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y + = nondimensioonal distance normal to surface 1/2

Z = turbulence model compressibility function
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a = angle of attack

= vector of characteristic variables at the (i + j, k interface

/3 = shock-wave angle

fl" = Clauser-like pressure gradient function (outer formulation)

6 = boundary-layer thickness

At = time step in numerical integration

= coefficient in entropy function

.y = ratio of specific heats

A = eigenvalue due to diagonalization of flux Jacobian

= entropy corrected eigenvalue

A = fin leading-edge sweep angle

A = first coefficient of viscosity (molecular viscosity)

A•t = eddy viscosity

V = Courant number (--L

= azimuthal angle (also potential perturbation variable)

S= upwind function

p = density

Tzz, TI~, Tzz

7 x,, TZz, rT, = viscous stresses
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Abstract

The flow about the complete Hypersonic Applied Research Technology (HART)

missile is simulated for inviscid, laminar, and turbulent conditions and Mach numbers

from 2 to 6. An explicit, second-order-accurate, flux-difference-splitting, algorithm

is implemented and employed to solve the Navier-Stokes equations. The formulation

models turbulence with the zero-equation, Baldwin-Lomax turbulence model, ac-

counting for pressure-gradient and compressibility effects. The equations are solved

using a finite-volume methodology.

In the first part of the study, numerical experiments are performed using an

infinitely thin-fin approximation. The aerodynamic and static-stability characteris-

tics are investigated to determine if conventional supersonic missile configurations

can be flown at Mach numbers higher than 5. The effects of nosetip blunting and

boundary-layer condition are demonstrated. In addition, many unresolved issues

from experimental testing of the HART missile are addressed. In the second part of

the study, the effects of fin thickness and cross section are explored. A comparison

is made between thin-fin results and thick-fin results to assess the impact on missile

stability.

The structure of the flow near the fins is significantly affected by the turbu-

lent transport of momentum in regions of blocked cross flow. Turbulence and the

blockage phenomenon cause bleeding around the fin leading edges. Ultimately, this

results in lower fin effectiveness and reduced static stability. In addition, the strength

and extent of the flow structures that develop in the blocked regions appear to be

enhanced by fin thickness.

The aerodynamic characteristics of the HART missile are predicted at Mach

numbers beyond the experimental free-flight testing capabilities. The current predic-

tions indicate that the pitching-moment coefficient decreases with increasing Mach

number much less than previous numerical computations. The present results also

suggest that the clipped-delta-fin configuration is stable beyond Mach 7.
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AN AERODYNAMIC AND STATIC-STABILITY

ANALYSIS OF THE HYPERSONIC APPLIED

RESEARCH TECHNOLOGY (HART) MISSILE

1. Introduction

This chapter presents a review of previous research, a description of the purpose

for the present study, and an overview of the scope of the work. It begins with some

background into Air Force high-speed-missile research as motivation for the current

investigation. Additionally, some background is provided on the fin/body interaction

problem. The scope of the present study relies on previous work in this area. Finally,
an overview of the dissertation is made to lay a foundation for the chapters which

follow.

1.1 Background on Missile Research

There have been many calculations for both axisymmetric and finned projec-

tiles. Several studies have been made to assess the effect of nose bluntness on sur-
face pressure, boundary-layer development, and magnus characteristics [44, 13, 83].

Sturek [81, 82, 85] has looked extensively at the aerodynamics of spinning shells
(with and without fins). His work has concentrated on the influence of shell geom-

etry and yawing on the magnus effect at supersonic speeds. Weinacht, et al. [98]

have conducted PNS computations for much lower fineness-ratio, spinning and fin-
stabilized projectiles in supersonic flow. The literature is replete with studies of

turbulent boundary layers in supersonic flow; [30, 84] are just two examples. In-

vestigations of un-spinning, very high fineness-ratio finned bodies, with respect to

modeling turbulent boundary-layer development and stability performance at very

low angle of attack are rare. In fact, no information could be found outside thesir

Force program to be discussed shortly.

To realize the tactical advantages associated with increasing missile speeds,

the Air Force Armament Laboratory (now the Wright Laboratory Armament Di-

rectorate) initiated an in-house program to investigate potential methods to extend
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flight regimes for future air-to-air missiles. The first phase of this program involved

a detailed investigation and documentation of the flow physics affecting the static

stability of missiles. The goals of this phase were to predict, substantiate, and

understand the static-stability characteristics of a generic missile configuration. A

corollary goal was to begin identifying key missile geometry parameters that will

effectively increase the stability envelope.

The Aeroballistics Section of the Wright Laboratory Armament Directorate

developed a configuration that would most dramatically exhibit the static-stability

limitations of current missile designs. This configuration was intended to provide the
baseline characteristics from low supersonic to hypersonic velocities. It was a generic

high fineness-ratio (length to diameter), tail-controlled missile, and was named the

Hypersonic Applied Research Technology (HART) missile. The model consisted of

an ogive nose, cylindrical body, and one four-fin group located near the extreme aft

end of the projectile (shown in Figure 1 with a sharp nosetip and delta fins).

y- 24.0 "

2.251 
21 L0.82

-y x __i

U.. -_10.848

Symmetry Planes (a = 0.)

Z------- (Horizntal Plane)

1.0

Figure 1. Hypersonic Applied Research Technology (HART) baseline model

Experimental testing, which began in 1987, and continues to date, has con-

centrated on varying geometry parameters like nosetip shape and fin shape. The
variations to the baseline model of Figure 1 will be discussed in the following sec-

tions together with the experimental and numerical results.
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1.1.1 Experimental Testing. Free-flight tests were conducted at the USAF

Aeroballistic Research Facility (ARF), Eglin AFB, FL. The ARF is an enclosed

concrete structure used to examine the exterior ballistics of various munitions while

in unrestrained flight [45]. The instrumented section of the ARF is 207 meters

long. There are 131 locations available as instrumentation sites, and used to obtain

orthogonal photographs of the model's shadow during flight (called shadowgrams or

shadowgraphs). These are subsequently used to determine the spatial position and

angular orientations of the projectile at each of the shadowgraph stations.

At the time the baseline model was tested, a model with smaller delta fins was

also investigated to confirm that the loss in static stability can create an unstable

situation at high Mach numbers. For the small fins, neutral stability was predicted

and confirmed to occur at about Mo, = 2.2 [22]. In contrast, the baseline model

showed a decreasing but still stable (negative) pitching moment up to the highest

Mach numbers tested (M. ; 4.5) [22].

In 1989 and 1990, three additional models were tested [93]. A clipped-delta-fin

configuration was fabricated with the same fin area as the baseline model, while

maintaining the fin span of the small delta-fin model. In addition, an inverted-delta-

fin model was constructed with the same area and span constraints described above.

It was expected that the static stability would be improved by moving more of the

fin outside the boundary layer [93]. In addition to fin modifications, the nosetip

shape was modified with blunting. The sharp and blunt clipped-delta-fin models are

shown in Figure 2, and are identical to the configurations analyzed in this study.

1.1.2 Analytical and Numerical Testing. The Aeroballistic Section of the

Wright Laboratory Armament Directorate made use of several prediction techniques,

including analytical, empirical, and numerical, to corroborate experimental findings.

The analytical tool is entitled "Missile DATCOM" (94, 951. It uses the Newtonian

Flow Method [21 and the Second Order Shock Expansion Method [2] to calculate

flow parameters. The empirical predictions were made with the Projectile Design

Analysis System (PRODAS) [36]. PRODAS is an interactive program which allows

the engineer to create a projectile, which is compared to similar configurations. The

program then interpolates an extensive data base to provide aerodynamic estimates.

Two numerical methods were utilized. First, an inviscid, space-marching Euler code
was used. The code was developed by the Naval Surface Warfare Center and called
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Figure 2. HART models with modified nosetip and clipped delta fins

the Zonal Euler Solver (ZEUS) [97]. Finally, a multiblock, implicit, steady-state

Euler solver was used. This solver actually comprises a family of programs called

the Eglin Arbitrary Geometry Implicit Euler (EAGLE) Code [50, 87, 88, 60]. The

EAGLE solver constructs a multiblock grid, then solves the steady-state Euler equa-

tions.

Unless otherwise stated, the following options, pertaining to the EAGLE solver,

were selected for all data presented in this document [68, 69] (see Section 3.5 for a

discussion of the construction of a computational grid):

* Roe flux differencing

* Characteristic surface boundary conditions

* 40 points from the outer domain to the body

* Grid spacing clustered near the body with a minimum spacing of 0.004D

e 19 points for the azimuthal half-plane

e Equal azimuthal angular spacing of 100

* Grid conformed to the fin leading edge through block structure

e Fin was treated as infinitely thin

Solutions were computed for the baseline HART model (delta fins), and the

HART model with two other fin configurations (clipped-delta fins and inverted-delta
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fins). For each of these configurations a solution was calculated at seven different

Mach numbers for a = 0 and a = 0.50 [68]. Since EAGLE is an inviscid solver, only

the forebody wave drag can be obtained. The other components were calculated

empirically. The following were used for base drag and skin-friction drag [68]:

Cd6  = K

Cd, [log(ReL)]2.58 b (2)

where S,. is the wetted area, and Sb ik the base area. The resulting total drag appears

in [68] as well as [93]. The pitching moment is directly output from the EAGLE code.
The drag and moment results are tabulated with the results from the present study

in Chapter 4.

1.1.3 Summary of Previous Results. To date, experimental, empirical, and
computational analyses of the HART missile have had varying degrees of agreement.

In particular, four unexplained discrepancies materialized out of the previous com-
bined experimental/computational work. First, the observed drag exhibited larger
than expected scatter over the Mach number range tested (1.5-4.5), particularly

above Mach 3.2 [93]. Further, the numerically predicted drag did not correlate well
with the experimental drag. Second, free-flight testing showed an unusual trend in

the pitching moment; the clipped-delta-fin and inverted-delta-fin missiles appeared
to become more stable in the high-supersonic regime (M,, ;-e 4.0) [93]. This was not
expected and not resolved by the researchers of [93]. Third, ZEUS and EAGLE pre-

dictions of the pitching-moment coefficient differed significantly above Mach 5. The
EAGLE solver computed a greater decrease in C,,,. with increasing Mo, and much
lower stability margins. Again, this was not resolved. Finally, differences between
results for the modified geometry and the baseline model tested in 1987 were not
addressed in [93]. These are the central questions to be addressed in this document.

The results from prior testing on the baseline model are presented to highlight
a couple of these problems. The drag coefficients and pitching-moment coefficients
obtained from experiment are plotted with the numerical results in Figure 3 and

Figure 4. The experimental data is depicted with open symbols in both figures. The

numerical drag prediction (EAGLE) in Figure 3 is empirically corrected for base
drag and skin-friction drag. The poor correlation between the experimental and

5



numerical drag is evident as Mach number increases. In Figure 4, the experimental
and numerical (EAGLE and ZEUS) pitching-moment coefficients agree at the lower
Mach numbers, but the disagreement between the numerical predictions becomes

large at higher Mach numbers.

1.2 Background on Fin/Body Interaction Problem

In general, there are very complicated flow structures associated with a blunt
fin attached to a body in supersonic flow. The fin's bow shock interacts with a
growing boundary layer on the body, and can involve the formation of strong horse-
shoe vortices [80]. The interaction weakens dramatically, however, as the fin sweep
angle increases. Price and Stallings [64] reported the effects of sweep as long ago as
1967. Recently, Hussain [41] studied blunted fins at sweep angles up to 75 degrees.
He confirms the benefit of sweep in reducing the level and extent of the disturbed
pressure field.

Although Hussain found clear evidence (oil flow pictures) that separation oc-
curs up to the highest sweep tested at Mo, = 2.45, some questions remain as to
whether separation occurs for severely swept fins at higher Mach numbers. Price

and Stallings [641 and Winkleman [99] experimentally found no disturbance ahead
of a 75 degree swept fin at either M. = 3.71 or Moo = 5. McMaster and Shang [55]
used a McCormack method with the Baldwin-Lomax turbulence model to simulate a
blunt fin on a flat plate at M. = 2.98. They found that the flow remained attached
for sweep angles exceeding 68 degrees. To the best of the author's knowledge, no-
body has investigated turbulent, supersonic flow past a swept, flat-faced fin. Thus,
the flow structure which should be predicted for this fin geometry is not entirely

clear.

