AD-A280 666 T
MGTHA 00 @

AFIT/GCS/ENG/94J-01

~BTiC

ELECTE
JUN2 7 1004

Dynamic Load Balancing
for a
Parallel Discrete-Event Battlefield Simulation

THESIS
Seth R. Guanu
Captain, USAF

AFIT/GCS/ENG/94J-01

4-19378
\\\

Approved for public release; distribution unlimited

¢ . (.,»“

- B - - P - P . N P .- ' . U 3

THIS REPORT IS INCOMPLETE BUT IS
THE BEST AVAILABLE COPY
FURNISHED TO THE CENTER. THERE
ARE MULTIPLE MISSING PAGES. ALL
ATTEMPTS TO DATE TO OBTAIN THE
MISSING PAGES HAVE BEEN
UNSUCCESSFUL.

AFIT/GCS/ENG/94J-01

DYNAMIC LOAD BALANCING
FOR A
PARALLEL DISCRETE-EVENT BATTLEFIELD SIMULATION

THESIS

Presented to the Faculty of the School of Engineering
of tho Alr Fotce Institute of 'I‘echnology

Justification

Accesion For] Air University

NTIS CRA& ¥ In Partial F'ulfillment of the
DTIC TAB 8

Unannounced 0 Requirements for the Degree of

Master of Science (Computer Science)

By ..
Distribution |
F Availabllity Codes
Avail and|or Seth R. Guanu, B.A.CS.
Dist Special ,
) Captain, USAF

June 14, 1994

Approved for public release; distribution unlimited

Acknowledyements

I would like to thank my advisor, Dr. Hartrum, for his guidance and patience dur-
ing this research effort. I will always remember our endless discussions in his office over
various “battlefield” drawings on his blackboard. I would also like to thank my original
~ committee members, MAJ Christensen and MAJ Sonnier for their help at the beginning
of the research, and then Lt Col Hobart and Dr Potozeny for joining my committee late

in the research when the other two members left AFIT.

I would also like to thank my fellow classmates, especially my BATTLESIM partner

Capt Wally Trachsel. Their support and humor kept me going through my experience here

at AFIT,

Most of all, I would like to thank my parents for always stressing the importance of

education and hard work. Without those values, I would have never been able to succeed,

Seth R. Guanu

ii

Table of Contents

Page
Acknowledgements i e e e e e ii
List of Figures vi
List of Tables T vii

Abstractt‘l..CUUOOUC.bOllllll.lll..'illl.!lllllDll viii

L Introduction T S 1
11 Background . . v v vt i e ‘e 1

1.1.1 Parallel Discrete-Event Simulation . .., - 1

112 Battlefield Simulation Model . .+ 3

12 ResearchProblem 0 vy 3

1.3 Hypothesis v v i v it i it e 4

14 Scope ..o v v v i 4

15 Assumptions v v v it i i i i e e 4

18 Approach v v i i e e e e 5

1.7 Outlineof Thesis v v v i v v 5

II. Literature Review it 6
21 Imtroduction i e 6

22 LoadBalancing.o i i 6

2.3 General Dynamic Load Balancing Model 7

2.3.1 Processor Load Evaluation 7

2.3.2 Load Balancing Profitability Determination 7

2.3.3 Task Migration Strategy 7

234 Task Selection Strategy 8

iii

2.4 Dynamic Load Balancing Strategies 8
24.1 GradientModel. 8

2.4.2 Sender Initiated Diffusion (SID) 9

2.4.3 Receiver Initiated Diffusion (RID) 9

2.4.4 Hierarchical Balancing Method (HBM) 10

2.4.5 Dimension Exchange Method (DEM) 10

2.4.6 Load Update Strategy v 11

2.6 Comparison Analysis cvvv v 12
26 BATTLESIM............ C e e e vl 13
27 Comclusion . . . v v v v i e i e e e 13
III. Analysisof DesignIssues. v v v v v v v v i vt v s i 0 e e 15
31 Introduction, v v i e, 18
3.2 Parallel Discrete-Event Simulation Model 15
3.2.1 Architecture Ve e 15

3.22 LP Synchromization v v s .16

3.3 General Battlefleld Model v 17
331 Hierarchy v v v v v v i e i e 17

3.3.2 Battlefleld Partitioning 18

3.3.3 ExecutionofModel 21

3.34 BattlefleldEvents o 22

3.4 Dynamic Load BalancingModel 22
3.4.1 Processor Load Evaluatiovn 23

3.4.2 Load Balancing Profitability Determination 23

3.4.3 Task Migration Strategy 24

3.44 Task Selection Strategy 24

3.5 Benchmark Scenarios 25
36 Conclusion e e 25

iv

IV. Design and Implementation v, 26
4.1 Introduction i ‘e 28

42 Design. . .. v v i e e e 26

4.2.1 Processor Load Evaluation Vi a . 28

422 LPLoad Evaluation v 27
4.2.3 Task Selection Strategy v v 27
4,24 Task Migration Strategy 28
4.2.5 Load Balancing Profitability Determination, .. 30
4.2.6 Execution of Load Balancing Model 31
43 Implementation v, 33
4.3.1 Synchronization between LPs for Load Balancing 33
4.3.2 Transferring a sector to another LP -

404 ConCIUBion.-.n-oqo»...o.--.o.oo--no-o... 35

V. Testing, Results and Conclusion L e 36
51 Introduction <

8.2 Functional Testing e e 38

5.3 Performance Testing, 37

53.1 Test Scenarios 37

532 PreliminaryResults 37

833 Analysis0 e e 39

5.4 Recommendations for Further Research 42

BB Comclusion . .o v v v v v i i e e e e 43
Appendix.A. Battlefield Simulation Events, 45
Bibliography . . . v v v e e e e 47
Vita o v e e e e e 49

Figure

2,
3.

List of Figures

BATTLESIM “Big Picture”
Examples of How to Partition a Battlefield . ..
Battlefleld Example .,
Benchraark Scenariol ..,
LP structure and communication graph

Table
1,

2.

List of Tables

Summary of Comparison Analysis . + . v v v v v v v v v v e e

Performance Test 1
Performance Test 2

Performance Test 3

vii

Page
12

38
39
39

AFIT/GCS/ENG/94J-01

Abstract

This thesis investigates issues involved in developing a dynamic load balancing model
for a parallel discrete-event battlefield simulation. The research covers issues in task man-

agement, discrete-event simulation, parallel simulation, and load balancing,.

There are four primary issues discussed concerning the design of a dynamic load bal-
ancing model. The first issue is processor load evaluation which deals with the calculation
of the amount of work on a processor. The second issue is load balancing profitability de-
termination which deals with the decision to load balance or not based on some cost-gain
relationship, The third issue is task migration which deals with the selection of sources and
destinations for task migration. The fourth issue deals with task selection which involves

selection of appropriate tasks for efficient and effective load balancing.

