for the
forced response of a system. As demonstrated in the previous section, accurate natural
frequencies of a system can be obtained using CMS at a cost less than that associated with
standard FE modeling.

In this section, two base excitation formulations will be presented. The first
formulation requires the knowledge of the acceleration of the mast base coordinates (i.e.
the coordinates where the mast and ship are coupled) as a function of time. In other
words, the formulation requires that the acceleration time history of the base coordinates
be known. The second formulation requires the knowledge of the displacement of the
base coordinates as a function of time, or the displacement time history of the base
coordinates, Using both formulations, numerical convergence assessments will be made,
and the benefits that CMS has to offer the mast/antenna design process will be
demonstrated.
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A. BASE EXCITATION FROM PRESCRIBED ACCELERATION
Once the FE program has numerically assembled the mast mass and stiffness matrices,
and the acceleration of the base coordinates are specified as a function of time, the base

excitation problem can be derived from the following equation of motion:

oo Mg 550 + Koo Kos }fx - F, 13)
Mpo Mp %] Keo Kies X 0
where subscript "O" represents the interior coordinates, and subscript "B" represents the

base coordinates.

Solving the top row of equations in Eq. (73) the following is obtained:
Myoko Mgy +KooXo HKpexp =F, (74)

Since the acceleration of the base is prescribed, the base acceleration term will be moved

to the right hand of the equals sign to obtain the following:

Mook, HKooXo HKopXs =F, —Mgp¥p (75)
From the bottom row, the following equation is obtained:

MpoXe *Mppity +HKpoXp +KppXy =0 (76)
From Eq. (76), the following relation is obtained for the base displacement:

xs =K [Mpoko *Mppits +KpoXo | (1)




Equation (77) is now substituted into Eq. (75), and after simplifying, the following

equation of motion in terms of the interior coordinates is given by:
[MOO —KOBK.B‘BMM}EO +[K00 —KOBK:BKM }‘o =F0 +[KOBK;BMBB —MOBkB (78)

Equation (78) is the system equation of motion of the internal coordinates in terms of the
prescribed base acceleration for the mast only. Since the antenna has no prescribed base
acceleration, the above formulation is not applied to the FE generated mass and stiffness
matrices of the antenna.

Now that both substructures have been numerically constructed, they are now ready to
be synthesized into the mast and antenna system. Both the mast and antenna substructure
mass and stiffness matrices and force vector are now partitioned into internal and

connection coordinates as follows:

_ Voo M, oo Ko _ Fo
Ml = M.,]’ [x]-ff(n K =1y
where the subscript “O” and subscript “T” represent the internal and interface coordinates
respectively.
Using the procedures of Chapter III, the respective substructure mass and stiffness

matrices and force vectors are transformed into a “reduced” system by using the first

transformation matrix as follows:
M, ] =[x, T tvifr, ] K]=ETxIE]  E}=ETE  @9ab,0
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As derived in Chapter III, the coupled mast/antenna system mass and stiffness matrices
and force vectors are formed from an uncoupled system using the second transformation

matrix, and is given by:

[M-] =[T2 ]T [M-Irzl [K-] =[T2 ]T [K- ITz] {F- } =[T2 ]T {F- } (804a,b,c)

where the subscripts “s” and “u” represent the coupled system and uncoupled system
respectively.

The operations in Eq. (79 a, b, c) and Eq. (80 a, b, c) are applicable to each of the
CMS methods using each method’s respective transformation matrices, (i.e. [T,] and
[T2 ]) Now that the system force vector and system mass and stiffness matrices have been

formed, the coupled system natural frequencies and mode shapes can be obtained from the

following:
[k, -a-M,Jo ™} =(0} (81)

In Chapter III it was shown how the generalized coordinates or, “p” coordinates, were
obtained from a linear transformation of the physical coordinates or, “x” coordinates,
using the first transformation matrix. Additionally, a set of linearly independent
coordinates were obtained from the set of generalized coordinates, which consist of

linearly independent and linearly dependent coordinates, using the second transformation
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matrix. Therefore, the coordinates associated with Eq. (80 a, b, c) and Eq. (81) are the
set of generalized linearly independent coordinates or, “p, ,” as defined in Chapter III.
The set of generalize linearly independent coordinates are transformed into a set of modal

coordinates by the following relation:

o }=1¢"1-%,} (82)

where ﬁxo} represents the vector of generalized linearly independent internal coordinates,
{40 } represents the vector of modal internal coordinates, and [#"] represents the matrix
of unity modal mass free interface normal modes obtained from the solution to Eq.(81).

The system equation of motion is then pre-multiplied by the transpose of the matrix of

normal modes to obtain the following modal system of equations:

[I]{l'io }"'[\A\]ho }= {F} (83)

where §j, } represents the vector of modal accelerations and {F} represents the vector of
modal forces.

There are “m” equations associated with the solution to Eq. (83) where “m” is equal
to the number of rows or columns in either the system mass or stiffness matrice. The

acceleration at the base is a prescribed harmonic input.
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The base acceleration is taken as:
&, }=-07 {, Jsin(ar) (84)

where “Q” represents the forcing frequency expressed in rad/sec, and {X, } represents the
vector of amplitudes of the base displacement expressed in inches. Since acceleration is
prescribed at the base, and the product of mass and acceleration is consistent with the
units of force, the resulting forcing function is also harmonic.

Therefore, the form of the “i,™ equation of this system of equations, (i.e. Eq. (83)), is

given by:
do, "“"iz‘h, =F, (sin(@)) (85)

where w! = A\ , and is associated with the “i, ” natural frequency of the system.
Equation (85) can be solved using two different methods. Since Eq. (85) is an
ordinary differential equation, the solution can be obtained by finding the particular
solution which requires the knowledge of the mmal conditions, (i.e. 4" -q;,(t = 0) and
& *4;,(t=0)) or the initial displacement and velocity of the system. Since there are no
initial conditions on the mast and antenna prior to the shock wave meaning that the mast
and antenna is motionless prior to the shock wave, a more convenient and preferred way
to solve Eq. (85) is through convolution. The homogenous solution to Eq. (85) is given
by:
q;(t) = A (cos(w;t)) + B, (sin(w;t)) (86)




where “A, ” and “B, " are the amplitudes of the modal displacement and are evaluated
from the initial conditions.

Using convolution, the particular solution is given
. 1 .
0() = A, (cos(wD) + B, (sin(w) + § ¢ —sin(w,(t-7)Fsin(@ 7 )dr (87)
i

where “7T “is a time constant.
The integral in Eq. (87) is generally known as the convolution integral or more formally as
Duhamel’s integral. After solving Duhamel’s integral, Eq. (87) can be rewritten as
follows:

FQsin(w;t)  Fsin(t)
""i(‘"’i2 -0?) T(‘l’iz -0%)

q;(t) = A (cos(w;1)) + B, (sin(w;t)) - (88)

Since there is n) initial displacement or velocity, “A; ™ and “B, ” are both equal to 0.

Equation (88) is then simplified as follows:

0= FQsin(w;t)  Fsin(Qt)
qi() - wi(wiz _02) T(wil _02)

(89)

Equation (89) is solved for each of the “m” equations in the system of equations. By
solving Eq. (89), the modal displacement for each coordinate is obtained as a function of
time.

Since the mast was modeled as a “free-free” structure meaning that there were no
restrained coordinates, the synthesis of the mast and antenna system yieids a structure that

is also “free-free”. This means that there are some rigid body modes associated with the




eigensolution of the system of equations. Since the mast was modeled with three
DOF/node, there are three rigid body modes which correspond to three natural
frequencies of 0 rad/sec. Therefore, for the first three equations of Eq. (83), Eq. (89)
cannot be applied in solving for the modal displacement of the first three coordinates as a
function of time. Using Eq. (85) and substituting “0” for w Eq. (85) is simplified as

follows:
o, (1) =F;sin(h), i=1:3 (90)

Integrating Eq. (90), the following is obtained for the modal velocity as a function of time
for the first three modal coordinates:

do, () ='—§lcos(m)+ci, i=1:3 o1

where “c” is a constant of integration.
Integrating Eq. (91), the following is obtained for the modal displacement as a function of
time for the first three modal coordinates:

Q, (1) —-—;f;sin(ﬂt)+cit+di, i=1:3 (92)

where “d” is a second constant of integration.
The constants of integration “c” and “d” are obtained by substituting the initial conditions

into Eq. (91) and Eq. (92) and solving Eq. (91) and Eq. (92) for “c” and “d”. Substituting




the initial condition of displacement into Eq. (92) the second constant of integration is
obtained:

d, =0, i=1:3

The first constant of integration, “c,” is obtained in a similar manner. Substituting the
velocity initial conditions in Eq. (91), the first time constant is obtained:
T
F
[\ =2Ld-i-’ i=1:3
Substituting the constants of integration into Eq.(92), the modal displacements for the first
three coordinates can be obtained from the following relation:

T
4o () =osin@)+ LT, =13 93)

Equation (93) is used to obtain the modal displacement solution as a function of time for
the first three coordinates, while Eq. (89) is used to obtain thc modal displacement
solution as a function of time for the remainder of the set of coordinates.

Once the modal response is obtained, Eq. (82) is used to obtain the response in linearly
independent generalized coordinates. By using the second transformation matrix followed
in succession by the first transformation matrix in a manner similar to that of Eq. (82), the

response of all of the physical coordinates that defines the system is obtained.
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In what follows, the relation in Eq. (78) is used in conjunction with a standard FE
model of the total mast/antenna system to perform the prescribed base acceleration
dynamic analysis. This analysis serves as the reference against which the results of various
CMS formulations are to be compared. To restate, in each CMS formulation, Eq. (78) is
used to define the mast component model, as only the mast has prescribed base
accelerations.

In the following section, two numerical examples are provided. It is the intent of the
examples io-

(1)  compare the results obtained from the three CMS formulations
(2)  and demonstrate the benefits of using CMS versus standard FE modeling
when solving base excitation problems.