1.3 Purpose for Present Research

There are three main purposes for the present study. First, develop an effi-
cient computational tool to simulate accurately the myriad of flow structures as-
sociated with high-speed-missile flight. Next, investigate the unexpected variations
in the aerodynamic coefficients obtained from experimental testing (explained in
Section 1.1.3), while substantiating the aerodynamic traits of the HART missile.
Third, quantify the effects due to nosetip shape, base region, fin thickness, viscosity,
and turbulence.
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The development of an accurate and efficient computational model is essential

for the above investigations, and provides the means to study the flow physics and

missile performance of future tests with greater detail than obtainable from free-

flight testing. As discussed in Section 1.1.1, free-flight experiments are conducted in

the Aeroballistic Research Facility (ARF) at Eglin AFB, Florida. Computationally,
we can explore configurations and conditions beyond the practical limits of ARF

testing. For example, flight model failure currently occurs during launch at Mach

numbers above 4.5 [93]. Also, future configurations may fly at higher angles of attack

and possess different center-of-gravity locations, requiring accommodations for larger
variations in the trajectory and potentially unstable or very dynamic tests.

Clearly, the present research is driven by the results of the prior testing, and is
aligned with the previously mentioned Air Force research program. Therefore, this
work will address all of the previous testing in the course of the investigation. The

intent is to substantiate the aerodynamic traits of the HART missile, and further the
understanding of the fluid-dynamic mechanism affecting missile stability at higher
Mach numbers. In combination with the experimental data, the results and analyses

from this research will be used by missile designers to predict weapon performance
characteristics in the hypersonic flight regime.

1.4 Overview of Dissertation

Simulation of a complete configuration is demanding (minimally requiring
O[100K] grid points). When the simulation involves turbulent boundary layers and
wakes, supersonic flow and shocks, and shock/boundary-layer interactions, accu-
rate results require sophisticated modeling techniques and many more grid points:

O[250K] points. For configurations which have length scales that differ by several
orders of magnitude, O[1000KI grid points are usually necessary. Since high-speed-
missile research entails accurately predicting each flow structure mentioned above,
and the ratio of missile length to fin thickness for the HART missile is about 500:1,

the grids here could easily be millions of points.

To overcome the staggering memory implications, a tradeoff in algorithm per-
formance for memory efficiency could have been pursued, but a different approach
was attempted because this would have drastically reduced the scope of the inves-
tigation. The scope would be undesirably impacted because the run time for each

8



numerical test increases with this type of tradeoff. The alternate approach is to

reduce the grid requirement, while maintaining high algorithm performance.

Lowering the grid requirement is achieved with two assumptions or approx-

imations. In Part I, an infinitely thin-fin approximation was made. The fins are

treated as having no thickness, and so they are merely boundary conditions within

the computational domain. In regards to computational analysis, this is not an ex-

ample of Keller's principle: "Something for nothing is worthless." The assumption

relies on the premise that fin thickness is second-order to fin impermeability. This

can be confirmed quite adequately on a reduced scale. In Part II, the actual thick-

ness of the fin is modeled, but, owing to the projected grid refinement, the complete

configuration is not reinvestigated.

1.4.1 Scope of Thin-fin Investigation (Part I). Computations are made for

the sharp-nosetip and blunt-nosetip, clipped-delta-fin HART missiles (Figure 2) us-

ing the infinitely thin-fin approximation. Although most grid refinement issues are
addressed prior to testing these shapes (see Appendices A and B), a limited grid

refinement and sensitivity study is made with the thin fins to evaluate the variation

of drag and pitching moment with azimuthal grid spacing, and sensitivity of C..
to a. After this sensitivity study, and using the thin-fin approximation, numerical

experiments are undertaken to determine the aerodynamic coefficients for the two

geometric variations of the HART missile.

Parametric Mach number studies (Ma, = 2 - 6) are conducted for a = 00
and a = 5° under inviscid, laminar, and turbulent conditions for the sharp-nosetip
model shown in Figure 2. The drag is broken down by component to facilitate
various comparisons to the trends with Mach number predicted by theory and other

results. Several serni-empirical corrections are proposed to account for the lack of

fin cross section. The effect of the fins on base drag is also explored. Stability is

investigated over the Mach range with the emphasis on the impact of viscosity, the

effect of turbulence, and the influence of the base flow.

The analysis is formulated to address discrepancies that developed out of pre-
vious combined experimental/computational work on these configurations (Section

1.1.3). Also, the analysis is extended to higher Mach numbers than obtained in

free-flight tests. For high Mach numbers, the current computations are qualitatively
compared to the computational results of the two inviscid solvers used on the baseline

model. Recall that these results differed significantly above Mach 4.0 (Figure 4).

9



The aerodynamics of the blunt-nosetip model are also determined with a para-

metric Mach number study. This study addresses several questions relevant to the

blunt models: Is the dependence of the pitching moment on angle of attack affected

by nosetip geometry? Does the lower total pressure associated with the normal por-

tion of the bow shock wave affect pressure near the fins? Does delayed transition

associated with the high entropy layer on blunted bodies impact the HART missile's

pitching characteristics?

A discrepancy in the sharp-nosetip experimental models is documented, and its

impact assessed. In addition, computations are made using the modified geometry

to further document the experimental discrepancy.

The aerodynamics of the clipped-delta-fin HART models are contrasted with

the baseline model in an attempt to address the goals of Air Force hypersonic missile

research. As previously stated, the goals are to substantiate the stability character-

istics of high fineness-ratio missiles, and identify key missile geometry parameters

affecting the stability envelope.

1.4.2 Scope of Thick-fin Investigation (Part II). The accuracy, and thereby

validity, of the thin-fin approximation made in Part I is addressed in this part of the

research. A boundary for incipient separation at the fin leading edge/body junction

was suggested by Stollery [80], and is explored with a parametric Mach number

study. First, the structure of the flow is examined to determine if fin thickness

significantly affects the interaction at the fin/body junction. The flow structure is

directly compared to the structure from the thin-fin computations. Next, fin drag

is compared to results from the thin-fin computations. Finally, the impact of fin

thickness on static stability is addressed.
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Part I: Investigation Using "Infinitely Thin Fin" Approximation
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2. Governing Equations and Supporting Theory

The equations of fluid mechanics that are fundamental to the present research
are outlined in this chapter along with important principles for the fin/body prob-
lem, inviscid drag on a slender body, and the pitching moment on a finned body.

First, the flow structure near a fin/body junction is discussed. In particular, the
relation between the extent of a shock/boundary-layer interaction and leading-edge

bluntness, sweep angle, and incidence angle is highlighted. Next, inviscid theories for
drag and pitching moment are examined. The introduction of fins onto a forebody

is a departure from the validation models (axisymmetric bodies), therefore, linear
theory is used to provide a bridge between the simpler validation computations and
HART missile computations. Finally, the governing equations are presented with
a brief discussion of boundary conditions and turbulence. The fluid equations are
presented in full, three-dimensional form, and turbulence is accounted for with the
Boussinesq [101] eddy viscosity concept. Eddy viscosity is invoked to achieve closure
of the Reynolds equations for turbulent flow.

2.1 Flow Structure Near Fin

Glancing interactions include situations where the shock wave generated by
one body cuts across the boundary layer growing over another, and the intersection

line is swept. Figure 5 shows the geometry of a swept thin fin; the fin is swept at an
angle A, and inclined to the freestream at an angle a. In the simplest interactions,

the only shock wave of interest is that formed by the shock generator (fin), and the
only boundary layer of interest is the one affected by the glancing impingement (i.e.,
on missile body). The generated shock and the boundary layer of interest are shown

in Figure 5. Stollery [80] gives an excellent review of glancing shock/boundary-layer

interactions.

2.1.1 Shock Wave Shape. Figure 6 is taken from [801 (with permission) to

illustrate the shock-wave shape expected. Figure 6 shows a relationship between the
shock-wave angle and a series of delta wings. The delta wings are wedge shaped
with a wedge deflection angle indicated by a in Figure 6. In general, the deflection

angle depends on the cross-sectional shape and the incidence angle. The deflection
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Figure 5. Swept thin fin geometry

angle for a thin fin, however, is exactly equal to the incidence angle. This is usually

taken to be the angle of attack, but in this investigation it is somewhat less, since the

fins are placed at 45 degrees relative to the horizontal (Figure 1). It is particularly

interesting to note that the shock-wave angle should be very close to the Mach angle

(p in Figure 6) for the typical HART missile fin shape (A - 70*) at low angle of

attack.

2.1.2 Shock/Boundary-layer Interaction. Figure 7 is also taken from [80]

(with permission) to establish a basis for discussing the interactions. Streamsur-

face and vortex skeleton patterns are shown for attached, separated, and secondary

separation flows. In the vortex skeleton representations, S is a separation line, A is

an attachment line, and V is the core of a vortical structure.

The strength of the shock/boundary-layer interaction depends on the fin's lead-

ing edge radius of curvature, sweep (A), and orientation (a), [80]. Each of the fol-

lowing, therefore, reduces the extent of the interaction: reducing the leading-edge

bluntness, increasing the sweep angle, and reducing the fin's inclination to the on-

coming flow. In turn, the associated vortices lose strength or do not develop at all.

In this study, the thin-fin assumption eliminates the radius of curvature at the lead-

ing edge. In addition there is a very low incidence angle (a < 50), and a very high
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sweep angle (A ; 700). Thus, the flow pattern should agree most closely with the

attached representation of Figure 7.

2.2 Inviscid Theory for Drag and Pitching Moment

Inviscid theory provides a suitable comparison for computational results. By

examining simple theoretical expressions for wave drag, an appropriate baseline can
be established by which inviscid and viscous computations can be interpreted. In

addition, by using theoretical aerodynamics for the fins, the pitching-moment trends

with Mach number and angle of attack are formulated. These qualitative baseline

trends are used to interpret and understand the computational results.

£2.2.1 Theoretical Forebody Wave Drag. The pressure drag acting on a body

in supersonic flow can be thought of as composed of three parts: the wave drag,
the vortex drag, and the base drag; the drag coefficients are C4 , Cd., and Cd.,
respectively. The vortex drag arise,_ from the momentum carried away by vortices

trailing from a lifting body [4]. No vortices exist for the HART missile configuration
at the angles of attack examined herein. A theoretical solution to the base drag is

not available, so empirical relations are often used of the form

Cdb = K (3)

where K is an experimentally measured function of the freestream Mach number,

M., [56]. The wave drag results from the momentum carried away by the pressure
waves set up by a body as it travels faster than the speed of sound [4].

Slender-body theory [4] provides an expression for wave drag in terms of a
body's profile of cross-sectional area, S(x), and the solution to a perturbation po-

tential equation. By virtue of the smallness of the disturbance (slender body), a

perturbation is introduced into the full potential equation (FPE). A linearized equa-

tion is derived to govern the perturbation potential (see [4]). The solution to this

linearized equation provides 4 and g(x) in the following expression for wave drag:

D - Db L 1 - 1da
D-DU = jo (x)g(x)dx - 1S(L)g(L) - j (4)

In (4), L is the length of the body, and Cb represents a contour around the base.
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Introducing the solution to the perturbation potential equation for an axisym-

metric body, and recognizing that for a body which ends in a cylindrical portion

parallel to the freestream, 8•k/dn and S vanish, yields

D - DA 1 _ L §()d oS(x)ln(z -XI)dxl, (5)PooU.2 2TV

or

Cdb = r I S(z)dx S(xi,)ln( - xi)dxi. (6)

The most striking aspect about (6) is the absence of Mach number. This agrees fairly

well with experimentally determined wave drag on very thin bodies of revolution [56];

wave drag on these bodies shows very mild Mach number dependence.

The HART missile has a 2.25 caliber tangent-ogive nose (Figure 1). Drew and

Jenn [15] numerically evaluated (6) using the cross-sectional area distribution for

this nose shape. They found Cd, = 0.232. This value is somewhat high compared

to experimentally determined wave drag [56], ranging from 10% high at M. - 1.5

to 50% high when Moo > 6. The overprediction is a result of the relative bluntness

of the nose. Slender-body theory performs better for fineness ratios exceeding 3.