As a result of the research, a dynamic load balancing model is designed that balances
the work load in a parallel discrete-event battlefleld simulation. The design goals used to
develop this model were efficiency and maintainability of the simulation integrity. The
model is then implemented and tested using AFIT's BATTLESIM program, which is a

battlefield parallel discrete-event simulation.

viii

DYNAMIC LOAD BALANCING
FOR A
PARALLEL DISCRETE-EVENT BATTLEFIELD SIMULATION

1. Introduction
1.1 Background

Battlefield simulations have become an integral part of our national defense. They
provide military leaders a synthetic environment to develop doctrine, conduct training, do
operational planning and rehearsal, and assess wartime situations (15:20-21). However,
the size and complexity of such simulations often lead to results that take several hours
or even days to compute, The lack of timely results limits the ability to examine many
strategic and tactical options in a “real-time” environinent. Faster methods for conducting
battlefield simulations are needed to provide military commanders critical information in a
timely manner. This thesir investigntes dyramic load balancing as one method to achieve

simulation speedup.

1.1.1 Parallel Discrete-Event Simulation. A discrete-event simulation (DES)
model assumes that the system being simulated changes state instantaneously at discrete
points in simulated time. The simulation medel “jumps” from one state to another based

upon the occurrence of an event (4:1). The three basic duta structures of a DES are (4:2):

o Simulation clock - used to track how much progress has been made

¢ Next Event Queue(NEQ) - a time-ordered list of events which have been scheduled,

but have not yet been executed

o State Variables - describe the various attributes of the system, collectively referred

to as the “state” of the system being modeled.

Each event on the NEQ has & time stamp. The simulation removes the event with
the smallest time stamp from the NEQ, updates the simulation clock with that time, and

executes that event.

A DES can be parallelized by breaking the simulation into a set of logical processes
(LPs) that communicate with each other via the sending and receiving of time stamped
messages, The time stamp represents at what time the event is supposed to occur. Each

LP has its own simulation clock and NEQ. (13:43-45)

1.1.1.1 PDES Difficulties. The major difficulty with PDES is the process-
ing of events in an LP. The simulation selects the smallest time stamped event (Enn)
from the NEQ and executes it. If it selected some other event Ex, it would be possible for
Eyx to modify state variables used by E,;,. This would be simulating a system in which
the future could affect the past and is unacceptable. These types of errors are known as
causality errors (4:2-3). A causality error also occurs when a event is sent to an LP with
& time stamp smaller than the current simulation time .of that LP. PDLS algorithms have

been developed to address this problem.

1.1.1.2 PDES Algorithms. Thereis aspectrum of PDES algorithms ranging

from conservative to optimistic. A conservative algorithm will strictly avoid the possibility

of a causality error occurring by determiuing when it 18 “safe” to procees an event. This is
accomplished by determining when all events that could aifert the event in question have
been processed. A optimistic algorithm will detect when a causality error has occurred
and then correct it by invoking some type of rollback mechanism. (4:4) There are also

algorithms that incorporate hoth conservative and optimistic ideas.

1.1.2 Baitlefield Simulation Model. The general battlefield simulation model
consists of a battlefield of a predetermined size partitioned into non-overlapping sectors.
Player objects such as planes, tanks, missiles, or trucks move and interact with each other

on this battlefield.

The “traditional approach” to battlefield partitioning has been static partitioning of
the battlefield into uniformly sized sectors and assignment of an equal number of sectors to

each LP. This is done in an effort to give each LP a somewhat equal share of the workload.

1.2 Research Problem

Many scenarios create situations during the simulation where just a few LPs are
doing the vast majority of computational workload. A basic principle of military strategy
is to concentrate forces in a small area. In battlefield simulations, this usually leads to a

majority of the objects in one small part of the battlefield. At this point, the work among

LPs becomes unbalanced.

1.8 Hypothesis

The hypothesis of this research is that dynamic readjustment of the spatial bound-
aries assigned to each LP should balance the work among LPs, and improve simulation

speedup. The basic technique behind this concept is known as dynamic load balancing.

1.4 Scope

The specific objective of this research was to develop and test a general load bal-
ancing model for a parallel discrete-event battlefield simulation with a conservative PDES
algorithm. Various load balancing techniques were analyzed. A general load balancing
model was developed based on these techniques. This mode) was implemented and tested
using BATTLESIM. BATTLESIM is a general battlefield simulation model developed at

the Air Force Institute of Technology (AFIT) (1).

1.5 Assumptions

1. BATTLESIM has been tested and executes on the Intel iPSC/2 Hypercube in the

AFIT Parallel Simulation Research laboratory.
2. BATTLESIM code and documentation are available.
3. BATTLESIM is representative of a general parallel battlefield simulation.

4. BATTLESIM code can easily be modified to support the load balancing strategies

developed in this research.

1.6 Approach

The first step in this research was to investigate the use of dynamic load balancing in
other applications and evaluate its potential in parallel battlefield simulation. This process

consisted of a literature search and evaluation of previous AFIT thesis efforts.

After the literature review, the general battlefield simulation model and the under-
lying LP synchronization were defined. These two models served as basis for analysis of

tbe load balancing problem.

Following the analysis stage a dynamic load balancing model was developed. This was
done by evaluating the specific requirements of the general battlefield model and applying

knowledge attained during the literature search.

Once the model was completed, it was implemented and tested using the BAT-
TLESIM simulation. Various scenarios and LP configurations were used. The load balanc-
ing algorithm maintained the integrity of the simulation and showed a slight performance

improvement with the benchmark scenarios tested.

1.7 Outline of Thesis

Chapter 2 of this thesis contains a literature review of current research in the area of
dynamic load balancing. Chapter 3 is a analysis of the issues that were considered before
arriving at a final design. Chapter 4 contains the actual design of the model and infor-
mation concerning the implementation in BATTLESIM. Chapter 6 contains the results,
recommendations for further research, and conclusions. Appendix A contains a description

of simulation events of the general battlefield simulation model.

o

II. Literature Review

2.1 Introduction

Parallel processing systems have been shown to be very good. at solving problems

that can be broken down into tesks with uniform computation and communicatioﬁ pat-
terns (18:979). There is still a large class of problems that bave non-uniform computation

| and uneven or unpredictable comn"xunication patterns. Dynamic load balancing schemes
have beer researched and developed to allow parallel systems to solve these problems

efficiently,

The purpose of this chapter is to provide a background in the ares of dynamic load
balancing as well as an introduction to BATTLESIM. This literature review discusses load
balancing, a general dyna.nﬁc ioad balancing model, various load balancing strategies, and
a comparison analysis of these strategies. The information for this ch#pter was taken from
current literature in the areas of parallel processing, load sharing, task schéduling, and
task migration. The paper by Willebeek-LeMair (18) provides a good overview of similar

work done in the field (5) (3) (8) (12).

2.2 Load Balancing

Load balancing focuses on maximizing the utilization of all processors in a parallel
computing system. There are two types of load balancing, static and dynamic. Static load
balancing includes the partitioning, allocation, and scheduling of tasks before runtime. In

contrast, dynamic load balancing uses various system data to redistribute tasks within the

system during runtime. (11:137-138)

2.8 General Dynamic Load Balancing Model

Willebeek-LeMair and Reeves have developed a general model for dynamic load bal-

ancing (18:980). The four phases are:

1. Processor Load Evaluation
-2, Load Balancing Proﬂta.biljty Determination
3. Task Migration Strategy

4. Task Selection Strategy

£.8.1 Processor Load Evaluation. During this phase, the current load is estimated
for each processor in the system. These load values are then sent to the load balancer to

determine load imbalances and make load sharing decisions.