1. Tip Deflection Calculation

On page 70 is a diagram of the mast and antenna system being subjected to base
excitation. The excitation was performed at two different and arbitrarily selected
frequencies. The first frequency was at 8.95 Hz. This frequency falls between mode 1 and
mode 2 of the total mast/antenna system. The second frequency was between mode 9 and
mode 10 at 219 Hz. The wide spread in the frequencies was intended to demonstrate that
many more modes need to be retained when calculating the response to higher frequency
excitation as compared with lower frequency excitations. In this example, the antenna tip
deflection was calculated using the standard FE procedure and the three CMS procedures.
The percent error in antenna tip deflection was plotted versus the percent of available

component modes retained (see Figures 6-9). The calculations were performed twice. In
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the first calculation, mast modes were truncated while retaining all of the available antenna
modes, and antenna modes were truncated in the second calculation while retain'ng all of
the available mast modes. When the mast was subjected to the forced input at the lower
frequency the Craig-Bampton and Craig-Chang procedure yielded results which

converged more rapidly to the exact answer than the MacNeal procedure.




3 —

Figure 5: The Coupled Mast and Antenna Subjected to Base
Excitation at 8.95 Hz
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Although, hard to determine from Figures 6 and 7, the Craig-Bampton procedure yielded
the best results using fewer modes than the Craig-Chang procedure in both the mast
truncation and antenna truncation runs. When 20% of the available mast modes were
used, all three procedures predicted a tip deflection measurement that was within 0.05%
of the "exact" value (the “exact” value was calculated using the standard FE procedure).
This accurate assessment was obtained at a cost of 60% of the number of calculations that
were required of the FE solution. The error obtained when 20% of the available mast
modes were retained was significantly small. Since all of the vibrational mode shapes were
obtained in this calculation (i.e. fixed interface normal modes, free interface normal modes,
static constraint modes, and residual flexibility modes), future assessments which retain
more mast modes would come at an even lesser cost than the initial assessment.

When the mast was subjected to the higher forcing frequency, all three methods
converged more slowly as compared to the lower forcing frequency when truncating both
mast modes and antenna modes (see Figures 8 and 9). Since the forcing frequency was
higher, more modes needed to be retained in order to obtain accurate results. From the
results of the tip deflection calculations, it appears that the combination of fixed interface
normal modes and static constraint modes have led to the higher rate of convergence using
the Craig-Bampton procedure. However, the results obtained using the Craig-Chang

procedure compared quite well with the results obtained using the Craig Bampton method.
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Figure 6: Percent Error in Antenna Tip Deflection Plotted Versus the
Percent of Available Mast Modes Retained. (Forcing Frequency: 8.95 Hz)
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Figure 7: Percent Error in Antenna Tip Deflection Plotted Versus the
Percent of Available Antenna Modes Retained. (Forcing Frequency: 8.95 Hz)
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Figure 8: Percent Error in Antenna Tip Deflection Plotted Versus the
Percent of Available Mast Modes Retained. (Forcing Frequency: 219 Hz)
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Figure 9: Percent Error in Antenna Tip Deflection Plotted Versus the
Percent of Available Antenna Modes Retained. (Forcing Frequency: 219 Hz)
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2. Moment and Shear Calculation

In order to assess structural survivability, accurate prediction of the internal
stresses in the antenna and the antenna/mast interface must be calculated. Therefore, this
section demonstrates the calculation of the internal peak dynamic bending moments and
shear loads in the antenna.

The moment and shear calculations were calculated using the three CMS
procedures and the results are compared in the figures. The percent error in moment and
shear were plotted versus the percent of available mast modes retained and percent of
available antenna modes retained. Again, the same two forcing frequencies used in the tip
deflection calculation are used here in the moment and shear calculations; specifically 8.95
and 219 Hz.

The results obtained when calculating the shear and moment at the mast/antenna
connection mirror the rwxl.ts of the tip deflection calculations (see Figures 10-17). Again,
the Craig-Bampton procedure yielded results that converged more quickly to the "exact"
answer (provided by standard FE calculations) than the other methods. However, the
results obtamed using the Craig-Chang procedure were quite similar to those obtained
using the Craig-Bampton method. Despite a large initial error produced by the MacNeal
method as compared to the other two methods, nearly "exact” solutions were obtained at
a cost much less than using standard FE calculation procedures. If the moment and shear
at the mast/antenna interface exceeded an appropriate failure criteria, the antenna can be

easily relocated from the end node to another node along the cross bar by redefining the
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connection coordinates of the mast. New moment and shear calculations would be made
until an acceptable response obtained. Redefinir:g the connection coordinates, synthesizing
the new structure, and calculating the response is much more convenient and
computationally efficient than reassembling the mast and antenna system, which would be
required using standard FE procedures.

When the mast and antenna system were subjected to the forced input at the higher
forcing frequency, the rate of convergence was again much slower than that which was
obtained at the lower excitation frequency. However, all methods yield accurate results
at a computational cost less than using the standard FE procedure with the higher forcing
frequency.
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Figure 10: Percent Error iz Shear at Mast and Antenna Connection Plotted
Versus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 8.95Hz)

Perceat error in moment at mast and antenns connection plotted versus the percent

of available mast modes retained

12.00% 71
b
2 ? ——8—— CRAIG-BAMPTON
-
.; % 9.00% -~—&-— CRAIG-CHANG
g § & MACNEAL
8 6.00%
: §
s 3
s 3.00%
g |

b~ A
0.00% “— — ey —- -t & & —=a

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Number of mast modes retained (in percent)

Figure 11: Percent Error in Moment at Mast and Antenna Connection Plotted
Versus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 8.95 Hz)
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Figure 12:  Percent Error in Shear at Mast and Antenna Connection Plotted
Versus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 8.95 Hz)
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Figure 13: Percent Error in Moment at Mast and Antenna Connection Plotted
Versus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 8.95 Hz)
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Figure 14:  Percent Error in Shear at Mast and Antenna Connection Plotted
Versus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 219 Hz)
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Figure 18: Percent Error in Moment at Mast and Antenna Connection Plotted
Versus The Percent of Available Mast Modes Retained.
(Forcing Frequency: 219 Hz)
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Percent error in shear at mast and antenns connection plotted versus the percent of
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- 18.00% l
: 16.00% —e— CRAIG-BAMPTON
i g 14.00% -——+ -~ CRAIG-CHANG
K
ig & MACNEAL
H:
E S
,§ -
-4 e -
20% 30% 40% 50% 80% 70% 80% 90% 100%

Number of antenna modes retained (in percent)

Figure 16: Percent Error in Shear at Mast and Antenna Connection Plotted
Versus the Percent of Available Antenna Modes Retained.

(Forcing Frequency: 219 Hz)
Percent error in moment at mast and antenna connection plotted versus the percent
of available antenna modes retained
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Figure 17: Percent Error in Moment at Mast and Antenna Connection Plotted
Versus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 219 Hz)
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B. BASE EXCITATION FROM PRESCRIBED DISPLACEMENT

The following derivation is applicable to the base excitation problem, where bas :
displacements (as opposed to base accelerations) are to be prescribed.. As in the base
excitation from prescribed acceleration, the derivation starts with the FEM generated mass

and stiffness matrices as follows:

a3 SRS
The bottom row is expanded into the following equation:
MpoXo Mgy +Kpoxg +Kpgpxy =0 (76)
From Eq. (28), the base acceleration is obtained as follows:
%y =-Mis Mpoko HpoXo +KpyXs | (94)
From Eq. (25), the top row is expanded to obtain:
Mgo%o HMopiy +KooXo HKosXs =F, (74)

Substituting Eq. (94) into Eq. (74) and simplifying, the equation of motion for the internal

coordinates as a function of prescribed base displacement is obtained as follows:

Moo MMMy Ko HKoo MogMiKeo ko =F, Kos *MogMiKgs kg (95)




Notice that the matrix that pre-multiplies the acceleration term has units of mass, and the
matrix that pre-multiplies the displacement term has units of stiffness. The matrix that
pre-multiplies the base displacement term has units of stiffness. Therefore, all terms of this
equation of motion are dimensionally consistent with units of force.

The same modal decomposition procedures described in the base acceleration
formulation apply to the base displacement formulation. Since the displacements at the
base are prescribed, the base coordinates are nc longer degrees of freedom. This means
that there are no rigid body modes associated with the base displacement formulation. As
a result, Eq. (89) is used to obtain the response of all coordinates. As in the base
acceleration formulation, the time history of the base displacement is taken to be simple

harmonic, and is represented by:

{xa } ={, Jsin(ar) (%)

Numerical convergence examples are provided in the following section. Both examples are
similar to the examples presented in the prescribed base acceleration problem.
1. Tip Deflection Calculation
The mast and antenna system was subjected to a base excitation where the time
history of the displacement of the base coordinates was prescribed. The excitation was
performed at a frequency which corresponded approximately to mode 5 (47.26 Hz) of the
mast/antenna system. Since the system was modeled without damping, a frequency which

corresponded exactly to a natural frequency of the system could not be prescribed. The
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excitation frequency is equivalent to the mode 5 natural frequency to within 2 decimal
places. As in the base acceleration problem, the frequency was arbitrarily selected. The tip
deflection of the antenna was calculated and percent error in tip deflection was plotted
versus percent of available component modes retained (see Figures 18 and 19). The
calculations were performed twice. Mast modes were truncated in the first calculation,
and antenna modes were truncated in the second calculation. All three procedures yielded
accurate results in both the mast and antenna truncation tests. When the mast/antenna
system was excited at mode 5, the Craig-Chang and MacNeal procedures provided very
similar results for both the mast truncation and antenna truncation. As was determined in
the tip deflection calculations of the base acceleration problem, the Craig-Bampton
procedure yielded the best results using fewer modes than did the Craig-Chang and
MacNeal procedures in both truncation tests. This again could possibly be due to the
combination of fixed interface normal modes and static constraint modes providing a
better representation of prescribed base displacement than the combination of free
interface normal modes and residual flexibility modes. However, all three provided

accurate results and at a cheaper cost than the FE model.
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Figure 18: Percent Error in Antenna Tip Deflection Plotted Versus the
Percent of Available Mast Modes Retained (Forcing Frequency: 47.26 Hz)
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Figure 19: Percent Error in Antenna Tip Deflection Plotted Versus the
Percent of Available Antenna Modes Retained. (Forcing Frequency: 47.26 Hz)
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2. Moment and Shear Calculation

Percent error in shear and moment at the mast and antenna connectic1 were
plotted versus the percent of available component modes retained (see Figures 20-23).
The base excitation was conducted again at 47.26 Hz Similar results were obtained in the
shear and moment calculations as were obtained in the tic deflection calculations. The
Craig-Bampton procedure provided more accurate results using fewer modes than the
Craig-Chang and MacNeal methods. The convergence rate of the Craig-Chang and
MacNeal methods were almost identical in the mast mode truncation. When the mast was
excited at mode 5, all three yielded excellent results in the antenna mode truncation
analysis. However, the Craig-Bampton procedure converged more quickly than the other
methods. It appears that the combination of fixed interface normal modes and static
constraint modes lead to a higher rate of convergence in determ’ ving tip deflection and
antenna/mast shear and moment calculations Although all three procedures initially had a
higher percentage error when truncating mast modes, than when truncating antennae
modes, they all provide as accurate if not more accurate results than the antenna
truncation at less cost in terms of computations. It is also noteworthy to compare the
computational cost in retaining mast modes versus retaining antenna modes in predicting
accurate system response. For example, in the shear calculation when the mast was
excited at mode S, the Craig-Chang procedure yielded a percentage error of 2.1% while

using 1.66-10° FLOPS during the mast mode truncation test. During the antenna mode




truncation test, the Craig-Chang procedure yielded a percentage error of 2.03% using
1.89-10° FLOPS.