The error associated with the slenderness assumption can be overcome by

using a higher-order analysis, or by an empirical correction, and the Mach number

dependence can be interjected by using the frontal projection area of a modified cross

section. The new cross section is created by intersecting the body with a plane at

the associated Mach angle. This is Whitcomb's area rule [100]. Both Mach number

and fineness ratio were accounted for by Drew and Jenn [15]. At M". = 2, they

calculated the wave drag at approximately 0.166. (This is in reasonable agreement

with the current calculations shown in Chapter 4.)

2.2.2 Pitching Moment From Linear Theory. Fin-stabilized configurations

are known to exhibit decreasing static stability with increasing Mach number. The

reason can be traced to a loss in the fin effectiveness associated with compressibility.

This basic principle is clear from thin-airfoil theory. For a flat plate, at angle of

attack, in supersonic flow, the lift coefficient determined from thin-airfoil theory

is [4]

S(74a)
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From (7), at a fixed angle of attack, as Mach number increases, the lift created by a

flat plate decreases. Since the fins are treated as swept flat plates, the lift from the

fins also decreases. Although boundary layers exist, and shock interactions affect

the solution, this underlying principle dominates.

In contrast to thin-airfoil theory, slender-body theory predicts that the lift from

the missile body is independent of Mach number [4].

Ci = 2a. (8)

Thin-airfoil theory can be modified to account for the azimuthal locations of

the fins, and combined with slender-body theory to predict the lifting and pitch-

ing characteristics of a missile. Basically the more or less constant lift associated
with the un-finned missile surface produces a nearly constant destabilizing moment.

From (7), as Mach number rises, lift from the fins decreases. The lift from the

fins is modified to account for the non-horizontal placement of the fins on the body

(Ofin # 900), and normalized to the missile base cross-sectional area, Sb. The ratio

of the HART model's clipped-delta-fin area, Sf, to base area is 1.2223. Because the
fins are aft of the center of gravity, less lift means the restoring moment decreases.

Thus, the static margin or pitching-moment coefficient approaches neutral stability.

The functionality of the pitching-moment relationship is obtained by using (7) and

(8) with appropriate moment arms. The moment arm for the lift created by the
body is the distance between the center of pressure for the body alone, Xp,,, and the

center of gravity for the total configuration (body with fins), x... The moment arm

for the lift generated by the fins is the distance between this same center of gravity

and the center of pressure for the fins alone, xzCP. The pitching-moment coefficient

becomes

C = c C2 (9)

where cl and c2 are

cl= 2 ( X' -zCP 1) and C2 = 4 ( Xq'2  Xc9 ) (4S 1 ) (cos Ofin1). (10)D 'b

The constants cl and c2 are calculated to correspond to the center of gravity at 43.5%

of length. The center of pressure for a fin is taken to be its centroid. Therefore,
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XM - Xcg = 11.906D. The center of pressure for the body is calculated using the

experiments of Butler, et al. [9] and Dolling and Gray [13] on tangent-ogive cylinders.

Butler, et al. and Dolling and Gray tested much shorter bodies than the HART

missile body, but all results showed that for small angles of attack, surface pressure

had equilibrated within six diameters downstream of the ogive section. Therefore,
pressure was assumed constant over the remaining length of the HART missile body,
and xc, - XCg = -8.440D. Figure 8 is a graph of (9).
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Figure 8. Pitching moment using thin-airfoil and slender-body theories

2.3 Governing Equations and Boundary Conditions

Equations are presented throughout in nondimensional form. The velocity and

density scales are the freestream velocity and density, U,, and p,,, respectively; pres-
sure is nondimensionalized by p.. U.. The length scale is the missile body diameter,

D; and time is nondimensionalized by the aerodynamic time scale, D/U,,.
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The appropriate governing equations for a perfect gas are the Navier-Stokes

equations. The integral form of the Navier-Stokes equations is written as

-/ U dV + hi. F dS = 0, (11)

where U is a conserved variable (per unit volume), and F is the flux of U (per unit

area per unit time). The volume of the region over which (11) is applied is V, and

the surface of that region is S. Only modest assumptions are involved in (11). First,

a continuum is required. Next, all variables are assumed continuous in time. Fir-lly,

conserved quantities cannot be produced internal to S, as with a chemical reaction

for example.

Newton's assumption that a linear relationship exists between fluid stress and

strain is a6, umed. Also, Stoke's hypothesis is used for the second coefficient of

viscosity to yield the following flux definitions in each Cartesian direction [1]:

pu

pu2 + p - Re-1 T

F E= puv-Re-'m,,

puw - Re-1-,

(et + p)u - Re- (uT.. + VT.xy + W'rz - (,'-1)

Pv

puv - Re-'rx_,

f = F= pv2 + p- Re-1 TrY (12)

pvw - Re-"r•

(et + p)v - Re` (uT +-- v+r1 , + wryz - i )

Pw

puw - Re-lr.,

ii F G= pvw- Re-rTy

pw2 + p - Re-r12

(et + p)w - Re` (Ur,, + V 2 + 1
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The Reynolds number, Re, represents the ratio of convective to dissipative forces.

The viscous stresses are defined as follows [1]:

E 4av 2 (au +8w\1
3 o~ 3 x Oz)JI

4aw = au 3- (13)

T, = T + .
a ~u eaw

( iv '9w

In (13), a is the the first coefficient of viscosity. The components of the heat-flux

vector, q are defined as

S=kaT q=-k- and q.. -k- (14)a.=--x, q 9• = kTZ ad q

In nondimensional form the coefficient of thermal conductivity, k, is equivalent to

p/Pr; Pr = 0.71. Viscosity and thermal conductivity are nondimensionalized by

their freestream values. The freestream values are referenced to the freestream tem-

perature, To,, which is taken to be the standard sea-level temperature. The equation

of state for a perfect gas defines pressure (nondimensional):

1.
p = (-f- 1)e = (7 - 1)(e,- Ip P .*) (15)

For inviscid calculations, those terms preceded by Re-1 are set to zero. For

laminar viscous computations, p is determined using Sutherland's formula [1]:

2T1 (i •.) =+ C , (16)

where c, = (110.4K)/Too. The subscript 1 denotes that (16) represents the molecular

20



viscosity for laminar flow. Recall, the governing equations are used in nondimen-

sional form.

Equations (11)-(14) do not directly govern a turbulent flow. However, if the

Reynolds-averaged Navier-Stokes equations are cast in nondimensional form, and

eddy viscosity, pt, is invoked to achieve closure, then (11)-(14) still apply with

minor alterations [101]. Then,

"P%- JAI + Pt, k = Arr + Prt'

and pi is still calculated with (16). The turbulent Prandtl number, Prt, for air is

assumed to be is 0.9 [101].

A location is selected along the missile length to separate laminar and turbulent
portions of the boundary layer, and a fully turbulent condition is assumed for the
wake region. Consequently, pt is calculated only in the turbulent regions. The

Baldwin-Lomax algebraic model [5] is used to compute pt on the turbulent portion of
the forebody because of its relatively low computational cost and ease of application.
An empirical model is used to calculate pt in the wake. The turbulence models and
the location of the laminar to turbulent switch are described in Section 3.4.

The computational domain is illustrated in Figure 9 where each boundary is
given a number. Due to the supersonic condition at both the inflow and outflow
boundaries, the associated boundary conditions are relatively straightforward; at
the inflow (surface 1 in Figure 9), freestream conditions are applied, and at the out-
flow (surface 2 in Figure 9), extrapolation is employed. For the body (surface 3 in
Figure 9), base (surface 4 in Figure 9), and fin surfaces, impermeability and no slip
(viscous only) are enforced. Also, on the body, base, and fin surfaces, zero normal

pressure gradient and an adiabatic wall are enforced. Since the HART missile is
bisymmetric, and the model was inclined within one of the planes of symmetry, cal-
culations were made around only half the circumference of the missile. Symmetry
is then enforced at the azimuthal boundaries (surfaces 5 and 6 in Figure 9). For

a = 00, axisymmetry is applied to surfaces 7 and 8 in Figure 9. Otherwise extrapo-

lations give necessary data at those boundaries. More details are provided for these
boundary conditions in Section 3.6.
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Figure 9. Computational domain showing boundary conditions

2.4 Aerodynamic Coefficients

Both static and dynamic first-order force and moment coefficients were ob-

tained from free-flight experiments of the HART missile configuration 122, 93]. Ad-

ditionally, some second-order coefficients were determined (e.g., the change in zero-

yaw-drag coefficient with Mach number, C4., and the change in pitching-moment

coefficient with Mach number, C,.o). The present computational study provides

only axial and normal force coefficients and the first-order pitching-moment coeffi-

cient; derivative coefficients are calculated numerically. The experimental and com-

putational methodologies are explained in the following two sections.

2.4.1 Drag Coefficient, Cd. The forces acting on the missile can be separated

into pressure and viscous contributions. In terms of a drag coefficient this takes the

following form:
Cd = Cd, + Cd,.

The pressure drag can be further separated into a wave drag and a base drag. Now

the drag coefficient becomes:

Cd = Cd. + CdQ + Cd,,
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where the fins and the missile body each have a wave, viscous, and base drag con-

tribution. Therefore,

Cd = (Cd. + Cd + Cd,) body + (C. + Cd, + Cd,) fins (17)

The body forces are well modeled with the current technique, but due to in-

sufficient grid resolution and lack of fin cross section, fin forces are not well modeled.

(See Chapter 3 for a description of the present methodology and grid limitations.)
Unfortunately, fin drag is not negligible [56]. To make any quantitative compari-

son with experimental data meaningful, fin drag must be accounted for. Therefore,
semi-empirical corrections are proposed to obtain estimates of the fin components.

2.4.1.1 Fin wave drag. This portion of the drag is not directly com-
putable due to the thin-fin approximation. Previous EAGLE computations were

also made with the thin-fin assumption, but no correction was added to account for
the wave drag created by the fins. The following steps are used with the current

calculations to obtain a value for fin wave drag.

1. Assume that the pressure is constant across the flat-faced leading edge.

2. Numerically determine the local impact pressure, Pt2, along the leading edge.

Impact pressure is the total pressure behind a normal shock wave sitting in
front of an imaginary numerical probe inserted into the flow.

3. Obtain the pressure along the fin's leading edge, pie, by using the relation

between fin sweep angle and impact pressure [64]. For A z 700,

pie = 0.2P/,

4. Use (18) with pie and the actual thickness of the fin to determine fin wave drag.

This method relies on an accurate prediction of local impact pressure. The accuracy
of the current algorithm is shown in Appendix A.

2.4.1.2 Fin base drag. Fin base drag is determined by correlating the
local Mach number and pressure near the fin trailing edge with the pressure for
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two-dimensional airfoils with flat bases [10]. The following relation determines the

nondimensional fin base pressure, pbf:

Pb .7 (pi-+-,,,
Pb-( M )(. 2 )

where pL and p,. are the surface pressures on the lower and upper surfaces of the fin

just upstream of the fin's base. As above for the leading edge, it is assumed that pb!

is constant across the base and (18) is used with with Pb! to determine drag.

2.4.2 Pitching-moment Coefficient, C,,,G .

2.4.2.1 Experimental Methodology Using Trajectories and Six Degree-

of-Freedom Analysis. After missile models are fired through a test range, the time

history, position, and mass properties are used to determine the aerodynamic coef-

ficients and derivatives. This is done with the Aeroballistic Research Facility Data

Acquisition System (ARFDAS) [19]. This program utilizes linear theory to get pre-

liminary results. These data are passed to a routine that numerically integrates the

six degree-of-freedom (6DOF) theoretical equations of motion. An iteration process

is used to match the theoretical trajectory to the measured trajectory. The theo-

retical equations of motion are provided by Etkin [18] for a general vehicle. They

simplify considerably for a vehicle with fixed control surfaces, and still further for a

bisymmetric one. ARFDAS uses multiple flights in order to obtain a determination

of Mach number dependence. The analysis of multiple trajectories also gives better

angle dependency.

The 6DOF routine incorporates the Maximum Likelihood Method (MLM) to

match the theoretical trajectory to the experimentally measured trajectory. The

MLM is an iterative procedure that adjusts the aerodynamic coefficients to max-

imize a likelihood function. According to [35], the use of this likelihood function

eliminates the inherent assumption in least squares theory that the magnitude of

the measurement noise must be consistent between dynamic parameters.

