
Best
Available

Copy

I AD-A280 644

3I DTIC
ELECTE

.S JUN27 1994D

IF
ONR Workshop on Software DevelopmentI

3 June 9-10, 1989

Moscow, Idaho

II

Thir document rcs -- ee approved
r public release and scae; A

dsu-bu~on is tL
i i 94-18924

I * 94 623 04Q

I
I
I
I
I
I

I ONR Workshop on Software Development

I
June 9-10, 1989

Moscow, IdahoI
Accesion r

NTiS CRAl '
DTIC TAB

Unaflouaced

Juyi.,icat.o..

~,01 #%Diý,trjbutjon I
| 8A

Iv_..Availabifity Cooet

Avsta i afc.or
iISp Secial

I

I
I

REPORTSI
Michael Fellows and Michael Langston I

Matthais StaL tmem .. 7

i Roger King 23

Robert Paige .. 36

Chaderjit Bajaj ... $1

Christoph Hoffmann ... 59

Bob Boyer, Matt Kaufmann and J. Moore 75

Tim Teitetbaum .. 83

Robert Constable 95

Robert Tarjan 96

Addresses .. 104

I
I
I
I

Structured Approaches for Problems of Network Design and Utilization

Michael 1R. Fellows, University of Idaho
(Contract N00014-88-K-0456)

Michael A. Langston, Washington State University
(Contract N00014-88-K-0343)

Abstract.

I The effectiveness of two general, structured approaches to broad classes of network design
and utilization problems is investigated. These are:

S(1) an approach to network algorithmic problems based on well-partial orders (wpo's) on
sets of combinatorial objects, where the goal is to develop this powerful mathematicalI perspective into a foundation for practical algorithms and

(2) an approach to symmetric and fault-tolerant interconnection network design and allo-
cation problems employing algebra and coding theory, where the goal is to establish
effective design paradigms drawing on established mathematical resources.

The results obtained in these research areas during this period of ONR support and described
in this progress report include:

(la) general methods for overcoming the major difficulties in obtaining practical algorithms
for network problems from wpo-based tools,

(1b) improved practical algorithms for some well-known algorithmic problems of networks,

(2a) a host of record-breaking algebraic constructions in the range of engineering significance
i for the much-studied degree/diameter network construction problem,

(2b) basic results for the planar and planar-symmetric versions of the degree/diameter net-
work construction problem, and

(2c) useful schemes for locally complete data distribution in networks, and general methods
for employing algebraic network descriptions to solve this problem.

I
1
I

I
2

Background and Objectives.

Networks of many kinds play an increasing role in almost every aspect of modern science
and technology, and figure centrally in the forefront of developments in computer science.
Problems concerning the design, organization and utilization of networks play a correspond-
ingly important role. For these problems, it is desirable to have useful general tools and
methodologies that are organizing principles, that is, approaches that can be applied to
broad classes of particular problems.

Our research has been centered on the development of two such broad perspectives on net- I
work design and algorithmic problems, both of which are based on strong mathematical
resources. In the first, we seek to develop the theoretical basis of wpo-based tools so that
they might provide a foundation for practical networks algorithms. In the second, we en- I
deavor to demonstrate the effectiveness of algebraic methods for problems of network design.
Our research program recognizes and addresses these aspects: 3

* the emergence of the importance of network problems,

e the need to develop more powerful and well-integrated theoretical perspectives on net- I
work problems, and

* the opportunity provided by the recent fundamental mathematical breakthroughs of 3
Robertson and Seymour, and others.

Research Issues, Approaches and Progress. I
Our research objectives have been formulated at the level of addressing issues concerning
fundamental feasibility of these approaches, rather than that of the creation of software
or systems. At this level we have already achieved many of the objectives in our original
proposal. We therefore take the opportunity presented by this progress report to articulate
an updated set of research objectives for this general line of investigation. I
wpo-ba•aed methods

Our earlier research has demonstrated the wide applicability of wpo-based tools to many I
well-known, previously challenging, interesting and useful algorithmic problems. Such appli-
cations, however, left unresolved a seemingly enormous gap between these theoretical results
and any potential for practical algorithms. The major, virtually unprecedented issues to be I
faced include:

a. the polynomial-time algorithms guaranteed by the wpo-related theorems are noncon- I
structively proven only to exist,

b. the algorithms promised involve behemoth constants (towers of 2's of height described I
by towers of 2's of height ...), and

c. the algorithms promised solve only decision versions of the problems to which the
theorems apply. I

!

3I
Confronting thes difficulties would seem to constitute an adequate agenda, even for a pri-
madly theoretical investigation! Indeed, so much so that at least one prominent member of
the research community predicted that wpo-based techniques would never amount to more
than a 'mathematical curiosity," at best a signpost for polynomial time.

i Yet, by the results we have recently presented at STOC 89, these apparent roadblocks
have, for the most part, been decisively removed for most of the known applications. Other
researchers (for example, Bodlaender) have already begun to augment and extend our tech-
niques for addressing issues b and c.. We have recently obtained even stronger methods for
addressing issue a.

A remaining major issue (the size of obstruction sets) is an important new focus in this
project. Along with Nancy Kinnersley, a 1989 Ph.D. graduate from Washington State Uni-
versity (whose graduate research was supported by this contract, and who has just accepted

a faculty position at the University of Kansas), we have recently completed identification of
the 110 obstructions to pathwidth 2. On the basis of this work we have gathered strong evi-
dence to suggest that not all obstructions are created equal, and that for many applications
the difficulty can be overcome by employing a reasonably small approximate obstruction set
that embodies almost all of the structural information about the probl.-m.

Our current objectives include:

"* a structure theory for obstruction sets that allows us to understand the possibilities
for approximate obstruction sets,

"• an understanding of the possibilities for randomized multiple-trial self-reduction algo-
rithms, and how these might interact with approximate obstruction sets,

"* the exploration of possible self-reduction algorithms that are designed to work correctly
almost always employing only a small set of obstructions, and

"* continued research on faster order tests for the important wpo sets.

algebraic methods for network design

The chief advantage of an algebraic approach is that for some applications of large and
complex networks that are presently contemplated (for example, in parallel processing) it is
natural to use symmetry as an organizing principle. (Thus, for example, in a vertex symmet-
ric network one might just write one message-routing protocol for a node, and translate it
into one for all the other nodes.) By symmetry one inevitably means group theory, for which
we have well-established mathematical knowledge on which to draw. Algebraic network
descriptions have other organizational advantages, including being compact and comprehen-
sible - this can support efficient routing computations, and can be an aid to exploiting the
symmetries of a computational problem.

When we began this project two years ago we knew but a handful of largest known con-
structions of networks of a given degree and diameter by algebraic means (especially Cayley
graphs). This has been a much-studied problem and at the time of our proposal almost

i
4

all of the largest known constructions for the range of the parameters (degree, diameter) of
potential engineering significance had been obtained by various authors, mostly by means of
an assortment of graph-theoretic compositional techniques.

Since then we have rewritten the table almost completely, and decisively demonstrated the
power of an algebraic approach to this well-known network design problem. This was the
principle initial objective for this topic in our original proposal. Along with C. S. Jagadish,
a graduate student at the University of Idaho supported under this award, we have made
basic advances on the planar and planar vertex symmetric variations on this problem.

Another problem that our research has addressed is that of devising efficient schemes for
storing partial copies of a database at the nodes of a network so that each node has a complete
copy of the entire database in its immediate neighborhood. Algebraically described networks
support efficient algebraic solutions to this problem; we have obtained asymptotically optimal
solutions for the hypercubes, in the process settling in the affirmative a conjecture in coding
theory due to Cohen.

Our current objectives include:

* to improve the largest known degree/diameter constructions for small diameter values
by employing Cayley coset graphs,

* to explore an algebraic approach to the degree/broadcast diameter construction prob-
lem,

* to explore ways of using the algebraic descriptions for classes of good constructions to
efficiently solve routing and deadlock problems, and

* to continue our exploration of locally complete data distribution schemes in alge-
braically described networks, seeking especially improved schemes for small dimension
hypercubes and other network families important in parallel processing.

Research Directions.

wpo-based methods

At this point, this exciting research frontier appears to be significantly undermanned relative
to its potential, perhaps in part due to the initial bad publicity surrounding the difficulties
a through c described above, and the daunting nature of the founding mathematical results
(the completed proof of the main Robertson-Seymour theorems concerning the minor order
of graphs comprises approximately 1600 journal pages). It does seem remarkable that the
many interesting consequences of these deep theorems, and the basic questions for computer
science that they raise, were essentially absent from the major conferences in theoretical
computer science for a period of almost 5 years after their announcement. It is quite difficult
to imagine a similar intellectual sociology occurring in, say, physics or chemistry.

There are a great many leads worth pursuing. The more theoretical aspects of the theory
and its applications to computer science are beginning to gain researchers and momentum,

I
5I

perhaps for the most part recruited from mathematics. As we have reported, however, most
of the major issues for a host of potentially interesting applications have been overcome.
The time is thus ripe for significant experimental exploration with implemented algorithms,
but there is as of yet almost no such research activity, suggesting that:

I . the methods for computing and mechanically verifying obstruction sets that we have
recently developed should be tried out experimentally for some small applications,

I . a library of implementations of the best known minor tests should be assembled, and

* the "learning algorithm" constructivization should be explored experimentally for someI small examples.

Note that an attractive feature of wpo-based tools is their modular nature. For a given
application, the relevant order tests can be performed trivially in parallel, and a single order
test might be useful in many different applications, and can thus reside in a universal library.
Perhaps this library itself can be to some extent mechanically generated.

Ialgebraic methods for network design

The major direction that awaits exploration based on our results is whether the algebraic
constructions that we have identified can be fully developed into, for example, superior
alternatives to the hypercubes for parallel processing networks. This necessarily involves
consideration of many more aspects than merely degree/diameter properties. We have re-
cently begun to explore a number of these aspects in collaboration with Vance Faber of the
Los Alamos National Laboratory. The intuition behind our work is that much of what makes
the hypercube (and most other proposed network topologies) attractive is, essentially, the
fact that it has an easily manipulable algebraic description.

A Grand Challenge.

Wpo-based tools should not be perceived as exotic or special, but rather as a kind of "gen-
eralized" brute force. Interesting families of combinatorial objects are often closed under
local operations by which a partial ordering of the objects can be defined. The basic rule of
thumb is that in some sufficiently restricted setting this partial order is a wpo that supports

I wpo-based complexity tools.

For some sets of operations (e.g., those defining the minor and immersion orders) the setting
is simply all the objects, while for others the best setting available is more restrictive. For
example, the operations (1) remove a subdivision and (2) take a subgraph (which define the
topological order) do not yield a well-partial order in general, but this does constitute an
wpo in the setting: all graphs that do not contain k disjoint cycles. (We have recently shown
that for this wpo all order tests can be done in linear time.)

The Hilbert-sized problem is to provide a comprehensive explanation of what sets of opera-
tions on what sets of objects yield wpo-based complexity tools.

I _

I

Research Transitions. I
At this time, there is an enormous cultural and intellectual gap in many problem domains
between researchers who explore algorithmic problems of graphs and networks theoretically, I
and engineering practitioners who are forced to "hack away" at problems that must be dealt
with immediately, somehow. What realistically can be done about this situation is not
completely clear.

Technological Impacts. 3
Our research is primarily theoretical in nature and thus is not significantly impacted by or
awaiting new developments in hardware and software tools. One rather minor exception
to this statement concerns our recent computational exploration of some Cayley networks
having in the range of 0.5 to 10 million nodes. A problem we encountered concerned finding
a machine with sufficient fast memory. 3
Societal Issues.

We seem to have entered an era in which the great majority of the most able and motivated
graduate students are foreign students. We believe this is a partial reflection of the fact
that graduate study is so very poorly supported, despite the often major contributions to
the research frontier, even in the short run, that are due to energetic and talented students.
A truly vigorous program for research-oriented graduate study would be a highly leveraged
investment in this nation's security and quality of life.

Recommendations to Funding Agencies. 3
Science funding sometimes seems to us to be rather akin to the child's toy "chinese hand-
cuffs," in that the more that funding agencies strain for short-term payoffs and objectives,
the less progress will be made in the long haul. We believe that it should be the objective of I
science funding agencies to provide broad-based support of science and facilitate the transfer
of basic science towards classrooms, industry, defense and other applications. It also seems
to us that basic science is most efficiently supported by grants to individual researchers or I
small groups, with funding decisions determined heavily by scientific peer review, or some
process that is highly respectful of a science's critical self-evaluation. 3

!
I
I
I
!

ALGORITHMS BASED ON GRAPH DECOMPOSITION

MATTHIAS F.M. STALLMANN,

Abstract. This progress report describes research on dynamic programming algo-
rithms and related issues. Applications include problems in parameter estimation in
PERT networks, network reliability, algorithms for NP-hard graph problems, hyper-
cube embedding, and graph coloring problems that arise in code optimization and via
minimization for VLSI.

1. Background. This research project has evolved into one whose central issue is
dynamic programming. It was not intended that way originally, nor did I approach it as
someone who was interested in becoming.an expert on dynamic programming. I should
clarify at the outset that my use of the phrase "dynamic programming" is not a technical
term, as it might be in certain circles of the operations research community. It is rather
a broad, but vaguely defined, framework for algorithm design in which solutions to
large instances of a problem are built up from solutions of smaller instances of the same
problem. Most of the standard textbooks on algorithm design recognize the importance
of dynamic programming as an algorithm design technique (see e.g. [2]). Because of
its utility in solving practical problems, it could be argued that dynamic programming
is the most important algorithm design technique. Dynamic programming algorithms
are easy to formulate and easy to implement and are often very efficient. Robustness
is the main selling point of dynamic programming algorithms - it is usually easy to
incorporate additional constraints or to adapt from a cardinality problem to a weighted
problem.

I came around to this view only recently, having been schooled in all the fine points
of efficient data structures, graph searching, and augmenting path algorithms (all of
which have been extremely useful). When I came to NCSU, I decided, since I was now
a theoretician in a place that put great emphasis on practical applications, to do a
lot of listening to colleagues and students, and to glean from them the areas in which
theory might proe useful. I kept a particular lookout for problems that were suspected
to be intractable (NP-hard or worse), but had no natural structure to suggest an NP-
hardness proof, hoping to find matroid parity problems lurking in them (since my thesis
was about matroid parity).

I haven't stumbled across any matroids, but I have become better at proving NP-
completeness results and at devising dynamic programming algorithms for problems
that are not NP-hard. The problem which is the central focus of this report, directed
acyclic graph reduction, has an interesting story behind it that illustrates how I have
chosen some of the problems I've worked on, or rather how they have chosen me.

Some time in late 1986 or early 1987, Salah Elmaghraby asked me if there was
an efficient way to enumerate all the IG's (subgraphs homeomorphic from the dag
pictured in Figure 1) of a dag. He was in the process of writing a survey paper on

Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206
7

7

I
I
I

V 3
WI

I

FIG. 1. Tke isterdicdive #mrph (IG).

parameter estimation in PERT networks, and getting rid of IG's appeared to be a

central issue. I remembered a result about subgraph homeomorphism, that it could
be done in polynomial time for dags [19], and pointed out that this could be used, at I
the very least, to list all pairs of vertices that were in positions v and w of an IG (see

Figure 1). Then I made the mistake of asking why he wanted to do such a thing. The

real problem he was after was to minimize the number of node reductions required to

reduce a dag to a single edge (see Section 4 for a full description). He felt sure that the
problem was NP-hard (maybe I could help him prove it) and the enumeration of the 3
IG's would reduce it to vertex cover, a more manageable problem. Some weeks later
I made the observation that the vertex cover problem he was hoping to reduce to (a)

did not model the original problem exactly, and (b) when it did, the graph defining I
the vertex cover problem was transitive, which made me suspicious that there might

be a polynomial time algorithm for the original problem. After more than a year of

working through examples and counterexamples of a variety of different conjectures,
and enlisting the aid of a colleague from Duke (Wolfgang Bein, who knew a lot more

about series-parallel dags than I did), I developed a polynomial time algorithm for the 3
original problem, reducing it to vertex cover in a transitive dag [48]. It took me almost

another year to fully understand the applications, and I'm still not convinced that the

right quantity is being optimized for some of them. I
Similar stories are behind my current work on via minimization in VLSI and hy-

percube embedding, except that in each of these cases it was a student, rather than a

colleague from another department, who provided my original contact with the problem.

2. Research Objectives. Many graph problems arising in practical applications
are NP-hard when stated as general graph problems, but may in fact be easy when the U
special structure of graphs arising in the application is considered. Johnson [251 gives a
survey of results applying to many special classes of graphs. Many of the polynomial-

2

S _.II

time results are due to dynamic programming algorithms that take advantage of some
form of decomposition for the graphs in question. The long-term objective of this re-
search is to develop general techniques for obtaining polynomial-time algorithms for
special cases of NP-hard problems, particularly graph problems. Several shorter term
objectives flow naturally out of previous work. One is to extend linear-time dynamic
programming algorithms to larger classes of graphs than the ones in which they are cur-
rently used (see, for example, [4]). Another is develop efficient algorithms for a variety of
problems on graphs that are "nearly" series-parallel (see [48] for one approach). Finally,
to render the long-term objective more manageable, it is necessary to find linear-time
or log-space reductions among problems known to be in P. The importance of this is
discussed further in the following section.

3. Research Issues. Dynamic programming has been used successfully as a gen-
eral technique for obtaining efficient algorithms for problems on special classes of graphs,
and for obtaining polynomial-time algorithms in general. For example, Prim's algo-
rithm for minimum spanning trees and Dijkstra's algorithm for shortest paths can be
construed as special cases of dynamic programming. Examples using special classes
of graphs are legion (see [251 for a partial survey). Unifying approaches, such as that
taken by Bern et al [4] are particularly helpful in the design of efficient and elegant algo-
rithms. Other than dynamic programming, the main general techniques for obtaining
polynomial-time algorithms are greedy, divide and conquer, successive augmentation,
and linear programming. Greedy and divide and conquer can be viewed as special cases
of dynamic programming. The other two techniques are more specialized, but in some
cases, for example network flows, are being supplanted by simpler techniques. This sug-
gests that dynamic programming is a universal technique for obtaining polynomial-time
algorithms.

A more general but related issue is the following. When tackling a new computa-
tional problem, a researcher is often focused on the question, "can I design an algorithm
for this problem?" This leads to a proliferation of algorithms, some essentially identical
to others already published. One of the goals of theoretical research in the area of algo-
rithms is to propose general frameworks for algorithm design to go along with general
categories of problems. The important questions, if one takes the theoretical point of
view, are

1. What other well-know problems are at least as easy (hard) as the new problem?
2. Is it possible to design an algorithm for the new problem within a given re-

stricted framework?
The first of these is unquestionably useful to both theory and practice. Connections
among different problems stimulate progress on all fronts and allow researchers to de-
termine when progress is unlikely. Connections also establish a set of central problems
on which researchers can focus their efforts. For example, matrix multiplication is the
dominating component in the complexity of many other problems.

The second question at first glance appears to restrict the search for algorithms
annecessarily. Why should we insist on a dynamic programming algorithm, for example,
when any algorithm will do? On the practical side, implementation effort is reduced

3

for algorithms that conform to a specific framework. Also the search for solutions to
new problems becomes more focused if it is restricted to frameworks that have alre~ady
proved successful for similar problems. On the theory side, restricted frameworks put
lower bounds within reach, lower bounds that say any algorithm for problem P within
framework F takes time fl(f(n)). Such a lower bound often leads to the discovery of
a faster algorithm when the restrictions of F are relaxed. In any case, either a lower
bound or an upper bound will lead to new insights about the problem and enhance
our understanding of the framework. An important issue, particularly in the case
of a framework as general as dynamic programming, is how to define the framework
precisely. The definition must be restrictive enough to allow for the possibility of lower
bounds (this may be difficult in the case of dynamic programming), but flexible enough
to admit a broad range of algorithms.

Another issue is the classification of NP-hard graph problems by relative difficulty
using special classes as a guide. For example, hypercube embedding, because it is NP-
hard even for trees [54], may be regarded as harder than dominating set, which is easy
for trees. In turn, dominating set is NP-hard for chordal graphs, and thus may be
regarded as harder than vertex cover (see [25]). Any nested sequence of graph classes
induces a linear order on classes of NP-complete graph problems. Two problems are
in the same class if they are NP-complete for the same classes of graphs. Aside from
being an interesting intellectual exercise, filling in the details of such a classification
scheme may lead to insights about the structure of NP-complete graph problems on the
theoretical side and better heuristics and algorithms for solving them on the practical
side.

4. Approaches. In its most general form, dynamic programming is a collection
of rules for determining the solution to an instance of an optimization problem. The
optimum solution is either computed directly, if the instance is small enough, or as a

simple function of smaller instances of the same problem. If the number of distinct
smaller instances that need to be considered during the computation of a large instance
is bounded by a polynomial in the size of the large instance, a polynomial time algorithm
typically results. In the case of graph problems, the smaller instances almost always
involve subgraphs of the original graph. Many classes of graphs can be defined in
terms of composition rules that combine smaller subgraphs into larger ones. Bern et al
[41 present a general theory for the interaction among composition rules and dynamic
programming algorithms.

Where composition rules lead to polynomial-time algorithms on special classes of
graphs, it is sometimes possible to extend the rules to general graphs and obtain algo-
rithms that are exponential only in a parameter that measures how often the original
rules had to be extended. For example, any two-terminal series-parallel dag (directed
acyclic graph) can be defined in terms of a unique (up to associativity of the operators)
decomposition tree. Every edge e = (v, w) is a leaf of the tree and has terminals v and
w. An interior node representing parallel composition joins two subtrees T1 and T2, each
having terminals v and w, into a single tree T1 + T2 . If G 1 is the dag represented by T1

and G2 the dag represented by T2, the dag represented by T, + T2 is G1 U G2 (the two
4

U
are joinei only at vertices v and w). A series composition joins T, with terminals u, v
and T2 with terminals v, w into T, " T2. Again, the dag represented by T, . T2 is G, U G2,
except now the two subgraphs only share vertex v. The source of the new dag is u and
its sink is w.

When traversed bottom up, a decomposition tree for a series parallel dag G cor-
responds to a reduction of G to a single edge. At a parallel composition node with
terminals v and w, we do a parallel reduction, replacing two edges e, f joining v to w
by a single edge g = (v, w). At a series composition node which joins two subgraphs at
vertex v, we do a series reduction at v. This occurs when eP = (u, v) is the unique edge
into v and f = (v, w) is the unique edge out of v: e and f are replaced by g = (u, w).

Algorithms for problems such as vertex cover can be formulated in terms of the
reduction sequence. For every edge e = (v, w) occurring during the reduction (e may
be an edge of the original dag or it may represent a whole subgraph which is joined
to the rest of the graph at the two endpoints of the edge), let VC(e, bb,) be the
cardinality of the minimum vertex cover for the subgraph represented by e, given that
x = v or w is included (excluded) in the cover only if b. = 1 (b. = 0). If e is an
edge of G, then VC(e,00) = oc (no cover can exclude both endpoints of the edge),
VC(e,01) = VC(e, 10) = 1, and VC(e, 11) = 2. If g is the edge resulting from a
parallel reduction of e and f, then

VC(g,bb.) = VC(e, bb.) + VC(f, b•b,) - (b. + b.)

(note that v or tw is counted twice if it is included in both covers). If g results from a
series reduction of e and f, then

3 VC(g,b,,,) = min{ VC(e, buO) + VC(f, 0b.), VC(e, bul) + VC(f, lb.) - 11.

The cardinality of the minimum vertex cover of G, a two-terminal series parallel dag,
can be computed by reducing G to a single edge e = (s, t) and considering the minimum
value among the VC(e, bb,).

