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Abstract

A new spatio-temporal method for identifying 3D objects found in 2D image sequences

is presented. The Hidden Markov Model technique is used as a spatio-temporal classification

algorithm to identify 3D objects by the temporal changes in observed shape features. A new

information theoretic argument is developed that proves identifying objects based on image

sequences can lead to higher classification accuracies than single look methods. A new distance

measure is proposed that analyzes the performance of Hidden Markov Models in a multi-class

pattern recognition problem. The new distance measure is shown to be superior than those

previously reported. A three class problem identifying moving light display objects provides

experi'mental verification of the sequence processing argument. Individual frames of a MLD

image sequence contain very little spatial information. The information content is highly

temporal in that sense that image sequences are required for object identification. The single

look classification rate for the moving light display imagery was observed to be near 50%. In

contrast, the Hidden Markov Model classification rate was above 93%. The alternate nearest

neighbor multiple frame technique classification rate was 20% below the Hidden Markov

Models. A one sided t-test revealed a highly statistically significant difference between

the Hidden Markov Model and multiple frame technique at a 0.01 level of significance. A

five class problem consisting of tactical military ground vehicles is considered to provide

verification using imagery with both spatial and temporal information. The classification

accuracy of the Hidden Markov Model is compared to a single look and an alternate multiple

frame technique. Results confirmed the new spatio-temporal pattern recognition method

produces superior results by accessing the temporal information in the image sequences. A

prototype automatic target recognition system is demonstrated. Objects in real video imagery

are correctly identified by the spatio-temporal Hidden Markov Model classifiers trained on

synthetic data.

xli



SPATIO-TEMPORAL PATTERN RECOGNITION USING

HIDDEN MARKOV MODELS

I. Introduction

1.1 Historical Background

The Air Force has been investigating automatic pattern recognition techniques for

several decades. Exploratory and advanced development is occurring on methods that will

lead to systems for speech recognizers for task load reduction, text readers, autonomous

navigation systems, photographic interpretation systems, and automatic target recognition and

tracking systems.

Automatic target recognition systems whose purpose is to identify three dimensional

(3D) objects from two dimensional (2D) imagery derived from visual wavelength or infrared

sensors, have access to a time indexed stream of such images. These systems, however, gen-

erally perform a given technique on a single frame of such imagery at a time. A determination

of the desired information, such as object classification, is made and a new frame of imagery

is then analyzed and the process repeated. The use of a single frame of imagery to determine

the desired information will be referred to as a single look method in this document.

Recently, several researchers have been investigating techniques using several inde-

pendent single look observations to improve the classification accuracy of 3D objects in 2D

imagery. Wang et. al. (68) present a method for identifying 3D objects with a model based

technique. 3D models of test objects are generated from a sequence of two to four 2D sil-

houettes taken randomly from different orientations around the object. The estimated model

is then compared to a library for identification. Leung and Huang (41) describe a method for

three-dimensional motion estimation and object identification using a pair of stereo images

from two adjacent time indices. Motion is derived from the time pair using an optical flow



technique with recognition independently performed on the left image in each stereo pair. Liu

and Tsai (46) report a method of 3D object recognition using 2D object silhouettes obtained

from two distinct camera viewing angles. First, a top-view camera captures the object image.

If the top-view shape is inadequate for discrimination, a lateral camera is activated and addi-

tional information is obtained. These investigations support the concept that multiple single

look observations tend to improve the classification rate, however, they do not access and

utilize the vast amount of information in the temporal sequence of imagery produced by the

sensor.

It has become well known that the temporal changes an object undergoes when moving

relative to an observer contains information that may aid in the interpretation of the motion and

description of the object (2, 49). Animals as well as Man use this additional temporal visual

information to aid in maneuvering in the environment, locating food, and detecting predators.

Recent neurophysiological studies tend to support the position that temporal information is

used by animals in their visual recognition systems. Barlow and Levioc ') and Sakai and

Naka (58) have identified cells in the retina of rabbits and catfish that sense and process

information related to motion. Watson and Ahumada (69) refer to many neurophysiological

papers on the properties of human motion perception that serve as a basis for their view of how

humans sense the velocity of moving objects. Of particular interest to this study is the work of

Perrett et al. (51) who discovered cells in the superior temporal sulcus of macaque monkeys

that maximally respond to selective characteristic views of two and three dimensional faces.

Perrett et al. (50) additionally found cells that were not responsive maximally to particular

characteristic views, but responsive to a transition between two characteristic views. Perrett's

work has shown the macaque monkey, and perhaps all mammals, gather and use information

related to changes in object orientation over time as well as certain static views for recognition.

Several investigators have recognized the potential of using information in data se-

quences for object identification. One of the early pioneers of this concept is Ie Chevalier et

al. (40), who in the late 1970's recognized that single look identification of aircraft using radar

produces unsatisfactory results because of feature ambiguity among different aircraft types.
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They treat the moving target as a syntactic process or grammar that generates characteristic

sequences of observation measurements. Sequence transitions are bound by evolutionary

constraints that are particular to a given target. Libby (43) also investigated methods for

dynamic object recognition using radar. Recognition is based on the joint likelihood of kine-

matic and feature observable events over time. His approaches involved parameter estimation

using multiple-model Kalman filters and dynamic programming-based sequence comparison

methods. Dewitt (19) used range profiles obtained from high resolution radar and the Hid-

den Markov Model technique to identify aircraft. Hidden Markov Models were trained

recognize the objects for specific look angles using range profiles consisting of 10 scatterin•

centers.

The work of Seibert and Waxman (59) can be grouped with the Le Chevalier concept and

is the only investigation known to the author where sequences of 2D views of 3D objects were

used in the classification process. Seibert and Waxman (59) employ a differential equation

based method as a temporal hypothesis test that reacts to previously learned transitions in

object features.

1.2 Problem Statement and Scope

This research describes a new approach for recognizing moving 3D objects using a

sequence of 2D images. The identification of 3D objects using the information contained in

2D image sequences is a largely unexplored and fertile area of research. This research studies

the use of a spatio-temporal learning and classification algorithm, known as Hidden Markov

Models, for solving this problem. The aspects of the solution to this problem are 1) develop an

information theoretic argument for sequence processing, 2) develop a new distance measure to

analyze the performance of the Hidden Markov Model classifiers, 3) analyze the performance

of the Hidden Markov Model technique with moving light display imagery that has a low

spatial/high temporal information content, 4) experimentally demonstrate the effectiveness of

the spatio-temporal sequence processing on a five class military vehicle classification problem

that has high spatial/high temporal information and, 5) demonstrate of recognition of real

3



world image sequences of two military vehicles using models trained on synthetic data. The

research contributions made in these areas are reviewed below.

"* An Information Theoretic Argument For Sequence Processing. A new argument

advocating the use of sequence, rather than single look, processing will be developed.

The argument is based on Shannon's definition of information and its relationship with

entropy (61).

"* Hidden Markov Model Distance Measure. A new method for analyzing the dis-

tance between a pair of Hidden Markov Models is proposed. The distance measure

between pairs of Hidden Markov Models gives insight into the sensitivity of the model

to changes in parameters. Additionally, the distance measure is an important tool for an-

alyzing the performance of Hidden Markov Models in a multi-class pattern recognition

problem. The proposed method uses higher order statistics, the mean and variance of

the Hidden Markov Model output distributions, and the Bhattacharyya distance measure

to find the distance between each Hidden Markov Model pair. A worst case example

demonstrates that the new method is a superior approach yielding a more informative

distance measurement between pairs of Hidden Markov Models.

"* Identification of Moving Light Displays. This dissertation reports the first known

pattern recognition algorithm applied to the identification of objects from a class of

imagery known as moving light displays. All previously known automated techniques

attempt to uncover the type of motion the moving light display object is undergoing.

Individual frames of a MLD image sequence contain very little spatial information. The

information content is highly temporal in that sense that image sequences are required by

humans for object identification. A three class moving light display classification prob-

lem demonstrates the power and robustness of the spatio-temporal technique proposed

here.

"* Use of Hidden Markov Models as a Spatio-temporal Classifier. A novel algorithm

employing the Hidden Markov Model technique is described to experimentally verify

4



the information theoretic argument for sequence processing. The Hidden Markov

Model is used as a spatio-temporal pattern recognition algorithm that identifies 3D

objects contained in 21) image sequences. Experimentation using a five class problem

demonstrates the theoretical advantages of recognizing objects using image sequences.

The Hidden Markov Model performance will be shown to be substantially superior to

a single look and alternate multiple frame classification technique.

* Identification of Real Imagery. Identifying objects in real sensor imagery using

classifiers trained on synthetic data is one of the most highly desired characteristics

of a pattern recognition system. This characteristic, however, is seldom seen. This

dissertation demonstrates such a system where real video image sequences of the M60

tank and M35 truck are successfully classified.

1.3 Dissertation Organization

This dissertation is organized into seven chapters. The following chapter reviews the

concepts this research is based on. An argument based in information theory is described that

substantiates the hypothesis that sequence processing can provide enhanced classification over

single-look methods. The concept of the Hidden Markov Model and its application to this

problem are reviewed along with training and testing methodologies. Chapter mI introduces a

new application of the Bhattacharyya distance to measure the distance between a pair of Hidden

Markov Models. This distance measure is an important tool in analyzing the performance of

Hidden Markov Models in a multi-class pattern recognition application. Chapter VI reports an

investigation into this technique's ability to classify moving light display objects which have

low spatial and high temporal information content. Chapter V is a demonstration and analysis

of the Hidden Markov Model technique on a five class problem consisting of tactical military

ground vehicles. Chapter VI describes a real world application of the technique where Hidden

Markov Models trained on synthetic data sequences correctly classify targets contained in real

video image sequences. The final chapter of this dissertation will discuss recommendations

and conclusions derived from this work.
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I. Background Material

2.1 Introduction

This research focuses on employing a spatio-temporal technique to classify 3D objects

contained in 2D image sequences. This chapter will review the concepts and background ma-

terial necessary to understand the approaches and results of this dissertation. First, information

theory based arguments are presented that discusses why processing data sequences will result

in equal or better classification rates than single look methods. Second, the spatio-temporal

sequence processing technique used in this dissertation, the Hidden Markov Model, will be

described. The next section will discuss the single look methods used as a baseline for Hidden

Markov Model performance comparison. An alternate sequence processing method is also

investigated. The last section will discuss the classifier error testing method used throughout

this research.

2.2 An Advantage for Sequence Classifiers

Many single look pattern recognition techniques used to identify 3D objects in 2D

imagery fit into the general category of statistical classifiers. This section will describe the

concept of the statistical classifier and develop information theory based argument describing

why sequence classification should outperform single look classification.

2.2.1 The Statistical Classifier. Statistical classifiers are based on mathematical

classification rules formulated in a statistical framework (65). Classification is generally made

by following Bayes decision rule (26)

Decide wi if p(wilx) > p(wi x) for all j # i (1)

where x is a set of object measurements, w, is the i-th object class, and p(wiIx) is the a

posteriori probability. The Bayes, or statistical, classifier is optimum in the sense that it

mininmizes the probability of classification error if the true a posteriori probability density

6



functions are known (21). This statistically optimal classification rule is the accepted standard

against which the performance of other classification algorithms are often compared (65).

Generally, the measurements used to make a classification decision using Equation 1 result

from the examination a single frame of imagery at a time. The set of object measurements

can be arranged in a vector form that defines a feature space. A feature vector obtained

from an object in a single image is associated with a point in the feature space. If the set

of measurements are chosen well for a particular problem, feature vectors from objects of

different classes will lie in disjoint partitions of the feature space. Usually, however, there is

a degree of ambiguity in the measurement process causing an overlap in the partitions. This

overlap induces error in the classification process.

By examining a single image frame at a time, the single look statistical classifier

considers the position and orientation of the object in each frame of imagery to be independent

of past or future positions and orientations. Experience tells us that objects moving in the

world around us do not change perspective independently, moment to moment, but follow

a characteristic behavior. The biological studies described in Chapter I emphasize the fact

that the characteristic behavior of moving objects is important. It is reasonable, therefore,

to consider the temporal changes a feature vector undergoes due to object motion in the

classification process. Bayes decision rule for such a classifier may be written as

Decide cvi if p(wiIX) > p((oj IX) for all j $ i (2)

where X is a sequence of n time indexed feature vectors X = {x1 , x2, ... , x,} and Wo is the

i-th object class. Equation 2 indicates that the a posteriori probabilities now depend on a time

indexed history of measurements. Although an estimation of the true a posteriori densities is

not undertaken in this dissertation, a method that does exploit the joint nature of the temporal

changes in object features is investigated.

2.2.2 Le Chevalier's Reasoning for Sequence Processing. Le Chevalier et.

al. (40) were among the first to recognize that examining the relationship of the changing

7



features from a moving object can improve classification. They found that single look iden-

tification of aircraft using radar cross section measurements produces unsatisfactory results

because of feature ambiguity among different aircraft types. To improve the recognition

capability, they treat the moving object as a syntactic process, or grammar, that generates

characteristic sequences of observation measurements. The observed sequence measurements

are bound by evolutionary constraints that are particular to a given object facilitating discrim-

ination. This connection was made by Le Chevalier's knowledge of the finite state automaton

and its one-to-one relationship with a grammar, a particular implementation of syntactic pat-

tern recognition. The important point of Le Chevalier's work is that the search for, and

recognition of, specific orderings of object measurements reduces the classification error rate

found in the single look approach. The classification method used in this dissertation is itself

a syntactic pattern recognition approach. The Hidden Markov Model is a special case of a

regular stochastic grammar (14).

2.2.2.1 Syntactic Pattern Recognition. The statistical classifier is based on

a mathematical approach to pattern recognition (65). The approach known as syntactic pattern

recognition is rooted in the concept of formal language theory. The basic difference between

syntactic and statistical pattern recognition is that syntactic pattern recognition explicitly uses

the structure, or order, of patterns in the recognition process (65). Classification decision rules

are essentially implementations of Equation 2. Grammars are the basic construct in syntactic

pattern recognition and are the foundation of the majority of research in this area. The essential

concepts associated with syntactic pattern recognition described in (65:317) are:

1. An alphabet is a finite set of symbols.

2. a sentence over an alphabet is any string of finite length composed of symbols in the

alphabet.

3. A language is a set (not necessarily finite) of sentences of an alphabet

4. Each language has a unique grammar, which describes the structure of the language

and is defined by the four-tuple G = (VN, VT, P, S), where

8



(a) VN is a set of nonterminals (variables).

(b) VT is a set of terminals (constants).

(c) P is a set of production rules.

(d) S is the root symbol (corresponding to the sentence).

The language is then a set of strings which satisfy: (1) each string is composed only of

terminals, and (2) each string can be derived from S by suitable applications of productions

from the set P. There are four types of grammars differing only in the type of productions

allowed. The four types are:

1. unrestricted - a symbol may be followed by either a nonterminal or terminal.

2. context-sensitive - production rules are of the form a, Aa 2 -0 alfla 2 . C11, Ct2, and f
are terminals or nonterminals and A is a nonterminal.

3. context-free - productions are of the form A --+ f.

4. regular - productions are of the form A -+ aB or A --+ a where a is a terminal and A

and B are nonterminals.

It is interesting to note that all regular grammars are context free, all context-free

grammars are context sensitive, and all context-sensitive grammars are unrestricted (65).

The framework for a syntactic pattern recognition system is to develop a grammar

for each object class under consideration. The classification process matches a test string,

or sentence, with each known language through a process known as parsing. Parsing can

be accomplished in a top-down fashion which begins with the root and through repeated

applications of the grammar productions, arrives at the sentence. A bottom-up method is

also used that begins with the sentence to which the production rules are applied in reverse

to recover the root. Both methods reveal the underlying grammatical structure of the test

sequence which is associated with the language (class) that yields a parse consistent with

its production rules. Classification difficulties can arise if a correct parse of a test sequence
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cannot be made by any of the languages under consideration. This can occur when noise or

other ambiguities affect the test sequence.

A statistical description of the language can be introduced by allowing the grammar

production rules to be nondeterministic and assigning a certain probability measure to each

of these productions. This type of grammar is called a stochastic grammar. The stochastic

grammar approach allows for the construction of a grammar and language in problems where

an explicit expression of the production rules cannot be formulated. An additional benefit is

that the parsing process of a stochastic grammar yields a probability of association with each

language, reducing the aforementioned problems with classification.

Key to the use of stochastic grammars in pattern recognition are efficient algorithms

for learning production rule probabilities and for the recognition of test sentences. One such

algorithm for the learning of regular stochastic grammars is the discrete Hidden Markov

Model (14). The Hidden Markov Model will be the basic tool used in this research to learn

the grammar of features associated with 3D objects moving in 2D image sequences. With

the languages for each object in the specific problem defined, the classification of new data

sequences can be made.

2.2.3 Libby's Reasoning for Sequence Processing. Libby also classified aircraft

using sequences of radar based features (43). Libby used Dynamic Time Warping to recognize

time indexed sequences of kinematic and non-kinematic features derived from an aircraft.

Libby recognized that his approach is essentially an implementation of syntactic pattern

recognition which not only examines the data sequence for the presence of certain features,

but takes into account the time ordering. Libby attributes the enhanced performance of

sequence processing over single look methods to the restriction of the matching domain of

the class a posteriori probability densities. By restricting the matching domain, the classifier

essentially ignores sequences of features that are not consistent with the learned model. The

restriction decreases the a posteriori probabilities for incorrect feature sequences while not

affecting correct sequences.
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2.2.4 An Information Theoretic Argument. Statistical communication theory was

founded by Shannon in 1948 (61, 62). The theory was formulated to express in quantitative

terms the transmittal of information through a communication channel. To investigate this

process and its relationship to sequence classification, the basic unit of information needs to

be defined. The definition given by Abramson (1) is

Definition. Let E be some event which occurs with probability P(E). If we are
told that event E has occurred, then the information received, I (E), is

I
I(E) = log-

P(E)

units of information.

Assume that an information source can produce symbols al, a2, .... a,, from an alphabet

S and that each symbol is generated with probability p(al), p(a 2), ... , p(a,,). The average

information over the entire alphabet, known as entropy, is denoted by H(S) and is defined

as (32)

H(S) = L p(ai) log
Ui1 p(ai)

Entropy can also be thought of as a measure of uncertainty in the information. If each

symbol in a alphabet is equiprobable, entropy is maximized. If only one symbol from an

alphabet has a probability of occurrence (of one in this case), the entropy is zero. There seems

to be a paradox that implies the more random the event, the more entropy, or information, is

contained in the event. Cole (15) points out that there is really no paradox at all but merely a

misinterpretation of the concept of entropy. When Shannon discusses entropy from the point

of view of the sender of a message

information=uncertainty=entropy;

when he is discussing information from the perspective of the receiver of the message

information=reduction of uncertainty=reduction of entropy.