2.4.2.2 Computational Methodology Using Discrete Data. The forces

acting on a body by a fluid can be separated into pressure and viscous contributions.
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The decomposed forces acting in the i-direction (x-direction in Figure 1) are

S= -/(p-p.)hi'dS, (18)
F,,, = /s(rj~ifj . d§ + Irkifik .S.(9
F1= d§ (19)

where fii • dS, *j • dS, and fi, • dS relate directly to the surface grid, and represent

the projection of a surface area element into the three Cartesian directions. For

finite-volume methodologies, they are already known as the projections of grid cell

interfaces (Section 3.3).

For a bisymmetric computation, only two forces and one moment are non-

trivial: the axial and normal forces and the pitching moment. The axial and normal

force coefficient are denoted by, C1. and C., respectively. They are calculated here

such that the axial direction is aligned with the x-direction, and the normal direction

is aligned with the y-direction (see Figure 1). The aerodynamic forces can also be

expressed in terms of lift and drag coefficients:

Cd = C.cosa+C, sin , (20)

Ci = Ccosa-C. sina. (21)

The pitching-moment coefficient is easily calculated from (18)-(19) by including the

appropriate local moment arm:

M = js (Y)(Tjifij *d+ rTkifik'd.f-(p-poo)iz,'dSD
+ -(X-,) (-, +r jT'dS-(p - p,,) id). (22)

Unlike the experiments, derivative coefficients are derived from computation

using steady-state discrete data and finite-difference expressions. Solutions are calcu-

lated for a = 00 and a = 50, and the resulting normal-force and moment coefficients

are used to compute cno and Co.:

S=(a 5)- C(a = )(23)
zAa

Cm Cm ( 5")-Cm(a ) (24)
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3. Methodology for the Thin-fin Investigation

This chapter details the method used to investigate the HART missile with
the thin-fin approximation. First, the philosophy of the thin-fin analysis is discussed

through a hierarchy of geometric and aerodynamic effects. Following this general
discussion, details regarding the approximation and the computational techniques are
described, including turbulence modeling. Finally, the grid structure and boundary

conditions are explained.

3. 1 Hierarchy of Effects

To systematically analyze the stability of the HART missile, a hierarchy of
hii characteristics and phenomenon is used. The fin traits are categorized here as
primary, secondary, and tertiary. The primary characteristic is fin impermeability.
The size, shape, location, and orientation of a fin will dominate its pitching capability.

Secondary traits include: no-slip fin surface, amount of fin submerged in missile
boundary layer, fin proximity to base, and fin cross-sectional shape (thickness and
leading-edge radius of curvature). Turbulent transport of momentum influencing the
flow in the finned region is also considered a secondary effect. The properties of the
boundary layer on the fin are deemed tertiary. Only primary and secondary traits

are modeled or simulated in this research.

Previous computational efforts have been confined to the primary category
described above. These methods have used Euler equations, with an infinitely thin-
fin assumption, and without a base-flow region. Using the Navier-Stokes equations

(Reynolds-averaged for turbulent flow), (11)-(14), makes it possible in the present
research to study the influence of many secondary fin traits and phenomenon.

3.2 Description of the Thin-fin Approximation

The main reason for imposing an assumption about fin thickness is computa-
tional efficiency when studying complex flow structures. High-speed-missile research
requires the accurate simulation of shocks, turbulent boundary layers and wakes,
and shock/boundary-layer interactions. It typically takes many grid points to com-
putationally analyze full configurations experiencing these phenomena. The HART
missile length makes it even more demanding to predict these structures accurately
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due to the disparity between length scales for a turbulent boundary layer and the

length scale associated with the complete configuration. In general, the problem of

extreme scale variation is encountered in all three dimensions. By assuming the fins

to be infinitely thin, the azimuthal grid requirements are dramatically reduced. This

is because the radius of curvature associated with the fin leading-edge is removed.

The supposition is that dominant interactions in those directions can be calculated

accurately without modeling the exact fin cross section, and without extensive grid

refinement. This is the subject of Part II where no approximation is made, and a

limited number of calculations are done over a subdomain around the fin group.

A fin without thickness is quite straightforward to model. It simply is rep-

resented by a discrete set of grid points that are coplanar. Since each point must

represent at least two surfaces, some special care must be taken when using them

in the numerical algorithm. Spatially coincident but distinct data are calculated on

each fin surface. Additionally, the flow solver is restrained from obtaining informa-

tion through any fin. In essence, each fin surface is a boundary embedded in the

interior of the computational domain.

This technique neglects effects due to the radius of curvature associated with

the fin leading edge. Nonetheless, the leading edge does exist, albeit without cross-

sectional thickness or curvature. Therefore, any point coincident with the leading

edge was handled differently than other points on the fin. Information at these points

was extracted only from upstream coplanar data. The numerical implementation is

discussed in Section 3.3. For fins which are very thin and highly swept, this is

expected to be a reasonable approximation [80].

3.3 Computational Approach

3.3.1 Overview of the Development of the Flowfield Solver. There are sev-

eral solvers that were developed by other researchers to study full configurations in

supersonic flow. One example is the Langley Aerothermodynamic Upwind Relax-

ation Algorithm (LAURA). This is a point implicit shock-capturing code constructed

by Gnoffo, et al. at NASA Langley [25]. It has been used extensively on reentry

problems, including the Space Shuttle and the Aeroassisted Orbital Transfer Vehicle

(AOTV) [23, 24].

These other techniques could have been modified for this work, but this was

not the approach taken, for three reasons. The first relates to the anticipated grid
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requirements. The finest grids required over 1 million points. There is a very limited

availability of resources capable of handling the memory requirements implicit solvers

demand for this number of points. Therefore, an explicit solver was sought. Second,

the validation computing requirement would have been much higher. As will be

explained later, the tact taken was to develop an axisymmetric geometry solver

first, then expand this solver for full three-dimensional configurations. In this way,

many numerical and grid related issues were settled at a reduced computational
cost. Third, modification of an unfamiliar computer code without the benefit of

in-house corporate knowledge may not proceed smoothly and efficiently. This is

especially true for codes that are many tens of thousands of lines long. Additionally,

unanticipated anomalies would prove harder to diagnose and correct.

Like other supersonic flowfield solvers for full configurations, the current tech-

nique had to be applied to a high Mach number and high Reynolds number com-
bination, which is physically complicated and computationally demanding. The

complexity arises from the development of strong curved shock waves, the associ-

ated vorticity which is generated, and interaction of this vorticity with the boundary
layer. Turbulent transition and fin structures further complicate the interaction.

Additional complexity is added by embedded subsonic flow that quickly expands to

supersonic flow. Finally, the missile's flat base (see Figure 1) results in sudden flow
separation, as well as a large mixing layer and recompression shock in the wake.

Each of these phenomenon adds to the computational demands. Strong shocks and

boundary-layer interactions make the correct amount of numerical dissipation un-

certain. The subsonic flow involves a type change in the governing equations (from

hyperbolic to elliptic), and turbulent boundary layers and mixing layers require very
fine grid spacing to resolve steep gradients. Given this overall complexity, a computa-

tional methodology was developed that is sufficiently general to compute accurately

a wide variety of flow structures.

This methodology or procedure by which the governing equations, (11)-(14),

are solved is described in the following sections. The main aspects include three-

dimensional or axisymmetric equations, explicit time integration, time-accurate cal-

culations or steady-state calculations using local time stepping, and high-accuracy

through the use of flux-difference splitting and limiters. In addition, the algorithm

chosen to meet the objective achieves second-order spatial accuracy away from points

of extrema (e.g., shocks). A practical bent was taken throughout the study; optimiz-
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ing the computational speed was given a priority, and the memory requirement was

reduced whenever possible.

Some details are omitted here, and included in Appendix B. In particular,

the eigenvectors obtained from a diagonalization of inviscid flux Jacobians are not

included in this chapter, due to their length and complexity. The flux Jacobians

come from the linearization of the nonlinear terms in (11). The construction of the

grid and application of the boundary conditions are discussed after the algorithm is

described.

3.3.2 General Algorithm Description. The Navier-Stokes equations

(Reynolds-averaged for turbulent flows) are solved with an explicit, time-integration
technique, incorporating an upwind, Roe-type, flux-difference-splitting (FDS) for-

mulation based on the work of Harten [33] and Yee [104]. Because a finite-volume

methodology is adopted, the integral form of (11) need not be recast into differential
form. Equation (11) is repeated here for convenience.

"I UdV+ fi.FdS=O. (25)

This equation is a statement of the conservation laws for mass, momentum, and

energy. In fact, use of a conservative form is necessary for shocks to represent

physical waves when shock-capturing schemes are applied [1].

The fluid surrounding the body is partitioned into a structured, interconnect-

ing set of cells, and the equations are applied to individual cells, incorporating the

average flux over each face. For a fluid cell composed of 6 flat surfaces (Figure 10),

this would take the following form using explicit time integration:

Un+1 = A[ (g )( Fn)
I(V, Fn)I-V4 o)2

The superscript n represents an arbitrary time level, and At is the time step from n

to n + 1. The geometric terms §,(, §2c, S9, 97, 95, and g6 represent the projections

of the six faces of the cell into the three Cartesian directions. The volume of the cell

is V. The method used to calculate the geometric quantities from the grid points is
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Figure 10. Typical fluid cell to which conservation laws are applied

adopted from Vinokur [91], and is outlined in Appendix B. For greater detail, the

reader is referred to Vinokur's excellent treatment of the subject. Equation (26)

yields information at the center of the cell, and the grid points are the vertices of

the cell in Figure 10. The interconnecting cells are well ordered rather than random;

this is usually referred to as a structured grid.

The orderliness of the cell arrangement allows a mathematical transformation

from the physical (z, y, z) to a generalized (f, 71, () coordinate system. Although a

finite-volume method makes the mathematical manipulations unnecessary, the con-

cept is important for the implementation of the FDS scheme. We can visualize this

transformation with a box in computational space. In this box, the grid spacing is

denoted by Af, Ai7 , and AC, such that ý = iAf, 71 = jAq, and C = kA(. The node

indices i, j, and k identify the cell center of interest. Equation (26) can be rewritten

using these node indices as
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u,+1 Uin At, :E n, , SE)+,-•E)_,Uijk= -k (S ~j - (S.tEn) i-Lik

+ (svF-),..k - (s(G),_, + -( )
+ (S:E"),,+4k - (SI"),_-Ik + (SF n)i+,,,- (s;F"),._k (27)

+ (s~F-),.÷+, - (s~F-),,_k + (stG"),.k+ - (SzG),.k_

First, consider the fluxes, E, F, and 0, in (27). The explicit forms were

given by (12)-(14). The convective terms are modified in an upwind manner, while
the viscous terms remain unmodified. The modified fluxes are approximations to
the average fluxes at each cell interface and, as such, are often called numerical
fluzes. In addition, the modification is second-order preserving for those interfaces
located away from extrema, like shocks. These numerical fluxes can be determined
at cell interfaces in two ways, using either Monotonic-Upwind-Scalar-Conservation-
Law (MUSCL) extrapolation or non-MUSCL extrapolation [104]. In the MUSCL

approach, cell-centered values of primitive, conserved, or characteristic variables are
extrapolated to the interfaces; numerical fluxes are then obtained from these quanti-
ties. The non-MUSCL approach, on the other hand, calculates the numerical fluxes
at cell interfaces directly from cell-centered informatiL-,n. The current scheme uses
the non-MUSOL technique. Non-MUSCL was chosen over MUSCL because it is
more efficient a mre straightforward. The flux in the a -coordinate direction at
the (i +sc,- k) interface, (reai "m )1' is therefore approximated by

=1 S ' E,.,k) "t )+j (F1 +1,k +-F-tei avea- 2 [ at (Ea+ljl +i-trfcFand, (28)

"+" (S•) i+½jk (G,+ljk +} G13k) +F I ( V1+11k + Vjk ) ,li½,i½k]

The other interfaces have numerical fluxes with similar construction. Equation (27)

is then written as

Uizi t 1 . .. .Ur' = U 1 [E +j k - + Fij+k- F+ _½ +Gijk+½ -Fi -½k • (29)
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The addition of the last term in (28) is a modification to Roe's first-order,

FDS algorithm [71]. Roe's method was to approximate the nonlinear Riemann

problem, and solve the approximate problem exactly. This is a simpler approach

than Godunov's method [261, which advances the solution of a nonlinear system of

conservation laws to the next time level by solving a set of Riemann problems. To

approximate the Riemann problem, Roe's idea is to perform a local decoupling of

the nonlinear system with a linear wave decomposition. He also requires that there

exist an average state that is a nonlinear function of the states to the right and

left [711. More detail can be found in [71] or [104]. The main feature of the method

that makes it valuable for nonlinear systems is that it returns the exact solution
whenever the left and right states lie on opposite sides of a shock wave or contact

discontinuity [104].

