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ABSTRACT

The structural survivability of shipboard mast/antenna systems subjected to underwater

explosion can be "designed in," through the determination of the structural dynamics of

the mast/antenna system. This thesis details the specialized application of accurate and

efficient analytic methods for the structural dynamic design analysis of shipboard

mast/antenna systems. Investigated herein are a class of substructuring methods, generally

referred to as component mode synthesis methods, which provide for the rapid calculation

of dynamic response of the mast/antenna structural system to weapons effects.

Additionally, the methods also provide for the simulation of live fire testing. The methods

allow the individual antennae and the mast each to be independently modeled, arbitrarily

combined, and the combined system dynamic response rapidly calculated to determine the

structural survivability of a proposed mast/antenna configuration. This rapid and

"modular" component-based analysis capability is specifically tailored for interactive

computer-aided design analysis of shipboard mast/antenna systems.
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L INTRODUCTION

This thesis documents the development of analytic methods for maximizing the combat

survivability of shipboard structural systems subjected to weapons effects. Survivability

will be improved through the characterization of the mast/antenna system structural

dynamics and the development of specialized design analysis tools for the prediction and

minimization of dynamic response due to weapons effects. The objective is improved

system combat survivability.

Additionally, the methods will be developed in the context of the analytical simulation

of live fire test and evaluation (LFT&E) for shipboard systems. Those shipboard structural

systems which undergo linear elastic dynamic response due to live fire effects can be

evaluated for live fire survivability using the simulation methods to be developed, thereby

eliminating the need for actual LFT&E for these systems. Alternatively, these simulations

will be of benefit in the planning of actual live fire test and evaluation (LFT&E) programs.

The results herein focus on shipboard mast/antenna structures. Shipboard mast/antenna

systems must be designed to withstand moderate to severe shock loading induced by

underwater explosion (UNDEX) of conventional or nuclear type. The UNDEX delivers

devastating forces to the targets in the form of incident shock wave pressure, gas bubble

oscillation, cavitation closure pulses, and various reflection wave effects. These shock-

induced forces then propagate through the ship to the various systems, equipment, and
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top-side structures including the mast and antennae. The response of the mast and

antennae to the UNDEX shock wave is basically linear elastic and vibrational ir. nature.

The mast and antennae tend to vibrate at their fundamental natural frequency, or at a low

range of natural frequencies. The maximum amplitude of the vibration usually occurs after

the shock wave passes the ship. The shock response wave form is remarkably different at

various levels within the ship. In essence, the ship acts as a low pass structural filter which

alters the characteristics of the propagating shock wave from one possessing high

frequency components to one that contains relatively low frequency components [Ref. L :p.

2]. Thus, the shock survivability of the mast/antenna system, which is located top-side, is a

iibration problem in which relatively low frequency equipment support excitations are

observed. The emphasis on design analysis relates directly to the survival of the mission

critical systems on the platform. The ability of the naval vessel to carry out its mission

after being subjected to an UNDEX threat depends on the survivability of these systems,

and specifically the mast/antenna system. Combat survivability of new systems, such as the

mast/antenna system can be "designed in" by accounting for the structural dynamics of the

system during the design process. The methods developed herein focus on the the

structural dynamics of the mast/antenna systems, so that their combat survivability,can be

directly addressed in the design process. Additionally, the methods will make possible the

improvement of survivability of existing systems. For example, survivability can be

improved by dynamically tuning and relocating antennae base' on the application of the

methods to be described.

2



A. BACKGROUND

The dynamic response of a shipboard antenna is dependent on the dynamic interaction

of the antenna with the mast during response to weapons effect. Large dynamic loads in

an antenna can result if (a) the antenna is mounted on the mast at a location with large

accelerations due to weapons effects, or (b) the antenna has its natural frequencies in close

proximity to the excited natural frequencies of the mast. In recent years, the Navy has had

frequent occurrences of shipboard antennae systems failing structurally after being

subjected to shock due to weapons effects [Ref 2]. In order to design these structural

systems (i.e. mast and antennae) for minimum dynamic response and hence maximum

survivability, the structural dynamic parameters which determine the dynamic response of

the system must be accurately quantified. The primary structural dynamic parameters to be

determined are the modal parameters (i.e. natural frequencies, mode shapes, modal mass

and damping) of the mast and the various individual antenna. The modal parameters are

required to characterize the structural dynamics of each substructure, e.g. the mast and

each antenna, and hence characterize the dynamics of the combined structural system.

Given an accurate coupled system analytic dynamics model, weapons-induced dynamic

response can then be predicted, and system designs can be evaluated and optimized with

respect to survivability. The coupled system analytic dynamics model can serve as the

basis for the computer simulation of LFT&E.
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3. OVERVIEW OF THE SUBSTRUCTURE APPROACH TO THE DESIGN

ANALYSIS OF MAST/ANTENNA SYSTEMS

The methods described herein are directed at the automated design analysis of

mast/antenna systems. The methods provide accurate estimates of the modal parameters

for a mast/antenna structural system, and therefore will provide accurate estimates of the

dynamic response due to weapons effects. Generally referred to as "component mode

synthesis," these substructuring methods make use of independent finite element models

for the mast and each antenna. In order to allow a designer to rapidly assess for

survivability a large number of candidate mast/antenna system designs, the methods are

computationally efficient as well as accurate. With respect to mast/antenn systems, the

component mode synthesis process will allow a designer to analytically "install" the

various antenna models into the mast model, and rapidly calculate coupled mast/antena

system UNDEX dynamic response. When incorporated into a computer-aided design

nvironment, the complexities of the calculation will be transparent to the designer, and

will allow the incorporation of self-checks and protection against user error and misuse.

The substructure approach to mast/antenna structural dynamic analysis can be briefly

outlined as follows:

A designer either finds the dynamic characteristics of the various antennae to be

installed from a "catalos" (database) of antenna modal parameters, or calculates

individual antenna modal parameters from a finite element model of the antenna. The

modal parameters of the antenna constitute the antenna dynamic model.
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* The various antennae dynamic models are analytically coupled with the mast model,

and the dynamic response of the coupled mast/antenna sysem due to weapons effects

is calculated. If unacceptable dynamic response levels are calculated, the various

antennae models can be rapidly repositioned on the mast, or exchanged with other

antennae, and the new dynamic response calculated.

This scheme has several significant advantages for the automated design analysis of

mast/antenna systems. The primary advantages include:

"* The ability of these methods to treat the mast and antennae as "substructures," and

arbitrarily and repeatedly combine them for the rapid calculation of dynamic

response will make possible the evaluation of a greater number of mast/antenna

configurations, and hence will greatly facilitate the determination of an optimal

configuration with respect to combat survivability.

"* The various masts and antennae are fabricated by various independent contractors.

The component mode synthesis method allows the separate modeling of the mast

and antennae, and therefore naturally preserves the independence of the contractors.

"* The formulations to be described are modal, and therefore can fiunction equally well

with analytically derived modal parameters, or with modal parameters identified in a

vibration test.

The analytic methods for the generation of the coupled mast/antenna model are the

focus of this work. To be evaluated in this report are several component mode methods

for substructure synthesis: the Craig-Bampton method and two residual flexibility

5



formulations. The methods are specialized for the mast/antenna analysis problem, and their

relative merits compared in the context of combat survivability. The methods are '.ased on

the modal representation of components; that is, rather than representing a structure using

the mass and stiffntess matrices generated in a finite element model, these methods employ

various classes of "mode shapes" to represent the substructures or components. For

example, the familiar normal modes of vibration are one class of mode shape used.

The computational efficiency of these methods, which is critical to their effectiveness

in a computer aided design environment, comes from their ability to accurately describe a

component with a minimum number of mode shapes. The sections of this report which

follow will describe the above mentioned synthesis formulations, and demonstrate their

relative accuracy and efficiency in the calculation of the dynamic response of a small yet

representive mast/antena model, subjected to a variety of applied harmonic forces as

wenl as deck accelerations and displacements. The model used, which includes a mast and

a single antenna, is of a small size compared with that required to represent an actual

mast/antena structures. However, the model has all the features necessary to allow the

assessment and critical analysis of the component mode synthesis methods.

Specifically, the three synthesis methods will each be used in the following analyses:

(1) Calculation of mast/antenma coupled system modal pmaameters: This is the

fundamental assessment of a method's accuracy. Prior to performing the synthesis, modal

parameters are calculated for the antenna model and the mast model. The appropriate

component representation is generated and the mast/antenna system is synthesized. The

6



coupled system natural frequencies are calculated and are compared with the natural

frequencies calculated using a standard finite element procedure. The standard finite

element procedure means the assembly of a single model representing the total

mast/antenna system. A comparison of floating point operations (FLOPS) accumulated in

all cases is also provided. This comparison will demonstrate the computational advantage

of the synthesis methods, an advantage critical to the developent of an automated design

analysis system.

Using the synthesized mast/antenna model, the following analyses are presented:

(2) Calculation of antenna peak displacment due to harmonic forcing: A simple

harmonic forcing function is applied to the mast and the peak displacement of the antenna

free end C(tip") is calculated, again using all three component mode synthesis methods, as

well as using a standard finite element procedure.

(3) Calculation of mast/antenna interface internal stresses due to harmonic

forcing: A simple harmonic forcing function is applied to the mast and the bending

moment and shear loads in the mast/antenna connection are calculated. Note that these

internal loads are directly proportional to stress, and hence are the critical quantities which

must be calculated in order to assess structural survivability. These calculations are

repeated for all three sythesis formulations, as well as for the standard finite element

procedure.

7



IL FORMULATION OF FINITE ELEMENT MODEL AND GENERAL
COMPONENT COUPLING PROCZDURES

The theory presented herein is taken directly and exclusively from reference [ 12].

As discussed in the Introduction, the finite element (FE) procedure will be employed to

generate mathematical models of the components (substructures) involved, namely the

mast and the antenna. The FE procedure produces stiffness, mass, and less commonly,

damping matrices which represent the structural dynamics of each components. In order to

faithfully capture the geometric and material complexities of these components, the finite

element discretization must necessarily involve many degrees-of-freedom (DOF), and

hence ýie above mentioned system matrices can be quite large. The time and cost

associated with the extraction of the modal paramters (natural frequencies, mode shapes,

and modal mass) from these large matrices precludes the performance of the repeated

design analyses required to arrive at an optimal design. The component mode synthesis

methods bypass the repeated extraction of the modal parameters for a complete

mast/antenna system by directly using the modal parameters calculated for each

component. The calculation for the component "modes" is perfbrmed once for each

component, and the total system.dynamics are synthesized using the various sets of modes

so calculated. The synthesis methods not only provide very accurate predictions of

dynamic response, but also provide a substantial decrease in the time required to compute

dynamic response, hence allowing the performance of additional design analysis iterations.

8



A. FINITE ELEMENT FORMULATION

Although FE modeling typically involves the full range of element types available (e.g.

beam, plate, shell), for purposes of this thesis the antenna and the mast will each be

modeled using beam elements only. This model, although simple, is all that is necessary to

investigate the various component coupling procedures. All methods presented herein are

applicable to any structural model, and the results and conclusions presented are directly

applicable to the analysis of structural systems of any complexity.

Traditionally, the mast and antennae are modeled together as a system. Alternatively,

the mast and antennae can be modeled separately. By modeling the mast and antennae

separately, several benefits arise:

* Masts and antennae are generally fabricated by different defense contractors.

Therefore, modeling the mast and antennae separately would best preserve this

independence.

* Modeling the mast and antennae separately would permit the development of a

single data file containing only mast design specifications, and several separate data

files containing antennae design specifications, one datafile for each antennae.

With this modular, component-based approach comes the flexibility of exchanging

antennae and/or changing antennae placement. This allows the rapid assessment of

many mast and antennae configurations for dynamic response characteristics.

By modeling the mast and antennae separately, the computational efficiency increases as

compared to modeling the mast and antennae together. This computational advantage is

9



due to the fact that the cost associated with the calculation of the modal parametars for a

single structural model is proportional to the cube of the number of DOF of th -- model

[Ref 3: p. 231]. The calculations performed herein demonstrate this comparison between

a total mast/antenna model and a model derived from the synthesis of mast and antenna

substructure models. The benefit is associated not just with the calculation of the modal

parameters, but also with the calculation of dynamic response to assess UNDEX

survivability.

B. GENERAL COMPONENT COUPLING PROCEDURES

The term "component mode synthesis" refers to the manner in which each substructure

is mathematically represented prior to coupling, and is based on a truncated modal

expansion. This represention is most familiar in the context of the calculation of dynamic

response. Here, the dynamic response of a structure can be written as a linear combination

of the mode shapes calculated for the structure. If the frequency range of excitation is

contained in the frequency range of the calculated modes, then the dynamic response

calculated using the modes will be of acceptable accuracy. Of course, the question of how

many modes to retain is non-trivial and problem specific. However, the computational

efficiency of a modal approach to structural dynamics including the component mode

synthesis methods to be presented, comes from the retention of a number of modes which

constitute a m model much smaller than the original mass and stiffness matrices

from which the modes were calculated.
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Component mode synthesis makes use of several types of vibrational mode shapes,

distinguished by the boundary conditions imposed on the substructure prior to the

calculation of these mode shapes. In addition to these vibration mode shapes, the various

component mode synthesis methods require additional types of mode shapes to be

calculated and included with the vibrational modes. Therefore, the term "component mode

synthesis" (CMS) is a suitable name: a single structure is synthesized from separate

substructures and each substructure is mathematically represented by an appropriate set of

mode shapes, calculated from the finite element model of each substructure. The following

are definitions of the various types of mode shapes that are used in the component mode

synthesis formulations investigated herein.

1. Free Interface Normal Modes

The free interface normal modes are the modes of the component when

unrestrained at all interface DOF. From the LIST OF SYMBOLS AND

ABBREVIATIONS, the interface coordinates are denoted by the subscript "I" and the

internal coordinates are denoted by the subscript "0". The interface coordinates are the

coordinates where the substructures are coupled. The internal coordinates are all

coordinates that are not interface coordinates. Free interface normal modes are calculated

by solving the following eigenvalue problem:

[K- _.M1{0N )-'0} (1)
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The stiffness and mass matrices in Eq. (1) are partitioned as follows:

[K ]= K01 M]]= M OO M ]
The number of equations defined by Eq. (1) is equal to the number of rows or

columns in the mass and stiffhess matrices. The number of columns or rows in [K] or [M]

equals the number of DOF of the component in physical coordinates.

2. Fixed Interface Normal Modes

The fixed interface normal modes are the modes of the component restrained at its

interface DOF. The fixed interface normal modes have the following form:

The upper partition of the fixed interface normal modes, or {# N }, is obtained from the

solution to the following eigenvalue problem:

[Koo- x-M. ip} ={O0 (2)

In words, the matrix of fixed interface normal modes is a partitioned matrix

consisting of the matrix of mode shapes obtained in the solution to Eq. (2) in the upper

partition, and a matrix of zeros in the lower partition. The zeros imply zero displacement

at the interface. The number of rows in the matrix of zeros is equal to the number of
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interface coordinates, while the number of columns is equal to the number of internal

coordinates of the substructure.

Both the upper partition of the fixed interface normal modes and free interface

normal modes are unity modal mass normalized such that the following property is

satisfied:

[*N f [Moo J*N]= (3)
[]Nf[M[•.N] =. (4)

3. Aatic Constraint Modes

Static constraint modes are calculated by enforcing a unit deflection on each

interface DOF while holding all other DOF restrained. Calculating the resulting

displacements of the internal coordinates defines the static constraint modes. Thus, the set

of static constraint modes is defined by the equation:

KU (5)

where [R.] is the matrix of"reactions" at the interface or "-r coordinates.

From the top row partition:

[*o,11=[-KoKo,] (6)
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If it can be assumed that no external forces or inertial forces are applied to the internal

DOF, as in a static's problem, the matrix of static constraint mode shapes, or [4c 1 , ar

represented by the following equation:

[c] = o= [ KO] (7)

where [4,c ]is the static constraint mode matrix.