Since the impact of shock waves on the mast/antenna system are typically of low
frequency, and as can be seen from the results of the prescribed base acceleration and base
displacement examples prcvided, it is recommended that the Craig-Bampton component

mode representation be used to synthesize the mast and antenna system
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Versus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 47.26 Hz)

Percent error in moment at mast and antenna connection plotted versus the percent

of available mast modes retained
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Figure 21: Percent Error in Moment at Mast and Antenna Connection Plotted

Versus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 47.26 Hz)




Percent error in shear at mast and antenns connection plotted versus the percent of

available antenna modes retained
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Figure 22:  Percent Error in Shear at Mast and Antenna Connection Plotted
Versus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 47.26 Hz)
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V1. CONCLUSIONS AND RECOMMENDATIONS

The survivability of shipboard combat systems equipment is paramount to the warfare
fighting capability of the ship and her crew. Should a fire control radar, or any vital
topside combat systems equipment fail as a result of an induced shock wave, the ship's war
fighting capacity would be crippled. However, using proven structural dynamics
techniques, the design engineer can design the mast/antenna system in such a manner as to
minimize risk of failure.

This study has been conducted to show the progress that has been made thus far in the
maximization of combat survivability of shipboard mast and antenna systems. As
demonstrated in this study, the mast and antenna can be treated as separate substructures,
and using CMS, can be assembled as a mast/antenna system, from which dynamic
response to base excitation can be calculated. Treating each antenna as a substructure,
allows the cataloging of the various antennae. A selected antenna can be "plugged” into
various locations along the mast until a suitable dynamic response is obtained. As has
been demonstrated herein, CMS along with FE modeling provides rapid and accurate
results at a computational cost significantly less than standard FE modeling alone. The
mast and antenna model used in this study consisted of only 17 elements which
corresponds to a total of 51 degrees of freedom. Although the results that were obtained

on this "small* model were accurate and computationally efficient, the same benefits can




be expected with larger models, models that will be used to represent realistic mast and
antenna systems.

All three methods yield results that are accurate and more computationally efficient
than standard FE modeling. However, from the results obtained, it is strongly
recommended that the Craig-Bampton component mode representation be used to
synthesize the mast and antenna system. Since the Craig-Bampton procedure yielded
more accurate results while using fewer component modes than the other methods, the
Craig-Bampton procedure is the substructure coupling formulation of choice due to good
accuracy and ease of implementation. It is strongly suggested that the following
recommendations be implemented when computing the dynamic response of a shipboard
mast and antenna system:

e Modify the existing FE code such that the mast and antenna system can be
modeled with 6 DOF/node. This type of modeling will allow for out of plane
dynamic analysis. In addition to accomodating a more general analysis of the mast
and antenna system, model the mast and antennae with other types of elements
such as shell and plate elements in addition to the existing beam elements.

e Use CMS in conjunction with FE modeling. In particular, it is recommended that
the Craig-Bampton procedure be used as the substructure coupling method.
Additionally, if another software package which is tailored to FE analysis be used

to conduct the dynamic analysis, the NASTRAN superelement scheme contains the
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Craig-Bampton component mode representation as a solution path to dynamic
analyses.

In this study it has been demonstrated that the mast and the various antennae can be
modeled separately as substructures using standard FE modeling. Using component mode
synthesis, the substructures can be assembled into a system and dynamic response
computed accurately at a computational cost that is less than standard FE modeling alone.
Implementing the above recommendations will lead to the maximization of topside combat

systems equipment survivability.




APPENDIX A

% LT Lynn James Petersen

% Naval Postgraduate School

% Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component Mode
% Synthesis

% Main Program: Progsynt.m

% This program numerically constructs a FE model of the either the“mast”, the

% “‘antenna” as components or the mast and antenna as a system. The user specifies the
% desired configuration

% To begin the program, the user specifies the desired structure (i.e. the mast, or

% antenna, or mast/antenna system.)

p = input(‘enter which structure is to be assembled: enter 1 if mast/antenna,...

enter 2 if mast, enter 3 if antenna’),

datdabe % data file for the mast/antenna system

elseif p==2

data_mst % data file for the mast
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data_ant % data file for the antenna
end;
flops(0) % reset the FLOPS count
% A. Calculation of the number of elements, nodes, length of each element, radius of
gyration and orientation.
Al = size(con), % “con” is the connectivity matrix
numel = Al(1); % number of elements
C1 = size(coord); % “coord” is the matrix of coordinates

nodes = C(1), % number of nodes

for i = 1:numel,
IC = con(},1);

ID = con(},2);

% determine the length of the respective beam element
I(1,i)=sqrt((coord(ID, 1)-coord(IC, 1))2+(coord(ID,2)-coord(IC,2))"2);
DX(i)=coord(ID, 1)-coord(IC,1);

DY(i)=coord(ID,2)-coord(IC,2);
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% determine the orientation of the beam element
if DX(i)>= 0 & DY(i)>= 0,

theta(1,i)=acos(DXGVI(1,);

elseif DX(i)<0 & DY(i)>=0;

theta(1,i)=acos(DY(i)/1(1,))+pi/2;

elseif DX(i)<0 & DY(i)<0,

theta(1,i)=acos(abs(DX(i))/1(1,i))+pi;

else
theta(1,i)=acos(abs(DY(i))/1(1,i))+(3*pi/2),

end;
% calculate the radius of gyration

r(1,i) = sqrt(I(1,i)/A(1,D);

end;

% B. Computer truncation error minimization
% The function trig will now be called to ensure that “exact” values are sent to the

% stiffness and mass matrix function.

[c1,s1]=trig(theta numel);
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% C. Assembly of stiffness and mass matrices:
% The function “El3mk.m” will be called to assemble the elemental mass and stiffness
matrices.
% The “global” mass and stiffness matrices will be assembled simultaneously
kbl = [zeros(nodes * 3,nodes * 3)];
mb1 = [zeros(nodes * 3,nodes * 3)];
for i=1:numel;
[ke,me]=el3mk(l(i),gamma(i),I(i),E(i),r(i),c1(i),s1(1));
v=con(i,1),
w=con(i,2),
kb1(3*v-2:3*v,3*v-2:3*v) = kb1(3*v-2:3*v,3*v-2:3*v) + ke(1:3,1:3),
kb1(3*v-2:3*v,3*w-2:3*w) = kb1(3*v-2:3*v,3*w-2:3*w) + ke(1:3,4:6);
kb1(3*w-2:3*w,3*v-2:3*v) = kb1(3*w-2:3*w,3*v-2:3*v) + ke(4:6,1:3);

kb1(3*w-2:3*w,3*w-2:3*w) = kb1(3*w-2:3*w,3*w-2:3*w) + ke(4:6,4:6),

mb1(3*v-2:3*v,3*v-2:3*v) = mb1(3*v-2:3*v,3*v-2:3*v) + me(1:3,1:3),
mb1(3*v-2:3*v,3*w-2:3*w) = mb1(3*v-2:3*v,3*w-2:3*w) + me(1:3,4:6),
mb1(3*w-2:3*w,3*v-2:3*v) = mb1(3*w-2:3*w,3*v-2:3*v) + me(4:6,1:3),

mb1(3*w-2:3*w,3*w-2:3*w) = mb1(3*w-2:3*w,3*w-2:3*w) + me(4:6,4:6);
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%

%

%

%

%

%

%

%

D. Boundary conditions
kbI([BC],){ ]
kbl1(;,[BCY=( ;
mb1([BC],)={ ],
mb1(;,[BCY=[ J;
E. Internal and base coordinates
ifp==1, % mast and antenna system
partition the mass and stiffness matrices into base and internal coordinates
[KEX,MEX,FEX]=kmbe(kb1,mb1,INTM,BSM,XBM);
kb1=KEX;
mb1=MEX;
convert the force vector into a product of mass * acceleration
because of MATLAB'S inefficiency in calculating rigid body eigenvalues and
eigenvectors (natural frequencies and mode shapes) we will make the first three natural
frequencies 0, and calculate rigid body modes just as was done in the Craig-Chang
formulation
P=[123];
F = [4:length{kb1)],
KEX2 = [KEX(F,F) KEX(F,P),KEX(P.F) KEX(P,P)];

MEX2= [MEX(F,F) MEX(F,P);MEX(P,F) MEX(P,P)];
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KEX3=KEX(F,F),

KEX4=KEX(F.P);

RBMODES= [-inv(KEX3)*(KEX4)

eye(length(P))];

% calculate the natural frequencies and mode shapes

[lamex,phiex]=fmodes(KEX2,MEX2);

%

for i=1:3;
lamex(i,1)=0; % make first three natural frequencies equal to zero
end;
lamex;
omeg=sqrt(lamex)/(2*pi)
phiex(:,1:3)*RBMODES;
b2=3;
[phrb] = rigid(MEX2,phiex,b2),
check orthogonality
phiex(:,1:3)=phrb;
tu=phiex(;,1:3)"*MEX2*phiex(:,1:3);
modstiff=phiex(;,1:3)"*KEX2*phiex(:,1:3);
flops % determine FLOPS of FE formulation and solution

save data3.mat kbl mb1 coord con lamex phiex BS INT XB f FEX




save data3a.matcl sl ir
elseif p==2 % mast substructure
[KEX,MEX FEX]=kmbe(kb1l,mb1,INTM,BSM,XBM);
kb1=KEX;
mbl1=MEX;,
% convert the force vector into a product of mass * acceleration
% note: this operation needs to be performed now prior to CMS
% fl =f- (- (8.9525*2*pi)"2*FEX), % low frequency
% fl=f+ (219.265*2*pi)"2*FEX; % high frequency
flops % determine the flops count to assemble the mast
save datal.mat kbl mb1 V C coord con INT O fl XBM BSM
save datala.mat cl sl rl
else;
f1=f
flops % determine the flops count to assemble the antenna
save data2.mat kbl mb1l O INT coord confV C
save data2a.mat c1 sl rl

end;