Second-order spatial accuracy is achieved by applying Roe's first-order algo-
rithm to a modified inviscid flux [33]. The modified flux is cleverly chosen so that the

scheme is second-order accurate in regions of smoothness and first-order at points of

extrema (e.g., shocks). The modification of the flux is responsible for the appearance

of the final term in (28), which will be left unspecified momentarily.

As stated above, the current scheme reduces to first-order at points of ex-

trema. This behavior is common to all higher-order total-variation-diminishing

(TVD) schemes, and is the main mechanism used to prevent spurious oscillations
near a shock. Although the scheme switches to first-order in regions of rapid change,

the global order of accuracy is not drastically degraded [104]. Thus, global accuracy is

increased from that for a first-order upwind scheme, and the robust shock-capturing

quality is preserved.

It is intended to characterize the scheme as a set of one-dimensional opera-

tors, and avoid the complexity of a truly multidimensional Riemann solver. The

directions over which the operators act are the generalized coordinate directions.

This implies a local-characteristic approach or generalization of Roe's approximate

Riemann solver [104]. Since Roe requires the diagonalization of the inviscid flux Ja-
cobians, this non-Cartesian method needs generalized inviscid flux Jacobians [104].

These are calculated as follows:

8E Sf s tA T A - + -KB + LI-, (30)
&V V V
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where

E- + SE+ F+ SSG,

& = UV,

aE aF aG
A= B = , andC=aG

Returning to the final term in (28), the matrix of right eigenvectors of A,

evaluated at the (i + lj, k) interface, is denoted by R•+½jk. The right and left

eigenvectors appear through the diagonalization of A. For Roe's scheme, $ is com-

prised of eigenvalues and characteristic variables, and simply acts as an upwinding

term. Due to the work of Harten and Yee, $ also acts to limit the characteristic

variables, thereby providing higher accuracy. This is done in the current study with

the minmod limiter, details regarding the development and implementation of the

limiter are contained in Appendix B. Explicit forms for R and $ are also set forth

in Appendix B.

In this study, $ also provides an entropy correction when the magnitudes of the

eigenvalues become small. The entropy correction prevents non-physical solutions

from developing, as is well documented in the literature [32, 51, 96]. The form of

the entropy-corrected eigenvalues, A, put forth by Harten [34] is{ I if JAI < f; (31)

JAI, if A C.

where the proper value of c can be very sensitive to the geometry and the flowfield

structure. Three relations are tested in this study: a constant value, proposed

by Harten [34]; a value proportional to the contravariant velocities, proposed by

Yee [104], and a value proportional to the second derivative of the pressure, suggested

by Palmei and Ventkatapathy [63]. Since the purpose for this correction is to avoid

the computation of non-physical solutions, the functions are evaluated on this basis.

In particular, for the current class of flows (external, supersonic, axisymmetric nose)

avoiding aberrations near the singular line is the primary concern. Other factors

considered are impact on convergence to steady-state and the side-effects of numerical

dissipation. Entropy correction is not applied near the body surface to avoid adverse

effects on the boundary layer. Lin [51] showed undesirable results when the function

proposed by Yee was used in the boundary layer. Lin put forth a modification to
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allow the function to be used globally. However, the author feels that the natural

viscosity of the fluid prevents non-physical solutions near the body, without the

addition of an entropy function.

By far, the most accurate and robust function, for the flows explored herein,

is obtained when e is proportional to the contravariant velocities:

S= c. (IUol + IVcI + IW lI + ICI), (32)

where cl is varied from 0.2 to 1.0. The best results are calculated with cl = 0.45;

results are judged best because non-physical solutions were avoided, convergence is

not impeded, and shock smearing due to the added dissipation is minimized. A

value of 0.45 is used for all three-dimensional calculations reported in this study.

This differs from the value used for axisymmetric calculations (Appendix A).

Utilizing the Strang-type fractional-step [104] method ensures second-order

accuracy (spatial for Navier-Stokes equations, spatial and temporal for the Euler

equations):
. U +2 rh/2' h h hhhh/2 (jn (3

- Lh J'Lh J( LhL~ :jk (33)

where

L h / 2 U n = U i k k j ~
tI 6ijk =(ijk =(ij

L hl ( ' * (34)

h U * . * .

Application of the entire sequence of operators advances the solution two time levels.

Driver [16] noted that second-order temporal accuracy is not preserved for the

Navier-Stekes equations with Strang time splitting. Driver highlighted this fact for

low Reynolds number, unsteady flows. For high Reynolds numbers, the actual accu-

racy achieved is much closer to second order. Figures 11a and 11b show the LI-norm

and Loo-norm of computed errors for the current scheme and the second-order scheme

of Driver (ATNSC2) applied to the linear, viscous, Burger's equation. The calcula-

tions are performed at a Courant number of 0.9 and Re = 100,000. For comparison,

the second-order accurate line is plotted as the solid line and the first-order accurate

line is plotted as the dashed line. Note that for both schemes the L1-norm matches
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the second-order curve extremely well, indicating that the numerical solution is in-

deed globally second-order accurate. Also, note the first-order (actually 1.5) behavior

in the Loo-norm due to the TVD property. This is indicated by the Loo-norm falling

between the first-order accurate line and second-order accurate line in Figures 1l1a

and 11b. These same calculations, made for Courant number equal to 1.0, (Fig-

ures 12a and 12b) show that the stability behavior of the second-order scheme is

superior. As the grid spacing ig refined (Ax decreases), the current scheme shows

larger errors in both norms. In contrast, the norms for ATNSC2 decrease. Since

the explicit, second-order algorithm developed by Driver is very expensive compu-

tationally, the mild stability limitations of the current algorithm at high Reynolds

numbers, and Courant numbers close to 1.0, is an acceptable tradeoff. The model

problem does not have a region where viscous terms co-dominate, therefore stability

limitations of the current algorithm, when applied to separated flows, remain an

open question.

For steady-state calculations a much simpler approach is used. This fractional-

step method is
(ijk + I = rLL k (35)

where again

L,,',k Ujk = Ujk- At (pT+L- P;_i-k), (36)

but now

t =j (ij~k =(ijk -At (E'i -E k_ j
LCT. - Uj ( ,+ 2 -=i_.ji), (37)

L:U,7J = ,;- = ,;- • (•÷,k - • •

With non-MUSCL extrapolation, this is much more efficient, because the inviscid and

viscous fluxes within the numerical flux need not be recalculated for each operator.

Additionally there are only three operators per iteration, versus three and a half,

as required by (33) before. A stability limitation is encountered when using local-

time stepping with this technique. This limitation is overcome by evaluating the

upwind terms for each operator with current information rather than time-level n

information. More details are included in Appendix A.
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3.4 Turbulence Modeling

The well known, and widely used, zero-equation Baldwin-Lomax turbulence

model [5] is incorporated for the forebody boundary-layer simulations. The original

model is described in Appendix A. Only important modifications are detailed in this

section, specifically those for compressibility, pressure gradients, a two-wall domain,

and the wake. No modifications are made to account for hypersonic flow, save those

for compressibility. The limitations of this approach are not addressed as part of

this research, and therefore remain unresolved.

Turbulence modeling is evaluated within the context of the assumptions made

regarding secondary and tertiary effects (i.e., the boundary layer on the fin need

not be accurately simulated). In addition, for the thin-fin investigation (Part I), fin

cross-sectional shape is degenerate and boundary-layer separation is not anticipated.

All turbulent calculations have a point designated on the missile body to de-

lineate the laminar and turbulent regions. For the sharp-nosetip model, this point is

selected on the ogive nose at (D = 1.25); for the blunt-nosetip model, this point is

specified on the cylinder body at (= 6.75). A point closer to the tip is selected for

the sharp nosetip because early boundary-layer transition was seen in experimental

shadowgraphs of the HART missile. This is also consistent with turbulent calcula-

tions made on other pointed-ogive noses in this study (Appendix A). The effect of

nosetip blunting to delay boundary-layer transition is documented in the literature,

([13], for example) and agrees with the computations performed in Appendix A on

a blunted ogive nose.

3.4.1 Compressibility and Pressure-gradient Modifications. Two modifica-

tions to the original Baldwin-Lomax model proved important. The first changes the

Van Driest damping factor to account for compressibility and pressure gradients

[49, 28, 101]. The near wall region, denoted by A+, is redefined as

A+ = 26.N-Z. (38)

The nondimensional distance 26 is the incompressible value for a smooth, non-porous,

flat plate [101], N is the pressure-gradient contribution, and Z is the compressibility
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contribution:

N [11.8 ±e, P+_-I i ; Z-- . p+_ - (L (dpe/dx) (39)

[* ) ]W ;? Z'. - -P k) IT *w)

In (39), e refers to the value of a variable at the edge of the boundary layer, and u;

refers to the value of a variable at the wall. The second alteration improves the two

coefficients in the outer region, CF and CkiLb. According to Granville, the following

functional forms better match the law of the wake [27]:

2 0.01312 3 -4Ckieb y.n.: dUe (40)

3 0.1724 + p' - 2Ckieb (2- 3Ckieb + Ckle)' (r*/p) dx

3.4.2 Modification to the Length Scale in the Turbulence Model. The length
scale for the turbulence model is locally modified to account for a two-wall domain

near the fins. This modification has been implemented by other researchers [39, 73,

40] for wing/body junctions, and by McMaster and Shang [55] on a sweptback fin.

The methodology of [55] is adopted without modification for this study. Since the

grid is relatively coarse in the azimuthal direction (see Section 3.5), the boundary

layers on the fins are not accurately simulated. The impact of this inadequacy is not

clear. The grid limitations are discussed further in Section 3.5.1. The length scale,

1, as reported by [55] for a dual-wall region is

d1+ d2  (41)di + d2 +A /ýf 'd

where d, and d2 are the normal distances from the two walls.

3.4.3 Empirical Model in Wake. A strictly empirical relation is used to com-

pute turbulent viscosity in the wake because it is difficult to apply a conventional

zero-equation turbulence model to a flat base with a large, nearly stagnant region.

The difficulty is that the appropriate length scale is hard to define and not readily

computable. The empirical technique was originally applied to subsonic flow by Ma-

gagnato [54]. The method is adapted and its validity tested for supersonic flow in
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this investigation. Turbulent viscosity is determined from the local vorticity, w, by

0.2 
(42)

where At is the maximum viscosity in the boundary layer at the forebody/base

junction computed from the Baldwin-Lomax model, and & is the vorticity at the

same point. Magagnato smoothed the eddy-viscosity with an exponential damping

factor. Smoothing is not believed desirable nor physical by the author, and thus,

is not pursued in this study. The method has the advantage of speed and low

memory requirement. Although highly empirical, the validity of this approach is

shown through numerical examples in Appendix A.

3.5 Grid Structure

All grids are obtained using GRIDGEN [79], an elliptical grid generator de-

veloped for Wright Laboratory, Wright-Patterson AFB, Ohio. GRIDGEN has both

two-dimensional and three-dimensional grid generating software. For this study, a

single two-dimensional grid is constructed using GRIDGEN, and then rotated about

the body centerline to produce a three-dimensional grid. In this way, each plane is

normal to the missile body, and the fins coincide with distinct grid planes. This facil-

itates boundary-condition application because the body and fin boundary conditions

are most easily enforced for a grid constructed with gridlines normal to surfaces. The

domain size (outer boundary) is chosen to allow a bow shock wave at M.. = 2 to fit

within the domain at the exit plane. The body shape (inner boundary) is generated

analytically and input into GRIDGEN as a data file. The final two boundaries,

singular line and outflow, are simple straight lines created within GRIDGEN.