4. Rigid Body Modes

Rigid body modes are possessed by systems that are not restrained. Rigid body

modes have zero frequency. They can be solved for using Eq. (2). They can also be

solved for in the same way that static constraint modes are solved, provided that the

number of coordinates retained is equal to the number of rigid body modes. The

eigensolver in MATLAB', the software that was used in the examples in Chapters IV

and V, is ineffective in producing rigid body modes using Eq. (2). The rigid body modes

and associated frequencies as calculated by MATLAB using Eq. (2) possess a complex

part. Therefore, rigid body modes can be obtained using Eq. (5). However, it was

determined when applying the property in Eq. (4), the orthogonality property, that the

rigid body modes are linearly independent but not orthogonal with respect to the mass

matrix. To produce orthogonal mode shapes from a set of mode shapes that are linearly

independent a theory from linear algebra, the Gram-Schmidt theory [Ref 4: p. 165], was

invoked. The Gram-Schmidt theory will now be presented.
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Given three linearly independent vectors {v1  j {v2 j]& {V } (three vectors are

selected because there are three rigid body modes. In general, six vectors would need to

be made orthogonal corresponding to six rigid body modes) that three linearly independent

and orthogonal vectors, {"tv I {v, }) {tv, } can be obtained as follows:

Let {i,}={v,

Find a vector {V2 } such that the following orthogonality property is satisfied

{2 }Y IM]{, }=0 (8)

To satsify the requirements of Eq. (8), {y2 } will be defined by:

{t2} -={v2 }--a {it7 (9)

where a is a scalar that is used to extract the components of t, } that lie in the vector

space of {v2 }.

Substituting Eq. (9) into Eq. (8) the following relation is obtained:

{v2 -a .V}'[MJ{V,}=0 (10)

Expanding Eq. (10), the following relation is obtained:

{v2}Yt M1v )}--a 1 }YtIM{IV,}=o (I1)
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From Eq. (11) a is obtained as follows:

1 2) I~ tVI)(12)

By substituting Eq. (12) into Eq. (9), the second linearly independent and orthogonal

vector I{2 } is obtained.

Now there are two linearly independent and orthogonal vectors with respect to the

mass matrix. A third linearly independent and orthogonal vector will now be determined.

Using the same formulation as above, a vector t }is defined as follows:

{3 }){v + }-0 2} y {JVI (13)

where 0 and y are scalars that are used to extract the components of {V.I }and {tV}

respectively that lie in the vector space of {v3}.

Using the properties of orthogonality the following relations must be satisfied:

{}t [iMJ{V I = 0 (14)

tV3Y M]tV2} = 0 (15)
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Substituting Eq.(13) into both Eq.(14) and Eq.(l 5) the following relations are obtained:

{In fP 2 -iVYMtj (16)

{V3 -O2 -'-YVI Y [MJ{ti 2 })0 (17)

By expanding Eq.(16) and Eq.(17). the following relations are obtained:

{v3}T[M]•,j}=-' {V2 }T [M]{V,}+ 7 {, }[MJ{V,} (18)

Solving Eq.(18) and Eq.(19) simultaneously the following expressions are obtained for#
and -:

L- LVL 2  3 ,i3 t ,Mtt' ,I. [MJfV2  (20)

-ý 2 YT [M]tV }3 }'T [M]]t',}4 2 + [M]iv2 7XV3 T [M]{v}(

2 } T ]Y[MJI7, }-142 T M]JV{2 }{, }X [M],} (2

Substituting Eq. (20) and Eq. (21) into Eq. (13), the third linear independent and

orthogonal vector {it 7 is obtained.

Therefore, rigid body modes will be solved for using Eq. (5) and the Gram-Schmidt

procedure derived above.
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S. Renidua Flbiity Modes

Before defining "residual" flexibility, the concept of flexibility must first be ,:efined.

The flexibility of a restrained structure (i.e. a structure whose stiffness matrix is of full

rank) is the inverse of the stiffness of the structure. By inverting the stiffness matrix, one

obtains the flexibility matrix as follows:

[0] =[K]-' (22)

Equation (22) can also be written as follows:

[01 =[ON A,]-'[#NIT 23

The residual flexibility matrix is obtained from the flexibility matrix, the kept free interface

normal modes, and the inverse of the natural frequencies as follows:

[Gn] =[G] '{ I'A, ,]'[ N =[.@ [IAD,{1-1['fD ][ T (24)

The residual flexibility modes are the portion of the exact static flexibility shapes that are

not represented by a set of retained modes. Residual flexibility modes require the

knowledge of other modes that are retained in the model and are dependent upon the

retained modes. There are two ways to calculate the residual flexibility modes.

1) If the structure is grounded, such as the mast, then the stifflness matrix is full

rank and invertible. By post-multiplying Eq. (24) by ro/I one obtains the residual

flexibility modes for restrained substructures.
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[It] =[G'tJ (25)

2) However, If the component is not grounded before assembly, such as an

antenna, then an inertia relief solution must be calculated to determine the flexibility matrix

as follows:

[G] -•-•*•*TMI " [K *1 ] *'*-' T M] (26)

where *R are the rigid body modes of the structure.

[K *]is formed by inverting the restrained or internal partition of the stiffness matrix in the

following way:

[K*J= Koo] (27)

This "new" [0] or flexibility matrix is free of rigid body modes. The Craig-Chang

formulation, which will be presented in Chapter III uses free-interface normal modes and

residual flexibility modes. The residual flexibility modes of unrestrained substructures are

obtained from the neglected or deleted free interface normal modes just like they were

obtained from a substructure that is restrained. The only difference is that the flexibility

matrix obtained in Eq. (26) is used. Residual flexibility modes are calculated by computing

the static flexibility and subtracting the flexibility due to the retained modes. The residual
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flexibility modes are obtained from the flexibility matrix in Eq. (26) in the same way that

they were obtained in Eq. (25):

MI =]-[G]" Oil (28)

~in

It is noteworthy to state that by performing the operation in Eq. (25) and Eq. (28) that the

"Or and '"11 partitions of the residual flexibility matrix are extracted to form the residual

flexibility modes.

C. BRIEF HISTORICAL REVIEW

The following is a brief historical background in the development of component mode

synthesis:

* [1965] In his paper, D amiic Analysis of Smructual Systems by Component

Modes Hurty developed the first substructure coupling method. His technique

involved fixed interface normal modes, rigid-body modes, and static constraint

modes. [.ef 5]

* [1967] Bamford first introduced the concept of flexibility modes in his paper A

Modal Combination Program for Dynmic Analysis of Structures. [Ref. 6]

* [1968] In Coupling of Substructures for Dynamic Analysis, [Ref 7] Craig &

Bampton extended Hurty's concepts by showing that rigid-body modes did not

need to be separated from static constraint modes, but could be calculated using
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the same procedure. The Craig-Bampton procedure is one of the techniques used

in this study.

* [1969] Goldman, in his paper Vibration Analysis of Dynamic Partitioning [Pf. 8]

and Hou, in his paper Review of Modal Synthesis Techniques and a New

Approach, [Ref 9] first introduced the use of free-interface normal modes.

* [1971] MacNeal used both free-interface normal modes and residual flexibility

modes to couple substructures. He also suggested the use of statically derived

modes in describing substructure motion. These methods were introduced in his

paper A Hybrid Method of Component Mode Synthesis. [Ref 10] The MacNeal

method is another technique that will be analyzed in this study.

• [1977] In his Doctoral Dissertation, A General Procedure for Substructure

Copling in Dy ,uic Anlys, [ef. I ] Chang, under the guidance of Craig,

showed how both free-interface normal modes and residual flexibility modes could

be employed to couple substructures. The Craig/Chang procedure is the third and

final substructure coupling technique to be examined in this study.

Now that the mode descriptions have been defined, and a brief history of when the

various methods of CMS were developed, the three methods to be examined in this study

can now be derived. It is the intent of Chapter I] to describe the three CMS techniques

and how the various mode shapes are employed to synthesize substructures into a system.

21



IlL COMPONENT MODE SYNTHESIS FORMULATIONS

The theory presented herein is taken directly and exclusively from references [ 11 and 12].

A. CRAIG-BAMPTON FORMULATION

There are three substructure coupling procedures that serve as potential candidates to

be used in the mast/antenna synthesis. The Craig-Bampton formulation, the Craig-Chang

residual flexibility method, and the MacNeal residual flexibility method. In this section,

the Craig-Bampton formulation will be presented, while in Section B the Craig-Chang and

MacNeal residual flexibility methods will be presented together because of the similarities

in the methods.

The Craig-Bampton reduction procedure uses a combination of static constraint

modes and fixed interface normal modes to reduce the component model. Both the static

constraint modes and the fixed interface normal modes are obtained from the finite

element substructure models. This combined set of mode shapes will be used to transform

the original large order substructure mass and stiffiness matrices down to a significantly

smaller size, a size equal to the number of mode shapes included in the transformation

matrix. The transfomation matrix [TJ for the Craig-Bampton formulation, contains the

shape flmcions as its colunms as follows:

r- Wf -K -'oI 'Po (29)

{X } K K0, IJ 1 1- PoJL T, Pol
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This transformation matrix is obtained for each substructure in the system. The size of the

static constraint mode partition of the transformation matrix is always fixed because the

number of columns corresponds to the number of interface degrees of freedom. However,

the size of the fixed interface normal mode partition is not held constant. The number of

columns can range as low as one column if only one fixed interface normal mode is

retained, or as high "in" columns where "in" is the total number of internal degrees of

freedom. The size of the transformation matrix depends upon how many modes are

required to accurately represent the physical dynamic response of the system when

subjected to a forced input. Retaining fewer modes than the total possible modes available

is referred to as "modal truncation," and provides the computational efficiency of the

method. Retaining fewer modes than the total amount of modes available means fewer

calculations required in conducting the dynamic analysis. On the other hand, if the number

of modes retained are not sufficient to accurately determine the dynamic response, then

the benefits of reduced compute times do not outweigh the magnitude of error obtained in

the analysis. Therefore, while the benefits of modal truncation are important in shortening

compute times, they are not as important as obtaining accurate results. In terms of

computational efficiency, large benefits can be achieved using this method if only the

lower range of frequencies is of interest. This method is applicable to the mast which is

subjected to typically low forcing frequencies. By retaining a few of each of the

component modes, an accurate assessment of the dynamic response of the mast and
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antenna is obtained. The examples contained in Chapters IV and V demonstrate how by

retaining just a few modes of each substructure, accurate results are achieved.

By pre-multiplying the respective mass and stiffness matrices by the transpose of the

transformation matrix and then post multiplying the mass and stiffness matrices by the

transformation matrix, the reduced component model is obtained as follows:

N,-K- 1 T, ro K.J0I N -=f:.• K,'
[K~rJ=[ ]L0 Kl TLo 00 01] [ 3 (30a)

-K-1K° 1  •M MoK*fN "K•K°1 ][M M-K" K,
[,]= I,,io MI JL0 NI = M3 (30b)

Carrying out the operations in Eq.(30ab) and simplifying, the partitions of the reduced

mass and stiffness matrices are expressed as follows:

K: -r['A,..]
K2 =K2T -[01

K• =[K. -K.Koo-'Ko,]

MI =[Inc]

M f =M2•" =[,k" (Mo (-K"oo, +K,

M3 =[(-K"oKo,)T(Moo (-KooKo,) +Mo,) +MID(-K" Kol) +Mn]
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The term "reduced", designated by the subscript "'Y, means that the resulting mass and

stifies matrices [K, & [M,]I are of smaller dimension than the original matrix.

Although this transformation matrix reduces the size of the component model, it does not

assemble the individual substructure models. There is a second transformation matrix that

synthesizes the substructures to produce the total system by enforcing compatibility and

equilibrium of interface coordinates and interface forces as follows:

fcI} 4c2 (31Ia)

S-•l +2(31b)

The compatibility of interface coordinates denoted by Eq. (31 a) implies that the

displacement at the interface of structure I equals the displacement at the interface of

structure 2. Likewise, the equilibrium of interface forces denoted by Eq. (3 1 b) implies

that the sum of the forces at the interface are equal but acting in opposite directions.

The generalized coordinates employed in many CMS methods can be identified with

the interface DOF and the interior DOF. In order to synthesize two substructures into a

system, a linear transformation that maps the set of linearly independent coordinates, pt,

into the set of generalized coordinates "p" is defined as follows:

Wp} '[T2{p,} (32)
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Additionally, the compatibility equation, Eq. (3 1a) can be written in terms of the

generalized coordinates "p" and combined to form a matrix compatibility equatio - of the

form:

[C]W} ={0} (33)

Let the vector of generalized coordinates be partitioned into linearly independent and

linearly dependent coordinates, and partition tht compatibility matrix accordingly.

Equation (33) can now be written as follows:

[C". CdI{Ppd, I ={0} (34)

where subscript "d" and subscript "T' represent linear dependence and linear independence

respectively. The C,, partition of the compatibility matrix is a nonsingular square matrix.

Expanding Eq. (34), the dependent coordinates can be written in terms of the independent

coordinates as follows:

pCk }=[-C,]{p,} (35)

Using Eq. (35), the vector of generalized coordinates can now be given by:

tPdp I [I .C],4, (36)
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By satisfying Eq. (32), [T2 ] can be written as follows:

[ --c2,c 1C (37)
n' J

This transformation matrix is employed to couple the uncoupled mass and stiffness

matrices. [Ref 12:p. 472] The coupling procedure for the Craig-Bampton formulation

will now be derived. Let

-[p'- , J 2o Po (38ab)
LpI=t2 

I

where po represents the generalized internal coordinates and p, represents the generalized

interface coordinates respectively. Additionally, superscript "1" refers to substructure 1

and superscript "2" refers to substructure 2.

Define p, as the set of dependent coordinates, and let the set of linearly independent

coordinates be expressed as follows:

Rewriting the compatibility equation in terms of the generalized coordinates, Eq. (3 1 a),

and using the relation in Eq. (38ab) the following is obtained:

27 =(O) (40)
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Noting that the set of dependent coordinates are designated by pf and using Eq. (33), Eq.

(40) can be written as follows:

(2IPII'Pit[-][0] [ 011 P (41)

LPo

Using Eq. (34),

[C] =-[-I] [Cd,] {[o] [1 ] [01] (42)

From Eq. (42) and using Eq. (37), the second transformation matrix is obtained as

follows:

IiJ [Ii [011
[ -~c~cIl] [0D] [l01

[T2]= Il 0]CI] [0[il0 (43)

11,1J [01 [Ili

In order to be consistent with the partitioning of the mass and stiffness matrices, the

second transformation matrix can be rewritten as follows:

111] 
[0 [01/

0T 1 D ] 10] I] (44)

I0 ] [ [0]
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Equation (33) is now satisfied as follows:

p _ [ I] P (45)

p•O 0] [0] [0] "1

The system model is obtained from an uncoupled mass and stiffhess matrix. These

uncoupled mass and stiffness matrices are themselves formed from the reduced mass and

stiffness matrices from each substructure as follows:

k,01' [K. r0 O (45ab)

where the subscript "u" denotes "uncoupled."

The coupled system mass and stiffless matrices are obtained by pre-multiplying the

uncoupled mass and stiffness matrices in Eq. (46ab) by the transpose of the

transformation matrix in Eq. (45) and then post-multiplying the uncoupled mass and

stiffless matrices by the transformation matrix.

[M] =[T2T[M.IT21] [Ks] --[TN I [K.ITI] (47ab)

where the subscript "s" denotes "system."

29



Carrying out the operations in Eq. (47ab) the resulting coupled system mass and stiffness

matrices are given by:

ý1' 0 M,] [KlJ 0 0]
[ M. 0 M M2 o 0(a

Ma [K. = 0 Km(8b

The respective partitions of the system mass and stiffness matrices are expressed as

follows:

MIM =11K]
M• --Ij~J

KK =[AIKKj

K 1 =MK-T: -•I (Moo(-KooKo,) +M'1)K]
M2--M2 T-[EtM (M2o(-KooGKoI)2 "M2 )]

-_K, 20)T 2 - 2IM 
2 m

00Zo~, 0Mo(--K"'o, +K01 +M2 (--Ko" ,) K01 •.

There are a number of advantages to the Craig-Bampton component mode

representation. The first, which is especially beneficial to the analysis of the mast/antenna

system, is that the reduced DOF system contain the interface DOF explicitly. This makes

it very easy to couple mast and antenna substructures. In the figure on page 32 is an
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illustration of the mast/antenna system used for the examples in this thesis. Along the

length of the cross bar are various node positions. These node positions serve to connect

the beams that represent the cross bar, and can also serve as nodes to connect antenna to

the crossbar. By specifying different "connection coordinates" (i.e. the "I" coordinates),

and with separate mast and antenna data files contained in the library, the engineer can

quickly couple various antennae with the mast and rapidly determine the dynamic

response.
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The Coupled System

<--- Beam

--- Node

The Uncoupled System

Figure 1: The Coupled & Uncoupled Mast and Antenna Systems
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Should the location of the antenna placement not be suitable, the engineer can specify a

new set of interface coordinates along the cross bar, plug in the antenna at .he new

location, and rapidly calculate a system from which a new dynamic response can be

calculated.