2.8.2 Loud Balancing Profitability Determination. Once a load imbalance has
been detected, it must be determined if the potential speedup gained from load balancing

is greater than the overhead caused by load balancing itself.

An important calculation in this process is the load imbalance factor O(t)., O(t)
is defined as the difference between the maximum processor loads before and after load

balancing, Liqy and Lyq, respectively, at time t (O(t) = Lyqy - Lsar) (18:980).

2.8.8 Task Migration Strategy. If it is determined profitable to load balance the

system, then sources and destinations for task migration are determined. The sources are

informed of the quantity and destination of tasks for load balancing.

2.8.4 Task Selection Strategy. The source processors, once informed of the quan-
tity and destination of tasks, must deiermine the best tasks for efficient and effective load

balancing and send them to the appropriate destinations.

2.4 Dynamic Load Balancing Strategies

2.4.1 Gradient Model. The gradient model is driven by under loaded processors
in the system. Under loaded processofs inform other processors of their state and the
overloaded processors in the system respond by sending a portion of their load to the
nearest lightly loaded processor. As & result, tasks in the system tend to migrate towards

the under loaded points. (18:981-982)

Two very important threshold parameters in this systera are the Low-Water-Mark
(LWM) and the High-Water-Mark (HWM). A processor is considered light if its load is

below the LWM and heavy if it is above the HWM. (18:981-982)

The proximity of a node is defined as the shortest distance from itself to the nearest
lightly loaded node in the system. Initially all nodes have a proximity of wpnqa., which is a
constant equal to the diameter of the system. A node with a light load has & proximity of

zero. All heavy nodes p with near-neighbors, n;, have a proximity as:
prozimity(p) = min(prozimity(n;)) + 1.

The system is saturated if all processors report a proximity of wm,, and therefore

does not need load balancing. When the proximity of a node does change, it must notify its

near-neighbors. The load balancing process is initiated when a node reports a proximity

of zero (has a light load).

2.4.2 Sender Initiated Diffusion (SID). SID uses a local, near-neighbor diffusion
approach which employs overlapping balancing domains to achieve global balancing (9:17-
18). The scheme is purely distributed and asynchronous because each processor acts inde-
pondentl&. sending excess work to under worked neighbors. Willebeek-LeMair and Reeves
show that for an N processor system with a total system load L unevenly distributed
across the system, a diffusion approach, such as the SID strategy, will eventually cause

each processor's load to converge to L/N (18:982-983).

Each processor periodically receives a load update message from each neighbor in
its domain, If a processor p recelves a message indicating that a neighbor’s load, Lnegn
is less than Lyow, where Lrow I8 a preset threshold, and its own load L, is higher than
the uverage load in the domain by a certain threshold, Lihresnoids then load balancing is

initiated. (9, 18)

2.4.8 Receiver Initiated Diffusion (RID). The RID approach is often thought
of as the converse of the SID approach because it is receiver initiated instead of sender

initiated. It is similar to SID in that it implements balancing domains.

Each processor recelves load update messages from neighbors in its domain. If a

proceuor’s. load drops below a pre-specified threshold Lrow, and is helow the average

domain load by more than a pre-specified amount Lgxp ¢4no14, then the load balancing process

is initiated. This consists of requesting work from overloaded neighbors in its domain. (9,

18)

2.4.4 Hierarchical Balancing Method (HBM), The HBM decentralizes the bal-
ancing process by organizing the system into a hierarchy of balancing domains similar to
a binary-tree (9:19-20). One processor at each level is designated to control the balancing

operations.

Processors in charge of balancing at a level /, receive load information from both
lower level, l;.1), domains. Global balancing for the system is achieved by ascending
the tree and balancing the load betwéen adjacent domains at each level in the hlerar-
chy. Balancing is initiated within a domain whenever the domain’s designated controller
detects an imbalance. The tree structure is an attractive scheme to organize the nodes
bacause it minimizes the communication overhead and can be adapted to accommodate

large systems. (9, 18)

2.4.5 Dimension Ezchange Method (DEM). The DEM is very similar to the
HBM scheme in that small domains are balanced first and then combined to form larger
domains until the entire system is balanced. It is different than HBM in that it is a

synchronized approach.

Load balancing proceeds as follows (18):

1. All processor pairs in the first dimension balance the load between themselves.
2. All processor pairs in the second dimension balance the load between themselves.

3. All processor puirs in the N th dimension balance the load between themselves.

10

4. All processor pairs in the N+1 th dimension balance the load between themselves,

ete.

The balancing is initiated by any processor which has a load that is less than a preset
threshold, Lsnyesnotd: The synchronization approach used in DEM ensures that the entire

system will achieve & balanced load.

2.4.6 Load Update Strategy. The load update strategy is very important to
most dynamic load balancing schemes. The majority of dynamic load balancing strategies,
including the ones discussed here, make load balancing decisions based on the load levels

of various processors in the system.

Willebeek-LeMair and Reeves (18) state that although the degree of knowledge may
vary from one strategy to another, the quality of information governs the intelligence of

the load balancing decision. The quality of information relies on three key factors:

1, The accuracy of processor load estimates

2. The aging of information due to the communication latency of the interconnection

network and the destination of load information
3. The frequency of the load update messages

The first factor is application dependent and usually involves a tradeoff between the
quality of the estimate and the complexity of the estimation process. The second factor is
dependent on the machine architecture and the type of load balancing scheme used. The

third factor is the most flexible of the three, and is used to tune the performance of the

particular load balancing strategy used.

2.5 Comparison Analysis

Table 1 provides a general overview of the differences between the various dynamic
load balancing techniques discussed in this chapter (18:987). The selection of a dynamic

load balancing technique should be based on the application and the hardware architecture.

The following points can be made about the strategies (9, 18):

o The DEM strategy tends to outperform the other schemes.

¢ The performance of the DEM and HBM schemes depend heavily on the system
interconnection topology. The hypercube topology is ideally suited for these two

schemes,

o The overhead costs of the DEM and HBM schemes degrade their performance when

the number of nodes is large (1000 processors).

o The RID strategy is easily ported to simpler topologies and can be expanded grace-

fully for larger systems.

Table 1. Summary of Comparison Analysis

GM SID RID HBM “DEM
recejver sender receiver | designated | designated
Balancing Domain || variable | overlapped | overlapped | variable variable
Knowledge global local local global global
12

2.6 BATTLESIM

BATTLESIM is a high-resolution parallel discrete-event battlefield simulation de-
veloped by the parallel simulation research group at AFIT. It uses a conservative PDES
algorithm. It was designed to simulate objects (aircraft, missiles, tanks, and trucks) mov-
ing along predetermined route points until they sense another object or a battlefield sector
boundary. When an object senses another object, it reacts by either attacking, evading,
or continuing its present course. Boundary crossings are handled by boundary crossing
events which involve either object replication into a sector bacause the object has visibility
there, object removal from a sector because it no longer has visibility there, or updating

cbject ownership because the object physically resides in a new sector, (1)

Figure 1 illustrates the BATTLESIM system overview. Multiple scenario input files
are created by the user and supplied to BATTLESIM at run time. Each scenario file
contains various objects, their associated attributes and a list of route points. The user

also supplies a mapping file which describes the sector-to-LP mappings.

