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CONCEPTS OF FUZZY MODEL ASSESSMENT

1. INTRODUCTION

When tracking a contact via passive sonar, one finds the solution structure of the track is
in large part determined by the stationarity assumptions made on the stochastic processes
Sassocaed vwith the tracking solution. Stationarity is assumed for the noise processes, the
kinematics of the two vessels, and the acoustic channel linking the source and the observer,
which in our model corresponds to the contact and own ship, respectively. Essentially, one is
forced to assume the processes are piecewise stationary, i.e., stationary for periods of time with
the change points between stationary periods occurring quickly with respect to the expected
length of stationarity. During periods of stationarity, a filter can track the contact. Between the
periods of stationarity, the filter may lose track and should in any event be reinitialized after the
switching period between stationary periods. Thus, one has a renewal process with periods of
stationanty during which tracking is possible. The points of renewal in this process are the ends
of the transition periods of stationarity.

To successfully model this process, one must not only design the tracking filters for the
stationary periods but also detect the change points and determine the new propagation model
that will hold during the next period of stationarity. The essence of model assessment is the
classification of the possible propagation models. Model assessment is a pattern recognition
problem, which can be approached in many ways. Here a fuzzy system is used to determine the
possible models and the confidence associated with each model. From this information, a
decision is made as to which possible models should be maintained in constructing the tracking
solution during the next period of stationarity. This report describes the application of fuzzy
system modeling to propagation model assessment, with the emphasis on theoretical issues.

1.1 DATA ABSTRACTION OF THE TRACK

The piecewise stationarity of the observation process is reflected in the tracking solution.
The overall tracking solution is a string of tracks built up over many periods of stationarity. A
track established on a single period of stationarity is called a segment. For a single contact, the
piecewise construction of the solution leads to the hierarchical representation of the tracking
solution as a tree. For a set of contacts, the solution is a forest of trees. Segments are classified
according to mechanism that caused the segment formation. The mechanisms include the
following:

1. Change of propagation path (pp) (e.g., a change from a direct path to a bounce path
between source and observer or vice versa). In fact, any change in the propagation channel fits
into this category including multi-bounce models.

2. Changes in the own ship heading, speed, or depth.

3. Changes in the base frequency of the source (bf), which should produce minor changes
in propagation channel characterization provided the change in frequency is a small percentage
of the base frequency.

4. Changes in the contact heading, speed, or depth (h2), which are usually observable in
the Doppler and bearing measurements.
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5. Changes in the system of unknown type (nl). Unknown anomalies are a way of
specifying the class of changes not modeled so far.

Segments not caused by contact maneuvers are used to build up contact segments, or those parts
of the track where the contact has not changed its kinematics. A sequence of contact segments is
then used to forms a contact track, which is represented as a tree in this hierarchy. The set of all
contact tracks is a collection of trees or a forest of trees, which is the contact situation
assessment.

This solution construction is illustrated in figure 1-1, where on the right side of the figure
a single physical contact track is drawn and on the left side is the corresponding data abstraction
that represents the ideal solution for this track. In the physical track, the small white circles
represent data points in the x-y plane.

DATA HIERARCHY PHYSICAL TRACK
CONTACT

ASSESSMENT

CONTACT
TRACKS

CONTACT
SEGMENTS

SOWVN SHIP

/BSRQECN SEGMENTS

PROAGATIO PATH

Figure 1-1. Solution Hierarchy Induced by the Piecewise Stationarity of the System Processes

Tracks formed during stationary periods are called segments and drawn as short solid lines fitted
to the data points. The linear fit is the result of the tracking process or state estimation. This fit
is sometimes called feature extraction, data reduction, or data abstraction. As long as the contact
does not maneuver, the segments can be viewed as data points in a "super segment" called a
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contact segment. Contact segments are drawn as a bold dashed lines in the physical track and
there are two contact segments in figure 1-1 where the track evolves in time from the bottom of
the figure to the top. The contact segments are concatenated to form a single physical track in
this figure. Since the physical track is built up by successive data abstraction, a natural data
hierarchy emerges as shown on the left-hand side of figure 1-1. The most basic data elements or
data points form the first level of the hierarchical structure. Proceeding up the data hierarchy,
groups of points generated during track formation produce the segments, groups of segments
form contact segments, groups of contact segments form contact tracks, and at the top of the
hierarchy, the set of all contact tracks form the contact assessment. Each level of the hierarchy
has a corresponding physical meaning shown by the arrows.

For the tracker to perform successfully, the system must be able to detect the change
points in the stochastic processes that are affecting the system, and then classify them so that one
can reinitialize the tracking filters properly. This later task, if successful, allows a savings of
computational resources because the alternative is to initialize a new filter for every possible
scenario and see which ones converge. Previous efforts in this field have used Dempster-Shafer
evidential reasoning and compatibility maps that map observed effects to possible causes and, at
the same time, produce a consistent basic probabilistic assignment (bpa) to the possible causes.
Reference 1 describes one such effort. Although this subtask is critical, it is by no means the
only issue in designing a Fuzzy Expert System. This report considers modeling issues relevant
to the Fuzzy Expert System Tracker. Many of these issues are also relevant to the Contact
Management Model Assessment (CMMA) simply because the tracker includes the CMMA
functionality within the tracking mechanism. A more complete description on the CMMA
system is contained in reference 2. This report emphasizes theoretical issues. The fuzzy CMMA
system's description and performance is a topic for future work, once a suitable and correct data
set is obtained.

1.2 CLASSIFICATION OF THE MODEL

Classifying the cause of change points is a pattern recognition problem, which can be
formulated using many different methods. Statistical pattern recognition (SPR) is one and fuzzy
pattern recognition (FPR) is another. Although there are many different techniques and
approaches to pattern recognition, they all require (1) a correct model of the problem,
(2) extraction of a set of features that describe the differences in the classes, and (3) construction
of a decision rule to map the feature space to the decision space. Fukunaga (reference 3)
describes the pattern recognition process using the flow diagram of figure 1-2. In this figure, the
first three blocks represent the initial data collection, processing, and exploratory data analysis.
The data structure block consists of the search for structure in the data using clustering and
modeling techniques along with data reduction or feature extraction. Feature extraction is an art
requiring iterative refinement measured by the error estimates achieved. Finally, the features are
used as input to the classifier designed to fit the data for the anticipated use of the system. The
final product needs to be tested to validate the design procedure. Note the number of loops and
the emphasis on nonparametric methods to determine the performance of the classifier, before it
is built. The flow diagram assumes a valid data set, which is not available at this point. So the
blocks that address normalization, error estimation, and actual clustering and modeling of the
features will have to wait until valid simulated data are available or real data is found. So in
terms of Fukunaga's flow chart, this report can only address the data structure analysis block and
the classifier design block. The approach is to replace the classical decision rules and the feature
extraction by their fuzzy system counterparts, which are the fuzzy rule base and the fuzzy term
sets, respectively. This issue will be discussed sections 2 and 3.
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Figure 1-2. Fukunaga's Flow Chart of the Process of Classifier Design

The goal of pattern recognition is to design a decision rule that partitions the feature
space into equivalence classes, one equivalence class per cause of change point. The extracted
features are usually represented as vectors in a Euclidean space. Thus, the decision rule is a map
from the observation space to the causes or to the description of the equivalence classes. So the
decision fits the traditional representation of a decision rule as a map from the observation space
to the set of integers j1,...,c}, where each integer represents a class (D.X -+ {l,...,c}). The
statistical decision rule is shown in figure 1-3a as a map that places a unit value at the "proper"
class element and zero values in all the other elements. So for this example, 8(x) = 2. In this
figure, the one-dimensional observation space is partitioned into five disjoint regions, and the
labeled areas are the characteristic functions associated with each of the regions. Classical sets
may be defined in terms of a characteristic function that takes on the value I if the point is in the
set and 0 if the point is not in the set, i.e.,

1, xeA

A(x) = 10, otherwise
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For example, the second equivalence class has a characteristic function denoted by

Z2 (x) -= (bjb2](x), where J(bl,b2](x) = , oxhe rwis,

For this example, the statistical decision rule is given by

5

where only one of the Zi(x) can be non-zero. In the vector u(x) = [z1 (x),...,Z 5 (x)], each
coordinate is associated with a class and so each decision is represented by a unit vector. So the
vector of classes for figure 1-3a is u(x) = [0,1,0,0,0,]. The fact that only one element of the
function can be 1 also follows from the definition of partition. A point may be in one and only
one partition and one and only one equivalence class, and thus in only one class. This is known
as a "hard" decision where the word hard refers to the all or nothing quality of the decision. In
figure l-3a, the sample x can belong only to one class, class 2. Conceptually, the decision rule
3(x) and the vector u(x) merely represent the decision in different formats. In the latter format,
8(x) can be thought of as the index of the non-zero element in the vector u(x), and each element
of u(x) can be interpreted to mean the degree that the data point belongs to the class associated
with that index. In fact, the vector u(x) represents the characteristic function of the class chosen
by the decision rule &(x), so in effect, the decision can be thought of as a map from the
observation space to the space of characteristic functions representing the classes. Thus one

could recast the decision rule as a mapping D:X -* {O,l}c, where {0,1} is the two-element set
containing I and 0.