For the purpose of object classification, the recognition system is considered to be on the

receiving end of the communication channel linking the object and the input sensor. The set of
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possible measurements taken from the sensor defines the alphabet of the information source,

or object. Since the recognition system is on the receiving end of the channel, an increase in

information in the object features is directly related to a decrease in the corresponding entropy,

thus, reducing the uncertainty in the class of the measurement. The method investigated here

to reduce the entropy of the information from an object is to consider the entropy, or average

information, of a sequence of observations.

Assume a discrete random process I...., X- 2, X-1 , XO, XI, X 2 .... } where Xi are iden-

tically distributed random variables taking on values in the source alphabet S of m symbols

a,, a 2, ... , am with each symbol being generated with probability p(al), p(a2) .... p(am).

The probability of every symbol is strictly positive or it is deleted from the alphabet.

The entropy of a block of random variables, denoted H(X 1, X 2, ... , X,), is defined

by Blahut (11:59) as

H (XI, X2, ....- Xn.ý =- p(XI, X2 ..... X.) 109 p(XI, X2 ... Xn)

Sn

where p(X 1 , X 2, .... X,,) is the joint probability density function of the n random variables.

The summation over S accounts for all possible orderings of the sequence. Blahut (11:59)

shows the relationship between the individual symbol and joint entropy can be expressed as

n

H (XI, X-2, ... , X.) <! E H(Xi)(3

i=1

with equality holding if the random variables are independent

Hamming (32:135) and Abramson (1:26) show that a similar relationship exists if an

(n - l)-th order Markov process is assumed. The condition is expressed as

n
H.-l (XI, X2_, ... n) <5 H (Xi) (4)

i=l
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with equality holding for independence. Sometimes Hn1- (X1 , X2 ... , X.) is written as

H(XIXI, X 2 , .. . , X.-I) where

HIXIX -Xn.) =-I:p(Xt, X2, . ., Xn) logp(X, IXI, X2,.. ., Xn-I)

SM

Equations 3 and 4 demonstrate that constraints, or dependency, on alphabet symbols

reduce the entropy. In this particular case, the constraint is to examine a sequence of n

symbols as described in Equation 3 or a sequence of n symbols with an (n - l)-th order

Markov dependency as in Equation 4. Following this thought, it should be the case that tighter

constraints on a sequence of n symbols will reduce the entropy. To this end, the following

new theorem is proved.

Theorem 1. Assume a discrete random process I..., X- 2, X-1 , Xo, XI, X 2,...

where X, are identically distributed random variables taking on values in the source al-

phabet S of m symbols a,, a2, ... , am with each symbol being generated with probability

p(al), p(a 2),..., p(am) 9 p(a1 ) > O V i . 1 < i < m. Then H(XI, X 2,...,Xn) >

H.-I(XI, X2 ..... X,.).

Proof. Examine Hn-l(X) - H(X) where X = (XI, X 2, ... , Xn).

Hn- 1 (X) - H(X) = p(XI, X 2, . X,X) 0 1

1 1
- log p(XI, X 2,..., Xn)

which becomes

Hn_,(X) -1H(X) = YP(XIX 21 ...,Xn) [lo PXIX 2 , -- X.)

Using the relation p(X1 , X 2, .... Xn) = p(XIXI, X 2, ... , X,,-.)p(XI, X 2, ... , Xn=1)

and knowing that each factor is a probability mass function with value 0 < p(.) 5 1, it
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is seen that
p(X,,IXI, X2, .. ,X.-I) ?: p(XI, X2 ... Xn)

This implies
lg p(X1, X2,...- , X,) <0
p(X,,IXI, X2 ..... X,,-I)-

yielding the result

H (XI, X2, ... ,X,) ?: H,-I(X,, X2, . .. X)

Q.E.D.

If the (n - 1)-th order Markov constraint is relaxed, the corresponding entropy should

increase. This is demonstrated in the next theorem.

Theorem 2. Using the same presumptions given in Theorem 1, then

H(X1, X2,...- , X.) ?! HIMX, X2, ....- X.) ?: H,-I(XI, X2, ....- Xn)

where H1(XI, X2, ... , X,) represents the entropy of a 1st order Markov process.

Proof. First, show that H (XI, X2, ... , X,) ?: H,(XI, X2, . Xn)

Begin with the relationship

p(XI, X 2 , ... , X.) = p(XIXI, X2 , . .. , X.-I)p(X,-I[X1 , X2 , ... ,X-2)

... p(X 21X1 )p(XI)

Since 0 < p(XI) < I this implies that

p(XI, X2, .. - , X,) <5 p(XIXI, X2, .. X,X-I)p(X,-I IXI, X2, ... , X.-2) ... p(X21XI)

Assuming a first order Markov process, the terms on the right hand side are modified to

become

p(X1 , X 2, ... , X,) < p(XnIXn-I)p(X.-IIXn- 2)... p(X 2IXI)
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Now examine the difference Hi(Xt, X2 ,.... Xn) - H(X1 , X2 ,..., XJ). This is given as

HI(X)-H(X) = E P(X) log
Sol p(X- lxn-I)p(xn-I JXn-2)... p(X2pXI)

log pXXt, X2 .... , Xn)

which becomes

H.,i(X)-H(X) E p(X) [log p(Xs, X2, ... , Xn)
sM I p(X,,lXn-I)p(Xn-I IXn-2) .. ••p(X21XT)l

The log term is always less than or equal to zero which gives the result

H (XI, X2, ... Xn) H, H(XI, X2, ... Xn) (5)

Now show that H,(XI, X 2, .... X.) > Hn-1 (XI, X 2, ... , X,). Here, begin with the

relationship

p(XnIXI, X 2, ... , X.-)p(XI, X 2, ... -)

- p(XnIXI, X 2, ... , Xn-I)p(Xn-IIXI, X 2 ... Xn- 2) ... p(X2IXI)p(XI)

which can be rearranged as

p(XnIXI, X2 , .. , X,._) = p(XIX, X2, ..... X,-)p(Xn-IXI, X2, ... -2)

... p(X2 1XI) p(X1 )
p(XI, X2, . . . , Xn-0)

The fraction on the right hand side is greater than or equal to one yielding

p(XIXI, X2,..., Xn-1) ?: p(XnIXI, X2,..., Xn-I)p(Xn-IIXI, X2, ... , Xn-2)

... p(X 21XI )
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Applying the 1st order Markov property to the right hand side gives

p(Xn IXI, X2 ..... X.-I) ?! p(X.[X,-I)p(X,,-I IXn-2) ... p(x21IXD

Now examining the difference HI(X 1 , X 2, .... X ) - H.-I(XI, X 2, ... , Xn) yields

HI(X)X-)H =(X) Ijp(X) [log
SM ~ ~~~~~ ~~ P(-lnIPx- ~ )..p(X2[XI)

-- log p(XnIXI, X2 , .... , Xn- 1'

which becomes

H,(X) - Hn_,(X) = E p(X) [log p(XnIX,, X 2, . ., X..-.1)
s, ( , I P X,,~-I ) p( Xn-lIXn-2) . .. p( X21X I) I

Here, the log term is greater than or equal to zero yielding

HI(XI, X 2 , ... , X.) > H,,-(XI, X2, ... , X,) (6)

Equations 5 and 6 are combined to give the desired result

H(XI, X2,..... X.) > Hi(XI, X2, ....- Xn) ?! Hn-I(XI, X2, ... Xn)

Q.E.D.

The results of Theorem 1 and Theorem 2 can be combined with Equations 3 and 4 to

show in general terms the affects of putting constraints the production of alphabet symbols.

The final result is

nE H (Xi) ?> H (XI, X2, ... Xn) ?: H,(XI, X2., Xn) ?: Hn-I (XI, X2, . .. X)

i=1
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It has been proven that if there is dependency in the sequence of occurrences from

the alphabet, the entropy of the joint occurrence is less than the entropy of the individual

events. A pattern recognition algorithm accessing the greater wealth of information in the

image sequence will have equal or greater classification accuracy than single look methods.

Furthermore, by putting additional constraints on the type of dependency of the sequence, in

this case a Ist and (n - 1)-th order Markov process, the entropy is reduced. Classification

using an algorithm designed to account for this dependency will increase. This information

theoretic argument is consistent with those attributed to Le Chevalier (40) and Libby (43)

and form the basis for the consideration of the spatio-temporal sequence classification method

used in this research.

2.3 The Hidden Markov Model - A Sequence Recognizer

Now that it has been established that sequence classification can have advantages over

single look methods, an algorithm to implement sequence classification must be found. The

sequence classification method used in this research is the Hidden Markov Model.

When attempting to characterize the property of real-world signals, modeling methods

can be categorized into two main types: deterministic and statistical. Deterministic models

generally exploit a known property of the signal and concentrate on estimating signal parame-

ters. As an example, a deterministic model would estimate amplitude, frequency, and phase for

a sine wave signal. Statistical models assume the signal can be characterized as a parametric

random process and that the parameters can be estimated accurately. Gaussian, Markov, and

the Hidden Markov Model, which is used in this research, are examples of statistical models.

Hidden Markov Model techniques have been used extensively in the area of speech

recognition over the past 15 years and have become the technique of choice among many

researchers because of their ability to successfully learn the time varying characteristics of

the spoken word. Here, concentration is given to modeling signals, the time varying features

of 3D objects in 2D image sequences, for the purpose of object identification. Excellent

reviews of the Markov process and its extension to the Hidden Markov Model are given by
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Rabiner (55), Rabiner and Juang (53), Levinson (42), and Poritz (52). A brief description of

the Markov process and its extension to the Hidden Markov Model based on Rabiner (55)

follows.

Consider a system which can be in one of N distinct states, St, S2, ... SN where a

state corresponds to a physical event or observation. Figure I illustrates the case for N = 5.

a22
all

a 3 a aa 3 3

"a45 0
"55 844

Figure 1. Architecture of a five state Markov process. Several possible links were omitted
for clarity.

Assume at regularly spaced times, the system undergoes a change in state (possibly to

the same state) and associate with the state changes the time variable t = 1, 2, ... , T.

Associate the actual state at time t with the variable qt. A full probabilistic description requires

the specification of the current state and all past states. For the special case where the system

behaves as a first order Markov process the probability can be written as

aij(t) = P (qI = SJIqt-I = S, qt-2 = Sk .... ) = P (qt = Sj q,-I = S,) (7)

If the process is stationary, the transition probabilities are defined as

aij = P (qt = Sjlqt-l = Si), I < i, j < N (8)
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The discrete Markov process is called observable if the output process is the set of states

at each time instant that corresponds to an observation from a sequence 0 = (o0, 02, .... OT }.

If the observations are a probabilistic function of state, the process is called a Hidden Markov

Model. Here, a sequence of observations is known but the actual state the process was in when

the observation occurred is unknown. Thus, a direct connection between a state and a physical

event cannot be made as with the observable Markov process. This characteristic enables the

Hidden Markov Model to be applied to wide range of problems where the direct connection

between states and physical events is not possible. A discrete first order Hidden Markov

Model is typically defined by the number of states, N, the number of distinct observation

symbols per state, M, and the 3-tuple k = (A, B, FI) where

1. A = {aij ) represents state transition probabilities aq = P (qt = Sj qtI = Si).

2. B = {bjt I is the output observation probability distribution in state j, given

as bj (k) = P (vk at t Iqt = Sj) with k E M and vk representing an individual

observation symbol.

3. 11 is the initial state distribution.7ri = P(q, = S,)

These parameters induce the probability measure P (OX) which indicates how closely an

observation sequence is associated with a particular model X.

Rabiner (55:261) describes three problems that must be overcome to use Hidden Markov

Models. These are

"* Problem 1. Given an observation sequence 0 = {01, 02, .... , OT) and a model

X = (A, B, H), how is P(OIX) computed in an efficient manner?

"* Problem 2. Given an observation sequence 0 = {o0, 02, ... , OT), how is the corre-

sponding state sequence Q = {qI, q2 , ... , qT } determined?

"* Problem 3. How are the model parameters, I = (A, B, I'H), adjusted to maximize

P(0 IX) for a specific set of training data?
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This research will not be concerned with the answer to Problem 2 since the estimated

state sequence is not part of the classification method used here. The answers to Problems I

and 3 are related and described below.

In answering Problem 1, Rabiner considers an observation sequence of the form, 0 =

{o,, 02, ... , OT), and a single fixed state sequence Q = {qj, q2, ... , qT) (55:262). Assuming

statistical independence of a particular observation conditioned on a particular state, the

probability of the observation sequence for this state sequence is

T

P(OIQ, 1) = I- P(olq,, X)
t=1

This can also be written as a product of B matrix entries as

P(OIQ, X) = bq(O)bq 2(O•2) • •bqr (OT)

The probability of the state sequence is a product of the initial state probability and entries

from the A matrix

P(QIX) = 'rqaq,q2aq2 q3 ... aqr-.qr

Since P(O, QI1) = P(OIQ, X)P(QI1) we can sum this product over all possible state

sequence to arrive at

P(O[X) = • P(OIQ, X)P(QIX) (9)

Given that the model parameters are known, Equation 9 is of little use in calculating

P(OIX) for a test observation sequence. The number of mathematical operations required

to evaluate Equation 9 is on the order of 2T N . For a five state Hidden Markov Model and

a sequence of 20 observations, the required number of operations is on the order of 102P.

Fortunately, dynamic programming algorithms have been developed to reduce the complexity

of the calculation.
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Baum and Eagon (8), Baum and Sell (10), and Baum (7) developed what is known as

the Forward-Backward Procedure. Here, two intermediate quantities are defined, namely

the forward variable a, (i) and backward variable fiP (i) where i represents an allowable state

and t is the time index. Define

C1,(i) = P(o0, 02, .... o,, qt = Si1)

which is the probability of observing the partial sequence and being in state Si at time t given

the model. It is shown in Appendix A that the forward variable follows

tl(i) = 7ribi(ol), 1 < i < N

where N is the number of states in the Hidden Markov Model. By induction

a,1+ 1(j) = [ c(t(i)aij bj(ot+1), 1 <t <T - 1and I< j 5N

Summing the forward variable over all states at time T yields

N

P(O1)) = E CT(i) (10)
i=1

The calculation of P(OIX) using this method requires on the order of 2N 2T operations for

evaluation. For the five state model and a sequence of 20 observations this is 1000 operations

compared with 1021 as seen before. Equation 10 will be the method used to calculate P (O I)

throughout this dissertation.

The backward variable is similarly defined as

fi1(i) = P(ot+l, 0,+2, oTlq, = Si )1)
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that is, the probability of being in state Si at time t and observing the remainder of the sequence.

fiT (i) is initialized to 1 for all states. For all other times the following recursive formula holds

NA= E aijbj(ot+t0A+t(j), t = T - 1, T - 2,..... 1 and 1 < j :< N

j=I

With the solution to Problem 1 in hand and the forward and backward variables defined,

attention can be turned to the solution of Problem 3. Determining a method of adjusting

the model parameters to maximize the probability of a training observation sequence is the

most difficult Hidden Markov Model problem to overcome. There is no known way to

analytically solve for the model which maximizes the probability of an observation sequence.

In fact, given any finite observation sequence as training data, there is no optimal way

of estimating the model parameters (55:264). Baum and his colleagues, however, have

determined an efficient iterative method of locally maximizing the model parameters in a

maximum likelihood sense (6, 7, 8, 9, 10). For two models X (estimate) and 1 (re-estimated)

they defined the auxiliary function

Q(X, -) = E P(O, QIX,) log P(O, QI) (11)
Q

Baum and his colleagues have shown that maximization of Equation 11 results in three

iterative equations used to update the model parameters given a training observation sequence.

Embedded in these equations are the forward and backward variables previously defined.

The following equations used to learn Hidden Markov Model parameters from a training

observation sequence are collectively known as the Baum-Welch re-estimation formula.

a tl(001 (i)

P(OIX)

a- =1i=I rx(i)aiAbj(Ot+i)f,+ i(j)
T-i
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T
- 2..=i.O,=k at(J)f t(J)

b (k) E= o-•2=Ia(j)fit(j)

It was shown by proof that P(OI) P P(OI)) with each iteration of the above rules (7).

Equality holds when a local maximum in the parameter space is encountered. Derivations of

the reestimation formula are found in Appendix A. The Baum-Welch reestimation formula

will be the Hidden Markov Model learning method used in this dissertation.

2.3.1 Hidden Markov Model Varieties. This section will discuss the types of

Hidden Markov Models that will be used in the experimentation for this dissertation. These

include the discrete ergodic, discrete left-right, and continuous left-right Hidden Markov

Model.

The type of Hidden Markov Model that has been discussed so far has the property that

any state will be revisited with probability one and that such revisits are not required to take

place at periodic time intervals (53:12). This type is known as an ergodic Hidden Markov

Model. The ergodic model can be thought of as having a full transition matrix. The state

diagram is the same as the Markov process shown in Figure 1. The observation probabilities

for this model are probability mass functions determined by the Baum-Welch reestimation

formula. The ergodic model is trained with a single long observation sequence.

For applications such as speech recognition, another type of model architecture has

been found to account for observed properties of the signal better that the standard ergodic

model (55:266). This model is called a left-right or Bakis Hidden Markov Model (55:266)(3)

and has the property that as time increases, the state index increases or stays the same. The

left-right Hidden Markov Model has the desirable property that it can readily model signals

whose properties change over time (55:266). The transition matrix for the left-right model is

upper triangular. Also, the initial state probabilities have the property of 7ri = I for i = I and

0 otherwise. That is, the left-right model always starts is state one. The state diagram for a

left-right Hidden Markov Model is shown in Figure 2.
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Figure 2. Architecture of a five state left-right Hidden Markov Model. Some links from
lower to higher states have been omitted for clarity.

The left-right Hidden Markov Model is typically trained with many observation sequence

samples from the signal to be modeled. The Baum-Welch reestimation formula require a

minor modification. Denote the set of K observation sequences as

o = [ol,2..., OK]

where Ok -- [Of, 0•, ... , 0]. The reestimation formula now follow

=- j(A) r xi- at(i)ajjbj(O(+j)flt+j(J)
-Ij -" E k 1 "T--I

=1 (OIA' Et=, CG(JA(W

K I

The closeness (classification) measure for this multiple observation case is calculated by

K

Pk(OIX) = - P(Ok pX)
k=1

Both the discrete ergodic and discrete left-right Hidden Markov Model reestimation

formula suffer from an implementation problem. Even in problems with a moderate number

of states and relatively small observation sequence lengths, the forward-backward variables

exponentially decrease toward zero and cause underflow errors in most computers. Ra-
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biner (55:272) suggests a scaling technique to eliminate this problem. This dissertation

circumvents this problem by performing all calculations in logarithmic arithmetic. The sum-

mations in the reestimation formula can be calculated with the following rule where it is

assumed x > y.

log(x + y) = log(y) + log (I + 10log(x)-log(y)

The logarithmic arithmetic versions of the Baum-Welch reestimation formula are found in

Appendix A.