APPENDIX B

% LT Lynn James Petersen
% Naval Postgraduate School
% Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component
% Mode Synthesis
% Program: Cbfbx.m
% Two substructure synthesis with forcing vector and base excitation
% This program uses the Craig-Bampton method for synthesizing structures toget’ .r.
% The program loads the data files into the program. Once into the program, the program
% will synthesize the structures together, and calculate the coupled natural frequency and
% free interface mode shapes
% note: this program will synthesize only two structures together
% A. The substructures will now be loaded
| load datal.mat;

k1=kb1l,ml=mb1,V1=V,C1=C f1-fl,

load data2.mat;

k2=kb1,m2=mb1,V2=V,C2=C 02-f,

flops(0) % reset the FLOPS count




% B. K matrix partitioning to support calculation of static constraint modes
Kwvl =k1(VL V1),

Kvel =k1(V1,C1),
Kw2 =k2(V2,V2),
Kve2 =k2(V2,C2),

% C. Partition stiffness and mass matrices for synthesis:
k1=[k1(V1, V1) kI(V1,C1);k1(C1,V1) k1(C1,C1)];
ml={m1(V1,V1) m1(V1,C1);m1(C1,V1) mi(C1,C1)];
k2=[k2(V2,V2) k2(V2,C2);k2(C2,V2) k2(C2,C2)];
m2={m2(V2,V2) m2(V2,C2);m2(C2,V2) m2(C2,C2)];

% D. Calculate static constraint modes:

Cmodesl =  [-inv(Kvv1)*Kvcl
eye(length(C1))};

Cmodes2 =  [-inv(Kvv2)*Kvc2
eye(length(C2)));,

% E. Calculate the fixed interface normal modes.
kfix1=k1(1:length(V1),1:length(V1));
mfix1=m1(1:length(V1),1:length(V1));
kfix2=k2(1:length(V2),1:length(V2));
mfix2=m2(1:length(V2),1:length(V2));

{lam1 Nmodes1}=fmodes(kfix1,mfix1),pause




% F. Note: the next command retains the desired modes and appends zeros to the
% interface coordinates:
y = input('Enter the number of fixed interface modes that are desired to be kept')
{Nmodes1] = [Nmodes1(:,1:y);zeros(3,y)];
% G. Obtain natural frequencies and mode shapes for the second substructure
(lam2,Nmodes2}=fmodes(kfix2,mfix2),pause
% H. Note: the next command retains the desired modes and appends zeros to the
% interface coordinates for the second structure
s = input('Enter number of modes desired to be retained for second structure')
[Nmodes2] = [Nmodes2(:,1:s);zeros(3,s)};
% 1. Obtain the “reduction” transformation matrix from the fixed interface normal
% modes and static constraint modes:
[NC_MODES1] = [Nmodes] Cmodesl];
[NC_MODES2] = [Nmodes2 Cmodes2];
% J. Obtain the reduced mass and stiffness matrices:
k1_red = NC_MODESI' * k1 * NC_MODESI;
m1_red = NC_MODESI' * ml * NC_MODES];
k2_red = NC_MODES2' * k2 * NC_MODES2;
m2_red = NC_MODES?' * m2 * NC_MODES2;
a = length(C1),
b = length(C2),
d = length(V1);
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¢ = length(V2);
sizel = length(k1_red);
size2 = length(k2_red),

% K. Form the uncoupled stiffness and mass matrices:

K_uncpl = [k1_red zeros(sizel,size2);zeros(size2,sizel) k2_red],

M _uncpl = [m1_red zeros(sizel,size2);zeros(size2,sizel) m2_red];
% L. Place the force vector in the correct form and pre multiply by the transformation
matrix:

f1={f1(V1,1);f1(C1,1)];

2=[f2(V2,1);2(C2,1)};

F1V = Nmodes1(1:d,1:y)'*f1(1:d,1);

F1C = Cmodes1(1:d,1:a)*f1(1:d,1) + f1(d+1:length(f1),1),

F2V = Nmodes2(1:e,1:s)'*f2(1:¢,1);

F2C = Cmodes2(1:e,1:b)*f2(1:e,1) + f2(e+1:length(f2),1);

FCB=[ FlV;

F2V,
F1C+F2C];

% M. Form the coupled stiffness and mass matrices:

K_cpl = zeros(y+s+a,y+s+a);

g=length(K_cpl);
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%

%

%

% structure 1: diagonal

K_cpl(L:y,Ly)=K_cpl(1:y,L:y/+K_uncpi(1:y,1y);
% structure 2: diagonal
K_cpl(y+1:y+s,y+1:y+s)=K_cpl(y+L:y+s,y+l:yts)+...
K_uncpi(y+a+l:y+ats,y+atl:y+tats),
% structure 1&2: connection
K_cpl(y+s+1.y+s+a,y+s+1:y+s+a)=K_cpl(y+s+1:y+s+ay+s+l:y+sta)t...
K_uncpl(y+1:y+a,y+1:y+a)+K_uncpl(y+a+s+1:y+s+atb,y+at+s+1:y+st+a+b);
% mass matrix
M_cpl = zeros(y+s+a,y+s+a);

h=length(M_cpl);

g=h;
structure 1: diagonal
M_cpi(1:y,1:y=M_cpi(1:y,1'y}*M_uncpl(1:y,1:y);
structure 2: diagonal
M_cpl(y+L:y+s,y+Ly+s)=M_cpl(y+L:y+s,y+1:y+s)t..
M_uncpi(y+atl:ytats,ytatly+ats);
structure 1&2: diagonal
M_cpl(y+s+1.y+stay+s+1:y+sta)=M_cpl(y+s+1:y+sta,y+st+ly+sta)t...
M_uncpl(y+1:y+a,y+1:y+a)+M_uncpl(y+a+s+1:y+s+atb,y+ats+1:y+st+atd),

% structure 1: off diagonal partitions

M_cpl(y+s+1.y+s+a,1:y)=M_cpl(y+s+1:y+s+a,1:y)+M_uncpl(y+1:y+a,l:y);
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M_cpl(Ly,y+s+1:y+s+a)=M_cpi(1.y,y+s+1:y+s+a)*M_uncpl(1:y,y+1:y+a);
% structure 2: off diagonal partitions
M_cpl(y+s+1:y+stb,y+1:y+s)=M_cpl(y+s+1:y+s+b,y+1:y+s)+...
M_uncpl(y+ats+1:y+ats+b,y+atl:yt+ats),
M_cpl(y+1:yts,y+s+ly+stb)=M_cpl(y+1:y+s,y+s+1y+s+b)+...
M_uncpl(y+atl:y+ats,y+ats+Ly+ats+b),
% N. Obtain the C-B component mode synthesized eigenvectors and eigenvalues:
[lam_cpl,phi_cpl] = fmodes(K_cpL,M_cpl);
omeg_cb=sqrt(lam_cpl)/(2*pi); % convert from (rad/sec)*2 to Hz
% P. Perform transformation to support base excitation calculation, clean up first three
% natural frequencies, and first three modes
P=(length(K_cpi)-2:length(K_cpl)],
F=[1:length(K_cpi)-3],
KEX2={K_cpi(F,F) K_cpl(F,P), K_cpl(P,F) K_cpi(P,P)};
MEX2=[M_cpl(F,F) M_cpi(F,P), M_cpi(P,F) M_cpl(P,P)];
KEX3=K_cpl(F,F);
KEX4=K_cpl(F.P),
Rbmodes={-inv(KEX3)*(KEX4)
eye(length(P))];
[lamex,phiex]=fmodes(KEX2,MEX2),
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%

%

for i=1:3;
lamex(i, 1)=0;
end,
phiex(:,1:3)=Rbmodes;
b2=3,
[phrb]=rigid( MEX2,phiex,b2); % perform Gram-Schmidt orthogonalization
phiex(:,1:3)=phrb;
check orthogonalization:
tu=phiex(:,1:3)"*MEX2*phiex(:,1:3),pause
tk=phiex(:,1:3)"*KEX2*phiex(:,1:3),pause
redefine variables
K_cpi=KEX2,
M_cpI=MEX2,
lam_cpl=lamex;
phi_cpl=phiex;
flops % determine the FLOPS

save datalo.mat K_cpl M_cpl FCB ab d e y s NC_MODES1 NC_MODES2

lam_cpl phi_cpl
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%
%

%

%

%

%

%

%

APPENDIX C

LT Lynn James Petersen

Naval Postgraduate School

Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component Mode
Synthesis

Program: Ccrfrb2.m

This program is written in accordance with the Craig-Chang Residual Flexibility
method. The program loads two data files containing information from a FE
generated substructure. This information includes: a) the mass and stiffness matrices b)

listing of internal and interface coordinates c) any forcing or base excitation data

% needed to solve a dynamic response problem. The program is ready to load the two

% data files into the work space

clear

load datal .mat % mast data
Kl1=kbl, Mi=mbl, O1=0, I1 = INT, R1=11, F1 =fl
load data2.mat % antenna data

K2=kb1l, M2=mbl, 02=0, I2 =INT, R2=12, F2 =f

flops(0) reset the flops count to zero

% A. Substructure 1

% Partition substructure 1 into internal and interface coordinates
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Kool =K1(01,01),
Korl =KI(O1,R1);
K1=[K1(01,01) K1(O1,11); K1(11,01) K1(ILI1)];

MI1=[M1(01,01) M1(O1,11); M1(11,01) M1(I1,I1)];

% B. Calculate natural "free interface normal modes" for structure 1

[lam1,FRmodes1] = fmodes(K1,M1)
al = length(O1);

bl = length(I1);

a = size(FRmodes1),

b=a(2);

for i=1

lami(i,1)=0; %make first three “zero” natural frequencies equal zero to

% correspond to R B.

% C.

