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ABSTRACT

The software development process for parallel processors is investigated with
a focus on real-time sensor processing applications. Concepts that are relevant
to real-time parallel processing are introduced including: a definition of scalable
dataflow graphs motivated by the need to meet a fixed throughput constraint
for varying problem sizes, an algorithm classification that mckes explicit the im-
pact that data dependencies have in real-time implementations, and a real-time
implementation strategy that decomposes the most pre.lematic algorithms into
compositions of more predictable constituents and then uses scalable dataflow
graphs and parallel processing to recover timing predictability by mapping data-
dependent timing uncertainties into the spatial dimension (processors). Two case
studies apply these ideas: an implementation of the Modified Gram-Schmidt
(MGS) algorithm on a MasPar MP1 and an implementation of the joint prob-
abilistic data association (JPDA) algorithm on a Thinking Machines CM-2. The
JPDA case study includes a SISAL implementation to illustrate the advantages of
functional programming for these applications.
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SECTION 1

INTRODUCTION

The process of specifying, designing, manufacturing, and supporting complex
digital systems, particularly real-time embedded signal and data processors, must
change if future system requirements are to be met within shrinking military
budgets. High performance computing can play a significant role in the military’s
evolving seamless design methodology to rapidly produce systems with reduced
life-cycle costs. If the computational requirements of current and future real-time
embedded systems can be satisfied by emerging programmable massively parallel
computers, then costly application-specific processors and disparate data proces-
sors can be replaced by a single homogeneous, scalable, programmable computing
platform that is designed to track the progression of commercial technology.

There have been significant advances in hardware technology that make such a
high performance computing solution possible: processing, I/O, and memory ca-
pabilities are continuing to improve. The packaging problems associated with em-
bedded applications are currently being addressed by a variety of ARFA research
and development programs. In particular, the Militarized Touchstone program [1]
is producing embedded high performance computers that incorporate commercial
microprocessors running the same software as their commercial counterparts.

However, software technology for high performance computing has been lag-
ging. There is a need for improved programming environments and tools that pro-
duce portable implementations with increased hardware utilization. The problem
becomes more difficult for hard real-time implementations that must meet strict
timing deadlines. This report investigates the software development process for
parallel processors with a focus on real-time sensor processing applications.

APPLICATIONS: SENSOR PROCESSING

The problems with the current software development process must be made
explicit by applying the current process to motivating applications and assessiziy
the resulting performance as a function of level of software development eflort. In
this paper we focus on sensor processing since it is prevalent throughout the DOD
and has dual military-commercial potential. The impact of high performance
compnting on sensor processing will grow in the future, affecting many current
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Figure 1. Sensor Processing Chain

and future military and commercial programs. Current airborne surveillance
systems such as the Airborne Warning and Control System (AWACS) [2] and
the Joint Surveillance and Target Attack Radar System (Joint STARS) [3] are
prime candidates. Emerging sensor applications such as space-time adaptive
processing [4], which involves computationally complex algorithms, and wide-
area, high-resolution surveillance [5], which involves massive amounts of data.
will require supercomputing performance to satisfy the application's real-time
requirements.

Sensor processing involves a mix of processing types: signal processing, object
processing, and mission processing (see Figure 1). An initial analog-to-digital
conversion process converts the analog sensor inputs to digital form for subse-
quent digital processing. Signal processing is then applied to this digital data
to accomplish a variety of functions such as the removal of interference, the for-
mation of images, and the detection of signals of interest. Subsequent object
processing involves functions such as automatic target recognition and tracking.
The final mission processing phase involves presenting data to and assisting a
decision maker and then implemeniing or communicating decisions that affect.
for instance, the allocation of resources. The point of our work is to determine
whether nigh performance computing platforms can meet the range of processing
requirements.




Front-end signal processing is characterized by fixed dataflow patterns with
high data rates. The algorithms usually involve blocks of data, for example, the
fast Fourier transform or matrix factorization routines from linear algebra. In rhe
past, technology limitations dictated that special purpose hardware was requirad
for signal processing, often using pipelined systolic array architectures. The cur-
rent challenge is to achieve the necessary processing efficiency with programmable
general purpose hardware to meet the hardware size, weight, and power require-
ments of embedded applications.

In ccatrast, the object processing stage is characterized by reduced data rates,
but with dataflow patterns and computational loads that often change depending
on the input from the sensor. For example, tracking algorithms may require an
amount of computation based on the number of targets. In the past, general
purpose programmable computers have been used to implement object process-
ing. Often in these implementations, a number of processing tasks competed for
a single computational resource, and this made guaranteeing the real-time perfor-
mance a difficult problem. With the advent of parallel processing, the processing
resources have increased, but new problems involving mapping and scheduling
the computation and communication tasks on multiple processing and (usually
more limited) network resources continue to make guaranteeing predictable real-
time performance difficult. Data dependencies in this processing phase imply
that more challenging and costly dynamic allocation of resources are required to
reduce the hardware size, further exacerbating the problem of meeting real-time
reguirements.

ORGANIZATION AND SUMMARY OF RESULTS

Section 2 describes the fundamental coucepts used in the case studies that
comprise Sections 3 and 4. Many of the concepts, such as algorithms and dataflow
graphs, are well known and descriptions are included in Section 2 to establish
terminology and to make the document more self-contained. However, Section 2
also refines old concepts and introduces new ones that are particularly relevant
for real-time parallel processing. These include:

e A discussion of how the parallelization strategies of splitting, replication,
and pipelining are applied to meet latency and throughput constraints.

e A definition of scalable dataflow graphs motivated by the need to meet
a fixed throughput constraint for varying problem sizes.




) An algorithm classification that makes explicit the impact that data
dependencies have in real-time implementations.

e A real-time implementation strategy that decomposes the most problem-
atic algorithms into compositions of more predictable constituents and
then uses scalable dataflow graphs and parallel processing to recover tim-
ing predictability by mapping data dependent timing uncertainties into
the spatial dimension (processors).

Section 2 ends with a discussion of computer architectures, including the sin-
gle instruction multiple data (SIMD) architecture used in the case studies, and
of programming languages, including an argument that functional programming
languages, such as SISAL, are better suited than imperative languages for imple-
menting computations described by dataflow graphs on parallel machines.

Two case studies are used to develop the ideas introduced in Section 2. Sec-
tion 3 describes the implementation of the Modified Gram-Schmidt (MGS) algo-
rithm on a MasPar MP1. The MGS algorithm is commonly employed in antenna-
array signal processing to adaptively remove interfering sources. The algorithm
produces a factorization of an m by n matrix, called the Q R-decomposition, in
O(mn?) operations, and so represents a computationally challenging signal pro-
cessing algorithm for real-time applications. In Section 3 the MGS algorithm
is described mathematically and a dataflow graph is specified. Four parallel
mappings to the MP1 are developed and compared among themselves and to
a sequential implementation.

Section 4 describes the implementation of the joint probabilistic data associ-
ation (JPDA) algorithm on a Thinking Machines CM-2. The JPDA algorithm
is used in multitarget tracking to associate sensor returns with predicted tar-
get tracks. The JPDA algorithm is the computational bottleneck of an object
processing sequence whose computational complexity is strongly (exponentially)
dependent on the number of tracks present in the data. Section 2 uses this mul-
titarget tracking example to illustrate a potential algorithm partitioning strategy
that separates target-return clustering and data association to recover timing pre-
dictability for this data-dependent object processing. In Section 4 the JPDA
algorithm is described mathematically and a dataflow graph is specified. First,
two sequential implementations in C and SISAL are developed and found to yield
comparable running times, which is interesting since the SISAL compiler produces
C code that is itself compiled. Next a parallel implementation of the JPDA
algorithm is developed with the desired scaling properties to recover timing pre-




dictability through the use of processing resources. A final performance compar-
ison is made between the sequential (SISAL) and the parallel implementation of
the JPDA algorithm.

Section 5 provides overall conclusions for the MGS and JPDA case studies and
discusses future work. The lessons that we learned from the case studies are:

e  Communication costs tend to be the limiting factor in obtaining efficient
parallel implementations; coarse grain implementations may be forced
that violate latency and throughput requirements.

° In SIMD processing, especially when communication costs imply coarse
grain implementations, problem replication can be the most efficient
parallelization strategy.

e  When a single dataflow graph can be mapped to a fixed machine architec-
ture in a variety of ways, the programmer has more flexibility in meeting
system memory and timing requirements.

° In SIMD processing, processors often must be turned off and made to
stand idle while other processors finish their tasks. This trait limits the
efficiency of SIMD processing for some tasks.

e The execution-time uncertainty inherent in object processing can be
removed by parallelism.

e  Algorithms coded in functional languages often retain more of the inher-
ent parallelism, which can be exploited automatically by a compiler.

e  Serial and parallel implementations can be used to provide insights and
improvements for each other.




SECTION 2

FUNDAMENTAL CONCEPTS

This paper is concernc 1 with the use of parallel processing in applications that
have strict timing requirements. This section defines the fundamental concepts
used throughout the paper and provides background material for the case studies
of Sections 3 and 4.

ALGORITHMS

An algorithm A is a recipe that describes how to compute an output from
a given input. If the output is determined solely by the input, the algorithm
implements a function, denoted by F, from the set of possible inputs, denoted by
I, to the set of outputs, denoted by O.

There are many ways to present algorithms. In this paper, we have adopted
one common practice of presenting an algorithm as a set of directed numerical
equations along with pseudocode for loops and other flow control. The equations
are directed in the sense that the expression on the right-hand-side of an equation
determines the value of the variable on its left-hand-side. A variable may occur
on the left-hand-side of no more than one equation. The input variables are the
set of variables which do not occur on the left-hand-side of any equation. We
designate a subset of the variables as output variables. We also specify the input
set I and the output set O.

For a parallel implementation of an algorithm, we are concerned with how long
it takes the network to communicate the inputs and the outputs, and how long
it takes a processor to compute the output from the input. Complexity functions
cr : I - R and ¢p : O — R are defined that correspond to the amount of
data in each input and output (R denotes the real numbers). For : € I, we may
sometimes informally refer to ¢;(z) as the size or length of i. Similar terminology is
used for the outputs in O. The operation complexity c4 : I — R gives for an input
¢ € I the number of operations required to compute the output o = F(z) using
algorithm A. Often we just count additions and multiplications for the number
of operations. A key issue for real-time implementations, which we will return to
later in this section, is whether ¢4 depends on the actual value of the input z € /




or just on the size of :. Similarly, since o = F(i), does the size of ¢ depend on the
actual value of the input ¢ € I or just on the size of ¢?

An example will illustrate these notions. For an n = 2™-point fast Fourier
transform algorithm A, I and O correspond to the set of n-point complex vectors.
and F' is the discrete Fourier transform. The complexity functions ¢; and cp are
taken to be the vector length, i.e., ¢;(1) = co(0) = n. Notice in this case, these
complexity functions are independent of the input vector i and output vector o
elements. The complexity function c4 is taken to be the number of real additions
and real multiplications in the fast Fourier transform algorithm chosen, which for
one version of the algorithm is ¢4 = dnm.

LATENCY AND THROUGHPUT

In many computing applications, the objective is to minimize the amount of
time required to produce a solution. For a problem instance P, if the inputs
become available to the processor at time t;, and the solution is completed at
time t,, then the problem latency is given by [ = t, — ¢,.

Often in real-time applications like sensor processing, a stream of problem
instances Py, Ps,..., P, ... must be processed. If there is a constant time period p
between each problem instance, then the problem throughput is given by 1/p. The
problem throughput can be defined when the period between problem instances
is not constant using limits, but we do not do so here.

It is customary to express problem throughput in terms of the number of
operations per second. For example, if a problem instance involves an algorithm
that requires f floating point operations, then the throughput of 1/p problems per
second implies that the processor must sustain f/p floating point operations per
second (FLOPS). The ratio of the sustained throughput on a problem to a peak
processor throughput is defined to be the processing efficiency for the problem.

REAL-TIME PARALLEL PROCESSING

In a real-time implementation, the application’s latency and throughput re-
quirements are specifications that the computing system must satisfy. In the case
of a stream of problem instances with period p, if the problem latency requirement
| < p, then the computing system can only be working on one problem instance




at a time, and the latency is the governing requirement. Depending on the al-
gorithm, parallel processing can be used to meet strict latency requirements by
splitting the computation involved in a single problem instance among multiple
processors. The splitting can be done along different lines, e.g., the data parallel
approach partitions the input data among different processors that implement the
same function.