The number of grid cells and the appropriate axial and radial spacing were

determined from the validation experiments (see Appendices A and B). As a result

of these tests, the grids for investigating the HART missile are constructed with

grid cells clustered near the body and with a fixed minimum cell height. For the

baseline grid, this spacing is 0.001D. For refined turbulent calculations it is reduced

to 0.000025D (y+ z 1). The number of cells from the body to the outer domain

varies from 81 for the baseline grid to 101 for refined calculations. Along the body,

cells are clustered near the nosetip and fin/body junction. A total of 91 cells are
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used in this direction, 61 from the nosetip to the base, and 31 in the wake. A non-

rectangular domain composed of two regions results; one grid with 91 x 81 nodes

and the other with 31 x 30 nodes.

The minimum spacing near the missile body can be relaxed for the turbulent

calculations with some accuracy degradation. The value chosen above, 0.000025D,

is required to obtain grid independence. Larger spacing primarily affects only the

velocity gradient very near the wall, and as such the prediction of skin friction.

Because the present research is concerned with corroborating the experimentally

determined drag, the small spacing is selected.

The baseline grid has cells clustered near fin surfaces with the angle between

the fin and next plane of nodes, A~min, equal to 0.50 and 33 cells in the bisymmetric

half-plane. The number of cells in the azimuthal direction and the angular spacing

of these cells was determined from a refinement study discussed in Section 4.2. A

total of 273,933 cells are used in the baseline grid (Figures 13 and 14).

In addition to the baseline grid, several other grids are used. A refined spacing

for turbulent calculations is already mentioned. In addition, some grids are con-

structed to end at the missile body/base junction. These are used to assess baseflow

effects. Finally, a refinement study for the azimuthal direction is made using equal

angular spacing. The number of azimuthal cells is varied from 33 to 105. Without

the base region, these extremes represent 163,053 and 518,805 cells, respectively.

Two issues are important regarding the grid near the nosetip: tip geometry and

singular-line discretization. For the sharp-nosetip missile, the nose is very slightly

rounded. This is more physical than an ideally sharp tip and enables the bow

shock to be captured a small distance away from the surface. The modified nose is

spherically rounded with •/R 6b = 0.05 (Figure 15). Dolling and Gray [131 found that

surface pressure (away from the tip) and boundary-layer development are virtually

unaffected by this level of blunting. The second aspect of the grid near the nosetip

deals with the cell structure closest to the singular line. Cells can be constructed

such that their centers fall on the singular line, or such that the interfaces between

cells lie on the singular line. The former is called a finite-difference (FD) grid, and

the latter a finite-volume (FV) grid. Both grid structures are shown in Figure 16.

Calculations with each grid type are made for several axisymmetric flows, and for

an axisymmetric body at angle of attack. These are summarized in Appendix A and
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Figure 13. Baseline grid cutaway view : 60 x 81 x 33 around forebody and
31 x 111 x 33 in the wake
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Figure 15. Modified nosetip showing very slight rounding of sharp nosetip

Appendix B. To maximize the accuracy near boundaries, a FV grid is used for all
calculations in Part I.

With a FV grid, the cells adjacent to the singular line degenerate into wedge-

like shapes, and prevent conserved quantities from fluxing into or out of portions of
those cells. Although a FV method usually handle this without special treatment,

the current method requires some changes because the terms which are added to the

physical fluxes to produce the numerical fluxes (Section 3.3.2) do not go to zero at

the singular line. This is overcome by setting the entire numerical flux to zero.

Although grid cells are clustered at the fin/body junction, grid lines do not

conform to the fin leading-edge shape. For an infinitely thin fin, the junction is a
singularity that is not easily resolved with a single block as a structured grid. The

non-conformal nature of the grid represents an area of potential accuracy reduction
because fluxes cannot be constructed such that they enforce the boundary conditions

ezactly. However, the fluxes are handled in a special manner near these points. For

any interface that separates a cell upstream of a leading edge from one downstream
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Figure 16. Grid structure near singular line: (a) finite-difference, (b) finite-volume
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of a leading edge, the numerical flux is calculated from

=ti li [ ()i+lj G E~j + Ei+ljk) + Ei 3k)

S)i+ijk G(F1l1,k + Fi+ljk) + Fijk) (43)

+ (~).4 k(G' Ij + Gi'+ljk) + Gtik)

1 1
+ j (Vi+ljk + Vijk) Ri+j i+Ljk] ,

where u and 1 represent fluxes calculated on the upper side and lower side of the fin

respectively. Also, R,+½jk and 'i+½lkare now functions of Uijk, 2 (Ui+ljk + U•+,Ik),
and ( + instead of Uijk, Ui+,•k, and Ui+2,&. The author believes

practical, albiet not formal, accuracy is preserved. This is demonstrated for an

axisymmetric compression ramp in Appendix B.

3.5.1 Grid Limitations. Again, it is emphasized that the azimuthal refine-

ment is insufficient to predict accurately the boundary-layer properties on the fin

surface. The grid is refined only normal to the missile body. Since the pressure is

dominated by the shock structure, and the boundary layer of interest is the one on

the body, this limitation is not deemed overly constraining by the author. This will

be addressed in detail in the thick-fin analysis (Part II).

3.6 Boundary Conditions

The boundary conditions which were discussed briefly in Section 2.3 are now

described in detail. For the no-slip condition used with viscous calculations, the
velocities are set to zero:

u = 0, v = 0, and w = 0.

The pressure-gradient and adiabatic-wall conditions are satisfied with second-order

discrete representations of:

9p 0, and =p O.
,n On
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Three of the boundary conditions require further explanation. First, the ext rapo-

lation at the singular line is described. Next, the impermeability condition for a

three-dimensional surface is discussed. Finally, the fin-surface conditions are shown.

3.6.1 Singular-line Conditions. When a body is not pitched (a = 00), the

condition at the singular line is a symmetry condition. For the current FV grid, a

cell center slightly displaced from the symmetry line is mirrored by one displaced

exactly the same amount, but azimuthally located 1800 apart (Figure 16). It is a

simple matter to reflect v and w to achieve axisymmetry.

When a body is pitched, the condition is not so simple. Therefore, the following

extrapolation is used whenever a #-' 00:

8•2qI (-r+ 2qr• (('r) 2

q, = q2 + + (-Ar)O+ ý2- +0[(Ar)3] . (44)
ear 2r

The subscript 2 denotes the first cell on the domain interior. The subscript 1 denotes

its mirror (i.e., the boundary cell). The variable q represents any primitive variable.

Using finite-difference expressions for the derivative terms in (44) yields

q, = 3q2 - 3q3 + q4 + 0 [(Ar)3] . (45)

It is important to check the consistency of this extrapolation as a --+ 0. For

axisymmetric flow, all primitive variables, except v and w, behave like [75]

q - C1 + c 2r2  (r - 0), (46)

where cl and c2 are constants that depend on the flowfield. The remaining velocity

components, v and w, behave as the radial velocity (except for a sign change) [75]:

q -• car (r -- 0), (47)

where c3 is also a constant that depends on the flowfield. By using (46)-(47) to

determine q2, q3, and q4, the behavior of q, as r -- 0 can be determined. Assuming

that the grid is constructed with a nearly constant node spacing normal to the
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symmetry line, then for v and w, as r -- 0,

Ar 3Ar 5Ar
q2 ; C3 -, q3 : C3 --2, q4 : c 3 - , (48)

and from (45)
Ar

qI = -c 3 - = -q2. (49)
2

The distance between the cell center at 2 and the symmetry line is given by Ar/2.
In a similar manner, for p, u, and p, as r --, 0,

q2  CI + C2 (), q3  CI + C2 (CI2q 4  2 +C(), (50)

and again from (45)
fAr\)2

q1 = cI + C2-( = q2. (51)

For a grid with constant spacing normal to the singular line, the proposed extrapo-

lation is consistent with axisymmetric flow.

3.6.2 Impermeability Condition for a Three-dimensional Surface. For viscous
calculations, no slip is enforced on the missile surface, but for inviscid calculations,

an impermeability condition is required. The impermeability of a three-dimensional
surface depends on two angles, the local body inclination, 0, and the azimuth, 4,
(Figure 17). A simple coordinate transformation using these two angles produces
a relation between the Cartesian velocities and the normal, tangential, and swirl

velocities (un, ut, and u, respectively):

[n ] [u] cos 0 cos4' sin 0 sin 0sin 0 1u]
Uj =[L] v = sin0 -cos4,cos0 -sin4'cos0 v (52)

u, w 0 -sin4, cos j w

Therefore,

V =[LF ]t (53)
W U4
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Figure 17. Body orientation showing references for body inclination angle, 0. and
azimuthal angle, 0, where y = r cos 0 and z = r sin 0

For impermeability, the normal component of velocity is specified to vanish at the
missile surface: (u.)j=l = (-un),ffi2 . In addition, the tangential and swirl velocities
are specified with the following: (Ut),=1 = (Ut),= 2 , and (u.),.=, - (u.),=f2 . Thus,

v = u 0 1 0 [L] v (54)
w us 0 0 1 w

jfilj---2 j---2

Finally,

u -][ 1 -2#3 cos4) -2#3 sin 1 u ]
v = -2#cos4)' /3cos24)+sin24) /31/32-sin4)cos 0 vI (55)

w j= -2#3isinO 61 #i2 -sinocosO #,sin 24++cos2S2 J w J j=2

where

01= cos2 0 - sin2 0, # 2 = cos 0 sin 4, and 03 = cos 0 sin 0.

Because the HART missile body is rotationally symmetric, and the grid is
rotationally generated, very little memory is required to keep track of 4) and 0.
In fact, the angles are calculated as functions dependent on only one grid index:
0 = 4(k) and 0 = O(i).
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3.6.3 Fin Leading-edge, Trailing-edge, and Surface Conditions. Since the fins

have no thickness, the same set of points in the grid that represent the upper sur-

face of a fin must represent the lower surface. Additional variables are introduced

to accomplish this. Using dual variables, the vanishing pressure-gradient and the

adiabatic-wall conditions are enforced from above and below. For viscous calcula-

tions, no slip is also enforced on both sides of a fin. Again this is given by

u=0, v=0, and w=0.

As with the missile surface, fin surfaces in inviscid flow require an imperme-

ability condition. The mechanics of this condition are different from Section 3.6.2.

The main difference is the location where impermeability is enforced. For the body

surface, it is between cells, but for the fin surfaces, it is at cell centers. This means

that the swirl velocity is set to zero at a cell center. The Cartesian velocities are

transformed into cylindrical velocities to facilitate the process:

["u 1 0 0

u, =[L] v coS4€ sin V (56)

u, jw 0 - sin• 0cosb w

For impermeability, (uo)k=kfi= 0. Also, on the top of each fin,

(UG)k=kfin = (Ua)kfkfin._1, and (UT)k==kin lU = (uT)kknl'._1. Similar expressions are

used for the bottom of each fin. Thus,

u 1 0 0 u1

v = 0 cos •b1 cosS 2 cos 01 sin 02  v (57)
wJ k=kfin 0 sin 01 COS 02 sin 01l sin 0b2 1 W =kfin+l

where 01 is the azimuthal angle of a point on the fin, and 02 is the azimuthal angle

of a point above or below the fin, depending on which side of the fin u, v, and w are

desired.
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4. Results and Analysis from Thin-fin Tests

The results from this study are presented in terms of a grid-sensitivity analysis,

a flow-structure analysis, a drag analysis, and a static-stability analysis. The exper-

imental results and the EAGLE computational results [22, 93] serve as the primary

basis for comparison. (Background for these results can be found in Section 1.1.)

4.1 Summary of Numerical Ezperiments

Over 80 numerical computations are performed using the thin-fin assumption.

These include calculations to determine grid sensitivity, aerodynamic characteristics

for the sharp-nosetip and blunt-nosetip models, and base-flow effects. The compu-

tations are summarized in the following paragraphs.

Table 1 lists the computations made to assess two sensitivity issues. Cases

R1-R4 vary the angular spacing (AO) near the fin to determine the sensitivity of the

axial-force coefficient and the pitching-moment coefficient to the boundary condition

that is used to extract pressure on the fin surfaces (vanishing pressure gradient, see

Section 3.6). The spacing is varied from approximately 6" to 0.5*. In addition, the

angle of attack is varied from 50 to 0.50 (Cases R4-R6) to determine the variation

of Cm with a. All sensitivity calculations are conducted at M. = 3.5.