MF

STATISTICAL
Y4 DECISION

I/ RULE

OBSERVATION SPACE1234

f CLASSES

Figure 1-3a. Decision Rule in Statistical Pattern Recognition

By replacing the partition of the data space by a soft partition, one can construct soft
decision rules. In the previous paragraph, a decision rule was interpreted as a mapping to the set
of characteristic functions. Characteristic functions reflect the philosophy of classical set theory:
a point either belongs to a set (takes value 1) or it does not (takes value 0) - there is no in-
between. Similarly, fuzzy decision rules can be described as mappings to the set of membership
functions (MFs) of fuzzy sets. MFs generalize characteristic functions and define fuzzy sets.
When evaluated at a point, a MF determines the degree that the point belongs to the set. For a
fuzzy set A, the MF is denoted by UA (x), and takes on values in [0, 1]. In SPR, a decision rule
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partitions the observation space as shown in figure 1-3a, where each partition is a subset of the
observation space and that subset is defined by a characteristic function, say Z2 (x) as discussed
above. In a fuzzy partition, a point in the observation space can be in any one of the classes with
varying degrees of membership. The memberships are constrained by the requirement that they
sum to one for each point in the observation space, i.e.,

C
VXECX X, i(x) = 1.

The decision is no longer a mapping into the set of integers {L...,c} but instead, into the vector

space D. X - [0,1], just as the hard decision rule may be thought of as a mapping to the vector

space D.X -( {0,1}c, where u(x) = [XI (x),...,Xc(x)] represents the map. By softening the hard
decision rule so that one has a fuzzy partition of the observation space, the decision rule is
interpreted to be a vector-valued map to a fuzzy unit vector (fit vector), which is one
representation of the MF of a fuzzy set. Here, u(x) = [pst(x),..., St(x)] is both the decision and
the fit vector. Each element of the fit vector is the membership of the data point in the class
denoted by the coordinate index. One class exists for each dimension of the vector. In the
notation of fuzzy sets, the fit vector can be represented by p(x) = it,(x) / l+.- +pic(x) / c, where

each pair ji(x) / i is the membership of the point in class i: one class for each dimension of the
vector. Because the observation space partition is fuzzy, the vector of classes is no longer a unit
vector, but only a vector whose elements sum to 1.

Using the same observation space of figure 1-3a, consider the fuzzy partition shown in
figure 1-3b. Now the classes are not disjoint and overlap exists between the classes. The
partition of the observation space is fuzzy and is defined by the fuzzy sets, one for each class. As
noted, the fuzzy sets are the generalizations of the characteristic functions defining the classical
partition of figure 1-3a. In a fuzzy partition, a data point represented by x in this figure, may
support a decision with varying degrees in class 2 or class 3 or both. Thus, each possible
decision has associated with it a membership value, which represents the truth that the data
supports that decision. And in fact, the decision rule can be generalized further, so that the sum
of the elements in the vector of classes does not have to sum to 1, but only that each element of
the vector is bounded above by 1. In summary, SPR produces a single unambiguous decision,
whereas FPR produces an MF that evaluates for each class to the belief that the data belong to
that class.

1~ 2_ 3 DCIIO
i OBSERVATION SPACE 1 2 3 4 S

; CLASSES

Figure 1-3b. Decision Rule in Fuzzy Pattern Recognition
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1.3 EXTENSION OF THE CLASSIFICATION PROCESS

This report takes the above concepts one step further where the decision rule maps from
the feature space to interval-valued sets, one set for each class. So each element of the class
vector is no longer a real number between 0 and 1, but instead a closed subset of the interval
[0,1]. Figure 1-4a illustrates this decision rule for the same observation space of figure 1-3a.
Classes 2 and 3 have some measure of support, but now that support is represented by an
interval. In general, all the classes can have interval-valued support and the general form of the
decision rule is p(x) = XA1 (x) / I+.--+XAc (x) / c, where Ai is a closed interval. Each interval
represents the range of truth the data can support the decision for that class, where truth is
measured on a scale from zero to one. The data are represented by fuzzy numbers illustrated by
the shaded region in the observation space. This vector of intervals is described in the literature
as a fuzzy set of type 2 and called an interval-valued fuzzy set (reference 4, p. 14). The interval-
valued measure of truth is a generalization of FPR. Because the decision rule maps to a closed
interval, which itself can be represented by a characteristic function or an MF, one can illustrate
the decision rule as shown in figure 1-4b. Conceptually, no difference exists between figure 1-4a
and 1-4b; the only change is the representation of the certainty intervals yielded by the decision
rule. The decision system described in this report extracts features that are fuzzy sets, uses a
collection of fuzzy rules to replace the decision rule of SPR, and uses interval-valued fuzzy sets
to represent the output of the decision rule. Note that each interval in this figure may be the
result of many rules. Each rule tries to assess the support a feature gives to some class. If an
unambiguous decision is required, then further processing is needed. The important point is that
the entire pattern recognition process is extended to produce not just a single membership value
for each class, but a collection of MFs represented by interval-valued fuzzy sets.

FUZZY PARTITION
OBSRVTIOSC 1 2CE4TAINTY

FUZZY1 2 4 5DECISION

I RULE

OBSERVATION SPACE 1 2 3 4 5
CLASSES

Figure 1-4a. Decision Rule with Interval- Valued Certainty

S• OSRAINSAE1 2 3 4

f CLASSES

Figure 1-4b. Decision Rule with Interval- Valued Memberships
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In the following sections, fuzzy logic is applied to generate a decision rule of the form
U(x) = A1 (x) /I+... +ZAc (x) / c and then applied to model assessment in contact tracking. In

classical decision theory, the decision rule is derived by optimizing a functional such as the
probability of error or another loss function. In this report, the decision rule is never explicitly
stated because the certainty intervals are the result of a fuzzy rule base that models the governing
expert decision system. In section 2, fuzzy systems are discussed in more detail to explain how
the fuzzy features are extracted from the data and processed by fuzzy rules to yield a decision
that is interval valued as shown in figure 1-4. In section 3, interval-valued fuzzy logic is
described and used to solve the pattern recognition problem. This discussion includes the
determination of the satisfaction of a fuzzy premise by a fuzzy feature, the representation of the
strength of the rule, the propagation of evidence through the rules, and the aggregation of support
for a given conclusion. In section 4, an exploratory version of a fuWzy model assessment system
is discussed. Included in this discussion is the construction of the term sets, the rule syntax and
implementation, the object-oriented aspects of the program, and examples of the outputs. In the
last section, the implications of this work are given and possible extensions suggested.
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2. FUZZY DECISION SYSTEMS

Fuzzy decision systems use fuzzy logic to reason about decisions. These systems
represent signals as fuzzy numbers or linguistic variables and employ fuzzy rules to process these
signals. In this section, a cursory description of linguistic variables is presented and the basic
concepts of fuzzy systems are described. A simple control example is given to illustrate how
fuzzy systems process the input signals to yield a control signal. This sample also gives the
simplest illustration of a certainty measure associated with the conclusion. Fuzzy decision
systems are compared with classical decision systems and a physical interpretation of the system
flow is given.

2.1 EMBEDDING FUZZY SYSTEMS

To understand fuzzy decision systems, one must first understand the signals that flow
through them, i.e., the linguistic variables. Formally, a linguistic variable is defined (reference 5,
p. 132) as a quintuple (x, T(x), U, G, M) where x is the name of the variable, T(x) is the term set
of the variable x, U is the domain of definition of the variable x, G is a rule that names the
terms and M is the fuzzy set that is used to define each term. All this formality can be easily
explained using an example. Consider the linguistic variable called COLOR, where the
linguistic variable name is x = COLOR. Figure 2-1 illustrates this linguistic variable, where the
term set T(x) = (RED, YELLOW, ORANGE, GREEN, BLUE, INDIGO, VIOLET). The rule
G that generates the names of the terms is just the list of basic colors but, in general, G can be

a complicated grammar. The universe of discourse U or domain of definition is the frequency of
the visible spectrum. Finally, the meaning or semantic definition of the terms is given in this
example by a fuzzy set, drawn as a bell-shaped curve around the central frequency associated
with the color.

:•:'::TERM

MEANING OR

REDDISH-ORANGE FREQUENCY
UNIVERSE OF DISCOURSE

Fkure 2-1. Linguistic Variabl COLOR
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The shape of the linguistic terms is important and are usually defined mathematically by
the MFs such as pjtw(x) . Intuitively, this function ;tsw(x) is interpreted as the degree of
membership of the frequency x in the set of RED colors, or how "red" is the frequency x. The
range of the function gjim(x) is (0,1], where 0 means no membership in the set and I means
total membership into the set of red colors. Partial membership is best illustrated by the example
of a sunset - which is reddish-orange, having membership in both the RED and ORANGE terms.
In figure 2-1, this frequency is labeled reddish-orange. Another example in this figure is the
frequency labeled chartreuse, a frequency half-way between GREEN and BLUE. The terms of
the linguistic variables can divide the space producing a fuzzy partition, i.e.,

VxEX,3atleast one y s.t.- r(y)(X) > 0 and XuArc,(x) = 1,
T

so that at every frequency at least one MF is non-zero and the sum of the MFs at that value of
frequency is 1. Note the terms of the linguistic variable COLOR do not form a fuzzy partition
because by inspection, at the frequency located between BLUE and GREEN, the sum of the
membership values is less than one. Fuzzy partitions must then have special term sets.

Some of the concepts of a fuzzy system for model assessment are best described by using
linguistic variables. Bezdek outlines these concepts best in his introductory article in the first
issue of the IEEE Transactions of Fuzzy Systems (reference 6). Figure 2-2 illustrates the fuzzy
system model used in this report and reference 6. In this figure, the data are first fuzzified, i.e.,
transformed or mapped into linguistic variables. The fuzzy system (FS) processes these
linguistic variables by using rule-based methods and obtains one or more conclusions. The
processing is carried out by the fuzzy inference engine using the rules stortja. the fuzzy rule
base where application-specific knowledge is contained in the data term sets. So the processing
solves the problem. However, the rules yield answers that are in terms of fuzzy sets or in terms
of conclusions with associated certainties. To apply the answers, one must be able to project
back into the control or decision space. In a control problem, this space is a control value or
vector. In a decision problem, this space is a finite set of decisions. The process of projection is
called defuzzification. The four-step process is summarized by Bezdek as "fuzzify, solve,
defuzzify, control" (reference 6, p. 3).