An arbitrary two-terminal dag can be reduced to a single edge if one additional
Soperation is added to our repertoire. A node reduction at v occurs when v has indegree

or outdegree I (a node reduction is a generalization of a series reduction). Suppose v has
indegree 1 and let e = (u, v) be the unique edge into v. Let fi = (v, to1), . . ., fk = (v, wk)
be the edges out of v. Replace {e, fl,. .. ,f} by {g1,-. . . ,g}, where g, = (u, wi). The
case where v has out-degree 1 is symmetric (e = (v, w), fi = (ui, v), gi = (ui, w)).

For convenience, let G o v denote the result of a node reduction with respect to
node v, and let [G] denote the graph that results when all possible series and parallel
and parallel reductions have been applied to G (this is well defined because series and
parallel reductions obey the Church-Rosser property: the order in which reductions are
applied does not affect the final outcome [53]). A dag G is said to be irreducible if
_[G = G.

Let p(G), the reduction complexity of G, be the minimum number of node reductions
which are sufficient (along with series and parallel reductions) to reduce G to a single

edge. More precisely, 4(G) is the smallest c for which there exists a sequence vi,. . V,
I- 5

*_t

I
such that [... U[G] o vi] o v2j ... o v.] is a single edge. The sequence v,,... , v, is called
a reduction sequence. Last year, Wolfgang Bein and I developed a polynomial-time
algorithm for computing p(G) [48]. The problem of computing j(G) is reduced to a
problem of finding a minimum vertex cover in a transitive auxiliary graph C(G).

Suppose vj,... , v, is a reduction sequence for G and let V be an arbitrary subset of
{v 1,..., v,}. Using a minor modification of the vertex cover algorithm described above,
we can compute the cardinality of the minimum vertex cover of G under the restriction
that every vertex of V must be included in the cover and every vertex of {v1,.. . , vC} - V
must be excluded. Let gl,.-. ,gk be the edges resulting from a node reduction at v,
where v has indegree 1. Ifv E V, then VC(gi,b,,bw,) = VC(e,b,1) + VC(fi,lb,,) - 1;
otherwise VC(g,, kb,) = VC(e, b,O) + VC(f,, Obj,). Since every possible subset of
f{V11 ... tv. must be considered as a choice for V, the result is an O(m?) algorithm for 3
computing vertex cover in a two-terminal dag.

Problems, such as vertex cover, independent set, dominating set, clique, and color-
ing, which can be solved by the method described above, are most often formulated on
undirected graphs. A biconnected undirected graph can be turned into a two-terminal
dag by means of an st-numbering, a numbering of the vertices in which vertex 1 is adja-
cent to vertex n and each other vertex has at least one lower numbered and one higher
numbered neighbor [33,17]. Since solutions to the graph problems listed above can be
computed separately for each biconnected component and then combined, a natural 3
definition for the reduction complexity of an undirected graph G is the maximum over
all biconnected components C of G of the minimum over all dags C' resulting from
st-numberings of C of p(C). Undirected graphs of complexity 0 are exactly the undi- I
rected series-parallel graphs. Recognition of undirected graphs of any fixed complexity
c appears to be difficult (there are simple examples that show c to be dependent on
the st-numbering chosen, even if the numbering of 1 and n is fixed), but is known to
be in P by non-constructive methods, using the observation that the complexity of an
undirected graph never increases when an edge is deleted or contracted [40,41,18]. An
interesting avenue of research is to find specific algorithms for recognizing undirected
graphs of complexity c. It is also possible that the recognition problem is NP-complete
if c is part of the input. 3

Several practical applications of reduction complexity are discussed in the next
section. A primary activity of this research in the next year will be to learn about dag
reduction by applying it to a wide variety of problems of varying difficulty. In some I
cases, we may find that, whereas dag reduction is not a useful algorithmic technique,
our attempts to apply it have yielded non-trivial insights about the problem in question.

As I have gained experience with dynamic programming, I have also been drawn
to other problems and other special classes of graphs where dynamic programming is
or could be a key factor.

One of these is hypercube embedding: given a graph G = (V, E) and an inte-
ger k, find a one-to-one mapping h : V -. {0, ... , - 1} that minimizes either

max{v,,}EE{d(h(v), h(w))}, the dilation, or (Ef.,.ESd(h(v),h(w))l) /[EJ, the aver-
age dilation, where d(ij) is the Hamming distance between i and j, i.e. the number of

6 I.

I

bits that differ in their binary representations. Minimizing dilation is important when
synchronous parallel algorithms are mapped to the hypercube architecture (in this case
G represents the communication structure of the algorithm). Average dilation, particu-
larly a weighted average, may be more important in the case of asynchronous algorithms.
Average dilation is also important to coding theory, where the vertices of G represent
words to be coded and edges are between words that have similar meanings (and can
afford to be given similar codes). Both problems are NP-hard even for trees [54], but
the special case of binary (or other bounded degree trees) is still open.

Previous work on average dilation has been primarily experimental, concentrating
on various heuristics (6,32,10,16]. Theoretical work on dilation has used separators
to obtain low dilation embeddings for various special cases [55,36,5]. An important
outstanding conjecture is that any binary tree can be embedded with dilation 2. The
best result obtained so far yields dilation 5 embeddings for arbitrary binary trees [36].
We are considering three problems: (1) minimizing dilation, (2) minimizing average
dilation, and (3) minimizing the number of edges that have to be deleted in order to
achieve an embedding with fixed dilation d. All three are NP-hard for trees, but open1 for fixed-degree trees. The goals of the hypercube research are:

1. Settle the status of problems (1), (2), and (3) for binary trees (NP-hard or
polynomial).

2. Improve existing bounds for dilation in binary trees.
3. Develop heuristics with provably good performance for each of the three prob-

lems. 0
4. Develop good strategies for solving each of the three problems and compare

them experimentally.
The other problem is what I call maximum node coloring- given a graph G = (V, E)

and an integer k, find a maximum cardinality (or weight) subset V' of V such that the
subgraph of G induced by V' can be colored with at most k colors. This problem has
Sapplication to code optimization (register allocation) [1,8,13] and to unconstrained via
minimization [23]. In the case of code optimization, the vertices of G represent variables
and an edge means that the two variables cannot be stored in the same register. k is
the number of registers available - the uncolored variables must be stored in memory.
In via minimization G is a circle graph whose vertices represent wires to be routed, an
edge means that the two wires cross and cannot be routed on the same layer, k is the
number of layers available - the uncolored wires must be routed by means of vias, or
contact cuts from one layer to another. The maximum node coloring problem is known3 to be NP-hard for planar graphs [34,56] and for circle graphs [39,42], in both cases even
if k = 2. It appears to be solvable for interval graphs and permutation graphs, using
dynamic programming, if k is fixed [45]. Both classes are important because exact
solutions for graph coloring on them are used to obtain good heuristics for circle graph
coloring [50,52] (note: circle graph coloring is NP-hard when k > 4, but still open when
k = 3). Interval graphs occur in the register allocation problem when it is restricted to
straight-line segments of code. I intend to learn more about maximum node coloring by
attempting to find polynomial algorithms or NP-completeness results on other classes

17

i
of graphs. 5

An overview of the approaches currently being considered in this research is given
by the following list.

1. Look at dynamic programming algorithms that rely on composition rules for
special classes of graphs and extend these to more general graphs, yielding
algorithms that are exponential only in some measure of how nearly the graph
belongs to the special clas. I

2. Look for dynamic programming algorithms for problems that are not known to
be solvable in polynomial time, in some cases settling for algorithms that are
exponential only in a parameter that is not likely to be large in practice.

3. Look for dynamic programming algorithms for problems that are known to
solvable in polynomial time, but by methods that are not related to dynar
programming. Examples include matching and network flows (see Section 7 foL

more details).

5. Progress. Progress to date has been in three main application areas. First
there has been much work on the details and proofs of the Stallmann-Bein result on
node reduction and its application to problems in operations research. Some of this work
is joint work with Jerzy Kamburowski, who independently formulated an algorithm
for computing the reduction complexity of a dag. I have been able to show that his
algorithm is essentially equivalent to ours and this has simplified some of the proofs
in our paper. We have also been able to reduce the time bound of the algorithm from
O(n 3) to O(n2"s). I am learning about the various OR applications, and expect to be 5
able to suggest improvements in their formulation - that is, to interpret them in a more
general framework. This work is described in more detail below, after a brief description
of progress on two other fronts.i

In the area of hypercube embedding, a student, Woei-Kae Chen, and I have at-
tempted to use dynamic programming to obtain dilation 2 embeddings of binary trees
in hypercubes. The only success we have had so far is an algorithm that embeds binary
trees with an asymptotic average dilation of 2 - '"n [12]. This is not too promising
because many simple heuristics routinely obtain average dilations close to 1 in exper-
imental studies [9]. For this particular project, we have used both theoretical and
experimental approaches to attack the problem. Many of our failed dynamic program-
ming algorithms were based on conjectures whose smallest counterexample had 32 or 3
more nodes (in one case, only one counterexample of size 32 existed), so computational
trials based on exhaustive search were a valuable resource. We are currently comparing
a variety of heuristics, including simulated annealing, in an experimental study [11]. I
Our methodology is similar to that of Johnson et al [26].

My work with Tom Hughes and Wentai Liu in the area of via minimization has led
to a submitted paper [49] and an NSF proposal. I anticipate a lot of future work on
algorithms and heuristics for various subproblems related to UVM-based routing. Some
preliminary work on max node coloring in special classes that are subclasses of circle
graphs is likely to be useful in developing efficient heuristics. The work on UVM based
routing has also led me to some ideas on a constrained planar embedding problem that

r8u

I
appears to be difficult, but many special cases can be solved in polynomial time [46].
Dynamic programming may be a factor in solving the general version of this problem,

* if an efficieat algorithm exists.
I am in the process of writing a paper with Salah E. Elmaghraby and Jerzy Kam-

burowski on applications of dag reduction [15]. The paper features some simplifications
of the definitions and proofs in the Stallmann-Bein paper as well as descriptions of
several applications to problems in operations research. Consider, for example, the
following three problems on a two-terminal acyclic network G = (V, E) in which the
weight of each edge e is a random variable X. governed by a probability distribution
function F.:

1. computation of the pdi of project completion time, where the network is inter-
preted as a PERT network (activity-on-arc) and edge weights represent dura-
tions of the activities,

2. computation of the pdf of the length of the shortest route from source to sink,U where the network is a transportation network and weights represent travel
time, and

3. computation of the reliability of the network given that weights are either 0 or
1 (0 if the edge fails, 1 if it remains intact).

Let 'P be the set of all source-sink paths in G. Then the solutions to the three problems
may be formulated as follows:

1. T = maxpe, E,,•E X,
2. L = minpEp Lep X,1 3. R = maxep, 1lEP X,

The pdf's of random variables T, L, and R can be computed using dag reduction as
follows (we compute the pdf associated with each edge introduced during the reduction).
Suppose g is the parallel reduction of e and f. Then, in the case of T and R, X, =

max{X.,Xj} and F,(z) = Fe(z)Fj(z). In the case of L, X9 = min{X.,Xj} and5 Fg(z) = 1 - (1 - F.(x))(1 - Fj(z)). Now let g be the result of a series reduction of e and
f. In the case of T and L, Xg = X. + X! and F,(x) = F.-F1 (z) = 0fo F.(z-y)dFi(y).
In the case of R, X, = min{X., X1} and F9 (x) = 1 - (1 - F.(x))(1 - F1 (z)).I Node reductions are complicated by the fact that the pdf's of the g,'s are not
independent. Let gl,...,gk be the edges resulting from a node reduction (where v has
indegree 1 - the other case is symmetric) of e and fi,..., f&. We reflect the dependence
among the Fi, by computing for each g1 the conditional pdf F, (x; t), which is F.,(x)
given that the value of X, is fixed at t. The final result for the network must then be
integrated over all possible values of t with respect to dFe(t).

If the number of distinct values taken on by edge weights is a fixed constant U, the
total time required to compute Prob(Q : z) for a given x, where Q is one of T, L, or R,
is O(mUc), where c is the reduction complexity of G (in the case of R, U = 2; a simpler
formulation is given in [48]). It appears that for these problems, as well as for many
other problems, the solution on autonomous subnetworks, essentially triply connected
components of the dag, can be computed independently. Therefore, the correct measure
of reduction complexity should be the maximum over all subnetworks of the complexity

* 9

1- 4

defined above. This would be equally easy to compute; in fact, autonomous subnetworks
correspond to connected components of the auxiliary graph (481.

The above results for PERT networks rely on an activity-on-arc representation,
which is the one used most often in computations. However, for formulating prob-
lems, the activity-on-node representation is more natural, since it does not require the
introduction of dummy activities. The problem of minimizing the number of dummy
activities when translating from activity-on-node to activity-on-arc representation is
NP-hard [30]. Kamburowski has conjectured that there is a polynomial algorithm for
translating an activity-on-node network G to an activity-on-arc network G' that has
minimum reduction complexity among all such G'. This would allow us to extend
our algorithmic results to scheduling problems with precedence constraints (precedence
constraints are usually represented by activity-on-node networks). A student, David
Michael, is working on this conjecture for his PhD thesis.

Other applications of reduction complexity include conditional Monte Carlo sam-
pling, bounds on expected values of random variables in stochastic networks, and dy-
namic programming approaches to optimal resource allocation in PERT networks.

Another area of progress has been in improving time bounds for computing the
auxiliary graph C(G), and for computing a minimum vertex cover of a transitive graph.
The latter has been shown to be equivalent to bipartite matching [27], improving the
time bound from O(n 3) to O(n2 '). A dag whose transitive closure is C(G) can be
computed in time O(n2) [47]. It is also easy to show that computing C(G) is at least as
hard as computing the transitive closure of G, and that computing p(G) is at least as
hard as bipartite matching, hence all our bounds are tight, barring any improvements
in the time bounds for transitive closure or matching.

6. Research Directions. The primary research directions suggested by this project
have already been discussed in Section 4. One important issue that has been neglected
so far, however, is that of efficient parallel algorithms. Dynamic programming algo-
rithms based on tree structured decomposition schemes, such as those for series-parallel
graphs, can be efficiently parallelized using tree contraction [35,22]. Efficient dynamic
programming algorithms for systolic arrays and meshes have also been proposed [29).
These observations suggest two important lines of research.

1. To what extent can dynamic programming schemes that yield sequential polynomial-
time algorithms be adapted to parallel models, such as PRAM, systolic linear
array, or mesh?

2. Are there universal schemes, like dynamic programming, that lead to efficient
parallel algorithms for problems on special classes of graphs, or for general
graphs?

The most promising approach is to attempt to generalize existing parallel algorithms for
problems that have been solved sequentially by dynamic programming. Any patterns
that emerge should be applied to problems for which no efficient parallel algorithms
are known. This is just a general idea and is only being pursued in a limited way by
this project. I refer here to the model for on-line systolic graph algorithms mentioned
in the proposal: a model of computation for graph problems in which the processing

10

I

unit is able to store a small fixed number of data items per vertex and is able to read
the edges of the graph sequentially as many times as is required to solve the problem
(each reading of the edges is called a pass). The processor itself may be a linear array,I a mesh, or a random access machine (either sequential or parallel). It appears that
while the capabilities of the processor may affect the running time per pass, the total
number of passes is not affected. Problems such as connectivity and biconnectivity
can be solved in 0(1) passes, in linear time on an array and in almost linear time on
a sequential machine (see [43,44,51]). Other problems that might be solvable in 0(l)Ipasses (though no algorithm is known at this time) are finding a minimum spanning
tree and finding a shortest path between two specific vertices. The only progress I can
report is not the result of my work: an on-line systolic algorithm for minimum spanning
trees by Huang [241.

Since I'm relatively new to this work, I'm not sure I can safely suggest any ap-
proaches that should not be pursued. Most of the approaches I've suggested are brute-
force, seat-of-the-pants type research, requiring few deep mathematical results. This is
not to suggest that the work requires no mathematical background or sophistication.
But, as is often the case with combinatorial methods, the mathematics gets made up
as you go along, mathematical ideas emerge as the essence of the problem is more
clearly understood. It is difficult to predict in advance which mathematical tools will

I be required for the task at hand. Graph theory and combinatorics are general realms
in which to look for tools, but I've found that it's difficult to keep up with all recent
results in these areas that may be relevant to even one computer science problem. Com-
munication with people who are knowledgeable in combinatorics and graph theory is
essential when the underlying combinatorial problem has been abstracted out of an
applied problem.

7. Grand Challenge. Two of the hardest problems that are known to be solv-
able in polynomial time are graph matching and network flows. Until recently, all
known efficient algorithms for both problems have used some form of augmenting path
search. The advent of "preflow-push" algorithms for network flows [20] suggests that
the flow problem is amenable to more localized strategies. New algorithms for match-
ing have been motivated by parallel models of computation and have centered on the
computation of symbolic determinants using randomized algorithms [28]. Deterministic

i algorithms based on determinants exist for special classes such as planar graphs (fol-
lows directly from ideas outlined in [31) and strongly chordal graphs [14]. However, for
planar graphs it is not known how to compute the actual matching deterministically;
only the problem of determining whether a perfect matching exists has been solved.

I believe that dag reduction may be helpful in the development of alternate al-
gorithms for network flows and matching. The grand challenge is to find algorithms
that are either simpler, more efficient, or more easily parallelizable than existing algo-
rithms for network flows and matching (note: the network flow problem is known to be

Slog-space complete for P [21], hence a polylog-time parallel algorithm is unlikely).
The flow problem for dags is at least as hard as that for general directed graphs

[381 (it would be an interesting exercise to try to extend this construction to other

11

| ,r 1•

problems, such as min cost flows or network reliability). For series-parallel dags, the
network Bow problem can be solved in linear time using the following algorithm to
compute MF(e), the maximum flow for the subgraph represented by the edge e, for
every edge e that occurs during a reduction of G. If g is the result of a parallel reduction
of e and f, MF(g) = MF(e) + MF(f); in the case of a series reduction, MF(g) -
min{MF(e), MF(f)}.

I'm currently looking at how these ideas can be extended to more general dags. One
key idea is that it's possible to reduce an arbitrary dag using only node reductions on
nodes with indegree 1 (such a reduction sequence may not be minimum, but that's not
important to what follows). In a node reduction of v, where e = (u, v) is the unique edge
into v, the key issue is how to distribute the capacity of e among the gi's that result from
the node reduction. In the preflow-push model this translates into a decision about how
to distribute the exceu at v among the edges leading away from v. A generalization of
the series-parallel decomposition tree, called a factoring [48], can be used to guide the
excess toward the sink. In general, we push as much of the excess as possible through
an arbitrary edge out of v and keep pushing in a depth-first manner toward the sink.
There are two differences with the standard preflow-push approach. First, whenever
we encounter a vertex w that is not dominated by v, we push the excess from other
parts of the dag toward w before pushing any flow out of w (thus we guarantee the
maximum possible excess at to before pushing flow out of to); the factoring appears to
be a valuable tool for guiding this excess. Second, rather than pushing flow backwards
when we find that we're unable to push the excess at to forward, we reroute the excess
by backtracking to a choice point z (vertex for which a node reduction is required),
which does not dominate to; again, factoring appears to help with finding the right z.
This is still in the intuitive stage and may not lead to anything, but I feel that it's
worth pursuing. The existing flow algorithms do not appear to take advantage of the
special structure of dags.

Dag reduction may also play a role in obtaining simpler algorithms for maximum
matching. The central issue here is whether we can restrict the number of ways to match
the nodes that are removed by node reduction. This is a special case of a more general
issue raised for graph problems by Lakshmipathy and Winklmann [31]: given a graph
G = (V, E), a decision problem P defined on G, and subsets V, and V2 of V, such that
V, UV 2 = V and IV, n V2 1 = ., how many bits, as a function of s, does a machine knowing 3
only the subgraph induced by V1 need to transmit to a machine knowing the subgraph
induced by V2 so that the second machine can give the correct answer for P(G)? For
many NP-complete problems, a lower bound exponential in s can be shown. Many
problems in P have upper bounds polynomial in s. The communication complexity of
bipartite matching in this model is open. Resolution of the communication complexity
of matching may lead to linear-time algorithms for planar matching, NC algorithms for I
general matching, simpler sequential algorithms for general matching, and a resolution
of the red-green matching problem (in red-green matching, the edges are colored red or
green by the input and the object is to find a perfect matching with a specific number I
of red edges; this problem was first posed by Papadimitriou and Yannakakis [37], in

121

I

I connection with constrained spanning tree problems, and was shown to be in RNC
by Karp et al [28]; no deterministic polynomial time algorithm for it is known). An
exponential lower bound would be quite surprising, and would suggest that no "simple"
algorithms for matching exist.

8. Research Transitions. Since much of this research is motivated by practical
applications and I am in direct contact with people working on the practical issues,
transition is often my primary research task. The most difficult transitional issue for me

I has not been one of communicating theoretical results to practitioners - I do that all the
time, most often for theoretical results that are not my own. The problem has been one
of translating transitional work into publishable papers. I become familiar enough with
applications to understand the underlying theoretical issues, but not familiar enough to
understand all the history, lore, and lingo of the application, i.e. to be able to publish
results in a journal devoted to the application. Joint papers with applications people are1 a possibility, and I'm doing some of that now. It's sometimes hard for me to resist the
temptation to nitpick at everything that doesn't have a solid theoretical foundation, and
the people I work with are often slowed down by my participation in papers, proposals,
and on PhD thesis committees. The nitpicking is important and usually leads everyone
involved to a better understanding of the central issues. More journals and conferences

devoted to the interface between theory and practice might help, and there's already a

trend in that direction.

9. Technological Impacts. This research would be aided by software tools for
animation of graph algorithms. As a step in that direction, I have proposed the fol-
lowing independent study project for a student. Design and implement a system that
allows user to input directed or undirected graphs using a mouse pointing device in
conjunction with X-Windows. The system should support such standard operations
as adding a vertex, creating an edge between two vertices, deleting an edge or vertex,
labeling an edge or vertex, and moving a vertex to a different screen position. Out-
put should be a graph in adjacency list or adjacency matrix format, accessible to an
algorithm implementation. Algorithm animation systems for graph algorithms exist
(see, for example, [7]), but require tremendous programming effort to custom tailor for
any specific application. My goal is something simple and modest, with few bells and
whistles but lots of flexibility. In particular, I need to be able to add features as the
need for them arises (rather than working around complicated features of an existing
system to meet my needs).IThe work on hypercube embedding has already benefited from having a reasonably
powerful CPU available for exhaustive searches and simulated annealing trials. The
SUN workstation purchased with funds from this project has been a major help in this
regard.

10. Societal Issues. I would like to begin this section by thanking the Office of
Naval Research for their support. There are three ways in which this ONR grant has
made a major difference in my research career. First, it enabled me to entice one of

our better graduate students to stay on for a PhD, rather than quitting with a master's
13

I
degree. I would like to emphasize that support of good students should be the primary 5
motivation for obtaining research money. The more research money can be funneled
directly to students, the better off we will all be in the long run. This suggests that it's
better to support many smaller projects rather than fewer big ones. Second, the ONR U
grant has enabled me to purchase a Sun workstation for computational experiments,
editing, and preparing papers. Though initially my productivity was almost halted
while I figured out what kind of workstation would meet my needs and how to use I
the thing once I got it, it has been a tremendous help in the more recent past. A
major problem at this university is lack of software support personnel - I waited several
months for someone to install key pieces of software (e.g. LaTeX and X-Windows) on
my station and finally had to do it myself. Staff, both secretarial and technical, should
also be a category of high priority; without staff, equipment does not get optimum use 3
and researchers spend too much of their time on routine tasks. Finally, the ONR grant
has been a "shot in the arm" to my self-esteem as a researcher. It's sometimes hard
to feel theoretical work is worth anything in a place that puts great emphasis on large $
practical projects with specific missions. If basic research is to survive and continue to
contribute to our economic health (by providing practically applicable results and by
training the next generation of scientists), funding agencies need to pay more attention I
to the quality and enduring nature of the research being performed rather than its
immediate applicability to practical problems. 3

REFERENCES

[11 M. AUSLANDER, G. CHAITIN, A. CHANDR.A, J. CocKi, M. HOPKINS, AND P. MAPJSTEIN,
Register allocation mva coloring, IBM Technical Disclosure Bulletin, 24 (1981), pp. 336 - 346.