Once the simulation is executing, BATTLESIM generates object status information
which is sent to a graphics file as well as the screen. The graphics file can be sent to a

graphics workstation which will depict the battlefield activity.

2.7 Conclusion

This literature review provides a background into the area of dynamic load balancing
and BATTLESIM. Of particular importance is the general load balancing mode! which is

used as basis for the requirements discussion in the following chapter.

13

SINGLE

MAP
FILE
reads
BATTLESIM
oreates
| OWR/\
may be sent FILES
directly to
L.
DISPLAY

Figure 1. BATTLESIM “Big Picture”

III. Analysis of Design Issues
3.1 Introduction

The design of the dynamic load balancing model (DLBM) in this research required

addressing many issues. These issues included:

¢ The parallel discrete-event simulation model
o The general battlefield model

o The load balancing model

o Development of benchmark scenarios

This chapter discusses the major design issues. First the parallel discrete-event simulation
model and the general battlefield model used are defined, Next the design issues of the
load balancing are discussed. The last section discusses the development of benchmark

scenarlios.

3.2 Paralle! Discrete-Event Simulation Model

3.2.1 Architecture, The PDES mode! used in this research consists of set of
communicating LPs. Each LP is a discrete-event simulation itself with its own simulation
clock, next event queue, and state variables. This research uses a 1:1 mapping between
the LPs and the physical nodes or processors. LPs communicute with each other via the
sending and receiving of time stamped messages. Arcs, otherwise known as channels, define
which LPs can communicate with each other. Input arcs to LF; define a subset of LPs
from which LP, can recelve messages. Correspondingly, output arcs from LP; define a

subset of LPs to which L P, can send messages.

15

3.2.2 LP Synchronization. A conservative protocol is used to avoid deadlock and
causality errors. The protocol used is a variant of the Chandy-Misra approach with NULL
messages (2, 17). This protocol uses NULL messages (messages with only a time stamp)
to specify the earliest time at which the next message could be sent, allowing the recelving
LP to process up to that time. Each arc has a channel clock that records the time of the

last message sent or received on that particular arc.

The protocol prevents causality errors by not allowing the LP to update its local
simulation clock until it has received a message on each of its inputs with a time greater
than or equal to its own simulation time. Once this constraint is satisfled, the LP identifies
the smallest time stamp of these message and updates its local simulation clock to this
time, The LP then executes all events in its next event queue with a time less than or

equal {o its local simulation clock. (17)

The concept of lookahead(event prediction) allows this protocol to improve its per-
formance. For example, If an LP simulates a car wash that takes three time units to wash
a car and five to wash a truck, the minimum time delay is three time units. Using the
minimum time delay, if the LP time is ten and a vehicle arrives at time ten, it will rot be
finished any earlier than time 13. Thus the LP could send a NULL message with a time

stamp of 13. (17)

There are two points at which NULL messages are sent (17):

1. At startup - NULL messages are sent to each output arc with the min delay time of

that arc (different arcs can have different delay times).

16

2. When an LP receives a NULL message, NULL messages are sent on all output arcs

with a time stamp of min(t.N EQ, safetime + mintime_delay).

3. When an LP sends a real message with a time stamp of ¢.téme to another LP, NULL

messages are sent on the remaining output arcs with a time stamp of t.time.

3.8 General Battlefield Mode!

The general battlefield model consists of player objects such as planes, tanks, missiles
or trucks interacting on a battlefield. This battlefield is of a predetermined size and

partitioned into non-overlapping sectors. The following section provides a hierarchy of the

model.

3.8.1 Hierarchy. The battlefield model is organized as follows:

the battlefleld is partitioned into sectors based on spatial dimensions

an LP contains adjacent sectors

— a sector is mapped to one and only one LP, but one LP can have multiple sectors

mapped to it

a sector object contains exactly one playerset

a playerset object consists of players, which can be

1. Actual players

2. Player copies - copies of players from other playersets

a player object consists of several attributes including:

17

- Object type

~ Object identifier

— Current time

~ Spatial location on battlefield
- Velocity

~ Sensor range

There are three maps used for maintaining the player objects in the simulation {18):

e PLAYER.PTR.TOSECTOR.ID - this map is used to maintain the relationship

between each copy of a particular player and the sector id that it resides in.

¢« PLAYERID.TO.OWNERS.SECTOR.ID - this map is used to maintain the rela-
tionship between a player id and the sector id that the owner copy of the player

resides on.

o PLAYER.ID.TO.COPIES.SECTOR.D - this map ic used to maintain the relation-
ship between the owner copy of a player and its other copies. This i iccomplished
by mapping the player id of a player to each sector id that contains copies of the

player.

3.8.2 Battlefield Partitioning. Sectors were originally incorporated into battle-
field simulations to reduce the time is takes to predict a next event for a particular player.
The absence of sector partitioning requires the simulation to search all players in the bat-
tlefield when predicting the next event for a particular player. Sectoring the battlefield

allows the simulation to search only players in given sector when predicting the next event.

18

Player copies in the appropriate sectors allow the simulation to reduce its search space

from the whole battlefield to just one sector.

Sectors can coaceptually be any size or shape as long as they are no larger than
the battlefield itself. Some commonly used sector shapes are hexagons, rectangular cubes,
squares, and strips (see Figure 2) (1). The choice of which shape to use as a sector is
often determined hy the specific application. For example, Moser used strips to partition
the area in which balls were travelling in his pool table simulation (14), while Bergman

allowed rectangles in BATTLESIM (1).

This research considered using squares and strips as the sector shape. Analysis of the
square and strip sector shapes with respect to the general battlefield simulation provided

the following observations:

o player copies - both shapes had a best case of zero player copies. The atrip could
have at most one player copy per player. The square could have at most three player
copies. This would occur when a player was located in the corner of the square and

sensing into thiee other adjacent squares.

¢ communication costs - these are based on the number of LPs with which a sector
would have to communicate. Both shapes had a best case of zero. This best case
would occur when all sectors in the battlefield were assigned with to one LP. The
worst case occurs when each sector is mapped to a different LP. When this happens,
the strip has to communicate with two LPs while the square must communicate with

eight.

19

.....

Figure 2. Examples of How to Partition a Battlefield

Strips were selected as the sector shape for this research because they potentially
required fewer player coples and communication paths, while the squares did not have any

distinct advantage that would compensate for those costs.

3.8.8 Eszecution of Model, Executiorn of model starts with the simulation schedul-
ing an initial event for each player. From this point on, whenever the simulation executes
an event for a pla.ycf; it also determines the next event for that player and schedules it.
This process continues until the simulation executes an “end simulation event” or the cur-
rant simulation ti.me exceeds the maximum time allowed for the simulation. The following

algorithm depicts the actual execution:

schedule an initial event for each player
while (current.sim.time < max.sim_time) and (event != end_event)
begin loop
walt until safe to execute
got next event
execute event
schedule new event

end loop

Players are allowed to move anywhere on the battlefield. This leads to players crossing
sector bour-»ries and LP boundaries. Each player has a seusor with a specified range.
Whenever a player can sense into a neighboring sector a copy of the player is sent to that

sector. This player copy has a flag as one of its attributes that designates it as a copy.