If I > p, then the computing system can be working on more than one problem
instance at a time, and the throughput is the governing requirement. If a given
computer can satisfy the latency requirement, then replication is a conceptually
simple parallel processing approach for meeting any throughput requirement.
In the replication approach the individual computer is replicated at least [/p
times with each copy receiving a successive problem instance. When the first
computer finishes the first problem instance, it becomes available to process the
next available problem instance, and so on.

Although the replication approach is a conceptually simple solution for high
throughput situations, it may not be a practical alternative depending on how
much data must be transmitted to load each problem instance on a single com-
puter. Also as the problem size increases, the requirement to move larger amounts
of data means that the replication approach often does not scale well, a notion to
be made more precise later.

Pipelining is another parallel processing approach that has been used in high
throughput applications. In the pipelining approach the computation is broken
down into stages with each stage implemented on a separate processor. Data flows
from stage to stage and the localization of high speed data is not required.

Every stage must complete its processing in the problem period p and send the
results to successive stages. Stages that accept input data are then available to
begin processing the next problem instance. Solutions are produced every period
by the output stages. Extra communication buffering can be included between
processing stages to improve the processing efficiency at the expense of increased
problem latency—as long as the application’s latency requirement is not violated,
of course.




DATAFLOW GRAPHS

In high throughput applications, much attention must be paid to the flow of
data within the processing system. A natural formalism for reasoning about this
flow is the dataflow graph of an algorithm. A dataflow graph consists of a set of
nodes that corresponds to tasks in the algorithm and a set of directed edges that
correspond to the data dependencies between tasks. There are two special kinds
of nodes: source nodes that provide the inputs from the external world and sink
nodes that collect external outputs.

Except for the sources and sinks, each node u itself executes an algorithm A,,
where A, implements a function F,, that maps inputs from I, to outputs in O,.
The dataflow principle is that the node can perform its task whenever the required
input data is available on all of its incoming edges.

In a dataflow graph, the granularity of a node u and input ¢ € I, is defined as

the ratio
ca. (1)
cr, (i) + co, (Fu(?))

of the number of operations c4, (¢) performed at the node for a single computation
of A, to the total amount ¢y, (i) + co, (Fu(?)) of required input and output data. A
common word size, e.g., single precision floating point, is used in the granularity
expression. Informally, we say a dataflow graph is fine grain if the granularity of
its nodes is close to 1. Similarly we say a dataflow graph is coarse grain if the
granularity of its nodes is much greater than 1. Dataflow granularity is important
when algorithms are mapped to parallel computers.

SCALABLE DATAFLOW GRAPHS

A parameterized algorithm can be represented by a family of dataflow graphs,
one for each value of the parameter. This representation of an algorithm will be
called a parameterized dataflow graph, and we will characterize notions of com-
plexity by comparing graphs within a family. For example in many applications,
the computation and communication complexity of the algorithm depends only
on the size of the input data. In the case of the fast Fourier transform algorithm
of a specified size, one could imagine a dataflow graph which performs only either
a single real addition or multiplication at each node, so that the computational
complexity at each node is always one. The parameterized dataflow grajpii in ihis
representation of the fast Fourier transform algorithm has a dataflow graph for
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each input size, and the family has the property that the computational complexity
of every node in every dataflow graph is always one.

A parameterized dataflow graph is said to be computation scalable if one con-
stant bounds the operation complexity of the algorithm executed at each node
in every dataflow graph in the family. A parameterized dataflow graph is f(n)-
computation scalable if the operation complexity of the algorithm executed at
every node in the dataflow graph specified by parameter n is bounded by O{ f(n)).
There are dual notions of communication scalable and f(n)-communication scal-
able that bound the amount of data communicated along the edges in a param-
eterized dataflow graph. A parameterized dataflow graph is scalable if it is both
computation and communication scalable. If the parameterized dataflow graph
is f(n)-computation scalable and g(n)-communication scalable, and O(k(n)) =
O(f(n) + g(n)), then the parameterized dataflow graph is h(n)-scalable.

If the input and/or output degree of a node is a function of the parameter
n, as in algorithms that include broadcasting, then ordinarily the parameterized
dataflow graph would not be scalable. However, broadcasting can often be re-
placed by a sequence of “nearest neighbor” communications to obtain a scalable
dataflow graph.

Scalable dataflow graphs are of interest because in real-time applications in-
volving problem streams they can be combined with pipelining to maintain a
constant problem throughput independent of problem size. The problem latency
may or may not increase depending on the structure of the algorithm. The
number of nodes in a scalable dataflow graph usually increases as the input size
increases. As long as there are processors to accommodate the additional nodes,
then the throughput is maintained independent of problem size. In this way
scalable dataflow graphs trade space complexity for timing predictability.

MAPPING ALGORITHMS TO ARCHITECTURES

A critical step in the parallel software engineering process is the mapping of
the algorithm to the parallel computer. There is a large literature on this subject,
most of which is concerned with mappings that minimize the latency of a single
problem instance. See for instance [6], which contains 87 relevant references.
Other examples include the current research emphasis on developing compilers
that implement emerging high-performance computing languages, such as High
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Performance FORTRAN [7]. There has been some work on mappings that maximize
throughput for pipelined implementations, most notably the work of Bohkari [8].

A mapping consists of a partition of the nodes in the dataflow graph, often
called clustering, and an assignment of the clusters comprising this partition to
distinct processors of the parallel computer. Once the partition is determined. a
new dataflow graph can be constructed by coalescing all the nodes in each cluster
of the partition into a single node. Original edges between nodes in two different
parts of the partition become edges in the coalesced dataflow graph. Multiple
edges between coalesced nodes can be combined if desired. A mapping is consis-
tent if the communications corresponding to the edges in the coalesced dataflow
graph can be supportcd by the communication network of the parallel computer.
Splitting, replication, and pipelining are examples of mapping approaches that
were discussed previously.

An integral part of the mapping process is the determination of a schedule
that constrains the order in which the various tasks in the original dataflow graph
are computed. In a real-time implementation this schedule must have associated
with it time limits in which tasks are completed. A key issue is whether the
mapping and schedule are static and can be produced at compile time or whether
data dependencies (conditionals and data-dependent iteration) force a dynamic
mapping and schedule determined at run-time. There can be a significant amount
of overhead when mappings and schedules are determined at rua-time.

There are two additional issues that bear on the processing efficiency of the
resulting implementation. The first is a local consideration especially relevant
to pipelined implementations, namely, matching the granularity of the coalesced
nodes to the granularity of the processing elements. If a processing element can
sustain r operations per second on the coalesced node’s task, and its communica-
tion links can sustain receiving or sending s words per second, then the granularity
of the processing element is defined as the ratio r/s. If the granularities are
matched, then in the time it takes to complete the processing of the current
instance of the coalesced node’s tasks, the inputs for the next instance can be
received and placed in a buffer and the outputs of the previous instance can be
sent to the next processor in the pipeline. The processing element can be kept
totally busy by switching between two such buffers.

The second issue is a global consideration having to do with how well matched

the “algorithm architecture,” represented by the structure of edges in the dataflow
graph, is to the architecture of the communication network of the parallel com-
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puter. In the past, algorithm-specific implementations have been so successful
because the machine architecture was tailored to the algorithm architectures. As
we consider fixed machine architectures, the choice of algorithm and how it is
decomposed into a dataflow graph takes on added importance. The closer these
two architectures are the more transparent the mapping can be and the less likely
communication bottlenecks will adversely impact the processing efficiency.

DATA DEPENDENCY CLASSIFICATION

To make explicit the impact that data dependencies have in real-time imple-
mentations, we develop an algorithm classification based on the types of static
and dynamic data dependencies found in target applications. In particular, we
identify four data-dependency classes for an algorithm A with inputs /. outputs
O, and function F:

1. both ¢4 and cp depend only on ¢y,

2. ¢4 depends only on ¢; and co depends on 7 € I,

3. ¢4 depends on i € I and cp depends only on ¢j, and
4. both c4 and cp depend on : € I.

A node of a dataflow graph is classified according to the data-dependency clas-
sification of the algorithm it implements. The only subtlety is that the input
and output complexities are evaluated separately for each of the incoming and
outgoing edges of the node.

A class 1 algorithm exhibits the weakest form of data dependency, where only
the input size matters and not the actual values of the input, e.g., the fast Fourier
transform example given previously in which the processing and communication
times are determined once the input length is fixed. For a class 2 algorithm, the
actual data values only affect the size of the output and hence the communication
time. For example, an algorithm that loops through a list of input numbers and
places into the output list only those numbers that exceed a specified threshold
exhibits a class 2 data dependency. In a class 3 algorithm, the actual data values
only affect the operation count and hence the processing time, as would be the
case for an algorithm that searches a data base for an input string and returns a
single bit response (yes or no) in any case. Finally, a class 4 algorithm represents
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the most dynamic case where both the operation count and output size depend
on the actual data values.

REAL-TIME SCHEDULING

A dataflow graph that is composed entirely of class 1 nodes and whose source
nodes provide inputs of a prespecified size is called a synchronous dataflow graph.
In synchronous dataflow graphs, the amount of data produced or consumed by
every node in the graph and the computation time at every node does not de-
pend on the data. Mappings and schedules of algorithms that can be represented
by synchronous dataflow graphs can be determined at compile time. See for
instance (9, 10]. Signal processing applications often have algorithms with syn-
chronous dataflow graphs.

Object processing applications usually pose more of a mapping and scheduling
challenge because the algorithms involved usually are not represented by syn-
chronous dataflow graphs. Even class 1 algorithms pose challenges for real-time
implementations in the case that the complexity-determining input-size parame-
ter is not specified ahead of time. Such situations correspond to a parameterized
family of synchronous dataflow graphs, which we referred to previously as a pa-
rameterized dataflow graph. The real-time implementation of class 2, 3, and 4
algorithms pose additional challenges. Dataflow graphs that are not synchronous
are referred to as dynamic dataflow graphs.

There is currently no general treatment of the real-time mapping and schedul-
ing problem for algorithms with dynamic dataflow graphs. Many of these dynamic
dataflow graphs have structure that can reduce the amount of scheduling needed
at run-time. For example, a dataflow graph may have several large subgraphs
that are synchronous and that need no run-time scheduling of nodes within each
subgraph. Several techniques have been developed that facilitate this hybrid ap-
proach [9, 11]. They reduce the scheduling overhead compared with fully aynamic
scheduling; however, they do not result in predictable schedules without additional
knowledge about the target application.

Another possible approach is the extension of the real-time scheduling the-
ory [12] to distributed real-time systems. For example, the generalized rate
monotonic scheduling (GRMS) theory has been recently extended to distributed
systems based on buses and token rings [13]. GRMS theory was developed for
the case of multiple tasks sharing a single processor and provides an analytic
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framework for guaranteeing timing requirements in a real-time system. As long
as system utilization of all tasks lies below the precomputed GRMS bound, then
the system will meet its deadlines provided the proper scheduling algorithms are
used. In a parallel implementation. the communication resources often are the
scarce commodity and they must also be included in the scheduling framework.
Challenges arise because of the distributed nature of the communication networks
found in the tightly-coupled parallel processors being considered here.

Our approach to the real-time implementation of dynamic dataflow graphs is to
use parallel processing to increase timing predictability by mapping the data de-
pendent timing uncertainties into the spatial dimension (processors). This involves
identifying in the target application the static and dynamic data dependencies and
then developing scalable dataflow graphs for those functions whose computation
or communication complexity cannot be specified ahead of time.

In the case of a dynamic processing bottleneck, the approach is to decompose,
if possible, the more problematic class 3 and 4 algorithms into compositions of
more time-predictable algorithms of class 1 or 2. The processing time of the
algorithms in class 1 and 2 are determined only in terms of the input length,
and cnce the input parameters are specified at run-time, then scalable dataflow
techniques are used to minimize timing variations. Similarly, in the case of a
dynamic communication bottleneck, the approach is to decompose, if possible. the
more problematic class 2 and 4 algorithms into compositions of time-predictable
algorithms of class 1 or 3, and again appeal to scalable dataflow graphs.

MULTITARGET TRACKING EXAMPLE

For example, in a multitarget tracking application a portion of the processing
chain consists of a clustering algorithm followed by the computationally expensive
joint probabilistic data association (JPDA) algorithm. Taken together. this i1s an
example of a class 3 algorithm whose running time is strongly dependent on the
actual input data.