(2] S. BAASE, Computer Algorithms: Introduction to Design and Analysis, Second Edition, Addison-
Wesley, 1988.

[3] C(. BERGE, Graphs and Hypergraphs, North Holland, 1976.
[4] M. BERN, E. LAWLER, AND A. WONG, Linear-time computation of optimal subgraphs of de-

composable graphs, Journal of Algorithms, 8 (1987), pp. 216 - 235.
[5] S. BHATT, F. CHUNG, F. LEIGHTON, AND A. ROSENBERG, Efficient embeddings of trees in

hypercubes, Typescript, Department of Computer Science, Yale University, New Haven, CT I
06520.

[6] S. BOKHARI, On the mapping problem, IEEE Transactions on Computers, C-30 (1981), pp. 207

- 214. I
[7] M. H. BROwN, Algorithm Animation, MIT Press, 1988.
[8] G. CHATIN, Register allocation and spilling via graph coloring, in Proceedings of the SIGPLAN

Symposium on Compiler Construction, 1982, pp. 23 - 25. I
[9] W. CHEN, Experiments with heuristics for hypercube embedding, Project report for CSE 6911:

Surviving Intractability, Spring, 1989, North Carolina State University.
[10] W. CHIN, A Graph-Oriented Mapping Strategy for a Hypercube, Master's thesis, North Carolina

State University, 1988.
(11] W. CHEN, E. GEHRINGER, AND M. STALLMANN, Hypercube embedding heuristics: an evaluation,

In preparation.
[12] W. CHIN AND M. STALLMANN, Analysis of a heuristic for embedding binary trees into hyper-

cubes, In preparation.
[13] F. CHow AND J. HENNESSY, Register allocation by priority-based coloring, in Proceedings of the

SIGPLAN Symposium on Compiler Construction, 1984, pp. 17 - 22.
[14] E. DAHLHAUS AND M. KARPINSKI, The Matching Problem for Strongly Chordal Graphs is in

NC, Tech. Rep. 855-CS, University of Bonn, 1986.

14

I

[15] S. ELMAGERANY, J. KAMUUROWSKI, AND M. STALLMANN, On the reduction of acyclc digrephi
sad do appl aionsi , Working paper.

[161 F. ERcAL, J. RAMANUJAM, AND P. SADAYAPPAN, Task allocation onto a hypercube by recursive
mneaut birtilioning, Typescript, Department of Computer and Information Science, The
Ohio State University, Columbus, Ohio 43210.

[171 S. EVEN AND R. TARJAN, Computing an t-nsumbering, Theoretical Computer Science, 2 (1976),
pp. 339 - 344.

(18] M. FELLOWS AND M. LANOSTON, Nonconstructive advances in polynomial-time complexity,
Information Processing Letters, 26 (1987), pp. 157 - 162.

[191 S. FORTUNE, J. HOPCROFT, AND J. WYLLIE, The directed subgrsph homeomorphism problem,
Theorectical Computer Science, 10 (1980), pp. 111-121.

(20] A. GOLDBERG AND R. TARJAN, A new approach to the maximum flow problem, Journal of the
ACM, (1988).

[21] L. GOLDSCHLAGER, R. SHAW, AND J. STAPLES, The maimum flow problem is log space com-
plete for P, Theoretical Computer Science, 21 (1982), pp. 105 - 111.

(22] X. HE AND Y. YESHA, Binar tree algebraic computation and parallel algorithnu for simple
g#=phs, Journal of Algorithms, 9 (1988), pp. 92 - 113.

(23] C. Hsu, Minimum via topological routing, IEEE Transactions on Computer Aided Design, CAD-2
(1983), pp. 235 - 246.

(24] S. HUANG, A fully pipelined minimum cost spanning tree constructor, Journal on Parallel and
Distributed Computing, (1989). To appear.

(25] D. S. JOHNSON, The NP-completeness column: an ongoing guide, Journal of Algorithms, 6
(1985), pp. 434 - 451.

[26] D. S. JOHNSON, C. R. ARAGON, L. A. McGEOGH, AND C. SCHEVON, Optimization by sims-
lated annealing: an experimental evaluation (part I), Typescript.

(27] J. KAMBUROWSKI AND M. STALLMANN, Reducing transitive vertex cover to bipartite vertex
cover, Submitted to Information Processing Letters.

[28] R. KARP, E. UPFAL, AND A. WIGDERSON, Constructing a perfect matching is in random NC,
in Proceedings 17th Annual ACM Symposium on Theory of Computing, 1985, pp. 22 - 32.

[29] S. R. KOSARAJU, Speed of recognition of context-free languages by array automata, SIAM Journal
on Computing, 4 (1975), pp. 331 - 340.

(30] M. KRISHNAMOORTHY AND N. DEo, Complexity of the minimum-dummy-activities problem in
a PERT network, Networks, 9 (1979), pp. 189 - 194.

[31] N. LAKSHMIPATHY AND K. WINKLEMANN, 'Global" graph problems tend to be intractable, Jour-
nal of Computer and System Sciences, 32 (1986), pp. 407 - 428.

(321 S. LEE AND J. AGGARWAL, A mapping strategy for parallel processing, IEEE Transactions on
Computers, C-36 (1987), pp. 433 - 442.

[33] A. LEMPEL, S. EVEN, AND I. CEDERBAUM, An algorithm for planarity testing of graphs, in
Theory of Graphs: International Symposium, July, 1966, P. Rosenstiehl, ed., Gordon and
Breach, New York, 1967, pp. 215 - 232.

[34] J. LEWIS, On the complexity of the maximum subgraph problem, in Proceedings 10th Annual
ACM Symposium on Theory of Computing, 1978, pp. 265 - 274.

[35] G. MILLER AND J. REIF, Parallel tree contraction and its application, in Proceedings 26th Annual
Symposium on Foundations of Computer Science, 1985, pp. 478 - 489.

[36] B. MONIEN AND I. SUDBOROUGH, Simulating binary trees on hypercubes, in VLSI Algorithms
and Architectures: 3rd Aegean Workshop on Computing, 1988, pp. 170 - 180.

[371 C. PAPADIMITRIOU AND M. YANNAKAKIS, The complexity of restricted spanning tree problems,
Journal of the ACM, (1982), pp. 285 - 309.

[38] V. RAMACHANDRAN, The complexity of minimum cut and maximum flow problems in an acYclic
network, Networks, 17 (1987), pp. 387 - 392.

[39] C. RIM, T. KASHIWABARA, AND K. NAKAJIMA, A note on the NP-hardness of the topological
via minimization problem, 1989, Typescript.

[40] N. ROBERTSON AND P. SEYMOUR, Disjoint paths - a survey, SIAM Journal on Algebraic and
Discrete Methods, 6 (1985), pp. 300 - 305.

15

I

[411 - , Graph minos - a survey, in Survey@ in Combinatorics, 1. Anderson, ed., Cambridge 5
Umivemity Pres, 1985, pp. 153 - 171.

[42] M. SAaaxrnAD3H AND D. LEE, A new approach to topological vis minimization, 1989, To appear,
IEEE Tasaction on Computer-Aided Dsign.

[43] C. SAVAGE, A syJtolic design for connectimt problems, IEEE Transactions on Computers, C-33
(1984), pp. 99 - 104.

[44] C. SAVAGE, M. STALLMANN, AND J. PERiY, Solving some combinatorial problems on arrays

with one-wqa dataflow, Algorithmka, (1989). To appear.
[45] M. STALLMANN, Maximum mode colorisg of graphs with special structure, 1989, In preparation.
[46] -, PQ.trees, book embeddings, and planar embeddings, May 1989, Extended abstract.
[47] M. STALLMANN AND W. BEIN, Decomposition and reduction of directed acyclic graphs (revised

version), In preparation. I
[48] - , Deomposition and reduction of directed acyclic graphs, July 1988, submitted to SIAM

Journal on Computing.
[49] M. STALLMANN, T. HUGHES, AND W. Liu, Unconstrained Via Minimization for Topologi- I

cal Multilayer Routing, Tech. Rep. C88495, Semiconductor Research Corporation, P.O. Box
12053, Research Triangle Park, NC 27709, 1988. Revised version submitted to IEEE Trans-
actions on CAD, June, 1989. I

[50] K. SUPOWIT, Decomposing a set of points into chains, with application, to permutation and circle
graphs, Information Processing Letters, 21 (1985), pp. 249 - 252.

(51] M. TCHUENTE AND L. MELKEMY, Reseau Systoliques pour le Calcul des Composantes Connezet

et le Triangularisation des Matrices Bendes, Tech. Rep. 366, Laboratoire d'Informatique et
de Mathematiques Appliquees de Grenoble, 1983.

[52] W. UNGER, On the k-colouring of circle graphs, in Proceedings 5th Annual Symposium on
Theoretical Aspects of Computer Science, 1988, pp. 61 - 72.

[53] J. VALDES, Parsing Flowcharts and Series.-Parallel Graphs, PhD thesis, Stanford University,
1978.

(54] A. WAGNER, Embedding Trees in the Hypercube, Tech. Rep. 204/87, Department of Computer
Science, University of Toronto, 1987.

[55] A. Wu, Embedding of tree networks into hypercubes, Journal on Parallel and Distributed Com-
puting, 2 (1985), pp. 238 - 249.

[56] M. YANNAKAKIS, Node- and edge-deletion NP-complete problem., in Proceedings 10th Annual
ACM Symposium on Theory of Computing, 1978, pp. 253 - 264.

16l

Ii
I
I

I

,o Ii

Adaptive DBMS Support for Complex Applications

Roger King

University of Colorado
Department of Computer Science

Boulder, Colorado 80309

Abstract

The goal of the adaptive database project at the University of Colorado is to develop
techniques which will make database systems useful for newer applications, such as
engineering design. In such cases, there is a need to support complex, computed data, as
well a need to hand-tailor a database system to suit specific processing requirements, for
example, version support and document management. Two different experimental sys-
tems, one addressing each of these concerns, are under construction. The algorithms and
techniques developed for these systems are intended to help relieve the advanced data-
base user from the highly constrained mechanisms which traditional database manage-
ment systems provide.

1. Background

Traditionally, database systems were used by business programmers, and their

needs were at least perceived to be rather simple. Data in the real world spans a wide

spectrum of complexity, from highly unstructured (like text) to highly structured (like

airplane designs). In data processing environments, data is typically represented only in

a narrow band of this spectrum. All data is seen as being tightly, yet simply, structured.

Further, most transactions against the database are submitted in batch mode. The goal is

merely to support the fast retrieval of large numbers of similar, simply-structured

records. As a result, conventional database systems provide very little in the way of

abstraction, and in particular cannot effectively represent data whose internal structure is

either highly structured or highly unstructured.

In recent years, a new generation of potential database users has emerged. This

includes software engineers, VLSI and printed circuit board designers, aircraft and CAD

engineers, as well as those involved in office automation. These individuals wish to store

and manipulate many forms of data, in particularly, highly structured objects. (There is a

need to represent unstructured data, specifically text, as well, but this research project 5
does not address this issue.) Further, engineers often wish to manipulate data in an

interactive environment. In sum, newer database users have a need for all the amenities a

database system provides - such as concurrency, serializability, transaction management, 3
rollback and recovery - but in an interactive design mode. Since traditional database sys-

tems do not suit these needs, many researchers are examining the numerous problems

related to this grand challenge.

2. Research Objectives and Issues S
Clearly, the goal of providing database support for interactive design users is gigan-

tic. New data models, storage and access mechanisms, query languages, user interfaces,

and many other tools are needed. In this project, we focus on two specific problems and

use a corinon philosophical approach in attacking each of them. Our first area of con- 3
centration involves the support of computed data. In a design system, as opposed to a

data processing system, there is a vast amount of tightly interconnected computed data. A

design for an airplane includes highly interrelated data; changing one part of the design is 3
likely to have effects on many other aspects. Further, it must be accessed quickly, as

designers work in real time. Our second focus is on a broader issue, that of allowing

advanced users to cleanly integrate into one database environment a variety of complex 3
tools. For example, in a software development system used by software engineers, the

2

I
I

database ms interact with versioning, configuration, and report systems.

I We are approaching each of these tasks from the perspective of adaptability. This

g means that, unlike existing database systems, the DBMS is not rigid. In our first research

effort, we are focusing on the ability of the system to adapt itself at the physical level;

I computed data is managed in a way that allows the DBMS to learn from past usage

I experience and rearrange the way it processes updates. This is crucial in minimizing the

potentially exponential costs of calculating computed data. In the second effort, we

I focus on the ability of the database user to adapt the system to suit his or her needs - at

3 the conceptual level. This is important, as engineering applications vary dramatically in

their requirements, and often require very specialized tools.I
3 3. Approaches and Progress

The two projects described above are called Cactis and A La Carte. Cactis has

I resulted in the development of parallel algorithms for the maintenance of computed (or

derived) data. These algorithms are based on attributed graphs and dramatically reduce

the amount of I/O necessary to keep complex engineering database entities up to date. A

I La Carte uses the approach of abstracting the database management system up another

3 level, resulting in the design of a database generator, such a system is, as a result,

designed to be much more tailorable. The main problem lies in doing this in a fashion

I which does not require vast amounts of low-level programming.

Both of these projects also share another common philosophic approach, besides

one of adaptability. They both attempt to integrate two directions which have been

I prominent in the database research community - behavioral and structural (or "semantic")

3I s

object-oriented modeling. (Behavioral object-oriented modeling is often simply referred

to by the tm objected-oriented.) This has allowed the support of data objects which are

both structurally complex and dynamic. This is crucial in supporting emerging engineer-

ing applications. Below, we discuss both projects, first Cactis, then A La Care.

3.1. Cactis

Consider an engineering design application familiar to all of us: software develop-

ment and reuse. In every phase of the software life-cycle, we see a need for derived data.

Examples include the following data relationships: the dependency between a source

module and the corresponding object module; the derivation of a load module from a

number of object modules; and, the relationships between a set of software modules and

the associated documentation, requirements, bug reports, fix reports, and project mile-

stones. In each case, if one piece of data changes, others are likely to be changed as a

direct consequence.

With traditional database systems, this sort of derived data must be maintained by

the application software or directly by end users - typically with a mechanism known as

triggers. This introduces problems. Programmers are not likely write code that is port-

able from one software environment to another. Also, if computed data is maintained

directly by the DBMS, then it may be managed in a much more efficient and correct

fashion. Cactis [7,9] is designed to support computed data in a highly efficient manner,

and to do so in a consistent fashion. Triggers, on the other hand, must be hand-coded by

the user and are difficult to reuse. Even more significantly, as a trigger mechanism is

likely to operate in a first come, first severed basis, no attempt is made to optimize their

execution. In general, if several trigger sequences all lead to the same piece of computed

4

data, it could be updated an exponential amount of time, with respect to the number of

trigger paths to the data item. A prototype Cactis system has been implemented, in order

to provide a basis for the experimentation with and evolution of the underlying algo-

rithms. In particular, substantial experiments have been performed in order to illustrate

that the techniques developed are useful for engineering databases. The research is being

conducted in conjunction with Scott Hudson of the University of Arizona.

Cactis represents a database as an attributed graph, and uses an incremental graph

update algorithm. It also is self-adaptive, in that it learns from past experience and

adjusts both process scheduling and data clustering on disk to minimize the I/O cost of

maintaining computed data. We have run extensive performance tests on Cactis, illus-

trating substantial savings when the system is used. The potentially exponential behavior

of triggers has been reduced to linear cost.

Also, several components of a software environment, including a "Make" [5] facil-

ity, a critical path tool, and a bug report system have been built on top of Cactis. Further,

the Arcadia software environment project [6,10,12] has made some use of Cactis.

Cacti [8] is a distributed version of Cactis, and is currently under construction. It is

targeted for a local network of Sun workstations, and is motivated by the fact that

software design teams often work in distributed, interactive environments. The imple-

mentation of the system is being greatly facilitated by the fact that the graph algorithm in

Cactis is naturally parallel, thus making it easy to adapt it to a distributed environment.

In keeping with the self-adaptive nature of Cactis, the new system uses usage statistics to

replicate, migrate, and recluster data around the network.

I

3.I. A La Carte

A La Carte [2] is in its early stages, and addresses much higher-level issues than

Cactis or Cacti. The project, which is being conducted in conjunction with Colorado 3
PhD students Pam Drew and Jonathan Bein, was motivated by the lesson that Cactis is

still a very low level tool, and that many problems arise when trying to integrate various

software environment tools within a Cactis application. Again, a prototype is under

development, so that real experiments can be performed to validate and evolve the tech-

niques under design.

The system uses mixins and multiple inheritance to allow an engineer to select both

database facilities and software environment capabilities. For example, the designer of a

software environment may choose an appropriate concurrency control option and cluster-

ing mechanism, as well as a version facility, a document management mechanism, and a

configuration tool. A La Carte puts them all together in one system, using a method

integration technique. It thus is very similar in spirit to Exodus (3] and Genesis [1]; a

significant difference is that A La Carte is a less aggressive project, and is oriented

mostly toward examining the appropriate mechanisms for resolving conflicts when mix-

ing in complex software methods. I
4. Research Directiom

There are many, many other aspects of database support for newer complex data K
that must be investigated. Of prime importance is the representation, in a coordinated

fashion, of different levels of structured data, all the way from text to video to sound to

graphical images to layout diagrams. A few researchers are working on multi-media

I
A

I
I

datbase projects oriented toward solving this problem [4]. In particular, many engineer-

I ing applications have very demanding data modeling requirements. Consider PCB

boards; the job of representing the wiring problem is immense, and current wiring

software represents the board as an unstructured file, with all the semantics of the board

I embedded in an ad hoc fashion in the application software. We hope that Cactis and

Cacti will provide some help in maintaining the relationships between various forms of

data. As another example, if a CAD image changes, the documentation describing it is

likely to change as well. A La Carte should also provide some insight, in terms of pro-

viding a mechanism for integrating the wide variety of tools needed to support multiple

forms of data.

I Engineers also want to manipulate computed data in real-time, using interactive,

3 staged transactions. Traditionally, DBMS's have been tailored toward the support of

batched transactions. And, in the future, when a design error occurs, it will not be

i sufficient to blindly rollback the entire transaction (which may have taken days or

3 weeks). For example, if a piece of source code is changed, this might automatically

affect documentation, milestones, bug reports, test data, and test executions. If one of

3 these executions abnormally terminates, the software designer does not want the entire

transaction - including the source code changes - backed out Very fine-grained control

of how the transaction is indeed backed out is needed. Some aspects of staged recovery

U can be viewed as layered forms of derived data; Cactis and Cacti might be of help in

u dealing with this this. A La Carte might be useful in assisting the database user in choos-

ing and integrating specific forms of recovery.

7
U

I

The digp engineer will also want less restrictive forms of concurrency control. If

a data item is currently in use, and another engineer wishes to use it, he would rather

electronically tap the current user on the shoulder and ask for a copy of the item. Current

concurrency control algorithms will make him wait an arbitrary amount of time. This is

due to the assumption that database transactions are done in batch mode. A related issue

concerns versions (a form of derived data, a sort of which is supported by Cactis and

Cacti). Will versioning replace concurrency control in interactive systems? Perhaps

rather than locking an item, a user will merely version it. A user might check out a copy

and check it back in to create a new "current" version, in much the same way as

engineers now check in and check out design documents. This of course brings up the

age-old problem of version integration. This is related to the problem of reversing the 3
process of creating derived data. If you change a piece of derived data (a version) how g
does it affect the original?

Also, as structural encapsulation (semantic modeling) and behavioral encapsulation I
(object-oriented modeling) become more popular, a challenging question will arise. How U
will the many forms of behavioral encapsulation be integrated? Or better yet, should

they? Cactis and Cacti use derived data as their behavioral techniques. A La Carte uses I
methods. They are very similar, but not identical. There is no message passing paradigm 3
in Cactis and Cacti, and a method does not normally store the result of its actions, unless

the user codes it that way. The problem does not stop there. How do methods and I
derived data relate to rule systems and constraint languages? Will we want a DBMS to

support all four of these techniques or just one? And if we want to mix them, what

theoretical and algorithmic work needs to be done? A related issue is that of integrating I
more complex forms of manipulations (such as methods, rules, constraints, and derived 3

8 !

I

data) with traltonal set-oriented and aggregate operations; after all we do not want to

I lose the capability that relational system ae so good at.

3 One interesting question is how all this new technology could be used by business

environments. I believe that data processing systems do indeed represent complex

objects, versions, methods, rules, and derived data - they are just accustomed to embed-

j lding them in application software and have never had more powerful tools available.

Probably one avenue that (in my opinion) should not be pursued is the perverting of

current relational paradigms to solve these problems. The various attempts by some

researchers to make relational systems look like semantic systems were very unsuccess-

ful. This is due to the inherent lack of abstraction in the relational model. The key prob-

lem is that the relational model has no concept of an object - all database items are made

up of identifiers and cannot be recursively combined into complex objects. I believe that

current attempts at taking the relational model and making it look (behaviorally) object-

oriented will fail for the same reason. No matter what, the user will be conscious of

manipulating identifiers - not objects.

5. A Grand Challenge

A few months ago, a grup of about forty researchers Iet for two days in the Napa

valley [13]. All participants were active researchers in either the software engineeing or

database realm. There were no scheduled presentations. The goal was to determine, as a

working group, the research tasks which needed to be performed in order to provide

effective database support for software environments. (A software environment was gen-

erally accepted as a software system which assists program developers in the design, cod-

9

I$

U
I

ing, debugging, deployment, mintenance, and eventual reuse of software systems.)

Many different ideas were discussed - but a surprising result came out of the workshop. U
It was generally felt that the biggest challenge was the integration of all of the many

research results that are currently being published in the software environment database

arel

Indeed, the central problem seems to be that there is no underlying, integrated

model or representation for software database support Many authors feel that "object-

oriented" databases are the answer - but no one could agree on the definition of the term. I
And, unlike other, more mathematically tractable models such as the relational model,

ther is no clear way of representing the implementation of object-oriented databases.

The same is true for object-oriented query specification and optimization. My feeling is I
that object-oriented databases am not at all identical to engineering databases; it is

merely true that the object-oriented paradigm is a promising platform for studying

engineering issues. I

Furthermore, while many researchers are working on new ways of managing large 3
and complex objects, of executing long and interactive and staged transactions, of inter-

facing graphically with a complex database, and of implementing novel forms of con- I
currency control - it is not clear what challenges lie in putting all these things in one sys- 3
tem. This would require a very large scale research platform. And, it is clear that these

various new software mechanisms will interact in as yet unknown ways. The big ques- I
tion is: Will a uniform, understandable, and implementable theory of object-oriented 3
database design and implementation arise? Indeed, our hope is that Cactis, Cacti, and A

La Carte are a step in this direction. U
I

10

____ ___ ____ ___ ____ ___ _ _I

6. Rmearch Trantltow

My own goal is to link up as much as possible with existing engineering projects, to

see if the results of my work are usable. The DARPA sponsored project Arcadia [I I1 is

currently my main target project. Already, I have learned a few things. For example, the

algorithms used in Cactis to schedule derived computations are viewed as too restrictive

by many engineers. They would like more control over how the system makes decisions.

This can benefit the system by providing crucial information that may be very hard to

deduce automatically. An example is that a user may know that he is about to suddenly

shift his area of focus, and if he is able to warn the database, Cactis can adapt more

quickly.