The final type of Hidden Markov Model used in this dissertation is the continuous

left-tight model (54). Here, the state transitions follow the same property as its discrete

version, but the observation probabilities are modeled with Gaussian mixtures. The Gaussian

mixtures allow for the creation of probability density functions in place of the probability mass

functions of the discrete case. Until now it has been assumed that the data in the observation

sequence was one-dimensional, or multi-dimensional data that had been vector quantized.

The continuous Hidden Markov Model can process multi-dimensional data and may have

advantages in problems where vector quantization causes serious loss in the information

contained in the observation sequence.

The discrete ergodic and discrete left-right Hidden Markov Model training and classifi-

cation algorithms are implemented in the C programming language on a variety of computer

platforms that include NeXT, Sun Sparcstation 10, and Silicon Graphics workstations. The

continuous Hidden Markov Model was implemented on a Sun Sparcstation 10 using Entropic's

HTK Hidden Markov Model Toolkit (23).

2.3.2 Classification Methodology. Once the model for each class has been

defined with training observation sequences, the probability of a new observation sequence,

P(OnewI.), can be calculated. The correspondence between an observation sequence and

the probability of generation allows identification of new sequences relative to those used to

train models. The recognition of an unknown observation sequence results from choosing the
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maximum P(O,.,1A) over all models which can be written as

C = argmax P(O,,ew I1') (12)
1<i_.N

where i is an index over the N object models and C is the classification. A block diagram of

the process is shown in Figure 3. This method of classification will be used in this dissertation.

I
.•Probability 

rV .
C,•n,,,tation ( l.

Observation 2 class
Sequence 2

"[ o p aioProbability max

A NSProbability [P(OI1.)
- Computation

Figure 3. A block diagram of a Hidden Markov Model classification system. The new
observation sequence is compared to every model. Classification corresponds to
the model with the largest response.

Note that this form of classification is not Bayes optimal. The method would be Bayes optimal

if an infinite amount of data were available, the data were generated by a 1st order Markov

source, and the Hidden Markov Model training procedure found a global maximum in the

parameter space (24:372).

2.4 Single Look Classifiers

To measure the classification advantage of the Hidden Markov Model technique, two

single look classifiers will be used as a performance baseline. The two single look techniques

are distinguished by the dimensionality of the data used. The single look vector quantizer
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(VQ) classifier uses one dimensional data and is used as the benchmark for comparison with

the discrete ergodic and discrete left-right Hidden Markov Model classifiers. A one nearest

neighbor technique will be used as a benchmark for comparison with the continuous Hidden

Markov Model classifier (21:98).

Hidden Markov Models will be trained and tested using different numbers of sequences

of various lengths. Hidden Markov Model classification rates are determined by the percent

of the sequences correctly classified. To find the equivalent single look classification rate, a

single look classification will be made on the object in each frame of the image sequences

considered. The percentage of frames correctly classified from the total number examined

will define the single look classification rate of image sequences.

2.4.1 Vector Quantizer Classifier. Discrete Hidden Markov Models accept se-

quences of one dimensional data for processing. Before using multi-dimensional data, it

must be vector quantized to convert the sequences of high dimensional data to sequences of

codewords or inteprs. For implementing a Hidden Markov Model classifier, data from all

classes under consideration are used in creating the vector quantizer codebook. The particular

method of creating a vector quantizer for this dissertation is the LBG algorithm (44). The

LBG algorithm is a k-means like procedure.

The number of clusters used in creation of the vector quantizer is directly related to the

desired fidelity of the quantized representation of the original multi-dimensional data. When

the vector quantizer is created, it is usually the case that some clusters will contain more that

one class of data. Each cluster in the vector quantizer will be given a label according to which

class has the most representation. With each cluster labeled by class, multi-dimensional data

gathered from an object in a test image is vector quantized. If the codewcrd produced by the

vector quantization process is associated with the same class as the test object, the classification

is successful. If the codeword produced is associated with another class, a classification error

occurred. This process will be known as the single look vector quantizer classifier.
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2.4.2 One Nearest Neighbor Classifier. The one nearest neighbor (1 -NN) classifier

is chosen to be the benchmark for the classification performance of the continuous left-right

Hidden Markov Model. The set of prototype feature vectors of dimension m from each of the

N classes is denoted by yi, i = 1, .... N. Each prototype set contains ki feature vectors. A

feature vector from a test object is collected and compared to every prototype feature vector

from each class using a Euclidean distance measure. The distance of the test vector to each

class, Y', is defined by

d(x, Y')= min 1xj- 112  where ) EY'
j=l ....

The class, C, of the test object is determined by choosing the class with minimum distance to

the test vector using the following relation

C = argmind(x, yi)
I<i<N

A correct association is a classification success. A match with an out of class object is a

classification error.

The 1-NN single look classifier is straightforward to implement and is not computa-

tionally expensive for moderate feature vector and class prototype sizes. The 1-NN algorithm

is a suboptimal procedure whose use will usually lead to an error rate greater than the Bayes

rate (21:98). With unlimited prototype sets, the error rate is never worse that twice the Bayes

rate.

2.5 Multiple Frame Single Look Classification

An alternate sequence identification technique is also investigated in this dissertation

with its classification performance compared to that of the Hidden Markov Model. The

multiple frame single look technique is an extension of the single look classifiers described

in the previous section. Here, each frame in an image sequence is classified according to

the appropriate single look technique, I-NN or VQ. A classification decision made for the
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entire sequence is based on which class is identified in a plurality of the frames considered.

If the class with the plurality of decisions is the same as the test class, a proper classification

is made. It is important to emphasize that this is a multiple frame technique and not a true

sequential classification technique as is the Hidden Markov Model. The multiple frame single

look classification technique will provide the same answer regardless of the order in which the

frames are processed. The Hidden Markov Model inherently is concerned with the processing

order since it is a form of syntactic pattern recognition.

The multiple frame classification method has roots in a discipline known as sequential

analysis (72). The multiple frame single look classification method corresponds to a sampling

inspection technique called the single sampling plan. The purpose of the single sampling

plan is to inspect a lot of some item for quality control. N items are selected from the lot and

examined for defects. The lot is discarded if more than c, c < N, defects are found. The

interesting point is that all N items are inspected before a decision is made. This scenario is

equivalent to a two class recognition problem. In a sequence of frames of size N, each frame

is classified with the single look 1-NN or VQ technique. The class that wins more than N/2

of the frames becomes the class label for the sequence. Considering Class I of the two class

problem and assuming independence, it is interesting to note that the probability that a certain

number of frames will be classified correctly obeys the Binomial probability density function

given as (72:7)
N!N-

P(XI = k) = k!(N -k)pk(l - p)N-k (13)

where p is the single look probability of correct classification of Class 1 while (1 - p) is

the single look probability of error. X, denotes Class 1 and k the the number of correctly

identified frames from the sequence of size N. The probability of correctly classifying the

sequence is the sum of the probabilities found by Equation 13 where k > N/2. For the multi-

class problem, the probability of correctly classifying a certain number of frames follows the

Multinomial probability density function whose form is (60:30)

P(XI -= k, X2 - k2, X1 = k- N! kp k2 .k.. p(1

p 2 ..p 
( 1 4 )
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where Xi are class indicators, ki are number of the N frames determined to be Class i, and pi

are the single look correct classification rates. The probability of classifying a sequence as a

certain class is found by summing Equation 14 for all combinations of ki where k, > ki for

i = 2, 3, ... , 1. The effects of sequence length and single look error rate are demonstrated

in the following example. Consider a three class problem where these effects are shown on

class 1. To Examine the effects changing the number of frames in the sequence, N, has on the

sequence classification rate, consider Figure 4. Figure 4 graphically shows this effect where
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Number of Sequence Frames

Figure 4. The effect of varying the total sequence frames on the multiple frame classifier for
a three class problem. 10 values of the single look classification rates are examined
with the remaining error divided evenly between Class 2 and Class 3.

10 different Class 1 single look correct classification rates are considered. The corresponding

error rate of Class 1 is divided evenly between Class 2 and Class 3. For a fixed single

look correct classification rate above 0.2, the probability of correctly classifying a sequence

increases with the number of frames in the sequence. For single look rates below 0.33, the
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sequence classification rate decreases with increasing sequence length since the probability of

the correct class winning a plurality of the frames decreases.

Now consider holding the number of frames in the sequence fixed and varying the single

look classification error rate for Class 1. The single look error rate is varied between 0.0 and

1.0 in increments of 0.1. Figure 5 depicts this effect for sequence frame lengths from 5 to 50

in increments of 5.

0.9-

S0.8,

0 0.7-j• 50 Frames

0.5-U " 0.5- 5 Frames

S0.4

I 0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1

Single Look Error Rate

Figure 5. The effects of varying single look error rate of Class 1 on the Multiple Frame

Sequence Classifier for a three class problem. The single look error rate is varied

between 0.0 and 1.0 in increments of 0.1. Effects on sequence frame lengt-xs from
5 to 50 in increments of 5.0 are shown.

Given a fixed single look error rate, the probability of correctly classifying a sequence again

increases with the sequence length.

31



2.6 Leave-One-Out Error Estimation

Error counting methods of error estimation allow the calculation of a performance in-

dex for a given pattern classification algorithm. The performance index of interest here is

the average probability of misclassification of the algorithm yielding an estimate of its future

performance. There are many varieties of approaches to error estimation which include: re-

substitution, hold-out, hold-one-out, rotation (18:343-357), and bootstrap (26:239-252) (22).

The error counting method used in this dissertation is the leave-one-out method. A brief

review of the well known resubstitution and holdout methods will help with the understanding

of the leave-one-out technique.

The resubstitution method consists of using all known data to design and test the clas-

sification algorithm. This method often underestimates the actual error rate of the algorithm,

producing an optimistically biased estimate, if the sample size is not large enough (66:473).

Unfortunately, a number cannot be put on the minimum sample size for this method to yield ac-

curate results. However, the minimum sample requirement rules of Cover (16) and Foley (25)

provide a reasonable lower bound.

The hold-out method is a procedure where the sample data set is divided between a

portion used to design the classifier with the remainder used as an independent test set for

performance evaluation. A common splitting method for hold-out is to divide the data evenly

between the design and test set, however, other researchers have used smaller fractions of the

data for the design set (33) (7 1). When the sample size is not large enough, this method makes

poor use of the data presumably because a better classifier could have been designed using

all of the data. Thus, the hold-out method yields a pessimistically biased estimate of the true

error rate. Devijver and Kittler report for small to moderate sample sizes the resubstitution

and holdout methods may have very significant discrepancies in the observed error rate with

the hold-out method yielding error rates an order of magnitude larger than the resubstitution

method (18:355). The hold-out method can be made more reliable by averaging the error over

many possible partitions of the data of fixed size (66:473) (71:286).
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The leave-one-out error estimation method is a variant of the hold-out method where

the hold-out portion is a single data sample. An estimate of the error is obtained by holding

out 1 sample of data, training the classifier on the remaining data, and then testing the held

out sample. This sequence is repeated for each piece of data. The leave-one-out method

has been described in the literature by (18, 26, 27, 28, 38, 39, 47, 71) and is attributed to

Lachenbruch (38). This method also appears to have been independently arrived at in the

same year by the Russian researchers Lunts and Brailovskiy (47). The leave-one-out method

has the advantage of reducing the bias of the hold-out error estimate since virtually all samples

are used in each design and all samples are used in a test. The distribution of the design and

test samples b and T are virtually identical and if the number of samples is large enough,

approximate the true distribution. The reduction in bias of this estimator is achieved at the

price of an increase in the variance (18:356). This increase is due to the correlation of the

decision function between test trials (39:5). Generally, this correlation is small and its effects

are limited. Because the leave-one-out method uses the available data in an efficient manner

and has been shown to yield a tighter upper bound on the estimation of the Bayes error rate, it

will be the error estimation method of choice used to estimate the error rates of all algorithms

in this dissertation.

33



III. A Hidden Markov Model Distance Measure for Classification Analysis

3.1 Introduction

A measure of the distance between pairs of Hidden Markov Models gives insight into

the sensitivity of the model to changes in parameters (35). Additionally, the distance measure

is an important tool for analyzing the performance of Hidden Markov Models in a multi-class

pattern recognition problem. If the distance measure between two Hidden Markov Models

is small, the recognition system can be expected to have a worse classification accuracy than

when the distance is large. This dissertation will use the distance measure as a classification

analysis tool. A new, more robust method for measuring the distance between pairs of Hidden

Markov Models is presented. Previous methods are briefly reviewed to put the new method

in context. The new method described here does not depend on a specific Hidden Markov

Model architecture and is valid for Hidden Markov Models that use discrete or continuous

observation densities.

3.2 Previous Methods

The first distance measure used for comparing pairs of Hidden Markov Models was

proposed by Levinson et al. (42). This method is a Euclidean distance measure of the state

observation probability matrices between two models given by

I (15)d(,•.)-- i -B21- [bj'k •(~ (5

1 j=1 k=1

Equation 15 is called the "measure of estimation error". A minimum bipartite matching

scheme is used to determine the optimum state permutation for aligning the states of two

models. This measure does not depend on the initial state probabilities, n, or the state

transition matrix, A. The reason given is that the B matrix is the more sensitive parameter

related to Hidden Markov Model closeness.
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Juang and Rabiner (35) point out three problems with the distance measure in Equa-

tion 15. These are: 1) it does not take into account all of the Hidden Markov Model parameters;

2) its evaluation requires a great deal of computation in the discrete state observation density

case and becomes intractable for continuous densities; and 3) it is unreliable when comparing

Hidden Markov Models with highly skewed densities. Juang and Rabiner (35) propose a new

distance measure, denoted as d(.L, -2), to alleviate these problems which has the form

1 1
d(Xl, 1 2) log P(OiX1 )-- log P(O-lI 2 ) (16)

T T T10 (TX2

The superscript on O1 indicates the training sequence of T frames is from class 1. This

distance measure is nonsymmetric in the sense that a similar evaluation with the training

sequence from class 2 may not yield the same result. The extension of this measure to a

symmetrized version, D,(X 1, ;,2), is

D, ( 1,)12 [d(),l k2) +• d(X.2, •k1)]D3 A,X2) =,

where d(. 2, XI.) has the form

1 1
d(, 2 ,))--7 log p(O iX2 )-- log p(O2 1),)

Juang and Rabiner describe how their distance measure is derived from statistical anal-

ysis of probabilistic functions of Markov Chains and give an interpretation from the Kullback-

Liebler statistic point of view (35:393). Their method is easily extendible to continuous state

observ-'on cases. Equation 16 is originally formulated for ergodic Hidden Markov Models

which are trained with one sufficiently long sequence. Left-right Hidden Markov Model must

be trained with multiple sequences. Juang and Rabiner's extension of Equation 16 for the

left-right Hidden Markov Model takes the form

log P(OIX 1) log P(Ot,]jX 2)
, Tn=1 (n=1
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where T is the total length of the N sequences used for training. A more compact form is

d(. 1 , X2 ) =- 1. P(OFIo2) (17)
T nlo (OnIX2)

The distance measure of Juang and Rabiner (35:403) that is extended to the case of the

left-right Hidden Markov Model has the flavor of a statistical distance measure of the Hidden

Markov Model output distributions, but it is not. Notice that Equation 17 is not the difference

between the means of the distribution of the responses of each Hidden Markov Model. The

difference between the means would be an example a first order statistical analysis of the

output distributions and would be of the form.

d t )--log P(OtXi)- -l log P(OJX2) (18)

Equation 18 can be written as

1 Nl P(OI X)(
do,,, X2) - 0logP

What in essence is a variation of the distance between the means was proposed by D'Orta et.

al. (20) and has the form.

d(X1 , X2) 1 log Po )(20)
n '- P(O, IX2 )

D'Orta's (20) measure, Equation 20, does not normalize out the effects of different sequences

lengths as does the measure of Equation 19. Since the Hidden Markov Model output prob-

abilities are directly affected by the sequence length, not normalizing spreads the output

distributions and can detrimentally affect the analysis.
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3.3 A New Method

This paper proposes a new method for evaluating the distance between a pair of Hidden

Markov Models that is based on a statistical evaluation of the distribution of the output

responses. For a Hidden Markov Model to perform well, there must be an adequate length

or number of training sequences for the problem at hand from which information is extracted

allowing a reasonable estimate of the model parameters. Once the Hidden Markov Model for

each class is trained, test sequences of each class under consideration can be evaluated against

each Hidden Markov Model. The measurement obtained from each Hidden Markov Model

for a particular sequence is log P(OIX.) which is normalized by its sequence length. When

enough test sequences from a given class are evaluated against each Hidden Markov Model,

a distribution of Hidden Markov Model output values begins to form. A statistical measure

of the distance between the output distributions is a sound method of determining the distance

between a pair of Hidden Markov Models where classification is the goal.

Basing a distance measure solely on the means of the two sequence normalized distri-

butions in question can be misleading. Two distributions whose means are far apart and whose

distributions have significant overlap would appear better than two distributions whose means

were close and whose distributions did not overlap. This condition is seen in Figure 6.

The procedure proposed here does not suffer from this problem. Higher order statistics

are used in conjunction with the Bhattacharyya distance for measuring the separability be-

tween the output distributions of a pair of Hidden Markov Models (26:99). The Bhattacharyya

distance is derived from an analysis of determining an upper bound on the Bayes error rate

of a two class problem and evolves from a special case of the Chernoff bound (26:98). This

special case assumes Gaussian distributions and is considered to be an important measure

of class separability. This distance measure is also reasonable to use with non-Gaussian

distributions (26:103). The general form of the Bhattacharyya distance, denoted d8 (11, X.2),

37



-20 -15 -10 -5 0 5 10 15 20

Class 1 Class 2

-20 -15 -10 -5 0 5 10 15 20

Figure 6. (Above) Example where the means of two distributions are far apart but have
significant overlap. (Below) Example where the means of the two distributions
are closer but have limited overlap.

is

1M F1+ +MI+ ( 5, 72l)

dB( X1 , 1 2) = ((M2 - MI) ( ) - In (21)

M represents a class mean vector and E represents a class covariance matrix. The first term of

Equation 21 is a measure of the class separability due to the difference in the means while the

second term is a measure of separability due to the covariance difference. The Bhattacharyya

distance for the 1-dimensional case used in this dissertation is

Ii 1 _ a2  • (22)

38



The value of this new distance measure is seen in the following example where the

nonsymmetric distance measures are evaluated. Consider a three class problem where the

output responses of classifier 1 are Gaussian with the means and variances shown in Table 1.

Two thousand samples (simulating responses to observation sequences of length 20) from

these distributions are generated for evaluation. The sample statistics are also reflected in

Table 1. Notice in this example that the distance between the means of Class 1 and the other

Table 1. Means and variances of the output of classifier I to three classes of data. True and
Sample statistics are shown.