Player copies are used for two reasons:

1. It allows the neighboring sectors to predict events involving the player in question in

its area.
2. It provides a smooth transition of players from sector to sector.

The transition of a player from Sector 1 to Sector 2 occurs as follows:

(a) The player is initially in Sector 1 and is headed into Sector 2,
(b) The player can sense into Sector 2; Sector 2 recelves the player copy.

(¢) The player's center of mass crosses into Sector 2. Sector 2's copy becomes the
actual player. The set of attributes that were the player In Sector 1 become a
player copy.

(d) The player copy in Sector 1 is deleted once the player can no longer sense into

Sector 1.

Often sector crossings involve sectors on different LPs, When this occurs, the player

copy Is sent as a message to the destination LP.

3.8.4 Battlefield Events. Events drive this battlefield simulation model. Some ex-
amples of events are startplayer, collisiondistancereached, and reachedturnpoint., These

events and others are explained in Appendix A.

8.4 Dynamic Load Balancing Model

The following sections describe issues that were considered in the design of the dy-

namic load balancing model for the general battlefield model.

22

THIS
PAGE
TS
MISSING
IN
ORIGINAL
DOCUMENT

23 3.%.\) 3490

8.4.8 Task Migration Strategy. If it is determined profitable to load balanc: the
system, then sources and destinations for task migration are determined. The sources are

informed of the quantity and destination of tasks for load balancing.

Two approaches were analyzed for determining the source and destination processcrs:

1. Global - this ~ vproach allows any two processors in the system to become the source
and destination processors. Although this approach provides great flexibility for lcad
balancing, it would increase communication costs in a system with strong commuai-

cation dependencies.

2. Local - this approach only allows two processors that are neighbors to become the
source and destination processors. It limits the options for load balancing, but is

useful in a system where there are strong communication dependencies.

8.4.4 Task Selection Strategy. The source processors, once informed of the quan-
tity and destination of tasks, must determine the best tasks for efficient and effective load

balancing and send them to the appropriate destinations.

The following approaches were considered:

¢ Moving players - transferring players between processors.

o Moving sectors - transferring one or more sectors between the source and destination

procesgors

o Changing sector boundaries - Changing sector boundaries on the source processor

to decrease sector size and transfer that extra battlefield space to the destination

processor in the form of larger sectors.

24

-
|
d

3.6 Benchmark Scenarios

Once any load balancing model is designed and implementud, a method is needed to

- measure its performance. A straight forward approach would be to develop scenarios to

compa.fe the performance of the battlefield simulation with and without the load balancing
model, These scenarios would then be known as benchmark scenarios and would play an

important role in analyzing the load balancing model. b

. A benchmark s a point of reference from which measurements can be made, or the
use of & program to evaluate the performance of a computer system. Gray proposes that

a good benchmark is both relevant and scalable (8).

The hypothesis of this thesis states that dynamic readjustment of the spatial bound-
arles assigned to each LP should balance the work among LPs, and increase simulation
speedup. Ben.chmuk scenarios need to create the conditions necessary to prove or disprove
this hypothesis. The condition that needs to be achieved is unbalanced work loads between

LPs.

3.6 Conclusion

This chapter provided a discussion of the issues associated with the design of a

dynamic load balancing model. Chapter 4 discusses the design of the model with the

corresponding design decisions.

IV. Design and Implementation
4.1 Introduction

_ This chapter discusses the design and implementation of the load balancing model

resulting from this research. The issues presented in Section 3.4 are analyzed and decisions

are reached. These decisions and thelr rational are presented in this chapter.

| 4.2 Design

4.8.1 Procéssor Load Evaluation. The processor lcad value for a particular

~ LP, used by the general battlsfield simulation model involves a four level hierarchy of

calculations, The lowest level calculation is that of a player.

4.8.1.1 Player Load Evaluation, One barometer of the amount of work that
the simulation performs is the number of events it has to process. Each event is assoclated
with one or more players. One method to determine the load a certain player P, hes on
the system would involve keeping track of the number of events executed for that player.

The load for a particular player P, is defined by the following formula:

number.of .events_ for.player, in time.frame

load(P,) = time.frame

The variable time.frame can extend from the beginning of the simulation until the
current tlme or any subset of this time period. It uses a moving window average to allow the
calculation for the load of a player to be more relevant to the current (and thus expected)

load due to the player. For example. player A might have had numerous events early in

26

THIS
PAGE
s
MISSING
IN
ORIGINAL
DOCUMENT

. 4, 2o
] I, 2,3

o Moving players - transferring players between processors would increase communi-
cation between processors considerably. The simulation would have to search for
players on all processors when determining the next event for a particular player.
The current implementation requires only a search of players in the same sector. All

players in the same sector are on the same processor.

o Changing sector boundaries - this would involve a very inefficient process of searching
for each player in the old and new sectors and determining if the player belonged in

its original sector or the new enlarged sector.

The sector was chosen as the task to be transferred between processors for load

balancing for the following reasons:

1. It was the most efficlent to implement.
2. It maintains the integrity of the simulation.

3. It requires the least amount of updates to the simulation maps.

4.2.4 Task Migration Strategy. Two approaches were considered for task migra-
tion, global and local. The local approach was chosen. The global approach was not chosen
because of communication costs. For example, refer to Figure 3. If LP 1 is allowed to load
balance with any other LP on the battlefleld, it can have communication dependencies
with up to 3 other LPs. If it is allowed to load balance with only its physical neighbors on
the battlefield, it will only ever have communication with two other LPs. In this example

communication dependencies with the global approach is only three, but when the num-

28

X ber of LPs grows to n, it would be n-1. This introduces a great deal of communication

overhead.

. ro LP 1 LP2 5 %]
Lae
X t af sfe] sl rfo]otwo|lufjul]uwlsle
i
e
% e
wa) mi) ”me 1100

Figure 3. Battlefleld Example

The local approach restricts an LP to load balance with only its left and right neigh-
boring LPs on the battlefleld. It keeps communication dependencies between LPs at a
minimum. LPs are allowed to transfer sectors to and from their left and right neighbors
in an effort to load balance. If an LP wants to send a sector to its neighbor, it has to send

the sector physically located next to that neighbor. LPs must retain at least one sector at

all times during the simulation.

4.2.5 lLoad Balancing Profitability Determination. An important portion of the
design of this or any load balancing model is determining when it is profitable to load
balance. This model makes that determination whenever an LP is considering sending one
of Its sectors to a neighboring LP in an effort to balance the work load. The cost of load
balancing @nd the gain of load balancing is estimated to determine the profitability. Both

of these estimates are functions of real tirme.

4.8.5.1 Cost of Load Balancing. The estimiation of the cost of sending

sector S; from one LP to another is:

cost(S;) = cost.of .packing(S;) + cost.of .communication(S;) + cost.of .unpacking(S;)

The cost of packing & sector and the cost of unpacking the sector is based on the
number of players in the particular sector. The cost of communication is also based on the

number of players.

4.2.5.2 Gain of Load Balancing. The gain of sending sector S; from ane
LP to another is the estimated reduction of simulation run time realized by the transfer.

The estimation formule for the gain is:

gain(S;) = time.sincedast load bal event — time to.nexrtoud bal event

The time._since_last_load bal_event is the wall clock time since the last load balance event.