The clustering algorithin simply partitions the inputs, which consist of existing
tracks and sensor returns, into clusters. In total. the output is the same size as
the input—just subdivided. Since clustering can be implemented 50 that the
operation count depends only on the input size, the clustering algorithm by itself
is an example of a class 1 algorithm. However, the sizes of the various clusters are
the most significant data-dependent parameter »s far as the follow-on processing




1s concerned. If each cluster is sent to a separate dataflow node for follow-on
processing, then the output size on each edge depends on the value of the input
data and the clustering algorithm corresponds to a class 2 dataflow node. For each
cluster, the second JPDA phase is also a class 1 algorithm in that the processing
and output requirements are determined by the cluster size, and not by any other
aspects of the data. Thus the class 3 processing has been decomposed into a
composition of a class 2 algorithm and a class 1 algorithm.

For the JPDA algorithm the processing time varies dramatically as the cluster
size is increased only incrementally. Thus to reduce the processing bottleneck
for a real-time implementation, the JPDA computation could be represented
by a scalable dataflow graph parameterized by cluster size and implemented
on a parallel processor with a sufficient number of processors to handle some
presumed maximum cluster size. Once the cluster size was known at run-time.
the proper dataflow graph is selected and the computation completed within the
desired latency or throughput requirement independent of cluster size. Qur actual
implementation of the JPDA algorithm is discussed in detail in Section 4.

COMPUTER ARCHITECTURES

Nearly all uniprocessor computers are based on the von Neumann architecture.
Conceptually, there is a central processing unit that reads and writes locations in
memory. Both the data and the program are stored in the same memory. The
machine repeatedly performs the following actions:

1. fetch the next instruction in the program from memory,

2. fetch the operands specified by the instruction,

3. perform the indicated operation, and

4. write the results to memory.
In this architecture, a program is a time ordered sequence of commands that map
one memory configuration into another. A FORTRAN or C program describes such

a sequence of commands in a user-friendly syntax.

The Harvard architecture is a variation of the von Neumann architecture for
uniprocessors that segregates programs and data by providing a memory only
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for instructions and another memory only for data. The Harvard architecture
predates the von Neumann architecture and fell from favor because it does not
facilitate programs that manipulate programs as data.

One obvious architecture for parallel machinesis a generalization of the Harvard
architecture. A Single Instruction Multiple Data (SIMD) architecture consists of
one instruction memory connected with a number of central processing units each
with their own data memory. The operation of each CPU is synchronous in the
sense that each CPU is presented with the same instruction at the same time.

The parallel processors used in our case studies have SIMD architectures. The
parallel processor used in the Modified Gram-Schmidt studies in Section 3 was a
MasPar MP1. The parallel processor used in the Joint Probabilistic Dat~ Asso-
ciation studies in Section 4 is a Thinking Machines CM-2 Connection Machine.

Another important architecture for parallel processors is the Multiple Instruc-
tion Multiple Data (MIMD) architecture. As the name suggests, both the in-
structions as well as the data associated with each CPU can be different in this
architecture.

There are two important subclasses of this architecture. In a multiprocessor,
a number of von Neumann style CPUs share one memory. In contrast, in a
multicomputer, each processor has its own memory that only it can access. Every
multicomputer provides a communication network so that each processor can send
data to another processor using some kind of message passing protocol.

Our future work will include studies of machines with a MIMD architecture.
In particular, we plan to program the Intel Paragon and the Thinking Machines
CM-5. The Paragon is a scalable multicomputer system that connects processing
nodes in a two-dimensional mesh configuration [14]. The CM-5 is a scalable mul-
ticomputer system that connects processing nodes using a so-called fat tree [15].
The Paragon is of special interest, because ARPA has awarded Houeywell, Inc. a
contract to package a machine like it for embedded applications such as airborne
sensor processing [1].

PROGRAMMING LANGUAGES

Until recently, nearly all high-level computer languages were designed to encode
algorithms for machines with a von Neumann architecture. Imperative languages
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naturally describe computations performed by these machines. This is because
programs in imperative languages specify a sequence of commands that transform
a memory configuration into another one. C and FORTRAN are examples of the
many imperative programming languages designed for sequential machines.

It i1s also natural to program machines that use a SIMD architecture with
an imperative programming language. As with sequential machines, there is
one thread of control and a well defined order in which the configuration of the
data memory is mapped into a new one. The case studies used two parallel C
programming languages: MPL on the MasPar and C* on the Connection Machine.

Because of the large amount of existing programs written in imperative lan-
guages for sequential machines, many people have attempted to construct com-
pilers fur these languages targeted at machines that have a MIMD architecture.
Even after extensive research and development, automatic parallelizing compilers
for impeiative languages have not met expectations. There is a fundamental
reason for tuis problem: the model of computation on which these languages are
based does not map well to a parallel machine that concurrently executes differing
instruction streams.

Functional languages provide an alternative to imperative languages partic-
ularly suited for parallel processing. Functional languages implement a different
model of computation that is based on evaluating mathematical expressions rather
than mapping memory configurations to memory configurations. A program is a
set of mathematical definitions followed by an expression that is evaluated in the
context of the definitions. The value of any expression depends only on the value
of its inputs and not on the order in which an expression is defined.

Programs written in imperative languages naturally map only to machines
with a single thread of control, but programs written in functional languages
naturally map to all kind, of machines. This is because an expression can be
evaluated whenever its input values are known, and because the evaluation of every
expression is side-effect free. The evaluation of an expression can be scheduled at
any time as long as the schedule respects the expression’s data dependencies.

There is an intimate relationship between the evaluation of an expression and
the notion of computation described by dataflow graphs. In practice, most com-
pilers for functional languages used dataflow graphs as an intermediate represen-
tation of programs. Functional languages naturally specify dataflow graphs. This
fact makes functional programming languages particularly relevant in our work.
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Besides the connection with dataflow graphs, there are two other advantages
to using functional programming languages. First, algorithms coded in functional
languages often retain more of the inherent parallelism, which can be exploited
automatically by a compiler. The semantics of functional languages more closely
match the underlying mathematics of an algorithm, a fact that will be demon-
strated in Section 4. Second, functional programs are determinate in that they
compute the same answer no matter how they are implemented, even if the number
of processors varies. As a result, one can write and debug an application on any
sequential machine, and be confident that it will compute the same answer when
run on any parallel machine.’

The work reported in this paper has focused on the use of functional pro-
gramming languages on sequential machines. We chose the language SISAL {16]
because there exists a compiler [17] for the language that produces fast code on
conventional architectures. Numerical algorithms written in both C and SISAL use
about the same amount of CPU time.

1  We have slightly overstated our point. Implementations of a functional pro-
gram on different hardware can produce different answers due to subtleties
involving the implementation of floating point arithmetic. However, errors
due to this kind of non-determinancy are very rare in functional programs.
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SECTION 3

CASE STUDY: MODIFIED GRAM-SCHMIDT

This section describes the implementation of the Modified Gram-Schmidt
(MGS) algorithm on a MasPar MP1. The MGS algorithm is commonly em-
ployed in antenna-array signal processing to adaptively remove interfering sources.
The algorithm produces a factorization of an m by n matrix, called the QR-
decomposition, in O(mn?) operations. We first describe the MGS algorithm
mathematically and specify a dataflow graph. We then develop four parallel
mappings to the MP1 and compare them among themselves and to a sequential
implementation.

These are the lessons for this case study:

The main lesson is that communication costs tend to be the limiting fac-
tor in obtaining eflicient parallel implementations, forcing coarse grain
implementations that may violate stringent latency and throughput re-
quirements.

In SIMD processing, especially when communication costs imply coarse
grain implementations, problem replication can be the most efficient
parallelization strategy. This is less useful when there is a stream of
problems, each of which only populates a part of the processing array
since filling the processing array increases the latency as compared to an
asynchronous MIMD computation.

When a single dataflow graph can be mapped to a fixed machine ar-
chitecture in a variety of ways, the programmer has more flexibility to
“engineer” the implementation to meet system memory and timing re-
quirements.

The central trait of SIMD processing—processors executing the same

instructions—limits its efficiency. Often processors must be turned off
and made to stand idle while other processors finish their tasks.
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Input: A € R™**
Auxiliary: A!,..., A" € R™x"
Output: @ € R™*" and R € R™*"

Set A = A
Forj=1ton
q=a, r;=1
rik =0, ke{l,...,7—-1}
q7 -aj j+1 § .
Tjk=a:i-;, a;’ = a; —rj-q; ke {j+1,...,n}

Figure 2. Modified Gram-Schmidt Algorithm

ALGORITHM DESCRIPTION

Let A be an m x n matrix with linearly independent columns, so necessarily
m > n. The Modified Gram-Schmidt (MGS) method factors A as QR, where Q
is an m x n matrix and R is an n X n matrix, such that the columns of @ are
orthogonal and R is upper triangular with ones on the diagonal. No square-root
function is used, so the columns of Q are not necessarily orthonormal. Such a QR
pair is unique and called the Q R-decomposition of A. The entries in our matrices
are real numbers, unless otherwise noted. The MGS algorithm (using complex
entries in the matrices) has been used in spatial filtering, for examples, see the
references in [18]. For simplicity, we only implemented versions with real entries.

The MGS algorithm is described in [19, Section 5.7.2]. The algorithm is shown
in Figure 2 (a; denotes the jth column of matrix A). The algorithm computes
successive matrices A = A!, A%,..., A", where A’ has the form

Aj = (Qh---,%—l»aj,---,az.)-

Each column aj:, ...,al is orthogonal to the columns q;,...,q;-;. At the jth step,
a_’,:H,...,a{; is made orthogonal to q;. The jth row of R is determined at this
step. After the nth step, all of the q; are specified and the R matrix is complete.
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The MGS algorithm computes ('2‘) vector updates, where the vector has length
m and the coefficient of the update is the quotient of two dot products. We
count additions, multiplications, and divisions as floating point operations. A
dot product takes 2m — 1 floating point operations; the total number of floating
operations that are needed is

(n—1)(2m —1) + ('2‘)(4m). (1)

Thus the total computational complexity is O(mn?).

DATAFLOW ANALYSIS

For each 1teration of the loop of the algorithm shown in Figure 2, the value
of q; is needed for each of the n — j remaining columns, but then these columns
are themselves treated independently. We are led to a triangular dataflow graph
shown in Figure 3 for n = 5. The q; produced by the circle nodes must be available
to each square node in the jth column. Thus an implementation would either have
q; broadcasted to each node or passed in a given column from one node to the
next. Each circle node sets the value of q; and computes the reciprocal of the dot
product of q; with itself. Each square node computes the dot product of q; and
a; and the update of ay.

This dataflow graph is computational scalable with respect to n: the amount
of computation at a node is independent of n and increasing n by one would add
one more column of nodes (with n — 1 square nodes and one circle node). The
dataflow graph is m-computation scalable: the amount of computation at each
node is linear in m (the dot-product calculations). Note that the dataflow graph
is m, n-communication scalable: vectors of length m are sent on the edges and the
out-degree of the circle node for y = 1isn — 1.

PARALLEL IMPLEMENTATIONS

Historically, pipelining is one method that has been used to parallelize the MGS
algorithm for real-time processing. For example, MITRE implemented the MGS
algorithm for its wide-bandwidth experimental high frequency system (see [18])
using an array of digital signal processing chips with one processing node for
each graph node in Figure 3. The architecture is pipelined in both dimensions,
with the time available for real-time block processing equal to m times the input
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Figure 3. A Dataflow Graph for the MGS Algorithm

sample rate (the system required a 2.048 MHz sample rate with length m = 128
complex data vectors). As another example, we implemented the MGS in the
functional programming language SISAL, which has a construct called stream that
is used to simulate pipelining. However, the current implementation of the SISAL
compiler (OSC version V12.9.1) does not correctly implement streams; we plan
to investigate this capability of SISAL further when the stream implementation is
fixed.