Table 1. Summary of numerical experiments on the blunt-nosetip model used for
grid sensitivity analysis

[Case] M.c I xJ x K Abmin &OAMax - bodyJComments
R1 3.5 5.0 61 x 81 x 33 5.6250 5.6250 0.001 laminar
R2 3.5 5.0 61 x 81 x 65 2.8125 2.8125 0.001 laminar
R3 3.5 5.0 61 x 81 x 105 1.7308 1.7308 0.001 laminar
R4 3.5 5.0 61 x 81 x 33 0.5000 15.5000 0.001 laminar
R5 3.5 2.5 61 x 81 x 33 0.5000 15.5000 0.001 laminar
R6 3.5 0.5 61 x 81 x 33 0.5000 15.5000 0.001 laminar

The case history of calculations made for the sharp-nosetip model, without

the base region, is tabulated in Table 2. The Mach number is varied from 2 to
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6, and calculations are made at a = 00 and a = 50 for inviscid, laminar, and

turbulent flowfield conditions. A limited number of computations are performed

with refined spacing near the missile body (Cases S21, S22, S33, and S34). The

spacing near the missile body for these cases is equivalent to y+ .• 1. Due to limited

resources, computations with the refined grid are done for only two Mach numbers.

Cases S11, S12, S16, and S17 were computed by Blake [8] as part of a Master's

thesis involving parallel computing techniques. Blake used the present algorithm to

make those computations. Also, two cases involve a larger fin, and are explained in

Section 4.5.1.

For the sharp-nosetip model, calculations that include the base region are also

made. These are used to assess the influence of the fins on base drag, and the effect

of angle of attack on base drag. In addition, they are used to study the impact

of the base region on pitching moment. Computations which include base effects

are designated with an "SB'W (Table 3). Again, Mach number is varied from 2 to 6

and calculations are made for a = 00 and a = 5°. Only turbulent calculations are

performed, and the grid spacing near the missile body is held fixed at 0.00005D.

One case involves a larger fin, and is explained in Section 4.5.1.

The aerodynamics of the blunt-nosetip model are also determined with a para-

metric Mach number study. The summary of cases for the blunt-nosetip configura-

tion is provided in Table 4. Like the sharp-nosetip tests, Mach number is varied from

2 to 6. Also, as with the sharp-nosetip study, only two laminar and two turbulent

tests are conductedwith refined spacing near the missile body. For the blunt-nosetip,

this spacing is 0.00005D.

4.2 Grid Refinement and Sensitivity

Figure 18 shows the axial-force coefficient plotted against the angular spacing

near the fins. The axial-force coefficient, Ca, is found to be very insensitive to the

spacing near the fin. Over the range of spacing tested (6* to 0.5*), Ca varies only 1%.

Also, the axial force does not depend on node clustering in the azimuthal direction.

This is evidenced by the nearly identical results for unclustered and clustered spacing

applied to the same number of azimuthal nodes (Cases R1 and R4, respectively).

The pitching-moment coefficient, C,,,., shows a much greater sensitivity to an-

gular spacing. Figure 19 demonstrates that C,. is influenced signific b, by the
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Table 2. Summary of numerical experiments for sharp-nosetip model, without base
region

Case M a IxJxK
Si 2.0 0 61 x81 x33 0.001

S2 3.0 0 61 x81 x33 0.001
S3 3.5 0 61 x81 x33 0.001
S4 4.5 0 61 x81 x33 0.001

Inviscid S5 6.0 0 61 x 81 x 33 0.001
(coarse grid) S6 2.0 5 61 x 81 x 33 0.001

S7 3.0 5 61x81x33 0.001
S8 3.5 5 61 x81 x33 0.001
S9 4.5 5 61x81x33 0.001

S10 6.0 5 61x81 x33 0.001
S11 2.0 0 61x81 x33 0.001
S12 3.0 0 61x81 x33 0.001
S13 3.5 0 61x81 x33 0.001
S14 4.5 0 61x81x33 0.001

Laminar S15 6.0 0 61 x 81 x 33 0.001
(coarse grid) S16 2.0 5 61 x 81 x 33 0.001

S17 3.0 5 61 x81 x33 0.001
S18 3.5 5 61x81x33 0.001
S19 4.5 5 61x81x33 0.001
S20 6.0 5 61 x81 x33 0.001

Laminar S21 2.0 0 61 x 101 x 33 0.000025
(fine grid) S22 3.5 0 61 x 101 x 33 0.000025

S23 2.0 0 61 x81x33 0.001
S24 3.0 0 -81 x 33 0.001
S25 3.5 0 81 x 33 0.001
S26 4.5 0 u x81 x33 0.001

Turbulent S27 6.0 0 61 x 81 x 33 0.001
(coarse grid) S28 2.0 5 61 x 81 x 33 0.001

S29 3.0 5 61x81x33 0.001
S30 3.5 5 61x81x33 0.001
S31 4.5 5 61x81x33 0.001
S32 6.0 5 61x81x33 0.001

Turbulent 533 2.0 0 61 x 101 x 33 0.000025
(fine grid) S34 3.5 0 61 x 101 x 33 0.000025
Large fin S35 3.5 5 61 x 81 x 33 0.001

S36 4.5 5 61x81x33 0.001
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near the fin
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Table 3. Summary of numerical experiments for sharp-nosetip model, with base
region

Case Io x I J xK I XJ XK "/5 b d 'AX e

M_____ I i(Forebody) (Wake) J b Jy i J
SBI 2.0 0 60x81x33 31x111x33 0.00005 0.07
SB2 3.5 0 60x81 x33 31x 111 x33 0.00005 0.07
SB3 4.5 0 60x81x33 31x111x33 0.00005 0.07

Turbulent SB4 6.0 0 60 x 81 x 33 31 x 111 x 33 0.00005 0.07
SB5 2.0 5 60x81 x33 31 xiii x33 0.00005 0.07
SB6 3.5 5 60x81 x33 31 x111 x33 0.00005 0.07
SB7 4.5 5 60x81x33 31x111x33 0.00005 0.07

1 SB8 6.0 5 60x81x33 31 x111 x33 0.00005 0.07
Large fin SB9 2.0 5 60 x 81 x 33 31 x111 x 33 0.00005 0.07

angular spacing near the fins. As AOb decreases from (6* to 0.5*), C,,,. decreases

(more negative) about 30%. In addition, C,,.. appears to be approaching an asymp-

totic value near 0.5*. Due to resource limitations, grids with uniform angular spacing

less than 1.70 (Case R3) were not attempted. Also, other boundary conditions to

obtain pressure were not attempted. However, Riner [69] found that EAGLE com-

putations made with the pressure-gradient boundary condition and characteristic-

variable boundary conditions differed dramatically. For a grid with constant angular

spacing and AO = 10", he found that the pressure-gradient boundary condition un-

derpredicted C,.. by a nearly constant amount over a Mach number range from 1.2

to 8.0. The difference in Cm. found by Riner is nearly equivalent in magnitude to

the difference in C,,,. from the present computations between the coarsest and finest

spacing used. Thus, the use of node clustering near fins overcomes the deficiency

of the pressure-gradient boundary condition, and nodes are clustered near the fins

throughout the rest of this study.

The rate at which the pitching moment vanishes as a -+ 0 is shown in Fig-

ure 20. As the angle of attack increases, the pitching-moment coefficient changes

only slightly. The three values of C,,. plotted in Figure 20 differ by about 1%. Un-

fortunately, resource limitations prevent this analysis from being repeated at other

Mach numbers. However, the results at Mo, = 3.5 agree with inviscid linear theory

given by (9), which indicates that C,,. is independent of a.

In free-flight testing, the HART missile occasionally achieved angles of attack

in excess of 5 degrees, and only over a portion of some trajectories. Therefore,
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Table 4. Summary of numerical experiments for blunt-nosetip model, without base
region

Case I M. I a I x JxK
_______ ~ L II I bodv

B1 2.0 0 61 x 81 X'33 0.001
B2 2.95 0 61 x81 x33 0.001
B3 3.5 0 61x81 x33 0.001
B4 4.0 0 61x81x33 0.001
B5 4.5 0 61 x81 x33 0.001
B6 5.0 0 61 x81 x33 0.001

Inviscid B7 6.0 0 61 x 81 x 33 0.001
(coarse grid) B8 2.0 5 61 x 81 x 33 0.001

B9 2.95 5 61x81x33 0.001
B10 3.5 5 61 x81x33 0.001
B11 4.0 5 61x81x33 0.001
B12 4.5 5 61x81 x33 0.001
B13 5.0 5 61x81x33 0.001
B14 6.0 5 61 x81 x33 0.001
BI5 2.0 5 61 x81 x33 0.001
B16 2.95 5 61x81x33 0.001

Laminar B17 3.5 5 61 x 81 x 33 0.001
(coarse grid) B18 4.0 5 61 x 81 x 33 0.001

B19 4.5 5 61x81x33 0.001
B20 5.0 5 61 x81 x33 0.001
B21 6.0 5 61 x81 x33 0.001

Laminar B22 2.95 0 61 x 81 x 33 0.00005
(fine grid) B23 3.5 0 61 x 81 x 33 0.00005

B24 2.0 5 61x81x33 0.001
B25 2.95 5 61x81 x33 0.001

Turbulent B26 3.5 5 61 x 81 x 33 0.001
(coarse grid) B27 4.0 5 61 x 81 x 33 0.001

B28 5.0 5 61 x81 x33 0.001
B29 6.0 5 61 x81 x33 0.001

Turbulent B30 2.95 0 61 x 81 x 33 0.00005
(fine grid) B31 3.5 0 61 x 81 x 33 0.00005
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Figure 20. Sensitivity of pitching-moment coefficient, C, to angle of attack.

a = 50 is representative of the experiments and is selected in the current study for

all remaining computations performed with a nonzero angle of attack.

4.3 Flowfield Near Fin

The flowfield near the fins is examined through analysis of the shock-wave shape

and strength of the shock/boundary-layer interaction. The angles of the shock waves

created by the fins are compared to the theoretical and experimental angles discussed

in Section 2.1.1. The interaction of the shocks with the boundary layer growing on
the missile body is assessed with surface pressure line plots and contour plots.

4.3.1 Shock-wave Shape. In Figure 21, the shock wave created by a thin-
swept fin at angle of attack is compared directly to the shock wave from a wedge-

shaped delta wing. The wedge angle is equivalent to the angle of attack of the thin

fin. For the delta wings, small wedge angles and highly swept leading edges produce

shocks that emanate from the leading edge at angles very close to the Mach angle.

The Mach angle based on the local Mach number is indicated with a dashed line in
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Figure 21 for reference. Figure 21 shows pressure contours on the missile body for

Moo = 2 and a = 5* (Case B8). The pressure contours show a shock below each fin

and an expansion above each fin. The shock-wave angle is well predicted using the

thin-fin assumption.

Figures 22 and 23 show the pressure on the upper and lower surfaces of the

two fins (one on the expansion side of the missile and one on the compression side

of the missile) for M. = 2 and a = 5°. Rapid expansions to the upper surfaces

are visible at the leading edges of both fins. Note the clustering of contour lines
near the leading edges in Figures 22a and 23a. Likewise, attached shocks are seen

on the lower surface leading edges, as evidenced by the clustered contour lines in
Figures 22b and 23b. Although the pressure contours show weak compressions on

tbe upper fin surfaces and weak expansions on the lower fin surfaces, the pressure is
relatively constant on each surface. In addition, the compression on the lower surface

and the expansion on the upper surface are distinctly separated in the inviscid flow.

Figure 21. Pressure contours on the missile near the fin/body junction (Case 138)

4.3.2 Shock/Boundary-layer Interaction. The boundary-layer does not sep-
arate in any of the laminar or turbulent computations, and indicates that the
shock/boundary-layer interaction is weak. To further assess the weakness of the
interaction, the surface pressure is examined. In Figure 24, pressure is plotted along
the missile body upstream of the fin/body junction for Mo = 2, a = 5°, laminar
flow (Case S16), and turbulent flow (Case S28). The pressure ahead of each fin
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Figure 22. Pressure contours for the fin on expansion side of the missile (Case B8):
(a) upper surface, (b) lower surface
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is plotted separately, and the location of the fin leading edge is indicated for ref-
erence. The pressure is only slightly disturbed ahead of the leading edges, and is

nearly the saine for laminar and turbulent conditions. Moreover, the plateau asso-

ciated with separation [2] is not visible. Again, this is due to the weakness of the

shock/boundary-layer interaction. Eliminating the fin's cross section may have pre-
vented separation, but other researchers have shown that highly-swept fins exhibit

no boundary-layer separation [64, 99, 55].