The time_to_next.load _bal_event is a projection of the wall clock time to the next load

30

balance event if load balancing takes place. The time.to.nezt_load.bal event is estimated
as follows:

load imbalance_projection

time.since lastJoad bal.event » (cirrentJoodimbalance

)

The load smbalance.projection will be the load imbalance between LPs if the sector
is transferred. The current.loadimbalance Is the current load imbalance between the two
LPs. The rat!o‘ of load.imbalance.projection to currentload.imbalance gives an estimate
of how nimch the load imbalance will be improved by load balancing. If the ratio s less
tha.'nv one‘,‘ load balancing will decrease the load imbalance; equal to one, stay the samie;
greaﬁer-thm one, increase the load imbalance. If the ratio is less than one load balancing
will doéreue fhe load imbalance and should decrease the wall clock time to the next event.

This will give a positive gain which can then be compered to the cost.

4.2.56.8 Profit. The estimation of the profit of sending sector S; from one

LP (v another Is:
profit(S;) = gain(S;) ~ cost(S;)

If this calculation is positive than it is profitable to load balance at this time, clse it

is not profitable.

4.8.6 Ezecution of Load Baluncing Model. The execution of the load balancing
modal is driven by the load belance event. This event s scheduled at the beginning of the

simulation on each LP. The {oad.balance periad specifies how often in simulation time this

31

event is to be executed. The following algorithm depicts the actual algorithm for the load

balancing event:

syachronize with other LPs
calculate own load
deternine possible destination
send load to possible destination
receive load from possible destination
if own_load > destination.load then
vwhile profitabls to load balance
genid sector to destination
update maps
else
‘ vait for possible new sector(s)
schedule next load balancing event(current.sim.time +
load.balance_period)
continue simulatien

Although the simulation time for each load balance event on different LPs is the same,
some LPs might be running faster than others. The first step of the algorithm causes all
LPs to be synchronized. This forces each LP of a pair to execute the load balance event

at the same real time, This is important for the following reasons:

¢ Sending a sector between two LPs with different times could result in lost players.
Players could be in the process of moving to the sector being moved. After the sector
is moved, the players could arrive at the source LP and the sector would be goxie.

o As a result of lost players, the load calculation, as well as the simulation, will be

incorrect.

There is a performance cost associated with this synchronization. It is not as bad as it
seams because the LPs are always in synchronization to a certain degree because of the

conservative simulation protocol used. This concept is explained further in Chapter 6.

32

+

THIS
PAGE
s
MISSING.
IN
ORIGINAL
DOCUMENT

33 43
H.3./

1. Host node performs the synchronization. In this case each LP would send a message
to the host stating that it was ready to load balance. Once the host received this
type of message with the same simulation time stamp from every LP, it would send

a message back to every LP instructing it to go ahead and load balance.

2. LPS synchronize among themselves. Each LP would send a message to both of its
~ neighbors stating it was ready to load baiance. An LP could start load balancing

when it got a message back from both of its neighbors stating it was okay to proceed.

The host synchronization option was utilized for this implementation for two reasons.
First it requires less messages. Each LP will send and receive a message to/from the host,
The second option would require each LP to send and receive a message from every other
LP. Second it was very straightforward and already implemented in BATTUESIM for state

saving.

4.3.2 Transferring a sector to another LP. Each LP knows about all sectors on
the battlefield including their coordinates. Therefore when a sector is transferred, only
its playerset and its associated player maps need to be sent. Performance on the iPSC/2
tends to favor longer messages than shorter ones so the playerset is sent in one long message
(10). T'he playerset is queried for all players. Each piayer is packed in contiguous memory
along with its associated maps. Once the playerset message is fully packed, it is sent to its

destination LP.

34

4.4 Conclusion

It is interesting to note that the design of this load balancing model does not strictly
follow any of the previouely well known schemes. Once .Ps pair off during the load balance
cycle, the LP within each pair with the greatest load decides whether to load balance or
not. In effect this LP becomes the sender, and the process continues similar to the sender
initiated scheme discussed in the literature review. The design discussed in this chapter hes
taken ideas many ideas from different schemes and tallored them to the general battlefield

model.

35

V. Testing, Results and Conclusion

5.1 Introduction

This final chapter discusses the functional testing of the load balancing implementa-
-tion, résulta of performance testing, recommendations for further work, and conclusions,
Functional testing was accomplished to validate the proper execution of the loa;d balancing
algorithm and to check that it maintained simulation iniegrity. Initial performance tests

were performed and the results are presented and analyzed.

5.2 Functional Testing

" The load balancing model was tested for functional considerations. The first test was

to ensure that the LPs could synchronize correctly in response fo a load balance event.
This téat worked for two !a.nd four LP configurations. The second test exercised the load
calculation for an LP. A scenario contalning sectors with zero, one and multiple players was
used to verify this calculation. Thic test was successful. The third test verified the proper
transfor of a sector from one LP to a different LP. A sector with several players was used
to verify that the implementation properly handled this transfer. The fourth and final test
consisted of a varlety of scenarios to test the whole load balancing algorithm to make sure
that the integrity of the aimulation was not violated. Scenarios included sector crossings,
LP crossings, and collisions for the LP and four LP configurations. A comparison of the
output trace files between the load balancing runs and the non load balancing runs was
used to ascertain consistency. All comparisons showed that the load balancing algorithm

never violated the integrity of the simulation.

36

5.8 Performance Testing

5.8.1 Test Scenarios. Benchmark Scenario 1, depicted in Figure 4, was the base
scenario used in the initial performance tests of the dynamic load balancing. Variations of
this scenario were also used. The scenario was designed to run with two LPs. Each LP was
assigned four sectors. This scenario was designed to demonstrate a load imbalance between

LP 0 and LP 1. Each player in this scenatlo h@ 200 route points and Is moving at a speed

of 300 units per second. The dimensions of the battlefleld were 118000 units by 117000

“units, During the simulation each ployer moves forward and backward along its respective

sectors. The performance of the load balancing algorithm was measured by comparing the -

. execution time of BATTLESIM running with and without the load balancing algorithm

for giveh scenarios and LP cdnﬂgurations.

| \3..9.8‘, Preliminary Results, Performance test ltused Benchmqu Scenario 1 and
ran on two LPs with a minimum time delay of one. This scenario started with LP 0
having & load three times as great as LP 1, The load balancing simulation run detected
the imbalance in the simulation and balanced the work load during the first load balance
event, In Table 2 the first column represents the simulation with no load balancing, the
second column with load balancing, and the third column represents the simulation with
no load balancing but with a balanced work load from the start, and the fourth column

the sequential simulation.

Performance test 2 involved a rerun of performance test 1 relaxing the minimum time

delay. Table 3 shows the results.

37

AL oA A A
v |V V v
® O @ o

Figure 4. Benchmark Scenario 1

Table 2. Performance Test 1

Simulation Type Run Time (secs) | Number of LPs
With load balancing 101.022 2
Without load balancing 106,013 2
Balanced 100.987 2
Sequential 18.339 1

Table 3. Performance Test 2

Simulation Type Run Time (secs) | Number of LPs
ith load balancing 13.487 2
Without load balancing 18.98 2
Balanced - 13.131 2
Sequential 18.339 1

Performance test 3 involved a modification of Benchmark Scenario 1. The only
parameter that was changed was the relative speed of the players. A minimum time delay
of one was still used. Performance test 1, generated sets of events with the same simulation
time, This was due to the players having the same speed and distance between route points.