In this section, we present four parallel versions of the MGS algorithm on
a MasPar MP1. Three of these versions will parallelize the algorithm using
replication; the fourth version will take a pipelining approach. We begin by
describing the MP1 and a data parallel version of C called MPL. We then treat
each version separately with a description of its encoding and performance. We
finish with some comparisons of the four versions.
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The MP1 Machine

The MP1 consists of a front-end DECstation running ULTRIX and a back-end
comprising an Array Control Unit (ACU) and a Data Parallel Unit (DPU). The
ACU does some serial computation and broadcasts the instruction sequenc - to
the DPU; it has 128 KBytes of RAM. The DPU has 2!3 = 8192 4-bit processing
elements (PEs) in a 64 x 128 grid. The PEs can be referenced by either their z-
and y-coordinates or by a single integer from 0 to 8191. The latter representation
treats the DPU as a vector of PEs of length 8192. Each PE has 16 KBytes of
RAM. Floating point operations are done by microcode; there are no floating
point chips.

There are three methods of communication for the PEs. First, there is a bus
that connects the PEs to the ACU. This bus is used to broadcast instructions or
data to all the PEs. The second method of communication is the XNet. This
network supports communication along the four grid directions (N, S, E; W)
and the four diagonal directions (NE, SE, SW, NW). Communication in these
directions uses wraparound, so tnat in fact the grid is a torus. The “X” is due to
the fact that, even though a PE communicates with its eight nearest neighbors,
in actuality there are only four communication paths coming out of the PE in
the NE, SE, SW, and NW directions. Thus there is some freedom in which path
is used to send data East, for example. The last method of communication is a
global router that allows arbitrary communication between PEs. This method is
by far the slowest and was not used in any of our implementations.

The MPL Language

We programmed in MPL, which is MasPar’s dialect of C. MPL 1is very close
syntactically to C. It adds parallelism by defining plural variables and some
communication routines on such variables. A key point to remember is that the
shape of these variables is the same as the shape of the underlying PE array, that
is, either a 64 x 128 grid or a vector of length 8192.

A variable declared plural int foo, for example, results in a 32-bit integer
variable foo defined for each PE. This variable could be used in arithmetic
operations exactly as scalar variables. The global communication syntax is very
straightforward. For example, += foo would result in all of the (currently active—
see below) values of foo to be added together and placed in the ACU. This global
reduction uses the ACU-PE bus.
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Since every PE executes the same instruction, one way to control processing is
to make PEs active and inactive. For example, in the conditional statement

if (foo == 1)

the currently-active PEs would be further divided into two subsets; which subset
a PE is in depends on whether its value of foo is 1 or not. Those PEs whose
value is 1 would execute the body of the conditional, while the other PEs would
execute the body of the else clause. Thus, if there is no else clause, this second
set of processors would be inactive.

Broadcast communication is done via the proc construct: foo = proc[23].foo
would set each currently-active PE’s value of foo to the value of foo in PE num-
ber 23. Xnet communication is denoted similarly. For example, xnetS[5] .foo
refers to the values of foo that are five PEs in the South direction. Depending
on how we use this construct, we could be sending or retrieving data. There are
similar Xnet functions for all eight directions. Furthermore, there are constructs
that perform copying or pipelining. In copying, the values are copied into all
intermediate PEs. In pipelining, the intermediate PEs are ignored (and must be
inactive). More general communication using the router function was not used
for our implementations.

As a comparison of timing for the three different communication constructs,
we used the values supplied by MasPar in the MPL User Guide [20]. In ali cases,
we concentrate on sending a 32-bit word. The timings are given in clock cycles,
where for our machine the cycle is 80 nanoseconds. The proc command takes
36 clock cycles. The Xnet timings depend on whether copying or pipelining was
used and whether the direction is one of N, S, E, W, or one of NE, NW, SE, SW.
For example, copying north using the xnetcN takes 75 + k clock cycles, where &
is the distance traversed. The same command in the NE direction takes 175 + 5k
cycles. The router command takes about 5000 clock cycles, which is why its use
was avoided in our implementations.

Four MPL Versions

The dataflow graph in Figure 3 can lead to several different parallel imple-
mentations. As some examples, we could map each node to its own processor. or
each row to its own processor, or even each element of the m-vectors to their own
processors. This gives the programmer some flexibility in meeting system timimg
and memory requirements. In the past, a special purpose architecture would have
been based on the dataflow graph. In the current context of using commercial
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processors, we must rely on tae flexibility that the algorithm affords us to make
efficient use of fixed processing resources.

We in fact investigate four different versions of the MGS algorithm in MPL.
All of these examples use the data parallel view of computation consistent with
the MP1 as a SIMD machine:

1. Map the m x n matrix onto an n x m grid of PEs. We replicate to do
64/n problems.

2. Map the m x n matrix onto m consecutive PEs. We replicate to do 128/m
problems.

3. Map the m x n matrix onto single PE. We replicate to do 8192 problems.

4. Map the m x n matrix onto m consecutive PEs, but use n separate rows
of PEs to simulate pipelining.

We compare these four versions at the end.
Version 1: n x m Replication

Our first version of the MGS algorithm implemented in MPL maps the m x n
matrix A onto an n x m grid of PEs (we transpose to take advantage of the longer
dimension of PEs, since m > n). Thus we are limited to n < 64 and m < 128.
This mapping allows problems to be replicated: up to 64/n problems can be
solved simultaneously. The mapping and replication is shown in Figure 4. The
shaded portion of the grid represents unused processors. (We could also replicate
horizontally and solve a factor of 128/m more problems, but this was not tested.)

The code that computes the MGS in MPL is shown in Figure 5. There is a single
loop of size n; each iteration corresponds to a column of nodes in Figure 3. During
the jth iteration, the jth column of A’ (the plural variable A) is passed to the
remaining columns. Each of these columns then computes both the dot product
with the jth column and the dot product of the jth column with itself. The dot
product is computed by doing a component-wise multiplication in parallel and
then doing a scan that accumulates the sum along the column: the final element
of the scan computation would contain the dot product (this is the scanAddf
function). Finally, A is updated for the next iteration and the appropriate row
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64 x 128 = 8192 Processors
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Figure 4. Partitioning the MP1 for n x m Replication

of the R matrix is filled. The matrix R is stored in an n x n grid of processors
(one matrix entry per processor). As such, we cannot easily use the value of R to
update A7.

Although the code doesn’t show it, 64/n problems are being solved simultane-
ously. The j_per_prob variable is a plural variable that associates the correct
column indices with the processor addresses. This variable is easily pre-computed.
Thus the conditional using j_per_prob makes some of the PEs inactive, because
there is no else clause.

In Table 1, we show the computation times for running this version for various
values of n and m. As we expect, this mapping removes the dependency on m to a
large degree. Furthermore, the time dependence on n is linear. Surprisingly, even
though we would expect some dependence on n in the xnetcS[n-1-j] command
(since the distance depends on n), the dependence for just that part of the
computation also grew only by a factor of two from n = 8 to n = 16 rather
than the expected factor of four. The reason for this is that, although the number
of clock cycles needed grows quadratically in n, the coeflicient for the linear part
is much larger than that of the quadratic part, and so the linear part dominates
for these values of n.
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for (j=0; j<n; j++)
{
/* Pass jth column to rest of columns */
if (j-per_prob == j) xnetcS{n-1-j].jcol = A;
/% qj dot qj */
qdot = scanAddf(jcol * jcol,vec_segments);
if (ixproc == m-1) xnetcW[m-1].qdot = gdot;
/* qk dot qj */
qkdot = scanAddf(A * jcol,vec_segments);
if (ixproc == m-1) xnetcW[m-1].gkdot = qkdot;
/* Update remaining columns */
if (j-per_prob > j)

if (ixproc == j) R = gkdot / gdot;
A = A - gkdot * jcol / qdot;

} /* end if */

} /* end for j */

Figure 5. MGS Code Fragment (MPL Version 1)

The times in Table 1 are the latencies for computing the MGS algorithm,
assuming all 64/n problems occur simultaneously. Throughput can be obtained
by taking the reciprocal of these numbers and multipiying by the number of
problems being solved concurrently. For example, when n = 8 and m = 128,
we get a throughput of 8/0.01156 = 692.0 problems per second. We ignore the
time needed to read and collect the problems.

Version 2: m Replication

The next version of the MGS algorithm maps the m x n matrix A onto a
vector of PEs of length m. That is, we consider the PEs as a vector of length
8192 and use m of them for a single problem. Thus a whole row of the A matrix
would map to a single PE. We are limited to m < 8192. The limitation on n is
a function of the PE memory and not of the mapping. This mapping also allows
for replicated problems. In fact, 8192/m problems can be solved simultaneously.
The mapping and replication are shown in Figure 6. The shaded portion of the
grid again represents unused processors.
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Table 1. Computation Time per Problem for Running MGS on a
MasPar MP1 (Version 1)

n 16 32 64 128

8 |]0.01142 0.01143 0.01148 0.01156

12 | 0.01872 0.01874 0.01880 0.01894

16 | 0.02288 0.02290 0.02301 0.02316

The code that computes this version is shown in Figure 7. There are two loops
that depend on n. Each iteration of the outer loop computes the dot product of
the jth column of A7 with itself. Although the dot product can be computed in
parallel for each of the problems, this value is sent to all of the PEs for a given
problem one problem at a time. Though seemingly wasteful, applying the proc
construct sequentially to the problems is faster than sending the information other
ways. The variable num_probs is set to 8192/m.

The inner loop is similar to that in version 1: we compute the dot product of
the jth column with the current column and send it to the necessary PEs. This
requires looping through the problem instances (where also the R matrix is filled).
Finally, A’ is updated in parallel. The R matrix is stored in the first n processors
of each partition. Thus again we could not easily use it for the updating.

In Table 2, we show the computation times for running this version for various
values of n and m. As we would expect, the time dependency is quadratic in n,

8192 Processors

Lm m _m A

Figure 6. Partitioning the MP1 for m Replication
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for (j=0; j<n; j++)
{
/* qj dot qj */
qdot = scanAddf(A[j] * A[j],vec_segments);
for (p = 0; p < num_probs; p++)
{
if ( (iproc >= m*p) && (iproc < m-1 + m#*p) )
qdot = proc[m-1 + m*p].qdot;
} /% end for p */
for (k=j+1; k<n; k++)
{
/* gk dot qj */
gkdot = scanAddf(A[k] * A[j],vec_segments);
for (p = 0; p < num_probs; p++)
if ( (iproc >= m*p) && (iproc < m-1 + m*¥p) )
{
gkdot = proc[m-1 + m*p].qkdot;
proc[j + m*p] .R[k] =
proc[j + m*p].qkdot / proc[j + m*p].qdot;
} /* end if x/
/* Update remaining columns */
A(k] = A[k] - qkdot * A[j] / qdot;
} /* end for k */
} /* end for j */

Figure 7. MGS Code Fragment (MPL Version 2)
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Table 2. Computation Time per Problem for Running MGS on a
MasPar MP1 (Version 2)

n 16 32 64 128

8 |1.80131 0.90824 0.46462 0.24823

12 1 4.09951 2.06640 1.05612 0.56274

16 | 7.32944 3.69396 1.88710 1.00420

due to the nested loops. The times decrease with m, rather than stay constant as
expected. This is because the communication costs in the algorithm depend on
the number of problems, which is 8192/m. Thus doubling m halves the number
of problems, and cuts the time in half.

The latencies for doing 8192/m simultaneous problems are the times in Table 2
(again ignoring I/O costs). The throughput can be determined by dividing the
number of problems solved by this time. The throughput for n = 8 and m = 128
is 64/.24923 = 257.8 problems per second.

Version 3: Complete Replication

In our next MPL version, we do not use a data parallel mapping, but rather
we map a whole problem to a single PE. That is, we solve 8192 MGS problems
simultaneously. In this way we remove any communication between PEs. The
code for this implementation is shown in Figure 8. Notice that this code as
w:itten could run on a sequential machine. The parallelism is due to the fact that
some of the variables are plural.