Because of these advantages, and because the Craig-Bampton component mode

representation tends to result in accurate system frequencies, as will be shown, this is a

widely used method. Additionally, the NASTRAN superelement scheme uses the Craig-

Bampton component mode representation with minor extensions as a solution path to the

dynamic response problem.

B. CRAIG-CHANG AND MACNEAL RESIDUAL FLEXIBILITY

FORMULAATIONS

The Craig-Chang and MacNeal residual flexbility formulations will now be discussed.

Due to the similiarity in the methods, the Craig-Chang procedure will be presented first,

and the modification of this method to produce the final system of equations of the

MacNeal method will be discussed subsequently. While the Craig-Bampton representation

uses a combination of static constraint modes and fixed interface normal modes, the Craig-

Chang residual flexibility formulation combines free interfiace normal modes with residual

flexibility modes; thus the name: residual flexibility method. The transformation matrix

which is used to reduce the component mass and stiffness matrices contains columns of

the retained or kept free interface normal modes and residual flexibility modes.
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The tnon matrix, or [T, I is shown as folows:

I x 1 =IN *. l'. I + I fOJL . JL P. (49)

In the same way that the Craig-Bampton components were reduced, so to are the

Craig-Chare 'omponents reduced except now using the transformation matrix of Eq.

(49). The rL- -..•W mass and stiffness matrices are obtained as follows:

[.N NFil]M ~OK*DD MOMo x*01r1"Mf
[MI- • •>JLP MJL #N T (50a)

~ODI [CO KOJ] N ,*OD] K .] (SJ
[l = .= *<N,.. , pN. 2 <1<. ,,o,,

Carrying out the operations of Eq.(50ab) the following is obtained for the respective

partitions of the reduced mass and stiffness matrices:

M: =[I,<<,
M;=M;" =[oP,]

Mz=fr: [ Mu[I*D] =[,tA•T[ T['[j]
M, =MT 4 lD]
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Again, each component has its own trmsformation matrix. A reduction in component

matice size is achieved by retaining less than the total number of free interface normal

modes. The number of residual flexibility mode shapes is fixed, and equals the number of

interface degrees of freedom.

It is not read,, apparent how the lower right hand partition of the reduced mass and

stiffness matrices are obtained. In Chapter II, the flexibility matrix was obtained by

inverting the stiffness matrix for a fully restrained substructure. If the substructure was

not restrained, then the flexibility matrix was obtained by performing an inertia relief

solution. However, it was also shown that the flexibility matrix could be obtained by the

following equation:

(G] =[N x1NI 23)

Additionally, the residual flexibility matrix was defined by the following equation:

[KG-I AKI K [.IAD D (24)

The residual flexibility modes were obtained by post multiplying Eq. (24) by This

operation extracts the "OI" and "IU" partitions of the residual flexibility matrix.

Additionally, the residual flexibility modes were obtained from the free interface normal

modes in the following way:
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Using the relation between the residual flexibility modes and the deleted free interface

normal modes in Eq. (51), the lower right partitions of the reduced mass and stiffness

matnces will now be derived.

- [ IM tD] = A ][ [M.I ADTEI M (52)

Using the properties of orthogonality:

Substituting Eq. (53) into Eq. (52) the lower right partition of the reduced mass matrix is

obtained as follows:

Mr =~fA DT [ADD[ ID (54)

Likewise for the stiffiess matrix, using Eq. (52) and the relationship between residual

flexibility modes and the deleted free interface normal modes, the following equation is

obtained:

N \ i N "i N \ N fT(55)

Because the free interface normal modes are unity modal mass normalized, the following is

obtained:

r[#N [uR3 ] =[Am (56)

36



Substituting Eq. (56) into Eq. (55), the lower right partition of the reduced stiffness matrix

is obtained as follows:

Just like the Craig-Bampton formulation, each of the substructures have their own

transformation matrix. The purpose of this transormation matrix is to reduce the

respective component models before synthesis into the system model. This transformation

matrix does not synthesize the substructures. Another transformation matrix is employed

to synthesize the substructures. As in the Craig-Bampton formulation, this second

transformation matrix results from satisfying compatibility and equilibrium equations:

ýI 1)ý12)(58a)

(58b)

Unlike the Craig-Bampton component mode representation where the static constraint

modes are independent of the fixed interface normal modes, the residual flexibility modes

are dependent upon the free interface normal modes, and a simple boolean matrix will not

synthesize the substructures. This second transformation matrix, or [T21 will now be

derived.

The component equation of motion in terms of the physical coordinates is given by

[Mli}) +[K]{x} ={F) (59)
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Transforming Eq. (59) to component generalized coordinates by letting

IX) =IT,{k) (60)

the following uncoupled equations are obtained:

[M M }C4K K}4&$V KIF) (61a)

[MD•] } +[KM ]i }+frD F (61b)

where [M [K, KI[M w I and [K. ]are the upper left and lower right partitions of the

reduced mass and stiffiess matrices respectively, or M', ,K', MM and K, partitions of the

reduced mass and stiffeies matrices. Equations(61a,b) are uncoupled because residual

flexibility modes are obtained as linear combinations of the deleted free interface normal

modes. The deleted free interface normal modes are orthogonal to the kept free interface

normal modes. The response of the deleted generalized coordinates will now be

approximated by the pseudostatic response by ignoring the acceleration of the deleted

generalized coordinates as follows:

[KM *)} -*D I{F} (62)

But it was shown that:

[KDD] =[K,] =+ j [Kal,] ].AMJ '[,s,]T  (63)
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Equations (62) and (63) can be combined to give:

[#~ ~ N (4
[€,•[ nD,1-' [4 " ]T (ýp D})-ý, )={0})6

Since the matrix product in Eq.(64) is nonsingular, the following must be true:

W41) (65)

Using Eq. (65), the equilibrium equation, Eq. (58b), can now be written as follows:

{4 D )+4 } =1o) (66)

From Eq. (66) and rewriting the compatibility equation, the two constraint equations are

given by:

=10) (58a)

~D }+4 })=(0) (66)

Now let the generalized coordinates "p" and the linearly independent generalized

coordinates "p," be arranged as follows:

(PD
S(67ab)

PK K3
2 1
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where the deleted generalized coordinates are dependent upon the kept generalized

coordinates.

Combining Eqs. (58a), (66a~b) and (67a~b) with [T, 1 the compatibility matrix in Eq. (34)

is obtained as follows:

[C]_[C [Ii [0] [-0] (68)

From Eq. (37),

Since [C,] was defined as a non-singular square matrix, implies that [C,] is invertible.

The inverse of[C,] is obtained as follows:

[c-l = k [kjli fkj] (69)

where [kI]=[R4 +*02)]'.
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Combining Eqs. (37), (68) and (69) the second transformation matrix is obtained as

follows:

[AItIl [kl-] K
[01 (70)

L 10] Di] ]
As in the Craig-Bampton procedure, the uncoupled mass and stiffness matrices are

formed from the reduced component mass and stiffness matrices.

IDD 0 0 1 ý
0 M2 0 0 K2, 0 0

[M,]= MJ 0 K (71ab)

By pre- and post-multiplying both the uncoupled mass matrix represented by Eq. (71 a)

and the uncoupled stiffness matrix represented by Eq. (71b) by [T]2] and [T12]

respectively, the system equations of motion are obtained as follows:

,.. M 12 [K.,1 K12 ] (72ab)
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The partitions of the system mass and stiffness matrices represented by Eq. (72ab) are

expressed as follows:
,tj +t\ IT IrC

IKM1ý,,- KI = [A,: 1k, ]
M2= 2T1  1-w KK12 MK1 4-k~

where m1 =k1(M1 +M2 )k,. The inertia due to high order free interface normal modes

is represented by "mi." [Ref 12:p. 491]

As stated in the beginning of this secticn, the MacNeal component mode

representation would be presented. By neglecting the inertia due to high-order free

interface normal modes, (i.e. "m,"), one obtains the MacNeal mass and stiffiess matrices

[Ref I :p. 59] as follows:

=M =[\ T IT

M,,--[x'] K,,-I]A,= 4k,4C]

M,1 =M2 , =21] K,2 =K, =[21- k,I]
[12 2 +2T

M22 =[IK K22 =[AKK +Mk, I•]

As will be demonstrated through the examples, the effect of neglecting "m," is

important when predicting the higher frequencies. The MacNeal representation is accurate

in the lower and mid frequency range, but less accurate in the higher frequency range.

Just like the Craig-Bampton component mode representation there are several

advantages to both residual flexibility methods. By analyzing both the Craig-Chang and
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MacNeal system mass and stiffness matrices, one can see that the final system coordinates

are just the free interface normal mode coordinates from each substructure. This resulted

from the operations that were conducted in forming the system mass and stiffhess

matrices. Additionally, since the residual flexibility modes account for the static flexibility

of all modes, the methods are statically exact. The procedure is applicable to the mast and

antenna problem. Since the connection coordinates are not explicitly retained, this allows

the engineer to retain fewer mode shapes and still obtain accurate results. This benefit can

be achieved when coupling antenna systems such as the SPS.48E radar to the mast.

Unlike a whip antenna which essentially is coupled at one node, the SPS-48E radar or

similar radar are connected to the mast at more than one node. Since there are multiple

connection points, and the residual flexibility method does not retain the connection

coordinates explicitly, a reduction in compute times result, an advantage not found in

other substructure coupling procedures.
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IV. NUMERICAL VERIFICATION

In Chapters I through III, the various types of vibrational mode shapes were defined

and used in the derivations of the three CMS formulations that are presented in this thesis.

In this chapter, some numerical convergence examples are made to compare system

natural frequencies obtained by the three CMS methods presented in this thesis.

The first example is provided solely as a validation of both the FE and CMS computer

codes. In his Doctoral Dissertation, Chang performed a numerical example by which two

fixed-free cantilevered beams were synthesized into a fixed-fixed cantilevered beam. The

beams were synthesized using the various types of CMS methods. Example I is a

replication of that example.

In example 2, the mast and antenna substructures, illustrated in Figure 1, are

synthesized into the mast and antenna system. The system is synthesized three different

times using a varying amount of substructure mode shapes. The resulting natural

frequencies are obtained using MATLAB'S eigensolver. A comparison is made between

each of the methods and against a FE generated model of the mast and antenna system.

This comparison reflects both the accuracy of the three methods in predicting the natural

frequencies and the number of calculations, or floating point operations "FLOPS", that are

required to synthesize the structures and perform the eigensolution.
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A. NATURAL FREQUENCY CALCULATION AND COMPARISON OF A
FIXED-FIXED CANTILEVERED BEAM FOR PURPOSES OF FINITE
ELEMENT AND COMPONENT MODE SYNTHESIS CODE VALIDAT7ON.

As stated in the beginning of this chapter, the purpose of this example is to validate the

FE and CMS code which were written by the author. Figure 2 illustrates a fixed-fixed

cantilevered beam that was synthesized from two fixed-free cantilevered beams.

I I I I I I

substructure I substructure 2

Figure 2: Two Cantilevered Beam Substructures

Each substructure has two degrees of freedom at each node; one translational and one

rotational. The first substructure is represented by 4 beam elements corresponding to 8

DOF, while the second substructure is represented by 3 beam elements corresponding to 6

DOF. After synthesis, the system has a total of 12 DOF. As in Chang's example, each

method was run using a total of 4, 6, 8 and 10 DOF, or 33, 50, 67, and 83% of all

available modes. The results contained in Tables 1-4 are expressed in "Iz" and are the

exact same results that are found in Tables 12-15 of the referenced example which are

expressed in "(ra/se)2

In analyzing the results contained in Tables 1-4, it appears, for this case, that the

Craig-Chang procedure yielded a better prediction of the natural frequencies than the

45



other two formulations. The results are summarized in Figure 3: Comparison of CMS

methods with frequency (Hz) error of <- 0.1 percent for a fixed-fixed beam. In all cases,

the MacNeal procedure predicted a natural frequency in excess of fifty percent error as

compared to the standard finite element solution. This error in the predicted natural

frequency occurred when predicting the highest mode only. In general, the MacNeal

procedure predicted the lower range of natural frequencies comparatively well, but

appeared to falter when predicting the higher frequency range. A possible reason for this

occurence comes as a result of neglecting the inertia of high order free interface normal

modes, or "mi" as delineated in Chapter III.
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B. NATURAL FREQUENCY CALCULATION AND COMPARISON OF

MAST AND ANTENNA SYSTEM MODEL

The purpose of the first example was to validate both the FE code and the various

CMS codes. The CMS code, written in MATLAB, will accommodate the most general

FE modeling. In other words, the CMS code is written independent of the type of FE

modeling. Should the mast and antenna system be modeled by beam elements with 6

DOF/node, the CMS code can be applied to it without any modification.

In this section another numerical example which demonstrates the use of the three

component mode synthesis procedures is presented. A "mock-up" mast and antenna

system consisting of 17 elements was assembled using a standard finite element procedure

and all three component mode synthesis procedures. Although the mast/antenna system

that is used in the examples is modeled with just a few elements, the resulting models are

large enough to allow the effects of mode truncation to be assessed. Again, it is not the

intent of this report to solve a base excitation problem on a realistic mast and antenna

model, but rather to demonstrate how CMS can be used when performing dynamic

analyses for design purposes.

Just like the first example, this example compares natural frequency calculations for

the total mast/antenna system as computed using the three CMS formulations as well as

using a standard FE procedure. Tables 5-7 contain the results of this comparison. In the

tables, each row contains the estimate of a mode frequency. The first column contains the

mast/antenna system natural frequency estimates as calculated using the standard FE

procedure, and serves as the reference value against which the CMS natural frequency
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estimates are to be compared. Columns 2 through 4 contain the analogous natural

frequency estimates and percent error, as calculated from the mast/antenna systez i model

synthesized using each of the three CMS procedures. Also included in the column

headings are floating point operations (FLOPS) counts which provide a measure of the

number of calculations required to assemble the mast/antenna system and calculate the

natural frequencies and mode shapes.

Table I presents the system frequency comparison where 180/6 of the available mast

modes are retained, and 22%/ of the available antenna modes are retained. Table 2 repeats

the calculations with 42% of the available mast modes retained and 39%,/ of the available

antenna modes retained, and Table 3 repeats the calculations with 79% of the available

mast modes retained and 67% of the available antenna modes retained. Note that each

subsequent table presents comparisons for an increasing number of mode frequencies due

to the fact that an increase in the number of retained component modes makes possible an

increase in the number of system modes which may be calculated.

Note that in the FEM model, the FLOPS count stays fixed at slightly over 2. 106.

This is a rather small number as the model is a small model when compared to one that a

design engineer would generate for analysis of an actual mast/antenna assembly. It is

noteworthy to state that in this particular model, 0.7.106 FLOPS were expended in

computing the combination of fixed interface normal modes and static constraint modes

using the Craig-Bampton procedure. Additionally, 0.8.106 FLOPS were expended in

computing the free interface normal modes using the Craig-Chang and MacNeal
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procedures. Theoretically, once the various vibrational modes have been found, they need

not be calculated again. Note also that in all three models, these figures comprise a

significant portion of the total FLOPS.

From Tables 5 through 7, it is seen that all three methods produce excellent frequency

predictions. All three methods demonstrate sudden increases in frequency error above a

certain mode. This reveals the extent to which the retained component modes accurately

represent the dynamics of the synthesized mast/antenna system. In the MacNeal

procedure, the percentage error exceeded 100% when calculating the highest mode. This

error in predicting the highest frequency mode could possibly be attributed to neglecting

the inertia due to high-order free interface normal modes. Note that by neglecting the

inertia, that the accuracy in predicting natural frequencies is only effected at the last few

modes.