%

end;

Prompt the user for the number of normal modes desired to be kept

note: the number of total modes equals the sum of kept modes and deleted modes

¢ = input(‘enter the number of free interface normal modes desired to be kept for...
structure 1 ')

FRKmodesl = [Frmodes1(:,b1+1:c)]; % kept modes

FRDmodes1 = [Frmodes1(;,ct+1:b)]; % deleted modes

lamla=diag(lam1);

lamk1=lamla(bl+1:c,bl+1:c);
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%

lamdl=lamla(c+1:b,c+1:b),

inviamk 1=inv(lamk1);

invlamdl=inv(lamd1);
D. Obtain the rigid body modes like constraint modes were calculated

RBmodes] = [-inv(Koo1)*Korl

eye(length(R1))];

% unity mass normalize and orthogonalize the rigid body modes Note: since rigid
% body modes as calculated by matlab are not orthogonal wrt mass matrix, a "Gram
% Schmidt” procedure needs to be performed

[phrb] = rigid(M1,RBmodes1,b1)

RBmodes! = phrb;

% E. Form the projection matrix [P] in support of the inertia relief solution

%

%

Pl=[eye(al+bl) - M1*RBmodes1 *RBmodes1'];
GSTARI1 =inv(Kool),
GBSTARI1 = zeros(al+b1,al+bl);
GBSTARI1(1:al,1:a1) = GBSTAR1(1:al,1:al) + GSTARI,
FA1 = [zeros(al,bl);eye(bl,bl);];
F. Obtain the inertia relief residual flexibility modes
GFLEX1 =P1"*GBSTARI1*P1;
% as calculated from kept normal modes
IRAmodesl = [GFLEX1 - FRKmodes]*invlamk1*FRKmodes1']*FAl;

% as calculated from deleted normal modes

107




%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

IRAmodes! = (FRDmodes! *invlamd1 *FRDmodes1')*FAl;

Rmodes1 A=IRAmodesl;

Note: because this code is tailored to rigid body for both structures an inertia
relief solution is being performed for both structures the following code would
apply if the first structure was fully restrained

Partition the normal modes into kept modes and deleted modes

FRKmodes] = [FRmodes1(:,1:c)];
FRDmodes1 = [FRmodes1(;,c+1:b)];
Diagonalize and partition into kept and deleted natural frequences
lamla=diag(lam1),
lamk1=lamla(l:c,1:c);
lamd1=lamia(c+1:b,c+1:b);
invlamk! = inv(lamk1);

invlamd1 = inv(lamd1),

. Obtain the residual flexibility modes

Obtain the flexibility matrix
G1 = inv(K1),
FAl = [zeros(al,bl);eye(bl,bl)];
Obtain the residual flexibility modes from the kept modes
Rmodes = (G1 - FRKmodes1*invlamk1*FRKmodes1')*Fa;
from the deleted modes

Rmodes = (FRDmodes1*inviamd1*FRDmodes1’)*FAl;
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% E. Calculate the reduced mass and stiffness matrices for structure 1transformation
% matrix (SYSMODES1): [T]
% SYSmodes] = [FRKmodes! Rmodes};
% KSYS1 = SYSmodes1"*K1*SYSmodes!
% MSYS1 = SYSmodes1'*M1*SYSmodes]
% 1I. Substructure 2
% A. Partition substructure one into internal and interface coordinates
Koo2 = K2(02,02),
Kor2 =K2(02,R2),
K2={K2(02,02) K2(02,R2), K2(R2,02) K2(R2,R2)];
M2=[M2(02,02) M2(02,R2); M2(R2,02) M2(R2,R2)];
% B. Calculate natural "free interface normal modes" for structure 1
[lam2 FRmodes2] = fmodes(K2,M2)
a2 = length(02);
b2 = length(12)
d = size(FRmodes2);
e=d(2),
for i=1:b2;
lam2(i,1)=0;
end;
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% C. Prompt the user for the number of normal modes desired to be kept.
f= input('enter the number of free interface normal modes desired to be kept for
structure 2 ')
FRKmodes2 = [FRmodes2(:,b2+1:f)];
FRDmodes2 = [FRmodes2(;,f+1:e)];
lam2a=diag(lam2);
lamk2=lam2a(b2+1:fb2+1:f);
lamd2=lam2a(f+1:e,f+1:e);
invlamk2=inv(lamk2);
inviamd2=inv(lamd2);
% D. Obtain the rigid body modes as constraint modes would be obtained
RBmodes2 = [-inv(Koo2)*Kor2
eye(length(R2))];
% unity mass normalize and orthogonalize the rigid body modes
[phrb] = rigid(M2,RBmodes2,b2) % Gram-Schmidt
RBmodes2 = phrb;
% E. Form the projection matrix [p] in support of the inertia relief solution
P2={eye(a2+b2) - M2*RBmodes2*RBmodes2'];
GSTAR2 = inv(Ko02),
GBSTAR?2 = zeros(a2+b2,a2+b2);
GBSTAR2(1:a2,1:a2) = GBSTAR2(1:a2,1:a2) + GSTAR2,

FA2 = [zeros(a2,b2);eye(b2,b2);];
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%

%

%
%
%
%
%

%

F. Obtain the inertia relief residual flexibility modes...
GFLEX2 = P2"*GBSTAR2*P2;
% ...from the kept modes
IRAmodes2 = [GFLEX2 - FRKmodes2*inviamk2*FRKmodes2']*FA2;
%...or from the deleted modes
IRAmodes2 = (FRDmodes2*inviamd2*FRDmodes2')*FA2;
G. Calculate the reduced mass and stiffness matrices for structure 1 transformation
matrix [T]
SYSmodes2 = [FRKmodes2 IRAmodes2];
XSYS2 = SYSmodes2"*K2*SYSmodes2

MSYS2= SYSmodes2'*M2*SYSmodes2

% H. Couple the two substructures.

" k1 =[IRAmodesl(al+1:al+bl,’) + IRAmodes2(a2+1:a2+b2,")];
k2=inv(k1),
mdd1 = FRDmodes1(al+1:a1+b1,)*(inviamd1y\2*(FRDmodes1(al +1:al+b1,)))’;
mdd2 = FRDmodes2(a2+1:a2+b2,:)*(inviamd2)"2*(FRDmodes2(a2+1:a2+b2,)))’;
ml = k2*(mdd1+mdd2)*k2;

% Rebuild the kept normal modes to include rigid boxiy modes and elastic modes and

% kept natural frequencies

FRKmodes1 = [RBmodes] FRKmodes1];
FRKmodes2 = [RBmodes2 FRKmodes2];
lamk1=lamla(l:c,1:c),
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lamk2=lam2a(1:f, 1:f);
% I. Build the system mass and stiffness matrices
MSYST = zeros(c+,cH),
MSYST(1:c,1:.c) =MSYST(1:c,1:c) + eye(c,c)+...
(FRKmodesl(al+1:a1+b1,:)')*m1*FRKmodesi(al+1:al+bl,:);
MSYST(1:c,c+1:c+f) =MSYST(l:c,ct+l:cH) +...
(-FRKmodesi(al+1:al+bl,:))'*m1*FRKmodes2(a2+1:a2+b2,:),
MSYST(ct+1:c+f,1:c) = MSYST(1:¢c,ct1:cHf);
MSYST(ct+1:cHf,ct+l:cHf) = MSYST(ct+1:c+f,c+1:cHf)+eye(f H)+...
(FRKmodes2(a2+1:a2+b2,:)")*m1*FRKmodes2(a2+1:a2+b2,:);
KSYST = zeros(c+f,c+f),
KSYST(1:c,1:.c) =KSYST(1:c,1:c) + lamk1 +
(FRKmodes1(al+1:a1+b1,:))*k2*FRKmodes1(al+1:al+bl,:);
KSYST(1:c,c+1:cH) = KSYST(1:c,ct1:cH) +
(-FRKmodes1(al+1:a1+bl,.))*k2*FRKmodes2(a2+1:a2+b2,:);
KSYST(c+1:ct+f,1:.c) = KSYST(1:c,c+1:cHf);
KSYST(ct1:cH,ct1:c+f) = KSYST(ct+1:cHf,c+1:cH+f) + lamk2 +
(FRKmodes2(a2+1:a2+b2,:)')*k2*FRKmodes2(a2+1:a2+b2,’),
% J. DETERMINE THE CRAIG CHANG FORCE VECTOR
SYSmodesl = [FRKmodes1 IRAmodesl];
SYSmodes2 = [FRKmodes2 IRAmodes2];

FI=[FI(OL1);F1(IL,D];
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F2={F2(02,1);F2(12,1)];
FCC1 = SYSmodes1'*F1;
FCC2 = SYSmodes2™F2,;
% Determine the second transformation matrix
% Note: since the final system mass and stiffness matrices partitions are known, this
% transformation matrix need not be used to build the system mass and stiffness matrices
T2 = [-k1*FRKmodesl(al+1:a1+bl1,1:c) k1*FRKmodes2(a2+1:a2+b2,1:f),
k1*FRKmodes1(al+1:al+bl,1:c) -k1*FRKmodes2(a2+1:a2+b2,1:f);
eye(c,c) zeros(c,f);
zeros(f,c) eye(f.0];
% determine the system Craig Chang force vector repartition the force vector
FCC1A=FCCl(ct+1:ctbl,1),
FCC1B=FCCl(l:c,1);

FCC2A=FCC2(f+1:f+b2,1),

FCC2B=FCC2(1:£1);

FCCl1= [FCCI1A,
FCC2A,
FCCIB;
FCC2BJ;

FCC =T2'*FCC1,
% note: since the calculated system is not restrained, the following commands clean up

% the rigid body modes
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P={1:3];
F={4:length(KSYST)];
KEX2={KSYST(F,F) KSYST(F,P), KSYST(P,F) KSYST(P,P)];
MEX2={MSYST(F,F) MSYST(F,P); MSYST(P,F) MSYST(P,P)J;
KEX3=KSYST(F,F);
KEX4=KSYST(F,P);
Rbmodes={-inv(KEX3)*(KEX4)
eye(length(P))];

[lamex,phiex}=fmodes(KEX2,MEX2);

fori=1:3;

lamex(i,1)=0,

end;

phiex(:,1:3)=Rbmodes;

b2=3;

[phrb}=rigid(MEX2,phiex,b2); %Gram-Schmidt

phiex(:,1:3)=phrb;

tu=phiex(;,1:3)"* MEX2*phiex(:,1:3),pause %orthogonality

tk=phiex(:,1:3)"**KEX2*phiex(, 1:3),pause

fe=size(FCC);

fol=fe(1,1);

FCC= [FCC(4:fc1,1);

FCC(1:3,1)];
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KSYST=KEX2,

MSYST=MEX2;

lam_ccrf=lamex;

phi_ccrf=phiex;
omega_ccrf=sqrt(lam_ccrf)/(2*pi),
omega=omega_ccrf

flops % determine total FLOPS

save dataS.mat lam_ccrfphi_ccrf MSYST KSYST FCC SYSmodesl...