Class True Mean True Variance Sample Mean Sample VarianceF -3.000 1.000 -2.925 1.052
2 -4.500 1.000 -4.531 1.019

3 4.500 0.063 -4.501 0.062

two classes are chosen to be ideally equal. This is the regime where the new measure, based on

the Bhattacharyya distance, will have the greatest effect in producing a more reliable distance

comparison. Figure 7 is provided to graphically show the output distributions of classifier

I for the three class example. The two thousand data samples are processed by each of the

previously described distance measures. The computed distances from Class I to Class 2 and

Class 1 to Class 3 are shown in Table 2.

Table 2. Nonsymmetric distance results for the example problem.

Distance Measure Classl-Class2 Classl-Class3
Means 0.080 0.078
Juang 0.080 0.078

D'Orta 1.610 1.576
Proposed 0.484 1.117

Examination of Figure 7 clearly shows a substantial difference in the overlap of the

three class distributions. The Class 1 distribution overlaps Class 2 to a greater degree than it

does Class 3. In the Bayes classifier sense, more classification errors would occur between

Class 1 and Class 2 rather than Class 1 and Class 3. However, the only distance measure that
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Figure 7. Plot of the output distributions of classifier I for the three class example.

clearly reveals this situation is the new measure based on the Bhattacharyya distance. This is

because the other measures are essentially determining the distance between the distribution

means while ignoring the contributions of the class variances.

3.4 Conclusion

A new method for analyzing the distance (distance) between a pair of Hidden Markov

Models has been proposed. This method uses higher order statistics and the Bhattacharyya

distance measure to find the distance between the output distributions of each Hidden Markov

Model using the training sequences as inputs. A worst case example has demonstrated that this

method is a sound approach yielding a realistic distance measurement between Hidden Markov

Models when used for classification. The symmetric distance measures will be evaluated on

experimental data in Chapter IV and in Chapter V and will aid in analyzing classification

performance.
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IV Temporal Image Classification Using Moving Light Displays

4.1 Introduction

This chapter describes the experimentation and evaluation of the proposed spatio-

temporal pattern recognition technique using a class of imagery known as moving light

displays (MLDs). Individual frames of a MLD image sequence contain very little spatial

infortimation. The information content is highly temporal in that sense that image sequences

are required for object identification. For this reason, the MLD class of imagery presents

a challenging performance test for the Hidden Markov Model classifier. The continuous

left-right Hidden Markov Model is used to evaluate the MID imagery. The single look

and multiple frame methods are also investigated with their performance compared with the

classification accuracy of the Hidden Markov Models. It will be shown that the Hidden

Markov Model classifier significantly outperforms the alternate techniques.

4.2 What is a Moving Light Display?

Moving Light Displays are image sequences which contain only selected points of a

3D object in each frame. MLD's have long been associated with psychophysical research

into how humans recognize moving humans (4, 17, 29, 34, 56). The conclusions drawn are

applied to the recognition of moving objects in general. A typical way to make a MLD is to

attach reflective tape to a person's major joints, focus a strong light on the subject, and record

a video sequence with the contrast adjusted so that only the reflective tape is seen (4:215). A

single frame of such imagery is unrecognizable. However, sequences of this imagery gives

(typically in 0.4 second) not only a perception of motion of a 3D object but allows recognition

of the sequence as a person and a description of the type of motion (4:215). A single frame

from a MLD sequence contains very little spatial information about the object The image

sequence, however, does contain a high level of temporal information sufficient for human

recognition of the object and the type of motion it is displaying.
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Most automated techniques applied to MLD imagery only determine the type of motion

an MLD is undergoing in an image sequence. The motion of human MLD imagery is typically

determined by analyzing the pendulum motion between pairs of points (29, 34, 37, 56).

Heuristic rules are then applied to identify the specific type of motion. Bulpitt and Allinson

have a method that uses a neural network to interpret the motion in MLDs (12). A measure of

the relative position of each point to the center of object movement is the information provided

to the neural network for motion identification.

4.3 Moving Light Display Classification

This dissertation, in contrast, investigates the automated recognition of MLDs using

object shape features and the Hidden Markov Model classifier. MLD sequences of three

geometric shapes are used in this experimentation. These shapes are the cube, sphere, and

pyramid shown in Figure 8.

E .... . ... ..
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(a) (b) (C)

Figure 8. Moving Light Display imagery of the (a) cube, (b) sphere, and (c) pyramid (above).
Connected versions of the shapes are shown below.

Each geometric object is surrounded by six stationary points to add additional confusion

to single frame recognition by humans. The stationary points were also included in this
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experimentation to be consistent with previous psychophysicological research. The cube in

Figure 8 is constructed with 21 points, the sphere with 19 points, and the pyramid with 20

points. A model description of each geometric shape along with its stationary background

points were generated in BRL-CAD (67). All MLD image sequences are produced through a

C language program that accessed the BRL-CAD library functions. To demonstrate the lack

of spatial information in the individual MLD frames, several views of the cube moving in a

clockwise direction around the z-axis is shown in Figure 9. The z-axis (vertical) of the cube

is canted toward the observer by 30 degrees.
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Figure 9. Nine views of the cube MLD as it rotates in a clockwise azimuth direction. The
nine views are spaced in five degree increments.
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4.3.1 Data Preparation. The MLD imagery used in this experimentation has pixel

dimensions of 128 x 128. Six Fourier magnitude coefficients are chosen as feature vector

components for the MLD imagery. The six features are gathered from a 2 x 3 rectangle whose

lower right comer rests on the f, axis at (fx = -1, f. = 0) as shown in Figure 10.

fy

2x0

FFr Magnitude

Figure 10. Feature collection process for the MLD imagery. Six low frequency Fourier
Magnitude coefficients are kept as shape features.

The upper left hand comer of the rectangle is at (f, = -2, fx = 2). These features were

selected to avoid the DC component which simply measures the total energy in each image.

Due to the nature of the MLD imagery, the DC component would not be significantly different

for the three geometric shapes making it a poor choice as a feature. Each feature vector

component is statistically normalized using Jhe normalization formula

Xi= (23)

where xi is the ith component, jii and ai are the mean and standard deviation of the ith

component computed from all feature vectors under consideration.

The motion scenario for the MLD imagery is based on Callahan and Weiss's (13)

modification of the aspect graph generation method of Koenderink and van Doom (36). A

viewer centered approach is adopted with the object at the center of a transparent sphere. As

the observation point moves on the surface of the sphere, the observed object features change.
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The region of interest for observing MLD object movement is restricted the portion of the

viewing sphere for object azimuth angles 00 to 1800 and elevation angles from 00 to 75'.

Left-right motion sequences are used to expresses nominal object movement for this

investigation and are given the name because the azimuth angle associated with each frame

in a sequence can only increase. The left-right sequence data set consists of 200 randomly

generated sequences per class constrained to the area defined by azimuth angles 00 to 180( and

elevation angles 00 to 75'. The initial observation position of a sequence is randomly chosen

to begin in an azimuth angle range of 00 to 900 with any elevation in the previously described

range allowed. The sequences are random in the sense that two uniform random numbers are

used in determining the viewing orientation of each image in the following way. A uniform

random number is used to pick an azimuth angle stepsize in the range of 4 to 60. This range

is chosen to allow a sequence to move over a significant portion of the viewing sphere in the

azimuth direction. A second uniform random number is generated to choose if the elevation

angle would rise, remain unchanged, or decrease. The probabilities for these three choices are

40%, 20%, and 40% respectively. The absolute elevation angle change is chosen to be 50 to

obtain significant movement of the object through the sequence. For the 200 image sequences

generated per class, 50 sequences each are generated with sequence lengths of 14, 16, 18, and

20 frames.

4.3.2 Experimentation and Results. The 200 left-right observation sequences

for each of the Moving Light Display objects are generated. The six dimensional Fourier

magnitude feature vector for each of the 3400 images generated per class are calculated. The

multi-dimensional sequence data are prepared and formatted for the HTK - Hidden Markov

Model Toolkit (23) used to implement the continuous left-right Hidden Markov Model. The

continuous Hidden Markov Model architecture used in all MLD experiments is a five state

left-right model. The state observation probability density functions are modeled with four

Gaussian Mixtures. The covariance matrix for each Gaussian Mixture is constrained to be

diagonal. The training of each continuous left-right Hidden Markov model consists of 20

iterations of the segmental K-means algorithm (23) and 50 iterations of the Baum-Welch
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re-estimation formula. The segmental K-means algorithm is a clustering technique used to

determine a good initial guess at the model parameters for training (54). The segmental

K-means technique can also be used in a full training scheme and has been shown to yield

good results, however, the technique has no proof of convergence (54). The Baum-Welch

re-estimation algorithm is the traditional training method discussed in Chapter II, Section 3.

The single look I-NN and multiple frame nearest neighbor algorithms are also inves-

tigated. These algorithms are implemented in the manner described in Chapter II. An initial

investigation with the single look I -NN classifier resulted in a classification accuracy rate of

85% over all classes. The error rate was estimated using the leave-one-out procedure. To

further reduce the single look classification rate, white Gaussian noise is added to each feature

vector. The addition of the Gaussian noise simulates reading the feature vectors through a

noisy data channel. The reduction of the single look classification rate is intended to challenge

the Hidden Markov Model based classifiers and demonstrate the advantages of classifying

objects using image sequences.

4.3.2.1 First Noise Experiment. In the first of two experiments, zero

mean Gaussian random noise with a variance of 2.25 is added to each component of every

feature vector for each of the three classes to form a noisy test data set. Eleven unique noisy

data sets are generated for each class using this process. The continuous left-right Hidden

Markov Model, single look 1 -NN, and multiple frame nearest neighbor technique classification

accuracy rates are determined for each noisy data set using the leave-one-out error estimation

method. All classifier are trained using noiseless data sequences. The mean and standard

deviation of the classification accuracy of the 11 data sets produced by the three classifiers are

shown in Table 3.

The classification accuracy of the Hidden Markov Model classifiers is 10% higher

than the alternate multiple frame technique and substantially outperforms the single look

I-NN method. The distribution of the classification accuracy of the three techniques were

compared using a one-sided t-test (63). The I-test is a statistical hypothesis analysis used to
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Table 3. MLD classification results for the single look nearest neighbor (I-NN), multiple
frame nearest neighbor (M-NN), and continuous Hidden Markov Model (C-HMM)
classifiers. The mean and standard deviation of the I I experimental trials is shown.

Classifier Mean a
I-NN 56.3 0.7

M-NN 87.4 1.3

C-HMM 97.0 2.6

determine if the Hidden Markov Model's performance is significantly greater than the other

two techniques. The t-test revealed there is a highly statistically significant difference in the

classification accuracy the continuous Hidden Markov Model classifier and the 1 -NN and

M-NN techniques at a significance level of 0.01. This means that there is a 99% probability

that the true error rate for the C-HMM classifier is greater than that for the M-NN classifier.

The Hidden Markov Model classification accuracy is indeed superior to either alternative.

The relationship between the M-NN classifier and the multinomial distribution is inves-

tigated. The results reported in Table 4 are averaged over the 11 experimental trials.

Table 4. Experimental results (in percent) verifying of the relationship between the multiple
frame classifier and multinomial distribution for the MLD Imagery.

I -NN Accuracy Multinomial M-NN
Object Cube Sphere Pyramid 20 18 16 14 AVE AVE
Cube 64.8 21.4 13.8 98.1 97.4 96.5 95.1 96.8 §7 98.9

Sphere 21.1 48.4 30.5 76.7 75.2 72.9 69.4 72.9 80.6
Pyramid 14.1 30.8 55.1 85.6 84.0 82.0 78.5 82.6 83.0

These results, again, verify that the classification accuracy of the alternate multiple

frame technique follows a multinomial distribution where the probabilities are derived from

the single-look classifier.

The distance measures described in Chapter III are evaluated on the Hidden Markov

Model outputs for each of the 11 trials. The measure of estimation error distance measure

is not evaluated because it only applies to discrete Hidden Markov Models. The distance
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measures will give insight into the classification decision process of the the Hidden Markov

Models. Hidden Markov Model outputs obtained from the leave-one-out error estimation

method are used in the analysis. The distance measure results are shown in Table 5.

Table 5. Distance Measure results for the three MLD objects averaged over the 11 data sets.

Cube-Sphere Cube-Pyramid Sphere-Pyramid
Proposed 0.29 0.40 0.21

Mean 0.09 0.13 0.05
Juang 0.09 0.13 0.05

D'Orta 1.55 2.26 0.81

To help interpret the distance measure results, the classification confusion matrix is

computed. This matrix provides information on the percentage of each class data set that is

classified by each of the three object Hidden Markov Models. The results presented in Table 6

are averaged over the 11 data sets.

Table 6. The confusion matrix for the MLD data set for noise variance of 2.25. The results,
in percent, are averaged over the 11 data sets.

Class Test\Class ID Cube Sphere Pyramid
Cube 99.8 0.1 0.1

Sphere 0.4 95.5 4.1
Pyramid 0.2 3.0 96.8

The information from each distance measure in Table 5 leads to the same classification

conclusions. This similarity of the conclusions is due to the structure of the output distributions

of the three classifiers. In this case, the information in the variance is low. The proposed

distance measure is essentially reduced to a difference between the means calculation of

the output distributions. The four distance measures show that the cube Hidden Markov

Model is relatively far from both the sphere and pyramid model. The distance between the

sphere and pyramid is about half of that found between the cube and either shape. Therefore,

more classification errors should occur between the sphere and pyramid than between these

two objects and the cube. This conclusion is confirmed by examining the classification
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identification matrix in Table 6. Very few of the cube sequences are classified as a sphere or

pyramid. 4.1% of the sphere sequences are classified as a pyramid while 3.0% of the pyramid

data sequences are classified as a sphere.

4.3.2.2 Second Noise Experiment. In the second of the two experiments,

zero mean Gaussian random noise with a variance of 4.0 is added to each component of every

feature vector for each of the three classes. Ten unique noisy data sets are generated for each

class using this process. The continuous left-right Hidden Markov Model, single look I-

NN, and multiple frame nearest neighbor technique classification accuracy rate is determined

for each data set using the leave-one-out error estimation method. The mean and standard

deviation of the classification accuracy for the three classifiers are shown in Table 7.

Table 7. MLD classification results for the single look nearest neighbor (1-NN), multiple
frame nearest neighbor (M-NN), and continuous Hidden Markov Model (C-HMM)
classifiers. The mean and standard deviation of 10 experimental trials for a noise
variance of 4.0 is shown.

Classifier Mean or
I-NN 46.8 1.5

M-NN 72.2 4.6

C-HMM 93.4 5.8

This level of noise reduced the average single look classification accuracy below 50%.

However, the average Hidden Markov Model classification accuracy rate is above 93%. This

is an excellent and significant result. The variance of the M-NN and continuous Hidden

Markov Model classifier appears to be high. This is due to the small sample size and the fact

that two of the data sets produced unusually low classification rates. If the two data sets were

left out of the analysis, the Hidden Markov Model results would have a mean of 96.1% with

a variance of 0.47. The t-test was performed on the classification distributions to determine

if the Hidden Markov Model outperforms the other two classifiers in a statistical sense. The

t-test revealed there is a highly statistically significant difference in the classification accuracy

of the continuous Hidden Markov Model classifier and the 1-NN and M-NN techniques at
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a level of significance of 0.01. The Hidden Markov Model classification accuracy is, again,

superior to either alternative.

The distance measures described in Chapter MI are evaluated on the Hidden Markov

Model outputs for each of the 10 trials. The measure of estimation error distance metric is

not evaluated because it only applies to discrete Hidden Markov Models. The symmetrized

distance measure results are shown in Table 8.

Table 8. Distance Measure results for the three MLD objects averaged over the 10 data sets.
The Noise variance is 4.0.

Cube-Sphere Cube-Pyramid Sphere-Pyramid
Proposed 0.21 0.25 0.18

Mean 0.06 0.08 0.03
Juang 0.06 0.08 0.03

D'Orta 1.03 1.47 0.48

The classification identity matrix averaged over the 10 data sets is shown in Table 9.

Table 9. The identification matrix for the MLD data set for noise variance of 4.0. The results,
in percent, are averaged over the 10 data sets.

Class Test\Class ID Cube Sphere Pyramid
Cube 98.4 1.2 0.4

Sphere 0.8 90.8 8.3
Pyramid 0.9 8.0 91.1

Again, the information from each distance measure in Table 8 leads to the same clas-

sification conclusions. The four distance measures show the cube Hidden Markov Model is

relativelyfar from both the sphere and pyramid model. The difference here is not as great be-

cause the data is much more noisy. The distance between the sphere and pyramid is generally

about half of that found between the cube and either shape. Therefore, more classification

errors should occur between the sphere and pyramid than between these two objects and the

cube. This is indeed the case which is confirmed by examining the classification identification

matrix in Table 6. Only 1.6% of the cube sequences are classified as a sphere or pyramid.
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8.3% of the sphere sequences are classified as a pyramid while 8.0% of the pyramid data

sequences are classified as a sphere.

4.4 Conclusion

In this chapter, the performance of the spatio-temporal pattern recognition technique

was explored with a class of imagery known as moving light displays. This class of imagery

presents a great challenge to the Hidden Markov Model classifier because individual frames

of MLD imagery contain very little spatial information and are not easily recognized. The

sequence of MLD frames, however, contains a high level of temporal information leading to

recognition. In the two experiments performed in this chapter, the single look classification

rate of the MLD imagery was near or below 50%. In contrast, the Hidden Markov Model

classification rate was above 93%. The alternate multiple frame technique classification rate

was at least 10% below the Hidden Markov Models for noise variance of 2.25 and 20% below

for a noise variance of 4.0. Analyzing the C-HMM and M-NN classification results using a t-

test revealed that there is a highly statistically significant difference between the classification

accuracies for the two approaches at a significance level of 0.01. The classification results

produced with this difficult data set clearly demonstrate the power and robustness of the

proposed sequence processing technique.
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V Spatio-temporal Image Classification

5.1 Introduction

This chapter describes the experimentation and evaluation of the Hidden Markov Model

based spatio-temporal pattern recognition technique. The first section of this chapter discusses

the methods used to prepare the data for a five class pattern recognition problem. The test

objects are selected tactical military ground vehicles. The second section describes the

experimentation and results using the discrete and continuous left-right and discrete ergodic

Hidden Markov Models. The single look and multiple frame classifiers are also investigated

with the results compared with the classification performance of the Hidden Markov Models.

It will be shown that the Hidden Markov Model classifiers outperform the alternate techniques.

5.2 Data Preparation

This section describes the techniques used to prepare the synthetically generated training

and test imagery for the classification experimentation. Fnrst, the method of calculating the

Fourier magnitude coefficients used as shape features in this dissertation is described. Next,

a method of regulating the range of motion of the test objects to conduct the investigation

in a controlled environment is described. The regulation method is discussed in the context

of creating the vector quantizer for use with the discrete classifier techniques. Finally, the

procedure for adding noise to the imagery to test the robustness of the Hidden Markov Model

classification system is reviewed.