As stated in the previous paragraph, all three methods produced excellent results in

predicting natural frequencies, but with less cost in terms of number of computations as

compared to the standard FE calculation. The Craig-Chang procedure in general provided

the greatest number of natural frequencies with error less than or equal to 0.1% (in Hz)

(see Figure 4). However, the Craig-Bampton procedure yielded the same number of

frequencies with error less than or equal to 0.1% as the Craig-Chang procedure when

retaining a large of number of component modes, but at a slightly more cost than the

Craig-Chang procedure.
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V. BASE EXCITATION FORMULATIONS

In the previous section, the natural frequencies of the mast and antenna system were

calculated for increasing number of retained component modes. Natural frequencies and

mode shapes are important modal parameters and are fiudamenta in solving for the

forced response of a system. As demonstrated in the previous section, accurate natural

frequencies of a system can be obtained using CMS at a cost less than that associated with

standard FE modeling.

In this section, two base excitation formulations will be presented. The first

fornmulation requires the knowledge of the acceleration of the mast base coordinates (i.e.

the coordinates where the mast and ship are coupled) as a function of time. In other

words, the formulation requires that the acceleration time history of the base coordinates

be known. The second formulation requires the knowledge of the displacement of the

base coordinates as a function of time, or the displacement time history of the base

coordinates. Using both formulations, numerical convergence assessments will be made,

and the benefits that CMS has to offer the mast/antenna design process will be

demonstrated.
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A. BASE EXCITATION FROM PRESCRIBED ACCELERATION

Once the FE program has numerically assembled the mast mass and stiffness matrices,

and the acceleration of the base coordinates are specified as a function of time, the base

excitation problem can be derived from the following equation of motion:

MD MBBJ{B }K so KB9 x B ':; (73)

where subscript "0" represents the interior coordinates, and subscript "B" represents the

base coordinates.

Solving the top row of equations in Eq. (73) the following is obtained:

Mo0i0 +MoBx +KooXo +KosxB =F0  (74)

Since the acceleration of the base is prescribed, the base acceleration term will be moved

to the right hand of the equals sign to obtain the following:

Mo0io +K00x 0 +KoBxB =Fo -M 0 3R9 (75)

From the bottom row, the following equation is obtained:

M1 ,oR +MuBB +KBoxB +KBBXB =0 (76)

From Eq. (76), the following relation is obtained for the base displacement:

xB =-K7[M0i 0 +MxI +Ko 0x0] , I)
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Equation (77) is now substituted into Eq. (75), and after simplifying, the following

equation of motion in terms of the interior coordinates is given by:

[Moo - 0mK1 .}Mo0 +[Koo -KZ.K, 3 K.oo =F0 +[4oKK IMug -Mos,] (78)

Equation (78) is the system equation of motion of the internal coordinates in terms of the

prescribed base acceleration for the mast only. Since the antenna has no prescribed base

acceleration, the above formulation is not applied to the FE generated mass and stiffniess

matrices of the antenna.

Now that both substructures have been numerically constructed, they are now ready to

be synthesized into the mast and antenna system. Both the mast and antenna substructure

mass and stiffiess matrices and force vector are now partitioned into internal and

connection coordinates as follows:

LMWL MU] LK~Ku rF){}

where the subscript ')"0 and subscript -"I represent the internal and interface coordinates

respectively.

Using the procedures of Chapter IHL, the respective substructure mass and stiffiess

matrices and force vectors are tranormed into a "reduced" system by using the first

trasformation matrix as follows:

[M, ] --IT , I [M[rT,] [K,] =[T I [K][T +] {F } IF) (79 a, b, c)
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As derived in Chapter 111, the coupled mast/antenna system mas and stiffness matrices

and force vectors are formed from an uncoupled system using the second transformation

matrix, and is given by:

[M.]--+2T [M.1r2] [K.1]-21]T[K.IT2] {1 .}-[t]{ef (80a,bc)

where the subscripts "s" and "u" represent the coupled system and uncoupled system

respectively.

The operations in Eq. (79 a, b, c) and Eq. (80 a, b, c) are applicable to each of the

CMS methods using each method's respective transformation matrices, (i.e. [Tj and

[TN ]). Now that the system force vector and system mass and stiffess matrices have been

forned, the coupled system natural frequencies and mode shapes can be obtained from the

following:

[K. -X-M.14bN}-{0I (81)

In Chapter III it was shown how the generalized coordinates or, "p" coordinates, were

obtained from a linear transformation of the physical coordinates or, "x" coordinates,

using the first transformation matrix. Additionally, a set of linearly independent

coordinates were obtained from the set of generalized coordinates, which consist of

linearly independent and linearly dependent coordinates, using the second transformation
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matrix. Therefore, the coordinates associated with Eq. (80 a, b, c) and Eq. (81) are the

set of generalized linearly independent coordinates or, "pt ," as defined in Chapter III.

The set of generalize linearly independent coordinates are transformed into a set of modal

coordinates by the following relation:

{p}41-i} (82)

where {po ) represents the vector of generalized linearly independent internal coordinates,

ýq } represents the vector of modal internal coordinates, and [ON I represents the matrix

of unity modal mass free interface normal modes obtained from the solution to Eq.(81).

The system equation of motion is then pre-multiplied by the transpose of the matrix of

normal modes to obtain the following modal system of equations:

[IJ(4- }+)'AA](q 0 }= IF) (83)

where o } represents the vector of modal accelerations and IF) represents the vector of

modal forces.

There are "W" equations associated with the solution to Eq. (83) where "m" is equal

to the nmber of rows or columns in either the system mass or stiffness matrice. The

acceleration at the base is a prescribed harmonic input.
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The base acceleration is taken as:

(84)

where "0 " represents the forcing frequency expressed in rad/sec, and {X, I represents the

vector of amplitudes of the base displacement expressed in inches. Since acceleration is

prescribed at the base, and the product of mass and acceleration is consistent with the

units of force, the resulting forcing fimction is also harmonic.

Therefbre, the form of the "i,," equation of this system of equations, (i.e. Eq. (83)), is

given by-

401, 4w, 2qo, =Fj(sin(Ot)) (85)

where w• = X, i and is associated with the "ii" natural frequency of the system.

Equation (85) can be solved using two different methods. Since Eq. (85) is an

ordinary differential equation, the solution can be obtained by finding the particular

solution which requires the knowledge of the initial conditions, (i.e. -Oj' "qio(t = 0) and

e~' .qo(t = 0)) or the initial displacement and velocity of the system. Since there are no

initial conditions on the mast and antenna prior to the shock wave meaning that the mast

and antenna is motionless prior to the shock wave, a more convenient and preferred way

to solve Eq. (85) is through convolution. The homogenous solution to Eq. (85) is given

q1(t) = Ai(cos(wlt)) + B1(sin(wot)) (86)
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where "A, "and "B1 "are the amplitudes of the modal displacement and are evaluated

from the initial conditions.

Using convolution, the particular solution is given

qi(t) = Ai(cos(cot)) + Bi(sin(wit)) + t S 'sin(Wj(t-T"))Fjsin(O -)dr (87)

where "T "is a time constant.

The integral in Eq. (87) is generally known as the convolution integral or more formally as

Duhamel's integral. After solving Duhamel's integral, Eq. (87) can be rewritten as

follows:

q1(t) = A1 (cos(w~t)) + B(sin(it)) - FO0 sin(wt) Fisin(Ot) (88)
Wq(ai ..2..Qo) +((02 _.o2)

Since there is n+ initial displaceent or velocity, "A " and "B, " are both equal to 0.

Equation (88) is then simplified as follows:

- F10 sin(wit) Fisin(Ot) (89)
Wq((i 2 _.O2) I(W12 _._l)

Equation (89) is solved for each of the "i" equations in the system of equations. By

solving Eq. (89), the modal displacement for each coordinate is obtained as a function of

time.

Since the mast was modeled as a "free-free" structure meaning that there were no

restrained coordinates, the synthesis of the mast and antenna system yields a structure that

is also '*ree-free". This means that there are some rigid body modes associated with the
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eigensolution of the system of equations. Since the mast was modeled with three

DOF/node, there are three rigid body modes which correspond to three natural

frequencies of 0 rad/sec. Therefore, for the first three equations of Eq. (83), Eq. (89)

cannot be applied in solving for the modal displacement of the first three coordinates as a

function of time. Using Eq. (85) and substituting '"' for w Eq. (85) is simplified as

follows:

o (t) =Fjsin(Ot), i--1:3 (90)

Integrating Eq. (90), the following is obtained for the modal velocity as a function of time

for the first three modal coordinates:

--F
o01(t) -- cos(Ot)+c,, i=1:3 (91)

where "c" is a constant of integration.

Integrating Eq. (91), the following is obtained for the modal displacement as a function of

time for the first three modal coordinates:

-F
qo, (t) =- j-sin(l) + cit + di, i=1:3 (92)

where "d" is a second constant of integration.

The constants of integration "C" and "d" are obtained by substituting the initial conditions

into Eq. (91) and Eq. (92) and solving Eq. (91) and Eq. (92) for "c" and "d". Substituting
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the initial condition of dislam into Eq. (92) the second constant of integration is

obtained:

di =0, i-1:3

The first constant of integration, "c," is obtained in a similar manner. Substituting the

velocity initial conditions in Eq. (91), the first time constant is obtained:

¢ 0 , i-1:3

Substituting the constants of integration into Eq.(92), the modal displacements for the first

three coordinates can be obtained from the following relation:

q0°(t) - -sin(O1t)+ t, i:3 (93)

Equation (93) is used to obtain the modal displacement solution as a fumction of time for

the first three coordinates, while Eq. (89) is used to obtain the modal displacement

solution as a fumction of time for the remainder of the set of coordinates.

Once the modal response is obtained, Eq. (82) is used to obtain the response in linearly

independent generalized coordinates. By using the second transformation matrix followed

in succession by the first transformation matrix in a manner similar to that of Eq. (82), the

response of all of the physical coordinates that defines the system is obtained.
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In what follows, the relation in Eq. (78) is used in conjunction with a standard FE

model of the total mast/antenna system to perform the prescribed base acceleration

dynamic analysis. This analysis serves as the reference against which the results of various

CMS formulations are to be compared. To restate, in each CMS formulation, Eq. (78) is

used to define the mast component model, as only the mast has prescribed base

accelerations.

In the following section, two numerical examples are provided. It is the intent of the

examples to

(1) compare the results obtained from the three CMS formulations

(2) and demonstrate the benefits of using CMS versus standard FE modeling

when solving base excitation problems.

1. Tip Deflection Calculation

On page 70 is a diagram of the mast and antenna system being subjected to base

excitation. The excitation was performed at two different and arbitrarily selected

frequencies. The first frequency was at 8.95 Hz. This frequency falls between mode I and

mode 2 of the total mast/antenna system. The second frequency was between mode 9 and

mode 10 at 219 Hz. The wide spread in the frequencies was intended to demonstrate that

many more modes need to be retained when calculating the response to higher frequency

excitation as compared with lower frequency excitations. In this example, the antenna tip

deflection was calculated using the standard FE procedure and the three CMS procedures.

The percent error in antenna tip deflection was plotted versus the percent of available

component modes retained (see Figures 6-9). The calculations were performed twice. In
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the first calculation, mast modes were truncated while retaining all of the available antenna

modes, and antenna modes were truncated in the second calculation while retain'ng all of

the available mast modes. When the mast was subjected to the forced input at the lower

frequency the Craig-Bampton and Craig-Chang procedure yielded results which

converged more rapidly to the exact answer than the MacNeal procedure.
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Figure 5: The Coupled Mast and Antenna Subjected to Base

Excitation at 8.95 Hz
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Although, hard to determine from Figures 6 and 7, the Craig-Bampton procedure yielded

the best results using fewer modes than the Craig-Chang procedure in both the mast

truncation and antenna truncation runs. When 20% of the available mast modes were

used, all three procedures predicted a tip deflection measurement that was within 0.05%

of the "exact" value (the "exact" value was calculated using the standard FE procedure).

This accurate assessment was obtained at a cost of 60% of the number of calculations that

were required of the FE solution. The error obtained when 20% of the available mast

modes were retained was significantly small. Since all of the vibrational mode shapes were

obtained in this calculation (i.e. fixed interface normal modes, free interface normal modes,

static constraint modes, and residual flexibility modes), future assessments which retain

more mast modes would come at an even lesser cost than the initial assessment.

When the mast was subjected to the higher forcing frequency, all three methods

converged more slowly as compared to the lower forcing frequency when truncating both

mast modes and antenna modes (see Figures 8 and 9). Since the forcing frequency was

higher, more modes needed to be retained in order to obtain accurate results. From the

results of the tip deflection calculations, it appears that the combination of fixed interface

normal modes and static constraint modes have led to the higher rate of convergence using

the Craig-Bampton procedure. However, the results obtained using the Craig-Chang

procedure compared quite well with the results obtained using the Craig Bampton method.
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2. Moment and Shear Calculation

In order to assess structural survivability, accurate prediction of the internal

stresses in the antenna and the antenna/mast interface must be calculated. Therefore, this

section demonstrates the calculation of the internal peak dynamic bending moments and

shear loads in the antenna.

The moment and shear calculations were calculated using the three CMS

procedures and the results are compared in the figures. The percent error in moment and

shear were plotted versus the percent of available mast modes retained and percent of

available antenna modes retained. Again, the same two forcing frequencies used in the tip

deflection calculation are used here in the moment and shear calculations; specifically 8.95

and 219 Hz.

The results obtained when calculating the shear and moment at the mast/antenna

connection mirror the results of the tip deflection calculations (see Figures 10-17). Again,

the Craig-Bampton procedure yielded results that converged more quickly to the "exact"

answer (provided by standard FE calculations) than the other methods. However, the

results obtained using the Craig-Chang procedure were quite similar to those obtained

using the Craig-Bampton method. Despite a large initial error produced by the MacNeal

method as compared to the other two methods, nearly "exact" solutions were obtained at

a cost much less than using standard FE calculation procedures. If the moment and shear

at the mast/antenna interface exceeded an appropriate failure criteria, the antenna can be

easily relocated from the end node to another node along the cross bar by redefining the
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connection coordinates of the mast. New moment and shear calculations would be made

until an acceptable response obtained. Redefining the connection coordinates, synthesizing

the new structure, and calculating the response is much more convenient and

computationally efficient than reassembling the mast and antenna system, which would be

required using standard FE procedures.

When the mast and antenna system were subjected to the forced input at the higher

forcing frequency, the rate of convergence was again much slower thap that which was

obtained at the lower excitation frequency. However, all methods yield accurate results

at a computational cost less than using the standard FE procedure with the higher forcing

frequency.
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Figure 10: Percent Error in- Shear at Mast and Antenna Connection Plotted
Versus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 8.95Hz)
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Figure 11: Percent Error in Moment at Mast and Antenna Connection Plotted
Venus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 8.95 Hz)
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Percent error in shear at mast and antenna connection plotted verss the percent of
available antenna modes retained
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Figure 12: Percent Error in Shear at Mast and Antenna Connection Plotted
Venus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 8.9 Hz)
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Figure 13: Percent Error in Moment at Mast and Antenna Connection Plotted
Versus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 8.95 Hz)
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Figure 14: Percent Error in Shear at Mast and Antenna Connection Plotted
Versus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 219 Hz)
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Figure IS: Percent Error in Moment at Mast and Antenna Connection Plotted
Versus The Percent of Available Mast Modes Retained.
(Forcing Frequency: 219 Hz)
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Pecent error in shear at mast and anteana connection plotted versus the percent of
available antenna modes retained
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Figure 16: Percent Error in Shear at Mast and Antenna Connection Plotted
Versus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 219 Hz)
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Figure 17: Percent Error in Moment at Mast and Antenna Connection Plotted
Versus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 219 Hz)
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B. BASE EXCITATION FROM PRESCRIBED DISPLACEMENT

The following derivation is applicable to the base excitation problem, where bas

displacements (as opposed to base accelerations) are to be prescribed.. As in the base

excitation from prescribed acceleration, the derivation starts with the FEM generated mass

and stiffness matrices as follows:

00 M 0  jO i I+ coo K0OB x ]t F0  1rMBO MBBf~BJ BBoK9.leIlo1(

The bottom row is expanded into the following equation:

MBoFo +MBBiB +KBx 0 +KlBxB =0 (76)

From Eq. (28), the base acceleration is obtained as foliows:
"18 +K--] (94)

xs --MBa [1o0 +KBoxo +WB

From Eq. (25), the top row is expanded to obtain:

M0•% +MoBx1, +KooXo +KOBxB =FO (74)

Substituting Eq. (94) into Eq. (74) and simplifying, the equation of motion for the internal

coordinates as a function of prescribed base displacement is obtained as foliows:

[Mo Mo 1M M [o]Mo +Ko =MoMBKBo F -[ K oB ÷MoM KBB (95)
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Notice that the matrix that pre-multiplies the acceleration term has units of mass, and the

matrix that pre-multiplies the displacement term has units of stiffness. The matrix that

pre-multiplies the base displacement term has units of stiffness. Therefore, all terms of this

equation of motion are dimensionally consistent with units of force.