SYSmodes2 T2 al a2 bl b2 f¢c XBM
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APPENDIX D

% LT Lynn James Petersen
% Naval Postgraduate School
% Mast-Antenna Survivability. Structural Dynamic Design Analysis by Component Mode
% Synthesis
% Program:Mrfrb2.m
% This program is written in accordance with the MacNeal residual flexibility method.
% The program loads two data files containing information from an FE generated
% substructure this information includes: a) the mass and stiffness matrices b) listing of
% internal and interface coordinates c) any forcing or base excitation data needed to solve
% a dynamic response problem. The program is ready to load the two data files into the
% work space

load datal.mat % mast data

K1=kbl, M1=mbl, O1=0, I1 = INT, R1 =11, F1=fl

load data2.mat % antennae data

K2=kbl, M2=mb1l, 02=0, 12 = INT, R2 = 12, F2=f

flops(0), % zero out the FLOPS count
% 1. Substructure 1
% A Partition substructure one into internal and interface coordinates

Koo1=K1(01,01),
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Kor1=K1(O1,R1);
K1=[K1(01,01) K1(01,11);K1(11,01) K1(I1,11)];
M1=[M1(01,01) M1(O1,I11);MI1(I1,01) M1(11,11)];
% B. Calculate natural "free interface normal modes"” for structure 1
[lam1,FRmodes1] = fmodes(K1,M1),
al = length(O1),
bl = length(I1);
a = size(FRmodes1);
b=2a(2),
for i=1:b1;
lam1(i,1)=0; % for rigid body modes only
end;
% C. Prompt the user for the number of normal modes desired to be kept.
¢ = input(‘enter the number of free interface normal modes desired to be kept for...
structure 1 ')
%  Partition the normal modes into kept modes and deleted modes
FRKmodes] = [FRmodes1(:,bl1+1:c)];
FRDmodes! = [FRmodes1(;,c+1:b)];
lam1a=diag(lam1);
lamkl=lamla(bi+1:c,bl+1:c);
lamd1=lamla(c+1:b,c+1:b);

inviamk1=inv(lamk1);
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inviamd1=inv(lamd1),
% D. Obtain the rigid body modes as static constraint modes would be obtained
RBmodesl = [-inv(Kool)*Korl
eye(length(R1))];
% unity mass normalize and orthogonalize the rigid body modes
[phrb] = rigid(M1,RBmodesi,b1); %Gram-Schmidt
RBmodes] = phrb;
% E. Form the projection matrix [P] in support of the inertia relief solution
Pl={eye(al+b1) - M1*RBmodes1 *RBmodes1'];
GSTARI1 =inv(Kool);
GBSTARI = zeros(al+bl,al+bl),
GBSTARI(1:al,1:a1) = GBSTARI(l:al,1:al) + GSTARI,
FAl = [zeros(al ,bl);eye(bl,b1);];
% F. Obtain the residual flexibility modes...
GFLEX1 =P1'*GBSTARI1*P1,
% ...from the kept modes
% IRAmodesl = [GFLEX1 - FRKmodes]*invlamk1*FRKmodes1'|*FAl;
% ...from the deleted modes
% IRAmodes] = (FRDmodes1*inviamd1*FRDmodes1')*FAl,
% Note: this code is tailored to a synthesis of a free-free structure to a free-free structure
% (i.c. mast & antennae to support base acceleration formulation)

% the following code applies if the first structure was fully restrained

118




% FRKmodesl = [FRmodes1(;,1:c)];

% FRDmodes! = [FRmodes1(:,c+1:b)];

% Diagonalize and partition into kept and deleted natural frequencies
% lamla=diag(lam1),

% lamk1=lamla(l:c,1:c);

% lamdl=lamla(c+1:b,c+1:b);

% inviamk1 = inv(lamk1);

% inviamd1 = inv(lamd1);

% D. Obtain the residual flexibility modes...

% Obtain the flexibility matrix

% Gl =inv(K1);

% FAl = [zeros(al,bl);eye(bl,bl));

% ...from the kept modes

% Rmodes = (G1 - FRKmodes1*inviamk1*FRKmodes1')*Fa,
% ...from the deleted modes

% Rmodes = (FRDmodes1 *inviamd 1 *FRDmodes1)*FAl,

% E. Calculate the reduced mass and stiffness matrices for structure 1
% Note: since the partitions of the system mass and stiffness matrices are known, the
% following calculations need not be performed.

% Transformation matrix (SYSMODES]1): [T]
% SYSmodes] = [FRKmodes! Rmodes};

% KSYS1 = SYSmodes1"*K1*SYSmodesl;
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%

MSYS1 = SYSmodes1'*M1*SYSmodesl;

% II. Substructure 2

%

%

%

A

Partition substructure two into internal and interface coordinates
Koo2 =K2(02,02),
Kor2 = K2(02,R2);
K2={K2(02,02) K2(02,R2); K2(R2,02) K2(R2,R2)];
M2=[M2(02,02) M2(02,R2), M2(R2,02) M2(R2,R2)},
Calculate natural "free interface normal modes" for structure 2
(lam2 FRmodes2] = fmodes(K2,M2)
a2 = length(02),
b2 = length(12),
d = size(FRmodes2),
e=d(2),
for i=1:b2

lam2(i,1)=0; % rigid body modes only

end,

C. Prompt the user for the number of normal modes desired to be kept

f= input(‘enter the number of free interface normal modes desired to be kept for...

structure 2 ')

FRKmodes2 = [FRmodes2(:,b2+1:f)];

FRDmodes2 = [FRmodes2(.,f+1:e)}];

lam2a=diag(lam2),
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lamk2=lam2a(b2+1:£f,b2+1:f),
lamd2=lam2a(f+1:e,f+1:e),
invlamk2=inv(lamk2),
invlamd2=inv(lamd2);
% D. Obtain the rigid body modes as constraint modes would be obtained
RBmodes2 = [-inv(Koo2)*Kor2
eye(length(R2))),
% unity mass normalize and orthogonalize the rigid body modes
[phrb] = rigid(M2,RBmodes2,b2), % Gram-Schmidt
RBmodes2 = phrb;
% E. Form the projection matrix [P] in support of the inertia relief solution
P2=[eye(a2+b2) - M2*RBmodes2*RBmodes2'];
GSTAR2 = inv(Koo2),
GBSTAR2 = zeros(a2+b2,a2+b2);
GBSTAR2(1:a2,1:a2) = GBSTAR2(1:a2,1:a2) + GSTAR2;
FA2 = [zeros(a2,b2),eye(b2,b2);];
% F. Obtain the residual flexibility modes...
GFLEX2 = P2"*GBSTAR2*P2;
% ...from the kept modes
% IRAmodes2 = [GFLEX2 - FRKmodes2*inviamk2*FRKmodes2']*FA2,
% ...from the deleted modes

%  IRAmodes2 = (FRDmodes2*inviamd2*FRDmodes2')*FA2;
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% G. Calculate the reduced mass and stiffness matrices for structure 1 transformation
% matrix {T}]
% SYSmodes2 = [FRKmodes2 IRAmodes2];
% KSYS2 = SYSmodes2'*K2*SYSmodes2;, % note: since final matrix is known,
% these calculations are not required
% MSYS2= SYSmodes2'*M2*SYSmodes2;
% H. Couple the two systems.
k1 = [IRAmodesl(al+1:al1+bl,:) + IRAmodes2(a2+1:a2+b2,:)];
k2=inv(k1),
% Rebuild the kept normal modes to include rigid body modes and elastic modes and kept
% natural frequencies
FRKmodes] = [RBmodes] FRKmodesi1];
FRKmodes2 = [RBmodes2 FRKmodes2];
lamk1=lamla(l:c,1:c);
lamk2=lam2a(1:£,1:f),
% 1. Build the system mass and stiffness matrices
MSYST = eye(ctf,cH),
KSYST = zeros(ctf,cHf),
KSYST(1:c,1:c) = KSYST(1:c,1:c) + lamk1 +...
(FRKmodesi(al+1:al+bl,;))'*k2*FRKmodesl(al+1:al+bl,:);
KSYST(1:c,c+1:ct+f) = KSYST(l:c,ct+l:c+f) +...

(-FRKmodes1(al+1:a1+b1,:))'*k2*FRKmodes2(a2+1:a2+b2,:);
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KSYST(ct+1:ctf,1:c) = KSYST(l:c,ct+l:.cH)’,
KSYST(c+1:cHf,ct+1:c+f) = KSYST(ct+1:cHf,ctl:cHf) + lamk2 +...
(FRKmodes2(a2+1:a2+b2,:))"*k2*FRKmodes2(a2+1:a2+b2,:);
% Build the transformation matrix for both substructures
SYSmodes] = [FRKmodes! IRAmodesl1];
SYSmodes2 = [FRKmodes2 [RAmodes2];
% J. Determine the MacNeal force vector
% partition the force vector with internal forces followed by interface forces
F1=[F1(O1,1);FI(I1,1)};
F2=[F2(02,1);F2(12,1));
% Premultiply the foree vector hy the first transformation matrix
FM1 = SYSmodes1'*F1;
FM2 = SYSmodes2'*F2;
% Determine the second transformation matrix
T2= [-k1*FRKmodesl(al+1:al+bl,1:c) k1*FRKmodes2(a2+1:a2+b2,1:f);
k1*FRKmodes1(al+1:al1+bl,1:c) -k1*FRKmodes2(a2+1:a2+b2,1:f),
eye(c,c) zeros(c,f);
zeros(f,c) eye(£0)];
% determine the system MacNeal force vector
% repartition the force vector
FM1A=FMI(c+1:c+b1,1);

FMIB=FMI(l:c,1);
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%

%

%

FM2A=FM2(f+1:£+b2,1),

FM2B=FM2(1:£,1);

FMi=[ FMIA,
FM2A;
FMIB;
FM2B];