Figure 2-2. Fuzzy System Model

This solution process is similar to using Fourier transforms to solve a linear system. Here
one transforms the input into the complex frequency domain, multiplies the input transform by
the system transform, thereby solving for the output in the transformed space. However, to know
what this output is, the inverse Fourier transform must be applied to return to the time domain:
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transform, solve, and take the inverse transformation. Using transforms is similar to, but not the
same as, the four-step process of fuzzy systems. Fuzzy systems are similar in that one transforms
to another representation to make the problem easier, and then converts back from that
representation. However, the Fourier transform is invertable in some sense because the inversion
from the transformed space totally recovers the signal for a given class of signals.

The linguistic variables used in the fuzzy system are not just another representation of the
input. They are in a sense, an embedding of the input into the space of linguistic variables. This
process can represent numerical vectors or functions without loss of fidelity. Since linguistic
variables can represent data exactly, one could think of these as embedding the input into this
larger space. However, this is not usually the case. Once the data have been fuzzified, i.e.,
mapped into linguistic terms, usually some information has been lost so the input cannot be
retrieved. The important system information has been extracted from the input, and this
information is then used to solve the problem. The model trades representational complexity C

solution tractability and robustness.

Embedding as a solution technique has long been used by mathematicians. An exampi,
is the evaluation of real integrals by complex analysis. Here one embeds the integrand in the
complex number system, and the path of integration within the complex plane. The path of
integration includes the real number line, so that one can apply the residue theorem in evaluating
the integral on a closed path, thus obtaining the real integral as part of the entire solution. Here
the portion of the integral along the real number line represents the solution and the process of
projecting back onto the real number line becomes a triviality. The similarity is more evident
when the process is described as complexify, solve, and decomplexify (reference 6).

For the system to solve the problem, linguistic variables are used to frie fuzzy rules. The
rules are mappings from the transformed input space of linguistic variables to the solution space
of linguistic variables. Multiple levels of rules can be thought of as a composition of mappings.
Unfortunately, these mappings are multivalued. So for control problems, the rules can produce
ambiguous results. In the case of decisions problems, the rules can produce a set of possible
decisions. In binary logic, either a rule fires or it does not, depending on the premise being
satisfied or not. But in fuzzy logic, all the fuzzy rules fire with varying levels of satisfaction of
the premise and with varying levels of confidence in the implication, leading to conclusions with
varying levels of belief. These levels of satisfaction, confidence, and belief are termed
certainties, and the passage of confidence through the rules is called propagation of evidence or
propagation of certainty through the rules.

With multiple answers at the output of the system, the control designer has to take the
multitude of answers and disambiguate or interpolate between them to obtain a single value.
This process in FSs is called defuzzification, which is analogous to the projection back into the
solution space when solving by embedding. In decisions systems, multiple answers mean the
designer must select a subset of the solutions and use these to further the decision process in
some manner. Methods for handling ambiguity in the decision process is an active area of
research.

The philosophy of a fuzzy system bears a resemblance to the linear systems concept of
resolution of signals into sinusoids or impulse functions. In fuzzy systems, the representation or
signal space is now linguistic, which resolves the signal into membership in the term sets of the
linguistic variable. The solution technique uses fuzzy rules applied to the input term sets and
yields an output fuzzy set or a set of decisions. In linear systems, the signal resolution is
combined at the end of the analysis using superposition. In fuzzy systems, the output linguistic
terms are aggregated in a non-linear fashion. The defuzzification of the output term often
requires a functional to map the output to the solution space. The strength of fuzzy systems is
that in some circumstances, fuzzy rules can model nonlinear systems easier than more
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mathematically precise methods. The rules can be heuristic in nature and derived not just from
the physical model of the system, but from the experts' knowledge of the behavior of the system
learned over time. The learning need not be from just human experts, but can also be derived
from learning methods such as neural networks (NNs).

Fuzzy systems are applicable to model assessment because humans can take the sensor
readings and, using heuristics, determine what type of propagation path or model is now valid.
Heuristics can be implemented as fuzzy rules and it is hoped that these rules will be as efficient
and as accurate as human observers. The process is one of pattern recognition, i.e., given a set of
tracking residuals and knowing the current track, determine the new propagation model.
Although this can be modeled as a statistical pattern recognition problem, it becomes a hard
decision problem, i.e., only one decision is accepted. However, this really does not make sense
from an operational point of view. If the data do not support a clear and obvious model for the
propagation, but instead a set of possible models, then all of these models should be pursued in
parallel until further evidence resolves the ambiguity. Clearly, it is more efficient to resolve this
ambiguity as soon as possible, and this is part of the reason for doing the work. However, if one
discards the correct model by using a hard classifier, then the contact can be lost if the correct
model is not used in the tracking process. The approach is to make a soft decision, clearly
identifying the most promising model candidates with the hope that the true model is one of the
model candidates.

2.2 FUZZY CONTROL EXAMPLE

The four-step solution sequence is "...fuzzify, solve, defuzzify, control" (reference 6).
Fuzzification is based on the definition of the terms in the linguistic variables. For any data
value or input x the nonzero terms t that have support, i.e., {tlteT(x), pt(x) > 0} are used to
code or to fuzzify the data into the terms of the linguistic variable. Lotfi Zadeh, the father of
fuzzy sets and systems calls this "fuzzy quantification." So in the example of the sunset, the
terms supported by the reddish-orange hue are (RED, ORANGE). For a sensor measuring some
quantity such as speed, the terms may be (ZERO, POSITIVE SMALL). It is important to
remember that associated with each value x and with each applicable term t, a membership
value exists describing the degree of membership in this term. This value is very useful as
illustrated in the following control example.

A taxi driver who is approaching a red light, must brake to come to a safe stop. The
control variable is the rate of braking and the two inputs are the speed of the car and the distance
to the stop light. In this simple example there are only two variables and two fuzzy rules used to
determine the braking rate. The two rules have the following form:

RULE 1:
IF the speed of the car is HIGH,
AND the distance to the stop light is NEAR,
THEN the braking should be HARD.

RULE 2:
IF the speed of the car is MEDIUM,
AND the distance to the stop light is MEDIUM,
THEN the braking should be MEDIUM.

Where the term set for speed is I SMALL, MEDIUM, HIGH), the term set for the distance is
(NEAR, MEDIUM, FAR) ,and the term set for the braking is ILIGHT, MEDIUM, HARD,
PANIC). Both rules are illustrated in figure 2-3: the first rule is on top and the second rule on
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the bottom. The terms are defined by triangular fuzzy sets that cover the three universes of
discourse, i.e., speed, distance, and braking rate. The important point is that the fuzzy rules are
approximations to an exact analytical description of the system. In this figure, the input speed x
has membership in both terms (MEDIUM, HIGH) of the linguistic variable speed. The degree
of membership is evaluated using these term sets. Similarly, the distance y to the red light has
membership in INEAR, MEDIUM). The minimum value of the memberships of these two
inputs is used to determine the "strength" of the conclusion, which is a term of the linguistic
variable called braking rate.

RULE 1, PREMISE RULE 1, CONCLUSION
1AMF MEDIUM MF MEDIUM MF MDU

IAM

MFMMEDIU
II

SPEEI I3 ANCE Y BRAKING Z

AFRULE 2, PREMISEM M-DU MF RULE 2, CONCLUSION

I 

RULE 

2, 

IPRS

RULE AGGREGATION

CONTROL RULES1
RULE 1: DEFUZZIFIED

IF X ISHIGH AND YIS NEAR RESULT
THEN BRAKINGuL 2IS HARDl m[z

IF X IS MEDIUM AND Y IS MEDIUM
THEN BRAKING IS MEDIUM

_BRAKING

Figure 2.3. Ty;pical Output Strength Calculation ina Fuzzy Control Logic

The two braking rules yield different braking rate terms, which are aggregated to yield a
single output braking rate. The aggregation procedure is called "defuzzification" and is a simple
averaging of the areas in the output fuzzy sets. Again, the relative strength of the rule output is
determined by the minimum of the memberships of the inputs in each of the input premises. In
effect, the strength of the output for a rule is determined by the degree of satisfaction of the
premise clauses. Premise satisfaction or certainty and its propagation through the rules are an
inherent part of the solution technique. In fact, data are evidence only if they satisfy the premise
as measured by the certainty. Propagation of the certainty through the ply to determine the
certainty of the conclusion is the propagation of evidence through the fuzzy rule. The single
value obtained in the solution space by defuzzification is the control part of Bezdek's "... fuzzify,
solve, defuzzify, control."

2-5

E N O I P T Y.. . ..... .. . . . .. . .. .. . . . . . 1F



Note in this example, the certainty of the premise or its validity or its degree of
satisfaction is a single-valued real number. The strength of the premise is equivalent to the
notion of the MF value or validity. However, certainty can be represented in other forms besides
a single-valued real number between zero and one, such as interval valued and functional
valued. In this report, the interval-valued version of the certainty is used, which is more general
than the single-valued certainty illustrated in the control example. However, Bezdek's model still
holds. The main change is in the certainty representation, which will be discussed in detail in
section 3.