The computation times are shown in Table 3 for various values of n and
m. The complexity in both n and m is what we ould expect, respectively
quadratic and linear. The throughput values can be found by dividing 8192 by
the times in Table 3. For example, when n = 8 and m = 128, th~ throughput
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for (j=0; j<n; j++)
{
/* qj dot qj */
qdot = 0;
for (i=0; i<m; i++) qdot += Afli*n + j] * A[i*n + j];
/* Loop through remaining columns */
for (k=j+l; k<n; k++)
{
/* qk dot qj */
gkdot = 0;
for (i=0; i<m; i++) qkdot += A[i*n + k] * A[i*n + j];
/* Update column */
R[j*n + k] = qkdot / qdot;
for (i=0; i<m; i++)
Ali*n + k] = A[i*n + k] - gkdot * A[i*n + j] / qdot;
} /* end for k */
} /* end for j */

Figure 8. MGS Code Fragment (MPL Version 3)

is 8192/.57768 = 14180.8. This is far larger than the throughput in the previous
two versions, even though the latency is somewhat greater. Of course, this version
has by far the largest I/O cost because of the number of problems that must be

read in.
Version 4: n x m Pipelining

In the last MPL version, we implement a pipelining scheme. An n x m block
of PEs will be used. Each row of this block will correspond to a specific matrix
similar to the mapping in version 2. However, once each row of PEs updates the
appropriate column of its mairix, it passes the whole matrix down to the next row
of PEs. The mappi..g is shown in Figure 9. The first problem is at the bottom
because it is the first problem to finish. This version illustrates a fundamental
limitation for SIMD processing: the processors that are not needed when problems
are being read in or out must be inactive.
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Table 3. Computation Time per Problem for Running MGS on a
MasPar MP1 (Version 3)

n 16 32 64 128

8 [0.07370 0.14563 0.28966 0.57768
121 0.16638 0.32872 0.65383 1.30410

16 | 0.29631 0.58537 1.16425 2.32225

The code for this version is shown in Figure 10. There are four sections to the
code: starting a problem in the pipe, updating the problems, retrieving a solved
problem, and passing the results down. The starting and retrieving are done by
broadcast via the proc function. The variables front_input and front_output
are scalar arrays on the ACU. The computational step is similar to versions 1 and 2
with one subtlety. The variable j_ind is a plural variable that we precompute:
it allows a different loop index for each problem. Thus the for loop is in fact a
different loop depending on which row of PEs one looks at. Finally, results are
passed down the pipeline using one of the Xnet commands.

In Table 4, we show the total computation time in computing n iterations of
the pipe for various values of n and m. After the nth stage, the first problem is
completed. We do not include the 1/O time in reading in a problem, reading out a
problem, or passing the problems down the pipe (the latter time was much smaller
than the first two). The dash indicates that we could not complete that problem
due to memory limitations. We see that this mapping removes the dependency on
m and that the dependence on n is quadratic. To obtain throughput, we would
divide n by the times in Table 4. For example, when n = 8 and n = 128, the
throughput is 8/0.07591 = 105.4 problems per second.

Notice that the throughput is smaller than both versions 1 and 2. Part of the

reason is that the first stage of the pipe always computes the update for vector
q1- This accounts for a factor of two, which makes versions 2 and 4 comparable.

34
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Figure 9. Partitioning the MP1 for Pipeline Implementation

Furthermore, the vector updates are parallelized in version 1, while they are done
sequentially in versions 2 and 4.

This version illustrates the SIMD limitation: the processors that are reading
in a new problem or reading out a finished problem cannot do so while other
processors are computing. In fact, we must turn off any processors that are not
executing the current task. The presence of idle PEs degrades the efficiency of
the implementation.

PERFORMANCE COMPARISONS

We present two evaluations of the performances of the MPL implementations.
The first evaluation compares the latency and throughput of the four versions.
The second evaluation compares the performance of two of the versions with a
sequential implementation.

Latency and Throughput Comparisons
To compare the four implementations on the MP1, we assume a scenario in
which a sequence of problems occur regularly in time. We will assume that

m = 128 and n = 8. In Table 5, we show three measures of performance for
each implementation.
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/* Get next problem started */
for (i=0; i<m; i++)
for (j=0; j<n; j++)
proc[0][i].A[j] = front_input[i*n + j];

[+ aj dot qj */
qdot = scanAddf(A[iyproc] * A[iyproc],vec_segments);
if (ixproc == m-1) xnetcW[m-1].qdot = qdot;
for (j.ind = iyproc+1l; j_ind < n; j_ind++)
{
/* gk dot qj */
qkdot = scanAddf(A[j-ind] * A[iyproc],vec_segments);
if (ixproc == m-1) xnetcW[m-1].qkdot = qkdot;
/* Update remaining columns */
if (ixproc == j_ind) R[epoch] = gkdot / qdot;
A[j-ind] = A([j.ind] - gkdot * A[iyproc] / qdot;
} /* end for plural j_ind */

/* Print out finished problem */
for (i=0; i<m; i++)
for (j=0; j<n; j++)
front_output[i*n + j] = procln-1][i).A[j];

/* Pass results down the pipe */
if (iyproc > 0)
for (j=0; j<n; j++)
A[j] = xnetN[1].A[j];

Figure 10. MGS Code Fragment (MPL Version 4)
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Table 4. Computation Time per Problem for Running MGS on a
MasPar MP1 (Version 4)

n 16 32 64 128

8 10.07536 0.07545 0.07559 0.07591
12 1 0.17020 0.17038 0.17066 0.17143

16 | 0.30310 0.30342 0.30400 —

The first value is the problem throughput, that is the number of problems
per second that the version could support. The reciprocal of this value is the
problem period. The second value is the worst-case latency of the problems solved
concurrently, that is, the maximum time that one would have to wait for results.
These numbers are two times the entries in Tables 1 to 4 for n = 8 and m = 128.
Lastly, we measure the amount of storage needed to store the problems before
they are computed. Here we assume that a floating point number takes 4 bytes.
so that the space needed for one 128 x 8 matrix is 4 KBytes.

Since we are ignoring all input and output costs to the machine in this compar-
ison, it is dangerous to draw definitive conclusions. However, one point is clear.
The price paid for the highest throughput in version 3 comes with a price: longer
latency and very large buffers. Furthermore, we see again a limitation of SIMD
processing. All of the problems in version 3 must be executed simultaneously; we
could not be reading in new problems as we finish executing other problems.

Comparison of Parallel versus Sequential Implementations

We compare two of the MPL versions—versions 1 and 3—with a sequential
version. All of the versions used randomly generated problems with n fixed at
8 and m equal to 16, 32, 64, and 128. The MPL versions used version 3.2.14 of
the MPL compiler on a MP1 running Ultrix 4.3. The sequential program was
written in C but used the same code as that for version 3 (shown in Figure 8);
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Table 5. Comparisons of the Four MP1 Implementations (n = 8§ and

m = 128)
Version | Throughput Latency (sec) Buffer Size (KBytes)
1 692.0 0.02312 32
2 257.8 0.49846 256
3 14,180.8 1.15536 32768
4 105.4 0.15182 4

its compiler was version 2.1 of the Mips cc compiler. The C version was run on
the front-end workstation for the MP1 and was compiled with the -0 optimizing
flag. In all three implementations, we measured the time for executing the core
calculation. We did not record the time needed for I/O (both at the system level
and, in the parallel implementations, from the front-end to the back-end). The
problem periods are given in Table 6.

In Table 7, we show an estimate for the millions of floating point operations
per second (MFLOPS) rate for the three implementations. We use the number
of operations given in equation 1. The C version rates are fairly constant, as are
those of MPL version 3. MPL version 1 has rates that increase as m increases.
This is because the machine is underutilized in our implementation unless m = 128
(recall Figure 4).

There is a factor of 8 increase in MFLOPS of version 1 when m = 128 over the
C version on the front-end. However, we are solving 8 problems simultaneously.
so evidently the 128 x 8 processors used to compute a single problem instance are
equal to the processing on the front-end. For MPL version 3, we get an increase
of a factor of about 163 over the C version; however, we are solving 8192 problems
simultaneously in order to obtain this increase.

We finally show how efficient the three implementations are in Table 8. Ef-
ficiency was defined by dividing the MFLOPS rates by the peak MFLOPS for
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Table 6. Comparison of Three MGS Implementations (n = 8)

Version 16 32 64 128

MPL V.1 0.00143 0.00143 0.00143 0.00145
MPL V. 3 | 0.0000090 0.0000178 0.0000354 0.0000705

C 0.00147 0.00284 0.00566 0.01123

the machine. For the front-end DECworkstation, we used a peak rate of 10.8
MFLOPS. For the MP1, we used a peak rate of 600 MFLOPS. Both rates were
obtained from MasPar marketing literature. We see that the efficiency of the
MPL version 1 is low, even when m = 128. This is because of the communication
costs in the algorithm. The MPL version 4 is very efficient at 37%, because no
interprocessor communication is needed. However, we are ignoring all I/O costs
inherent in loading 8192 problem instances; we would expect such costs to lower
efficiency dramatically.

LESSONS

The implementations of the MGS algorithm in this section illustrate how par-
allelism can be used to compute traditional block signal processing. Our various
MPL versions served to illustrate some of the tradeoffs between execution time
and communication time and between time and space. We developed the MPL
versions in a straightforward way from the dataflow graph. Each of the several
mappings suggested by the graph has advantages; the choice would ultimately
depend on the real system’s requirements. Qur implementations tried to address
the signal processing framework of receiving a constant flow of problems to be
solved.

We unfortunately did not use many software tools in our implementations,
though there were several tools that we wished we had. For example, our various
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Table 7. MFLOPS for Three MGS Implementations (n = 8)

Version 16 32 64 128

MPL V.1 1.4 2.8 56 11.1
MPL V.3 |} 223.2 226.1 227.6 228.7

C 1.4 1.4 1.4 1.4

partitioning strategies for the different MPL versions were all done by “by hand;”
it would be useful to automate this procedure with a graph-based tool. As
another example, there was no easy way for us to use the parallel programming
environment and debuggers provided with the MP1 in our software development
since the machine was remotely accessed. Current policy at MITRE prohibits X-
window clients outside MITRE from being displayed internally; a reworking of this
policy is ongoing. Needless to say, availability of the programming environment
would have been very useful.

The development time for the MPL implementations was fairly fast once the
initial learning curve for the MP1 was taken into account. In fact, once the
programs were debugged, a large portion of the time was spent in obtaining
accurate and meaningful timing data, rather than in optimizing the code. One
exception was the attempt to try different communication strategies in MPL
version 2. In fact, hindsight would dictate that the best optimization strategy
would be to understand the communication construets more thoroughly: often
the actual costs are both counter-intuitive and hidden from the user.

We observed the fundamental limitation of SIMD processing when a stream of
problems must be solved. Since the processors must execute the same instruction
stream, we could not divide up the processors by function, that is using some for
computation and some for communication. Provided that I/O can be achieved,
this limitation can be overcome, as demonstrated by the efficiencies in the MPL
version 3.
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Table 8. Percent Efficiency for Three MGS Implementations (n = 8)

Version 16 32 64 128

MPLV.1] 02 05 09 1.9

MPL V. 3372 37.7 379 38.1

C 12.7 13.1 13.2 133

In the MP1 implementations described in this section, we found a significant
drop in efficiency as the granularity was decreased and the need for interproces-
sor communication increased. This is not an inherent limitation of the SIMD
architecture, but rather a consequence of whether a particular implementation
can support concurrent communication and computation and whether these two
functions can be balanced. Fine-grain systolic SIMD implementations can achieve
very high efficiencies if communication is balanced with computation and the two
can proceed concurrently. In our MP1 implementations, communication and coin-
putation were not performed concurrently.

For a SIMD implementation to be most efficient, the processing array must
be completely filled with a single problem or a collection of identical problems.
Finer grain mappings will typically have reduced latency, but the most efficient
grain size will be determined, as always, by the capabilities of the processor and
communication network. The most compatible parallelization strategy for a SIMD
architecture, especially when coarse grain processing is indicated, appears to be
problem replication. However for problems arriving in a stream, this implies at
least a doubling of the latency over a comparable asynchronous implementation
since a group of problems must be buffered and then sent into the processing
array together—processing on the first problem to arrive does not start until the
last problem in group has arrived. Thus SIMD processing will be most efficient
in those applications when the individual problem size matches the array size,
and especially when the problem decomposes into a large number of repeated
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calculations, such as matching a given data set with a variety of templates in a
target recognition application.

42




SECTION 4

CASE STUDY: JOINT PROBABILISTIC DATA ASSOCIATION

This section describes the implementation of the joint probabilistic data asso-
ciation (JPDA) algorithm on a Thinking Machines CM-2. The JPDA algorithm
is used in multitarget tracking to associate sensor returns with predicted tar-
get tracks. The JPDA algorithm is the computational bottleneck of an object
processing sequence whose computational complexity is strongly (exponentially)
dependent on the number of tracks present in the data. We first describe the
JPDA algorithm mathematically and specify a dataflow graph. We then develop
two sequential implementations in C and SISAL and compare their performances
with each other. We next develop a parallel implementation of the JPDA algo-
rithm with the desired scaling properties to recover timing predictability through
the use of processing resources. We finish by comparing the performance between
the sequential (SISAL) and the parallel implementation of the JPDA algorithm.