FM = T2"*FM],

Partition the system mass and stiffness matrices to be suitable for base excitation
problem (prescribed acceleration)
P=(1:3],
F={4:length(KSYST)];
KEX2=[{KSYST(F,F) KSYST(F,P), KSYST(P,F) KSYST(P,P)];
MEX2={MSYST(F,F) MSYST(F,P), MSYST(P,F) MSYST(P,P)];
KEX3=KSYST(F,F),
KEX4=KSYST(F,P),
Rbmodes= [-inv(KEX3)*(KEX4)
eye(length(P))];
calculate the system natural frequencies
[lamex,phiex}=fmodes(KEX2,MEX2),
for i=1:3;
lamex(i,1)=0; % rigid body modes
end;
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% clean up the complex rigid body eigenvectors

phiex(;,1:3)=Rbmodes;
[phrb]=rigid(MEX2,phiex,b2); %Gram-Schmidt
phiex(;,1:3)=phrb;

% check orthogonality and diagonalization
tu=phiex(:,1:3)*MEX2*phiex(:,1:3),pause
tk=phiex(:,1:3)*KEX2*phiex(:,1:3),pause

% repartition the system force vector to correspond to mass and stiffness matrix
fm=size(FM),
fm1=fin(1,1);
FM=[FM(4:fm1,1);
FM(1:3,1)];
KSYST=KEX2;
MSYST=MEX2,
lam_mrf=lamex;
phi_mrf=phiex;
omega_mrf=sqrt(lam_mrf)/(2*pi),
save data6.mat  lam_mrf phi_mrf MSYST KSYST FM SYSmodes] SYSmodes2

T2 al a2 b1 b2 fc XBM
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%

%

%

%

%

%

%

%

%

%

APPENDIX E

LT Lynn J. Petersen
Naval Postgraduate School
Mast-Antenna Survivability: Structural Dynamic Design Analysis By Component
Mode Synthesis
Program: Basexda.m
This program solves for the response of a system that is subject to base excitation.
Structure is generated purely from FE modeling
load data3.mat
A. Input the number of modes desired to be used
n = input(‘enter the number of modes desired: ')
phiex(:,n+1:length(phiex))=(];
B. Place into modal coordinates
ml = phiex'*mb1*phiex;
k1 = phiex'*kb1*phiex;
C. Time and frequency parameters
dt=0.001;
tmax = 0.4,
num_steps = tmax/dt;

t=0:dt:tmax;
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omegn=sqrt(lamex),
% freq=8.9525 ;
% freq=219.265;
omega = freq*2*pi; %(rad/sec)
% D. Convert the force vector
f1=f+ (omega)"2*FEX;
f1=[f1(4:length(f1),1),
f1(1:3,1)];
Fl=phiex'*fl; %modal force vector
% E. Solving the differential equation
for i=1:n;
for j=1:num_steps+1;
% for rigid body modes
if i<=3;
cl=1/omega*F1(i,1)*cos(omega*t(j));
c2=0,
q(i,j)=F1(i,1)/(omega”2)*sin(omega*t(j))+c1*t()+c2;
else
qij)=  -F1(i,1)*omega/(omegn(i)*(lamex(i)-...
omega"2))*sin(omegn(i)*1(j)) +F1(i, 1)/(lamex(i)-omega”2)*sin(omega*t(}));
end;
end,
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%F.

end;
Converting back from modal to physical coordinates
x=phiex*q,
s=size(x)
x1={x(s(1)-2:5(1),:);
x(1:s(1)-3,)];
x=xl;

save data6.mat x
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%

%

%

%

%

%

%

%

%

APPENDIX F

LT Lynn James Petersen
Naval Postgraduate School
Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component Mode
Synthesis
Program Basexcb.m
This program solves for the response of a system that is subject to base excitation
using the Craig -Bampton formulation
load datal0.mat
A. Input the number of modes desired
n = input(‘enter the number of modes desired: ')
phi_cpl(:,n+1:length(phi_cpl))=[];
B. Place into modal coordinates
ml = phi_cpl"*M_cpl*phi_cpl;
k1 =phi_cpl"*K_cpl*phi_cpl;

F1 = phi_cpl'*FCB,

% C. Tinwe and frequency parameters
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dt = 0.001;
tmax=0.4;
num_steps = tmax/dt;
t = 0:dt:tmax;
omegn = sqrt(lam_cpl);
%  freq=89525;
%  freq=219.265;
omega = freq*2*pi; %(rad/sec)
oD. Solving the differential equation
for i=1:n;
for j = 1:num_steps+1;
% for rigid body modes
ifi<=3; %3 rigid body modes
cl=1/omega®F1(j,1)*cos(omega*t(j));
2=0;
q(Lj)=F1(i,1)/(omega”2)*sin(omega*t(j))+c1 *t(j)+c2;
else
q(ij) = F1(i,1)*omega/(omegn(i)*(lam_cpl(i)omega”2))*sin(omegn(i)*t(j))
+F1(i, 1)/(fam_cpl(i,1)-omega”2)*sin(omega*t(j));
end;
end;
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end,
% E. Converting from modal (phys,modal) to Craig-Bampton coordinates

% F.

x=phi_cpl*q;

Converting back from Craig-Bampton coordinates to physical
x3=[x(Ly,);x(y+s+1.y+s+a,)};

x1=NC_MODES*x3;

x4=[x(y+L:y+s, ) x(y+s+1:y+sta,)];

x21=NC_MODES2*x4,

x2la={x2l(e+1:e+b,:);x2I(1:¢,)];

save datal 1. mat xilx2la
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%
%
%
%
%
%
%
%

%

%

APPENDIX G

LT Lynn James Petersen
Naval Postgraduate School
Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component Mode
Synthesis
Program: Basexrf.m
This program solves for the response of a system that is subjected to base excitation
using the Craig-Chang and MacNeal formulations
the following input prompts the user as to what method will be used in the base
excitation problem
type=input(‘enter type of residual flexibility method, 1 if Craig-Chang, 2 if Macneal")
if type==1
load data5.mat
else
load data6.mat
end;
A. Input the number of modes desired
n = input('enter the number of modes desired: *)

if type==1
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phi_ccrf(:,n+1:length(phi_ccrf))=(];
else
phi_mrf(:,n+1:length(phi_mrf)) =(];
end;
% B. Place into modal coordinates
if type==1
ml = phi_ccrf*MSYST*phi_ccrf:
kl= plﬁ_ccrf*KSYST*plzi;ccrﬁ
F1 = phi_ccrf*FCC;
else
ml = phi_mrf*MSYST*phi_mrf,
k1 = phi_mrf*KSYST*phi_mrf;
F1 = phi_mrf*FM,;
end;
% C. Time and frequency parameters
dt=0.001;
tmax =04,
num_steps = tmax/dt;
t = 0:dt:tmax;
if type= =1
omegn = sqrt(lam_ccrf);
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clse
omegn = sqrt(lam_mrf);
end;
%  freq=8.9525;
%  freq=219.265;
omega = freq*2*pi; %(radiser)
%D. Solving the differential equation
if type= =1
for i=l:n;
for j = l:num_steps+1;
% for rigid body modes
if i<=3;
c1=1/omega*F1(, 1)*cos(omega*t());
¢2=0,
aG)=F1(;,1/(omega"2)*sin(omega*t)y+<1 *tGy+e2;
else
aGi)=  -F1G,1)*omega/(omegn(y*(am_corfi)-
omega™2))*sin(omegn(i)*tG)) + F1(; 1/(am_corfi,1)-omega"2)*sin(omega*1(j);
end;
end;
end,
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else;
for i=1:n;
for j = 1:num_steps+1,
% for rigid body modes
if i<=3;
cl=1/omega*F1(i,1)*cos(omega*t(j));
c2=0,
q@ij)=-F1(i,1)/(omega”2)*sin(omega*t(j)}+c1*t(i)+c2;
else
q@j) =  -F1(i,1)*omega/(omegn(i)*(lam_mrfii)-
omega”2))*sin(omegn(i)*(j)) + F1(i,1)/(lam_mrf(i,1)-omega"2)*sin(omega*1(j)),
end;
end;
end,
end,
% E. Converting from modal(phys,modal) to Craig-Chang or MacNeal coordinates
if type=1
x=phi_ccrf*q;
else
x=phi_mrf*q;

end,
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% F. Converting back from Craig-Chang/MacNeal coordinates to physical
% first convert back to the individual substructures
sz=size(x),
szl=s2(1),
x= [x(sz1-2:szl,});

x(1:sz1-3,)};
x1 =T2*x;,
x2 = [x1(b1+b2+1:b1+b2+c,:);x1(1:b1,)];
x3 = [x1(b1+b2+c+1:b1+b2+cH:);x1(b1+1:b1+b2,:)];
xstrl = SYSmodes1*x2;
xstr2 = SYSmodes2*x3;
xstr2={xstr2(a2+1:a2+b2,:);xstr2(1:a2,:)];
if type==1

save data7.mat xstrl xstr2
else

save data8.mat xstrl xstr2

end;
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APPENDIX H

LT Lynn James Petersen

Naval Postgraduate School

Mast-Antenna Survivability Structural Dynamic Design Analysis by Component Mode
Synthesis

This appendix contains an alphabetical listing of the auxillary functions that support

the main programs that are listed in appendices A-G

Function: El3mk.m
function [ke,me] = el3mk(l,gamma,LE,r,c,s)
This function is called to build the elemental and global mass and stiffness matrices for
a 3 DOF/node "FE" problem.
A. Element stiffness matrice:
ke(1,1)=Vr*l/r*c*c + 12*s*s;
ke(1,2)=V/r*Vr*c*s - 12*c*s;
ke(1,3)=-6*1*s;
ke(1,4)=-Vr*l/r*c*c - 12*s*s;
ke(1,5)=l/r*l/r*c*s + 12*c*s;

ke(1,6)=-6*1*s;
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ke(2,1)=Vr*l/r*c*s - 12%c*s;
ke(2,2)=l/r*l/r*s*s + 12*c*c;
ke(2,3)=6"I*c;
ke(2,4)=-Ur*l/r*c*s + 12*%c*s;
ke(2,5)=-Ur*l/r*s*s - 12%c*c;
ke(2,6)=6*1*c;
ke(3,1)=-6*I*s;
ke(3,2)=6%I*c;

ke(3,3)=4*1*1,

ke(3,4)=6*I*s;
ke(3,5)y=-6*I*c;
ke(3,6)=2*1*1,
ke(4,1)=l/r*l/r*c*c - 12*s*s;
ke(4,2)=-Vr*l/r*c*s + 12*%c*s;
ke(4,3)=6%I*s;
ke(4,4)=Ur*l/r*c*c + 12%s*s;
ke(4,5)=l/r*I/r*c*s - 12%c*s;
ke(4,6)=6*1*s;
ke(S,1)=-Vr*l/r*c*s + 12*c*s;
ke(5,2)=-Ur*l/r*s*s - 12*%c*c;

ke(5,3) = -6*I*c;
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% B.