2.3 SOFT DECISIONS VERSUS HARD DECISIONS

In section 1, it was pointed out that a hard decision produces a single cause or conclusion
and a soft decision produces either a list of possible conclusions or a list of conclusions with a
relative ranking. Dempster-Shafer theory of evidential reasoning is an example of soft decision.
The support for the soft decision is on the set of all subsets of the possible conclusions. So if the
possible conclusions are (hO, pp, bf, h2, nl}, then the decisions of the form "bf-or-h2" are
allowable decisions. SPR produces a hard decision since one is essentially doing an N-class test
of hypothesis where the decision is one of N disjoint conclusions. SPR produces a single
conclusion after the test is made. FPR can do the same thing if the decision process is based on
Bayes classifier as described in reference 7. Here, fuzzy clustering is used to replace the
standard statistical estimation of centroids and dispersion, and then these estimates are used in a
maximum a posteriori decision rule. The answer is still "hard," only one decision value.
Assume, as discussed in section 1, that one has a vector, u(x) = [u1, ... ,uc] then a "hard"
decision is represented as a unit vector where only one component has a value of one, and all
others have a value of zero. A data vector is represented by a boldfaced letter, e.g., xt.

With unsupervised clustering, one learns about the structure of the data without the aid of
labeled data or as is said in some cases without a teacher. As the data are clustered, each data
point xk has associated with it a fit vector u(xk) = [I#l(xk),...,pc(xk)], representing the
memberships of xk in each of the c classes. This vector can be thought of as a fuzzy unit vector
or fit vector as called by Kosko (reference 8) or as a fuzzy set and represented by

Pt(xk) =/•1(xk)1/l+-..+/1c (Xk)1 /,

which is the standard fuzzy set notation. The only requirement placed on the components of this
vector is that they sum to 1, i.e.,

C

XuPi(xk) = 1.
i=1

As shown in figure 2-4, this means that for three dimensions, the vector is constrained to lie in
the plane illustrated by the shaded part. For hard classifications, the constraint is even more
severe; the membership vector or fit vector is required to be one of the unit vectors, also
illustrated in figure 2-4. An application is the fuzzy k-nearest neighbor algorithm. One finds the
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k-nearest neighbors, and then averages their membership vectors. The membership vector
indicates to what degree the sample vector x& belongs to each class. If one must make a hard
decision, then the class with the maximum component will provide the hard decision. Ties can
be broken randomly or arbitrarily.

U•

...,1 . .........

Us

F:•,ure 2-4. Hard Decision, vs Soft Decision,

The type of classification or pattern recognition occurring in model assessment is even
more general than the fuzzy nearest neighbor. Associated with each class is a closed interval,
which represents the lower and uppe~r bounds on the membership in that class. So, the
membership vector has now been replaced with what is called an interval-valued fuzzy set. Klir
defimes the interval-valued fuzzy sets as "... membership functions of the form: PA: X -- , P([0, 1])
where P.(x) is a closed interval in [0,1] for each .x. "(reference 4, p. 14). Here X, the
universe of discourse of the fuzzy set, is one of the possible classes, and the interval associated
with each class is the closed interval represer'ing the lower and upper bound associated with the
certainty of membership of each class. This situation is illustrated in figure 2-5, for a five-classproblem. The fuzzy set is given by

(x)=IA1 .(xk) .+-.+ .(xk) . c,

where instead of single-valued membership functions of figure 1l-3a, one has interval-valued
membership functions as illustrated in figure 1-4. In this fuzzy set, the integers (1,.. .,c}, c = 5are the decisions and the universe of discourse. The support for each decision is a set represented
by the indicator function fA(x), which is 1 if X e A and 0 elsewhere. For the interval-valued
fuzzy sets,the setAhas the special form A=s[a,a 2 t, where ac is the lower bound of the

supportand t2 is the upper boundofthesupport. AsinFPR,thereis n clear-cut winnersince
each of the possible conclusions can have support. The process of aggregating this support will
be discussed later.
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Figure 2-5. Intral- Valued Fury Sets

2.4 CLUSTER INTERPRETATION OF RULES

Supervised clustering occurs when data samples that lead to a known decision are
clustered. In effect, one is approximating the decision function by determining the pre-image of
a known conclusion. The decision function then can be specified by 8(xk) = i 4• xkeXi, where
Xi is the i-th cluster. Essentially, these clusters are fuzzy rules mapping portions of the input
space to integers in the output space. The integers are the classes that are referred to as models
such as bf, h2, pp, hO and nl, as well as the index into the vector of classes. Kosko points out that
"The key idea is cluster equals rule" (reference 8, p. 330). Although Kosko was referring to a
very specific case of a binary input/output fuzzy associative matrix (BIOFAM), the general idea
holds here as well.

Figure 2-6 illustrates the formation of clusters or rules for model assessment. In this
figure, the feature extraction from the data does the same thing that a Hough transform would,
i.e., maps lines to points. However, here is a line represented by a two-dimensional point
(intercept, slope). The slope is called the drift and the intercept is called the jump because of its
historical reference to the bearing tracks. The feature space in figure 2-6 is a four-dimensional
space, and the cluster are mapped to the decision called h2. The point is, that this cluster
represents a region of the feature space that maps to an integer in the decision space. Intuitively,
these mappings are the fuzzy rules.

In this report, features are extracted from the data to drive the decision system and the
features are then modeled as fuzzy sets. Using the variance of each feature, a normal density is
fitted to the feature. When renormalized, this density is interpreted as a fuzzy number that is
treated as input data. It is this interpretation that allows the decision process to be modeled
totally in terms of fuzzy constructs. In fact, the entire system is a fuzzy expert system where the
data objects are fuzzy sets and the inference engine uses fuzzy logic. The fuzzy rules are viewed
as composite mappings from the input space to the decision space. The steps are summarized as
follows:
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Figure 2-6. Formation of Clusters in Model Assessment

1. The data are fitted using linear regression techniques.

2. The features are extracted from the linear fit and their densities are re-normalized to
construct fuzzy numbers. These numbers now form the input data to the fuzzy system whose
general structure was illustrated in figure 2-2.

3. The clauses of the fuzzy rules and the fuzzy partition of the feature space are then
used to construct closed certainty intervals associated with each clause. These intervals are, in
turn, combined to form a premise certainty interval.

4. The premise certainty interval is mapped to the output decision space using the
strength of the rule itself.

Figure 2-7 illustrates this mapping procedure. Note that the clusters illustrated in figure
2-7 are two-dimensional, but this is not how they are presently implemented. Instead, they are
implemented as two one-dimensional clusters. This figure is for conceptual purposes only. As
mentioned in section 2.2, the decisions are described in terms of interval-valued fuzzy sets. So
conceptually, the fuzzy rule is a mapping from regions in the input space to the output space, but
in this case, because of the form of the input data and the output decision, the mapping is harder
to visualize. But conceptually, Kosko's claim remains, "...cluster equals rule."
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3I FUZZY RULES IN CLASSIFICATION

3.1 FUZZY RULES

In section 2, fuzzy rules were described as mappings from a cluster or region of the
feature space into the decision space. Propagation of certainty through fuzzy rules was also
discussed and illustrated in a simple control example. The main components of Bezdek's
description of a fuzzy system were illustrated in this example, namely," ... fuzzily, solve,
defuzzify and control." In the taxi driver example of figure 2-3, the certainty was represented as
a real number in the interval [0,1]. In this section, the model is extended to include a more
sophisticated method of certainty representation - an interval-valued representation. For the
remainder of this report, only the interval-valued certainty representation is discussed.
Intuitively, this interval can be thought of as lower and upper bounds on the satisfaction of an
event, premise, conclusion, or fact.

3.1.1 Interl- Valued Certainties

First consider how interval-valued certainty arises from the interaction of the fuzzy data
and the fuzzy rule. When the data is itself uncertain, the input is modeled as a fuzzy number,
which is a special type of fuzzy set. A fuzzy set is represented by an MF, which is a
generalization of the characteristic function used to express sets in real analysis. So it is a
mapping from the domain of definition X to the interval [0,1] denoted pA2(x):X -- [0,1]. A
fuzzy number is a convex normalized fuzzy set (reference 4, p. 17), normalized meaning the MF
has a maximum of 1, or (x)11A W = 1. Intuitively, the convexity of a fuzzy set implies that it

looks like a bell-shaped or single-mode curve. Formally, convexity of fuzzy sets is defined in
terms of a-cuts of the MF, which are crisp sets representing the region of X w ith membership
greater than or equal to a, i.e., the crisp set defined by A. = (x I xeX, PA(X) >O a]. A fuzzy set
A is convex if and only if all of its a-cuts are convex. In figure 3-1, both the data and the
property are convex sets, and this makes the derivation of the certainty interval easier.

1 ~PROPERTY

Figure 3-1. Fuzzy Data Fited to a Fuzy Premise

Certainty intervals are derived in CMMA from the fact that the input data are fuzzy
numbers, and the properties defining the clauses are represented as fuzzy sets. Again, in figure
3-2 one sees the property as p. (x) and the data as pA (x), except here only one term set is
shown. Conceptually, the upper bound of the certainty interval represents the amount of overlap
of the fuzzy data A and the fuzzy property B. In possibility theory, the standard intersection of
two fuzzy sets is given by the minimum function, i.e.,
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PAcnB(X) = min[UA(x),PB(x)],xXF

and the maximum of pArB(x) represents the largest degree of overlap. This minimum of two
fuzzy sets is the counterpart to the logical AND. The standard union of two fuzzy sets is given
by

PAJB(x) = maxWA(x),PB(x)].
xe,

The union is the counterpart of the logical OR and complementation is the counterpart of the
logical NOT. Complementation is represented as J-(x) = 1 - PA (x). Both of these concepts

are needed to construct the possibility and the necessity. The lower bound of the certainty
interval is represented by the measure of subsethood of fuzzy set A in fuzzy set B, or the degree
that A is a subset of B. Mathematically, the upper bound is defined as the possibility:

l = Smin[,pA(x),pB(x)].

The lower bound is defined as the necessity:

N = inf max[1 - A (X),A(X)].
ZEX

The graphical construction for both of these measures is illustrated in figure 3-2.