7. Technological Impacts

The biggest technological area that will impact this work is parallel and distributed

computing. The ready availability of high-speed networks and workstations, the growth

of long-haul networks, the development of many-processor machines, the introduction of

parallel channels, and the development of disk arrays will all affect database technology.

This is why the algorithms in Cactis were designed to be naturally parallel.

8. Sodetal Isues

It goes without saying that ONR support has dramatically affected my career. Early

and intensive financial support enabled me to get my research program off the ground

and quickly produce solid results. Further, two of my PhD students are now professors

(Scott Hudson of the University of Arizona and Nabil Kamel of Michigan State), and I

11

I
I

am currently working with ten other PhD students. Of course, I am sure that not all of

them will stay with me, but students are naturally attracted to large, active research pro- 3
grams. In sum, I am a very strong supporter of the YIP program.

The only other societal issue I might point out is that the grand challenge mentioned

above will necessitate a much more coordinated and cooperative effort by American 1
researchers. If we were able to set research goals at a national level (as the Japanese do),

and corporations would not always operate in a strictly product-based manner, much

more progress could be made. I
I

9. Recommendations to Funding Agencies

My main recommendation is that federal funding agencies should not try to set I
specific research goals and support only projects related to these goals, unless they am

also prepared to help researchers coordinate their efforts. Doing the first without doing

the second only produces many fragmented projects which do not build on each other. I I
think that funding larger, multi-institution projects is a good idea. l

I
References I

1. D. S. Batory, J. . Barnett, F. F. Garza, K. P. Smith, K. Tsukauda, B. C. Twichell I
and T. E. Wise, "GENESIS: A Reconfigurable Database Management System",
To appear in IEEE Transactions on Software Engineering,. 1

2. J. Bein, P. Drew and R. King, "A La Carte: A Generator of Persistent Object

Stores for Software Environments", Working paper, 1988.

3. M. J. Carey, D. J. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J. E. Richardson

and E. J. Shekita, "The Architecture of the EXODUS Extensible DBMS",

12

Proceedings of the Workshop on Object-Oriented Databases, Pacific Grove,
California, September 23-26, 1986, 52-65.

4. S. Christodoulakis, "Multimedia Database Management Systems (Panel
Statement)", Proc. ACM SIGMOD Int. Conf. on the Management of Data, 1985,
304-305..

5. S. . Feldman, "Make - A Program for Maintaining Computer Programs",
Software - Practice and Experience 9 (April 1979), 255-265.

6. D. Heimbigner and S. M. Sutton, "SCAD Support for Software-Process
Prograrming", ACM Software CAD Databases Workshop, Napa, California,
February 27-28, 1989.

7. S. Hudson and R. King, "The Cactis Project: Database Support for Software
Engineering", IEEE Trans. on Software Engineering, June 1988.

8. S. Hudson and R. King, "An Adaptive Derived Data Manager for Distributed
Databases", Second International Workshop on Object-Oriented Databases, Bad
Munster am Stein-Ebernburg, FRG, September 1988, 193-203.

9. S. Hudson and R. King, "Cactis: A Self-Adaptive, Concurrent Implementation of
an Object-Oriented Database Management System", ACM Transactions on
Database Systems, 1989.

10. S. M. Sutton, D. Heimbigner and L. J. Osterweil, "Programmable Relations for
Managing Change During Software Development", University of Colorado at
Boulder Technical Report CU-CS-418-88, September 15, 1988.

11. R. Taylor, "Arcadia: A Software Development Environment Research Project",
University of California at Irvine, Dept. of Information and Computer Scinece,
Technical Report, April 1986.

12. R. N. Taylor, F. C. Belz, L. Clarke, L J. Osterweil, R. W. Selby, J. C. Wfleden, A.
Wolf and M. Young, "The Arcadia Environment Architecture", Tech. Report,
Univ. of Caiif.at Irvine, Dept.Info.and Comp. Sci, Irvine, Calif., Sept. 1987.

13. ACM SIGMOD Software Eng. Notes Software CAD Databases Workshop, Napa,
California, February 27-28, 1989.

13

I
TRANSFORMATIONAL PROGRAMMING SYSTEMS WITH LARGE-SCALE

AUTOMATION I
Robert Paip

I0 ,1) Abstract and Background
We regard the discovery of useful program transformations as
part of a natural evolutionary process that begins with the I
discovery of informal principles of software engineering and
leads to their formalization and mechanization within a
compiler. For this process to -succeed we believe that three
essential methodologies must be developed - for programming,
transformations, and compilers. Programming methodology is
the informal but essential principles that facilitate the
manual construction of programs and the synthesis of I
algorithms. Transformational methodology is the more formal
process of syntactic analysis and symbolic manipulation by
which programs can be improved automatically or I
semiautomatically. Compiler methodology is a fully
automatic form of transformational methodology used to
implement a programming language. 3
There is a natural process whereby programming methodology
matures and devolves into transformational methodology whose
perfection leads to compiler methodology. This process is
behind the evolution of low level machine languages into
high level languages. This process involves the recognition
that major common patterns of programming style in a low I
level language can result from the application of standard
techniques of program improvement to higher level
programming prototypes. When such a technique can be
formalized as an implemented 'meaning-preserving' program
transformation, then we can conveniently write programs at a
higher level of abstraction without a penalty in
performance, since the efficient lower level versions can be
derived mechanically or semiautomatically by transformation.

Such transformations form the essential lemmas in a proof of
correctness of the implementation-level code. When these
transformations can also be associated with a precise
measure of improvement in time and space, then the leamas
can facilitate a proof of performance as well as
functionality of the low level code. This approach to
verification leads naturally to the intriguing idea of
problem specification languages that fall within specific
complexity classes; i.e., that can be compiled automatically
into implementations whose time and space bounds are
guaranteed at language design time. In this approach the I
assumed correctness of a specification together with a
correctness proof of the 'supercompiler' proves the
functionality and the performance of the compiled code.

2) High Level Research Objectives

a. to automate major aspects of programming I

b. to develop a new means of software production that
enables us to implement algorithms or construct software
that would be too complex to program with existing
technology

c. to unify problem specification, program design,
verification, and analysis within a single unified framework

d. to make it easier to teach and understand algorithms and
software engineering

3) Research Issues

(see Appendix I)

4) Technical Approach

a. The recent focus of our project is in developing a new
paradigm of 'program verificution by compilation'. Within
this paradigm programs are verified for their functionality
and performance. This is achieved by defining a problem
specification language L and a compiler for L that will
always generate code with guaranteed time and space
complexity. Thus, a single theorem stating the correctness
of the compiler for L is sufficient to guarantee the
functionality and performance of any program compiled from
an L specification.

b. Program transformations such as fixed point iteration,
finite differencing, stream processing, and real-time set
machine simulation on a RAM have been developed within our
project and comprise the major phases of the compiler
mentioned in part (a) above.

c. Underlying any programming methodology is the theory of
algorithms. Algorithm implementations are also the most
difficult kinds of programs. Thus, we are benefitting
greatly by studying algorithms and their derivation by
transformation in order to develop improved programming and
transformational methodologies.

d) We are making use o.' real-time simulation of an abstract
set machine on a RAM for data structure selection. This
approach seems to be new and promising.

e) Rather than use attribute grammars for semantic
analysis, we have chosen a pattern directed approach similar
to MENTOR/TYPOL.

5) Progress

a. With Cai we have developed a functional problem
specification language called SQ+ (SETL expressions plus
fixed points) that can express all partially recursive
functions. We show how to compute fixed points efficiently
for abstract SQ+ functions over abstract lattice theoretic
data types.

b. In POPL87 Cai and I reported on a subset of SQ+ called

37

Li that can always be compiled into programs that run on a
RAM in asymptotically linear time and space with respect to
the problem input/output space. We showed that a significant
fragment of an optimizing compiler could be specified in Li.
Recently, Cai has shown that the very difficult problem of
Planarity Testing can also be specified in Ll.

c. In our algorithm research with TarJan we have have
focussed on partition refinement as an algorithmic strategy
and have discovered improved algorithms for the Single
Function Coarsest Partition Problem, Lexicographic Sorting,
the Relational Coarsest Partition Problem, and Double
Lexical ordering.

d. Cai and I have generalized Hoffman and O'Donnell's fast
top-down tree pattern matching algorithm to be incremental
with respect to patterns and to handle more general patterns
with several pattern variables and implicit equality I
testing. Cai used this algorithm to design and implement an
inductive definition language to be used for semantic
analysis in RAPTS. Tarjan and I recently obtained some I
space time tradeoffs for a potentially useful subclass ofthese patterns.

e) ke recently developed a methodology for implementing sets I
and maps on a conventional RAN based on real-time
simulation. We intend to use this work as the basis for the
third phase of the Li compiler, which should be operational I
by the end of tLs summer.

6) Research Directions

a) Can our transformational methodology be applied to
machine models other than the sequential RAM? What about
for parallel RAM's?

b) Can we see a great improvement in reliability,
performance, and labor costs in constructing software using I
our methodology. In particular can we construct the major
components of a high performance optimizing compiler in a
relatively brief time period by transforming a mathematical Ispecification.

c) Can our transformations be usefully generalized and
implemented with faster and better algorithms? Tree pattern
matching seems to be a fundamental operation within our
methodology Can our matching algorithms be improved
further? Are there better heuristic or approximation
algorithms to solve those problems that are NP-hard; e.g.,
stream processing?

d) Can our techniques be further applied to database
optimization and integrity control?

e) Can we generalize our results with Li to develop a whole
heirarchy of problem specification Anguages for
complexities at each polynomial degree? Is there a useful
subset of Prolog equivalent to LI? Can we define a I
syntactic class of attribute grammars (even circular

I grammars) that fall within Li?

7) One grand practical challenge would be to be able to
implement a high performance (comparable to compile- and
run- times for Il's best compiler) optimizing FORTRAN
compiler for an IBM 370 by generating it from a succinct in
Li specification. An ambitious theoretical challenge would
be to produce specification languages with worst case
complexity bound to each polynomial degree and whose union
has the same power as Gurevitch and Shelah's polytimelo
language.

8) 1) Our work has had an impact mostly on the
transformational programming community, but also on the
database, programming language, algorithm, and complexity

* communities.

We had a major impact on a European ESPRIT project in rapid
prototyping called SED with participants from Thomson-CSF
and INRIA in Paris, Enidata in Rome, U. of Patras in Greece,
Hildesheim U. in W. Germany.

IFIPS WG2.1, the original ALGOL working group, is currently
developing a new mathematical problem specification and
programming language within a transformational programming
environment. The group has been influenced by our work andhas asked me to head a subgroup on program transformations
including finite differencing.

The Dutch government has begun a national project on
transformational programming. I was invited to the
Netherlands to present the results of our project.
Representatives from the Prospectra Project, project CIP,
Kestrel, ISI, and other groups seem to have been influenced
by our work in finite differencing and want to utilize our
current work in fixed point iteration and data structure
selection by real-time simulation.

A group of researchers including Neil Jones from DIKU
working with the transformational paradigm of mixed
computation feel some impact of our work and, consequently,
I am an invited speaker at the ESOP conference in Copenhagen
in May 1990.

The database community (e.g., N. Roussopoulos) seems to have
* been influenced by our earlier work in integrity control.

The language theory community seems to be interested in the
algorithm work with Tarjan on the relational coarsest

* partition problem

We inspired Gurevich and Shelah to investigate function
classes computable with respect to input and output space.

ii)Before anyone else uses the results of our technology, it
would be most convincing if we would be able to use it
ourselves. This is only now starting to happen. By the end
of the summer when we expect our Ll compiler to generate

linear time C code, we will be in a bettor position to I
assess how the technology can best be applied and by whom.
Our hope is that we can consider implementing code for the
forthcoming 180860 Intel chip, a 1 million gate RISC mini-
Cray I.

9) The RAPTS project would benefit from a few SUN 3/60's and
half of a super eagle disk. SUN 3/60's could overcome some I
of the speed problems we have with SETL as our main
implementation language. It would also make it easier to
run the prototyping systems MENTOR and the SED environment,
which are relevant to our work. However, space is a more
serious problem for us, because of SETL and also our
reliance on large tables to facilitate fast pattern matching I
to implement transformations.

10) This year there too many qualified faculty applicants
for too few positions in the U.S. At NYU, where we received I
over 200 applications, we have been reluctant to send out
rejection letters. If this situation continues, I believe
that it would be humane and also scientifically sound for I
funding agencies to allocate more funding for post-doc
positions and less for students.

11) Recommendations on Funding

Transformational programming and parallel computation are
two emerging fields that may ultimately depend on each other
for success. Perhaps, because ad hoc programming on
sequential machines is so straightforward, sequential
programming methodology has had little impact outside the I
academic community, and transformational methodology has had
little impact at all. However, because ad hoc programming
for parallel machines is so hard, and because progress in
software construction has lagged behind architectural
advances for such machines, there is a much greater need to
develop parallel programming and transformational
methodologies. ONR should stimulate research on formal ways
to overcome problems of parallel computation -with respect
to both software development and algorithm design.

Specific problems include derivations of synchronous and
asynchronous parallel algorithms, systems, and
architectures. These derivations may include sequential to
parallel machine translation, retiming and reconfiguration
techniques, and techniques for simulation of one kind of
parallel machine in another. Incorporation of
specification, design, verification, and analysis into
parallel programming, transformational, and compiler
methodologies. Also applications of transformational and
derivation techniques: for explication of difficult parallel I
algorithms(e.g., parallel graph algorithms), and to solve
real-world problems are of special interest (e.g.,
derivations of communication protocols and database query
optimization for distributed computation).

Appendix I. Research Issues

Hypothesis: The theory of algorithms underlies the science I

of programming. A viable theory of problem specification and
program transformationn would provide the basis for a theory
of algorithm and program design.

Main Objective: The discovery of basic program
transformations that capture principles of algorithm design;
implementation and application of these transformations
within the RAPTS system.

Motiviation for Research:

Four general difficulties with current program construction
methodologies (originating with Knuth[68] and Aho, Hopcorft,
and Ullman[74]) together with long range goals of our
project are listed below.

1. (Problem Specification)

Problems are specified in an ad hoc way. But informal
problem specifications can be confusing, even ambiguous.
This is bad for documentation and complicates the synthesis
and analysis of correct programs.

Our goal is to provide a formal mathematically based problem
specification language.

2. (Program Synthesis)

Programs are constructed informally.

3 Our goal is to directly map problem specifications into
efficient implementations by applying correctness preserving
transformations.

3. (Program Correctness)

3 Program proofs are tied closely to implementation level
code. Consequently, they are lengthy, complicated, and
unconvincing.

Our goal is to guarantee the correctness of an
implementation by proving the correctness of the problem
specification and the transformations used to derive the3 implementation.

4. (Program Analysis)

I Time and space complexity of implementations depends on a
rigorous analysis of the low level features of the
implementation code, undependent of any design principles.

Our goal is to integrate performance analysis with the
synthesis process.

Program construction using a supercompiler:

Abstract Problem Specification (supplied by user-

proved correct with aid of system)// \\

// \\Transformations (applied and Justified
// \by system whenever possible)

V V
Implementation Performance (Output by system)

Specification

Main Sources of transformational programming methodology:

Topdown Stepwise Refinement: Dijkstra and Wirth[late 60'8s]
General Idea for a system: Cheatham[72]
Correctness: Floyd[67], Hoare[69]
Transformational Correctness: Gerhart[75]
Mechanical Performance Analysis: Ramshaw[79],J. Cohen[82]
Performance Analysis by Transformation: Willard(83]
Specification Language:

VERS2-Earley[74], SETL-Schwartz(77], LCF/ML-Gordon,Milner,
Wadsworth[79], Algorithmic Language-Bauer[82]

Transformations:
Recursion to Iteration-Walker, Strong[73]
Dynamic Prograuming-Bird[80],N. Cohen[83]
Stream Processing-Allen,Cocke[71],Morgenstern[76],Burstall

and Darlington[77],Reif,Scherlis[82]
Finite Differencing-Briggs[16th century], Cocke, Schwartz[69],

Cocke,Kennedy[77],Earley[76],Fong,Ullman[76],Fong[77,79]

Related work in formal program development methodology

1. ad hoc program construction and formal verification and
proof checking

Manna
Luckham
etc.
see Lipton, demillo, perlis for criticism

2. synthesis
constructive proof

Manna and Waldinger
Goad
Bibel
Bates

Much manual intervention - efficiency is not considered

Equational Approach
Guttag
Huet
Hoffman and O'donnell

Efficiency is of even less concern - but mechanization is a
plus

3. Transformational

Sauer
Cheatham
Burstall and Darlington

Much manual intervention, vast transformational libraries,
long aimless derivation sequences, unpredictable capacity
for improvement

Case Study

Three basic program transformations of wide applicability
have been developed and implemented within RAPTS. Development
of a fourth basic transformation is in progress. They are

-- illustrated below.

1. Solving Roots of Set Theoretic Predicates -- The Genesis
of Algorithmic\Strategy

Restrictions

Determinate problems
Executable Specs
Finite Sets

determinate problems such as these are reminiscent of Linear
Programming, but the solution method we devise is similar tothe iterative techniques used to find approximate solutionsto numerical equations.

find the unique solution S by the following
iterative procedure:

The solution method above is based on Tarski. When it canI be applied, the solution to the original problem isguaranteed to run in polynomial time.

Our transformation is described in Paige[84,84].
Generalization of this transformation to finding solutions
in partition spaces played a central role in the explanation
of a new improved algorithm to solve the single function
coarsest partition problem Paige,Tarjan[84].

2. Finite Differencing -- The Efficient Implementation of
Strategy

Further improvement to the attribute closure procedure
generated by the previous transformation can be achieved by
automatic application of finite differencing
transformations, so-called because they derive from Briggs's
16th century method of polynomial tabulation using
difference polynomials. But instead of tabulating
polynomials, we want to tabulate expressions of various data
types. For this example, instead of computing the
expression ***** in the naive way each time through the
loop, we will tabulate the value of this expression for each

I _ _ __ '4

successive value of S in an inexpensive incremental way. Our I
technique avoids repeated calculation of ****** by

i. establishing the following four invariants on entry to
the loop:

The system establishes the invariants using a loop combining
transformation called stream processing (see Paige,
Koenig[82], Goldberg, Paige[84]).

ii. maintaining these invariants just after they are spoiled
by the modification to S within the loop. The maintenance
code is called 'difference code' and is generated by RAPTS
according to a chain rule.

iv. replacing the computation ****, made redundant within
the loop, by the variable new.

Based on structural properties of these eight invariants,,
RAPTS automatically determines that the cumulative cost ofI
establishing and maintaining them is 0(***) with respect to
a set theoretic complexity measure. It then be determined
that the whole procedure runs in 0(***) steps.

Our work in Finite Differencing goes back to
PaigeSchwartz[77] and includes Paige[79,83,84,84],
Koenig,Paige[811,Paige,Koenig[82]. I
APPENDIX II. RAPTS EXAMPLES

Below are examples of code generated automatically by the
protototype Ll compiler from the given specifications using
RAPTS. The first and easiest derivation is of the graph
reachability problem. Next is the derivation of a live I
statement analysis algorithm. The third example shows how
the fast Bernstein and Baeri attribute closure algorithm can
be compiled from a simple problem specification. The final
example is a simple constant propagation. Throughout this
session with only one exception manual intervention is
required only to supply the names of variables introduced by
transformations. The one exception is in the constant
propagation example where the property of monotonicity could
not be deduced within the current implementation (a
practical rather than a theoretical shortcoming).

EXAMPLES

1. Graph Reachability

program
program tclose;
read (e , w) ;
print (the s: w subset s I e[s] subset s minimizing #s) ;

end program ;

_ ___ ___I

program
program reach ;

read eow)az:-(e))}

i torall x27 in a
(forall x26 in e x27) I x26 notin b)

b vith :- x26
end forall ;

end forall ;1d
(forall x29 in v

if x29 notin a then
d with :- x29 ;

end if ;
c with :- x29 ;

end forall ;
forall x29 in b I x29 notin c
if x29 notin a then

d vith :- x29
end if ;
c with :- x29

end forall ;
(while exists x24 in d)

(forall x28 in e (x24 } I x28 notin b)
if x28 notin w then

if x28 notin a then
d with :- x28 ;

end if
c with :- x28 ;

end if
b vith :- x28

end forall ;
if x24 in c then

d less :- x24 ;
end if ;
a with :- x24 ;

end while
print (a) ;

end program ;

,2. Live Code Analysis

program
program useless ;

assume oneone (instof);
assume onemany (iuses);
assume manyone (compound);
assume disjoint (range instof, range compound);
read (instof , usetodef , iuses , compound , crit) ;
print (the live: crit subset live I (instof [usetodef [iuses [

live] I] + compound [live]) subset live minimizing #live) ;
end;

program
program useless ;assume oneone instofassume onemany (iuses

assume anyon. (compound) : Iti
assume disjoint (range instof , range compound)
read (instof * usetodef , iuses compound , crit
a :-crit u

(forall x3 in a
forall x2 in Luses (X3)
(forall x7 in usetodef x2) I x7 notin c

d with :instof (x7)
c with :-x7

end forall
end forall ;
if compound (x3) notin e then
* with:-compound x3)

end if ;
end forall
f :- ()

(forall xlO in d I
if xlO notin a then
qgwith :- xlO

end if ;f with :- x1O

end forall ;
(forall xlO in e

if xlO notin a then
qgwith :- xlO

end if ;
f with :- xlO I

end torall
(while exists xl in g)

forall x4 in iuses (xl) Iforall 7 in usetodef x4) I x7 notin c
if instof (xV) notin a then

g with :instof(x7
end if I
f with instof (x7)
c with :X7

end foral ;I
end forall ;
if compound (xl)notin e then

if compound (xl) notin a then I
g with :- compound (xl

end if ;
e with :- compound xl

end if ;
if xl in f then

g less :- xl ; I
end if ;
a with :-xl

end while ;
print (a) ;

end ;

3. Attribute Closure U
__ !

program
program aclose ;

read x f) ;
print (the a: x subset a j forall y in domain f 1

y subset a impl f(y) subset a minimizing #a) ;end;

program
program aclose

read x x , f ;
a:- x

forall x21 in domain f)
(forall x20 in x21)

h (x20) with :- x21 ;
end forall

end forall ;
c :- () ;
(forall xll in domain f)

(forall xlO in xli)
if xlO notin a then

c (xli) :- C c (xli) ? 0) + 1
end if ;

end forall
end forall

(forall x16 in domain f)
if c (x16) - 0 then

forall x19 in f (x16) I x19 notin e)
if x19 notin a then

g with :- x19 ;
end if
e with :- x19 ;

end forall ;
end if ;

end forall
(while exists x9 in g)

forall x13 in h (x9
if x13 in domain f then

if((not c (x13) - 0) and c (x13) = 1 then
forall x19 in f (x13 I x19 notin e
if x19 notin a then

g with :- x19 ;
end if;
e with :- x19 ;

end forall
end if

end if
c (x13) - := 1

end forall
if x9 in e then

g less :- x9 ;
end if
a with := x9 ;

end while
print (a) ;

end

I4.