5.2.1 Image Generation. To demonstrate the pattern identification capability of

the Hidden Markov Model classification technique, a five class problem of identifying the

tactical military ground vehicles shown in Figure 11 is investigated. The imagery is generated

with a constructive solid geometry based computer aided design (CAD) package known as

BRL-CAD (67). The objects are modeled in precise detail to their real counterparts and can

be rendered at any scale and orientation. A computer program written in the C programming
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Figure 11. Objects used in this study: (Top) M60 Tank, M35 Truck, BTR60 Armored
Personnel Carrier. (Bottom) T62 Tank, and M2 Infantry Fighting Vehicle (67).

language is used to generate test and training image sequences within the constraints of the

regulation method described later. It should be noted that the military vehicles can be grouped

into two categories, wheeled and tracked vehicles. This distinction is shown to be important

as the results of the distance measures are analyzed.

5.2.2 Feature Collection. The object features selected to demonstrate the feasibil-

ity of the Hidden Markov Model technique are low frequency Fourier magnitude coefficients.

These features are chosen because they have been shown to provide good shape discrimina-

tion (64) and are straightforward to generate. 256 x 256 pixel images, 8-bit greyscale, of

the military vehicles are used in this investigation. Each image is thresholded at a greyscale

level of 45 to produce a binary image, Fourier transformed, and the magnitude obtained.

Twenty-eight low frequency coefficients, a 7 x 4 rectangle whose lower edge rests on the fx

axis and is centered on fy, are retained to form the feature vector. The rectangle on and above
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the f, axis is chosen so the majority of features are not redundant as would be the case if

a square region centered at (f, = 0, fy = 0) were used. This follows from the symmetry

property of the Fourier magnitude spectrum for a real image f(x, y) given as (30:77)

IF(f•, fy)l = IF(-f., -fy)l (24:

The feature vector is a concatenation of the four horizontal rows encompassed by the rectangle

previously described. The top row of the rectangle constitutes the first seven components of

the feature vector with the three remaining rows added accordingly. The feature collection

process is illustrated in Figure 12. Each feature vector component is statistically normalized

fy
Threshold IF I--

7 x 47x4

FFT Magnitude

Figure 12. Feature collection process for the military vehicle imagery. Twenty-eight low
frequency Fourier magnitude coefficients are kept as shape features.

using the normalization formula
xi -/.i (25)

ai

where xi is the ith component, gi and ai are the mean and standard deviation of the ith

component computed from all feature vectors under consideration.

5.2.3 Motion Scenario and Vector Quantizer Design. To conduct this investi-

gation in a controlled environment, the range of motion of the test objects is regulated. The

regulation of motion is best described in the context of the requirements for the creation of
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the vector quantizer needed to implement the discrete left-right and ergodic Hidden Markov

Model classifiers.

The range of viewing perspectives chosen for this experimentation is based on Callahan

and Weiss's (13) modification of the aspect graph generation method of Koenderink and van

Doom (36). A viewer centered approach is adopted with the object at the center of a transparent

sphere as shown in Figure 13.

Figure 13. The motion scenario. The viewer centered approach places the object at the
center of a transparent sphere. The observer moves on the surface of the sphere.

As the observation point moves on the surface of the sphere, the observed object features

change. For the continuous classifiers investigated here, the observation sequences are simply

sequences of 28 dimensional feature vectors. In the discrete case, a metric is used to group

observations over a region of interest on the sphere's surface into areas of constant character-

istic view or aspect that can be equated to Perrett's definition of a characteristic view described

in Chapter I. Callahan and Weiss identified object singularities (surfaces, edges, vertices) and

defined aspects as the grouping of vantage points that observed the same set of singulari-

ties (13). Gray (3t) modified this approach by using cluster analysis on observed features to

group views into aspects. Seibert and Waxman (59) used the ART2 clustering algorithm to

identify the areas of constant aspect This investigation uses the clustering algorithm proposed
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by Linde, Buzo, and Gray (44), known as LBG, to create a vector quantizer whose clusters

correspond to areas of similar aspect or characteristic view. The LBG algorithm was chosen

because it is has been shown to provide good results for speech recognition (44).

The region of interest for observing object movement is restricted the portion of the

viewing sphere for object azimuth angles 00 to 180( and elevation angles from 00 to 750. The

data used to create the vector quantizer begins with a 256 x 256 pixel image of each object

generated for every 50 increment in azimuth and elevation, giving a total of 592 images per

object. The 28 dimensional Fourier magnitude features are collected from each image. The

2960 feature vectors (592 from each class) are statistically normalized and then processed

by the LBG algorithm to produce a 64 codeword vector quantizer. The 64 codeword vector

quantizer was chosen because a 128 codeword vector quantizer showed little improvement

in reducing the cluster distortion. Cluster distortion is calculated with the mean square error

metric and is plotted versus codebook size in Figure 14.
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Figure 14. Distortion vs. Codebook Size for the vector quantizer designed with data from

all 5 classes. A 64 codeword vector quantizer is selected for use.
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Vector quantizing the same feature vectors used to create the codebook associates each

viewing position with an aspect or characteristic view. An interesting way to examine the

associated mapping of each viewing position with a particular codebook entry is through the

viewing sphere plots shown in Figure 15. Each codeword is given a separate greyscale level.

Shades of gray common among the spheres in Figure 15 represent shared aspects. It is

interesting to see that some viewing positions map to a common codeword for many of the

classes while some codewords are associated with very different viewing orientations. For

the 64 codeword vector quantizer designed here, 51 of the clusters (80%) were ambiguous

and 13 clusters (20%) were unambiguous. Ambiguity arises when more than one object

class occupies a given cluster. The 13 unambiguous clusters were distributed by class in the

following manner: M60 - 6, M35 - 3, BTR60 - 1, T62 - 1, and M2 - 2.

5.2.4 Correlated Gaussian Noise. To test the robustness of the Hidden Markov

Models, a classification evaluation using noisy test sequences is accomplished. All classifiers

will be trained with noiseless data sequences and tested with the same sequences to which

correlated Gaussian noise is added prior to the thresholding and feature collection steps.

Correlated Gaussian noise is chosen over white Gaussian noise since pixels in the background

of real imagery are correlated. The correlated noise was produced following the procedure

described by Weeks et. al (70). A 256 x 256 pixel zero mean white noise image is generated

using a Gaussian probability density function as a source. A Fourier transform of this image

is taken and a circularly symmetric Gaussian filter is used to low pass fiter the frequency

spectuum. The result is inverse Fourier transformed and added to an object image. The

noisy greyscale image is thresholded at a greyscale level of 45 and the low frequency Fourier

magnitude features are obtained. The noisy image generation process is shown in Figure 16.

Twenty cases that vary in signal-to-noise ratio (SNR) and correlation level are examined.

The correlation level refers to the full width of the autocorrelation response of the filtered noise

image at the half maximum amplitude point. Image sequences will be generated with SNRs

of 20dB, 15dB, 10dB, 5dB, and 0 dB. For each SNR, the bandwidth of the low pass fiter is
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Figure 15. Aspect sphere plots for the M60, M35, BTR60, T62, and M2 vector quantizer
training data. Common shades of grey represent shared aspects. (59)
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White Noise Threshold
SourceNoise Image

Clean Image

Figure 16. Method used to generated imagery with correlated Gaussian Noise. The low pass
filter (LPF) is a circularly symmetric Gaussian filter.

adjusted to produce noise with a correlation level response of 2, 4, 8, and 12 pixels. A unique

white noise image is used to add noise to each object image for every SNR and correlation

level combination. The SNR is calculated using

SNR = 20 log10  Objectaverase (26)S N R= 201glo •noise / 26

Because the noise is zero mean, the SNR is only a function of the variance of the original

noise source and does not vary with correlation level. The effect of the correlation level is to

increase the low frequency content of the noise in the thresholded image. Figure 17 shows the

effects of increasing the correlation level for an M60 tank in 10dB noise.

5.3 Experimentation and Results

This section describes the experimentation and results of the five class pattern recog-

nition problem using the Hidden Markov Model classifiers. Five separate types of observa-

tion sequences are examined. These are the left-right, right-left, vertical, acceleration, and

transition-only sequences. The left-right sequence type is used to gain a basic understanding

the the Hidden Markov Model classifiers. Single-look and alternate multi-frame techniques
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Figure 17. The M60 tank (thresholded) in 10dB noise for correlation levels (top) 2 and 4
pixels and (bottom) 8 and 12 pixels.

are also evaluated on the left-right sequences for comparison. The remaining four sequence

types are investigated only with the Hidden Markov Models to test the classification robust-

ness using sequences that differ from the training set. Because of the left-right sequences'

importance, it will now be described in detail.

5.3.1 Left-Right Observation Sequences Left-right observation sequences are the

major sequence type examined in this dissertation. The left-right sequence expresses nominal

object movement for this investigation and are given the name because the azimuth angle

associated with each frame in a sequence can only increase. When looking at a sphere plot,

such as the one in Figure 13, azimuth increases from the left to the right hand side of the

illustration. The left-right sequence should not be confused with or strictly associated with

a left-right Hidden Markov Model. Although ergodic Hidden Markov Models are trained

with one sufficiently long observation sequence, the left-right observation sequences can be

classified using ergodic models.
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The left-right sequence data set consist of 200 randomly generated sequences per class

constrained to the area defined by azimuth angles 00 to 1800 and elevation angles 00 to 75'.

The initial observation position of a sequence is randomly chosen to begin in an azimuth

angle range of 00 to 900 with any elevation in the previously described range allowed. The

sequences are random in the sense that two uniform random numbers were used in determining

the viewing orientation of each image in the following way. A uniform random number was

used to pick an azimuth angle stepsize in the range of 40 to 60. This range was chosen to

allow a sequence to move over a significant portion of the viewing sphere in the azimuth

direction. A second uniform random number is generated to choose if the elevation angle

would rise, remain unchanged, or decrease. The probabilities for these three choices were

40%, 20%, and 40% respectively. The absolute elevation angle change was chosen to be 50 to

obtain significant movement of the object through the sequence. For the 200 image sequences

generated per class, 50 sequences each were generated with sequence lengths of 14, 16, 18,

and 20 frames. An example of several random sequences generated for the M60 tank are

shown in Figure 18.

NJ

Figure 18. Example of several random sequence trajectories generated for the M60 tank.
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The different training sequence lengths were used to give the Hidden Markov Model technique

the robustness to recognize objects in varying length test sequences. An example of the

individual images from a 12 frame sequence is shown in Figure 19.

IS -Q11

Figure 1S. Example imagery from a 12 frame random sequence of an M60 Tank.

5.3.2 Left-right Discrete Hidden Markov Models. The discrete left-right Hidden

Markov Model is the major type of model investigated for this five class problem. A five state
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left-right model with 64 observation symbols per state is used. Five states were chosen to give

the model the possibility of experiencing several self-transitions in each state based on the

sequence lengths used. However, experimental evidence in a speech recognition application

shows that the number of states can be varied with little effect on classification. Rabiner

demonstrated that the effect of varying the number of states between 2 and 20 produced no

more than a 2 percent change in the classifier error rate (55:278).

Noiseless left-right observation sequence data was prepared as previously described and

the vector quantizer created. Noisy data was generated and vector quantized using the same

codebook created with the noiseless data set. The classification performance was analyzed

using a leave-one-out error estimation technique in the following manner. A single sequence

from one class is left out of that class's 200 sequence training set. A Hidden Markov Model

is then trained for that class, with separate models trained for each of the other four classes

using all 200 noiseless sequences. The noisy sequences (all SNRs and correlation levels)

corresponding to the sequence held out are then tested against all five classes with the results

recorded. This procedure is repeated for all 200 sequences from each class. The results of this

classification procedure are graphically shown in Figure 20.

1002

802

Figure 20. 3D plot of the left-right Hidden Markov Model classification accuracy.
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Table 10 numerically shows the classification accuracy rates.

Table 10. Accuracy results for the left-right Hidden Markov Model with the left-right ob-
servation sequence data set

SNR\CORR 2 4 8 12
20 98.7 98.7 98.7 98.6
15 98.4 98.4 98.2 98.1
10 71.1 68.3 66.2 64.1
5 25.6 24.7 21.8 21.3
0 20.6 20.7 20.3 20.2

Table 10 shows that the classification accuracy drops off as SNR increases as expected.

This table also shows that the classification accuracy decreases slightly with increasing cor-

relation level. This too is expected since the effect of increasing the correlation level is to

increase the amount of low frequency noise that degrades the Fourier magnitude features used

here.

In Chapter 11, Section 2.2.1, the relationship of the Hidden Markov Model to syntactic

pattern recognition was discussed. In particular, the equivalence between the Hidden Markov

Model and a regular stochastic grammar was reported. Grammars were described as methods

for examining strings for the presence and ordering of symbols belonging to a language. For

this experiment, the vector quantizer codebook contains the symbols of the alphabet. Each

object uses this common alphabet to construct its own language and grammar based on how

the object features change when undergoing nominal movements. With a Hidden Markov

Model trained to identify each language, classification decisions can be made since out of

class sequences will be rejected in the parsing (classification) operation. This idea is fixed by

the illustration shown in Figure 21.

One of the random sequences from the M35 truck is shown in Figure 21. Each shade of grey

reflects a particular codeword at each azimuth and elevation angle. The right hand side of

Figure 21 shows all of the azimuth and elevation angles of the BTR60 that are associated

with the same codewords that make up the M35 sequence. It is clearly seen that non-physical

movement is required for the BTR60 to pass through the regions in the correct codeword order.
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M35 BTR60

Figure 21. Mapping of an M35 trajectory (left) on the BTR60 sphere plot (right).

This example demonstrates that the Hidden Markov Model is not only learning to detect the

presence of codewords, but their order of appearance as well.

5.3.2.1 Random Initialization of Model Parameters. To train a Hidden

Markov Model, the state transition and state observation parameters must be initialized. The

rows of both the A and B matrix must obey the stochastic constraint of summing to one. The

method used to initialize the B matrix is to set each element of a row to 1/M where M is

the number of possible observation symbols. M is 64 in this experimentation. Since the state

transition matrix for a left-right Hidden Markov Model is upper triangular, the elements of

each row are set to I / 1 where N is the number of states where a valid transition can be made.

An alternative way to initialize these parameters is to generate a random number for

each element of every row of the state observation matrix and upper diagonal portion of the

state transition matrix. Each row is then normalized to meet the stochastic constraints. An

experiment is performed to examine the effect of initializing the Hidden Markov Models in

this fashion. Using the leave-one-out error testing method, each Hidden Markov Model is
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initialized with unique random numbers and normalized. Furthermore, the entire experiment

is repeated 10 times. The mean and standard deviation of these 10 trials are reported in

Table 11.

Table II. Mean (left) and standard deviation (right) results from the 10 trials where the
initial parameters in the state transition and observation matrices were randomly
chosen.

SNR\CORR 2 4 8 12 SNR\CORR 2 4 8 12
20 99.8 98.7 98.8 98.7 20 0.22 0.17 0.22 0.14
15 98.7 98.2 98.6 98.8 15 0.28 0.10 0.22 0.17
10 71.7 63.8 63.5 64.0 10 0.85 1.07 1.05 0.96
5 21.0 122.1 23.4 22.1 5 2.34 2.52 2.73 2.76

Comparing Table 10 to the mean results in Table 11 shows that the classification accuracy is

relatively insensitive to the method of initialization for this problem. It should be noted that

only one trial is possible with the first initialization method. The standard deviation results

show there is little difference in the results of the 10 trials for SNRs of 10 dB and above.

5.3.2.2 Alternate Classifier Performance. Because Table 10 clearly shows

that the classification accuracy does not significantly change with correlation level, the com-

parison with the alternate classifier techniques will be performed for all SNRs at a correlation

level of 2. The single-look and multiple frame vector quantizer classifiers are prepared in the

manner described in Chapter 11. The data used to create the vector quantizer are quantized. A

frequency count of the distribution of each class in each of the clusters is made. A class label

is assigned to each cluster according to which class has the most representation.

For the single-look vector quantizer classifier, classification decisions are made at the

frame level. Each frame of the 200 left-right observation sequences for each class is vector

quantized, associating each frame with one of the 64 codebook symbols. The codebook

symbol for each frame, 3400 frames for each class, is then compared to the labeled clusters

and a classification decision is made.
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For the multiple frame vector quantizer classifier, each frame of a sequence is classified

in the single-look fashion. A classification decision is made at the sequence level according to

which class wins a plurality of the frames. Figure 22 illustrates the performance comparison

between the discrete left-right Hidden Markov Model and the single-look and multiple frame

vector quantizer classifiers.
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Figure 22. Performance Comparison of the discrete left-right Hidden Markov Model (D-
HMM), single-look (VQ) and multiple frame (M-VQ) vector quantizer classifiers
for a correlation level of 2. 95% confidence bars are shown.

Table 12 shows the same results in numerical form.

Table 12. Numerical classification results for the discrete left-right Hidden Markov Model
(Hidden Markov Model), single-look (VQ) and multiple frame (M-VQ) vector
quantizer classifiers for a correlation level of two.

Noise (dB) 20 15 10 5 0
D-HMM 98,7 98.4 71.1 25.6 20.6

M-VQ 87.5 85.2 64.8 20.0 20.1
VQ 72.4 72.3 53.6 21.0 20.8
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Chapter II, Section 5, described a relationship that exists between the single-look frame

based classification accuracies and the alternate multiple frame technique. For a multi-class

problem, the multiple frame classification accuracy follows a multinomial distribution with the

probabilities are derived from the single-look classifier where independence is assumed. This

relationship is experimentally demonstrated here on the left-right data set for a SNR of 20dB

and a correlation level of 2. The single-look and multiple-frame experiments summarized

in Table 12 provided the data necessary for the analysis. It was previously shown that the

multiple frame classification accuracy is a function of sequence length which is taken into

account. Table 13 summarizes the verification that the multiple frame classification rate

follows a multinomial distribution.

Table 13. Experimental verification the multiple frame classification rate following the
multinomial distribution.

VQ - Accuracy Multinomial M-VQ
Object M60 M35 BTR60 T62 M2 20 18 16 14 AVE
M60 91.6 0.0 0.0 7.1 1.3 100.0 100.0 100.0 100.0 100.0 100.0
M35 0.5 74.3 19.7 1.5 4.0 99.3 97.9 96.8 95.6 97.1 94.5

BTR60 0.3 20.4 59.3 12.4 7.6 73.1 71.3 69.3 67.0 70.2 73.5
T62 29.3 1.3 11.9 51.4 6.1 76.9 67.1 73.2 69.8 67.1 71.5
M2 5.2 0.2 0.3 8.6 85.7 100.0 100.0 100.0 99.9 99.9 100.0

Table 13 is read in a left to right fashion for each row. The first section shows the

single-look accuracy rates for the five vehicles. The middle section shows the output of the

multinomial distribution for the four different sequence lengths assuming the accuracies in

Section One. The final column in the second section is the average over the four sequence

lengths. The third section shows the experimental multiple frame classifier accuracy. The re-

sults experimentally verify the relationship between the multinomial distribution and multiple

frame classifier.