The same modal decomposition procedures described in the base acceleration

formulation apply to the base displacement formulation. Since the displacements at the

base are prescribed, the base coordinates are ne longer degrees of freedom. This means

that there are no rigid body modes associated with the base displacement formulation. As

a result, Eq. (89) is used to obtain the response of all coordinates. As in the base

acceleration formulation, the time history of the base displacement is taken to be simple

harmonic, and is represented by:

f 3 } ={X, }sin(O) (96)

Numerical convergence examples are provided in the following section. Both examples are

similar to the examples presented in the prescribed base acceleration problem.

1. Tip Deflection Calculation

The mast and antenna system was subjected to a base excitation where the time

history of the displacement of the base coordinates was prescribed. The excitation was

performed at a frequency which corresponded approximately to mode 5 (47.26 Hz) of the

mast/antenna system. Sinw the system was modeled without damping, a frequency which

corresponded exactly to a natural frequency of the system could not be prescribed. The
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excitation frequency is equivalent to the mode 5 natural frequency to within 2 decimal

places. As in the base acceleration problem, the frequency was arbitrarily selected. The tip

deflection of the antenna was calculated and percent error in tip deflection was plotted

versus percent of available component modes retained (see Figures 18 and 19). The

calculations were performed twice. Mast modes were truncated in the first calculation,

and antenna modes were truncated in the second calculation. All three procedures yielded

accurate results in both the mast and antenna truncation tests. When the mast/antenna

system was excited at mode 5, the Craig-Chang and MacNeal procedures provided very

similar results for both the mast truncation and antenna truncation. As was determined in

the tip deflection calculations of the base acceleration problem, the Craig-Bampton

procedure yielded the best results using fewer modes than did the Craig-Chang and

MacNeal procedures in both truncation tests. This again could possibly be due to the

combination of fixed interface normal modes and static constraint modes providing a

better representation of prescribed base displacement than the combination of free

interface normal modes and residual flexibility modes. However, all three provided

accurate results and at a cheaper cost than the FE model.
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Percent error in antenna tip deflection plotted venus the percent of available mast
modes retained
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Figure 18: Percent Error in Antenna Tip Deflection Plotted Versus the
Percent of Available Mast Modes Retained (Forcing Frequency: 47.26 Hz)

Percent error in antenna tip deflection plotted venus the percent of available antenna
modes retained
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Figure 19: Percent Error in Antenna Tip Deflection Plotted Versus the
Percent of Available Antenna Modes Retained. (Forcing Frequency: 47.26 Hz)
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2. Moment and Shear Cakulation

Percent error in shear and moment at the mast and antenna connectic i were

plotted versus the percent of available component modes retained (see Figures 20-23).

The base excitation was conducted again at 47.26 Hz Similar results were obtained in the

shear and moment calculations as were obtained in the tip deflection calculations. The

Craig-Bampton procedure provided more accurate results using fewer modes than the

Craig-Chang and MacNeal methods. The convergence rate of the Craig-Chang and

MacNeal methods were almost identical in the mast mode truncation. When the mast was

excited at mode 5, all three yielded excellent results in the antenna mode truncation

analysis. However, the Craig-Bampton procedure converged more quickly than the other

methods. It appears that the combination of fixed interface normal modes and static

constraint modes lead to a higher rate of convergence in determ; iing tip deflection and

antenna/mast shear and moment calculations Although all three procedures initially had a

higher percentage error when truncating mast modes, than when truncating antennae

modes, they all provide as accurate if not more accurate results than the antenna

truncation at less cost in terms of computations. It is also noteworthy to compare the

computational cost in retaining mast modes versus retaining antenna modes in predicting

accurate system response. For example, in the shear calculation when the mast was

excited at mode 5, the Craig-Chang procedure yielded a percentage error of 2.1% while

using 1.66.106 FLOPS during the mast mode truncation test. During the antenna mode
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truncation test, the Craig-Chang procedure yielded a percentage error of 2.03% using

1.89 .106 FLOPS.

Since the impact of shock waves on the mast/antenna system are typically of low

frequency, and as can be seen from the results of the prescribed base acceleration and base

displacement examples prcvided, it is recommended that the Craig-Bampton component

mode representation be used to synthesize the mast and antenna system
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Percent error in shear at mast and antenna connection plotted versus the percent of
available mast modes retained
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Figure 20: Percent Error in Shear at Mast and Antenna Connection Plotted
Venus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 47.26 Hz)

Percent error in moment at mast and antema connection plotted versus the percent
of available mast modes retained
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Figure 21: Percent Error in Moment at Mast and Antenna Connection Plotted
Versus the Percent of Available Mast Modes Retained.
(Forcing Frequency: 47.26 Hz)
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Percent error in sbear at mast and antenna connectlon plaid wrms the percenI of
available antenna modes retained
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Figure 22: Percent Error in Shear at Mast and Antenna Connection Plotted
Versus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 47.26 Hz)

Percent error In moment at mast and antenna connection plotted venus the percent
of available antenna modes retained
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Figure 23: Percent Error in Moment at Mast and Antenna Connection Plotted
Venus the Percent of Available Antenna Modes Retained.
(Forcing Frequency: 47.26 Hz)
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VL CONCLUSIONS AND RECOMMENDATIONS

The survivability of shipboard combat systems equipment is paramount to the warfare

fighting capability of the ship and her crew. Should a fire control radar, or any vital

topside combat systems equipment fail as a result of an induced shock wave, the ship's war

fighting capacity would be crippled. However, using proven structural dynamics

techniques, the design engineer can design the mast/antenna system in such a manner as to

minimize risk of failure.

This study has been conducted to show the progress that has been made thus far in the

maximizaton of combat survivability of shipboard mast and antenna systems. As

demonstrated in this study, the mast and antenna can be treated as separate substructures,

and using CMS, can be assembled as a mast/antenna system, from which dynamic

response to base excitation can be calculated. Treating each antenna as a substructure,

allows the cataloging of the various antennae. A selected antenna can be "plugged* into

various locations along the mast until a suitable dynamic response is obtained. As has

been demonstrated herein, CMS along with FE modeling provides rapid and accurate

results at a computational cost significantly less than standard FE modeling alone. The

mast and antenna model used in this study consisted of only 17 elements which

corresponds to a total of 51 degrees of freedom. Although the results that were obtained

on this "small' model were accurate and computationally efficient, the same benefits can
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be expected with larger models; models that will be used to represent realistic mast and

antenna systems.

All three methods yield results that are accurate and more computationally efficient

than standard FE modeling. However, from the results obtained, it is strongly

recommended that the Craig-Bampton component mode representation be used to

synthesize the mast and antenna system. Since the Craig-Bampton procedure yielded

more accurate results while using fewer component modes than the other methods, the

Craig-Bampton procedure is the substructure coupling formulation of choice due to good

accuracy and ease of implementation. It is strongly suggested that the following

recommendations be implemented when computing the dynamic response of a shipboard

mast and antenna system:

" Modify the existing FE code such that the mast and antenna system can be

modeled with 6 DOF/node. This type of modeling will allow for out of plane

dynamic analysis. In addition to accomodating a more general analysis of the mast

and antenna system, model the mast and antennae with other types of elements

such as shell and plate elements in addition to the existing beam elements.

"* Use CMS in conjunction with FE modeling. In particular, it is recommended that

the Craig-Bampton procedure be used as the substructure coupling method.

Additionally, if another software package which is tailored to FE analysis be used

to conduct the dynamic analysis, the NASTRAN superelement scheme contains the
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Craig-Bampton component mode representation as a solution path to dynamic

analyses-

In this study it has been demonstrated that the mast and the various antennae can be

modeled separately as substructures using standard FE modeling. Using component mode

synthesis, the substructures can be assembled into a system and dynamic response

computed accurately at a computational cost that is less than standard FE modeling alone.

Implementing the above recommendations will lead to the maximization of topside combat

systems equipment survivability.
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APPENDIX A

% LT Lynn James Petersen

% Naval Postgraduate School

% Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component Mode

% Synthesis

% Main Program: Progsynt.m

% This program numerically constructs a FE model of the either the"mast", the

% "antenna" as components or the mast and antenna as a system. The user specifies the

% desired configuration

% To begin the program, the user specifies the desired structure (i.e. the mast, or

% antenna, or mast/antenna system.)

p = input('enter which structure is to be assembled: enter I if mast/antenna,...

enter 2 if mast, enter 3 if antenna');

ifp== 1

datdabe % data file for the mast/antenna system

elseif p= =2

data-mst % data file for the mast
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else

data-ant % data file for the antenna

end;

flops(O) % reset the FLOPS count

% A. Calculation of the number of elements, nodes, length of each element, radius of

gyration and orientation.

Al = size(con); % "con" is the connectivity matrix

numel = AI(l); % number of elements

C I = size(coord); % "coord" is the matrix of coordinates

nodes = C(I); % number of nodes

for i = 1 :numel;

IC = con(,L );

ID = con(i,2);

% determine the length of the respective beam element

l(l,i)=sqrt((coordQD,1)-coord(IC,1))'2+(coord(ID,2)-coord(IC,2))2);

DX(i)=coord(ID, l)-coord(IC, 1);

DY(i)=coord(ID,2)-coord(IC,2);
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% determine the orientation of the beam element

if DX(i)>= 0 & DY(i)>= 0;

theta( l,i)=acos(DX(i)/l(l,i));

elseif DX(i)<O & DY(i)>=0;

theta(l,i)=acos(DY(i)/l(l,i))+pi/2;

elseif DX(i)<0 & DY(i)<O;

theta(l,i)=acos(abs(DX(i))/l(l,i))+pi;

else

theta(1,i)=acos(abs(DY(i))/l(l,i))+(3*pi/ 2);

end;

% calculate the radius of gyration

r(1,i) = sqrt(I(1,i)/A(l,i));

end;

% B. Computer truncation error minimization

% The function trig will now be called to ensure that "exact" values are sent to the

% stiffhess and mass matrix function.

[cl,sl]--trig(theta,numel);
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% C. Assembly of stiffness and mass matrices:

% The function "El3mk.m" will be called to assemble the elemental mass and stiffness

matrices.

% The "global" mass and stiffniess matrices will be assembled simultaneously

kbI [ zeros(nodes *3,nodes *3)];

mbl =[zeros(nodes *3,nodes *3)];

for i=1:numel;

[ke,me]=:el3mnk(l(i),gamma(i),I(i),E(i),r(i),cl1(i),s 1(i));

v-con(ýI,);

w-con(i,2);

kb1(3*v-2:3*v,3 *v-.2:3*v) = kbl (3*v..2:3*v,3*v..2:3*v) + ke(1 :3,1:3);

kb1(3*v-2:3*v,3*w-2:3*w) = kb1(3*v-2:3*v,3*w-2:3*w) + ke(1 :3,4:6);

kb1(3*w-2:3 *w,3*v-2:3*v) = kbl(3*w-2:3*w,3*v-2:3*v) + ke(4:6, 1:3);

kbl (3*w-2:3*w,3*w-2:3 *w) = kbl(3 *w-.2:3 *w,3 *w-2:3*w) + ke(4:6,4:6);

mbl(3*v-2:3*v,3*v-2:3*v) = mbl(3*v-2:3*v,3*v-2:3*v) + me(1:3,1:3);

mb1(3*v-2:3*v,3*w-2:3*w)* = mb1(3*v-2:3*v,3*w-2:3*w) + me(1 :3,4:6);

mbl (3*w-2:3*w,3*v-2:3*v) = mbl(3 *w..2:3*w,3 *v-.2:3*v) + me(4:6, 1:3);

mb1(3 *w-2:3 *w,3*w-.2:3 *w) = mbl(3 *w-2:3*w,3 *w..2:3*w) + me(4:6,4:6);

end;
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% D. Boundary conditions

kbl([BC],:)[;

kbl(:,[BC])=[];

mbl([BC],:)=[];

mbl(:,[BC])=[ ],

% E. Internal and base coordinates

ifp== 1; % mast and antenna system

% partition the mass and stiffness matrices into base and internal coordinates

[KEXMEXFEX]=.kmbe(kbl,mbl,RINTMBSM, XBM);

kb I=KEX;

mbl=MEX;

% convert the force vector into a product of mass * acceleration

% because of MATLAB'S inefficiency in calculating rigid body eigenvalues and

% eigenvectors (natural frequencies and mode shapes) we will make the first three natural

% frequencies 0, and calculate rigid body modes just as was done in the Craig-Chang

% formulation

P = [1 2 3];

F = [4:length(kb )];

KEX2 = [KEX(FF) KEX(F,P);KEX(PF) KEX(P,P)];

MEX2= [MEX(FF) MEX(F,P);MEX(P,F) MEX(PP)];
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KEX3=KEX(F,F);

YEX4--KEX(F,P);

RB3MODES= [.inv(KEX3)*(KEX4)

eye(length(P))];

% calculate the natural frequencies and mode shapes

[lamex,phiex]--fmodes(KEX2,MEX2);

for i--1:3;

lamex(i,I)=O; % make first three natural frequencies equal to zero

end;

lamex;

omeg=sqrt~hamex)/(2*pi)

phiex(:, 1:3)=RBMODES;

b2=3;

[pbrb] = rigid(MEX2,phiex~b2);

% check orthogonality

phiex(:,1 :3)=pbrb;

tu-phiex(:,1 :3)'*MEfX2*phiex(:,l :3);

modstiff--phiex(:,1:3)'*KEX2*pbiex(:,1 :3);

flops % determnine FLOPS of FE formulation and solution

save data3.mat kbl mbI coord con lamex phiex BS INT XB f FEX



save data3a.mat cl sl I r

elseif p=-2 % mast substructure

[KEXMEX,FEX]=kmbe(kb l,mb 1,1NTM,BSM,XBM);

kbl=KEX;

mbl=MEX;

% convert the force vector into a product of mass * acceleration

% note: this operation needs to be performed now prior to CMS

% fl = f- (- (8.9525*2*pi)A2*FEX); % low frequency

% fl = ff+ (219.265*2*pi)A2*FEX; % high frequency

flops % determine the flops count to assemble the mast

save datal.mat kbl mbl V C coord con INT 0 fl XBM BSM

save datala.mat ci sl r I

else;

fl--f

flops % determine the flops count to assemble the antenna

save data2.mat kbl mb 1 OINT coord con fV C

save data2a.mat c I sI r I

end;
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"APPENDIX B

% LT Lynn James Petersen

% Naval Postgraduate School

% Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component

% Mode Synthesis

% Program: Cbfbx.m

% Two substructure synthesis with forcing vector and base excitation

% This program uses the Craig-Bampton method for synthesizing structures toget X.