4. Constant Propagation I
program
program const;
read (assign, usetodef, compute);
print(the conat: empty subset const

(const - (a in assign (forall t in (domain usetodef){()I ((forall x in usetodef([s,t]) I x in conat) and
#(compute(x): x in usetodef([s,t]) * const) <- 1))))UM

minimizing # const);end;

program U
program const;

read (assign , usetodef , compute) •
out :- empty ;

forall X45 in domain usetodef , x46 in usetodef { x45))
a (x46) with :- x45 ;

end forae1

forall C x19 , x20] in usetodef
if x20 notin out then I

b(x19) + :-x1 1
end if ;

end toralI

f orah C x30 , x31 in usetodef
if x31 in out then

if compute (x31)notin g (x30) then
h (x30) + :-1 ;1
gnd x30 with := compute (x31) ;

end if
end if ;

end forall ;

forall x41 , x40] in (domain usetodef))
if h (x41 , x40) > 1 then

j (x41) + :- 1
end if

end forall

(forall [x26 , x25] in (domain usetodef))
if b (x26 , x25) > 0 then
d x26) + := 1

end if ;
end forall
1 :
eC:= ()

(forall x29 in assign)
if d (x29) - 0 then

if j (x29) = 0 then
if x29 notin out then

1 with := x29 ;
end if;k with := x29 ;

_ I

end if
0 with :- x29

end if ;
end torall
(While exists x2 in 1)

(torall x21 in u (x2))
if x21 in (domain usetodef) and b (x21) - 1 then

if x2l (1) in assign then
if d (x21 (1)) - 0 then

if j (x21 (1)) - 0 then
if x21 (1) notin out then

1 less :- x21 (1) ;
end if ;
k less :- x21 (1)

end if ;
e less :- x21(1))

elseif d (x21)) 0 + 1 then
if j (x21 (I)) - 0 then

if x21 (1) notin out then
I with :- x2 ;

end if ;
k with :- x21 (1

end if
e with:- x21 (1);

end if
end if ;
d (x21 (1)) - :I 1

end if ;
b (x21) -: 1

end forall ;
(forall x35 in a (x2)

if compute (x2) noting (x35) then
if x35 in (domain usetodef) then

if h (x35) - 1 - 1 then
if x35 () in e then

if j (x35 (1)) = 0 then
if x35 (1) notin out then
1 less := x35) ;

end if ;
k less :-x35 (1);

elseif j x35 (1) = 0 - 1 then
if x35 (1) notin out then

1 with :- x35 (1) ;
end if
k with .= x35 (1)

end if ;
end if ;
j (x35 (x1)) + :1 1 ;

elseif h (x35) = 1 then
if x35 (1) in e then

if j (x35 (1)) = 0 then
if x35 (1) notin out then

1 less := x35 (1) ;
end if ;
k less := x35 (1) ;

elseif j (x35 (1) 0 + 1 then
if x35 (1) notin out then

I with :- x35 (1)
end if ;

k with :- x35(1) ;1
end if

end if ;
j (x35 I) - :-I1

end if I

end if ;
h (x35) + :- 1
q (x35) with :-compute (x2) I

end if ;
end toral;
if x2 in k then

1 less :- x2
end if ;
out with :x x2 ;

end while ;
print (out) ;

end;

I
I
I
I
I
I

_ _ _ _ _ _ _ _!

____ ____ __ !

Geometric Modeling: Software Research and
Development*

Chanderjit L. Bajaj
Department of Computer Science

Purdue University
West Lafayette, IN 47907.

May 21, 1989

Abstract

The project's research emphasis is on the computational and mathematical infras-
tructure, needed to support the software development of a geometric modeling system.
This is a software system which allows for the efficient creation and manipulation
of concise boundary representations of curved solid models of physical objects. The
geometric coverage includes algebraic curves and surfaces of arbitrary degree, and al-
lows both the implicit and rational parametric representations with both power and
Bernstein polynomial bases. Utilities are provided for automatic conversions between
the various polynomial representations. Furthermore, a graphical user interface allows
creation of Bezier control polygons and polyhedra, for efficient design of Bezier curve
segments and Bezier surface patches. Geometric operations include boolean set op-
erations, offsets, sweeps, solid decompositions, and wireframe flesh via interpolation.
Graphical display facilities include quick wireframe plot and redisplay of the bound-
ary representation, three dimensional transformations of the solid, and high resolution
color rendering. The geometric modeling system is being implemented in Common
Lisp, Fortran and C on a combination of Symbolics 3650, HP - 370SRX Turbo, and
SUN 4-110 platforms.

"Supported in part ONR contract N00014-88-K-0402.

I1

1 Background

In the summer of 1986 plans were made for developing a geometric modeling system for the
efficient creation and manipulation of accurate computer models of solid physical objects.
A primary goal since then, is to accurately model the boundary of rigid physical objects
with algebraic surface patches. The focus is on using the lowest degree surface patches
which satisfy the design constraints, since lower degree surfaces lends itself to faster compu-
tations in geometric design operations as well as in tasks such as computer graphics display,
animation, and various physical simulations. The project's research emphasis is on the com-
putational and mathematical infrastructure, needed to support the software development of
this geometric modeling system.

Geometric Coverage: We focus on the use of low degree, implicitly defined, algebraic surfaces
in three dimensional space R 3. A real algebraic surface S in W3 is implicitly defined by a
single polynomial equation f(x, y, z) = 0, where coefficients of f are over the real numbers
IR. A real algebraic space curve can be defined by the intersection of two real algebraic
surfaces and implicitly represented as a pair of polynomial equations (f 1(z, y, z) = 0 and
f 2(x, y, z) = 0) with coefficients again over the real numbers R. In modeling the boundary
of physical objects it suffices to consider only space curves defined by the intersection of two
algebraic surfaces. Space curves in general are defined by the intersection of several surfaces.
A rational algebraic space curve can also be represented by the triple (x = G1 (s), y =
G2(3), z = G3(s)), where GI, G2 and G3 are rational functions in a. Whenever we consider
the special case of a rational space curve, we assume that the curve is smooth and only singly
defined under the parameterization map, i.e., each triple of values for (z, y, z), corresponds
to a single value of s.

Why algebraic surfaces ? Manipulating polynomials, as opposed to arbitrary analytic func-
tions, is computationally more efficient. Furthermore algebraic surfaces provide enough gen-
erality to accurately model almost all complicated rigid objects. Also, algebraic curves and
surfaces lend themselves very naturally to the difficult computational problem of physical
object design.

Why implicit representations ? Most prior approaches to geometric and soid modeling, have
focused on the parametric representation of surfaces. Contrary to major opinion and as we
exhibit through our research, implicitly defined surfaces are also very appropriate. Addition-

ally, while all algebraic surfaces can be represented implicitly, only a subset of them have the
alternate parametric representation, with x, y and z given explicitly as rational functions of
two parameters. Furthermore, implicit algebraic curves and surfaces have compact storage
representations and form a class which is closed under most common operations required by
a geometric modeling system.

2

I
I

I 2 Research Issues, Objectives & Directions

* Develop computational techniques using, algebraic geometry and numerical approxima-
tion theory to eliminate bottlenecks in geometric modeling operations. These include
robust Boolean set operations (union, intersection, etc.), solid decompositions, offsets,
envelopes and sweep computations. Accuracy and robustness are two of the most
pressing technical issues in geometric modeling.

e Develop and implement efficient "modular" algorithms for algebraic curve and surface
parameterization, implicitization and singularity resolution. Utilize efficient methods
of Chinese remaindering, Hensel lifting and multivariate interpolation.

I * Develop graphical user interfaces for easy editing of geometric object information.
Includes three dimensional transformations such as translation, rotation, scaling, etc.I

3 Approaches & Progress

1 Algebraic Boundary Model Creation - an editing toolkit.

This package is in CLisp arAd Fortran on the Symbolics and is one of continual growth,
[4, 11, 12, 16, 19, 21, 22, 23]. Capabilities are (a) allows quick wireframe plot and
redisplay of the curved solid boundary data structure for arbitrary algebraic surfaces.
Has a robust surface-surface intersection routine with calls to a Fortran SVD subrou-
tine. Also a revamped makesolid routine to produce an internal form of the boundary
description for solid manipulation routines (boolean operations, triangulation,...). (b)3 produces a complete boundary description of "offsets" of points, line segments, an-
gles (two line segments)..From there the plot capabilities of (a) take over Takes
input, one, two, three points and an offset radius. 3d solid transformation routines
i(scaling, translation, rotation) are also implemented and used to derive the boundary
description. (c) handles "extrudes" and "curved solids of revolution" on the same lines
as (b). Study of robustness issues of curved model reconstruction and display, via
symbolic reasoning, is underway. Benefits all projects below which manipulate solids
with boundary descriptions. (Summer project for undergrad: Implement a color render
program of the solid boundary description for the HP graphics workstation.)

Current Programmer. Steven Klinkner

* Robust Polyhedra Triangulation - robust modeling operation using the topological
reasoning paradigm.

This package is in CLisp on the Symbolics and is near completion [10]. Takes as input
an arbitrary simple polyhedra, in a modified Karasick's external boundary descrip-
tion and produces a convex decomposition/ triangulation of the polyhedra. All the3 pieces are returned in the boundary description. An algorithm was developed where

I 3-53

the theoretical bound of Chazelle's old 1984 algorithm was improved by a factor of
O(N 2 /logN), where N = number of reflex edges. Chazelle recently informed us that
he had shaved off the additional O(logN) factor by a different method. Implementa-
tion was done to better understand the issues of robustness. Rewrote and corrected
some of Karasick's robust classification routines. Developed a robust plane-sweep al-
gorithm for detecting edgecycle loops. Has an input and display interface from the
editing toolkit above, as well as from S-Geometry. Color shaded pictures can also be
produced. Should prove useful in calculating volumetric properties of solid models
and in interfacing simple finite element programs. Next step: Robust Triangulation of
Curved Solids.

Current Programmer:. Tamal Dey

* Hermite Interpolation with Algebraic Surfaces - automatic surface generation.

This package is in CLisp and C on a HP color graphics workstation. Version One
completed in February end [15]. Currently working on Version Two with a better I
user interface and new features. Takes as input: points and curves in space together
with "normal" directions and produces a family of the lowest degree, algebraic surface
which "smoothly" interpolates the points and curves. Nonsingularity and convexity
constraints, as well numerical conditioning issues are satisfied by doing computations
with polynomials in Bernstein basis (as opposed to the traditional power basis). Cur-
rently uses the Macsyma routine for linear system solutions over integral domains. Has
a textual input interface and uses the graphics workstation hardware for color display.
Should prove useful in fleshing curved wireframes, for smooth meshing with low de-
gree surfaces, generating blending and joining surfaces and for constructing low degree
curved finite elements.

Current Programmer:. Insung Ibm I
• Package for Solving Systems of Polynomial Equations - all roots solver.

This package is in CLisp and C on a SUN 4 and is a long term effort [1, 2, 3, 6, 8,
9, 13, 14]. The goal is to have both a robust and efficient set of routines to construct
compact representations for all the roots of a general system of multivariate polyno- 3
mial equations. For 0 dimensional solutions , approximate real solutions are obtained
within "epsilon" neighborhoods of the true solutions. For k dimensional solutions in
n space, a hypersurface in k + 1 dimensional space is generated, together with points
on the true solutions expressed as rational functions of points on the hypersurface.
Methods are based on Sylvester and Macaulay resultants and subresultants as well as
symbolic parameterization routines. A very fast Sylvester routine, based on Chinese I
remaindering, is implemented and a similar implementation for Macaulay's resultant is
currently underway. Global parameterization routines for upto degree three hypersur-
faces have also been implemented. Currently uses the Macsyma routine for univariate
polynomial real root solving, and curve tracing routines to display the zero, one and

4

I

U

two dimensional solutions. The package has an interactive user interface to enter equa-
tions and select different ways of solving and displaying solutions. Provides a basic

-- mathematical package of polynomial manipulation routines for varied applications.

Current Programmer. Andrew Royappa

-- Power series factorizations and Pade approximations - analyzing curve and
surface singularities.

This package is in CLisp on the Symbolics and is complete for curves [5, 7]. The
algorithms for surfaces are simultaneously being developed and implemented. Takes
implicit algebraic curves and surfaces as input and produces a power series parame-
terization for all the branches at a singularity (curve branches about a singular point,
and surface branches about a singular curve). Further Pade' rational approximants
can be computed for the power series parameterizations. Has an interactive, textual
user interface, where different degrees of approximation can be specified. The output is
both textual and graphical, displaying the original and approximated branches of the
curve and surface. The algorithms are based on Hensel lifting of power series, yielding
Newton and Weierstrass factorizations. The Pade' routines are based on the Brent,
Gustavson and Yun method of using the extended GCD algorithm to solve Toeplitz
matrix computations. Provides the essential routines for constructing a piecewise ra-

-- tional approximation of any curve or surface. Projected usefulness in modeling and
graphics.

Current Programmer. Chanderjit Bajaj

* Compliant Path Planner - generating contact paths for a curved object with fixed
orientation.

This package is in CLisp on the Symbolics and is complete for a planar curved model,
moving with fixed orientation, and in continuous contact with other static planar
curved models [17]. The implementation for solid models is pending [18, 20]. The
method is based on the convolution computation, made efficient with simple "paint"
heuristics. Has a menu driven, graphical interface to specify and display planar model
descriptions. The planar models currently are made of piecewise circular arcs and
straight lines. The compliant path is demonstrated by a graphical animation of a
planar model moving in continuous contact with the fixed curved models. Next Step:
Besides upgrading this to three dimensions, we hope to interface this planner with
Newton.

e Multiple Object Motion Coordination - path generation through simulation.

This package is in CLisp on the Symbolics and is first being programmed for coordinat-
ing the simultaneous collision free motion of homogenous simple discs in the plane. The
approach is Voronoi based, where at each time step a disc considers only its voronoi
neighbors as potential collision threats. A dynamic planar Voronoi diagram is being
implemented. A static planar Voronoi diagram is already complete. The velocity and

5

acceleration of the discs is handled by the dynamic equations of Newton. Next Step:
To move onto three dimensions.

Current Programmer:. Bill Bouma

4 Miscellaneous Topics

Grand Challenge:

The accurate re-design of the exterior geometry of the space shuttle Discovery or carrier
Enterprise in three' hours, or less.

Research Transitions: 3
Geometric modeling tools necessarily find a wide range of design applications in large

volume, manufacturing industries such as Boeing, General Motors, Ford, General Dynamics,
Department of Defense, etc. These tools are being used for the design of the exterior geometry I
of airplanes, automobiles, rockets, ships, space shuttles, ... as well as for the numerous
parts (motors, engines, drive-shafts, etc) that they consist of. More recently however, they
are increasingly being used by personnel involved in the physical and bio-medical sciences.
Examples abound in artifical limb design, crystallography, genetic research, pharmacuetical
research, and more. 3

Traditionally, there has been a large lag time between university research and its success-
ful incorporation for specific enhancements in industrial products. However, with the close
proximity and immediate relevance of geometric modeling research to industrial applications, I
this gap should definitely be bridged. Immediate possibilities are through joint industry-
university conferences, and contractual university research funded by industry, while long
term goals may be met by industry sponsored, university courses and laboratories.

Technological Impacts:

Our current research and experimentation hardware consists of three Symbolics 3650
color workstations (about 3 MIPs but excellent software development environment); a HP -
370SRX Turbo color graphics workstation (about 4 MIPs with graphics accelerators with
hidden surface removal and display transformations such as rotate, translate and zoom, in I
hardware or firmware); a color Sun 4-110 (about 7 MIPs for quick computations, and useful
in experimenting with floating point and polynomial arithmetic); and access to an Alliant
FX-80 (a four processor number cruncher).'

Integration of the software (and hardware) environment of these machines posed a big
challenge and many man months were spent achieving a certain level of compatibility. These
problems seem to have been somewhat resolved by the recent announcements of graphics

superworkstations (e.g. Ardent Titan or the Silicon Graphics IRIS 4D/240 GTX), which
combine MIPS power with graphics pipelines, and seem to be targeted at geometric modeling

1Estimated as the maximum single, continuous sitting time of a sophisticated designer

6

I
I

and simulation projects such as ours. These new breed of machines shall definitely lead to
enhanced capabilities for research and experimentation in geometric modeling with high
degree algebraic surfaces.

I,5 PUBLICATIONS

1. S. Abhyankar and C. Bajaj, "Computations with algebraic curves", Proc. of Intl. Sym-
posium on Symbolic and Algebraic Computation, (ISSAC88), Lecture Notes in Com-
puter Science, Springer-Verlag, (1988), accepted for publication.

2. S. Abhyankar and C. Bajaj, "Automatic parameterization of rational curves and sur-
faces III: Algebraic plane curves", Computer Aided Geometric Design, 5, (1988), 309-

I 321.

3. S. Abhyankar and C. Bajaj, "Automatic parameterization of rational curves and sur-
faces IV: Algebraic space curves", presented at the 1987 SIAM Conference on Applied
Geometry, Albany, NY. (Accepted for publication in ACM Transactions on Graphics.)

4. C. Bajaj, "Geometric modeling with algebraic surfaces", The Mathematics of Surfaces
III, (D. Handscomb, ed.), Oxford University Press, (1989), to appear.

5. C. Bajaj, "Approximation methods for algebraic curves and surfaces", Technical Re-
port, CAPO-88-36, Purdue University, West Lafayette, IN, November 1988. Invited
paper at the workshop on Algorithmic Aspects of Geometry and Algebra, Cornell MSI,
Ithaca, NY. Final version expected to appear in the workshop proceedings.

6. C. Bajaj, "Mathematical techniques in solid modeling", Proc. of International Con-
ference on Computer Integrated Manufacturing, RPI Troy, NY, (1988), 290-295.

7. C. Bajaj, "Local parameterization, implicitization and inversion of real algebraic curves",
Proc. of the AAECC-7, Toulouse, France (1988), to appear.

8. C. Bajaj, "Quadric and cubic hypersurface parameterization", Technical Report, CAPO-
89-14, Purdue University, West Lafayette, IN, April 1989.

I 9. C. Bajaj, J. Canny, T. Garrity and J. Warren, "Absolute factorization of bivariate
polynomials, Proc. of 7'55AC-89, Portland, Orgeon (1988), to appear.

I 10. C. Bajaj and T. Dey, "Robust decompositions of polyhedra", Technical Report, CAPO-
88-44, Purdue University, West Lafayette, IN, December 1988, (revised May 1989).

11. C. Bajaj, W. Dyksen, C. Hoffmann, E. Houstis, T. Korb, and J.R. Rice, "Computing
about physical objects", Proc. 12th World Congress on Scientific Computing, IMACS,3 4 (1988), 642-644.

7

I

12. C. Bajaj, W. Dykuen, C. Hoffmann, E. Houstis, T. Korb and J. Rice, "Interace struc-
tures I: Abstract structures for computing about physical objects", Technical Report,
CAPO-88-25, Purdue University, West Lafayette, IN, June 1988.

13. C. Bajaj, T. Garrity and J. Warren, "On the applications of multi-equational re-
sultants", Technical Report, CAPO-88-39, Purdue University, West Lafayette, IN,
November 1988.

14. C. Bajaj, C. Hoffmann, J. Hopcroft and R. Lynch, "Tracing surface intersections",
Computer Aided Geometric Design, 5, (1988), 285-307. 3

15. C. Bajaj and I. Ihm, "Hermite interpolation of rational space curves using real alge-
braic surfaces", Proc. of 5th Annual ACM Symposium on Computational Geometry,
Swarbrucken, West Germany, (1989), accepted for publication.

16. C. Bajaj and M. Kim, "Convex hull of curved objects bounded by algebraic curves",
presented at the 1987 SIAM Conference on Applied Geometry, Albany, NY. (Accepted
for publication in Algorithmica.)

17. C. Bajaj and M. Kim, "Generation of configuration space obstacles: The cae of moving
algebraic curves", Algorithmica, 4, 2, 1989, 157-172.

18. C. Bajaj and M. Kim, "Compliant motion planning with geometric models", Proc. i
of 3rd A CM Symposium on computational Geometry, Waterloo, Canada, (1987), 171-
180. (Updated version with title "Generation of configuration space obstacles: The
case of moving algebraic surfaces", accepted for publication in International Journal
of Robotics Research, (1989).)

19. C. Bajaj and M. Kim, "Algorithms for planar geometric models", Proc. of the Fifteenth
Intl. Colloquium on Automata, Languages and Programming, (ICALP 88), Lecture
Notes in Computer Science, Springer-Verlag, 317, (1988), 67-81. I

20. C. Bajaj and M. Kim, "Generation of configuration space obstacles: The case of moving
spheres", IEEE Journal of Robotics and Automation, 4, 1, (1988), 94-99. I

21. C. Bajaj and M. Li, "Geometric optimization and DP-completeness", Discrete and
Computational Geometry, 4, 1, (1989), 3-13. (Abstract appears in Zentralblatt fur
Mathematik.)

22. C. Bajaj, M. Wu and C. Liu, "A face area evaluation algorithm for solids", Computer
Aided Design, 20, 2, (1988), 75-82.

23. J. Johnstone and C. Bajaj, "On the sorting of points along an algebraic curve", Tech-
nical Report, CAPO-88-37, Purdue University, West Lafayette, IN, November 1988.

8

I
U

MODELING PHYSICAL OBJECTS

Christoph M. Hoffmann
Computer Science Department

Purdue University

Abstract

The research develops the infrastructure necessary for comprehensive, user-friendly software
systems that are capable of modeling and analyzing physical objects and systems of physical objects.
The focus of the work is on the following major areas:

U e The logical foundations required to implement, without failure, the supporting geometric
operations in the face of limited precision arithmetic and uncertainties of position.

3 * The mathematical foundations of object representations, with specific emphasis on efficiency,
robustness, and accuracy.

* The development of conceptual primitives to support the design process and to interface
diverse mathematical models analyzing physical properties in a variety of contexts.

The project builds software tools and experimental systems that assess the viability of our ideas.
Experience shows that our ideas are productive, and the feedback from the community indicates
that this work is timely and of value.

I

I
I
I
I

I

II
I

Contents

1 Background 4

1.1 Context of the Project 4

2 Research Objectives .

3 Research ssues in Geometric and Solid Modeling 6

3.1 Problems in Geometric and Solid Modeling 6 6

3.2 Research Approach to Geometric and Solid Modeling 7

3.3 Progress in Geometric and Solid Modeling 9 1
4 Research Issues in Physical Modeling 11 3

4.1 The Problem . .. 11

4.2 Approach to Physical Modeling................................113

4.3 Progress in Physical Modeling 12

5 References 13 3
6 Results from Prior Naval Support 14

6.1 Books 15

6.2 Papers and Technical Reports 15

6.3 Workshops Organized 16

6.4 Invitations to Workshops 16

6.5 Talks at Universities and Labs 17

6.6 Editorial Responsibilities 17

6.7 Professional Duties 18

6.8 Software and Tools 18

7 General Research Directions 19

8 Hilbert-Size Problems? 20 U
I

2!
I

I
I
I I Background

This work began during a two-year visit at Corneli University 1984-86, as a collaborative effort with
John Hopcroft. I had worked with John before, so we had a history together, and an appreciation
of each other's abilities. My prior work had been in graph isomorphism and computational group
theory. The narrowness of the computer-science community interested in this subject convinced
me that I should look for a broader, and more applied, area of work. So, I came to Cornell at a
perfect point in time.

1 1.1 Context of the Project

Science and manufacturing technology are currently undergoing a major change whose thrust it
is to computerize all constituting processes and automate design, analysis, and evaluation. Sip
posts of this restructuring are the name change of the National Bureau of Standards, the inception
of major research initiatives, such as DARPA's DICE project, and the increasing interest in the
computational paradigm by the natural sciences.

This ongoing restructuring is made possible by the wider availability of larger and faster
computers that are, in effect, opening up new dimensions in problem scale and detail that can

be effectively contemplated. It necessitates an interdisciplinary effort to devise proper models of

physical objects that are amenable to interrogation and modification through computing. Our effort
is at the center of computer aided design, computer aided manufacture, robotics, and computational
science.

The main thrusts of our work are research in geometric and solid modeling, and research in
automating the application of these models in a variety of endeavors including the simulation of
physical phenomena and their computational analysis.

I In solid modeling, we investigate all levels of the design and implementation process, includ-
ing problems arising at the conceptual design level, problems to be solved when extending
the geometric capabilities, and problems dealing with the foundational issues raised by im-
plementations.