5.3.2.3 Distance Measure Results. The distance measures described in

Chapter IlI are evaluated on the Hidden Markov Model outputs for the left-right data of 20dB

SNR and correlation level of 2. The results seen here will give insight into how the Hidden
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Markov Models are making classification decisions. Hidden Markov Model outputs obtained

from the leave-one-out classification method are used.

The results using the new measure proposed in this dissertation are reported first. The

mean and variance of the five Hidden Markov Model output distributions are found and the

symmetrized Bhattacharyya distance is calculated. The results of the distance measurements

are shown in Table 14.

Table 14. Distances between the 5 Hidden Markov Model classes using the new method
proposed here.

Class\Class M60 M35 BTR60 T62 M2
M60 X 85.7 88.7 2.0 5.0
M35 85.7 X 1.3 13.3 10.7

BTR60 88.7 1.3 X 2.4 5.2
T62 2.0 13.3 2.4 X 5.0
M2 5.0 10.7 5.2 5.0 X

The results show the treid that the distance between the wheeled and tracked vehicles

is much larger than the distance between vehicles of the same type. For the tracked vehicles,

the M60/T62 Hidden Markov Models are closer than than either tank/M2 Hidden Markov

Model pair. The M35 and BTR60 are much closer to each other than any tracked vehicle.

There is a high degree of correlation between the observed classification accuracy and the

Hidden Markov Model distance, Table 15 shows the classification results for the 200 training

sequences for SNRs of 20 and 10dB with a correlation level of 2.

Table 15. Classification results of the 200 training sequences for each object. The SNR is
20 dB (left) and 10 dB (right).

Class\Assigned MW0 M35 BTR T62 M2 ClassASsigned M60 M35 BTR T62 M2
M60 199 0 0 1 0 M60 189 0 0 11 0
M35 0 192 8 0 0 M35 0 131 59 10 0

BTR60 0 4 196 0 0 BTR60 0 72 128 0 0
T62 0 0 0 200 0 T62 29 0 0 171 0
M2 0 0 0 0 200 M2 7 0 0 I01921
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It is seen here that the majority of classification errors occur between vehicles within

either the wheeled and tracked group. In general, classification mistakes are more likely to

occur the closer the Hidden Markov Model pairs are. An analysis of the distance between the

five Hidden Markov Models using Equation 15, Levinson's measure of estimation error, was

performed and the results are shown in Table 16.

Table 16. Distances between the 5 Hidden Markov Model classes using the measure of
estimation error.

Class\Class M60 M35 BTR60 T62 M2
M60 X 128.8 132.3 98.1 120.1
M35 128.8 X 48.0 97.6 125.3

BTR60 132.3 48.0 X 91.0 125.4
T62 98.1 97.6 91.0 X 124.8
M2 120.1 125.3 125.4 124.8 X

Using this measure, the difference between the tracked and wheeled vehicles was not as

pronounced. The ratio of the distance of the M60/wheeled vehicles and M60/tracked vehicles

is not as great with this measure. The proposed measure had a 5-to-I ratio where this measure

yields slightly better than a 1-to- I ratio.

The distance between the five Hidden Markov Models using the measure of Juang and

Rabiner (35) is shown in Table 17.

Table 17. Distances between the 5 Hidden Markov Model classes using the method of Juang
and Rabiner.(35)

Class\Class M60 M35 BTR60 T62 M2
M60 X 13.2 13.0 5.0 11.3
M35 13.2 X 1.6 9.9 11.2

BTR60 13.0 1.6 X 6.7 10.1
T62 5.0 9.9 6.7 X 10.3
M2 11.3 11.2 10.1 10.3 X

The general trend using this distance measure is similar to the one proposed here. It must be

noted that the five class problem considered here is separable using the Hidden Markov Model
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algorithm. When the problem is not as separable, the measure proposed here will yield a more

reliable measurement of the distance between two Hidden Markov Models. Again, this is due

to Juang and Rabiner's (35) measure behaving as a modified mean difference calculator while

the measure proposed here uses both the mean and variance in an equation derived from the

upperbound of the Bayes error rate to produce a reliable measurement.

The distance between the five Hidden Markov Models using the difference between the

means is shown in Table 18.

Table 18. Distances between the 5 Hidden Markov Model classes using the difference of
means.

Class\Class M60 M35 BTR60 T62 M2
M60 X 13.1 13.0 5.0 11.3
M35 13.1 X 1.6 9.9 11.2

BTR60 13.0 1.6 X 6.7 10.1
T62 5.0 9.9 6.7 X 10.3
M2 11.3 11.2 10.1 10.3 X

These results were very similar to those obtained using Juang and Rabiner's (35) method

with differences in most entries showing in the third or fourth decimal location. Note that

Equation 17 and Equation 19 are identical if Tn is fixed for all n. These equations will also

converge if the number of sequences is much larger than the differences in T,. In the case

examined here, N = 200 with 50 sequences each having a T,, value of 14, 16, 18 or 20.

The distance results using D'Orta' ' measure are shown in Table 19.

Table 19. Distances between the 5 Hidden Markov Model classes using the method of
D'Orta,

Class\Class M60 M35 BTR60 T62 M2
M60 X 223.7 221.5 85.6 192.4
M35 223.7 X 27.3 167.7 190.9

BTR60 221.5 27.3 X 115.2 172.4
T62 85.6 16.7 115.2 X 132.7
M2 192.4 190.9 172.4 132.7 X
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These results have the same tendency as the measure of estimation error. The differences

between the tracked and wheeled vehicles are not as pronounced. The difference in Table 18

and Table 19 demonstrates the effect of not normalizing each Hidden Markov Model output

by the sequence length.

5.3.2.4 Right-Left Data Sequences. An examination of the directional

sensitivity of the left-right Hidden Markov Model classifiers is accomplished with the right-left

observation sequence type. The right-left observation sequences are constructed by reversing

the frame ordering of the left-right observation sequences. The right-left data sequence begins

at high azimuth angles which decreases with each frame in the sequence. Five additional

Hidden Markov Models were trained for the right-left observation sequences creating a 10

class problem. The results of the leave-one-out error estimation procedure for a SNR of 20

dB and correlation level of two are shown in Table 20.

Table 20. Right-left Sequence Testing. The number of errors from each class for the two
sequence sets are reported.

Sequence Type M60 M35 BTR60 T62 M2
Left-Right 3 1 6 17 2
Right-Left I 1 3 2 2

Of the 38 total errors (out of 2000) shown in Table 20, 11 errors are associated with

an out of class object while the remaining 27 errors are misclassified by the direction of

motion. The 27 sequvnces misclassified by direction were all moving at low elevation angle

where there were between one and three distinct codewords in the entire sequence. The

codeword ordering looked almost identical read forward or backward. This condition can

be seen in the sphere plots of Figure 15. This result verifies that left-right Hidden Markov

Models are tuned to represent the objects undergoing the type of motion in the training

sequences and can be thought of as directional movement filters. This is readily understood

in terms of the model architecture and the results of the vector quantization process. For any

given sequence, the codebook values change from the beginning to end with some duplicate
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codewords represented between adjacent time indices. Considering the left-right Hidden

Markov Model architecture, codewords at the beginning of a sequence can be associated

with state one while codewords at the end of a sequence can be associated with state five.

Association between intermediate codewords and states cannot be explicitly made but will

be distributed is some manner. Therefore, the probability of being in state one and seeing

codewords toward the end of the sequence will be extremely low. Likewise, the probability

of being in the last state and observing codewords at the beginning of a sequence will be

low as well. This line of reasoning is why the left-right and right-left Hidden Markov Model

classifiers exhibit directional selectivity. Left-right sequence trained Hidden Markov Models

measure little association with the right-left observation sequences because the sequence is

out of order from what it was trained to expect. This is equivalent to attempting to understand

an individual talking backwards.

5.3.2.5 Vertical Data Sequences. An examination of directional sensitivity

using a data set not as dramatically different as the right-left data set is accomplished with

vertical data sequences. For each object, nine vertically moving image sequences spaced in

22.50 increments for azimuth angles in the range of 00 to 180° are generated. Each sequence

moves vertically from elevation angle 00 to 750 in 50 steps. The vertical trajectories are shown

in Figure 23.

These sequences are classified with Hidden Markov Models trained on the left-right

observation sequences and are considered to be an independent test set. A classification

accuracy rate of 68.8% was found across the five objects. Table 21 shows the classification

results for the vertically moving sequences.

Most of the errors occurred at low and high azimuth angles. The 0W and 180° azimuth

views for all objects are somewhat confusable in the low frequency Fourier magnitude space.

The T62 was the only class to be correctly identified at the extreme azimuth angles. The M2

was the only object misclassified at azimuths other than 00 or 180(. The M2 was incorrectly

associated with the M35 or the T62 at these non-extreme azimuth angles. The error rate for
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Figure 23. Vertical Sequence Trajectories.

Table 21. Test results for sequences with vertical motion. 0 represents a correct classifica-
tion, X represents a miss.

Class\angle 0' 22.50 45.0f 67.50 90.(0 112.50 135.00 157.50 180.ff
M60 X 0 0 0 0 0 0 0 X
M35 X 0 0 0 0 0 0 0 X

BTR60 X 0 0 0 0 0 0 0 X
T62 0 0 0 0 0 0 0 0 0
M2 X 0 X X X 0 0 X X

the vertical sequences is not as severe as the rate for the right-left sequences when tested

with the left-right trained Hidden Markov Model classifiers. There is enough information

about vertical movement in the left-right observation sequence data set to allow reasonable

recognition of the vertical data sequences.

5.3.2.6 Velocity Changes. An examination of the sensitivity of the left-right

sequence trained Hidden Markov Models to changes in object velocity is made. Each velocity

data set that will be described is considered to be an independent test set for classification

testing purposes. Testing is performed for all SNRs at a correlation level of two. The first

data set tested is where the velocity of the object is assumed to decrease by a factor of two. It
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is also assumed that the sensor tracks the object for the same amount of time. Therefore, to

create the test observation sequences, each codeword in each training sequence is duplicated.

This process yields sequences of lengths 28, 32, 36, and 40. Each of these test sequences is

evaluated against the previously trained left-right Hidden Markov Models. The accuracy of

the original left-right sequences, the velocity test sequences, and the change in accuracy is

shown in Table 22.

Table 22. The accuracy of the original left-right sequences, the velocity test sequences, and
the change for a velocity decrease of a factor of two.

Noise (dB) 20 15 10 5 0
Original 98.7 98.4 71.1 25.6 20.6

Velocity Test 98.9 98.7 71.2 25.8 20.5
Change +0.2 +0.3 +0.1 +0.2 -0.1

Decreasing the velocity by a factor of five implies duplicating each codeword five times,

increasing the overall sequence lengths. 14-'- 23 shows the classification results.

Table 23. The accuracy of the original left-right sequences, the velocity test sequences, and
the change for a velocity decrease of a factor of five.

Noise (dB) 20 15 10 5 0
Original 98.7 98.4 71.1 25.6 20.6

Velocity Test 98.8 98.6 71.5 25.7 20.6
Change +0.1 +0.2 +0.4 +0.1 0

Next, testing with sequences from objects with increased velocity is performed. The

first case considered is for a velocity increase of a factor of two. The test sequences are created

by eliminating every other codeword from the original left-right sequences, shortening each

sequence by a factor of two. Table 24 shows the classification results.

Increasing the velocity by a factor of four implies keeping every fourth codeword in the

original sequence. Final sequence lengths were three to five codewords long. Table 25 shows

the classification results.
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Table 24. The accuracy of the original left-right sequences, the velocity test sequences, and
the change for a velocity increase of a factor of two.

Noise (dB) 20 15 10 5 0
Original 98.7 98.4 71.1 25.6 20.6

Velocity Test 98.4 97.9 70.7 25.5 20.3
Change -0.3 -0.5 -0.4 -0.1 -0.3

Table 25. The accuracy of the original left-right sequences, the velocity test sequences, and
the change for a velocity increase of a factor of four.

Noise (dB) 20 15 10 5 0
Original 98.7 98.4 71.1 25.6 20.6

Velocity Test 93.3 92.9 66.3 20.4 20.2
Change -5.4 -5.5 -4.8 -5.2 -0.4

The overall results of the velocity testing on the left-right sequences again demonstrates

the fact that the left-right Hidden Markov Model classifiers are searching for sequences

of codewords that are arranged in the proper order. The overall P(O •X) for each of the

different velocities can be significantly different than the original length sequences. However,

classification is only based on which Hidden Markov Model produces the highest probability

of association.

5.3.2.7 Deceleration Chianges. Testing with sequences derived from the

object undergoing deceleration is also examinel. Each training sequence was divided into 5

nearly equal length sections. The velocity in the first section is assumed to be the original

velocity. The velocity of in the second section is decreased by a factor of two, the third section

by a factor of three, the fourth section a factor of four, and the fifth section by a factor of five.

This results in a stepwise deceleration from the original velocity to 1/5 of the original velocity

over the duration of the sequence. The classification results of the 20 dB SNR and correlation

level of two data set is shown in Table 26.
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Table 26. Deceleration testing with left-right military vehicle data set.

Noise (dB) 20 15 10 5 0
Original 98.7 98.4 71.1 25.6 20.6

Test 96.4 95.8 66.9 25.8 20.5
Change -2.3 -2.6 -4.2 +0.2 -0.1

5.3.3 Continuous Left-Right Hidden Markov Models. The continuous left-right

Hidden Markov Model is the second type of classifier examined in this dissertation. This type

of model does not require the creation of a vector quantizer since it is able to process the

full 28 dimensional feature vectors. Thus, the major difference with the continuous model is

that the state observation probabilities are modeled with a Gaussian Mixture rather than the

probability mass functions of the discrete version. The training procedure for the continuous

Hidden Markov Model is modified and the reader is referred to Rabiner (55:267) for the

details.

The continuous left-right Hidden Markov training and recognition steps are accom-

plished using Entropic's HTK-Hidden Markov Model Toolkit (23). There are many choices

to be made in determining a model architecture. Among the most important of these are the

number of states, the number of Gaussian mixtures used to model the observation probabil-

ities, and the type of coveriance matrix relationship to use with the Gaussian mixtures. As

with the discrete Hidden Markov Model, there is no known way to optimally pick the model

parameters. A trial and error search is required to find a parameter set that works well. A

five state model is used to be consistent with the discrete left-right Hidden Markov Models

described above. Four Gaussian Mixtures with common diagonal covariance matrices were

chosen to model the state observation probabilities.

The continuous Hidden Markov Model experimentation will be performed on the left-

right sequence set for all SNRs at a correlation level of two. The left-right sequence data

set is prepared for training and testing by converting it to the HTK format. A master-control

program written in the C language uses the HTK library procedures to perform a classification

evaluation using the leave-one-out error method. The results are shown in Table 27.
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Table 27. Results from the continuous Hidden Markov Model classifier. The left-right
sequence data set for all SNRs at a correlation level of 2 is used.

Noise (dB) 20 1 15 10 5 0
C-HMM 100.0 100.0 63.5 36.7 21.5

Compared to the discrete Hidden Markov Model classifier, the classification accuracy

is slightly higher for the 20, 15, 5, and 0 dB SNR levels. However, it is about 8 percent less for

the 10 dB case. A distinct advantage or disadvantage of using the continuous Hidden Markov

Model cannot be discerned from these results.

5.3.3.1 Alternate Classifier Performance. The alternate classifiers exam-

ined for the continuous sequential left-right data set are the one nearest neighbor (l-NN) and

multiple frame 1-NN (M-NN) classifiers. The prototype set for the 1-NN classifier consists

of the features from the individual image frames that make up the noiseless left-right data

sequences. For the 200 sequences generated per class there are 3400 individual image frames.

Error testing is performed with the leave-one-out method. When an individual frame is to be

tested, its feature vector is deleted from the prototype set. The closest feature vector from all

5 classes is then determined using a Euclidean distance measure. If the closest feature vector

has the same class label as the test vector, a correct classification is observed.

The multiple frame I-NN classifier operates in a similar fashion to the multiple frame

vector quantizer classifier described above. Each frame of a sequence is classified using the

1-NN single look classifier. A classification decision is made at the sequence level according

to which class wins a plurality of the frames for a given sequence. Figure 24 illustrates the

performance comparison between the continuous left-right Hidden Markov Model and the

single-look and multiple frame nearest neighbor classifiers. Table 28 shows the same results

in numerical form.

The results of the three classifiers are very similar for the 20, 15, and 0 dB SNRs. At

10 dB noise, the continuous Hidden Markov Model performs better than the I-NN single look

algorithm but almost 9 percent worse that the multiple frame nearest neighbor technique. This
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Figure 24. Performance Comparison of the continuous left-right Hidden Markov Model (C-
HMM), single-look 1 -NN and multiple frame (M-NN) classifiers for a correlation
level of 2. 95% confidence bars are shown.

is surprising since the multiple frame technique does not directly use the temporal information

in the sequence. This result may be reversed by adjusting the number of Gaussian Mixtures

used to model the state observation probability creating a better model.

5.3.4 Ergodic Hidden Markov Models. The discrete ergodic Hidden Markov

Model is the final type of classifier investigated on the military vehicle data set. The left-right,

Table 28. Numerical classification results for the continuous left-right Hidden Markov
Model (Hidden Markov Model), single-look 1-NN and multiple frame (M-NN)
classifiers for a correlation level of 2.

Noise (dB) 20 15 10 5 0
C-HMM 100.0 100.0 63.5 36.7 21.5
M-NN 100.0 100.0 72.2 28.4 21.4
I-NN 100.0 92.9 39.2 20.1 20.0
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right-left, vertical, and transition-only observation sequence data sets are evaluated. The model

architecture consists of 5 states with 64 observation symbols. All state transitions are possible

with the ergodic Hidden Markov Model requiring a full state transition matrix. One of the

major differences with the ergodic model is that it is trained with one long observation sequence

rather than the multiple short sequences used for the left-right model. The composition and

length of the training sequence is described next.

5.3.4.1 Left-Right Observation Sequences. The first data set classified with

the ergodic models is the left-right observation sequence data set. Before classification can

begin, the ergodic Hidden Markov Model for each class must be trained using a single long

observation sequence of vector quantized data. The training sequence is created by generating

a random trajectory over the region of interest. The azimuth and elevation coordinates

of the random trajectory are created using a C language routine provided by Seibert and

Waxman (59). The initial observation position is azimuth 30 degrees and elevation 20 degrees.