% The program loads the data files into the program. Once into the program, the program

% will synthesize the structures together, and calculate the coupled natural frequency and

% free interface mode shapes

% note: this program will synthesize only two structures together

% A. The substructures will now be loaded

load datal.mat;

kl=kbl,ml--mbl,VI=V,CI=C,fl--fl;

load data2.mat;

k2=kbl,m2--mbl,V2=V,C2=C,f2--f,

flops(O) % reset the FLOPS count
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% B. K matrix partitioning to support calculation of static constraint modes

Kvvl = kl(Vl,VI);

Kvcl =k1(VI,Cl);

Kvv2 = k2(V2,V2);

Kvc2 = k2(V2,C2);

% C. Partition stiffness, and mass matrices for synthesis:

kl=[kl(VI,VI) kl(V1,Cl);kl(Cl,Vl) kl(Cl,Cl)];

ml=[ml(VI,VI) ml(VI,Cl);ml(CI,Vl) ml(CI,Cl)J;

k2=[k2(V2,V2) k2(V2,C2);k2(C2,V2) k2(C2,C2)J;

m2=[m2(V2,V2) m2(V2,C2);m2(C2,V2) m2(C2,C2)];

% D. Calculate static constraint modes:

Cmnodesl = [-inv(Kvvl)*Kvcl

eye(length(C l))j;

Cmodes2 = [-inv(Kvv2)*Kvc2

eye~length(C2))];

% E. Calculate the fixed interface normal modes.

kflxl=kl(I:length(V1),l :length( Vi));

mfixl=ml(l :Iength(Vl),1:length(VI));

kfLx2=k2(l :length(V2), 1:lengthi(V2));

mflx2m2( 1:length(V2), 1:length(V2));

Elaml Nmodesl)=-fmodes(kfixl ,mfixl),pause
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% F. Note: the next command retains the desired modes and appends zeros to the

% interface coordinates:

y = inputC!Enter the number of fixed interface modes that are desired to be kept')

[NmodeslIJ = [Nmodes I(:,l :y);meos(3,y)J;

% G. Obtain natural fr-equencies and mode shapes for the second substructure

[Iam2,Nmodes2j--fmodes(kfix2,mfix),pause

% H. Note: the next command retains the desired modes and appends zeros to the

% interfaice coordinates for the second structure

s = inputC!Enter number of modes desired to be retained for second structure')

[Nmodes2] = [Nmodes2(:,1 :s);zeros(3,s)J;

% 1. Obtain the "reduction" transformation matrix from the fixed interface normal

% modes and static constraint modes:

[NC _MODESI] = [Nmodesl Cmodesl];

[NC__MODES2] = [Nmodes2 Cmnodes,2];

% J. Obtain the reduced mass and stiffnfess matrices:

ki red =NCMODESI' * kI * NC-MODESI;

ml-red= NCMODESI 9 *ml * NCMODESI;

k2 red =NCMODEST k2 * NCMODES2;

m2_red = NCMODES2'* m2* NCMODES2;

a =length(Cl1);

b = Iength(C2);

d = length( VI);
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e - length(V2);

sizel = Iength(kl red);

size2 = lengh(k2_red);

% K. Form the uncoupled stiffness and mass matrices:

K,_uncpl =[ki red zeros(sizel,size2);zeros(size2,sizel) k2_red];

M_uncpi [ml-red zeros(sizel,size2);zeros(size2,sizel) m2_redJ;

% L. Place the force vector in the correct form and pre multiply by the transformation

matrix:

fl tfI (V 1, 1);fl (C 1, 1)];

f2f[f2(V2,lI);f2(C2,lI)J;

FIV = Nmodesl(l:d,l:yy*fl(l:dI);

FIC = Cnmodsl(l:d,l:a)9*fl(l:d,1) + fI(d+lHlngth(fI),l);

F2V = Nmodes2(l:eIl:s)*f2(l:e, I);

F2C = Cmodes2(l :e~l:b)'*f2(l :e~l) + f2(e+l :length(f2),l);

FCB= Fly;

F2V;

FlC+F2C];

% MA Form the coupled stiffiess and mass matrices:

"Icp = zeros(y+s+a~y+s+a);

g-Aength(K~cpl);
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% structure 1: diagonal

K,_cp~l(:y,l :y)='K cpl(1 :y,l:y)+K _uncpl(l :y,l :y);

% structure 2: diagonal

K~cpl(y+1 :y+s~y+l :y+s)=K, cpi(y+ y~~ ys+.

K~uncpl(y+a+l1:y+a+s,y+a+ I:y+a+s);

% structure 1I&2: connection

K~cpl~y+s+1 :y+s+a,y+s+1 :y+s+a)=K _cpl(y+s+I :y+s+a,y+s+1 :y+s+a)+...

K~uncpl(y+1 :y+a,y+1 :y*+a)+uncpl(y+a+s+1 :y+s+a+b,y+a+s+l :y+s+a+b);

% asmatrix

M-Cpl = zeros(y.sýy+S+a);

h~engthM-CPl);

% structure 1: diagonal

Mýcpkl(:y,lI:y)=M cpl(1 :y,l :y)+Mý_uncpl(I :y,lI:y);

% structure 2: diagonal

M'cpl(y+1 :y+s,y+1 :yfs)=M _cpl(y+1 :y+s,y+l :y+s)+...

M uncpl(y4-a+1 :y+a+sy+a+1 :y+a+s);

%structure 1&2: diagonal

M"Cp"y+s1:y+S+a,y+s+1 :y+s+a)M cpl(y+s+1 :y+s+a~y+s+1 :y-ýs+a)+...

Muncpl(y+1 :y+a~y+1 :y+a)+M uncpl~y+a+s+1 :y+s+a+b~y+a+s+1 :y+s+a+b);

%structure 1: off diagonal partitions

MýcplkyIs+1 :y+s-Hkl1:y)=M cpl(y+s+lI:y+s+a, 1:y)+Mjmucpl(-y+1 :y+a,lI:y);
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M-cpl(1 :y,y+s+1 :y+s+a)=M cpl(1 :y,y+s+l:y+-s+a)+M uncpl( 1:y,y+l :y+a);

% structure 2: off diagonal partitions

Mý cpl(y+s+l :y+s+b,y+I :y+s)M ~cpl(y+s+l :y+s+b~y+1 :y+s)+...

M uncpi(y+a+s+ I:y+a+s+b,y+a+l1:y+a+s);

"M Ip(y+1 :y+s,y+s+l :yrs-)=M cpi(y+1 :y+s,y+s+l :y+s+b)+...

Mýuncpl~y+a+1 :y+a+s,y+a+s+1 :y+a+s+b);

% N. Obtain the C-B component mode synthesized eigenvectors and eigenvalues:

[lam cpl,phicplJ = fmnodes(K cplM_cpl);

omegjcb~sqrt(laM~cply(2*pi); % convert from (rad/sec)A2 to Hz

% P. Perform transfor mation to support base excitation calculation, clean up first three

% natural fr-equencies, and first three modes,

P=[length(K cpl)-2:length(K cpI)];

F=[ 1:lengthKKcpl)-3J;

KEX2=[K~cpi(F,F) K,_cpl(FP); K,_cpl(P,F) K,_cpl(PP)J;

MEX2=[M~cpi(FF) M cpi(FP); M_cpi(PF) M4cpI(PP)J;

KEX=Kýcpl(F,F);

KEX4--KcpXF,P);

Rbmdes[-b(KE3)*QKX4)

eyeQengtW())];

[la~mex~phiexJ~finodes(KEX2,MEX2);
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fbr i-1:3;

lamexý)=O;

end;

phiex(:,I :3)=Rbmodes;

b2=3;

[phrb]=rigid(MEx2,phiex,b2); % perform Gram-Schmidt orthogonalization

phiex(:,1 :3)=phrb;

% check orthogonalization:

tu~phiex(:, I:3)'*MEX2*phiex(:,1 :3),pause

tk--phiex(:, 1:3)'*KEX2*phiex(:,1I:3),pause

% redefine variables

"KtcplKEX2;

"MIpfMEX2;

laM cpi=lamex;

phLicpl=phiex;

flops % determine the FLOPS

save datal10niat "cI "Ip FCB a b d e y s NC MODES I NCMODES2

lamn-cpl phmcpl
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APPENDIX C

% LT Lynn James Petersen

% Naval Postgraduate School

% Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component Mode

Synthesis

% Program: Ccrfib2.m

% This program is written in accordance with the Craig-Chang Residual Flexibility

% method. The program loads two data files containing information from a FE

% generated substructure. This information includes: a) the mass and stiffness matrices b)

% listing of internal and interface coordinates c) any forcing or base excitation data

% needed to solve a dynamic response problem. The program is ready to load the two

% data files into the work space

clear

load datal.mat % mast data

Kl=kbl, MI--mbl, 01=0, 11 = IT, RI=11, Fl = fl

load data2.mat % antenna data

K2=kbl, M2--mbl, 02=0, 12 = INT, R2=12, F2 = f

flops(O) reset the flops count to zero

% A. Substructure 1

% Partition substructure I into internal and interface coordinates
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Kool K1(Ol,O1);

Kori KI(Ol,Rl);

KJ=IIKI(Ol,Ol) KI(O1,Il); KI(Il,O1) Kl(I1,Il)];

% B. Calculate natural "fr-ee interface normal modes" for structure 1

[laml,FRmodesl] = fmnodes(KI,M1)

al. =length(Ol);

bI = length(I1I);

a =size(FRmodes I);

b =a2)

foriM

laml(i,l)=O; %/make first three "zero" natural frequencies equal zero to

% correspond to R.B.

end;

% C. Prompt the user for the number of normal modes desired to be kept

% note: the number of total modes equals the sum of kept modes and deleted modes

c = mput('enter the number of fr-ee interfaice normal modes desired to be kept for...

structure 1 ')

FRKmodesl = [Frmodesl(:,bl+l:c)];% kept modes

FRDmodes]. = [Frmodesl(:,c+1:b)J; % deleted modes

lam a--diag(lam 1);
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lamdl=lamla(c+ :b,c+1:b);

inamkl-=inv(uamkl);

invlamd l1=inv(lamd 1);

% D. Obtain the rigid body modes like constraint modes were calculated

RBmodesl = [-inv(Kool)*KorI

eyelength(Rl))];

% unity mass normalize and orthogonalize the rigid body modes Note: since rigid

% body modes as calculated by matlab are not orthogonal wrt mass matrix, a "Gram

% Schmidt" procedure needs to be perfbrmed

[phrb] = rigid(MIRBmodeslbl)

RBmodesl = phrb;

% E. Form the projection matrix [P] in support of the inertia relief solution

Pl=[eye(al+bl) - M1*RBmodesl*RBmodesl'];

GSTARI = inv(Kool);

GBSTARI = zeros(al+bl,al+bl);

GBSTARI(I:al,1:al) = GBSTARI(I:al,l:al) + GSTARI;

FA1 = [zeros(albl);eye(bl,bl);];

% F. Obtain the inertia relief residual flexibility modes

GFLEX1 = PI'*GBSTARI-*Pl1

% as calculated from kept normal modes

% IRAmodesl = [GFLEXI - FRKmodesl*invlamkl*FRKmodesl']*FAl;

% as calculated from deleted normal modes
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% IRAmodesl = (FRDmodesl *invlamdl *FRDmodesl')*FA1;

% RmodeslA=IRAmodesl;

% Note: because this code is tailored to rigid body for both structures an inertia

% relief solution is being performed for both structures the following code would

% apply if the first structure was fully restrained

% Partition the normal modes into kept modes and deleted modes

% FRKmodesl = [FRmodesl(:,1:c)];

% FRDmodesl = [FRmodesl(:,c+I:b)];

% Diagonalize and partition into kept and deleted natural frequences

% lamla=diag(aml);

% lamkl=lamla(l:c,1:c);

% lamd l-=lam I a(c+ I:bc+ :b);

% invlamkl = inv(lamkl);

% invlamd I = invoamd I);

% D. Obtain the residual flexibility modes

% Obtain the flexibility matrix

% GI -- inv(KI);

% FAI = [zeros(al,bl);eye(bl,bl)];

% Obtain the residual flexibility modes from the kept modes

% Rmodes = (G1 - FRKmodesl*invlamkl*FRKmodesl')*Fa;

% from the deleted modes

% Rmodes = (FRDmodesl*invlamdl*FRDmodesl')*FAI;
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% E. Calcualate the reduced mass and stiffiness matrices for structure Itr-so- aton

% matrix (SYSMODES 1): [T]

% SYSmodesi = [FRKmodesl RmodesJ;

% KSYSI =SYSmodesl'*Kl*SYSmodesl

% MSYSI =SYSmodesl'*Ml*SYSmodesl

% HI. Substructure 2

% A. Partition substructure one into internal and interface coordinates

Koo2 =K2(02,02);

Kor2 =K2(02,R2);

K21[K2(02,02) K2(02,R2); K2(R2,02) K2(R2,R2)J;

M2=[M2(2,02) M2(02,R2); M2(P2Z02) M2(R2,R2)J;

% B. Calculate natural "free interfatce normal modes" for structure I

[lani2,Rmodes2] = finodes(K2,M2)

a2 = length02);

b2 = length(12)

d = sizz(FMmodes2);

e =d2)

for i-1: b2;

lani2(i 1)0O;

end;
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% C. Prompt the user for the number of normal modes desired to be kept.

f = input('enter the number of fr-ee interfilce normal modes desired to be kept for

structure 2 1)

FRKmodes2 = [FRmodes2(:,b2+I:f)];

FRDmodes2 = [F'Rmodes2(:,f+1l:e)];

lam2a=diag(lam2);

Iamk2=Iam2a(b2+1 :f,b2+1 :0;

lamd2=lam2a(fi-I :e,f+1 :e);

invlamk2=inv(Iamk2);

invlamd2=inv(lamd2);

% D. Obtain the rigid body modes as constraint modes would be obtained

RBmodes2 = [-inv(Koo2)*Kor2

eyeoength(R2))];

% unity mass normalize and orthogonalize the rigid body modes

[phrb] = nigid(M2,RBmodes2,b2) % Gram-Schmidt

RBmodes2 = phrb;

% E. Form the projection matrix [p] in support of the inertia relief solution

P2=[eye(a2+b2) - M2Rmds*~oe21

GSTAR2 = inv(Koo2);

GBSTAR2 = zeros(a2+b2,a2+b2);

GBSTAR2(1:a2,1:a2) = GBSTAR2(1:a2,1:a2) + GSTAR2;

FA2 = [zeros(a2,b2);eye(b2,b2);];
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% F. Obain the inetia relief residual flexibilit modes...

GFLEX2 = P2T*GBSTAR2*P2;

% ... from the kept modes

% MAmodes2 = [GFLEX2 - FRKmodes2*invlamk2*FRKmodesTJ*FA2;

% ... or from the deleted modes

% IRAmodes2 = (FRDmodes2*inlm2FRDmodes2I)*FA2;

% G. Calculate the reduced mass and stiffliess matrices for structure 1 transformation

% mnatrix(TM

% SYSmodes2 = [FRKmodes2 IRAmodes2];

% XCSYS2 = SYSmodes2*K2*SYSmodes2

% MSYS2= SYSmodes2!*M2*SYSmodes2

% H. Couple the two substructures.

k1 = [IRAmodesl(al+l:al+bl,:) + IRAmodes2(a2+1:a2+b2,:)];

k2=inv(kl);

mddl = FRDmodesl(al+1 :al+bl,:)*(invlamdlyA2*(FRDmodesl(al+1 :al+bl,:)

mdd2 = FRDmodes2(a2+1 :a2+b2,:)*(invlamd2yA2*(FRDmodes2(a2+I :a2+b2,:))';

ml =k2*(mddl+mdd2)*k2;

% Rebuild the kept normal modes to include rigid bouy modes and elastc modes and

% kept natural fr-equencies

FRKmodesI = [RBmodesl FRKmodesl];

F.RKmodes2 = [RBmodes2 FRKmodes2];

lamklliamla(1 c,lI:c);



lamk2=lam2a(l1:f, 1 f);

% 1. Build the system mass and stiffness matrices

MSYST = zeros(c+f~c+f);

MSYST(:c1:Lc) = MSYST(1:c, Lc) + eye(c,c)+..

(FRKmodesl(al+1 :aI+bl,:)Y)*ml *FRKjnodesl(al+l :al+bl,:);

MSYST(1 :c,c+1 :c+f) =MSYST(1 :c,c+1 :c+f) +...

(-FRKmodesl(al +1:al+bl ,:))'m1 *FRKmodes2(a2+I :a2+b2,:);

MSYST(c+ 1:c+f 1:c) = MSYST(1 :c,c+lI:c+f)';

MSYST(c+1 :c+f,c+lI:c+f) = MSYST(c+l1:c+f~c+1 :c+t)+eye(f~f)+...