* In physical simulation, we are refining the Newton system developed jointly with Cornell Uni-
versity, and concentrate on expanding the physical coverage by studying interface problems
that integrate this system with other, existing simulation and analysis systems of comple-
mentary capability.

Since its inception five years ago, this work has produced a rich variety of results and prototypes.
Past and present efforts are coextensive with related efforts, most notably the work done by John
Hopcroft at Cornell. This is most appropriate given the nature and magnitude of the work to be
done.

3

I

2 Reserch Objectives

The goal of this work is to create a science base for computer representation, analysis and ma-
nipulation of models of physical objects, and to develop the infrastructure necessary to give wide
applicability to the insights and techniques developed in the course of the project. At this time,
two specific foci are in the foreground:

1. Develop and broaden geometric and solid-modeling capabilities.

2. Develop and broaden tools for modeling and simulating systems of physical objects.

Each of these foci splits into several subefforts that conceptualize current problems and how
they can be overcome. In geometric and solid modeling, the following objectives are pursued: 3

1. Investigate what makes the substrata unreliable on which geometric modeling is implemented,
and develop ways to make it reliable. 3

2. Develop the algorithmic and mathematical infrastructure needed to enlarge the geometric
coverage of modelers and make modelers more efficient. 3

3. Develop good user interface languages ultimately resulting in increased productivity in engi-
neering design.

In simulation and modeling of physical systems the following objectives are pursued: 1
1. Investigate the interaction between geometric shape and physical behavior.

2. Investigate modalities and design methods to accomodate changing modalities.

3. Integrate the computational treatment of different physical aspects, such as motion, heat
transfer, stress and vibration.

The two areas of research are portrayed in separate sections. 3
3 Research Issues in Geometric and Solid Modeling 3
The geometric and solid modeling research addresses the computer science aspects of how to rep-
resent, manipulate, and analyze the shape of physical objects by computer. The work focuses on
three subareas: substrata issues, infrastructure issues, and user-interface issues.

3.1 Problems in Geometric and Solid Modeling U
Subst rta 3

It is a widely recognized fact that most geometric and solid modeling systems fail under
certain conditions. Typically, for objects with surface elements that are almost, but not quite, 3

4

I
I

coincident, valid inputs to a modeling system may fail to produce valid results and could even
crash the system. Less widely recognized is that these problems ultimately root in the fact that
the modeler's infrastructure of algorithms has been designed with infinite precision arithmetic in
mind, but is typically implemented, for efficiency reasons, using fixed precision arithmetic, i.e.,
floating point numbers, e.g., Hoffmann, Hopcroft, and Karasick (1987). In consequence, certain
computations from which to deduce symbolic geometric facts, e.g., incidence or nonincidence, are
inconclusive due to insufficient precision. These inconclusive results must be interpreted, and from
them deductions must be made based on incomplete information.

I
1
I
I
I
1
I

I
I
I
I

I
I

I
I'

Techniques ae needed to represent, modify, and interrogate objects whose shape elements are
algebraics of unrestricted degree. This is a bold undertaking that generalizes at once all previous
approaches to solid modeling. For example, free form surface design concentrates on working with I
specific classes of (parameterizable) algebraic surfaces.

Previous work in this direction has been stymied by severe problems arising when dealing with
high-degree algebraics. For this reason, most modeling systems drastically restrict the types and I
degrees of the allowed surface elements. Our infrastructure research makes use of all available suc-
cessful techniques, including numerical methods, symbolic computation, and differential geometric
techniques, in order to obtain the best results possible. This pragmatism is absolutely essential if
the goals of accuracy, efficiency, and robustness are to be attained.

User-Interfaces 3
Effective use of solid modelers currently requires specialists with much training. There is a need

to make these systems accessible to the nonspecialist. Computer science should be able to make
sophisticated contributions in this area, given the deep insights the field has gained in programming
language design. I
3.2 Research Approach to Geometric and Solid Modeling

Assume that we have to make a decision based on unreliable numeric data. If we are dealing
with complex geometric objects, such as the representation of solids, the decision to be made will
depend on how we decided other uncertain computations during earlier parts of the computation.
This interdependence of decisions is not easily recognized algorithmically. Failing to recognize I
it, however, makes it likely that we make inconsistent decisions which could crash the algorithm.

This is an important research topic widely acknowledged to be of critical importance. Our work
approaches the substrata problems as follows:

1. Develop a clear understanding of the extent of the problem in specific applications such as
Boolean operations on solids. We are in the process of completing the tools needed for this I
work, a dual-mode modeler capable of doing the same operation both in floating point and

in exact rational arithmetic, using identical algorithms. 3
2. Investigate the logical complexity of reasoning about the consequences of the numerical deci-

sions. Past work has developed the reasoning paradigm, current work will extend it.

We use algebraic methods, numerical methods, and methods from differential geometry. The
algebraic methods investigate how to apply techniques from algebraic geometry, such as desingu-
larization, and how to make computations such as Grobner bases more effective. An important I
criterion here is that the methods should not involve excessive or intractable computations.

The numerical approach seeks ways to increase accuracy and geometric coverage by reformulat-
ing problems in higher dimensions. A dimensionality paradigm has been formulated, and its utility I
is currently under investigation. The objective here is to reduce algebraic degrees by introducing
more variables. 3

6 I

The differential approach looks at a variety of projection methods, seeking to determine which
classical techniques have potential in geometric and solid modeling. We restrict this work for now
to these specific problems:

1. Given a point p and a surface in three space, determine the distance of p from the surface,
and determine the projection of the point to a surface point q of minimum distance.

2. Given a space curve and a surface, trace the space curve and simultaneously its projection
onto the surface. Here, each point p on the curve is projected to a point q of minimum
distance on the surface.

Effective design seems to require a notion of "feature". Proper definition of the concept, and
an elucidation of the spatial interaction of different features, is a thorny problem that provokes
intense discussions in workshops and conferences. No accepted definitions have emerged yet, and
this situation may persist for -ome time to come. We plan to approach the problem from a different
perspective: Given a particular object in full detail, "approximate" it by deleting detail features
that are unimportant to the overall design. Thus, we attempt to derive a hierarchy of shapes, each
progressively less detailed.

To approach this problem and give a satisfactory solution requires experimentation, and we
have the necessary tools in place to do this. We plan to examine several complex designs, analyze
their features, give a formal feature definition, and devise an approximation algorithm. The results
of this algorithm must then be inspected, and judged as to their satisfactoriness. Unsatisfactory
approximations can then be analyzed and traced to possible flaws in the feature definition or to
unexpected interactions between features.

3.3 Progress in Geometric and Solid Modeling

Past research has isolated the sources of this difficulty in the polyhedral domain. As reported
in Hoffmann, Hopcroft and Karasick (1988), the difficulties are traceable to floating point arith-
metic impacting logical conclusions drawn, such as vertex/plane incidence. The paper also gives a
paradigm for approaching this problem and solving it using symbolic reasoning to ensure consis-
tency. A separate paper, Hoffmann (1989a), surveys the problem in the larger context of geometric
computations by computer, and contrasts our approach with others proposed by the field.

We are implementing an experimental modeler which will serve as a test bed for analyzing
which geometric errors can be tolerated and which ones are fatal. The modeler design pays special
attention to the arithmetic problem and has two modes of operation, Cfe, in which exact arith-
metic is used, and another one using floating-point arithmetic. Both versions work with identical
algorithms. The modeler will be used as follows:

1. Run the floating point version until a failure has been encountered.

2. With identical input, run the exact arithmetic version.

3. If the exact arithmetic version also fails, then we have uncovered an algorithmic error. Oth-
erwise, the failure is a consequence of the limited precision arithmetic.

7

I
I

4. Note that by using the results of the exact arithmetic version we can classify the type of 3
failure.

A two-dimensional version is already operational, and shows that some of the types of failure cited
in the literature are, in fact, not failures due to precision problems, but are programming errors. I
The completed 3D version will give us a platform to systematically investigate the usefulness of
solutions proposed by us and others.

Symbolic algebraic methods have been successfully applied to a variety of problems, including
tracing plane algebraic curves through arbitrary singularities, Bajaj, Hoffmann, Hopcroft, and -
Lynch (1988). Moreover, for specific problems such as the elimination of variables from systems
of algebraic equations, we have developed what we believe is the fastest known method. We can
successfully tackle problem sizes that cannot be solved by any other approaches that have been
implemented. 3

There are many difficult surface operations that one would like to implement but cannot do
so because the traditional approach entails intractable symbolic computations. Many of these op- 3
erations become almost trivial when reformulated in higher dimensional spaces. These operations
include surface offsets, needed in numerically controlled machining, Voronoi surfaces, needed to
precisely formulate certain blending surfaces, and blending surfaces that must satisfy special con-
straints such as circularity of cross section. That is, the derived surface is formulated as a set of
equations with more than three variables, and this multi-equational representation is used directly.
In Hoffmann (1988) we demonstrate that curves of algebraic degree weil over 100 can be traced
with normal double-precision floating point arithmetic, to an accuracy of ten significant decimals.

Work is underway to examine the various surface interrogations of importance, and to assees
how they might be restructured to work with the higher dimensional version. These methods in- I
clude subdivision in higher dimensions, as a guaranteed method to localize the various branches;

local approximations to the surface without any variable elimination; and distance function com-
putations. I

Unlike algebraic methods, techniques from differenti.- geometry are not yet in wide-spread
use in geometric and solid modeling. It is not clear why this is the case, but we expect that this
situation will change, and we are exploring the utility of differential concepts in solid modeling.

Joint with F.-E. Wolter, we have developed several experimental programs to find projections
and track the projection of a curve to a surface. These tools are presently unsatisfactory, but there 3
appear to exist ways to improve them. These ways would modify what is now a classical differential
approach, and integrate some algebraic techniques.

4 Research Issues in Physical Modeling

Project Newton develops a highly modularized and extensible system to duplicate the precise
behavior of physical objects from their models. The work is done cooperatively with John Hopcroft

(Cornell) and should have a major impact on computer science, engineering, and manufacturing.

I

I
I

S 4.1 The Problem

Simulation and analysis of physical systems is a vast subject in which there has been much work
in nearly all branches of science and engineering. Despite this long and illustrious history, we can
identify several gaps in the traditional approaches:

3 1. Limited Geometry. Complicated shapes are not normally modeled, and the interaction be-
tween shape and consequent physical behavior is relatively unexplored.

2. Fized Modality. Things are either elastically deforming, or they flow plastically. The change
from one behavior to the other is not modeled.

3. No Multiplicity. Real objects behave and interact with the environment in a multiplicity
of ways. They may simultaneously: accelerate, heat up or cool down, vibrate, and so on.
Typically, only one aspect is modeled; any interaction between the various aspects is ignored.

I While many questions associated with these limitations belong to specific disciplines in science and
engineering, there is a computer science component that can and should be investigated. Moreover,3 the questions are in many respects interdisciplinary.

1 4.2 Approach to Physical Modeling

The simulation of objects and their physical behavior is based on the geometry of their shapes. From
the geometric descriptions, the system formulates automatically the needed mathematical models
that describe the laws of possible mechanical motion. As the simulation progresses, the system
will reformulate these models as needed; for example, in response to collision, or a disappearing
contact between two objects. Both, the automatic model formulation and the automatic modelI modification are novel aspects of the work.

The original system design is based on Newtonian mechanics. Methods are being explored to
overcome the intrinsic limitations of Newtonian mechanics and to increase the scope of phenomena
that can be simulated. We refer to this research as extending the physical coverage, just as our
research in geometric modeling aims at extending the geometric coverage.

I Extending the physical coverage does not necessarily involve breaking new ground in physics
or mechanical engineering, since most of the phenomena we would like to simulate can already be
simulated by suitable finite element codes. However, finite element codes are developed for specific
physical phenomena in isolation, and we would like to track the phenomena simultaneously. More-
over, these programs are meant to be used by specialists. They have limited geometric capabilities
and limited automatic capabilities. It is our aim to interface the Newton system with these codes
in such a way that human intervention and problem formulation becomes largely unnecessary. This
activity is in part similar to software engineering, in that we wish to combine existing complex
software systems with each other without extensively rewriting them.

1 9

4.7

I
I

4.3 Progress in Physical Modeling 3
A second implementation is now operational, developed in Common Lisp on Symbolics Lisp ma-
chines. Its coverage includes geometric shape, rigid body dynamics, control model evaluation,
interference detection, and collision simulation.

An experimental interface to finite element codes has been constructed, but it is not yet
fully general. First experiments demonstrate that it is possible to extend the Newton system by I
interfacing it with complementary software packages. Moreover, this interface is across physical

machine boundaries, i.e., the Newton system is in the process of being distributed over a network
of cooperating machines.

The scientific problems raised by this interface include determining faithfully the initial values
entailed by the collision. A possible way to derive the initial conditions for the FEM problem is to
first determine the impulses resulting from the collision, and then to assign the appropriate initial
velocities to the elements involved. More general paradigms are under investigation. I
5 References

Bajaj, C., C. Hoffmann, J. Hopcroft and R. Lynch (1988) I
"Tracing Surface Intersections," Computer Aided Geometric Design 5, 285-307.

Chandru, V., D. Dutta, and C. Hoffmann (1989) 3
"On the Geometry of Dupin Cyclides," TR 88-818, Comp. Sci., Purdue University.

Chandru, V., D. Dutta, and C. Hoffmann (1989) 3
"Variable Radius Blending using Dupin Cyclides," TR 89-851, Comp. Sci., Purdue University.

Chuang, J.-H., and C. Hoffmann (1989)
"On Local Implicit Approximations of Curves and Surfaces," ACM Trans. Comp. Graphics, I
to appear.

Hoffmann, C., (1987) 1
"Algebraic Curves," in Mathematical Aspects of Scientific Software, J. Rice, ed., IMA Volumes
in Math. and Applic., Springer Verlag, 101-122. I

Hoffmann, C., (1988)
"A Dimensionality Paradigm for Surface Interrogations," TR 88-837, Comp. Sci., Purdue
University. 3

Hoffmann, C., (1989a)
"The Problem of Accuracy and Robustness in Geometric Computation," IEEE Computer, to 3
appear.

Hoffmann, C., (1989b)
Geometric and Solid Modeling, An Introduction, Morgan Kaufmann Publishers, to appear
August 1989.

I
10 I.

m
m

Hoffmann, C., and J. Hopcroft (1985)
"Automatic Surface Generation in Computer Aided Design," The Visual Computer 1, 92-100.

Hoffmann, C., and J. Hopcroft (1986)
'Quadratic Blending Surfaces," Comp. Aided Design 18, 301-307.

Hoffmann, C., and J. Hopcroft (1987a)
"The Potential Method for Blending Surfaces and Corners," in Geometric Modeling, G. Farin,
ed., SIAM Publications, Philadelphia.

3 Hoffmann, C., and J. Hopcroft (1987b)
"Simulation of Physical Systems from Geometric Models," IEEE J. Robotics and Autom.
RA-s, 194-206.

Hoffmann, C., and J. Hopcroft (1987c)
"Geometric Ambiguities in Boundary Representations," Comp. Aided Design 19, 141-147.

1 Hoffmann, C., and J. Hopcroft (1988a)
"Projective Blending Surfaces," Artif. Intelligence 37, 357-376.

Hoffmann, C., and J. Hopcroft (1988b)
"Model Generation and Modification for Dynamic Systems from Geometric Data,;" in CAD
Based Programming for Sensory Robots, B. Ravani, ed., Springer NATO ASI Series F-50,1 481-492.

Hoffmann,C., J. Hopcroft and M. Karasick (1987)
"Robust Set Operations on Polyhedral Solids," Tech. Rept. 723, Comp. Sci., Purdue Univer-
sity.

Hoffmann, C., J. Hopcroft and M. Karasick (1988)
"Towards Implementing Robust Geometric Computations," 4 tA ACM Symp. on Comp. Ge-
ometry, 106-117.

m 6 Results from Prior Naval Support

I We summarize the work and accomplishments due to the prior support through contract N00014-
86-K-0465, during the period of 8/86 through now.

6.1 Books
S1. "Geometric and Solid Modeling", to be published by Morgan Kauffman, San Francisco, July

1989.

m 2. Editor of "Issues in Robotics," JAI Press, to appear late 1989.

3. Editor of "Algorithmic Aspects of Geometry and Algebra," Springer Verlag; (with E. Kaltofen
m and C. Yap).

11

I

6.2 Papers and Technical Reports

1. "The Potential Method for Blending Surfaces and Corners," in Geometric Modeling, G. Farin,
ed., 347-365, SIAM 1987. 1

2. "Simulation of Physical Systems from Geometric Models," IEEE J. Robotics and Autom.,
RA-3, 1987, 194-206. !

3. "Geometric Ambiguities in Boundary Representations," Computer Aided Design 19, 1987,
141-147.

4. "Projective Blending Surfaces," Artificial Intelligence 37, 1988, 357-376.

5. "Algebraic Curves," in Mathematical Aspects of Scientific Software, J. Rice, ed., IMA Volumes 3
in Math. and Appl., Springer Verlag, 1988, 101 - 122. 1

6. "Towards Implementing Robust Geometric Computations," Proc. Conf. Comp. Geometry,

Urbana, M., 1988. 1
7. "Tracing Surface Intersections," Computer Aided Geometric Design 5, 1988, 285-307.

8. "Model Generation and Modification for Dynamic Systems from Geometric Data," Springer
NATO ASI Series F-50, 1988,481-492.

9. "The Problem of Accuracy and Robustness in Geometric Computation," IEEE Computer U,
31-42. I

10. "Local Implicitizations of Curves and Surfaces," ACM 7Tans. on Graphics, to appear 1989.

11. "Robust Boolean Operations on Polyhedral Solids," TR-87-875.

12. "A Dimensionality Paradigm for Surface Interrogation," TR 88-837; submitted to CAGD. 3
13. "On the Geometry of Dupin's Cydlide," The Visual Computer 5, to appear in June.

14. "Variable Radius Blending with Dupin Cyclides," to appear late 1989. 3
6.3 Workshops Organized 3

1. "Computational Issues in Robotics," IMA Minnesota, August 1987.

2. "Blending Surfaces," Minisymposium, SIAM Conf. on Applied Geometry, Albany 1987.

3. "Algorithmic Aspects of Geometry and Algebra," MSI Cornell, July 1988.

4. "Applying Algebraic Geometry to Surface Intersection," Short course, SIGGRAPH 88. 3
5. "Computing about Physical Objects," Minisymposium, SIAM Conf. on Applied Geometry,

Arizona, November 1989. 3
6. "The Computational Paradigm In Science and Engineering," Symposium at the annual meet-

ing of the American Assoc. for the Advancement of Science, New Orleans, February 1990. 3
12

I
I

6.4 Invitations to Workshops

1. NSF Workshop on Geometric Reasoning, Oxford, July 1986.

I 2. IMA Workshop on Supercomputing, Minnesota, March 1987.

3. NSF Res. Conf. Geometric Modeling and Robotics, Detroit, May 1987.

4. Summer Program on Robotics, IMA Minnesota, August 1987.

3 5. NATO Workshop on CAD Based Programming for Sensor Based Robots, Italy, July 1988.

6. Trento School on VLSI Design and Parallel Algorithms, Italy, July 1988.

3 7. MSI Workshop on Gr6bner Bases, Cornell, 1988

8. NSF-IFIP Workshop on Solid Modeling, Rensselaer, September 1988

3 9. Oberwolfach Workshop on Applicable Algebra, West Germany, January 1989.

10. NSF Workshop on Information Technology, Atlanta, March 1989

I 11. Oberwolfach Workshop on Surfaces in CAGD, West Germany, April 1989

12. NATO School on CAGD, Canary Isiands, July 1989.

6.5 Talks at Universities and Labs

1 1. General Electric, Schenectady, 1987

2. Courant Institute, New York, 1987

3. Carnegie-Mellon University, Pittsburgh, 1988

4. USC, Los Angeles, 1988

5. University of Washington, 1988

6. University of Maryland, 1988

7. University of Linz, Austria, 1988

6.6 Editorial Responsibilities

1. Editor, SIAM Frontiers Series on Applied Geometry.

2. Editorial Board, Journal of Symbolic Computation.

3. Editorial Board, Journal for Applicable Algebra.

4. Editorial Board, Computer-Aided Geometric Design.

13

6.7 Profsional Duties

1. Panel, NASA-CESDIS Grants, 1988

2. Panel, NSF CISE-SS Infrastructure Grants, 1988

3. Site review, NSF CER program, Univ. Rochester, 1988

4. Program committee, ACM Symp. Computational Geometry, 1989

6.8 Software and Tools

1. Box and rectangle intersection algorithm. Used to speed up polyhedral intersection algorithm.

2. Dual mode polygonal intersection algorithm. Test case for the dual mode polyhedral inter-
section algorithm.

3. 3D surface intersection algorithm. Explore the capabilities and limitations of purely numericalMI
approaches.

4. Planar curve tracing algorithm using desingularization. Proof of concept: Numerical and
symbolic computation can be successfully combined.

5. Interface between S-geometry and Karasick's polyhedral modeler. Tool to study user inter-
faces.

6. Newton system. Proof of concept: Automatic model construction, modification, and analysis
from geometric data is possible.

7. Linear equation solver for distributed computation. Part of an effort to construct a distributed
version of the Newton system.

8. Interface between Newton system a, _EARN, a structural mechanics finite element pack-
age. Proof of concept: Finte element Lechniques can be interfaced with the Newton system. 3

9. Dual mode polyhedral intersection algorithm (in progress). Test bed to study robustness
issues. 3

10. Device independent display algorithm for algebraic surfaces. Visualization tool for surface
research.

11. Surface intersection algorithm in arbitrary dimensions. Proof of concept: Higher dimensional
problem formulations can be used directly, and have important practical benefits.

12. Elimination algorithm. Proof of concept: Verify that we can speed up expensive symbolic I
algorithms by reducing their generality.

13. Point projection onto curves and surfaces (in progress). Proof of concept: Assess practical I
usefulness of differential geometry in modeling.

I
14 11

I
I

14. Track projection o(a curve onto a surface (in progress). Proof of concept: Assess practical
usefulness of differential geometry in modeling.

15. Surface polygonalizer, implicit or parametric surfaces. Used for visualization and mesh gen-
eration.

Most of this software has been developed in Common Lisp for Symbolics Lisp machines, with
the exception of the display algorithm and the higher dimensional surface intersection algorithms
which ar written in C for Unix machines.I
7 General Research Directions

I The following themes are considered to be of critical importance to promoting the utility of com-

putation in science and engineering, especially in manufacturing.

1. Research into the substrata problem in geometric modeling. What can we do to design
correct implementable algorithms with the needed performance? Can we retro-fit methods
onto existing modelers that increase robustness? Can we devise "approximate" models, either
in the sense of tolerance, or in the sense of statistical variation?

2. Integrate symbolic and numerical methods. Very few examples can be cited in which the best
aspects of each approach have been combined. There should be many trade-offs, but what
we know is only anecdotal.

3. Develop conceptual geometric design. What is a feature? What is design detail, what is
conceptual design? At this time, even case studies would be useful. Case studies might
consider specific applications in aircraft wing design, ship hull design, and space applications.

4. Develop conceptual functional design. What is the interaction between feature and function-
ality? How do tolerances affect functionality?

I 8 Hilbert-Size Problems?

1. Given a 3-dimensional geometric object, remove all surface structures of size smaller than a
given tolerance e.

2. Given an algebraic equation f = 0 in the variables zn, ... ,zm and of degree n. Find k algebraic
equations h, = 0, ..., hk = 0, in m + r variables, such that the algebraic degree of each hi is
strictly less than n and the projection of the algebraic set defined by the hi, onto the subspace
defined by the zi,...,z,,, is the algebraic set of f.1

3. Given n rigid objects in contact, each acted upon by known external torques and forces;

devise an efficient algorithm to determine all contact forces.
'For example, given a quartic curve f(z, 1) = 0, can it be obtained as projection of the intersection of two quadrics,

hi(z, u, z) = 0 and h2(z, W, z) = 0?