I I

0 X 0 x

POSSIBILJTY = suP mU/ A (x),P B(x) NECESSITY =nf mmaxf -p A (x), PB(X)J
X X

Figure 3-2. Calculation of the Necessity and Possibility of A is B

In this example, the data are used directly to calculate the bounds. In this model
assessment system, the fuzzy data are first fitted by a piecewise continuous approximation and
then the necessity and the possibility are constructed. This approximation increases the speed of
the system by reducing the time complexity (I the problem. For example, in figure 3-3a the
fuzzy input is first approximated with a trapezoid, and then the possibility calculation is based on
the trapezoid. The necessity is illustrated in figure 3-3b. The certainty interval that results is
given by [N,1].
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Figure 3.3a. Calculation o~f the Possibility from the Data for the Moderate Term
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Figure 3-3b. Calculation of the Necessity from the Data for the Moderate Term

Note that when the data are singletons, then fl = P =/2re(x), and the interval reduces to
the single-valued representation used in the control problem example of the taxi driver. In fact,
the control problem can be considered a special case of the decision problem where there is only
one• class; instead of estimating the certainty that each class has occurred, one uses the fuzzy
rules to estimate the control parameter itself. The next section discusses the propagation of
evidence through fuzzy rules when the certainty representation is interval valued.

3.1.2 Propagation of Evidence Through Furzy Rules

In the taxi driver control example of figure 2-3, the propagation of evidence through the
fuzzy rules was described as using the minimum of the MF values for the two inputs. More

specifically, the two input variables, speed and distance, were the arguments to term sets known
as HIGH and NEAR. The term sets were triangular fuzzy sets and when evaluated at theseinputs, the mini-um membership value was used to truncate the output fuzzy set for the braking
control capled HARD. See th e fist ecin fiue2-3. In particular, the output is the rate of

braking and is given by/2x .•z = min(p,,.•(z),minWm1 , f(x),p•N,,(y)]) so the certainty of
the output can be thought of as min[•py, 0 1 j(x),p•,.•.(y)]. This concept is generalized for the
interval-valued certainty measures.

In this report, the fuzzy model assessment uses interval-valued measures of certainty, and
the propagation of certainty is based upon t-nores, s-norms, and the detachment operator. These

* operations are generalizations of the logical operations of conjunction, disjunction, and
implication, respectively, and have the same look and feel as the operations used to propagateevidence in the control problem. The propagation of certainty and the propagation of evidence
f phrases are used interchangeably. In section 3.1, the certainty of the premise was derived using
the necessity and the possibility. When the premise has multiple clauses, the clause certainties
are aggregated to yield the premise certainty. Intuitively, aggregation means the combination of
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certainties and the mathematical definitions are deferred until section 3.3. In this report,
conjunctions are allowed in the premise clauses but premise disjunctions must be expanded into
distinct fuzzy rules. For a more complete description of this approach, Bonissone's papers
(references 9-12) are recommended to the reader. For a complete discussion of the
representations of certainty, refer to reference 13.

To aggregate the premise certainty, the t-norm is used. Since the triangular norm or t-
norm behaves like a logical conjunction, the strength of the premise is based on the weakest
clause. The t-norm is a binary operator denoted by T(x,y) where xye[0,1], and the minimum
function is well known example. The t-norm is associative, T(x,T(y,z)) = T(T(x~y),z),
commutative T(x,y) = T(y,x), and monotonically nondecreasing in both arguments
T(xy) < T(v,w); if x < v and y < w. The t-norm satisfies the boundary conditions T(0,0) = 0

and T(x,1) = T(1,x) = x, which also satisfy the definition of the logical conjunction. To apply

the t-norm to the interval-valued certainty, assume that the premise is of the form f., where .
i-!

is a fuzzy clause and [ai,AI] are its interval-valued certainties. Then the premise interval
certainty is given by

[b,B] = [T(aI,a2, ....,),T(A,,A 2,. A,)].

For the special case when T(x,y) = min(x,y), the premise certainty is given by the minimum of
the certainty minimums and the minimum of the certainty maximums. In general, the t-norm can
be designed to reflect the data association or correlation of the premise clauses. For positively
correlated clauses, the norm T(xy) = min(x,y) is a good choice; for uncorrelated clauses the
norm T(x,y) = xy may be a good choice; and for negatively correlated clauses, the bold
intersection T(x,y) = max(0,x + y- 1) may best capture the association (reference 10).
Although the work so far has used only T(x,y) = min(x,y), the mechanism to select the
appropriate t-norm for each rule is clearly in place.

The s-norm or t-conorm is a generalization of the logical disjunction or logical OR
operator. The s-norm S(xy) with x,ye[0,1] has similar properties to the t-norm. These
properties include associativity S(x,S(y,z)) = S(S(x,y),z), commutativity S(x,y) = S(y,x), and
monotonicity in both arguments S(x,y) : S(v,w) if x < v and y < w. The boundary conditions
resemble the logical OR in that S(,1) = 1; S(xO) = S(0,x) = x. The s-norm used in this report is
the maximum function S(x,y) = max(x,y). The t-norm and s-norm are related by a generalized
version of DeMorgan's law provided one uses a hard complement, i.e., N(x) = 1 - x.
DeMorgans' laws then become S(x,y) = N(T(N(x),N(y))) and T(x,y) = N(S(N(x),N(y))).

The detachment operator is the mathematical mechanism needed to propagate the premise
certainty through the implication operator to the conclusion. The detachment operator is defined
in terms of the s-norm and t-norm operators and provides the mechanism for the propagation of
evidence, not only for the interval-valued certainty representation, but also for the single-valued
certainty representation. In the taxi driver control problem, the output fuzzy set of figure 2-3 can
be written as p,,&4n(z) = min(J mD(z),minLu[HGH(x),py^w(y)]). This output is derived from
the following rule: if the speed x is HIGH and the stop light is NEAR then brake HARD. Yet
there is nothing in this conclusion that includes the confidence in the rule itself. In general, if
one has a rule P -- Q, then if v(P) denotes the certainty or validity of the premise and
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v(P -. Q) denotes the strength or validity of the forward implication operator, then the
detachment operator must relate these two quantities to the conclusion validity v(Q). More
precisely, the binary detachment operator m(v(P), v(P -+ Q)) is defimed so that m is as large as
possible and still satisfies the constraint m(v(P), v(P -+ Q)) < v(Q) (reference 14, p. 167). That
is, the strongest conclusion you can infer without overstating the truth of the conclusion. The
validity or certainty can also be thought of as the truth, as well. If one assumes that
v(P -+ Q) = 1 then the control example is also an application of a detachment operator. The

detachment operator m can be taken to be a t-norm (reference 14) and, in particular, the
minimum function min(v(P), v(P -+ Q)) is the single-valued certainty that is often used by
fuzzy expert system shells like fuzzy logic official production system (FLOPS) (reference 15).
Just as the detachment operator can propagate evidence through fuzzy rules for single-valued
certainty measures, the operator can also propagate evidence using interval-valued certainty
measures.

The detachment operator discussed above was a function of two arguments since the
validity of both the premise and the rule were real numbers in the interval [0,1]. Now the
premise certainty is given by the interval [b,B], and the conclusion certainty is represented by an
interval as well. Moreover, it's not clear how to represent the certainty of the implication in this
description. Bonissone (reference 10) uses the "necessity" and "sufficiency" of the implication
operator to construct the certainty of the conclusion. The necessity is given by n = v(Q -+ P)
and the sufficiency is given by s = v(P -- Q). (Note this is not the same necessity used to
measure the subsethood of one'fuzzy set to another; but instead, is the classical mathematical
definition of the necessary part of the if-and-only-if logical implication.) The sufficiency s is the
strength of the implication in the forward direction and the necessity n is the strength of the
implication in the backward direction. So the detachment operator is a vector-valued function on
a vector field m([b,B],[s,n]) = [T(s,b),S(B,1 -n)] where T is a t-norm and S is its corresponding
s-norm. For example, if T = min, then S = max and m((b,B],[s,n]) = [min(s,b),max(B,l -n)],
which is the detachment operator used in the examples of section 4.

One can get a feel for this operator by simply considering the following four special
cases, where the strength of the forward and backward implication operator are set at their
limiting values:

1. [s,n] = [0,0] • m = [0,1]. Here one cannot rely on the rule in either direction so
that inference mechanism has no strength. The certainty interval is appropriately given by [0,1]
since the lower bound on the certainty is zero and the upper bound is 1. This simply says,
nothing is known about the certainty of the conclusion.

2. [s,n] = [1,1] =ý m = [b,B]. Here the implication operator is totally reliable in both
the forward and the reverse direction. The strength of the conclusion is then bounded above and
below by the corresponding bounds of the premise, simply because the implication operator has
infinite fidelity.

3. [s,n] = [1,0] =ý m = [b,1]. Here the implication operator in the forward direction is
absolutely reliable but the reverse implication operator is absolutely unreliable. The conclusion
certainty interval is lower bounded by the lower bound of the premise validity, but the upper
bound of the conclusion validity is 1 since no reliability can be placed on the reverse implication
operator. Without the reverse implication, nothing can be inferred about the upper bound except
that it is 1.
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4. [s,n] = [0,1] * m=[0,B]. Here the forward implication operator is useless and so
no lower bound can be established on the conclusion validity. However, the strength of the
reverse implication operator allows an upper bound on the conclusion validity. One expects this
in the case of modus tollens or backward chaining.

Note that the premise certainty interval in conjunction with the forward ply determines the
strength of the lower bound, and in conjunction with the reverse ply determines the strength of
the upper bound.