These are the lessons for this case study:

e  The main lesson is that the execution-time uncertainty inherent in object
processing can be removed by parallelism. That is, space may be utilized
in the form of extra processors in order to make the required time for the
problem comparable to other parts of the processing chain.

e  Algorithms coded in functional languages often retain more of the in-
herent parallelism, which can be exploited automatically by a compiler.
The semantics of functional languages more closely match the underlying
mathematics in an algorithm.

e  Serial and parallel implementations can be used to provide insights and
improvements for each other. Experience with sequential implementa-
tions can result in faster development time for the parallel implemen-
tation, and analysis of the parallel implementation can result in faster
sequential implementations.
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ALGORITHM DESCRIPTION

Our case study concerns a portion of multitarget tracking. The goal of multitar-
get tracking is to create and maintain for each target a sequence of predicted states
that accurately reflect the true but unkncwn state of the target. By state we mean
the array of numerical quantities that specify the target (location, velocity, and
so forth). Prediction is based on some subset of all past information of the targets
and the returns; which subset depends on the specific tracking strategy. There
are several possible strategies, most of which involve making some association of
the returns with the targets. A good overall reference is [21].

We focus on a specific association strategy, namely joint probabilistic data
association (JPDA). A weighted average of returns is used to update the predicted
state. Only returns that are sufficientlv close to the given target are considered.
That is, a threshold, or gate, is put around each predicted state in state-space;
returns outside the gate are not used for updating. Furthermore, targets are not
treated independently: if two targets share a return, that is, if a return falls in
the intersection of their gates, then the two targets are clustered together. For
a given cluster, JPDA computes all possible hypotheses for which returns came
from which targets. The result is a potentially more accurate and robust tracking
procedure; the cost is an exponential explosion in computation (exponential in
the number of targets in the cluster).

The input for JPDA on a given cluster is an n x (m + 1) matrix P = [p;j],
where n is the number of targets and m is the number of returns. The values
pio are all equal and are based on clutter assumptions. For 3 = 1,...,m, p;; is
based on probability models assuming that the jth return came from target . In
particular, if return j is outside of the gate for target z, then p;; is set to zero.

Figure 11 shows three targets that are being tracked and five returns. The
three targets are clustered together because of a return in the intersection of the
respective gates. (The actual states are shown for illustration purposes and have
no effect on the computation.) B ~d on the figure, the input matrix is thus

Poo Po1 Poz po3z O 0
P=|po 0 0 p3a pa O (2)
po 0 0 0 pa pos

The goal of JPDA is to compute the weights
Bi; = Prob(target ¢ is associated with j)
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Figure 11. A Cluster for JPDA

and P, which is the probability that target : was not associated to any return.
The B;; are obtained by a normalization of the a;;, which are defined by

a;;j = pij perg(P;).

The matrix £;; is a submatrix of the matrix P formed by deleting the ith row
and the jth column if j # 0. The function pery() is the sum of all products
where exactly one element is chosen from each row and at most one element from
each column, except for column 0, from which any number can be chosen. This
function is related to the permanent of a matrix (see [22]); it is conjectured that
calculation of the permanent (and also perg) is exponentially hard.? Note that in
fact we must compute n(m + 1) permanents.

Recent work at MITRE has applied faster algorithms for computing the per-
manent of a matrix to the JPDA algorithm (the total time, though, is still ex-
ponential); see [23]. We will use the column-recursive JPDA algorithm of [23]
in our case study. The algorithm is given in Figure 12 (we use Z, to denote
{0,...,n — 1}). The algorithm computes the a,; by creating an intermediate

2 More precisely, calculation of the permanent is #P-complete.
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Input: P = [p;;] € Rr*(m+1)
Auxiliary: F = [f;,] € R(m+1)x(2"-1)
Output: B = [8;;] € R**(m+1)

= [Tica pis j=0andaC Z,
Ia undefined 0<j<m

For £ =1 to m do

[ { o+ Tieabit fily j<landacCZ,

o = (-1 j=fandacC Z,

Oa
undefined £<j<m

ﬂ'.j = aij/Zl'sz+1 Qqy ] € Zn a-ﬂd ] € zm+1
where a;; = p;; - fZ‘zn\ @}

Figure 12. Column-Recursive JPDA Algorithm

matrix F. This matrix has m + 1 rows and 2" — 1 columns; the columns are
indexed by all proper subsets of the n targets. The zeroth row of F is initialized
based on the first column of P. We then iterate on £ from 1 up to m. At e.ch
iteration, we update the rows of F' up to the th row; the £th row is just set to the
current value of the zeroth row. After the looping, we find the value of pery(P;;)
by looking at the jth row and the subset Z, \ {}.

There are four dimensions that we iterate over in the algorithm. The indices
¢ and j loop through m + 1 (though in fact j only loops up to ¢). The index «
runs through all proper subsets of the targets, which total 2" — 1. Finally, the
index ¢ loops through all possible elements of a, which is at most n — 1. Thus
the total computational complexity of the algorithm is on the order of nm?2". In
what follows, the parallelism that we achieve from this algorithm will come from
either parallelizing or unordering one or more of these loops.
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DATAFLOW ANALYSIS

Our dataflow analysis is based on the algorithm shown in Figure 12. Notice
that for each iteration ¢, each row of F is updated exactly the same (for those
rows being updated). Furthermore, there is no interaction between the different
rows of F, except that each row is initialized based on the current value of the
zeroth row. Thus, we have in fact m + 1 essentially independent computations.

One possible dataflow graph comprises m + 1 parallel chains, as shown in
Figure 13. The figure is based on the sample cluster shown in Figure 11 (n = 3
and m = 5). Each column in the figure represents an iteration step ¢. Each row.
or chain, computes one row of F (indexed by j). The shaded boxes represent the
undefined values of the F matrix as indicated in Figure 12; the jth row of F is
undefined if j is larger than £. Notice though that we could in fact repeat the
exact computation in the shaded box that is occurring in the first row. In this
way the chains would be uniform in computation and truly independent, provided
that we shared or broadcasted the P matrix.

The dataflow graph in Figure 13 is computational scalable with respect to the
number of returns m. In particular, increasing m by one results in adding one
more chain and increasing every chain in length by one. Also for fixed n, the
amount of computation in the existing nodes and all additional nodes remains
fixed, independent of the value of m. However, this dataflow graph is not scalable
with respect to n; increasing n would produce the same dataflow graph but with
cxponentially increasing computational requirements. Because a column of the F
matrix is passed from node to node, the dataflow graph is communication scalable
with respect to m but 2"-communication scalable with respect to n.

The exponential portion of the algorithm comes from the matrix F', whose rows
are length 2" — 1 with entries indexed by the subsets of the set Z,. In particular,
at each iteration, f;, is updated by looking at all of the subsets of ¢ that are onc
less in size. For example, using the P matrix defined in equation 2 and ¢ = 4, the
{0,1} entry of the jth row of F' would be updated as

fiqony < fitony + Prafifoy + poafi1y

(where j must be less than £). This equation shows that not all of the elements
of the jth row are needed to update a given entry.

We use this observation to show a finer dataflow graph in Figure 14 for the
zeroth chain in Figure 13. Each column of nodes in Figure 14 corresponds to a
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Figure 13. A Dataflow Representation for the Column-Recursive JPDA
Algorithm

single node of the chain. For clarity, we do not show a horizontal arrow from each
node to the next in the same row, although each node indeed depends on its value
to the left. The white nodes are shown even though they are not used to compute
the answer. Also notice that the corresponding finer dataflow graph for the jth
chain of Figure 13 would be shorter if we eliminated the shaded boxes.

The dataflow graph of Figure 14 is scalable in m: increasing m lengthens
the chain in a natural way. Increasing n by one doubles the number of nodes.
This increase occurs in a very regular manner, namely as a hypercube, which we
will exploit in our parallel implementation. However, the dataflow graph is not
strictly scalable in n, but rather it is n-scalable. Both the communication and
computation at a node increases linearly with n; in the figure this can be seen by
the fact that the fan-in at some of the nodes is equal to n.
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IMPLEMENTATIONS

We present three different implementations of the column-recursive JPDA
algorithm. The first was written in the imperative language C which was designed
for sequential machines. The second implementation was written in the functional
programming language SISAL. This language was designed so that it could be
implemented efficiently on both parallel and sequential machines. Our tests of
the SISAL version of JPDA were performed on a sequential machine because we
did not have access to a parallel machine that runs SISAL programs. The last
implementation presented was written in the imperative language C* which was
designed for parallel machines. C* is used to program machines produced by
Thinking Machines, Inc., which we will use on their CM-2. C* programs contain
commands which explicitly state which operations are to be done in parallel.

Sequential Implementation: C Version

Pi0 Pi1 Pi2 Pi3 Pia Pis

0 o o

{ o

N OO IR
(121 @ \ \ 30

3) o
13® \ \ \ \ % o0
23)® ' ‘ ' ' ® o
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Figure 14. A Finer Dataflow Graph for the Zeroth Chain in Figure 13
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fia — fia + 3 pit" fia-tiy @ CZy
1€a
for (a = two_tonumrows - 2; a > 0; a--) {
for (i = 0; ; i++) {
int k =1 << i;
if (k > a) break;
if (k & a) f[jl1[a] += p[il[ell] * £[j][a - k];
}
}

Figure 15. JPDA in C

Figure 15 shows a fragment of the C version of JPDA. The fragment contains
the innermost two loops of the most time consuming section of the program. This
fragment will be compared with both SISAL and C* fragments encoding similar
computations later in this paper.

All three versions of JPDA represent sets of integers using an integer. The
integer associated with the set a is 3¢, 2. Given the usual binary representation
of integers, the membership operation i € a becomes 2' A a, where A is bitwise
logical AND. In C, ¢ € ais implemented by t* ‘ingif ((1 << i) & a) is non-zero,
where << is C’s shift left operator, and & is _'s bitwise logical AND. The index
of the inner for loop in the C fragment is variable i. It ranges over tracks. The
inner loop terminates when 2! > a.

The program was compiled using the GNU C compiler version 2.4.5 using
the -O switch. The CPU time used to execute the entire program for randomly
generated input matrices of various sizes is given in Table 9.

Sequential Implementation: SISAL Version
The SISAL version of the JPDA code fragment is given in Figure 16. It consists
of two loops, the index of the outer loop ranges over all proper subsets of the set of

tracks, and the index of the inner loop ranges over all tracks. It states that a new
vector (the jth row of F*!) is to be constructed by performing some calculations
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which depend on the jth row of F*. Unlike the C version, it does not specify that
the jth row of F¢ be replaced with a new value.

The loops displayed are examples of what is called the product form of SISAL’s
for construct. The semantics of this construct imply that the array elements can
be computed in any order. A compiler may choose a particular order, or choose to
compute some or all of the array elements in parallel. The SISAL version faithfully
reflects the fact that the algorithm does not impose a particular order for the
computation of array elements.

Let us compare this fragment with the one written in C shown in Figure 15.
Due to the sequential semantics of C, the C vession of the fragment specifies a
particular order in which one must compute and update the array elements. For
example, the fact that the index a of the outer loop decreases encodes the fact
that its correctness depends on updating f;, before updating every element of row

Table 9. CPU Time in Seconds for Running JPDA on a
SPARCstation 10 Model 30 (C version)

Returns

Tracks 5 10 15 20 25

10 01 02 04 08 1.2
11 01 04 09 16 2.5
12 03 09 21 35 5.4
13 06 20 43 75 115
14 1.2 43 93 162 25.0
15 2.7 94 203 354 54.8

16 59 206 445 776 119.7
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;:1= ;a+zp“'fg,a—{i} acz"
t€a
function compute f matrix row(f_sub_j: vector; p: matrix;
n, two_ton, ell: integer;
returns vector)
for a in 0, two.ton - 2
returns array of
f_sub_j[a] +
for i in O, n - 1
returns value of sum
if member(i, a)
then pli, ell] * f_sub_j[remove(i, a)]
else 0.0d40
end if
end for
end for
end function

Figure 16. JPDA in SISAL

7 that is indexed by a proper subset of a. Reversing the order in which the array
elements are accessed would lead to incorrect results.