The observation position of each additional frame is determined by generating two Gaussian

random numbers controlling the azimuth and elevation stepsize. The program can handle

boundary encounters by gracefully moving in a different direction. Once the routine ha-

generated the random trajectory it is given access to the master data set from each class the.

was used to create the vector quantizer for the left-right Hidden Markov Models. This is the

codebooked data generated for every 5' degrees in azimuth and elevation. For a particular

class, the codeword associated with each observation position in the random trajectory is found

by an interpolation routine that operates on azimuth and elevation angles from that class's

master data set. All 5 class training sequences will follow the same random trajectory.

To determine the length of the training sequences, many sample training sequences of

different lengths are generated. An ergodic Hidden Markov Model is trained for each class for

each sequence length. The left-right observation sequence data for 20 dB SNR and correlation

level of 2 is classified. The effect of the different length sequences on the classification

accuracy is shown is Table 29.
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Table 29. Effects of Training Sequence length on Ergodic Hidden Markov Model Classifi-
cation Accuracy

Sequence Length 100 500 1000 1500 2000 2500 3000
Accuracy -% 85.9 96.1 96.8 97.0 97.7 98.8 99.3

Based on these results, a training sequence length of 3000 is chosen for this experimen-

tation. An illustration of the 3000 frame random trajectory is shown in Figure 25.

Figure 25. 3000 frame random trajectory used to train the ergodic Hidden Markov Models.
The same trajectory is used for all five classes.

An ergodic Hidden Markov Model is trained for each class using the 3000 frame training

sequences. The left-right observation sequence data is treated as an independent test set for

this classification experiment. The classification results are shown in Table 30.

The classification accuracy of these classifiers for all noise conditions are slightly higher but

consistent with the discrete left-right Hidden Markov Model results reported in Table 10.
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Table 30. Classification results for the ergodic Hidden Markov Model classifiers using the
left-right observation data set.

SNR\CORR 2 4 8 12
20 99.3 99.2 98.9 99.0
15 99.2 98.9 99.2 98.9
10 77.6 68.8 69.6 71.4
5 25.5 25.8 27.0 24.3

0 21.7 21.7 21.4 21.3

5.3.4.2 Right-Left Observation Sequences. The ergodic Hidden Markov

Model does not encode the ordering of the sequences as strongly as the left-right model.

It tends to learn the adjacency, or boundary relationships, of the clusters from the vector

quantizer. This difference is explored by examining the classification accuracy of the right-

left observation sequence data on the ergodic model classifiers. The classification results for

the right-left observation sequences are shown in Table 31.

Table 31. Classification results for the ergodic Hidden Markov Model classifiers using the
right-left observation data set

SNR\CORR 2 4 8 12
20 99.3 99.2 99.0 98.9
15 99.1 99.0 99.2 99.0
10 77.5 69.2 69.7 71.0
5 25.5 25.8 26.9 24.3
0 21.6 21.8 21.4 20.8

The results show there is not a great deal of difference in the classification accuracies of

the two data sets. The ergodic Hidden Markov Model is not as directionally sensitive as the

left-right variety. One could envision a pattern recognition system that uses ergodic Hidden

Markov Models to sense the presence of desired target in sensor imagery. Once the target has

been detected, a bank of left-right Hidden Markov Models could track the movement of the

object in a precise manner.
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5.3.4.3 Vertical Sequence Testing. The sequence encoding strength of the

ergodic model is further examined by determining the classification accuracy of the vertical

data set. The classification results using the vertical data set are shown in Table 32.

Table 32. Test results for sequences with vertical motion using ergodic Hidden Markov
Models. 0 represents a correct classification, X represents a miss.

Class\angle 0( 22.5' 45.0f 67.50 90.0f 112.50 135.ff 157.50 180.ff
M60 X 0 0 0 0 0 0 0 X
M35 0 X 0 0 0 0 0 0 0

BTR60 X 0 0 0 0 0 0 0 X
T62 0 0 0 0 0 0 0 0 0
M2 X 0 X X X 0 0 0 0

A classification accuracy rate of 75.5% was found across the five objects. This is

approximately an 8% increase over the 68.8% classification accuracy found using the left.

right Hidden Markov Models. Again, this classification rate increase is attributed to the

ergodic model not as strongly encoding the ordering of the training sequence.

5.3.4.4 Transition-only Observation Sequences. The final experiment per-

formed on the ergodic Hidden Markov Models is a classification analysis using transition-only

observation sequences. Transition-only observation sequence have codeword duplications for

adjacent time indices deleted from the data set. Therefore, only codewords that mark transi-

tions between aspects or characteristic views compose the sequence. This procedure is similar

to the experimentation of Seibert and Waxman who only examined aspect transitions in their

classification system (59).

The first experiment uses the full 3000 frame sequences to train the ergodic models and

test with transition-only left-right observation sequences. The transition-only classification

results are shown in Table 33. The results from testing with the full left-right data set reported

Table 31 are repeated for comparison.

An experiment where the ergodic Hidden Markov Model was trained using a transition-

only sequence was performed. Because of the number of codewords eliminated in creating
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Table 33. The classification results from Table 31 (left) and the transition-only left-right data
set classification results (right).

SNR\CORR 2 4 8 12 SNR\CORR 2 4 8 12
20 99.3 99.2 98.9 99.0 20 91.6 90.8 90.9 90.7
15 99.2 98.9 99.2 98.9 15 90.1 90.8 91.1 90.7
10 77.6 68.8 69.6 71.4 10 78.4 69.3 67.9 67.8
5 25.5 25.8 27.0 24.3 5 24.7 25.6 25.0 28.6
0 21.7 21.7 21.4 21.3 0 22.1 21.8 21.8 21.7

the transition-only sequence, a 10,000 frame training sequence is generated for each class and

processed. The resulting transition-only training sequence for each class contained between

1200 and 1500 codewords. An ergodic Hidden Markov Model was trained for each class.

Classification testing was performed on the full and transition-only left-right observation

sequence data sets. This result is shown in Table 34

Table 34. Classification results of the transition-only trained ergodic HMMs for the full
left-right data set (left) and the transition-only left-right data set (right).

SNR\CORR 2 4 8 12 SNR\CORR 2 4 8 12
20 97.7 97.9 97.8 97.8 20 17.8 97.8 97.5 97.5
15 97.5 97.6 97.6 98.2 15 97.4 97.3 97.1 97.4
10 73.0 68.4 68.5 69.2 10 72.4 65.3 66.8 71.1
5 25.3 25.5 26.4 23.7 5 24.4 25.3 26.0 23.6
0 20.8 21.0 20.9 20.8 0 21.2 21.3 20.8 20.5

The results from the last two tables indicate that transition-only sequences contain

enough spatio-temporal information about the objects to produce good classification results

when used for training or testing.

5.4 Conclusion

This chapter has detailed the experimentation and results for the proposed spatio-

temporal pattern recognition technique based on the Hidden Markov Model. The classification

performance of three types of Hidden Markov Models were investigated using a five class
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problem of selected tactical military ground vehicles. The discrete and continuous left-right

and discrete ergodic Hidden Markov Models performed extremely well in identifying the 3D

objects in sequences of 2D imagery. A significant performance improvement was observed

over the single-look and alternate multiple frame classifiers. The results demonstrate the

advantage the Hidden Markov Model technique has in accessing the temporal information

contained in the image sequences.

Testing with sequences where the object moved in a different manner than the training

sequences showed that the left-right Hidden Markov Model is directionally sensitive and can

be thought of as a directional movement filter. In contrast, the ergodic model displayed the

tendency to discriminate the class of the targets while being rather insensitive to the type of

motion. This is due to the ergodic model learning the adjacency of the clusters of the vector

quantizer rather than the strict ordering of codewords as with the left-right models.

Finally, the new distance measure proposed here was experimentally shown to produce

results superior to the other five measures discussed. Using the mean and the variance of the

output distributions of the Hidden Markov Model classifier to measure the distance between

model pairs is an excellent tool for judging the expected classification accuracy in a multiclass

pattern recognition problem. The new measure was also shown to give insight into the nature

of the classification errors by comparing the computed distances with the classification of

each object's training sequences. Errors occurred most often with class pairs whose computed

distance is smallest.
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VI. Spatio-temporal Automatic Target Recognition System

6.1 Introduction

Accurately identifying real world objects using classifiers trained with synthetic im-

agery is the Holy Grail of pattern recognition. This chapter describes the development of

such a pattern recognition system designed to analyze the performance of the Hidden Markov

Model classifier identifying objects in real image sequences. The three components compris-

ing this pattern recognition system are segmentation, feature extraction, and classification.

These components are illustrated in lRgure 26.

Pattern Recognition System

Sensor :- ------------------------- : Decision

Figure 26. A typical pattern recognition system can be broken into three processes known as
segmentation, feature extraction, and classification. The system uses data from a

sensor to produce information to which an action/decision process is applied.

The successful classification of the real image sequences is accomplished using the

discrete left-right, discrete ergodic, and continuous left-right Hidden Markov Models.

6.2 Segmentation

Segmentation is the component of the pattern recognition system that is, perhaps, the

most vital and difficult to implement. The purpose of segmentation is to remove as many

non-object pixels from an image as possible while leaving the object itself intact. Removing

the non-object pixels, also known as background or clutter, is an essential processing step

necessary for the extraction of good object features. Failure to extract good object features

that are representative of the true object results in poor classification performance.
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In this dissertation, the segmentation process will be applied to a sequence of real

video imagery of the M60 tank and M35 truck. Features will be extracted from each image

frame with the sequence classified using the three Hidden Markov Model classifiers trained

on synthetically generated data. Two types of segmentation processes are investigated. These

two types are manual hand segmentation and an automated technique using a neural network

trained to recognize object and non-object RGB color values.

6.2.1 Hand Segmentation. The first type of segmentation investigated is hand

segmentation. Video sequences of the M60 tank and M35 truck are recorded using a super VHS

camcorder. The camcorder was moved in a circular motion around the objects consistent with

the view centered approach previously used to generate the synthetic observation sequence

training data. An IBM PC based framegrabber was used to capture sequences of 512 x 480

pixel images for each object. The images were reduced to 256 x 256 pixels. The imagery

associated with each frame was transferred to a Macintosh computer for background pixel

removal. Using an image processing software package, the author zeroed out the background

pixels in each frame of the sequences. This process is equivalent to an ideal segmentation

process. An example of the hand segmentation process applied to the M60 and M35 is shown

in Figure 27 and Figure 28.

Figure 27. Real image of an M60 tank (left) and hand segmented image (right).

An 11 frame sequence of the M60 tank moving in the azimuth angle range of 800 to

1800 at an elevation angle of 00 was generated. The 10 frame M35 image sequence moved

between azimuth angles 00 to 500 at an elevation angle of 00.
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Figure 28. Real image of an M35 tank (left) and hand segmented image (right).

6.2.2 Color Segmentation. The second method of segmentation is based on a

technique of identifying object and background pixels through their red, green, and blue

(RGB) color values (48). To implement this technique, sample pixels from the background

and object are extracted from the imagery. Labeled data is passed to a feedforward neural

network for training. Once the network is trained, each individual pixel of a test image is

evaluated and labeled as object or background. All background pixels are subsequently given

an RGB value of (0,0,0).

The color segmentation process is tested on the 10 frame image sequence of the M35

truck. The neural network was implemented in the LNKnet software package and trained

using the standard backpropagation paradigm (45). The neural network architecture consists

of 3 input nodes, 25 hidden nodes, and 2 output nodes. A learning rate of 0.1 is used with no

momentum. The training data set consists of 20,450 object vectors and 24,636 background

vectors. The test on training data error rate is 8.0%.

The majority of object and background training vectors were those previously used to

segment the M60 tank imagery (48). The M60 imagery was obtained two months prior to the

M35 sequence. The video imagery for both vehicles were taken in the same general location

under similar weather conditions. Example pixels from the M35 truck and some background

objects not present in the M60 imagery were added to the training set. After training, each pixel

in the 10 image sequence was evaluated to determine its class, object or non-object. Before

viewing the results of the segmentation process, it is interesting to observe the three-space
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distribution of the ROB pixel values from the object and background. Figure 29 illustrates the

distribution of 200 representative feature vectors from the two classes. Figure 29 reveals the

250 40•

15010
2000

Red 250 50

Figure 29. 3D plot of 200 RGB data vectors from the background (dark) and M35 truck
(ight).

situation that the two classes are non-linearly separable and thus a good candidate classification

problem for the feedforward neural network. The original and segmented images of the 10

individual frames of the M35 sequence are shown in Figure 30, Figure 31, and Figure 32.

The results of the segmentation algorithm were excellent. An average of 94% of the

background pixels were removed from the images while only 4.4% of the object pixels were

removed. An analysis of the before and after segmentation signal-to-clutter ratio (SCR) was

accomplished. The SCR is defined as

SC R = 20 log1 o (0 bjectaverage (27)
aclutter I

All imagery is converted from 24-bit RGB color to 256 level greyscale imagery for

the SCR analysis. The average SCR of the original imagery is 2.4 dB. The average SCR of

the segmented imagery is 12.2 dB. Although the color based segmentation process performed
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Figure 30. Original and segmented imagery for the first three frames of the M35 truck
sequence.
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Figure 31. Frames 4,5, and 6 of the original and segmented M35 tkuck sequence.
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Figure 32. Frames 7, 8, 9, and 10 of the original and segmented M35 truck sequence.
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well, it is clear that additional post-processing of the segmented imagery would improve the

results found here.

6.3 Feature Extraction

With the segmentation process completed, each image is converted from 24-bit RGB

color to a 256 level greyscale format. The 28 dimensional Fourier Magnitude features were

then computed from the two hand segmented and single color segmented image sequences.

Classification using the two types of discrete Hidden Markov Models requires that the multi-

dimensional features be vector quantized. The three segmented sequences were codebooked

using the vector quantizer constructed for the synthetically generated five class tactical military

vehicle data set. The continuous sequence data was prepared for classification using the HTK

Hidden Markov Model Toolkit (23).

6.4 Classification

The discrete and continuous versions of the three segmented image sequences are

classified using the discrete left-right, discrete ergodic, and continuous left-right Hidden

Markov classifiers. These classifiers use the same architecture as those described in Chapter

V. The left-right Hidden Markov Models are trained on the left-right observation sequence data

set described in Chapter V, Section 3.1. The continuous left-right Hidden Markov Models are

trained with the 28 dimensional left-right observation sequence data set. The ergodic Hidden

Markov Models are trained on the 3000 frame observation sequence discussed in Chapter V,

Section 3.4.

The results of testing the hand segmented M60 tank sequence on the three Hidden

Markov Model classifiers are shown in Table 35. The output response of the Hidden Markov

Model designed for each class is given in terms of log [P(OIk)].

The M60 classifier displayed the strongest match for all three types of Hidden Markov Models.

For the discrete left-right model, the match was approximately 140 orders of magnitude
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Table 35. M60 hand segmented real image sequence classification results. The output of the
Hidden Markov Model for each class is given in terms of log [P (0R.)].

M60 M35 BTR60 T62 M2
D-HMM -4.7 -170.2 -184.7 -149.2 -168.4
C-HMM -35.4 -94.8 -72.1 -48.0 -173.5

D-Ergodic -3.8 -110.0 -110.0 -17.1 -110.9A

stronger than the nearest out of class model. The difference was almost 13 orders of magnitude

for the continuous left-right and discrete ergodic models.

The classification results using the hand segmented M35 truck sequence are shown in

Table 36.

Table 36. M35 hand segmented real image sequence classification results. The output of the
Hidden Markov Model for each class is given in terms of log [P (OR)0].

M60 M35 BTR60 T62 M2
D-HMM -31.7 -20.6 -34.5 -28.3 -32.2
C-HMM -79.7 -75.4 -89.7 -101.1 -119.1

D-Ergodic -47.1 -9.8 -10.5 -29.8 -17.7

Here, the M35 discrete left-right classifier response was eight orders of magnitude greater that

the nearest out of class object. The difference was four orders of magnitude for the continuous

left-right model and approximately one order of magnitude for the discrete ergodic version.

Classification results of the M35 color segmented imagery are displayed in Table 37.

Table 37. M35 color segmented real image sequence classification results. The output of
the Hidden Markov Mcdel for each class is given in terms of log [P(OiX)].

M60 M35 BTR60 T62 M2
D-HMM -143.2 -34.1 -37.2 -48.7 -104.6
C-HMM -226.2 -161.3 -170.5 -182.3 -245.8

D-Ergodic -91.9 -13.1 -15.2 -70.1 -64.5
1-NN 10 0 0 0 0
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The M35 discrete left-right classifier response was three orders of magnitude greater than

the BTR60. The M35 continuous left-right classifier response was nine orders of magnitude

higher than the nearest competitor. The M35 ergodic response was two orders of magnitude

higher than the BTR60 classifier. It is interesting to examine the last row of Table 37. The

28 dimensional feature vectors from each frame of the color segmented image sequence were

classified using the I-NN single look classifier. All 10 frames were classified by the I-NN

technique as an M60 tank. The Hidden Markov Model based classifier, however, was able to

correctly, and quite strongly, identify the sequence.

6.5 Conclusion

This chapter investigated the performance of a Hidden Markov Model based pattern

recognition system used to classify objects in real world image sequences. This demonstration

is particularly interesting because training classifiers on synthetic data to recognize objects in

real image sequences is a difficult task. The three components of the pattern recognition system

(segmentation, feature extraction, and classification) were described. Image sequences were

segmented using manual hand segmentation and an automated technique based on identifying

object and clutter RGB color values. The image sequences were evaluated with the discrete

left-right, discrete ergodic, and continuous left-right Hidden Markov Models. A strong, correct

classification was obtained for each sequence with the three classifier types. The encouraging

results reported here are, however, anecdotal. An examination using numerous real image

sequences depicting motion over the entire region of interest is required to generalize the

results found here.
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VII. Recommendations and Conclusions

7.1 Recommendations

The research explored in this dissertation has opened the door to several new questions

whose answers would provide valuable information for future research in the area of identifying

3D objects in 2D image sequences. It is recommended that the following research areas be

explored.

"* Determining Optimum Hidden Markov Model Parameters. Choosing Hidden

Markov Model parameters such as the number of states, the number of symbols for the

discrete model state observation probabilities, and the number of Gaussian Mixtures

for the continuous state observation densities is more of an art than science. A trial

and error approach is currently used to find model parameters that work well with a

particular data set. An investigation into techniques aimed at the automated selection

of the optimum model parameters for specific data sets should be undertaken.

"* Bayes Classification. Investigating the theoretical conditions for Bayesian classifica-

tion using image sequences should be accomplished. A portion of this investigation

should focus on the conditions where the Hidden Markov Model based classifiers are

functioning according to the Bayes decision rule. An investigation on bounding the

Bayes error rate using resubstitution and leave-one-out error testing, similar to the work

of Fukunaga and Hummels (27), is needed.

"* Continuous or Discrete Models. Several researchers have expressed opinions on

which type of Hidden Markov Model, discrete or continuous, has better performance.