Table 4 contains the results of the run.

Table 4. Performance Test 3

Simulation Type Run Time (secs)] Number of LPs
With load balancing 108,498 2
Without load balancing 108.797 2
Balanced 108.122 2
Sequential 18.345 1

5.8.8 Analysis. Performance test 1 showed approximately a five percent perfor-
mance improvement between the non load balancing and load balancing runs. Performance
test 2 showed approximately a five percent speedup between the sequential run and the

load balancing run.

39

The run times of the first three simulation runs were very close in performance test
3. The surprising result is the difference between the balanced and non balanced non load
“balancing runs. This difference would expected to be greater, One possible explanation

for this involves the synchronization protocol.

The LP synchronization protocol uses & minimum time delay,tmin, of one for all of its
communication arcs. This has historically been one in BATTLESIM to prevent causality

@rTors.

| The top of Figure 5 depicts the physical structure of n LPs on the battlefield while

| the bottom of the figure depicts the communication graph for the LPs. Arcs into an LP
specify all other LPs from whfch messages can be received. Arcs leaving an LP specify
those LPs to which it can send messages. Each LP has two input arcs and two output arcs
as a result of the stripwise partition of the battlefield. LPs 0 and n-1 have only one input

arc and one output arc,

To prevent causality errore, an LP must walt to update its safetime until it receives
a message on each input arc with a time at least equal to its own safetime. Once this
constraint s satisfied, the LF; identifies the smallest time stamp of these messages and
updates its safetime to this time. The LP can then execute events in its next event queue

np to this safetime.

The structure of the LP communication graph implies that LP, must wait on LP,;.,
and LP,,; for messages in order to update its safetime. When an LP receives a message
it sends a NULL message with a time stamp of min(t.NEQ, safetime + mintimedelay)

on all of its output arcs. As a result, the difference in simulation times between any two

40

LP

2

r\«m serees

Ve sl

Figure 5. LP structure and communication graph

LPs will be less than or equal to the minimum time delay. This imposes a constraint of
how much concurrent processing can occur during the simulation, This might explain why
thers was not a bigger difference in the run times between the load balancing and non load
balancing runy, Testing was also accomplished with this in mind. Performance test 3 was
rerun relaxing the minimum time delay. Results showed a speedup at the same rate for
each vype of simulation run. The difference in run times between the load balancing and

non load balancing runs stayed the same.

A different explanation to problem might have been the fact that the events execute
s0 fast, that a difference in number of events between LPs would generate a very small
difference In the run times. A spin loop was implemented for each event type in an effort
to prove or disprove this assertion. Results showed a performance degradation at the same
rate for each type of simulation run. The difference in run timea between the load balancing

and non load balancing runs again stayed the same.

Another possible explanation to be explored might deal with the length of the NEQ,.
The simulation runs so far have only two events on the NEQ at any time instant. Even
though there was a vast difference in the number of events processed by each LP during
the different runs, the length of the NEQs stayed fairly constant. Scenarios should be
developed to generate a ivad imbalance by varying the length of the NEQs between LPs,

This could be done by generating scenarios with large number of players.

5.4 Recommendations for Further Research

There is still much work to be done in the topic of this thesis. The following list of

items are recommendations for further research

42

o Generate larger scenarios than were used in this research. Larger scenarios with
a larger number of players need to be created to determine if the load balancing

algorithm designed in this thesis is effective or not.

o Investigate further the effect of changing the minimum time delay of the LP syn-
chronization protocol to be dynamically calculated instead on being a constant, Test
i‘unq for scenarios in this research showed significant speedup improvement when the

minimum time delay was increased.

o Modify the LP synchronization protocol to use float times for LP arc (channel)
updates instead of integer times. Events occur at float times and synchronization

may not be accurate when objects are migrating between LPs.

o Investigate further the effect of the load balancing algorithm on the LP synchro-
nization protocol, A potential problem exists if an LP updates it safetime and then
transfers one of its sectors as & result of load balancing, The LP could now generate
8 new safetime that could be less than its safetime before the sector transfer. This

could result in a causality error.

5.8 Conclusion

A dynamic load balancing model was designed using the general load balancing
' mode] described by Willebeek-LeMair and Reeves (18), This model was implemented and
the resulting algorithm was functionally tested. The algorithm effectively maintained the

Integrity of the system.

43

,,,,,

Initial performance tests showed a slight performance improvement between the non
load belancing and the load balancing runs, Further tests with larger scenarios need to be

run before a conclusion concerning performance can be drawn.

This research has demonstrated the feasibility of using dynamic load balancing as

a performance improvement tool for parallel discrete-event buttlefield simulations. The

‘model developed will prove to be a valuable test bed for further research with the various

load balancing parameters,

44

Appendiz A, Battlefield Simulation Events

The following are events from the battlefield model:

. Baé_k End Object - The Back End Object event indicates that the back end of
an object has left a sector. The player will be removed .from‘ that sector and all
" appropriate object relationship maps ﬁill be modified to eliminate a reforence to

that sector as the location of a player copy.

Center of Object - The Center of Object event indicates that the center of an

object has moved to a new sector.

Collision Distance Reached - This event indicates that a two player objects have
collided. The event axchanges information between the players to indicate the speed

and mass of the object they have collided with and the players respond accordingly.

Entered Sensor Range - Thia event indicates that a player object has entered the
sensor range or another player. The event notifies the player and the player responda

accordingly.

Front End Object - The Front End Object event indlcates that the front end of
an object has just entered a new sector. A copy of the player must b :reated in the

new sector.

Made Sensor Contact - The Made Sensor Contact event indicates that a player’s
sensors have made a contact, The event will indicate the contact to the player which

will respond accordingly.

45

¢ Reached Turnpoint - The Reached Turnpoint event indicates that a player has

reached ore of its turnpoints.

- e Remove Player Copy ~ The Remove Player Copy event indicates that & player
copy is no longur in & given simulation sector and that it must be removed. This

may oceur as the mult of & player leaving a sector or a player being destroyed.

o Start Player - The Stazt Player event indicates that a player needs to have its next
event calculated, This Event s malnly used only at he boginning of the simulation

to ca.lculatlo the first event for each of the player objects.

e Update Player Copy -This event indicates that the player copy must be updated
using the player co;;y attached to the evant. If the player does not exist in this sector,

then it muct be created.

48

2,

3.

4

5.

8

7l

10.

11.

12

13.

14.

18.

16‘

Bibliography

. Bergman, Kenneth C. Spatial Partitioning of a Battlefield Parallel Discrete Event

Simulation. MS thesis AFIT/GCS/ENG/92D-03, AD-A258911, Air Force Institute
of Technology, 1992.

Chandy, K. M., and Ja,ya.dev'Misru. “Distributed Simulation: A Case Study in Design
and Verification of Distributed Progrums,” IEEE Tvransactions on Software Engineer-
ing, SE-5(5):440-452 (Sep 1979).