However, the interval interpretation is not the only one that can be placed upon the
conclusion validity. The truth of the conclusion can be thought of as a linguistic variable. Figure
3-4 shows the definition of the linguistic variable TRUTH. In this figure, one sees that the
semantic interpretation of the linguistic term "true" appears as the ramp function "absolutely
true," as a Kronecker delta function located at a truth value of 1. Note that the term "undecided"
is a constant function shaped like a uniform distribution function, much like case 1 in the above
paragraph. In fact, the certainty intervals can be thought of as fuzzy sets (as illustrated in figure
1-4b and thus seen to be related to the terms in the linguistic variable TRUTH (reference 5). In
fact, redefining TRUTH as in figure 3-5, the certainty intervals can be interpreted as
approximations to the terms of TRUTH (reference 13). Thus the interval-valued certainties
approximate the functional-valued linguistic terms of the linguistic variable TRUTH.

( • ( VERY FALSE FLE•FAIRLY F (•FAIRLY TRUE•q VERY TRUE•0

UNDECIDED

L A

TRUTH VALUE

Figure 3-4. Linguistic Variab TRUTH
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U TRUTH VALUE

Figure 3-5. Altemate Definition of the Linguistic Variable TRU771

3.2 DECISION SPACE

In section 2, it was pointed out that the decision function Of classical Pattern recognition
mapped the data to singletons or single classes in the decision space- FPR generalizes classical
pattern recognition by mapping to a fuzzy unit vector (fit vector), where the elements of the
vectors are associated with classes and the values of the elements represent the membership in
those classes. It was also pointed out that fuzzy model assessment generalizes the certainty
representation so that the elements in the fit vector are now interval-valued sets and the fit vector
becomes an interval-valued fuzzy set. Section 3.1 established that one could view these interval-
valued fizzy sets as second-order fuzzy sets whose members are fuzzy sets approximating the
terms of the linguistic variable called TRUTH. That is, think of these intervals as
approximations to the terms of the linguistic variable TRUTH. One further extension is needed.
Instead of each element of the fit vector being associated with singletons in the deiinspace,
the dimension of this vector is expanded to include one element for each member of the power
set of the classes, just as in the Dempster-Shafer formulation. That is, the elements of the fit
vector are members of the power set of {hO,•,9pph2,nl} , denoted P~ho,bf ,pph2,nl} = P. In

practice, fuzzy model assessment maps to a subset of P'. So a fuzzy rule can have a conclusion

{bJ',h2l , which is interpreted as either a change in base frequency or a contact maneuver has

3-7



occurred. Associated with this decision or element of the fit vector is a fuzzy set representing the
certainty interval of the conclusion.

The fact that the elements of the decision space are now members of P is a result of the
fuzzy rule base. The fuzzy rules were fashioned after the compatibility maps of CMMA. The
Dempster-Shafer approach used in CMMA maps the evidence or data to the frame of
discernment whose initial set is the set of all possible decisions; this means that the basic
probability assignment (bpa) is on P. The evidence or sensor readings are mapped to the
decision frame via compatibility maps. Since different sets of sensors can map to the decision
frame, the evidence is combined from these different sources using the Dempster-Shafer rule of
combination (ROC). Compatibility maps are very convenient in that they only ask how the
current inputs can support the elements in the final decision frame of discernment Then the
support for each conclusion is aggregated using the ROC, eliminating the question of how the
different sensors affect each other because this is all taken care of in the ROC. However, the
ROC assumes that the sources of information or data sources are "independent," although it is
not clear what independence means. Fuzzy rules also provide support for the conclusions from
the data, but the support representation and the propagation mechanism are quite different.

The compatibility maps of CMMA map the bpa of the sensor frame to the bpa of the
decision frame. Compatibility maps are based on compatibility relations, which are defined on
the product space of the two frames. "A compatibility relation simply describes which elements
from the two frames can be true simultaneously" (reference 16). A compatibility map is defined
as

CA. 45(AA) = {bI(ai,bj)eE9A,,aeA }.

where OA = {al,a2, ... ,an} and e9B = {bl,b 2 ,...,bn} so support is mapped from sets in eA to
sets in EB. The support is translated from frame to frame via the summation of the bpa that
maps to a specific set, i.e.,

mB(Bj)= XmA(Ai),
CA-.B(A)f=Bj

where mB(Bj) is the bpa assigned to set Bj in frame B. From the formula for the bpa in frame
B, it is clear that support is mapped from frame A in an additive manner. This is not the case
with fuzzy rules. Fuzzy rules map support to the same sets in the decision frame, but in a
different manner and in a different form. The decision space is the power set Pf=fiB, and the
compatibility maps are the source of the multivaluedness of the mappings.

The fuzzy rules reflect the multivaluedness of the compatibility maps since they were
fashioned from them. On a more basic level, the multivaluedness is due to the fact that single-
sensor, single-measurement rules are not specific enough to reduce the ambiguity of the
compatibility map or the fuzzy rule. So ambiguity is not a flaw, but a natural result of the partial
observation of the data. When more specific rules are designed, the premise contains the
conjunction of many measurement conditions and produces more specific decisions. Unlike
binary rule-based systems, all the rules fire for each data input, but the strength of the premise
satisfaction and the strength of the rule determines the strength of the conclusion. The next step
is to aggregate the conclusion support from all rules, which is the counterpart to the Dempster-
Shafer ROC in CMMA evidential reasoning. Aggregation is discussed in the next section.
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3.3 AGGREGATION OF CERTAINTY FOR CONCLUSIONS

Conclusion certainty is combined using general aggregation operators, which behave as
averýping operations (reference 4, section 2.6). Aggregation operators combine fuzzy sets in a
specifc manner that can be defined by a function with the appropriate properties. This function
is defined as h:[0,1]" -+ [0,1] and when applied to fuzzy sets defined on a common universe of
discourse has the form PA (X) = hOzs, (x),#, (x),...,.,, (x)). The function h is assumed to be
continuous, symmetric, and monotonic nondecreasing in all its arguments. Moreover, two
boundary conditions must be satisfied, namely: h(0,0,...,O) = 0 and h(l ,...,l) = 1, which
reflect the averaging nature of the operator. Many operators possess these properties, including
the maximum and the minimum operators representing the union and intersection of the fuzzy
sets in our system.

Aggregation operators are used in two different ways. The first way is to aggregate the
certainty obtained from one set of data across the rules. The rules are not independent, Le.,
different rules can map to the same conclusion and the data and the rules can in some sense be
correlated or associated. Therefore, there may be many fuzzy certainty intervals associated with
one conclusion of P originating from a single data set. These certainties need to be combined or
aggregated to form one certainty interval. The second way to aggregate is across data samples.
With several sets of samples, evidence will accumulate at the conclusions in the form of these
interval-valued sets, and this evidence has to be combined or aggregated across the samples or
across time. The second aggregation method does not have to be the same as the first. So far,
this latter aggregation method has not been tested simply because the work has not progressed far
enough. The first method has been tried and the next simple aggregation procedure has been
tested.

For each element of the decision space, there will be a collection of intervals generated by
all the rule fiings. Bonissone's method of conclusion aggregation is to replace these intervals
[c, C, ] with one interval,

(c, CJ = [S(cc 2,. ... ,c-),S(C,,C2 .... ,C)] (reference 10).

When the s-norm operator is chosen as S(x,y) = max(x,y), this yields a certainty interval from
the max-of-the-minimums to the max-of-the-maximums for the conclusion interval. The support
of the conclusion then is the maximum support that any one rule gives to the conclusion;
likewise, the possibility is the maximum of all the possibilities. This method of conclusion
aggregation always yields a nonempty interval provided some rule has yielded a nonempty
certainty interval. More formally, if the individual intervals are given by p,(x) = lt ,.co(x), then
the aggregation operator is given by

l[•,.cP) = supPE(v) A^IF(x), where jt,(x) = flp1 (x) and pF(x) = U0 (x).
V:Zi-l i=I

The union is implemented using the maximum operator and the intersection implemented using
the minimum operator. From this definition, the aggregation function h is continuous,
symmetric, and a nondecreasing function of all its arguments. The boundary conditons are also
satisfied. The simplicity of this method makes it practical, requiring only minimum and
maximum operations. Note further, that this aggregation is conservative in that each lower
bound c8 is itself the minimum of the certainties of the premise clauses and the certainty of the
forward ply. So, the aggregation procedure provides a conservative necessity measure. Observe
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the support that is mapped into the decision space by the fuzzy rules is not additive, as it is with
the Dempster-Shafer approach.

Other alternatives to this aggregation procedure exist. Source conensus (refence 10) is
one more aggregation method. Here the form of the aggregation is

[c,C= [s(,c=,...,C,=, ( , ,...,V,)],

which, for the choice of T(x,y) = min(x,y) would yield the max-of-the-minimums and the min-
of-the-maximums This interval would be considerably shorter, and in fact could be null even
when each component interval is not null. However, when all the intervals supporting a
conclusion overlap, this would give a smaller interval. The necessity would be consrvative, but
the possibility may noLt This shortened interval length tends to indicate too much knowledge of
the certainty of the conclusion. Conflicting answers can yield an empty set leaving no idea of
what type of support exists for the conclusions other than they may be conflicting. Bonissone
points out that this is a test for conflicting evidence.
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4. FUZZY CMMA SYSTEM

4.1 DATA IN THE CMMA SYSTEM

The CMMA system, as described in section 1, is a system driven by features extracted
from contact tracks. Thes features are linear fits to data, Le., linear regression of order one. In
general, this fit could be a fuzzy regression or it could be a robust nonlinear regression, or just an
ordinary least-squares regression. Robust regression procedures That can be applied to the
detection and filtering of features in the model assessment problem is discussed in reference 17.
The slope and intercept estimates describe a straight line and the distribution of these parameters
is known, provided th errors are additive normal random deviates. Each parameter is a staiic,
and its distribution is known to be normal (reference 18). The probability density function (PDF)
of the derived parameters is used to represent the information as a fuzzy number, merely by
renormalizing the PDF so it has a mode of one. Describing the parameters as fuzzy numbers
enables the uncertainty of the linear fit to be propagated through the rule.