This is an example of how sequential programs often overspecify a computa-
tional process. The correctness of the C program requires a particular order for
updating a row of F that is not inherent in the algorithm. A C compiler which
generates code for a parallel machine must realize that much of the time-ordering
of events given by the program are an artifact of C's sequential semantics. This
analysis is very difficult, and the latest generation of compilers do not do a very
good job of finding the parallelism, even though more than ten years of research
has been directed at this problem.

It is easy for a compiler to discover parallelism in the SISAL version of JPDA

because the program does not imply a iime-ordering of many computations.
However, there is a reason one might be concerned about the efficiency of the
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SISAL version. The reading of the SISAL ccde suggests that a new vector be
created from f_sub_j. A naive translation of the program would require that
memory be allocated each time this vector is created—a very time consuming
process. Notice that the algorithm does not refer to the value of £_sub_j once
it has been used to create the new vector. The optimizing SISAL compiler has
an analysis phase, called copy elimination [16], which identifies this pattern of
usage and generates code which creates the new vector in the memory previously
reserved for f_sub_j. Even with this optimization, however, we found that the
size of the run-time image of the SISAL program was roughly twice the size of the
C image when applied to the same problem.

As a result of copy elimination and many other optimizations, the SISAL pro-
gram performs well when compared with the C version even on a sequential ma-
chine. Our tests showed that both versions use nearly the same amount of CPU
time (the C version was slightly slower, but never by more than 1%). Table 10

Table 10. CPU Time in Seconds for Running JPDA on a
SPARCstation 10 Model 30 (SISAL version)

Returns

Tracks 5 10 15 20 25

10 01 02 05 038 1.2

11 01 05 10 1.6 2.5

12 03 09 20 35 5.4

13 05 20 43 74 115

14 1.2 43 93 162 248

15 27 94 201 352 542

16 59 20.7 441 T77.1 118.7
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shows the CPU time for running JPDA on the same workstation used to measure
the C run times. All numerical computations are performed using single precision
floating point operations. The SISAL programs were compiled with OSC version
V12.9.1. It generates C which is compiled into machine language. It invoked Sun’s
proprietary C compiler version 1.1 with the -O switch.

The SISAL version of JPDA was developed after the C version. The first
SISAL version was a direct translation of the C version. It used loop constructs
that specify sequential iteration so that the computation was constrained to be
performed in the same order as the C version. It ran quite slowly—it used 75%
more CPU time. The program was rewritten using the product form of the for
loop as shown in 16, and the speedup was dramatic.

We were surprised that the original C version used 40% more CPU time than
the fast SISAL version. Upon close examination, we discovered that the original
C version had transposed the F matrix. This resulted in more cache misses, and
rewriting the program lead to a significant speedup. This is an example of how the
functional implementation of JPDA resulted in an improvement in an imperative
implementation.

When we compiied the C version using Sun’s proprietary C compiler, we found
it used 22% more CPU time. As a result, we expected there would be a speedup
if the C compiler invoked by the SISAL compiler was changed to the GNU C
compiler. Surprisingly, we found that JPDA in SISAL used 8% more CPU time.
The authors of the SISAL compiler have tuned their generated C to a particular
compiler [24].

Parallel Implementation: C* Version

The previous dataflow analysis suggests several parallelization strategies. For
example, we could map the six chains in Figure 13 onto six processors such that
no communication between the processors was required (although we would need
to store the P matrix at each processor or share it between the processors). In
this way, we would achieve a speedup of m. However, because of the exponential
computation required at each node, the algorithm will still require exponential
time. Also as the number of targets in the cluster fluctuated, the execution
time would vary dramatically—a problem for a real-time application that requires
predictable running times.
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Another approach would be to use a hypercube architecture. A hypercube of
dimension n is naturally indexed by subsets of an n-set, which also indexes the
columns of F. If we were to map the matrix F onto a hypercube, such that each
node received a column of F (length m + 1), we would be able to perform the
JPDA calculation in polynomial time. This corresponds to mapping each row of
nodes in Figure 14 to a single processor; each such row for each of the m + 1
chains of Figure 13 would map to the same processor. The price paid is the
exponential amount of space that we need in the form of the processors on the
hypercube. Such a mapping benefits from the nearest neighbor communication,
that is, communication is localized.

We show a mapping with data dependencies for a dimension-three hypercube
in Figure 17. Recall that in Figure 13, each parallel chain produced a column of
the a;;. In the hypercube mapping, n of the nodes will each produce a row of the
a;;; these nodes are the subsets Z, \ {i}. The white node at the corner is never
used by the algorithm (it is the node indexed by Z,,).

Thus, the hypercube architecture achieves a speedup on the order of 2" at the
cost of space 2". Such a iradeoff would be useful in practice, since now the time
to compute the JPDA algorithm is on the same order as other parts of the signal

processing chain—polynomial in n and m-—and so easier to manage at the systems
level. Furthermore, notice that in the hypercube mapping there are still m + 1
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Figure 17. Hypercube Mapping of JPDA Vector Operation
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essentially independent operations at each node, which correspond to the m + 1
chains in Figure 13. That is, we could in fact have m + 1 parallel hypercubes. for
an additional speedup factor of m.

The parallel implementation of the JPDA algorithm that we will discuss uses a
machine with a hypercube architecture. Specifically, we use the CM-2 Connection
Machine of Thinking Machines, Inc.

The CM-2 Machine

The CM-2 consists of a front-end Unix workstation and a SIMD back-end
comprising 2'® = 8192 one-bit processors connected in a hypercube (other sizes
exist; everything that we present will reflect the actual machine that we used).
There is a 32-bit floating point chip allocated to every 32 processors. The set of
32 processors, the 32-bit floating point chip, and some communication interfacing
is called a sprint node. Thus the machine that we used has 256 sprint nodes.
Interprocessor communication is faster if it stays within the boundaries of the
sprint nodes. However, we did not seek to optimize our code to take this into
consideration.

Because the CM-2 is a SIMD machine, we adopted a data parallel view of
computation. That is, each processor received a small piece of the data, which
it updated through communication with other processors. We chose the CM-2
because its hypercube structure was well-matched to the dataflow analysis for
JPDA that we presented above. Furthermore, the communication required by the
dataflow graph is nearest neighbor communication along the hypercube.

Another feature of a SIMD architecture is that of setting contexts. Since each
processor receives the same set of instructions, one way to control processing is
to turn selective sets of processors off. The set of currently active processors is
called the context. In our implementation, on average half of the processors were
inactive. In fact, the amount of time that a processor is used is a linear function
of the binary weight of its physical address.

The C* Language

We programmed in C*, Thinking Machines’ dialect of C. The language adds
parallelism through parallel variables and communication routines on them. Par-
allel variables are defined by first defining their shape. In C*, the shapes can be
any multidimensional grid (up to 31 dimensions) with the lengths being a power
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of 2. Thus one has the flexibility to define a one-dimensional vector of length
8192 (or larger), or a 128 x 64 grid, etc. Although the total size of the shape
may exceed the size of the hypercube, it cannot be smaller. (A user desiring to
use a smaller piece of the machine must artificially define another dimension and
turn off or ignore those positions.) In our example, we defined a shape to be a
hypercube of dimension n, the number of targets. In other words, our shape was
an n-dimensional grid with length 2 in each dimension (so communication along
the grid is equivalent to hypercube communication).

A parallel variable is defined in terms of its shape, e.g., int :hypercube would
mean a 32-bit integer variable with the shape hypercube. Operations on parallel
variables are the same as scalars (adding, multiplying, etc.) with the same syntax.
An important point is that only variables of the same shape may usually be
combined.

There are several ways to communicate between processors. For example.
there are send and get commands that transmit information between arbitrary
processors. There are also grid communication calls, which respect the actual grid
(as defined by the shape). These can be with or without wraparound. Needless
to say, there are also many other features, such as scan, spread, and so forth.
which we did not need for our implementation.

If the shape is larger than the actual machine size, then virtual processors
(VPs) are invoked. Their usage is transparent to the user and allows for easy
scalability. For example, when we set n = 13, our matrix F' maps exactly onto
the processors: each processor would receive a length m 4+ 1 column vector of F'.
If n = 14, then each processor receives two columns. For n = 15, each processor
receives 4 columns, and so forth. The ratio of the total size needed to the size
of the machine is called the VP ratio. The advantage to a high VP ratio is that
potentially a larger fraction of the computation is being done within the sprint
nodes, and so interprocessor communication cost is reduced.

C* Implementation

Figure 18 shows one way to encode the code fragment in C* that we used
previously to demonstrate C and SISAL. Our variable F' is defined as an array
of float:hypercube. The matrix P is defined on the front-end, that is, it is a
serial two-dimensional array. The variable dummy is used to preserve the current
value of F until it can be updated. The where statement turns off all processors—
subsets—that do not contain target i:. The other half of the processors look in
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fja - fja + Zpil ‘ fj.a-{i} acC zn
i€a
dummy = £[j];
for (i=0; i<num_rows; i++)
vhere (pcoord(i) == 1)
dummy = dummy + (float:hypercube)n[i][ell] =
from grid.dim(&f[j], (float:hypercube)0.0,i,-1);
£[;] = dummy;

Figure 18. JPDA in C*

dimension : at their nearest neighbor and use the value of £[j] located there.
Thus every subset sends its value to all subsets that are one element larger, as the
dataflow graph in Figures 14 and 17 indicate.

We show some timing results for our C* implementation of JPDA in Table 11.
We timed the total elapsed time for the subroutine call that computes JPDA.
The time that just the back-end was busy is not shown but was comparable; in
other words, almost all of the time in the routine is used by the back-end. Several
items are immediately apparent. Since the physical hypercube of the machine has
dimension 13, we expect that the complexity for n < 13 should be on the order
nm?. Indeed this appears to be the case. Once n > 13, we see for fixed m the
doubling of times that would be consistent with the larger VP ratios. However.
the times are slightly less than what would be expected, probably due to the
increased usage of the sprint nodes.

Our results used 32-bit floating point operations. We tried 64-bit floating point
operations, but the times were about a factor of ten slower. The reason is that
the floating point units on our CM-2 were computing serially the longer precision
floating point operations. Versions of the CM-2 with 64-bit floating point chips
do not have this feature.

We iried to isolate how much time was spent communicating between proces-
sors in our implementation and how much time was spent actually computing.
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Table 11. Elapsed Time in Seconds for Running JPDA on a Thinking
Machines CM-2 (C* version)

Returns

Tracks 5 10 15 20 25

10 0.11 034 067 1.14 1.73
11 013 037 077 126 1.93
12 V.14 039 0.81 134 2.05
13 0.15 043 088 147 224
14 029 081 1.65 278 4.25
15 0.57 159 3.26 5.61 8.49
16 1.16 3.23 6.62 11.25 17.20
17 235 6.58 13.44 2294 35.08

18 486 13.53 27.63 47.17 72.05
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Our informal check indicated that roughly two thirds of the time was spent on
communication, namely the from_crid_dim call.

PERFORMANCE COMPARISONS

We produced two different implementations of JPDA, one implemented in
the C* programming language and the other in SISAL. We compare the two
implementations of JPDA using randomly generated problems with 20 1eturns
and a varying number of targets. The results are summarizedin T " le 12. The C*
program was compiled using version 6.0.3 /196) of the C* compiler on a Sun- :/280
running SunOS 4.1.3. The SISAL program was run on the front-end of the CM-2
and was compiled with OSC version V12.9.1. The timing procedure was slightly
different. The SISAL program times are total user time for the run calculated
exterr al to the program; the C* times are total elapsed time calculated within
the program.

In Figure 19, we show an estimate for the millions of floating point operations
per second (MFLOPS) rate for the two implementations: the C* version on the
CM-2 (black) and the SISAL version on the same Sun-4 (gray) (we used the same
executable file as that used on the Sparcl0 for the results in Table 12). The
purpose of the figure is not so much to compare the actual computation rates on
the platforms, but to indicate how this rate changes with the problem size. Here
we fixed the number of returns to be 20 and varied the number of targets. We
calcriated the number of operations based on (m? + m + 1)n2""!.