Theoretically, the continuous model can explicitly represent any state observation prob-

ability density given enough Gaussian Mixtures. A large number of Gaussian Mixtures,

however, would require an enormous amount of training data for the accurate repre-

sentation of the model parameters. It may be the case that a discrete model may have

nearly the same performance as a continuous model with much less computational bur-
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den. A tradeoff analysis on the use of the continuous and discrete model is required for

optimizing the design of future Hidden Markov Model based classifiers.

* Ergodic vs Left-right Models. In Chapter V, it was observed that the left-right

Hidden Markov Model is a directionally sensitive motion filter. That is, the left-right

model could identify objects moving in a certain manner while rejecting the same object

moving differently. The ergodic model, on the other hand, has the property that it can

identify the objects over a wide range of motion. An investigation into the conditions

where each model yields superior performance is needed. This knowledge would

allow the optimization of Hidden Markov Model based classifiers where an ergodic or

left-right model would be employed according to conditions.

* Region of Interest. In this dissertation, sample sequences over a large region of

interest were used to demonstrate the superiority of the Hidden Markov Model classifier

technique. Would several Hidden Markov Models looking at smaller regions of interest

have superior classification accuracy? The knowledge of the tradeoff in the size of the

region of interest versus problem scenario is required for the proper design of an aspect

independent 3D object recognition system.

7.2 Conclusions

Identifying 3D objects moving in 2D image sequences is now a solved problem that has

many interesting military and industrial applications. Current systems that identify objects

in 2D imagery, generally, receive the imagery from visual or infrared sensors and perform a

particular technique on a single image frame at a time or they assume independence. These

systems are therefore said to perform single look pattern recognition. Biological studies,

however, have shown that many animals, including humans, use object motion information in

the identification process. The identity of objects as well as a description of their movement

is discerned through an analysis of the spatial and temporal behavior of the object features

extracted by the eye and brain. Therefore, this research developed a method of incorporating

both spatial and temporal object information in the automatic target recognition process. It
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was hypothesized that incorporating the spatial and temporal object information through an

analysis of a time-indexed sequence of images will lead to a system with a substantially higher

classification performance than single look methods. This goal was achieved through a new

application of the technique of Hidden Markov Models to learn how features derived from

moving objects change over time. A challenging demonstration of the Hidden Markov Model

classifier was successfully performed on a three class moving light display problem. Another

successful demonstration of this spatio-temporal procedure was performed on a five class

problem of recognizing tactical military vehicles. The contributions to the state-of-the-art of

pattern recognition developed in this dissertation are now described.

7.3 Contributions

* An Information Theoretic Argument For Sequence Processing. A new argument

advocating the use of sequence, rather than single look, processing was developed.

The argument is based on Shannon's definition of information and its relationship with

entropy (61). A pattern recognition system can be thought of as being on t14: "eceiving

end of a communication channel. From the receiver's point of view, information is equal

to a reduction in the entropy, or uncertainty, of the message sent. In this application

the message is the object itself viewed by the pattern recognition system. Mandating

constraints on the signal (object features) reduces the associated entropy. The particular

constraint applied in this dissertation is to process a sequence of messages at a single

time. It was shown by proof that the entropy of a sequence of observations is less

than the entropy of the individual events. It was also shown by proof that the more

restrictive the dependency of the individual events, the more the entropy is reduced. In

this application, the reduction of the entropy of an image sequence implies there is less

uncertainty about the object's identity. To take advantage of this reduction of entropy, a

sequence processing technique known a the Hidden Markov Model is employed as the

pattern recognition algorithm.
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• Hidden Markov Model Distance Measure. A new method for analyzing the distance

between a pair of Hidden Markov Models was proposed. The distance measure between

pairs of Hidden Markov Models gives insight into the sensitivity of the model to changes

in parameters. Additionally, the distance measure is an important tool for analyzing the

performance of Hidden Markov Models in a multi-class pattern recognition problem.

The proposed method uses second order statistics, the mean and variance of the Hidden

Markov Model output distributions, and the Bhattacharyya distance measure to find

the distance between each Hidden Markov Model pair. Previously reported methods

essentially only measure the distance between the means of the output distributions.

Comparing the proposed method with those previously reported using a worst case

example has demonstrated that the new method, which accesses the information in

the output distribution variance, is a superior approach yielding a realistic distance

measurement between pairs of Hidden Markov Models.

* Identification of Moving Light Displays. This dissertation reports the first known

pattern recognition algorithm applied to the identification of objects from a class of

imagery known as moving light displays. All previously known automated techniques

attempt to uncover the type of motion the moving light display object is undergoing.

Individual frames of a MLD image sequence contain very little spatial information. The

information content is highly temporal in that sense that image sequences are required for

object identification. Moving Light Display sequences of a cube, sphere, and pyramid

were generated for experimentation. The single look classification rate for the moving

light display imagery was observed to be near 50%. In contrast, the Hidden Markov

Model classification rate was above 93%. The alternate nearest neighbor multiple frame

technique classification rate was at least 20% below the Hidden Markov Models. A

one sided t-test revealed a highly statistically significant difference between the Hidden

Markov Model and multiple frame technique at a 0.01 level of significance. The ability

to accurately identify this difficult class of imagery is clearly a testament to the power

and robustness of the spatio-temporal technique proposed in this dissertation.

99



"* Use of Hidden Markov Models as a Spatio-temporal Classifier. This dissertation

presents a new application of the Hidden Markov Model technique. The Hidden Markov

Model is perhaps the preeminent technique used in speech recognition. This dissertation

uses the Hidden Markov Model as a spatio-temporal pattern recognition algorithm to

identify 3D objects contained in 2D image sequences. Here, the Hidden Markov Model

learns to recognize the temporal changes object features undergo during movement.

The discrete left-right and ergodic as well as the continuous left-right Hidden Markov

Models are examined as spatio-temporal sequence processors. Experimentation using a

five class problem tactical military vehicles demonstrates the theoretical advantages of

recognizing objects using image sequences. The Hidden Markov Model performance

was substantially superior to a I -NN single look and alternate multiple frame technique.

"* Identification of Real Imagery. Identifying objects in real sensor imagery using

classifiers trained on synthetic data is one of the most highly desired characteristics

of a pattern recognition system. This characteristic, however, is seldom seen. This

dissertation demonstrates such a system where real video image sequences of the M60

tank and M35 truck are successfully classified. The individual frames of the sequences

were hand segmented or passed through a neural network based segmentation algorithm

that identified object and background pixels based on their red, green, and blue (RGB)

color values. The sequence of features obtained from the segmented imagery were

correctly identified by the three types of Hidden Markov Model classifiers that were

trained on the synthetic data generated from BRL-CAD.

7.4 To the Future

The research described in this dissertation represents an important evolution in the state-

of-the-art of automatic pattern recognition. The information theoretic argument for sequence

processing clearly demonstrates the benefits over single look techniques. The novel and

successful use of the Hidden Markov Model classification technique using the moving light

display and military vehicle data sets opens the door to what will be exciting and widespread
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research in the processing of image sequences for object identification. The excellent results

identifying objects in real image sequences using classifiers trained on synthetic data highlights

the capability of the Hidden Markov Model based spatio-temporal classification technique to

fulfill the object recognition tasks for the military and industry.
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Appendix A. Derivation of Equations

A.) Derivation of Forward and Backward Algorithm

The first section of Appendix A details the derivation of the Forward and Backward

algorithm provided by Ruck (57). Let

ot(i) = Pr(O ... Of, it = qi[1)

That is, the probability of the observation 01.." Of and being in state it =qj at time t given

the model L. The following derivation for at(i) is inductive.

1) Initial condition:

al(i) = Pr(O, i4 = q,.)

= Pr(O01 il =qj,X)Pr(ii =qiX)
= bi (Ol)7ri

which is valid for I < i < N.

2) Given a, find a,+,

at+1(j) = Pr(Ol... Of+1, it+I = qj 11)

= Pr(Ot+iIO' ... 0,, it+, = qj, X)Pr(Ol ... 0,, it+ = qj I1)

= bj(Ot+i)Pr(O ... Of, it+, = qj 11)

Now
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N

Pr(Ol ... O,, it+ = qjl) = E Pr(O1 ... O, it+t = qj, i, = q.R)

= • Pr(i,+1 = qj1 O1... O, it = qi, ,X)Pr(Ol ... O, it = qI1)

= 'aija,(i)

Hence

N

•t+l(j) -= bj(O,+j) E• aq t,(i)
i=1

and d~his is valid for 1 < t < T - 1 and 1 < j < N.

3) For t = T the total probability is given as

N

Pr(O,... OT P) = _ Pr(Ol... Or, ir = qijX)

N= E 'ar W

i=1

The Forward algorithm is summarized as follows:

1. Initialization. Compute
al•(i) = 7ribi( Ol)

forall I <i <N

2. Compute successively

N

tt+i(j) = bj(Ot+1 ) Ect,(i)aj
i=1

forallt = 1,2,...,T-Iandj=1,2,...,N.
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3. Compute
N

Pr(Ol ... OTIA') = E Tr(i)

i=1

The Backward Algorithm is derived in a similar manner. Let

it(i) = Pr(Ot+... OT lit = qi, 1)

That is, the probability of observing the partial sequence Ot+1 ... OT given the current state

it = q, and the model .. Again the derivation proceeds inductively.

1) Define

Pr(i) = Pr(OT+l ... OTlit = qi, I) = 1

for 1 < i < N.

2) Given ft+, find fit

fit(i)= Pr(Ot+1... OTIit = qi,.)
N

- : Pr(O,+1 ... OT, it+1 = qjlit = qj, X)
j=1

E- Pr(Ot+l... Orlit+, = qj, i, = q1 , ).)Pr(i4+- qj lit qj,,)
J

-•'ZajPr(Ot+llOt+2 ... OT, it+I = qj, it = qj, ,X)Pr(O,+2 ... OTit+ I =qj, it =q, .)

- •-abj(Ot+i)Pr(Ot+2"'" OTlit+1 = qj, it = qi, X)

Note Ot+2... OT is independent of it = qi by Markov property

it(i) = Eaijbj(Ot+I)Pr(O,+2 ... OTIit+l qj, X)

= E aibj(Ot+,)#,+I(J)
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Hence,
N

fit(i) =aijbj(Ot+i)#,f+I(j)
j=1

fort =T- 1,T-2,...,landl <i<N.

3) For t = 1 the total probability is calculated as

N

Pr(Ol ... OTi)S) = Pr(Ol ... OT, il =qi1)
i=1

= • Pr(Oi ... OTit = qi,, )Pr(il = qR

= EriPr(01102... OT, il =qi, X)Pr(02... OTlil =qj, X)

N
-- E 7ribi (O1)fil (i)

i=1

Summary of Backward Algorithm

1. Initialization. Set

fiT(i) =1

forall 1 < i < N.

2. Compute successively
NPAO~i = E aijbj(Ot+lp~t+,(j)

j=1

fort =T- 1,T-2,...,landl <i<N.

3. Compute
N

Pr(01 ... OTrP) = L rjbi(Oj)fij(i)
i=1

A.2 Derivation of the Baum-Welch Re-estimation Formula

The theoretical development of the re-estimation formulas revolve around the work of

Leonard R Baum from the Institute of Defense Analysis and several colleagues. In the 1966
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paper by Baum and Eagon (8), it is proved that if there exists a homogeneous polynomial,

P(x) = P(xj), of degree d, with nonnegative coefficients and a transformation of the form

a'
Xij ari

-,j - j aa P (28)

then P (T(x)) >_ P (x). Baum and Eagon (8:362) have shown that the Hidden Markov Model

probability, P (OX) - the probability that an observation sequence 0 is generated by the

particular Hidden Markov Model X where X ([I, A, B), is a homogeneous polynomial

with non-negative coefficients. The degree of the homogeneous polynomial is 2T + I where

T is the length of the observation sequences (7:3) (8:262). The fact that P(O 1) is a

homogeneous polynomial with non-negative coefficients suggests that the individual elements

of the model parameters X = (Hl, A, B) can be maximized through an iterative application

of the transformation shown in Equation 28. P(O I[) is usually written as (55:262)

P(OPI) = E 7rqibqi(Ol)aqiq2bq2( 0 2)... aqrT-qrbqT(OT) (29)
ql,q2.'.,qr

Equation 29 may be re-written in the form (42:1040)

P(OIL) = WBIAB 2 A ... ABT-IABT (30)

or equivalently as (42:1069)

P(OIX) = ltBAtB-A' .. . B2A Brlf (31)

where the superscript t implies transposition. Equation 30 is valid since we consider rl and 1

to be a column vectors and A and B to be arrays where

rl -- (ri 91l< i< N)

A = (aij 1<i,j<N)
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B = (bj(k) :l<j<Nandl<k<M)

1 = unity column vector of length N

The A array is formed in the usual way, however, the B array has the form

(b 1 (O,) 0

Bt b 2 (0)

0 ... bN(Ot)

The dimensionality of P(0 IX) in Equation 30 is verified by noticing

(IxN)(NxN)(NxN)... (NxN)(NxN)(Nxl) = 1

Levinson writes the forward and backward variables in matrix form as (42:1069)

at+1 = Bt+lAtat = Bt+jAct t = 1,2,... T- 1

A = ABt+tfl5~t t = T - 1, T - 2,...1

where a, and fl, are represented by column vectors that follow

at = (at(i)3 1 < i < N)

fit = (fit(i) E)l < i < N)

Notice that the second portion of Equation 30 can now be rewritten as

P(1) = at = a'ft forany t in (1, T)

where the superscript again implies transposition.

107



To derive the re-estimation formulas for the Hidden Markov Model, define the gradient

with respect to each of the three independent model parameters, (l', A, B), as

Vn P (Ok) a OP(OIX)

VAP(OIX) - P(OIX)
aaij

aP(Oix)VBP(OIX) -- (kabj (k)

Now calculate each of the gradients above and show the re-estimation formulas.

A.2.1 Re-estimate of A. Looking at Equation 30 and evaluating the gradient for

the parameter A, noting that lT and B are independent of A, we get the following T - 1 terms

VAP(OIX) = ( -- B2AB...ABr-ABrl ( + nHBAB2 A.BTIABrl
3A2T T + 1 aAT T

+ ... +()tBAB,...Bt- BT 1 (32)
TA

As an example, the term of Equation 32 for t = 4 is

(I'I'B 1 AB 2AB 3AB 4 - B5 AB 6 .. ABTIABT1) (33)

and can be grouped in the following way

i3A
ntBIAB 2AB 3AB 4 -B 5 AB 6 . . . ABT-IABT 1

Using the definitions in Equation 32 we get

at = a4 = B4acA

it+, = #5s = AB 6f 6
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also
aAa-B = B5

Therefore, Equation 33 can be written as

Ctfit'ft+ 1Bt+j

Adding up all T - I terms, the total probability gradient for A is

T-I

VAP(OIXk)= 'tftjtj

The derivative of a specific element of the A matrix is now
T-1

a P =•. at,(i)Al+i(j)bj(Ot+l)
a==

The re-estimation formula for a specific element of the A matrix following the transformation

in Equation 28 is
aij aap

aap

which can now be written as

= aij'".= at,(i)fi,+i(j)bj(Ot+1aij = N ra
E,=I ij E'=-, ct(i)Al+i(j)bj(Ot+l

or in the more compact form

- •-•fio'ta(i)afit+i(j)bj(Ot+j

t=109O(i)
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A.2.2 Re-estimate of n. For the parameter H, use P(OIX) inEquation 31. There

is only one term in the gradient, namely

Vn (0,k)= a (IBrA'Br-iAt..B2A'BI) = BI,•
anVn P(OIX) = (BTBTA'..BAB)=Bfi

The derivative for a specific zr, can be written as

ap N
- bi(Ol)PI(i) = >bi(Ol)aijbj(O2 )fl2 (j)

a7ri j= 1

The re-estimation formula for a specific element of the FI vector following the transformation

in Equation 28 is

r 7rjO

can now be written as

7ri E-.1t bj(Ot)ajjbj(O2)P2(j)
7ri = j=1 7rj Ej=I ib(OI)aijbj(O)02W(j)

A.2.3 Re-estimate of B. The re-estimation formula for the B matrix is found by

applying the gradient to Equation 30, yielding T terms of the form

(VBP(OIX))(jk) = ( -ABTIAB2  ... BT-1ABT

!-, B2B-Arl
+ (r BIA.- ... B3A... BT1ABT1)

... +(rltBIAB2 ... BT-IA -I) (34)

As an example, the term for t = 4 in Equation 34 is

(r*BAB 2 AB 3A. ,,AB55  BT-IABT1)
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and can be grouped in the following way

8B 4ntBAB2AB3 A ý-B AB, . .BTIABT 1 (35)
Cit-IA

Equation 35 can now be written compactly as

(oat_ A)j (fit)j ""(Atoai-)j (A8)i

Summing the T terms gives

V 8 P(OIX)= (Att_,)j (,)i
t=l,O,=k

For a specific j
N

(Aot,_-)j = Ea,_jti(i)
i=1

Therefore, the derivative for a particular element of the B matrix is

8bj(k) = E taqat-t(i) L(J)

The re-estimation formula for a specific element of the B matrix following the transformation

in Equation 28 is
- b~5 (k) 'b(kJ bj(k)hj (k) E, Ebj (1) '

and can now be written as

bj (k) -T [-N aijat-(i)] fit(j)
j(k) =l 

11
E~t ,(1 E~r,,ov,[Ei=, aijat- I (i)] A,(j)
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or in the more compact form

b,(k - t-l,Of=Vk a,(jWfit(U)

A.3 Logarithmic Form of the Baum-Welch Re-estimation Formula

The forward and backward variables are written as

at+l(j) Ea= ~ i b(t,

N

fit (i) E= ib(tflj

j=1

The Baum-Welch re-estimation formula for elements of the A and B matrices are

-i = ~ E j x(i)ajb, (Ot+j)fit+j(I)

bj(l) = o,-Aq

The Logarithmic version of the forward and backward variables are

log1 0(at+I (D) = log 10 [at(i)aii] + olog1 (bj(Ot+1 ))

1og1 0(fit(i)) =log10 E ib(t+)tj

Likewise, the logarithmic version of the Baum-Welch re-estimation formula become

log10(aij) = log 10 [r:at~iaajbj(ot+lft+luj)10-lo10 [EatjL)fil(i)1
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Iogl 0 (bj(1)) = log10 Of( U - log10 E itD U

The re-estimation formula for the left-right Hidden Markov Model, trained with multiple

observation sequences, are given as

1og10Q4a kjy = lo 10 [ a C(i)aji + log10 (bj (Ok ))

log1 0(ft(0))= log10 Eajj +)ki

and

logl 0(aij) =log 10 [•E -E. ct4(i)aiibj(Oti)fik+i(I)]

=log10 [ - k(i)] ()
k=lo10 T~- E a (i) Pt i)

logO~b(1) lglo i k~113 ~j
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