15

I
I

4. Giw a ddnlition of feature and show that it is unambiguous. Then devise a recognitionI

algorithm.

I
t
I
I
t

I
I
I

I
I

16l

17

A COMPUTATIONAL L0GIC MID AUTOMATED REASONING:

Report for Idaho ONR Computer Science Workshop

Bob Boyer
Matt Kaufmann

J Moore

Computational Logic, Inc.
June 1989

0. Abstract

The development of software engineering as a discipline has been
influenced substantially by the development of formal, mathematical
techniques for reasoning about computer programs. One of the most
promising avenues of research is to develop formal mathematical
theories for specifying and proving the correctness of computer
systems. The key idea here is that if one produces a proof that a
computing system satisfies its specification, then the only reasons
for which the system can fail to work as intended are (a) hardware
failure and (b) the failure of the formal specifications to capture
intended behavior. Because the development of formal proofs is itself
a very error-prone and tedious activity, we have been pursuing,
partially with ONR support, the development of a computer program for
checking proofs of correctness of computer systems. We have mad*
substantial progress in this direction using constructive mathematical
theories, and with ONR support we are continuing to extend our work
through mathematical theories of greater power.

SI1. Background.

i Boyer and Moore began collaboration on their mechanized logic and
theorem prover in the early 1970s. A summary of their work through
1979 is given in [ACL79]. The following excerpt is taken from
(ACLH88] and describes some of the research stimuli for Boyer and
Moore during the last few years.

.... perhaps the most important change since the publication of
"A Computational Logic" was that in 1981 we moved from SRI
International, where we were involved exclusively in research, to
the University of Texas at Austin. Our research home at the
University of Texas was the Institute for Computing Science.
However, as professors in the Department of Computer Sciences, we
teach. In 1981 we began teaching a graduate course, now called
"Recursion and Induction", on how to prove theorems in our
logic, and we initiated a weekly logic seminar attended by
graduate students, other faculty members, and logicians from
local research organizations. These efforts dramatically
increased the number of people familiar with our work. In
addition, we began using the theorem prover to check the proofs of
theorems we wanted to present in class (e.g., the unsolvability
of the halting problem).

Kaufmann first became involved in this work in the context of adapting

I 74ý

the Boayer-Moore prover to functional language verification while at
the Burroughs Austin Research Center, 1984-86. He joined the
Institute for Computing Science at the University of Texas (where
aoyer and Moore were located) when that Center was closed down in the I

summer of 1966. His previous experience as a mathematical logician
has helped stimulate the current push to add capabilities in
first-order quantification and set theory.

2. Research Objectives.

The long range objectives of the research include

** enabling programmers to produce software that is mathematically
proven to meet its specifications by using mechanicaltheorem-proving programs that check proofs

** supporting proofs of correctness of computing systems to provide a

trusted base for those applications

3. Research Issues.

The key idea here is that if there is a proof that a computing system
satisfies its specification, then the only reasons for which the
system can fail to work as intended are (a) hardware failure and (b)
the failure of the formal specifications to capture intended behavior.

4. Approach.

The prover was developed as proqram verification system partially
under ONR support. A basic version of the logic and prover is
documented in (ACL79]. Enhancements to the logic and prover are built
on that base in our approach. A more up-to-date version of the logic
and prover, documented in [ACLH88], illustrates this approach by
documenting the following extensions to the prover and logic.

** a hints facility which allows a significant measure of user
control over the prover

** a fully integrated decision procedure for linear arithmetic

** a facility for "metatheoretic extensibility", i.e. for allowing I
the user to extend the theorem prover in a provably sound manner

** NQTHM: an extension to support partial functions, bounded I
quantification, and an interpreter for the logic within the
logic

Three principles are fundamental to our approach.

** The logic is completely specified and the prover is implemented
with extreme care so that it soundly implements the logic. I

** The criterion for success of the prover is its successful
application to specific theorems to prove.

** Prover use is an important part of the process of deciding how to
extend its capabilities.

Lot us note that many other formal methods exist which have varying
degrees of mechanical proof support. Some of these, such as the
Edinburgh Logical Framework, are concerned more with foundations than
with applications to program verification. Others such as Z and VW
(which are gaining popularity especially in Europe) emphasize formal
reasoning without the benefit (or burdent) of mechanical proof
support. Among those systems which emphasize mechanical proof
support, ours is unsurpassed in the collection of theorems which have
been proved (or "proof-checked") using the system. The following
section shows that the logic and its proof support are very live
research areas and we feel quite strongly that our most productive
research route is to build heavily on our previous work. This may
involve some rather serious changes; for example, the V&C$ and EVAL$
approach to bounded quantification may be replaced by different
additions to the logic. However, we believe that our basic approach
of using recursion and induction with a formal constructive logic is a
sound one on which we will continue to build. We will continue to get
feedback from users of the system as a means for improving its
utility.

5. Payoffs

The ultimate payoff of this technology is the ability to mechanically
proof-chock mathematical properties, especially of computer software
and hardware. Many individuals have successfully mechanically
proof-checked theorems in the following areas: elementary list
processing, number theory, metamathematics, bounded quantification,
communication protocols, concurrent algorithms, Fortran programs, real
time control, assembly language implementation, operating system
implementation, compiler correctness, hardware verification, and set
theory. Several of these efforts have become the main components of
doctoral dissertations.

Another kind of payoff is the progress that our approach has had in
improving the mechanical tools for the logic and even the logic
itself. Such progress includes:

** an interactive proof-checker enhancement
** an improved facility for reusable theories
** an extension to the logic and prover to allow "partial definitions"

and functional instantiation
** preliminary extensions to the logic, prover, and proof-checker to

allow first-order quantifiers and a rudimentary capability in set
theory

** an experimental extension to improve reasoning power for equivalence
relations

** an experimental extension to the execution environment to allow
constant-time array access and update while remaining in a purely
functional framework

6. Research Directions

The following subsections lay out some of our current research
directions in automated reasoning and program verification. We also
are involved in a number of applications of this technology. For
example, one of our primary focuses at Computational Logic, Inc., is
on "trusted systems", i.e. on provably correct implementations of
high-level languages on hardware. Our position paper for the upcoming
ONR-sponsored "Workshop on Directions in Software Analysis and Testing

17

Iouavrkshop] gives an overview of this line of research. And there
s also research underway in the application of the Boyer-Noore logic

and its proof support to the mechanical verification of properties of
distributed progqr s and floating-point algorithms. However, we
confine ourselves below to those areas related to extending our
cabilities in automated reasoning and program verification.

a. First-order quantification and set theory m
Reasoning about computer systems requires skill in two distinct types
of mathematical theories: the constructive and the sot theoretic. On I
one hand, arguments must be made about the elementary constructible
objects that one actually finds in computers, such as integers, finite
lists, and strings. On the other hand, in order to specify the
interaction of computing systems vith the real world and to specify
the interconnection and interdependence of computing systems, one
needs the full range of mathematical concepts, such as are usually
developed within set theory. For example, both of the systems
currently approved by the DOD for Al security level certification,
Gypsy and FDK, utilize set theory.

Under support from ONR, we have developed a program specification and
verification system which is unsurpassed in its facility for making
inferences within a constructive theory. So far, however, no program
verification system has been developed in set theory with comparable I
power. Recent progress made under ONR support suggest a method for
adding sot theory and related mathematical concepts to our system.
The main idea is to add an interface from first-order logic to the I
Bayer-Moore logic, and to generalize the notion of Skolemization to
extend this interface to expressions that contain set-builder notion.
This research involves both (a) theoretical research in the selection
and formulation of a precise set theory and quantification theory, (b)
practical research in the implementation of a theorem-prover capable
of making automatic inferences about questions in the selected theory,
and (c) demonstrations of the applicability of the developed
theorem-proving techniques (ultimately, to the verification of
substantial computing systems).

We do not currently intend to add first-order quantifiers and set
theory as primitives in the logic. Such a radical decision would
probably require wholesale recoding of the theorem prover, for example
because of bound variables, and possibly some wholesale reworking of
its heuristics, which currently are based largely on the
recursion-induction duality and rewriting but not unification.
Instead, we are pursuing an approach which uses Skolemization as an I
interface from first-order logic to the constructive logic currently
in use. We have already enjoyed preliminary success in this venture
by proof-checking formalizations of Cantor's theorem that the power I
set of a set is not of the same cardinality of the set, of Koenig's
tree lemma, of the infinite exponent-2 Ramsey Theorem, and of the
Schroeder-Bernstein Theorem.

In order to extend the set-theoretic capabilities of the system, our
initial approach will be to introduce sets as objects. However, we
will provide "set-builder notation" only as syntactic sugar. I
Specifically, we believe that we can successfully extend Skolemization
from first-order logic into the realm of set theory by using it to
eliminate set-builder expressions. I

I

We will extend and use the interactive proof-checker, PC-UQTI, to
begin to look for useful proof methods and heuristics in the extended
logic. Most of the extensions to PC-NQTHI will be in the form of
macro commands that expand into sequences of primitive commands; this
macro facility is already in heavy use and gives us the ability to add
now functionality to the proof checker without risking soundness.
Extensions to the logic are most easily accomplished in PC-NQTHM where
it is unnecessary for us to implement heuristic controls on the
applications of new rules of inference or axioms. Once PC-NQTHM is
extended we will begin to use it to prove many theorems in set theory
and related applications. As we develop and codify the heuristics for
manipulating the new concepts we will add new proof heuristics to
NQTHM.

We will probably investigate these issues a bit more before bringing
in a graduate student, in order to provide reasonable guidance. If we
do not find a graduate student interested in pursuing this area for
dissertation research, we will probably hire a couple of students to
exercise a system that we build.

Note that we do not in general encourage students to build new
general-purpose automated reasoning systems. The Boyer-Moore prover
is the product of some 30+ man-years of effort; hence we expect it to
continue to be rare that someone with limited experience can build a
state-of-the-art general-purpose theorem-prover. However, we do
believe that the pursuit of provers with selected strengths is a
reasonable research topic for a graduate student. In particular, as
we discussed above, we expect to support a student under our current
ONR contract to pursue research in the directions outlined in the
paragraphs above.

b. Other extensions of the prover

We plan to extend NQTHM towards an open-architecture formal reasoning
system. This will include implementing an advanced library mechanism,
continuing to develop and disseminate reusable theory libraries,
implementing equivalence reasoning, increasing support for team proof
development, extending the interactive proof checker, and studying
integration with the Argonne prover, OTTER.

We also plan to extend NQTHM's heuristics to include congruence-based
rewriting. This can be seen as a step toward an open-architecture
system: the current NQTHM has many special-purpose heuristics for one
built-in primitive ("-") that can be made more generally available for
user-defined relations at the cost of formalizing the interface
(namely, the idea of congruence relations). We will also look for
other ways in which NQTHM's special purpose heuristics can be "opened
up" so that users can get the power of those heuristics applied to
more general concepts.

c. Lisp verification

One recent exciting area has been the application of our system to the
proofs of properties of Lisp programs. More precisely, we have built
a system for reasoning about programs written in a language which
satisfies the language definition requirements for a subset of Common
Lisp. We call this language "Rose Common Lisp" or "RCL". The
existing prototype system (see [RCL]) is actually a translator from
Common Lisp definitions to definitions in the logic supported by

NQTHM; because of the Lisp-like nature of NQTHm's logic and the care
taken in defining the translator, many RCL programs translate to
nearly identical NQTI functions. However, the system handles
non-applicative constructs such as: assignment, both for local (LET)
and global (special) variables; explicit flow of control, both with
local and non-local exits (CATCH and THROW, BLOCK and RETURN-FROM) and
with "go-to" (PROG); property lists; and macro definition.

The significance of this effort lies largely with the fact that the
language in question is an implementation of Common Lisp. To the best
of our knowledge there do not exist verification systems for any "real I
languages" which have even the power of the existing prototype. By
"real languages" here we mean ones that are dialects of languages in
everyday use by programmers who have no special interest in formal
verification.

We will work many more small examples in the course of further
developing the system. However, we propose to demonstrate the I
feasibility of our approach by verifying a significant application,
such as a portion of NQTHM (e.g., the "type-set" mechanism which
determines the type of an expression, the "clausify" mechanism that I
converts an IF-expression into clausal form, the pattern matcher that
finds instances of rewrite rules).

To support technology transfer, RCL will ultimately be written in RCL, I
in a manner such that we expect it to run correctly on any Common Lisp
implementation. It will therefore be highly portable. In additior,
we will carefully document the final system so that it is accessible I
to Lisp programmers outside of Computational Logic, Inc.

7. Grand challenge.

OK, how's this?

Prove the correctness of the implementation of a functional I
programming language with respect to its denotational semantics.

Or this?

Formalize the real numbers using set theory (by way of Dedekind cuts,
say), and prove some properties of the reals as well as some
properties of some simple algorithms over the reals.

Actually, a more close-to-home goal is to extend the CLI "verified
stack" work [ONRWorkshop] to provably correct running execution I
environments, encompassing the high-le,-l language level down to the
register-transfer hardware level.

8. Research transitions.

A near-term beneficiary of this research is anyone who wishes to
formally, and with assurance, prove mathematical properties. In
particular such properties might be correctness of software and
hardware systems, and in that sense we are already our own customer at
Computational Logic, Inc., with the various "trusted systems" proofs. I
But who outside our group might be interested in mechanical
verification of mathematical properties?

The research community is of course one obvious place to look for

I those who might take advantage of our work. Some of the obvious ways
we will continue to transfer this technology to that community are byU way of books, technical reports, journal publications, and
conferences. In addition, all three of us teach some courses at the
University of Texas at Austin, and of course this spreads the
technology into the university community. (Of particular relevance to
our current ONR contract is the fact that Kaufmann will be teaching a
graduate-level Set Theory course this fall.)

I The Rose Common Lisp project described above is one method we see for
bringing this research into practical use by software engineers whose
primary interest is not program verification or automated reasoning.
With that project we envision opening up this technology to the
general community of Lisp programmers.

Our group is also investigating collaboration with hardwareI manufacturers in using our methods to help produce correct hardware.

The Boyer-Moore theorem prover is actually a highly interactive tool.I Nevertheless, some users have found that the enhanced interactive
capabilities offered by the PC-NQTHM proof-checker, which was
developed primarily under ONR support, provide a useful interface to
the logic. We will continue to maintain PC-NQTHM to keep itI up-to-date with the latest version of NQTHM.

Program verification is still a primary intended use of the results ofI our research. However, in spite of the practices outlined above,
there is still a large gap between what we do on a daily basis with
our tools at Computational Logic, Inc., and what the rest of the world
is doing. We need to look for more ways to bring our work into the
mainstream. An example of a rather recent move in that direction is
the addition of the book mechanism to the prover, which will
facilitate reuse of theories and team collaboration in much the sameI way that modern software development environments are supposed to
encourage reuse of code and programmer cooperation. But we need to
keep looking for more ways to bring our technology into the mainstreamI of the software development process.

9. Technological impacts.

I Everyone likes more computing power. Nevertheless, at this time we
are reasonably content with our equipment. We do anticipate a use for
parallel architectures, especially for the rapid replay of proofI files. In fact we have recently constructed, with ONR support, such a
capability on a network of Unix machines.

I 10. Societal Issues and Miscellaneous Flaming.

We're happy that our contract is multi-year. Proposal writing is
extremely time-consuming.

11. Recommendations to Funding Agencies

I <<none>>

U -- ----

I
REFERENCES

[ONRWorkshop] "Verified Program Support Environments," Internal Note i
143, Computational Logic, Inc., June 1989.

[RCL] N. Kaufmann, "A Verification System for a Subset of Common 3
Lisp", Internal Note 110, Computational Logic, Inc., January, 1989.

[ACLH88] R. S. Boyer and J S. Moore, "A Computational Logic Handbook", I
Academic Press, Boston, 1988.

[ACL79] R. S. Boyer and J S. Moore, "A Computational Logic", Academic I
Press, New York, 1979. I

I
I
I
I
i
I
I
I
I
i
I
I
i

I
I
i
I

Incremental Computation

Tim Teitelbaum
Department of Computer Science

Cornell University
Ithaca, NY 14853

June 8, 1989I
1 1 Background

Our research for more than ten years has focused on environments for editing complex
structured objects: computer programs, proofs of theorems, program specifications, spread-
sheets, and the like. Our premise has been that integrated systems that provide immediate
feedback during the creation and transformation of these objects provide substantial im-I. provements in productivity over traditional "batch" systems. The most frequently cited
example of this type of system is a programming environment that tightly couples tools for
program editing, browsing, analysis, transformation, execution and debugging.

Our early work in this area culminated in the development of the Cornell Program
Synthesizer [TR81], a highly integrated environment for a small subset of PL/I. The Syn-
thesizer graphically demonstrated the feasibility of building a self-contained, highly inter-
active environment that supplanted many of the traditional batch-oriented development
tools. Whereas it was far too limited to serve as a tool for professional programmers, it was
used successfully as a tool for teaching top-down structured programming. In the space of
several years it served more than 20,000 introductory programming students at Cornell and
other universities.

It quickly became apparent that "hard-coding" an environment for a specific language,
as was done with the Synthesizer, was the wrong approach. The most challenging aspect of
building Synthesizer-like systems is the problem of efficiently maintaining derived context-
sensitive information as the underlying object changes; for example, updating object code

I 1

I
I
I

after each editing modification to source code. We believed that this problem was amenable
to a generic solution and accordingly embarked on a study of incremental computation.

2 Research Objectives

Our long term objective has been to develop a comprehensive theory of incremental compu-
tation that allows cost-efective re-use of previous executions. We maintain that incremental
computation has the potential to reduce processing time significantly for a wide variety of
applications.

Our interest in incremental computation stems from a narrower and more immediate
objective of improving productivity by showing how to design and implement effective pro-
gramming environments and environments for formal reasoning. We maintain that such I
environments can make excellent use of the methods we develop for incremental computa-
tion.

3 Research Issues

The problem of incremental computation can be posed in the following terms. Let Y be
a computable function mapping X -. Y, two arbitrary domains. Let zo, :,...,z,t be a I
sequence of values in X, where the distances between successive values of z are small,
for some notion of distance in X. We wish to compute .(z0),'(zl) ... ,.F((z,) in an on-
line fashion; i.e., each F(zi) must be computed without reference to subsequent values I
z•+: , ... ,zn. We say that Y is computed incrementally if each computation of F(zx) takes
advantage of the fact that we have already computed '(zo), '(Xi- 1).

By definition, then, incremental computation is a subject with broad applicability. Since
Y, X, and Y are arbitrary, we see incremental evaluation as a research area whose domain
spans a wide spectrum of computable problems. Y might be a function that inverts a matrix 3
z, finds the transitive closure of graph z, compiles a high-level language program x, loads
a set of object modules z, or computes navigational information for an aircraft from sensor
data x.

The significance of incremental computation lies in its potential to dramatically reduce
processing time across this broad problem domain. In non-incremental computations, each
evaluation of F(xi) is ignorant of the intermediate results of any previous execution. Yet,

2

I
I

in many applications, when z changes just slightly, the bulk of the computational steps
involved in computing Y"(zx+i) remain the same. For example, recomputing a matrix oper-
ation after the change of a single cell can often reuse intermediate results from a previous
computation. Similarly, the object code produced by a compiler after a single line changefin a program differs little from that before the change. Incremental computation can of-

- fer a dramatic savings in machine cycles by re-using unchanged intermediate results from
previous computations of Y and only evaluating the subset of the problem that is affected
by the change from zi to zi 1 . By bypassing complete reevaluation of previous intermedi-
ate results, incremental algorithms can have asymptotically better running time than the
non-incremental alternative.

We believe that the general application of incrementality will accelerate the tread that
has shortened computer response time to changing inputs. Just as improved hardware and
systems software precipitated the transition from batch to interactive systems, incremental
evaluation allows what we call immediate systema. This computational model resembles
the well-known spreadsheet, in which rapid recomputation permits a "what-if" approach
to problem solving. By experimenting with various inputs to a problem, the user of the
spreadsheet can arrive at an optimal solution. Incremental computation applied broadly
can extend this spreadsheet-like interaction to complex problems like interactive theorem
proving systems and programming environments where program results are immediately
reevaluated as input and source are edited.

Although immediate systems are the most natural application of incremental evalua-
tion, this technique is also effective in systems where a user is not directly involved in the
computational process.

In real-time applications, for example, quick response to asynchronous changes in in-
dividual sensor values is required. Viewing the collection of sensor data as a vector input
quantity z and the required setting of control parameters as the result of a vector valued
function Y, such a program must respond to each change in a component (or subset of the
components) of the input z. Incremental computation of Jr in response to small changes in
sensor data may be required in order to meet real-time requirements.

Any program that alternates data analysis with data transformation may be a candi-
date for incremental evaluation. Consider, for example, the code optimization phase of a
compiler. Typically, extensive data flow information is gathered by analysis of the pro-
gram control flow graph. Based on this information, the compiler selects a code-improving
transformation, which produces some modification of the control flow graph. In general,
the modification of the control flow graph invalidates the derived data flow information,
which must then be updated before the next transformation can be selected and applied.

I 3I
I

I
I
I

Using the notation described earlier, Y is the function that computes data low information
from a control flow graph argument. Each optimizing program transformation represents
an incremental change in the control flow graph. Repetitive application of Y to slightly
different control flow graphs suggests that the incremental computation of Y could improve
the performance of the code optimization phase.

4 Approaches

Much research into incremental computation has taken an ad hoc or algorithm-dependent
approach. In this approach, an existing algorithmic solution to a specific problem, A, is
modified to produce a new algorithm, A', that computes a result in response to changes
in z. For example, [RM87] and [Zad84] both describe incremental approaches to the data
flow analysis problem described above. The advantage of restricting the domain of the
problem to specific algorithms is that each problem may offer its own unique opportunities
for incrementality. There is considerable research yet to be done on ad hoc incremental
algorithms, including finding good increr•,ital methods for classical algorithms, developing
general paradigms for deriving good incremental algorithms, and formulating classifications
that characterize degrees to which algorithms can and cannot be made incremental.

The focus of our research, however, is the more general, algorthAm-independent ap-
proach to incrementality. In this approach, the problem of incrementality is orthogonal
to the design of an algorithm A for a specified problem. Ideally, A can be designed and I
programmed in a standard, non-incremental manner. These algorithms are often simpler
to design and implement than those that are explicitly incremental, producing programs
whose correctness is easier to verify. The translation from the non-incremental algorithm A I
and implementation 7" to the incremental implementation V' is automated. The research
problems in this area include the creation of programming languages in which evaluation
of T can be efficiently updated when the input z changes, identification of abstract data
types of general utility for which efficient incremental updating algorithms can be devised,
and the classification of problem domains for which the algorithm-independent approach is
viable.

Approaches to incremental computation have incorporated two distinct principles: tak-
ing advantage of the history of previous computations in computing new results, and deter- I
mining the effect on the output of a relatively small change to an input. These two distinct
approaches can be illustrated by the work of other researchers in the ONR-supported com-
puter science community: I

4I

i
8I

I

I

"* The persistant data structures of Drisconl, Sarnak, Sleator, and Tarjan [DSST89]
address a key issue in the use of histories for incremental computation: how the
multiple versions of a data structure that arise in the course of the computation can
be maintained in a space-efficient manner that still permits time-efficient access to
any version.