Table 12. Comparison of Two JPDA Implementations

Number of Targets

Version | 10 11 12 13 14 15 16 1 18

SISAL 1.8 38 79 168 36.0 768 1723 377.2 826.2

C* 14 16 15 1.7 30 58 1'5 232 47.4_‘
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When n is less than 13, the C* version is underutilizing the machine, since the
desired hypercube is less in size than the actual machine. In order to reflect the
fact that we could then be solving more than one problem at a time, the dashed
line shows that expected number of MFLOPS for the C* version for the smaller
problem sizes.

Notice how in the SISAL version and in the C* version up to n = 13, the
number of MFLOPS stays roughly constant. This indicates that the efficiency of
these implementations does not change with the problem size. We show efficiency
in Figure 20. Efficiency is defined as MFLOPS divided by the peak MFLOPS
for the machine. For the Sun-4 we used a peak rate of 8.335 MFLOPS (obtained
from a Sun representative). For the CM-2 we used 896 MFLOPS for n > 13 and
this value divided by 2, 4, and 8 for n = 12,11, 10, respectively. The CM-2 value
is based on a 3.5 MFLOPS rate per each 256 Sprint nodes (extrapolated from
Connection Machine literature).

Mflops
25 T
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15 .

10 4

SISAL on Sun-4/280

Targets
R

10 ' ) 15 ' ' 20
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Figure 19. MFLOPS for Two JPDA Implementations
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Figure 20. Efficiency for Two JPDA Implementations

The efficiency is higher in the sequential version, due to the lack of communi-
cation costs. Once n > 13, we see that the efficiency of the C* version increases.
This rise is due to the amount of communication that becomes localized in the
sprint nodes. Memory limitations prevented us from testing how far this growth
in performance extends.

LESSONS

The various implementations of the JPDA algorithm illustrate several addi-
tional lessons. Primarily, this algorithm demonstrates dramatically the space-time
tradeoff, and in particular, how adding parallelism can reduce the execution time
to manageable (polynomial) levels. The required parallelism was only apparent
on viewing a fine enough dataflow graph—one which was scalable in the problem
dimension that caused the exponential time complexity.
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Another theme of these implementations is how much the sequential and par-
allel paradigms interact. For example, an extensive knowledge of past sequential
implementations was useful in both the dataflow analysis and the C* implemen-
tations. Indeed, the algorithm was first specified by such an implementation. On
the other hand, both the dataflow analysis and the performance analysis for the
SISAL version led to some easy improvements in the C version.

We found that the way to write an efficient SISAL program is to start with
a parallel algorithm and not with a sequential program. The compiler delivers
its best code when a program retains as much of the parallelism inherent in the
algorithm as possible.

We found the availability of useful tools wanting. There was only one tool
that we were able to extensively exercise. The Parallel Assessment Window
System (PAWS) [25] is a program designed to allow comparisons among different
machines running a single application. It contains four tools: the application tool,
the architecture characterization tool, the performance assessment tool, and the
interactive graphical display tool. The application tool translates Ada programs
into a dataflow representation using IF1 [26]. The SISAL compiler performs this
translation for us. The display tool allowed us to visualize the structure of a SISAL
program’s dataflow graph. This helped in the understanding of the program. We
were unable to make use of the performance assessment tool and the architecture
characterization tool; however, it should be noted that we had access only to a
preliminary version of PAWS.

There were some tools that we would have liked to have seen. A graph-
based visual tool to help show mappings would have been better than the “by-
hand” techniques used to do the dataflow analysis. As we mentioned in the
modified Gram-Schmidt conclusion, it would have been useful to apply the parallel
debuggers that come with the CM-2, but there was no easy way to do this.

With regard to software development time, the existence of the sequential
version in C led to fast implementations in both C* and SISAL (all three versions
used only 200-400 lines of code). For the SISAL code, a large portion of the time
was spent in optimization. On the other hand, for the C* code, the time was
spent in refining the analysis portions of the code, i.e., getting better timing data,
and so forth.
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SECTION 5

CONCLUSION

This report investigated the use of commercial massively parallel computers for
real-time sensor processing. We introduced concepts that are relevant to real-time
parallel processing including: a definition of scalable dataflow graphs motivated
by the need to meet a fixed throughput constraint for varying problem sizes, an al-
gorithm classification that makes explicit the impact that data dependencies have
in real-time implementations, and a real-time implementation strategy that de-
composes the most problematic algorithms into compositions of more predictable
constituents and then uses scalable dataflow graphs and parallel processing to re-
cover timing predictability by mapping data-dependent timing uncertainties into
the spatial dimension (processors). The two case studies—the MGS algorithm and
the JPDA algorithm—applied these ideas and represented the range from signal
processing to object processing. We repeat from the introduction the lessons that
we learned:

¢ Communication costs tend to be the limiting factor in obtaining efficient
parallel implementations; coarse grain implementations may be forced
that violate latency and throughput requirements.

e In SIMD processing, especially when communication costs imply coarse
grain implementations, problem replication can be the most efficient
parallelization strategy.

e  When a single dataflow graph can be mapped to a fixed machine architec-
ture in a variety of ways, the programmer has more flexibility in meeting
system memory and timing requirements.

e In SIMD processing, processors often must be turned off and made to
stand idle while other processors finish their tasks. This trait limits the
efficiency of SIMD processing for some tasks.

e The execution-time uncertainty inherent in object processing can be
removed by parallelism.
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e  Algorithms coded in functional languages often retain more of the inher-
ent parallelism, which can be exploited automatically by a compiler.

e  Serial and parallel implementations can be used to provide insights and
improvements for each other.

Although substantial insights were gleaned from the two case studies, much
work remains to be done. An end-to-end demonstration that incorporates simul-
taneously both signal processing and object processing is needed and would most
likely require MIMD processing, instead of the SIMD processing considered in
this paper. Also the actual real-time requirements of a specific application should
more directly influence the parallel mapping chosen. In particular, a software
engineering process for real-time applications needs to be formalized in which
the processing and communication kernels of the algorithm are first benchmarked
on the target machine, and then a mapping is designed using this information to
meet prescribed latency and throughput constraints. Commercial-grade tools that
purport to make this software development process either easier or the resulting
software more portable need to be evaluated, and the fall-off in performance over
hand-tuned software quantified.

To broaden our treatment of the real-time parallel processing problem, we plan
to implement a scaled-down version of a wide-area, high-resolution synthetic aper-
ture radar (SAR) surveillance system on a variety of high performance computers,
including MIMD architectures such as the Intel Paragon and the Thinking Ma-
chines CM-5. Such a surveillance system incorporates signal processing to form
the SAR image and object processing in the form of automatic target recogni-
tion. To form the SAR image, we plan to implement the new Planar Subarray
Processing (PSAP) algorithm [5]. We will investigate using parallel programming
environments such as Parallel Virtual Machine (PVM) for obtaining portable im-
plementations and determine the resulting impact on application performance. A
software architecture will be developed that allows the proper clustering of tasks to
match the underlying machine granularity as the code is ported between different

platforms.

We are particularly interested in a real-time implementation of a version of the
PSAP algorithm that integrates automatic target recognition within the image
formation signal processing chain. This so-called decision-directed image for-
mation may be required to reduce the implementation complexity of wide-area.
high-resolution surveillance systems to practical levels. Such a combination, how-
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ever, will pose real-time parallel processing problems of the sort considered in
this paper. In particular, combining the signal processing and object processing
stages will introduce data dependencies, and hence timing uncertainties, into this
integrated processing chain. For this case, we will investigate software techniques
for recovering timing predictability, e.g., this paper’s approach of trading space
complexity for timing predictability or software fault-tolerance techniques that
allow a system to recover from software timing faults.

67




LIST OF REFERENCES

Blitzer, F., 1993, “Militarized Touchstone Program,” In 1993 IEEE
National Aerospace and Electronics Conference, Volume 1, Dayton, OH:
IEEE, pp. 137-143.

Lambert, M., editor, 1993, Jane’s All the World’s Aircraft, 1993-1994,
Coulsdon, Surrey: Jane’s Information Group, Ltd, pp. 452-454, Entry
titled: Boeing E-3 Sentry (AWACS).

Blake, B., editor, 1993, Jane’s Radar and Electronic Warfare Systems,
1993-1994, Coulsdon, Surrey: Jane’s Information Group, Ltd, pp. 253-254,
Entry titled: Joint Surveillance and Target Attack Radar System (Joint
STARS).

Barile, E. C., R. L. Fante, and J. A. Torres, October 1992, “Some
Limitations on the Effectiveness of Airborne Adaptive Radar,” IEEE
Transacations on Aerospace and Electronic Systems, pp. 1015-1031.

Perry, R. P., R. C. DiPietro, A. Kozma, and J. J. Vaccaro, April 1994,
“SAR Image Formation Processing Using Planar Subarrays,” In
Proceedings of the SPIE Conference on Algorithms for Synthetic Aperture
Radar Imagery, Orlando, FL.

Chaudhary, V., and J. K. Aggarwal, March 1993, “A Generalized Scheme
for Mapping Parallel Algorithms,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 4, No. 3, pp. 328-346.

High Performance FORTRAN Language Specification, May 1993, High
Performance Fortran Forum.

Bokhari, S. H., January 1988, “Partitioning Problems in Parallel,
Pipelined, and Distributed Computing,” IEEE Transactions on Computers,
Vol. 37, No. 1, pp. 48-57.

Lee, E. A., and D. G. Messerschmitt, September 1987, “Synchronous Data
Flow,” Proc. of the IEEE, Vol. 75, No. 9, pp. 1235-1245.

69




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Sih, G. C., and E. A. Lee, June 1993, “Declustering: A New Multiprocessor
Scheduling Technique,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 4, No. 6, pp. 625-637.

Ha, S., and E. A. Lee, November 1991, “Compile-Time Scheduling and
Assignment of Data-Flow Program Graphs with Data-Dependent
Iteration,” IEEE Transactions on Computers, Vol. 40, No. 11,

pp. 1225-1237.

van Tilborg, A., and G. Koob, 1991, Foundations of Real-Time Computing:
Scheduling and Resource Management, Boston: Kluwer Academic
Publishers.

Sha, L., and S. S. Sathaye, September 1993, “A Systematic Approach to
Designing Distributed Real-Time Systems,” Computer, pp. 68-78.

Athas, W. C., and C. L. Seitz, August 1988, “Multicomputer
Message-Passing Concurrent Computers,” Computer, Vol. 21, No. 8.

Leiserson, C. E., October 1985, “Fat Trees: Universal Networks for
Hardware-Efficient Supercomputing,” IEEE Transaction on Computers,
Vol. 34, No. 10.

Cann, D. C., April 1992, “Retire Fortran? A Debate Rekindled,”
Communications of the ACM, Vol. 35, No. 8.

, April 1992, The Optimizing SISAL Compiler: Version 12.0,

UCRL-MA-110080, Lawrence Livermore National Laboratories, Livermore,
CA.

Rorabaugh, T. L., E. K. Pauer, R. A. Games, and D. A. Loeber, 1993, “A
DSP Array for real-time Adaptive Sidelobe Cancellation,” Proceedings of
International Conference on DSP Applications and Technology, Cambridge.
MA.

Dahlquist, G., and A. Bjorck, 1974, Numerical Methods, Prentice-Hall. Inc..
Translated by Ned Anderson.

70




20.

21.

22.

23.

24.

25.

26.

MasPar Computer Corporation, 1993, MasPar Parallel Application
Language (MPL) User Guide, Sunnyvale, California: MasPar Computer
Corporation.

Bar-Shalom, Y., and T. E. Fortmann, 1988, Tracking and Data
Association, San Diego, CA: Academic Press.

Garey, M. R., and D. S. Johnson, 1979, Computers and Intractability: A
Guide to the Theory of NP-Completeness, San Francisco, CA: Freeman.

O'Neil, S. D., and M. F. Bridgland, to appear, “Fast Algorithms for Joint
Probabilistic Data Association,” IEEE Trans. on Aerospace and Electronic
Systems.

McGraw, J., 1993, personal communication.

Pease, D., A. Ghafoor, I. Admad, D. L. Andrews, K. Foudil-Bey, T. E.
Karpinski, M. A. Mikki, and M. Zerrouki, January 1991, “PAWS: A
Performance Evaluation Tool for Parallel Programming Systems,”
Computer, Vol. 24, No. 1, pp. 18-29.

Skedzielewski, S., and J. Glauert, July 1985, IFI—an Intermediate Form

for Applicative Languages, Livermore, CA: Lawrence Livermore National
Laboratories, Manual M-170.

71