Figure 4-1 illustrates the overall process of fuzzifying the data from the standpoint of
contact managemenL This solution flow diagram is also part of the tracking blackboard
currently part of an independent research study (reference 19). First the track is re-initialized by
detecting the start of the new segment as discussed in section 1. The new segment is modeled by
a regresive fit, and the distribution of the extracted parameters is used to form the fuzzy sets
labeled A and B, respectively, in the figure. Figure 4-1 shows how the jump axes are partitioned
using trapezoidal term sets, which results in a waffle-iron texture in the two-dimensional feature
space. In both dimensions of the jump-drift space, the trapezoids provide a fuzzy pseudo-
partition of the space. In this figure, only the jump feature is shown along with the term sets
needed to fuzzify the data.

SEGMENTSYz AX+BOWSH C

BAE FREQ

0 EMENTS0
PAT 0 TRACK XAP -

MY MEMBERSHIP JUMEMBERP
FUNCIONIFUNCTION

~B.
JUMPF

0 so 0 WCONSTRUCTING THE UNGUISTIC VARIABLES

Figure 4-1. Regression Fit of Input Data, Model Fit by Fuzzy Numbers,
then Fuzzify the Fuzzy Numbers from the Fit
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As a practical manner, the data are not fitted directly to the term sets of the features.
Instead, the data are first approximated by a piecewise continuous MF and then the possibility
and the necessity is calculated from this MF. This calculation was illustrated in figure 3-3.
Figure 3-1 showed how a normal data pulse is fitted by a trapezoidal approximation for one of
the parameter values. This simplifies the code considerably and does so with little loss in
performance and with full generality in the shape of the data. The approximation MF is
represented and stored as a sequence of linear line segments. The details of this representation
are contained in appendix A, so it suffices to say an MF is represented as a list of points,
((Po,PI),(PI,P2),. .,(P,_IP,)) where each point Pi is a pair of the form (xi,yi). The advantage
of this format is simplicity, low spatial complexity, and low time complexity of the fuzzy logic
operators. The formation of the possibility and the necessity was discussed conceptually in
section 3. In practice, the possibility n = ssminLA(X),p,(x)] is calculated by first forming

the intersection (minimum of the two MFs), and then finding the supremum over the resulting
MF by simply looking for the maximum ordinate over the set of the segment end-points (xi,yi).
In like manner, the necessity N = inf max[l -PA(x),P,'(x)] is calculated by first forming the

complement of the fuzzy set A, taking its union with the fuzzy set B, and then searching for the
minimum ordinate of the piecewise representation of this union. The space and time complexity
of this process is clearly linear with the number of segments and thus an efficient implementation
of the calculation. In figure 3-3a, calculation of the possibility was illustrated once the data had
been approximated by a trapezoidal term set. The necessity is illustrated in figure 3-3b for the
same trapezoidal term set.

The exploratory program for the fuzzy model assessment is written in Common LISP
using the Common LISP Object System (CLOS) for the object-oriented programming aspect of
the problem. Object-oriented programming attempts to encapsulate the data and the code
associated with objects in the programs. Accordingly, the objects in the code correspond to
natural entities in the decision process. In particular, there are objects for linguistic variables, for
the conclusion, and for the data. An example is the linguistic variable object called "lingvar."
Instances of this object are created for each sensor value like spherical bearing. The general
form of the definition looks as follows:

(defclass lingvar 0(
(base :initarg :base :initform 1.0 :accessor base) ;; scaling term
(xlow :initarg :xlow :initform -1 :accessor xlow) ;; lower bound of range
(xhigh :initarg :xhigh :initform 1 :accessor xhigh) ;; upper bound of range
(numterms :initarg :numterms :initform 7 :accessor numterms) ;; terms number
(terms :initarg :terms :iJ itform '(ns nm nw ze pw pm ps)

:accessor terms) ;; terms names
(nsj :initarg :nsj :initform '0 :accessor nsj) ;; nsj names size of jump
(nmj :initarg :nmj :initform '0 :accessor nmj) ;; nmj names size of jump
(nwj :initarg :nwj :initform '0 :accessor nwj) ;; nwj names size of jump
(zej :initarg :zej :initform '() :accessor zej) ;; zej names size of jump
(pwj :initarg :pwj :initform '0 :accessor pwj) ;; pwj names size of jump
(pmj :initarg :pmj :initform '0 :accessor pmj) ;; pmj names size of jump
(psj :initarg :psj initform '0 :accessor psj) ;; psj names size of jump
(nsd :initarg :nsd :initform '() :accessor nsd) ;; nsd names size of drift
(nmd :initarg :nmd :initform '0 :accessor nmd) ;; nmd names size of drift
(nwd :initarg :nwd :initform '0 :accessor nwd) ;; nwd names size of drift
(zed :initarg :zed :initform '0 :accessor zed) ;; zed names size of drift
(pwd :initarg :pwd :initform '() :accessor pwd) ;; pwd names size of drift
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(pmrd initarg :pmd :initform '0 :accessor pmd) ;; pmrd names size of drift
(psd :initarg :psd :initform '0 :accessor psd) ;; psd names size of drift)

(:documentation "Trapezoidal representation of a MF for sensor variable.*))

This definition of the class called "lingvar" is used to represent terms of the sensor
measurements. It represents the term sets for the features extracted from the residual data on
the measurement. The linear fit to the residuals produces two components, the jump and the

drift. The syntax of the term sets is if the sensor term set is not zero; for the

zero term set, the syntax is {ze}{d}. The term set name grammar uses the n as negative, p

as positive. The size is given as w for weak, m for moderate, and s for strong. The type of
variable is j for jump and d for drift. The range of the measurement must be bounded,
which incurs no loss of generality. The range is [xlow, xhigh] and the total number of terms
needed to cover the measurement space is given by "numterms," currently set at seven. The
variable "terms" is a list of names for these terms without the qualification of jump or drift.
The important thing is not the names or the syntax, but the fact that this measurement form is
captured in the object class, and each measurement has its own instantiation of this class.
This class represents one of the entities in the fuzzy system diagram that describes the term
sets, and is the information that is needed to fuzzify the data on input.

At present, only the positive parts of the rules are being used because the data received
are folded, i.e., the absolute value of the center of the fuzzy term sets is used. This causes a
reduction in the number of rules. Because the rules are essentially symmetric, then for testing
purposes, the additional rules are redundant and add little knowledge to the exploratory
testing. Clearly, these rules can be added easily at a later point. Of more importance, is the
question of scaling. The data seen in the CMMA problem ranges over three orders of
magnitude, sometimes more. This is one reason that the trapezoidal sets were used instead of
triangular sets. A more appropriate scaling might be a logarithmic scaling of the data;
however, the data may be either positive or negative, requiring separate scaling of the positive
and negative parts and an adjustment for the values around zero. Although this decision is of
no consequence for this study, it will be important when running larger data sets and
handling both the negative and positive parts of the input data so the transformed data are
more uniformly distributed across a finite range. When making this transformation however,
the normal shape of the data will also be transformed, and how that looks in the transformed
space must also be determined. The next issue addressed is when should the trapezoidal
approximation to the data be made, before or after the transformation? It is probably
advantageous to approximate first, then transform.

4.2 STRUCTURE OF THE FUZZY RULES

The form of the fuzzy rules in the system is similar to the simple control rules that
were discussed in section 2. An example follows:

IF the drift in the spherical bearing is POSITIVE WEAK OR MODERATE
AND the jump in the spherical bearing is POSITIVE WEAK OR MODERATE,
THEN a contact maneuver has occurred.
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In this format, the terms drift and jump are represented by fuzzy numbers and both the terms
and their logical constructs are given by the capitalized letters. So that drift is a fuzzy number
and POSITIVE WEAK is a term that is then OR'd with the term POSITIVE MODERATE.
The necessity and possibility of the drift feature being a member of POSITIVE WEAK OR
MODERATE are calculated and the certainty interval is formed for this clause. A similar
procedure is applied to the second clause of the premise. The certainty of the premise is
combined from the certainty of the clauses using the t-norm operator. The certainty of the
conclusion is again an interval, which assumes that the strength of the forward and backward
implication is one, that is, the necessity = sufficiency = 1. These variables are in the system
and can be changed for all the rules or the inference engine modified to include the strengths
in the rules themselves. The actual rule itself is almost self-documenting provided one recalls
that in LISP the functional forms are in polish notation, i.e., (function argi arg2 ... ). The
cply function is the detachment operator, and the spbrd function is an accessor method, which
retrieves the data from the data object called sensor. The t+ function is the fuzzy OR of the
two terms POSITIVE WEAK and POSITIVE STRONG, and the tisa function is interpreted
as is a or is a member of function. So the second and third rows of the rule produce certainty
intervals, the output of the tisa function. The term ply is a list that contains the strength of the
implication in the forward and reverse directions. For this report, ply has been set to (1 1) or
(forward backward) implication strength. The conclusion, h2, is a contact maneuver. Note
the t+ and tisa function both utilize the piecewise continuous representation of the MFs
adopted for this system.

(cply 'RULEBR3 (c* ,; AND the predicates to form premise
(tisa (spbrd sensor) (t+ (pwd spbr) (pmd spbr))) ;; is bearing drift positive weak or mod
(tisa (spbrj sensor) (t+ (pwj spbr) (pmj spbr))) ;; is bearing jump positive weak or mod

) ply '(h2)) ;; THEN conclude contact maneuver

The rules are kept in a separate file and used in a read-only manner. Since the form of the rules
is also as a LISP function call, to fire a rule, activate it by a function call using the evaluate
function.