(FRKmodes2(a2+1 :a2+b2,:)')*ml *FRKmodes2(a2+1 :a2+b2,:);

KSYST = zeros(c+f~c+f);

KSYST(1:c, Lc) = KSYST(1:c, Lc) + lainicI +

(FRKmodesl(al+1 :al+b1,:)~)*k2*FRKmodesl(al+1 :al+bl,:);

KSYST(1:c,c+l:c+f) = KSYST(1:c,c+1:c+f) +

(-FRKmodesl(al+1 :al+bl,;,))*k2*FRKmodes2(a2+1 :a2+b2,:);

KSYST(c+1 :c+f,l1:c) = KSYST(1 :c~c+1:c+fy;

KSYST(c+1:c+f,c+1:c+f) = KSYST(c+1:c+fc+1:c+f) + lamk2 +

(FRKmodes2(a2+1 :a2+b2,:)f)*k2*FRKmodes2(a2+1 :a2+b2,:);

% J. DETERMINE TIHE CRAIG CHANG FORCE VECTOR

SYSmodesi = [FRKmodesl IR.Amodesl];

SYSmodes2 = [FRKmodes2 IRAmodes2];
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F2=[F2(02,I1);F2(12, I)];

FCCI = SYSmodesli*Fl;

FCC2 = SYSmodes2'*F2;

% Determine the second trnsoraton matrix

% Note: since the final system mass and stiffness matrices partitions are known, this

% trnfrmation matrix need not be used to build the system mass and stiffiess matrices

T2 =[-kI*FRKmodesl(al+l:al+bl,1:c) kl*FRKmodes2(a2+1:a2+b2,l:f);

kl*FRKmodesl(aI+1 :al+bl,l:c) -k1*FRKmodes2(a2+1 :a2+b2,1:f);

eye(c,c) zeros(c~f);

wos(f,c) eye(fA]);

% determine the system Craig Chang force vector repartition the force vector

FCCIA=FCCI(c+I :c+bl,1);

FCC 1B=FCC1(1 :c, 1);

FCC2A=FCC2(f~-1:f+-b2, 1);

FCC2B-FCC2(1I:f, 1);

FCCI= [FCC1A;

FCC2A;

FCClB;

FCC2BJ;

FCC = T2'FCC1I;

% note: since the calculated system is not restrained, the following commands clean up

%the rigid body modes
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1j:3J;

F=[4:Iength(KSYST)J;

KEX2'{KSYST(F,F) KSYST(F,P); KSYST(P,F) KSYST(PP)];

MEX2([MSYST(F,F) MSYST(FP); MSYST(P,F) MSYST(P,P)];

KEX3=KSYST(F,F);

KEX4--KSYST(F,P);

Rbniodcs--[-inv(KEX3 )(KEX4)

qcyecngh(P))];

[Iname,phiexj--fmnodes(KEX2,MEX2);

for i-1: 3;

phiex(:,1I:3)=Rbmodcs;

b2=3;

[phtbJ=nigid(MEX2,phiex~b2); %/Grani-Schniidt

phicx(:, 1:3)=phrb;

tu~phicx(:,l :3)'*MEX2*phicx(:,l :3),pause %/orthogonality

tk-mphicx(; I :3)'*KEX2*phicx(:,1I:3),paus

fc=size(FCC);

fc Ilfc(1, 1);

FCC= CFCC(4:fcl,l);

FCC(1 :3,1)];
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KSYST-KEX2;

MSYST=NMEX2

lm-cae

phi ccrf'.phimx

omega~ccaf-sqrt(Iam~ccrf)/(2*pi);

omega-omop ccrf

flops % determine total FLOPS

save dasta5.mat lam ccrf phi ccrf MSYST KSYST FCC SYSmodesi..

SYSmodes2 T2 a I a2 b I b2 f c XBM
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APPENDIX D

% LT Lynn James Petersen

% Naval Postgraduate School

% Mast-Antenna Survivability. Structural Dynamic Design Analysis by Component Mode

% S)ymhesis

% Programi:Mrfrb2.m

% This program is written in accordance with the MacNeal residual flexibility method.

% The program loads two data files contaiing information from an FE generated

% substructure this information includes: a) the mass and stiffiess matrices b) listing of

% internal and interface coordinates c) any forcing or base excitation data needed to solve

% a dynamic response problem. The program is ready to load the two data files into the

% work space

load datal.mat % mast data

Kl=kbl, M1--mbl, 01=0, I1 = [NT, RI = Ii, Fl--fl

load data2mat % antennae data

K2=kbl, M2=mbl, 02=0, 12 = INT, R2 12, F24f

flops(O); % zero out the FLOPS count

% I. Substructure 1

% A. Partition substructure one into internal and interface coordinates

Kool=K1(O1,01);
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Korl=Kl(Ol,Rl);

% B. Calculate natural "fr-ee interface normal modes" for structure I

[lamlFRmodeslj = flnodes(KIMI);

al leng*h(O);

b I =Ilength(II1);

a = sizc(FRiodes I);

b =a2)

for i--l:bl;

lamlQkl)=O; % for rigid body modes only

% C. Prompt the user for the number of normal modes desired to be kept.

c = inputenter the number of ficee interfatce normal modes desired to be kept for..

structure 1'1)

% Pariton. the normal modes into kept modes and deleted modes

FRKmodesl = [FRmodesl(:,bl+l:c)];

FRDmodesi = [FRmodesl(:,c+l:b)];

lamI a-diaglam 1);

lamkl=lamla(bl+l :c,bI+l :c);

lamdl=lamla(c+l :b,c+l :b);

invlmkl=inv~lak1);

117



invlamdnll=inv(amnd );

% D. Obtain the rigid body modes as static constraint modes would be obtained

RBmodesl = [-inv(Kool)*Korl

eye(length(Rl))];

% unity mass normalize and orthogonalize the rigid body modes

[phrb] = rigid(MlRBmodesl,b I); %Gram-Schmidt

RBmodesl = phrb;

% E. Form the projection matrix [P] in support of the inertia relief solution

Pl=[eye(al+b1) - MI*RBmodesl*RBmodesl'];

GSTARI = inv(Koo 1);

GBSTARI - zeros(al+bl,al+bl);

GBSTARI(I:al,I:al) = GBSTARI(I:al,1:al) + GSTARI;

FAI = [zeros(al,bl);eye(bl,bl);];

% F. Obtain the residual flexibility modes...

GFLEXI = PI'*GBSTARI*PI;

% ...from the kept modes

% IUAmodesl = [GFLEX1 - FRKmodesl*invlamkl*FRKmodesl']*FAl;

% ...from the deleted modes

% IRAinodesl = (FRDmodesl *invlamdl *FRDmodesl')*FAl;

% Note: this code is tailored to a synthesis of a free-free structure to a free-free structure

% (i.e. mast & antennae to support base acceleration formulation)

% the following code apples if the first structure was fy restrained
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% FRKmodesl = [FRmodesl(:,I:c)];

% FRDmodesl = [FRmodesl(:,c+l:b)];

% Diagonalize and partition into kept and deleted natural frequencies

% lain I a=diag(lam 1);

% hnlamk I =an I a(l:c, I:c);

% lamdI=lamla(c+I:bc+l:b);

% invtamk I = inv(lamk 1);

% invlamdl = inv(lamdl);

% D. Obtain the residual flexibility modes...

% Obtain the flexibility matrix

% GI = inv(K1);

% FAI = [zeros(albl);eye(blbl)];

% .. from the kept modes

% Rmodes = (GI - FRKmodesl*invlamzkl*FRKmodesl')*Fa;

% ...from the deleted modes

% Rmodes = (FRDmodesl*invlamdl*FRDmodes1')*FA1;

% E. Calculate the reduced mass and stiffness matrices for structure I

% Note: since the partitions of the system mass and stiffness matrices are known, the

% following calculations need not be performed.

% Transformation matrix (SYSMODES 1): [T]

% SYSmodesl = [FRKmodesl Rmodes];

% KSYS1 = SYSmodesl'*Kl*SYSmodesl;

119



% MSYSI = SYSmodesl'*Ml*SYSmodesl;

% II. Substructure 2

% A. Partition substructure two into internal and interface coordinates

Koo2 K2(02,02);

Kor2 = K2(02,R2);

K2=[K2(02,02) K2(02,R2); K2(R2,02) K2(R2,R2)];

M2=[M2(02,02) M2(02,R2); M2(R2,02) M2(R2,R2)];

% B. Calculate natural "free interface normal modes" for structure 2

(lam2,FRmodes2] = fhiodes(K2,M2)

a2 = length(02);

b2 = length(I2);

d = size(FRnodes2);

e= d(2);

for i=- 1:b2

lam2(i,l)=0; % rigid body modes only

end;

% C. Prompt the user for the number of normal modes desired to be kept

f= input('enter the number of free interface normal modes desired to be kept for...

structure 2 ')

FRKmodes2 = [FRmodes2(:,b2+1:f)];

FRDmodes2 = [FRmodes2(:,f+l:e)];

lam2a=diag~a12);
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lamk2=lamn2a(b2+l :f,b2+l :0;

lamd2=lam2a(f+l1:e,f+l1:e);

invlamk2=inv(lamk2);

uivlamd2=inv(lamd2);

% D. Obtain the rigid body modes as constraint modes would be obtained

RBmodes2 = [-inv(Koo2)*Kor2

eye(length(R2))];

% unity mass normalize and orthogonalize the rigid body modes

[phrbj = rigid(M2,RBmodes2,b2); % Gram-Schmidt

RBmodes2 = phrb;

% E. Form the projection matrix [P] in support of the inertia relief solution

P2-[eye(a2+b2) - M2*RBmodes2*RBmodes2f];

GSTAR2 = inv(Koo2);

GBSTAR2 = zeros(a2+b2,a2+b2);

GBSTAR2(I:a2,1:a2) = GBSTAR2(1:a2,1:a2) + GSTAR2;

FA2 = [zeros(a2,b2);eye(b2,b2);];

% F. Obtain the residual flexibility modes...

GFLEX2 = P2*GBSTAR2*P2;

% ... from the kept modes

% RMmodes2 = [GFLEX2 - FRKmodes2*invlamk2*FRKmodes2!I*FA2;

% ... from the deleted modes

% JRAmodes2 = (FR~kmodes2*invlamd2*FRDmodes2)*FA2;
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% 0. Calculate the reduced mass and stiffniess matrices for structure 1 transformation

% matrix [T]

% SYSmodes2 [ FRKmodes2 URAmodes2];

% KSYS2 = SYSmodes,2'*K2*SYSmodes2; % note: since final matrix is known,

% these calculations are not required

% MSYS2= SYSmodes2!*M2*SYSmodes2;

% H. Couple the two systems.

kI = [IRAmodesl(al+l:al+bl,:) + IRAmodes2(a2+l:a2+b2,:)];

k2~=inv(k 1);

% Rebuild the kept normal modes to include rigid body modes and elastic modes and kept

% natural fr-equencies

FRKmodes I = [RBmodeslI FRKmodesl]I

FRKrnodes2 = [RBmnodes2 FRKmodes2];

lamkl=lamla(l :c,l :c);

lamk2-Aam2a(1 :t1 );

% 1. Build the system mass and stiffliess, matrices

MSYST =eye(c+f~c+f);

KSYST =zeros(c+f~c+f);

KSYST(1:c,l:c) = KSYST(l:c,l:c) + laniki .

(FRKmodesl(al+l :al+bl ,:))~k2*FRKmodesl(al+l :al+bl ,:);

KSYST(I :c,c+ I:c+f) = KSYST( I:c~c+l :c+f) +...

(-FRKmodesl(al+l :al+bl,:))'*k2*FRY~modes2(a2+1 :a2+b2,:);
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KSYST(c+l:c+f,l:c) = KSYST(1:c,c+l:c+f)Y;

KSYST(c+l:c+f,c+1:c+f) = KSYST(c+1:c+f~c+i:c+f) + Iaznk2 +...

(FRKmodes2(a2+1I:a2+b2,:))'*k2*FRKmodes2(a2+1 :a2+b2,:);

% Build the transformation matrix for both substructures

SYSmodesI = [FRKmodeslI IRAmodes, I]

SYSmodes,2 = [FRKmodes,2 [RAmodes2j;

% J. Determine the MacNeal force vector

% partition the force vector with internal forces followed by interface forces

Fl=(F 1(01,1);F 1(11,1)];

F2=[F2(02,I1);F2(12, 1)];

% i'remultiply the forte vector by the first transformation matrix

FMI = SYSmodesl'*Fl;

FM2 = SYSmodesZ*F2;

% Determine the second transformation matrix

T2 = [-k1*FRKmodesi(aI+l :al+bl,1 :c) kl*FRKmodes2(a2+l :a2+b2,1:f);

kl*FRKmodesl(al+1:al+bl,1 :c) -kl*FRKmodes2(a2+1 :a2+b2,1 :f);

eye(c,c) zeros(c,f);

zeros(fc) eye(f~f)J;

% deternmne the system MacNeal force vector

% repartition the force vector

FM1A=FMI(c+1:c+bl,1);

FMIB=FM1 (1:c, 1);
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FNM2=FNM(f4-1:f+b2, I);

FM2B=FM2(1I:f, 1);

FMI=[ FMIA;

FM2A;

FMIB;

FM2B];

FM =T2'*FMI;

% Partition the system mass and stifless matrices to be suitable for base excitation

% problem (prescribed acceleration)

P--1:3];

F=[4:length(KSYST)];

KEX2=[KSYST(F,F) KSYST(FP); KSYST(P,F) KSYST(PP)];

hMEX2MSYST(F,F) MSYST(FP); MSYST(PF) MSYST(PP)];

KEX3=KSYST(F,F);

KEX4-KSYST(F,P);

eye~length(P))];

% calculate the systemn natural fr-equencies

[lamex,phiex]--inodes(KEX2,NMX2);

for i-1:3;

lamex(Q,1)=O; % rigid body modes

end;
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% dean up the complex rigid body eigenvectors

phiex(:, 1:3)-Rbmodes;

[phrbJ=rigid(MEX2,phiex,b2); O/oGram-Schmfidt

phiex(:,1I:3)=phrb;

% check orthogonality and diagonalization

tu--pbiex(:, 1:3y*NIEX2*phiex(:, 1:3),pause

tk--phiex(:, l:3)'KEX2*phiex(:,I :3),pause

% repartition the system force vector to correspond to mass and stiffness matrix

fin-size(FM);

fin I =fm( 1,1);

FM=[FM(4:flnl,l);

FM(1:3,1)J;

KSYST4CEX2;

MSYSTMhEX2;

lam -mrf--1amex;

phi mif--phiex

omega M&-sqrt(lam,_mrt)/(2*pi);

save data6.niat lam_mjrf phi mrf MSYST KSYST FM SYSmodesi SYSmodes2

T7 al a2 bI b2 f cXBM
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APPENDIX E

% LT Lynn J. Petersen

% Naval Postgraduate School

% Mast-Antenna Survivability: Structural Dynamic Design Analysis By Component

% Mode Synthesis

% Program: Basexdam

% This program solves for the response of a system that is subject to base excitation.