Erciyes, K. and 8. Yilmaz, “Dynamic Load Balancing in a Distributed Computer
System,” IEEE Transactions on Parallel and Listributed Systems (1993).

Fujimoto, Richard M. “Parallel Discrete-Event Simulation,” Communications of the
ACM, 88(10):31-53 (Oct 1990).

Goswami, Kumar K., et al, “Prediction-Based Dynamic Load-Sharing Heuristics,”
IEEE Transactioris on Parallel and Distributed Sysiems, 4(6):638-648 (Jun 1993).

Gray, Jim. The Benchmark Handbook for Database and Iransaction Processing, Mor-
gan Kaufmann Publishers, 1981.

Hammond, Steven W. Mapping Unstructured Grid Compulations to Massively Par-
allel Computers. PhD dissertation, RPI, 1992,

Hanxleden, Reinhard V. and L. Ridgway Scott. “Load Bealancing on Message Passing
Architectures,” Journal of Parallel and Distributed Computing, 18(3):312~24 (Novem-
ber 1991),

. Kumar, Vipin, et al. “Scalable Load Balancing Techniques for Parallel Computers.”

Army Research Office grant 28408-MA-SDI to the University of Minnesota.

Lamout, Gary B. Compendium of Parallsl Programs for the Intel iPSC Computers.
Unpublished Report, Air Force Institute of Technology, Dec 1993,

Lewls, Ted G. and Hesham El-Rewlni. Introduction to Parallel Computing. Prentice
Hall, 1992,

Lin, Hwa-Chun, et al. Performance Study of Dynamic Load Balancing Policies for
Distributed Systems with Service Interruptions, Technical Report, Departmunt of
Electrical Engineering-Systems, University of Southern California, 1991.

Misra, Jayadev. “Distributed Discrete-Event Simulation,” ACM Computing Surveys,
18:39-65 (March 1886).

Moser, Robert S. A Spatially Partitioned Parallel Simulation of Colliding Objects.
MS thesis AFIT/GCS/ENG/91D-15, AD-A274217, Air Force Institute of Technology,
1801,

Office of Deputy Secretary of Defense. Modeling and Simulation Management Plan,
June 21 1991, Version 1.1,

Trachsel, Walter G. Object Interaction in a Parallel Gbject-Oriented Disrete-Event
Simulation. MS thesis AFIT/GCS/ENG/93D-03, AD-A274084, Air Force Institute
of Technology, 1993.

47

17. Van Horn, Prescott J. Development of a Protocol Usage Guideline for Conservative
Payvallel Simulations.. MS thesis AFIT/GCS/ENG/92D-19, /AD-A258851, Air Force
Institute of Technology, 1992.

18. Willebeek-LeMair, Marc H. “Strategies for Dynamic Load Balancing on Highly Far-
allel Computers,” IEEE Transactions on Parallel and Disiributed Systems, {(9):979-
993 (Sep 1993).

Wy

48

Vita
Captain Seth R. Guanu was born November 25, 1967, in Watertown, New York. After
graduating from Cherry Valley Central School in 1985, he enrolled in the State University
~ of New York (SUNY) at Potsdam and graduated with a Bachelor of Art; in Computer

Science a.nd Mathematics. While at SUNY, he earned a Reserve Officer Tra.ining Corps

schola.rshlp and was commissioned as a second lleutenant in May of 1989,

Captain Guanu's first assignment was with the 50th Space Systems Squadron at
Falcon AFB as the Chief of the Computer Security Division, He was responsxble for all -
facets of computer security at the Consolidated Space Operations Center (CSOC) Captain
Guanu’s subsequent position with the 50th was as Ciicf of the Computer Perform,a.ncgu

Section.

He entered AFIT in May of 1992, ‘

Permanent address: 22 Monigometv Street
Cherry Valley. 14 ¢ 13320

49

REPORT DOCUMENTATION PAGE oM . 7040188

Public reparting burden for this collection of (rTorination 1, estimatiy 1o uveraae | hout per resfonse. Including the time for reviewing Instructions, searthing existing data sources,
gathering and maintaining the dats needed, snd completing and-review:ng tne oliection of information. Send comments regarding this curden estimate or any othet »goct omu
collectiur, of intermation, including wqgtmon'; tor redicing this burden, 1o V/eshagton Hesdauartern Services, Direciorate Tor information Operations and Reports, 1215 Jetfedson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, 3nd 10 the Office of Mancgeirent and Butiget, Saparwork Reduction Proj4ct (0704.0188), Washingtan, DX 20503,

T AGENCY USE ONLY (Lnave blank)]2. REPORT DATE . 3, REPORT TYPE AND DATES COVERED
' June 1994 ‘ Mastet's Thesis

4, TITLE AND SUBTITLE ‘ 5. FUNDING NUMBERS
Dynamic Load Balancing for a
Parallel Discrete-Event Battlefield Simulation

FEAUTHOREY L
Seth R. Guanu, Captain, USAF

Se.e 7 L Alr Fores Institute of Tochnology, WPAFB OH 45433-6688

‘ RGANIZATI WA NO ADDRESS(E ‘ 8. PERRORMING ORGANIZATION

REPORT NUMBER

BRI b wi.. | AFIT/GCS/ENG/943-01
I NG TN ' M — Y LI L
Copt Bick Palater T | ASINCY RaRORT aek
. - {2241 Avicnics Circle, Suito 16 L T
B IWL/AAWA:L BLD 620 o .
" | Wright-Patterson AFB, OF'45433 - o o A_
T SUPPLEMINTARY NOTTS P » - Lanin ' L ‘

R "L'""'m. IS TABUTION / AVAILABILITY STATEMENT ' m—=""T72b, OISTRIEUTION COBE 1

Approved for public release; distribution unlimited:

19, ABSTRACT (Maximum 200 words)
| This thesis investigates issues involved in developing a dynamic load balancing model for a paralle! discrets-
event, battlefleld simulation. The research covers issues in task inanagement, discrete-event simulation, parallel
sirulation, and load balancing. Thete are tour primary issues discussed concarning the design of a dynamic load
balancing model. TlLe firat issue iv rocassor load evaluation which deals with the calculation of the amount of
work on a processor. The second issue is load baluncing profitability dsiermination which deals with the decision
' toload balance or not bused on some cost-gain relationchip. The third issue is task migration which deals with the
selection of scurces wid destinations for task migration. The fouzth issue deals with task selection which involves
3' selection of appropriste tasks for efficient and sffective load balancing. As a result of the research, a dynamic load
o ' balansing model is designed that balances the work ioad in a parallel discrate-event battlofield simulation. The
L e i desiga goals used to develop this model were efficiency and maintainability of simulation integrity. The mcdel is
then implemented snd tested using AFIT’s BATTLESIM progreta, which is & battlefleld parallel discrete-event

) simulaticn.

§ 14. SUBIECT TERMS 15. NUMBFR OF PAGES

' Task management, Discrete-Event Simulation, Parallel Simulation, and Lead Bal- 49 r—

Hancing ¥ ' ' ' 18, PRICE CODE

!

[77. SECURITY CLASSIFICATION] 18, SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACY |
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UUNCLASSIFIED UL

NSN 7540-01.280-5500 Standard Form 298 (Rev 2-89)

Preycribed by ANSI Stg 23918
298.192