Some of the rules presently have disjunctive forms using a function called c+, but this is
allowed at this point only because the t-norm is the minimum and the s-norm is the maximum. In
this one special case, disjunctions in the premises are allowed. These rules are being rewritten as
separate rules. The code is designed so that any t-norm can be used in place of the min and any
s-norm can be used in place of the maximum with minor modifications of the code. After all the
rules have fired, the conclusions can be displayed using certainty plots. Figure 4-2 is a certainty
plot for moderately high signal-to-noise (SNR) test data when a contact maneuver has occurred.
Note that the single hypothesis h2 has several strong certainty intervals supporting this
hypothesis. No other single hypothesis has any support. However, the multiple hypotheses have
an absolute certainty consisting of the interval [1, 1]. These are to single sensor measurement
rules designed to support the h2 hypothesis. Note further, all the conclusions having absolute
support contain the h2 hypothesis, which confirms consistency in the rule base for this
hypothesis.
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Figure 4-2. Cerainy Plot of Data Designed to Test for a Contact Maneuver, Hypotdeis h2

The corresponding aggregated certainty plot is given in figure 4-3. Aggregation as it is
presently set up for testing purposes uses the more conservative form of conclusion aggregation,
where if the certainty intervals for a single conclusion are given by [ci, C1 ] then the certainty
intervals for the aggregated conclusion is given by [max(c,,...,c,), max(Cq,...,C 3 )]. Again the
code can be easily generalized so the generalized s-norms can be used in place of the maximum
function. This is an ideal case with strong data in all the sensor measurements. When the SNR
deteriorates, then the certainty in the single hypothesis weakens causing the necessity to
decrease. So the minimum support drops and the certainty intervals widen. This is illustrated in
figure 4-4, by considering a low SNR version of figure 4-2. Note further that the propagation
path certainty for the single hypothesis has also widened. This is because the SNR of all the
sensor measurements was lowered in this example. The rule that builds the certainty for the
change of propagation path alternative requires that the bearing have zero jump, and as the
support of the bearing information widens (higher uncertainty in the exact bearing) the data lends
support to the zero jump clause causing the pp hypothesis certainty increase. In effect, the
certainty "leaks" out of the rule for which it was designed and "spills" into other rules. The
weakening of the minimum support for the h2 hypothesis is caused by leakage and the increase
of the support for pp is caused by the spillage. Again, this is not a flaw in the system; instead, it
illustrates how the deterioration of the data uncertainty must temper the strength of the
conclusions.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

In this report, fuzzy logic has been applied to model assessment This problem is a
pattern recognition problem, which could be modeled as statistical pattern recognition or fuzzy
pattern recognition. The approach investigated uses a generalized form of FPR in which the
conclusions are all possible to varying degrees. Instead of modeling the degrees of possibility of
the conclusions as memberships or as real numbers, the degree is modeled as an interval-valued
set. The conclusions are generated by a fuzzy rule-base system using fuzzy data extracted from
the residuals of linear fits to the sensor data. The fuzzy rules map the data into conclusions just
as discriminant functions used in SPR except for the format of the conclusion. The fuzzy rules
represent heuristics based on physical laws of motion and Doppler shifts. The system has been
tested using only a few key cases to ensure that the rules and the fuzzification and aggregation
algorithms work. The rule-based system works, although performance tests have not been done
because no correct data set was available.

This work has generated promising results and indicated many promising directions of
research. In particular, the performance of the system is dependent on the number and shape of
the terms in the linguistic variables of the extracted features. The design of these terms is
dependent on the clustering or learning algorithms used to create these term sets. There are
numerous methods for learning the term sets. One promising technique, first suggested in
reference.- 13 and 19, applies fuzzy neural networks (FNN). These FNNs learn not only the term
but also the fuzzy rules themselves. A second interesting area of study is the relationship
between the Fuzzy logic approach and the Dempster-Shafer approach. Clearly these two
aupi-oaches are related in some sense, but the detail relationship is a difficult theoretical problem.
The approximation of discrirrminant functions by fuzzy rules is a theoretical problem that begs for
an answer. A third area oi research mentioned in section 3 is the generalization of interval-
valued certainty representation to term sets of the linguistic variable TRUTH. Finally, further
work is needed on the aggregation of conclusion certainty, not only across rules but also across
data samples. The directions for future study require both theoretical and simulation study of the
issues associated with the design of this modeling problem.
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APPENDIX

CONTINUOUS LINEAR PIECEWISE
REPRESENTATION OF FUZZY SETS

One issue in implementing fuzzy logic and control is the choice of the term sets in the
fuzzification and defuzzification process. Conceptually, this seems to be a trivial issue; however,
for implementing logical operations and for evaluating the inclusion index, this is an important
practical issue. Brute force implementations such as vector representations of the MFs have both
high space and time complexity, which can slow the logic and yield erroneous results. An
eloquent and efficient representation of the fuzzy sets is imperative. One such representation is
discussed in this section, the linear piecewise continuous (LPC) approximation of the term sets.

In section 2 a linguistic variable was defined as a quintuple (xT(x),U,G,M)where the
elements are

1. x is the name of the variable;
2. T(x) is the term set of the variable x;
3. U is the universe of discourse, or domain of definition or base;
4. G is a syntactic rule for generating the name;
5. M is a fuzzy set representing the meaning of T(x), M is called a semantic rule.

An example of a linguistic variable COLOR was displayed in figure 2-1. Conceptually, the fuzzy
sets that define the terms in the linguistic variable are easy to represent both mathematically and
symbolically. Even numerically, the MFs are quite easy to evaluate directly. In general, the result
of logic operations on the MFs or semantic rules of the term sets is not in the same class of
functions that defined the original MFs. For example, the intersection of triangle functions is again
triangular, however, the union is not, provided the intersection operator is the minimum function
and the union operator is the maximum function. For practicality, one wants the representation for
the fuzzy sets to be closed under all the logical operations, such as OR, AND, and NOT. One set
of functions that has this property is the piecewise constant functions.

For this appendix, the fuzzy set intersection and union will be implemented using the
minimum and maximum, respectively. More specifically, IlAaD(x) = nin[JLA(x),ILB(x)] and

UAU B(x) = max[LA (x)4tB(x)], respectively. The fuzzy set complement is given by

P/i(x) =1 -IA(X). The goal is closure under the three logical operations {flU,-}, the symbol
set for { AND,OR,NOT)=L, the standard set of logical operations. Another set of functions closed
under L is the LPC approximation of the MFs. This representation is efficient and simple: simple
since it is just a string of linear line segments connected at the end points, and efficient since the
space complexity is low and the time complexity is directly related to the space complexity. The

sequence of the points is represented by the list ((P0 PI) (PI P2 ) ... (P,,- P,)), where the points

are themselves lists Pi = (xi yi). This representation is somewhat redundant, but simplifies
coding. Figure A- 1 and figure A-2 contain two examples of LPC membership functions. These
are trapezoidal MFs, TRAP1 and TRAP2, respectively.
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Figure A-i. Trapezoidal Membership Function, TRAPI
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Figure A.2. Trapezoidal Membership Function, TRAP2

The sequence of x values associated with each LPC MF, induces a partition on the domain
or universe of discourse. The partition can be represented by the sequence of points,
{x0 , x1,...,x. I representing intervals of the partition given by {(xO, xl),(xl, x2), ... ,[Xn-1, xn]}.
To implement binary logic operations between two MFs in an efficient manner, both MFs should
have the same partition, including the same domain, which means the first and last points of the
partition must be identical. Therefore, part of the implementation must include a refinement of both
membership partitions so that both MFs are defined on a common partition. Moreover, this
partition is still not refined enough since it needs to include all the cross-over points of the two
MFs. Figure A-3 shows all the points which must be included in the partition, including the cross-
over points.

MF

S~UNIVERSE OF

DISCOURSE

0 2 4 6 8 1 1 1 1
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Figure A-3. Points of the Universe of Discourse
Where the Partition is Made
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The algorithm to carry out the binary opemations is given as follows:

1. Construct the sequence of points {xo, x1,. ., x, } that represent the partition associated
with the i-th MF, i = 1 , 2, respectively.

2. Refine the two partitions by appending the two partitions and then ordering the points to
form a bag. Reduce the bag to a set by removing the duplicate points. The resulting set is a
partition refinement on which both MFs are defined.

3. Construct the list of linear segments based on the refined partition for both MFs.

4. Find all the crossing points located strictly within an interval. Add these points to the
refined partition and reconstruct the list of linear segments again for both functions. Both MFs
associated with the logical operation now have the same partition.

5. Carry out the binary logic function on each interval of the partition constructing the
linear piece on each interval and concatenating these results to form the resulting MF.

6. Simplify the resulting representation by joining adjacent intervals that represent the same
linear line segment. That is, either adjacent constant line segments or continued lines with the same
slope.

Figure A-4 illustrates the steps of the algorithm before collapsing the representation. The algorithm
is conceptually easy to understand and moderately easy to implement in LISP.

1

UNIVERSE OF
DISCOURSE
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Figure A-4a. Constructing the Common Partition of the Two Fuzzy Sets
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Figure A-4b. Resulting Fuzzy Set Prior to Simplification
of the Partition for the Fuzzy OR Operator

A-3



The closure properties of this representation are guaranteed using the operators {CLL}.
The minimum operation is carried out on each interval by taking the linear segment lying below the
other, the maximum is implemented by taking the segment above the other, and lastly, the
complement is implemented by replacing y-components with their complement 1 - y. So once the
MFs ha. e a common partition, the logical operations are not only trivial to implement, they are also
efficient.

In summary, the LPC representation of MFs is an efficient representation that includes the
trapezoidal and triangular MFs. The logical operations are exact up to the round-off error effects of
the computer language implementation. Moreover, the LPC representation approximates general
continuous MFs and allows efficient implementation. The LPC representation retains its closure
properties under unions, intersections, and complements.
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