"* The finite differencing of Paige [PK82J, a generalization of optimization by strength
reduction, replaces expensive local calculations made inside loops with incremental
counterparts that make only small changes to large non-local data structures. An
earlier paper of Earley ([Ear76]), on which Paige's work is partially based, pointed
out that such optimization techniques could prove equally beneficial in implementing
incremental algorithms, as opposed to using them only to improve non-incremental
ones.

Our contributions to incremental computation have involved both the use of histories
and the propagation of small changes.

5 Progress

In the Synthesizer, semantic analysis had been expressed imperatively, requiring every se-
mantic action to have a corresponding undo action. In our new approach, we identified
[DRT81] attribute grammars [Knu68J as a promising alternative. Their descriptive power
makes attribute grammars applicable to a wide variety of objects and their declarative na-
ture eliminates the need for explicit "undo" actions. In this framework, complex objects
are represented as consistently attributed derivation trees with respect to a given attribute
grammar. Whenever the object is modified, attribute values are updated to restore the con-
sistent state defined by the 'ttribute equations. We developed the theoretical foundations
of this approach to building incremental systems in a series of papers that culminated in
Reps' Ph.D. Thesis, recipient of the 1983 ACM Doctoral Dissertation Award [Rep84]. The3 contributions of this work were as follows:

"" It proposed the attribute grammar model of incremental computation and argued its
advantages.

"" It contained optimal evaluation algorithms, not just for arbitrary noncircular attribute
grammars, but for the absolutely noncircular and the ordered attribute grammar
subclasses as well.

I 5

I
I 97

I
I
I

"* It presented two algorithms that carry out attribute evaluation while reducing the
number of intermediate attribute values retained. While others had worked on this
problem, these algorithms were the first to achieve sublinear wort-case behavior.

"* It emphasized the importance of environment generation as opposed to ad hoc con-
struction techniques. In this, we were certainly not alone. Rather, this message
reenforced that of Emily, Mentor, and Gandalf.

"* It demonstrated the possibility of applying formal techniques and rigorous analysis
to a fundamental software engineering issue and stimulated others to work on the
problem of incremental static-semantic analysis.

Our early work made several simplifying assumptions that are not valid in practice.
First, our notion of optimality charged for changed copy attributes, whose only function
is to communicate a value from one point in the tree to another. Second, our notion of I
optimality charged for all uses of a changed aggregate-valued attribute, even when only a
single component of the aggregate changes. Third, we assumed that each semantic function
is a constant-time operation. These shortcomings were partially addressed in Hoover's
Ph.D. Thesis [Hoo87], whose main contributions were as follows:

"* It introduced a data structure called the structure tree, which allows transitive de- U
pendencies to be easily and efficiently represented in the attribute dependency graph
and maintained in the presence of changes to the dependency graph.

"* It showed how structure trees can be used to improve incremental evaluation perfor-
mance when the dependency graph contains copy rule chains and aggregate-valued
attributes.

"* It presented a new, heuristic incremental evaluation algorithm that appears to works
well in practice, although its running time is not guaranteed to be linear in the number
of attributes changed. This new algorithm was required by the introduction of non-
local structure tree edges, i.e. transitive dependency edges not properly embedded in
the derivation tree.

The attribute grammar approach to incremental computation is primarily history-based
- the collection of saved attributes are essentially a history of the intermediate values that
arise in the course of a computation. Incremental attribute evaluators work by restarting the
computation in the middle, at exactly the right place with respect to the object's mutation. I
However, Hoover's solution to the problem of aggregate attributes introduces elements of

6I Ii
* I

the alternate approach to incremental computation, the propagation of small changes, and
bears a resemblance to Page's finite differencing technique.

Attribute grammars are only suitable for some problems. For instance, if attention is
restricted to noncircular attribute grammars and unit-time semantic functions, only linear-
time algorithms can be expressed. To circumvent this limitation, attribute grammar systems
typically allow the use of arbitrary recursive semantic functions - for which incremental
attribute evaluation schemes provide no incrementality. Motivated by this observation, we
have begun an investigation into the use of function caching, or memoising, to provide incre-
mental computation within function evaluation [Pug88b] [PT891. Function caching may be
used in a hybrid system in conjunction with incremental attribute evaluation, or possibly,
may emerge as a complete alternative to the attribute grammar approach to incremental
computation.

The implementation of the Synthesizer Generator [RT88a] [RT88c], a tool for creating
Synthesizer-like language-based environments from formal specifications, has given us the
opportunity to both prototype these research developments and develop a platform for
future research work. The research uses of the Synthesizer Generator within our group
have included the following:

* The original T. Reps attribute evaluation algorithm tRep82] [Rep83] has been part of

the Synthesizer Generator since its first release.

1 The incremental attribute evaluator developed by T. Teitelbaum and T. Reps [RT88b]
is currently the most efficient evaluator in the released system for grammars that fall
into the class of ordered attribute grammars [Kas8O].

9 S. Horwitz used the Generator to study and prototype a specification formalism based
on a coupling of attribute grammars and relational databases [HT85] [Hor85].

* R. Hoover's work on incremental graph evaluation [Hoo87] [Hoo86] [HT86] is im-
plemented in the latest version of the Generator. This new attribute propagation
algorithm, in many cases, significantly reduces the size of the set of attributes that
must be reevaluated after a tree modification.

* W. Pugh's work on general models of incremental computation using lazy structure
sharing and memoizing [PT891 [Pug88a] [Pug88b] was prototyped in the Generator.

e S. Peckham is currently using the Generator to examine extensions of attribute propa-
gation algorithms that efficiently handle multiple, asynchronous modifications (Pec88].
This continues work done earlier in our research group [RMT86].

1 7

I
I
I

Among our users, we are aware of the following publications in which experience with
the Generator has been reported: [GP] [KKM87] [vE89] [NHWG88] [NL88] [FZ] [FZCL88]
[NBK88J [CR87] [Bru87] [Slo87J [BKJ88] [CP89] [BV87] [Gri87].

6 Research Directions U
Storing input/output pairs for a function in a cache makes it possible to avoid repeated re-
calculation of the function on ezactly the same input. However, this technique only partially
addresses the problem of avoiding redundant calculations on composite objects that may be
only slightly altered. More problematic still is the handling of changes in Junctional values,
which occur quite naturally when specifying the semantics of programs or other complex
objects or systems in a denotational style. We believe that both of these problems can be
addressed using the lambda-calculus, a formalism in which both functions and composite
objects can be represented.

The problem of incremental re-evaluation of lambda-terms can be expressed as follows.
Given a lambda-term M which reduces to normal form N, alter M slightly to yield M' (this
may correspond to editing a functional value or some composite object). We then wish to
determine N', the normal form of M', using as much of the information already known from
the reduction of M to N as possible.

The set of intermediate lambda terms produced in the reduction of M to N provides a
history of N's computation. Our idea is to examine N's history to determine exactly what
parts of the computation depend on the changed part of M, and what parts do not. Then, in
principle, only those subcomputations depending on the changes to M must be recomputed. I
Other subcomputations are invariant and can be incorporated into the new result.

An optimal incremental evaluation of M' is one that repeats no reduction already per- 3
formed in the evaluation of M. Our research has focussed on formal techniques for analyzing
reductions to determine dependencies on the initial term, determining exactly which inter-
mediate values need to be remembered to enable incremental re-evaluation and which can
be safely discarded, and practical means for performing reduction such that these values
can be computed and stored automatically.

The problem of incremental reduction of terms in the lambda-calculus has also lead
us to the study of new schemes for evaluation of lambda terms. It turns out that all ex-
isting lambda-calculus evaluation techniques are sub-optimal, in that they perform some
redundant or unnecessary calculations. In most practical settings (i.e., execution of func-

8

I

I
I
I

tional languages), the conventions used by programmers and commonly used compilation
techniques minimize the impact of such extra work by the evaluator. However, in a set-
ting where functions are edited and interpreted on the fly, (as in practical implementations
of denotational semantics), the drawbacks of existing interpreters for the lambda calculus
become more apparent.

I 7 Grand Challenge

Discover how to create incremental software from non-incremental software automatically.

I 8 Research Transitions

The wide acceptance of the Synthesizer Generator as a research tool by the domestic and
international Computer Science community has been one of the most satisfying results of
our work. The fact that over 250 sites have licensed the Generator since its initial release
indicates its value to the computer science community. The licensees are approximately
one-half domestic and one-half overseas; half are within universities and colleges and half
in industrial and government settings. The growth in the number of sites licensing the
Generator has been essentially linear since the first release. Roughly half of the 150
receiving Release 1 ordered Release 2. This suggests that while perhaps half of our over ,j
sites are mainly curious, the remaining sites are making serious use of the system.

The implementation of the Synthesizer Generator has been a side-effect of our primary
work, fundamental research in incremental computation. Our implementation effort, there-
fore, has largely focused on "proof of concept" rather than concentrating on the overall
applicability of the system. For example, although the Synthesizer Generator has been a
testbed for the design of asymptotically efficient algorithms (important because they scale
up), little effort has been devoted to the system's raw performance. Thus, while there is
little doubt of the essential technical feasibility of our basic research ideas, much engineering
remains to be done before their potential is fully realized. Such an effort is better under-
taken in a commercial rather than an academic setting. The mission of the newly founded
firm of GrammaTech, Inc. is to establish the Synthesizer Generator as a fully-engineered
commercial product.

I Appart from the success of the Synthesizer Generator per se, we believe that our research
ideas have been well-received and have established something of a following for the attribute

I9
I
I

91

I
I
I

grammar approach to building incremental systems. In addition to our software, Reps'
award-winning Ph.D. Thesis has been notably influential. 3
9 Recommendations to Funding Agencies

Consider creating an initiative in incremental computation.

References I

[BKJ88] N. Botta, E.W. Karlsen, and J. Jorgensen. The PA*"dA-S editor, user's guide. Technical
Report S.3.1.C1-R-11.0, Propsectra Project, Dansk Datamatik Center, 1988.

(Bru87] G. Bruns. Generating an editor for a software design editor. Technical Report STP- I
325-87, MCC, October 1987.

(BV87J L. A. Barford and B. T. Vander Zanden. Attribute grammars in constraint-based graphic
systems. Technical Report 87-838, Cornell University, 1987.

[CP89J A. Carle and L. Pollock. Modular specification of incremental program transformation
systems. In Eleventh International Conference on Software Engineering, Pittsburgh,
Pennsylvania, May 1989.

[CR87] D. Carrington and K. Robinson. A prototype program refinedment editor. Technical
report, Department of Computer Science, University of New South Wales, 1987.

(DRT81] A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation for attribute gram-
mars with application to syntax-directed editors. Procedings of the 8th Annual ACM
Symposium on the Principles of Programming Languages, pages 105-116, 1981. I

[DSST89] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan. Making data structures persistent.
Journal of Computer and System Sciences, 38(1):86-124, February 1989.

[Ear76] J. Earley. High level iterators and a method for automatically designing data structure I
representation. Journal of Computer Languages, 1:321-342, 1976.

[FZ] P. Franchi-Zannettacdi. Attribute specifications for graphical interface generation. To
be presented at IFIP'89 World Congress Conference, San Francisco, August, 1989.

[FZCL88J P. Franchi-Zannettacci, B. Chabrier, and V. Lextrait. Giga&: A graphical interface
generator from attribute specifications. In Software Engineering and its Applications,
Toulouse, France, December 1988.

[GP] D. Guaspari and W. Polak. Summary: The odyssey research associates ada verification
project. Ada Letters: July/August 1988. Presented at Formal Methods Committee I
Report during March SIGAda meeting.

10 3
I
I

[Gri87J T. G. Griffin. An environment for formal systems. Technical Report 87-846, Cornell
University, 1987.

[Hoo8]J R. Hoover. Dynamically bypassing copy rule chains in attribute grammars. Proceeding.
of Ihe Thirteenth Annual ACM Srmposium on the Principles of Programming Lsa-
pvages, pages 14-26, 1986.

[Hoo87] R. Hoover. Incremental graph evaluation. Technical Report 87-83M, Department of
Computer Science, Cornell University, Ithaca, New York 14863, May 1987. (Ph.D.
Thesis).

[Hor85] S. Horwitz. Generating Leap. ge-Based Editors: A Relationally-Attrffated Approach.
PhD thesis, Cornell University, 1985.

[HT86] S. Horwits and T. Teitelbaum. Relations and attributes: a symbiotic basis for editing
environments. In Proceedings of the SIGPLAN 8.5 Symposium on Language Issue in
Programming Environments, pages 93-106, 1985.

[HT86] R. Hoover and T. Teitelbaum. Efficient incremental evaluation of aggregate values in
attribute grammars. Proceedings of Ike SIGPLAN 86 Symposium on Compiler Con-
struction, pages 39-50, 1986.

[Kas80] U. Kastens. Ordered attribute grammars. ACTA Informatics, 13(3):229-256, 1980.

[KKM87] G. E. Kaiser, S. M. Kaplan, and J. Micallef. Multiuser, distributed languag-based
environments. IEEE Software, 20(4):58-67, November 1987.

[Knu68J D. E. Knuth. Semantics of context-free languages. Mathematical Systems Tkeory, 2:127-
145, 1968.

[NBK88] C.B. Nielson, N. Botta, and E. Karlsen. Experiences from using the Cornell Synthesizer
Generator. Technical report, Prospectra Project, Dansk Datamatik Center, 1988.

[NHWG88] M. Nielsen, K. Havelund, K.R. Wagner, and C. George. The RAISE lnguage, method
and tools. In L. Marshall R. Bloomfield and R. Jones, editors, VDM '88, VDM - The
Way Ahead, pages 376-403. Springer-Verlag, 1988. Lecture Notes in Computer Science
328, Proceedings of 2nd VDM-Europe Symposium.

[NL88] M. Nielsen and S Lynenskjold. RAISE project overview. Technical Report 315, Dansk
Datamatik Center, November 1988.

[Pec88] S. Peckham. An algorithm for maintaining tree projections in amortized o(log n) time.
Cornell University, November 1988.

[PK821 R. Paige and S. Koenig. Finite differencing of computable expressions. Transactions on
Programming Languages and Systems, 4(3):402-454, July 1982.

[PT891 W. Pugh and T. Teitelbaum. Incremental computation by function caching. In Pro-
ceedings of the Sixteenth POPL, 1989.

[Pug88a] W. Pugh. An improved replacement strategy for function caching. In 1988 LISP and
Functional Programming Conference, 1988.

11

I

I
I

(Pug88b] W. W. Pugh. Incremental Computation and the Incremental Evaluation of Functional
Programs. PhD thesis, Cornell University, 1988.

(Rep82] T. Reps. Optimal-time incremental semantic analysis for syntax-directed editors. Pro-
ceedings of tke NintA Anaval ACM Symposium on the Principles of Programming Lan-
guages, pages 169-176, 1982. 3

[Rep83] T. Reps. Static semantic analysis in language-based editors. Digest of Papers Spring
Compcon 8S, pages 411-414, 1983.

[Rep84] T. W. Reps. Generating Language-Based Environments. The MIT Press, Cambridge,
Massachusetts, 1984.

[RM871 B.G. Ryder and M.D.Carroll. Incremental data flow analysis via attributes. Technical
Report LCSR-TR-93, Department of Computer Science, Rugers University, June 1987.

[RMT86] T. Reps, C. Marceau, and T. Teitelbaum. Remote attribute updating for language-based
editors. In Proc. of the 9th A CM Symposium on Principles of Programming Languages,
1986.

[RT88a] T. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Constructing
Language-Based Editors. Springer-Verlag, NY, 1988. 315 pages. 3

[WI88b] T. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Constructing
Langage-Based Editors, chapter Chapter 12: Incremental Attribute Evaluation for
Ordered Attribute Grammars, pages 246-277. Springer-Verlag, NY, 1988. I

[RT88c] T. Reps and T. Teitelbaum. The Synthesizer Generator Reference Manual. Springer-
Verlag, 3 edition, 1988. First edition, Department of Computer Science, Cornell Uni-
versity, Autgust, 1985; Second edition, June, 1987.

[Slo87] E.J. Slotboom. An editor for process algebra dynamic semantics. Technical report,
Unversiteit Twente, 1987.

[TR81] T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: a syntax-directed pro-
gramming environment. CACM, 24:563-573, September 1981. reprinted in Interactive
Programming Environments, Barstow, D.R., Sanderwall, E., and Shrobe, H., McGraw
Hill, 1984. I

[vE89] P. van Eijk. LOTOS tools based on the Cornell Synthesizer Generator. Technical Report
89-5, Universiteit Twente, 1989.

(Zad84] Frank Kenneth Zadeck. Incremental data flow analysis in a structured program editor.
In Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction, 1984.
Also published as SIGPLAN notices Vol. 19, No. 6, June 1984.

I
12 Ii

I
I!

Fyn Compukr Sciekwe Divkiom

TT: Theoretical Foundations of
Problem-Solving Environments

3 6LATOR: Robert L Constable

LOCATION: Coei University
Dept of Computer Science
Ithaca, NY 14853

3 TELEPHON& (607) 255-7316

3Wi[C Ralph Wachter

Technical Objectives:
Exe tal resemah prototypes of verification systemi fbr computer program and
hardware designs, based on relatively recent theoretical advances in mathematical

logc, .ogramming language semantics and symbolic con-utadoa, are being
developedIt is expected that new theoretical results will contributed to a substantial
unpremenmt in the power and range of applicability of these systems. The objective
of this reseM h is to the necessary foundations to contribute to the next Sm.
eration of verification systems through basic research in type theory and its relevance
to programming languages and programming environments.

Appropr

mn:

The conunctor will investigate issues related to the polymophic type theory, meta-
level reasoning about program properties, and partial objects in constructive type

theoy. In particular, a new reasoning principle, known as computational induction,
has been discovered. It is founded on the concept that if a partial function halts on
some input, then the computation of that function applied to that value is in some

sense well-founded. The computational induction rule is a important theoretical contri.
bution to type theory, but its formulation raises very subtle concerns.

P1ormp.e
New start in FY88.

.136.

FM Computr $ c Dlyhin I
TMrLL Design and Analysis of Data Structures

and omnarilAlgouithms5

RM &~TOR: Robert E. Tarin

LOMCATON: Department of Cmputer Science
Princeton University 3
Princeton, NJ 0&%4-0636

EM& CTcro ?W: W1 7KO467I

Ralph Wachter I
Technical Objectives: 3
The objective is to investigate efficient damn sructnrms, algorithmic methods and their
applicatios. The specific objectives me: to devise specific data structtres and methods
tailored to the needs of various cmnatoa problems, to perform the cal ad 3
experimental studies of the new algorithms and their older competiAmos and to duoc-
datgeneral themes of design and analysis in the systemaric construction, of ew alp.
rithms.3

Approach:
The approach to be followed by this research is to devise methods that can be applied
to yield new and efficient algodithms for classical and newly defined problems in the
armes of searching, sorting, networks, and cavomu gemeny.

Program:
A new heap data structureo implem g the classical shortest path algorithm have
been developed in collaboraion wish AM huja, KMehlhom, and LB.Orlin. These data I
structures ae elegant, simple and thdeoetically efficient. There are many other
significant research results to rport on the topics of network flow, dynamic perfec
hashing and Jordan sorting.

Ref.: R.Ahuja, K.Mehlhorn, J.Orlin and R.Tarjan, "Faster algorithms for the shortest
path problem," TR-154-88, Department of Computer Science, Princeton University, I
Princeton, NJ, 1988. I

I
I

- 1l -s.

Network Optimization Algorithms

I
I

| Robert E. Tarjan
I
I
I
U

Department of Computer Science

Princeton University

I
I
I
I

Research Objectives

eTo discover efficient computer algorithms

for fundamental problems in network i

optimization
I

*To devise algorithmic tools, data structures,.
and analytic methods for the design and
analysis of such algorithms 3i
*To carry out empirical studies of such

algorithms to learn what algorithms and
implementation techniques are most

practical II
i
i
I

_ _ _ _ _ _ _ _ _ _ _ _ __ _ A

I
I

I How fast can we solve

o Matching Problems?I
o Maximum Flow Problems?

i Minimum-Cost Flow Problems?

| * Variants and Extensions of these

Problems?

- Algorithms can be applied toI
i e Routing of messages, traffic,

commodities

* * Correlation of tracking data

and targets

* Other combinatorial problems

Oa

I
i

Approaches i
i

Algorithmic Techniques

"* Successive Approximation |

"* Distance/Price Relabeling i

" Parallel Processing

"• (Randomization) |I
I

Data Structures i

* Dynamic Trees i

* Augmented Search Trees II
eList Structures

1

I

II
II
II
* Payoffs

| *Maximum Flow: O(nm log log U)
I

nMinimum-Cost Flow: O(nm log(nC) log log U)

1 *Assignment Problem: O(v/ mlog(nC))
I
U
| oNonbipartite Assignment Problem:

U
1 O (Ina(n)llogn mlog(nC))

U
I
I

I
I

U
I
I

Primal Network Simplex for Maximum Flow:

O(nmlogn) |
I
I=
I

Generalized Primal Network Simplex for g
I

Minimum-Cost Flow: 3
I

0 (n•mlogn•log(,nC))

I
i

I

I

I Research IssuesI

I What concepts are most important in
algorithm design?

e Data structures

e Elegance

i How can one exploit new concepts and
I technologies, such as randomization and

parallelism?

* Development of alternative algorithms

I What is required in a scientific approach

to empirical analysis of algorithms?

I • Challenging, realistic test data

I • Consistency in coding

i
i
i
i ______________________

I

Karl Abrahamson U
Department of Computer Science
Washington State Univ.
Pullman, WA 99164
509-335-2126
karl@c.wsu.edu I
Chaderjit Bajaj
Department of CS
Purdue Univ.
West Lafayette, IN 47907
317-494-6003
bajaj&s.purdue.edu

Peter Buneman
Computer and Information Science
Univ. of Pennsylvania
Philadelphia, PA 19104
215-898-7703
linc.cis.upenn.edu

Lowell Campbell
Department of Electrical Engineering
Univ. of Idaho
Moscow, ID 83843
208-885-6067

Robert Constable I
Department of CS
Cornell Univ.
Ithaca, NY 14853
607-255-7316
rc@gvax.cs.cornell.edu

Michael Fellows
Department of CS
Univ. of Idaho
Moscow, ID 83843
208-885-7543
fellows@id.cs.bitnet i

Christoph Hoffmann
CS Department
Purdue Research Foundation 3
West Lafayette, IN 47907
cmh@purdue.edu

Mark Hoover i
CS Department
Univ. of New Mexico
Albuquerque, NM 87131 I
607-545-8366

I

Matt Kaufmana
Computational Logic Inc.
1717 W 6th St. Suite 290
Austin, TX 78703-4776
512-322-9951
kaufmann@cli.com

Roger King
Department of CS
Univ. of Colorado
Boulder, CO 80309
303-492-7398
roger@boulder.coloradoledu

Michael Langston
Department of CS
Pullman, WA 99164-1030
509-335-6486
langston@cs2.wsu.edu
(en route to Univ. of Tennessee)

Robert Paige
Courant Institute of Mathematical Sciences
New York Univ.
New York NY 10003
212-A * "1~-3060
paige@cims.nyu.edu

Joseph Pegna
Department of Mechanical Engineering
Univ. of California
Irvine, CA 92717
jpegna@orion.cf.uci.edu

Matthias Stallmann
Department of CS
North Carolina State Univ.
Raleigh, NC 27695-7003
919-737-2117
matt@csadm.ncsu.edu

Robert Tarjan
Department of CS
Princeton Univ.
Princeton, NJ 08544-0636
ret~notecnirp.princeton.edu

Tim Teitelbaum
Department of CS
Cornell Univ.
Ithaca, NY 14853
607-255-7573
tt@cs.cornell.edu

Ralph Wachter
Software Science

Wfksce of Navel Research
800 North Quincy St
Arlington, VA 22217-5000
202-696-4304
wachter@itd.navy.nrl.mil

RI

tI