ke(5,4)=Ur*l/r*c*s - 12%c*s;
ke(5,5)=Ur*/r*s*s + 12*c*c;
ke(5,6)=-6*1*c;
ke(6,1)=-6*1*s;
ke(6,2)=6*1*c;
ke(6,3)=2*1*1;
ke(6,4)=6*1*s;
ke(6,5)=-6*1*c;
ke(6,6)=4*1*1,
ke=E*1N1"3*ke;

£=386.09;

Element mass matrix
me(1,1)=140%c*c + 156*s*s;
me(1,2)=-16*c*s;
me(1,3)=-22*1*s,
me(1,4)=70%c*c + 54*s*s;
me(1,5)=16*c*s;
me(1,6)=13*1*s;
me(2,1)=-16*c*s;

me(2,2)=156*c*c + 140*s*s;
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me(2,3)=22*1*c;
me(2,4)=16*c*s,
me(2,5)=54%c*c + 70*s*s;
me(2,6)=13*I*c,
me(3,1)=-22*%*s;
me(3,2)=22*%c;
me(3,3)=4*1*,
me(3,4)=-13%I*s;
me(3,5)=13*1*c;
me(3,6)=-3*1*|,
me(4,1)=70%c*c + 54*s*s;
me(4,2)=16*c*s;
me(4,3)=13*1*s;
me(4,4)=140*c*c + 156*s*s;
me(4,5)=-16%c*s,
me(4,6)=22*1*s;
me(5,1)=16*c*s;
me(5,2)=54*c*c + 70*s*s;
me(5,3)=13*1%c;
me(5,4)=-16%*c*s;

me(5,5)=156*c*c + 140*s*s;



me(5,6)=-22%*c;
me(6,1)=13*1*s;
me(6,2)=-13*I*c;
me(6,3)=-3*1*l;
me(6,4)=22*1*s;
me(6,5)=-22%1%c;
me(6,6)=4*I1*1,

me = gamma*1/(420)*me;

% Function: Fmanor
% function[phi_normal,orth]=fmanor(phi,mass)
% this function mass normalizes a modal matrix.
a = size(phi);
nummodes=a(1,2);
phi_normal=zeros(a),
%
for ii=1:nummodes;
modalmass(ii)=phi(.,ii)"*mass*phi(;,ii);
if modalmass(ii)~=0,
phi_normal(,ii)=(1/sqrt(modalmass(ii)))*phi(.,ii);
else
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phi_normal(:,ii)=phi(.,ii);
end;
end;
% do the ortho calc:
%

orth=phi_normal'*mass*phi_normal*100;

% Function: Fmodes.m
% this function returns a vector containing mode freqs (rad/sec)*2 and a matrix
% containing the mass
% normalized mode shapes. The mode information is sorted by frequency in ascending
% order.
% [omega,phi]=fimodes(k,m)
function [omega,phi]-fmodes(k,m)

a=length(m);

[v,d]=eig(m\k);

[omga,index]=sort(diag(d));

omega=zeros(a,a),

for i=1:a;

omega(i,i)=omga(i):
end;
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%
for i=1:a;
phitemp(.,i)=v(.,index(i)),
end;
omega=diag(omega),
[phi,orth]=fmanor(phitemp,m);

% Function: Kmbe.m
function [KEX,MEX FEX]=kmbe(kb1,mb1,INT,BS,XBM)

% A. Partitioning of the mass and stiffness matrices according to internal and base
coordinates

MII = mb1(INT,INT),

MIB = mb1(INT,BS);

MBI = mb1(BS,INT),

MBB = mb1(BS,BS);

KII = kb1(INT,INT);
KIB = kb1(INT,BS);
KBI = kb1(BS,INT),

KBB = kb1(BS,BS);
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% B. Form the ex-mass and ex-stiffness matrices
MEX = (MII - KIB*inv(KBB)*MBI),
KEX = (KII - KIB*inwW(KBB)*KBI);
% C. Form the ex-force vector
FEX = (MIB-KIB*inv(KBB)*MBB)*XBM,;
% Function: Rigid.m
function [phrb] = rigid(mb1,phi,b2)
% This function obtains orthogonality of 3 linearly independent but not orthogonal
% vectors using the Gram-Schmidt procedure
ifb2==3; % 3 rigid body modes
% 1. Obtain “v” vectors
V1 = phi(;,1);
V2 = phi(;,2),
V3 = phi(;,3);
% 2. solve for alpha
alpha = (V2"*mb1*V1)/(V1'"*mb1*V1);
V2T = V2 - alpha*V1;
% 3. solve for beta and gamma
o(1,1) = V3"*mb1*V1;
(2,1) = V3"*mb1*V2T;

a(1,1) = V2T"*mb1*V1,
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%4.

\% 1.

% 2.

% 3.

a(1,2) = VI"*mb1*V1,
a(2,1) = V2T™*mb1* V2T,
a(2,2) = V1'"*"mb1*V2T;
x = inv(a)*c,
beta = x(1,1);
gamma = x(2,1);
V3T = V3 - beta*V2T - gamma*V1;
phrb = [V1 V2T V3T];
unity mass normalize the phrb shapes
[phi_normal,orth}=fmanor(phrb,mb1);
phrb = phi_normal
%2-DOF/NODE
Obtain “v” vectors
V1 =phi(,1),
V2 = phi(:,2),
solve for alpha
alpha = (V2"*mb1*V1)/(V1'"*mb1*V1),
V2T = V2 - alpha*V1,
reasign the rigid body modes

phrb = [V1 V2T];
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% 4. unity mass normalize the phrb shapes
[phi_normal,orth}=fmanor(phrb,mb1);
phrb = phi_normal,

end,

% Function: Forceda.m
function(sh,mo)=forceda(type)
% this program calculates the maximum shear and moment to a basex problem
if type==1 % finite element
load data6.mat
load data3a.mat
load data3.mat
datdabe
elseif type = =2 % Craig-Bampton
load data 11.mat
load datal.mat
load datala.mat
elseif type ==3 % Craig-Chang
load data 6.mat

load datal.mat
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load datala.mat
else % MacNeal
load data 7.mat
load datal.mat
load datala mat
% input location where shear and moment are desired
if type==1
sm = input(‘enter the element where the sheer and moment are desired')
g=size(x),
h=g(1,2),
elseif type==2
str = input(‘enter which structure is desired for analysis)
if str ==1
load data_mst.mat
x=xll
else
load data_ant.mat
=x2la
end;
sm = input(‘enter the element where the sheer and moment are desired’)
g=size(x),
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h=g(1,2),
elseif type==
str = input(‘enter which structure is desired for analysis)
if str =1
load data_mst.mat
x=xstrl
else
load data_ant .mat
X=Xstr2
end; .
sm = input(‘enter the element where the sheer and moment are desired')
g=size(x),
h=g(1,2),

else
str = input(‘enter which structure is desired for analysis)
if str ==1
load data_mst.mat
x=xstrl
else

load data_ant.mat
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X=Xstr2
end,
sm = input(‘enter the element where the sheer and moment are desired")
g=size(x),
h=g(1,2),
[ke2,me2]=ei3mk(l(sm),gamma(sm),I(sm),E(sm),r(sm),c1(sm),s1(sm));
t2={cl(sm) s1(sm) 00 0 0;
-sl(sm) cl(sm) 000 0;
001000;
00 0 cl(sm) s1(sm) O;
00 0 -s1(sm) c1(sm) 0;
000001];
% t2=eye(6),
if type==
y3=abs( [x(3*con(sm,1)-5,);x(3 *con(sm, 1)-4,:);x(3*con(sm, 1)-
3,.):x(3*con(sm,2)...
-=5,:);x(3*con(sm,2)-4,:);x(3*con(sm,2)-3,:)] );

for j=1:h;

yd4=ke2*t2*y3;
end,

nl = input (‘enter 1 if first node is desired or 2 if second node is desired’)
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sh=max(y4(2,:))
mo=max(y4(3,:))
else
sh=max(y4(5,:))
mo=max(y4(6,:))
end;
elseif type <=4
if str=1
y3=abs( [x(3*con(sm,1)-5,:);x(3*con(sm, 1)-4,:);x(3*con(sm, 1)-
3,:);x(3*con(sm,2)...
-5,:);x(3*con(sm,2)-4,:);x(3*con(sm,2)-3,)] );
for j=1:h;
yd=ke2*t2*y3;
end;
nl = input (“enter 1 if first node is desired or 2 if second node is desired’)
if nl==
sh=max(y4(2,:))
mo=max(y4(3,:))

else

sh=max(y4(5,:))
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]

mo=max(y4(6,:))
end,
else
y3=abs( [x(3*con(sm,1)-2,:);x(3*con(sm, 1)-1,:);x(3*con(sm, 1),:);x(3*con(sm,2)...
-2,:):x(3*con(sm,2)-1,:);x(3*con(sm,2),:)] );
for j=1:h;
yd=ke2*t2%y3;
end;
nl = input (‘enter 1 if first node is desired or 2 if second node is desired”)
if nl==1
sh=max(y4(2,:))
mo=max(y4(3,:))
else
sh=max(y4(5,))
mo=max(y4(6,:))
end;

end,
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% Function: Trig.m
function [c,s] = trig(theta,n)
% This function is written in order to minimize on truncation error in calculating the
% angle between beam elements of finite element code
forj=l:n
if theta(1,j) < 0.02 & theta(l,j) > 6.25
oLl
s(1,)=0;

elseif theta(1,j) < 1.58 & theta(1,j) > 1.56

(1)) =0;
s(1)=1,
elseif theta(1,j) > 3.11 & theta(1,j) < 3.17
o(1j)=-1,
s(1j) =0;
elseif theta(1,j) > 4.68 & theta(1,j) <4.74
(1) =0,
s(1j)=-1
else
c(1,j)=cos(theta(1j));
s(1,j)=sin(theta(1,j));
end,
end;
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