% Structure is generated purely from FE modeling

load data3.mat

% A. Jnput the number of modes desired to be used

n = input('enter the number of modes desired:')

phiex(:,n+l :length(phiex))=[];

% B. Place into modal coordinates

ml, phiex'*mb l*phiex;

k1 = phiex'*kbl*phiex;

% C. rime and frequency parameters

dt = 0.001;

tmax = 0.4;

numsteps = tmax/dt;

tO:dt:tmax;
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omegn=sqrt~lanex);

% freq'.8.9525;

% freq=219.265;

oameg = freq*2*pi; /.(rad/sec)

% D. Convert the force vector

fl-fi- (ornega)A2*FEX;

fl= [fl(4:Iength(fl), 1);

fl(1:3,1)];

F I phiex'*fl; %/modal force vector

% E. Solving the differential equation

for i--1: n

forj~l :numsteps+l;

% forrigid body modes

if i<-3;

c 11 /omega*Fl1(i,lI)*cog~omega*toj));

c2=0;

q(ilj)--F1(i,)/(omega2)*sin(oinega*toj))+c1 *toj)+c2;

else

q(i~j) -Fl (i, 1 )*omega/(omegjn(i)*(lIaiix(i)-....

omegaA2))*sinoznegn(i)*tOj)) +F (ly(iI)(amex(i)-omega2)*sin(omega*toj));

end;
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end;

% F. Converting back from modal to physical coordinates

x-iex*q;

S=sizex)

xi=[x(s(l)-2:s(l),:);

x(l:s(l)-3,:)];

x=xl;

save data6.mat x
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APPENDIX F

% LT Lynn James Petersn

% Naval Postgraduate School

% Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component Mode

% Synthesis

% Program Basexcb.m

% This program solves for the response of a system that is subject to base excitation

% using the Craig -Bampton formulation

load datalO.mat

% A. Input the numbe of modes desired

n = input('enter the number of modes desired:')

phicpl(:,n+l:length(phicpl))=[];

% B. Place into modal coordinates

ml = phi cpl*Mcpl*phicpl;

k1 f phi cpr*K cpl*phicpl;

F1 = phi cpl*FCB;

% C. Tuir and frequency parameters
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dtO0.001;

tmax-O.4;

nmwsteps = tiaxdt;

t = O:dt:unax;

onlen = sqrt(laM~cpl);

% freq=8.9525;

% freq.-219.265;

omega - freq*2*pi; */6rd/sec)

o.D. Solving the differential equation

for iln

forj =l:num~steps+l;

% for rigid body modes

if i<-3; V.3 rigid body modes

cl=l/omnegaFI(i, )*cos(omegatOj));

c2=0;

q(i~j)=FI (i, (omega2)*sin(omega*toj))+cl1*toj)+c2;

else

q(ij) = FlI (1,1 )*omega(ornegn(i)*am~cpl(i)omegA2))*sinomegnQ)*tJ))

+ FIQ, 1)Qam cpl(i, 1)-omega2)*sinooega*to));
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% E. Converting from modal (phys~modal) to Craig-Bampton coordinates

x-*_cpl~q;

% F. Converting back from Craig-Bampton coordinates to physical

x3u[x(1:y,:);,cy4s+i :y+s+a,:)];

xl1INC MODES! x3;

x4'm[x(y+l :y^:);x(y+s+1 :y+s+a,:)J;

x21-NCMODES2*x4;

save dotallI.mat xllx2la
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"APPENDIX G

% LT Lynn James Petersen

% Naval Postgraduate School

% Mast-Antenna Survivability: Structural Dynamic Design Analysis by Component Mode

% Synthesis

% Program: Basexrf m

% This program solves for the response of a system that is subjected to base excitation

% using the Craig-Chang and MacNeal formulations

% the following input prompts the user as to what method will be used in the base

% excitation problem

type=i ('enter type of residual flexibility method, I if Craig-Chang, 2 if Macneal)

if type= =I

load data5.mat

else

load data6.mat

end,

% A- Input the number of modes desired

n = input('enter the number of modes desired:

if type= =I
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phO ccrf(:,n+ 1: length(phi~ccrtf)=-[];

ph~mrf(:,n+I :Iength(phi mrt))[]

% B. Place into modal coordinates

if type= =1

ml = phi ccrfI*MSYST*phi ccrf-

kI = plO-ccrf*KSYST*pW ccrf~

F1 = phi-ccif' FCC;

ml =phi1Pzf*MSYST*phimrf,

kI= phi mf*KSYST*phi. mrf

Fl phi mrf *FM;

% C. ]rm and fr-equency parameters

dtO= .001;

tmax = 0.4;

umm steps = tmax/dt;

t = 0:dt:tmax;

if type= =1

omegn = sqrtlaM~ccrf);
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dels

omegn = sqrt~lammrf);

% freq=8.9525;

% freq-219.265;

omega = freq*2*pi; O/o~ra/se)

% D. Solving the differential equation

iftypea==I

for i-1: n;

forj = l:mnumsteps-s-;

% for rigid body modes

if i<=3;

clrl/omega*F1(i, 1)*wos(omega*toj));

c2=0;

q(ij)=-F 1(1,1)/(omega2)*sin(omega*toj))+c1 *toj)+ic2;

dels

q~ij) -= FI(i, l)*omegaI(omegn(i)*(lamccrf(i)-

omega!`2))*sinomegn(i)*tOj)) + FI(i, l)(Iam ccrf(i, 1)-onmeg2)*sinomega*toj));

end;-
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for i1I:n;

forj = I:num steps-s-;

% for rigid body modes

if i<--3;

cl=1/omega*Fl (i, )*cos(omega*toj));

c2=0;

q(ij)=-F I(i,l1)I(omegaA2)*sin(omega*toj))+c I *toj)+c2;

dels

q(ij) =-F1(i, 1)*omega/(omegn(i)*(laM_mrf(i)-

omegaA2))*sinomegn(i)*tOj)) + F 1(1,1)/(Iam ~mrk(i,l1)-omegaA2)*sin(omega*toj));

end;

er4-

end;

end;

% E. Converting from modal(phys~modal) to Craig-Chang or MacNeal coordinates

if type==1I

x~phipccifq;

dels

x'phimrf~q;

end;
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% F. Converting back from Craig-Chang/MacNeal coordinates to physical

% first convert back to the individual substructures

sz--size(x);

szfrsz(I);

x- [x(szl1-2: sz 1,:);

x(l:szl-3,:)J;

xI T2*x;

x2 = [xI(bl+b2+I:bI+b2+c,:);xl(l:bl,:)];

03 = [xl(bl+b2+c-il:bl+b2+c+f,:);xl(bl+l:bl+b2,:)];

xstrI = SYSmodesl*x2;

xstr2 = SYSmodes2*x3;

xstr2=[xstr2(a2+1 :a2+b2,:);xstr2(l :a2,:)];

if qTyp=l=

save data7.mat xstrl xstr2

else

save data8.mat xstrl xstr2

end;
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APPENDIX H

% LT Lynn James Petersen

% Naval Postgraduate School

% Mast-Antenna Survivability Structural Dynamic Design Analysis by Component Mode

% Synthesis

% This appendix contains an alphabetical listing of the auxiliary functions that support

% the main programs that are listed in appendices A-G

% Function: El3mk.m

function [ke~mej = el3mk(l,gaminaLIE,r~cs)

% This function is called to build the elemental and global mass and stiffness matrices for

% a 3 DOF/node "FE" problem.

% A. Element stiffness matrice:

ke(l,1)1I/r*I/re~c*c + 12*s*s;

ke(l,2)=I/r*Ylr~c*s - 12*c*s;

keQ ,3)u.-6*l*s;

ke(1l,4)=-I/r*l/r*c*c - 12*s*s;

ke(l,5)=-Vril/r*c~s + 12*c*s;

ke( 1,6)=-6*1*s;
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ke(2, 1)I/r*V/r*c*s - 12*c~s;

ke(2,2)=I/rl/r*s*s + 12*c*c;

ke(2,3)=6*I*c;

kc(2,4)=-IVr*I/r*c*s + 12*c*s;

ke(2,5)=-I/rJII/r*s*s - 12*c*c;

ke(2,6)=6*l*c;

ke(3, 1 )L.*1*s;

ke(3,2)=6*1*c;

ke(3,3)=4*I*I;

ke(3,4)=6*1*s,

ke(3,5)=-6*1*c;

ke(3,6)--2*1*1,

ke(4,1)=-Ir*1/r*c*c - 12*s*s;

ke(4,2)=-I/r*I/r*c*s + 12*c*s;

ke(4,3)=6*1*s;

kc(4,4)=I/r*LVr*c*c + 12*s*s;

ke(4,5)=1I/r*I/r*c*s - 12*c*s;

ke(4,6)=6*I*s;

ke(5,1)=-I/r*I/r*c*s + 12*c*s;

ke(5,2)=-IVri/r*s*s - 12*c*c;

ke(5,3) = -6*1*c;
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ke(5,4)4(r/r*rc*s - 12*c*s;

kc(5,5)=V/r*V/r*s*s + 12*c*c;

ke(5,6)=-6*l*c;

ke(6,1I)..6*I*s;

ke(6,2)=6*1c;

ke(6,3)=2*l*t;

ke(6,4)=6*I*s;

ke(6,5)=-6*I*c;

ke(6,6)=4*I*I;

ke:=E*I1A3 *ke;

g=386.09;

% B. Element mass matrix

me(1,l)=140*c*c + 156*s*s;

me(1,2)=-16*c*s;

me( 1,3)=-22*l*s;

me(I,4)=70*c*c + 54*s*s;

me(1,5)?=16*c*s;

me(1,6)=13*1*s,

me(2,1)=-16*c*s;

me(2,2)=1 56*c*c + 140*s*5;
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mc(2,3)=22*1*c,

nin(2,4)=1 6*c~s;

me(2,5)=54*c*c + 70*s*s;

mc(2,6)=-1 3*1*c;

me(3,2)--22*1*c;

n).e(3,3)=4*1*I;

me(3,4)=- 13 *1*s;

mce(3,5)=13*I*c;

me(3,6)=-3*1*l;

me(4,1)=-70*c*c + 54*s*s;

me(4,2)=16*c~s;

me(4,3)=-13*1*s;

me(4,4)=140*c*c + 156*s*s;

me(4,5)=-1I6*c*s;

me(4,6)--22*1*s;

mc(5,1)=-16*c*s;

me(5,2)=54*c*c + 70*s*s;

me(5,3)=-13*I*c;

nie(5,4)=- 16*c*s;

me(5,5)=l 56*c*c + 140*s*s;
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me(5,6)=-22*I*c;

me(6,1)=-13*1*s;

me(6,2)=-l 3*1*c;

ine(6,3)=-3 *1*1;

me(6,4)=22*I*s;

me(6,S)=-22*1*c;

me(6,6)=4*I*l;

me = gamma*II(420)*me;

% Function: Fmanor

% fmtion[phiononnalorth]--finanor(phimass)

% this function mass normalizes a modal nmaix.

a = size(phi);

nummodes--a( 1,2);

phi -norinai=zeros(a);

for ii=1 :nunimodes;

imodalmass(ii)=phi(:,ii)'massphi(:,il);

if modahnass(ii>-=,

phi nornal(:,ii)=( I/sqrt(modalmass(ii)))*phi(:,ii);

else
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end,

% do the ortho, caic:

orth=phi-normalr*nma*phi-normal *100;

% Function: Fniodes.m

% this function returns a vector containing mode freqs (rad/secr^2 and a matrix

% containing the mass

% normalized mode shapes. The mode information is sorted by fr-equency in ascending

% order.

% [ormegaphij=finodes(k~m)

function [omega~phij-finodes(k~m)

a~ength(m);

[v,d]=eig(m\k);

[omga,index]=sort(diag(d));

omega-zeros(a~a);

for i--1:a;

omegaQi,i)=omiga(i)-.
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for i=1:a;

phitemp:,i)=v(:,index(i));

omegadiag(onacga);

[phiorthJ=finanor(phitemp,,n);

% Function: Krnbe.m

function [KEXMEXFEX]=kmbe(kbl1,miblINTBS,XBM)

% A. Pari tionn of the mass and stiffniess matrices according to internal and base

coordinates

MU = mbl(INTINT;

MIB = nib (INTBS);

MBI = mb I(BS,INT);

MBB = nib I (BSBS);

KUI = kb I(INTDlNT;

KM = kb I(INTBS);

KBI = kbl(BS,INT);

KBB = kbl(BSBS);
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% B. Form the ex-mnus and ex-stiffitess matrices,

=E (MUI - KEB*inv(l(BB)*NfBI);

KEX =(KI! - KIB~inv(KBB)*KBI);

% C. Form the ex-force vector

FEX = (M[B-KIB*inv(KBB)*MBB)*XBM;

% Function: Rigk~m

function (phrbJ = rigid(mb 1 ,phi,b2)

% This finction obtains orthogonality of 3 linearly indepenet but not orthogonal

% vectors using the Gram-Schmidt procedure

if b2=3; % 3rigid body modes

% 1. Obtain 'V" vectors

VI = phi(:,lI);

V2 = phi(:,2);

V3 =phi(:,3);

%2. solve for alpha

alpha =(V2'mbl*VI)/(VJ'*mbl*VI);

V2T =V2 - alpha*VI;

% 3. solve forbeta and gamma

c(1,l) = V3'*mbl*VI;

c(2, I)=-V3'*mblJ*V2T;

a(l,I) = V2r*mbl*VI;



a(1,2) = VI'*mbl *VI;

&(2, 1) =V2r*mb I*V2T;

a(2,2) VI'*mbl*V2T;

X= inv(a)*c;

beta = x(l, 1);

ramm = x(2,I1);

V3T = V3 - beta*V2T - gantma*Vl;

phrb -[VI V2T V3T];

% 4. unity mass normalize the phrb shapes

[phi_normal,orthj-fmanor(phrb,mb 1);

phfb = phi normal;

else 6/2-DOFINODE

\% 1. Obtain "v" vectors

VI =phi(:,I1);

V2 = pbi(:,2);

%2. solve foralpha

alpha (V2!*mbI*VI)/(VI'mbi*VI);

V2T =V2 - aipha*Vi;

% 3. reasign the rgid body modes

pbrb = VI V2T];
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% 4. unity mass normalize the phrb shapes

[phinormaLorth]--finanor(phrb,mb l);

phrb = phi normal;

end;

% Function: Forceda.m

ntion(shmo)=f-orcea(type)

% this program calculates the maximum shear and moment to a basex problem

ifytpe= =1% finite element

load data6.mat

load data3a.Mat

load daWa3.mat

datdabe

elseiftype = -2 % Craig-Bampton

load data I1 .mat

load datal.mat

load datala.mat

elseif type = =3 % Craig-Chang

load data 6.mat

load datal.mat
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load datala.mat

else % MacNeal

load data 7.mat

load datal.mat

load datala.mat

% input location where shear and moment are desired

if type== I

sm = input('enter the element where the sheer and moment are desired')

=sizze(x);

!b--(1,2);

elseif type =2

str = input(&entr which structure is desired for analysis)

if tr l

load data mst.mat

x=xll

else

load data ant.mat

x=x21a

end;

smn = input(enter the element where the sheer and moment are desired)

8 1size(x);
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Iw-g(,2);

elseif type= 3

str = input('enter which structure is desired for analysis)

if str •1

load data mst.mat

else

load data ant mat

end;

sm = input('enter the element where the sheer and moment are desired')

g-size(x);

h=-g(1,2);

else

str = input('enter which structure is desired for analysis)

if str -=1

load data rest.mat

else

load data ant.mat
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end;

sm - input('enter the element where the sheer and moment are desired')

g".size(x);

(ke2,me2J=eL3mkQl(sm),gamzna(smn),I(sm),E(sm),r(sm),c 1(sm),sl(sm));

t2j[c I(sm)s I(sn) 0 0 00;

-sl(si) cl(sm)O0O00 0;

0 0 10 000;

0O0O0cl(sm) sl(sm) 0;

0 00 -sl(sm) cl(SM) 0;

00000 1];

% tCeye(6);

if type== I

y3=abs( [x(3 *con(sm, I )-5,:);x(3 *con(smp, 1 )-4,:);x(3 *on(smr, 1)-

3,:);x(3*con(sm,2)...

for j=11;

y4=ke2*t2*y3;

end,

n I = inpt ('enter I if first node is desired or 2 if second node is desired')
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if nl==l

sh~max(y4(2,:))

mo--max(y4(3,:))

else

sh--nax(y4(S,:))

mo-max(y4(6,:))

end;

elseif type <=4

if str- 1

y3=abs( [x(3 *con(sin, 1 )-5,:);x(3 *con(smn, 1 ).4,:);x(3 *con(sm, I)-

3,:);x(3*con(smi,2)...

fbr jl:h,

y4--ke2*t2*y3;

end;

n I = input ('enter I if first node is desired or 2 if second node is desired')

if nl==

sh---ax(y4(2,:))

mo-max(y4(3,:))

else

shlmax(y4(5,:))

ISO



mO--maxO*46,:))

end;

else

y3=abs [x(3 *con(sm, 1)-2,:);x(3 *con(sjjm)-i ,:);x(3 *co(s 1),:);x(3 *cor,(sI,2)

for j= :h,

y4=ke2*t2*y3;

end;

n I = input ('enter 1 if first node is desired or 2 if second node is desired')

if nl==l

sh--nax(y4(2,:))

mo-max(y4(3,:))

else

sh=max~y4(5,:))

mo1-max~y4(6,)

end;

end;

end;



% Function: Trig.m

fuinction [c,s] - trig(thetan)

% This function is written in order to minimize on truncation error in calculating the

% angle between beam elements of finite element code

for j=l :n

if theta(Ij) < 0.02 & theta(l j) > 6.25

c(ljyl,

s(1j)=O;

elseiftheta(Ij) < 1.58 & theta(lj) > 1.56

c(Oj) = o;

s(Ij) = 1;

elseiftheta(lj) > 3.11 & theta(1j) < 3.17

c(1j) = -1;

s(lj)=0;

elseiftheta( j) > 4.68 & theta( Ij) < 4.74

c(j)o0;

s(l1j) =-!

else

c(l j)=cos(theta( ij));

s(l j)=sin(theta(l j));

end;
end;
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