4.4 Drag Analysis

To facilitate a detailed analysis of missile drag, the drag coefficient is broken
down into components, and the components are analyzed individually and then
collectively. The drag breakdown was discussed in Section 2.4.1. The empirical
components used with previous EAGLE computations are graphically compared to

quantities directly calculated in this study. Additionally, the influence of the fins
on the base drag and the effect of angle of attack on the base drag are discussed
with plots showing the variation of base drag with Mach number. Finally, the drag

obtained from free-flight testing is compared to the current computation of total
drag. Comparisons with free-flight data are also made with Cd versus Moo plots.

The base drag in the current study is computed in two ways. First, it is
directly obtained from calculations on the complete HART missile configuration. The
base drag is also computed for axisymmetric bases, in axisymmetric flow (a = 00),
using axisymmetric equations. These simpler computations allow much finer grid

resolution, and are described in Appendix A. Total drag is computed using the base
drag from Appendix A because of the greater level of validation.

All drag values computed in this study at a = 0* are summarized in Table 5
for the sharp-nosetip model and Table 6 for the blunt-nosetip model. These tables
contain the wave-drag, base-drag, and friction-drag c(- 3onents for the missile body
and the fins tabulated separately. In addition, the data are delineated by the flow-
field condition (inviscid, laminar, or turbulent) and grid coarseness. The following
sections discuss and analyze each component more fully.

The wave-drag coefficient and pitching-moment coefficient from EAGLE com-
putations on the sharp-nosetip model with clipped-delta fins are summarized in Ta-
ble 7. The coefficients are tabulated for Mach numbers ranging from 2 to 8. Included
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Figure 24. Pressure along the missile body upstream of the fin/body junction:
(a) laminar flow (Case S16), (b)turbulent flow (Case S28)
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Table 5. Computed drag components for sharp-nosetip model (a - 00)

ICase Cd Cd Cd Cd + CdblinC I C
I(bo (bo ly) J (bocy) (fins) fin tota)

K1 0.160 - 0.145" 0.047 0.352
Snviscid S2 0.145 - 0.098" 0.048 - 0.291

(coarse grid) S3 0.140 - 0.079" 0.049 - 0.268
S4 0.135 - 0.0450 0.050 - 0.230
S5 0.129 - 0.024" 0.051 - 0.204

S11 0..160. 0.074 0.145* 0.045 0.010 0.434
Laminar S12 0.145 0.057 0.098* 0.046 0.009 0.357

(coarse grid) S13 0:140 0.054 0.079* 0.047 0.008 0.328
S14 0.135 0.046 0.045" 0.048 0.007 0.281
S15 0.129 0.034 0.024' 0.049 0.006 0.242

Laminar S21 0.160 0.073 0.145' 0.045 0.010 0.433
(fine grid) S22 0.140 0.053 0.079' 0.047 0.008 0.327

S23 0.162 0.238 0.145" 0.042 0.012 0.599
Turbulent S24 0.147 0.168 0.098" 0.043 0.010 0.468

(coarse grid) S25 0.142 0.135 0.079' 0.043 0.008 0.407
S26 0.137 0.093 0.045' 0.044 0.007 0.326
S27 0.131 0.059 0.024' 0.045 0.006 0.265

Turbulent S33 0.162 0.257 0.145" 0.042 0.013 0.619
(fine grid) S34 0.142 0.165 0.079' 0.043 0.009 0.438

SB1 0.162 0.244 0.151 0.042 0.012 0.611
Turbulent SB2 0.142 0.147 0.078 0.042 0.007 0.416

(with base) SB3 0.137 0.103 0.044 0.043 0.007 0.334
1_SB4 0.131 0.060 0.021 0.044 0.006 0.262

* - Base drag taken from Appendix A.

in Table 7 are the empirical values for viscous drag (turbulent) and base drag used

to correct the inviscid EAGLE results. These corrections were detailed in Section

1.1.2, and are given by (1) and (2). The following sections compare this data to the

present results.

4.4.1 Forebody Wave Drag. The forebody pressure, or wave drag, is domi-

nated by the nosetip geometry, and shows very little sensitivity to viscous effects.

This is seen in Table 5 or Table 6 with M,, fixed, where the wave drag is nearly

identical for inviscid, laminar, and turbulent calculations.

The wave drag from the turbulent calculations on the sharp-nosetip model

(Cases S23-S27 and S33-S34) is plotted versus Mach number with the EAGLE re-

sults in Figure 25. Also included is the value predicted by slender-body theory [4]
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Table 6. Computed drag components for blunt-nosetip model (a = 00)

Case Cd [C Cd I Cdf +SCdb I Cd4 I Cd
(boy) (body) (bocy) (fins) (fins) (total)

BI 0.416 0.145* 0.023 - 0.584
B2 0.457 0.100* 0.023 - 0.580

Inviscid B3 0.465 0.079* 0.024 - 0.568
(coarse grid) B4 0.471 0.063* 0.024 - 0.558

B5 0.475 0.045* 0.024 - 0.544
B6 0.477 0.039* 0.025 - 0.541
B7 0.479 - 0.024* 0.025 - 0.528

Laminar B22 0.457 0.078 0.100* 0.021 0.015 0.671
(fine grid) B23 0.465 0.043 0.079- 0.022 0.010 0.619
Turbulent B30 0.457 0.129 0.100* 0.018 0.016 0.720

(fine grid) B31 0.465 0.086 0.079* 0.019 0.010 0.659
Mo, = 2 0.415 0.049 0.110 - - 0.574
M,, = 3 0.453 0.035 0.063 - - 0.552

Laminar M. = 4 0.475 0.028 0.036 - - 0.539
(with base) M.. = 5 0.484 0.024 0.024 - - 0.529
(Axi-Eqns)** M,. = 6 0.490 0.019 0.015 - - 0.523

Moo = 7 0.492 0.015 0.011 0.519
* - Base drag taken from Appendix A.

** - Calculated from axisymmetric equations for blunt-nosetip model without fins.

Table 7. Drag and pitching-moment coefficients from EAGLE results for sharp-
nosetip model with clipped-delta fins

[Moo I Cd. Q, Q I Cd [Cm0 ]

2.0 0.159 0.330 0.172 0.661 -62.41
3.0 0.145 0.310 0.108 0.563 -39.99
4.0 0.136 0.296 0.073 0.505 -22.92
4.5 0.133 0.291 0.060 0.484 -15.21
5.0 0.130 0.286 0.051 0.467 -11.88
6.0 0.126 0.278 0.037 0.441 -5.30
7.0 0.123 0.272 0.028 0.423 0.09
8.0 0.121 0.266 0.022 1 0.409 2.83

- Empirical, also corrected to account for Reynolds number error.
** - Empirical.
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and the area-rule theory [15] for Moo = 2 (see Section 2.2.1). As expected from the-

ory, the variation with Mach number is modest. For the present computations, Cd.

decreases from 0.162 at Moo = 2 to 0.131 at Moo = 6. For the EAGLE computations,

Cd. decreases from 0.159 at Mo, = 2 to 0.126 at Mo, = 6. The wave drag from the

current coarse grid and fine grid computations is identical. The agreement between

all the results, except slender-body theory, is considered excellent.

The wave drag from the blunt-nosetip model is plotted versus Mach number

in Figure 26. Here the wave drag increases with Mach number. The variation with

Mach number is again small, however.

4.4.2 Forebody Friction Drag. Accurate prediction of friction drag depends

primarily on adequate grid resolution normal to the missile body surface. Because

the velocity gradients near the wall are less severe for laminar flow than for turbu-

lent flow, the laminar friction drag is calculated equally well with the coarse grid

(Cases $11-$15) and the fine grid (Cases S21-S22). An accurate prediction of the

turbulent friction drag required more refined grid spacing near the missile body. At

M,. = 2, the turbulent friction drag from the coarse-grid test (Case S23) is 0.238,

and turbulent friction drag from the fine-grid test (Case S33) is 0.257. Likewise, at

M.. = 3.5, the turbulent friction drag increased with grid refinement from 0.135 to

0.165.

The effects of compressibility on friction drag cannot be understated. Tur-

bulent skin friction on a flat plate varies considerably with supersonic Mach num-

bers [101]. One method to compute friction drag is to utilize the concept of a flat

plate of equivalent size. By this method, the wetted area of the HART missile is

calculated and used with an empirical relation for friction drag on a flat plate to

compute friction drag for the missile. This was done for previous EAGLE results

(Table 7), using an incompressible formula, (2). A similar procedure is employed here

with a compressibility correction to (2). Figure 27 compares the turbulent viscous

drag (Cases S23-S27), the EAGLE results, and both equivalent flat-plate formulas.

For Mo, = 1.5 to Mo, = 8 compressib~lity results in a very large decrease in Cd, as

Mo, increases. The trend in Cd, with increasing Mach number from the compress-

ible flat-plate formula agrees well with the current computations. The relatively flat

profile of the relation used to correct the inviscid EAGLE results is a direct conse-

quence of neglecting compressibility effects. This is also seen seen in Figure 3 for the

baseline HART model.
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66



4.4.3 Base Drag. The empirical correction used with the EAGLE results,

(1), is compared to the values computed with the current axisymmetric equations in

Figure 28. The correlation is good for Mach number from 1.5 to 7. The empirical

formula consistently predicts a higher value of base drag for all Mach numbers.

Since the small difference between (1) and the current results can be eliminated by

modifying the empirical constant appearing in (1), this demonstrates the accuracy

that can be achieved with the empirical formula.

Base drag should increase with increasing angle of attack [76], and is confirmed
with the current method. Figure 29 shows base drag from computations at a = 00

compared to base drag from a = 5*. Very similar results are obtained for the two

angles of attack. The base drag for a = 50 increases slightly.

4.4.4 Effect of Fins on Base Drag. The influence of the fins on base drag has
been documented by Love [53]. Love showed that both the proximity of the fins to

the base and the thickness of the fins can alter base pressure. He also showed that the

interference effect decreases significantly with increasing Mach number, and Reynolds
numbers effects are small for turbulent condition.. Base drag taken from calculations
made on the complete configuration agree with the trends cited by Love. Figure 30
shows the base drag from the complete configuration (Cases SB1-SB4) compared
to the base drag from calculations without fins (Appendix A). The base drag from

the complete configuration calculations is generally lower than the axisymmetric

calculations. The curves cross around M,, = 3 due to the effects of the fins. At the

lcwest Mach number tested, the drag from the complete configuration with fins is

greater.

4.4.5 Uncertainty Due to Boundary-layer Transition. Because the error as-
sociated with fitting the theoretical trajectories to the experimental trajectories was
not documented, this author initiated a reevaluation of the free-flight data in order

to quantify the error in the trajectory match for each test and obtain more reliable
data. The reevaluation was done through an existing contract between Wright Labo-

ratory and Arrow Tech Associates, and is documented in a contractor test report [37].
Several data points were eliminated based on a poor fit to the flight trajectory. The

reason why it was more difficult to correlate trajectories for the clipped-delta-fin was
not ascertained. The original and reevaluated drag data are plotted in Figure 31,

and provided in Table 8. The error for the reevaluated trajectories is summarized in
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Table 9. By eliminating those data with a poor trajectory fit, the scatter is decreased

considerably.

It is, however, still possible that the variation with Mach number is influenced

by boundary-layer transition. Several factors related to the nature of free-flight

testing are important. First, natural transition has a Mach number and Reynolds

number dependence [101. Also, the high-entropy layer of a blunt nosetip can delay

transition [79]. Second, turbulent bursts, which are observed experimentally through

shadowgraphs, can affect tranisition [42]. Finally, induced transition may occur due to

a lack of model fidelity. The experimental missile body is a two-piece construction,

and weak shocks can be seen emanating from the location where the two pieces

are joined [93]. This edge may disturb the boundary layer into a turbulent state

prematurely.

4.4.6 Total Drag. Total drag from laminar and turbulent calculations at a =

0* for the sharp-nosetip model and for Moo = 2 - 6 (Cases $11-$15 and S23-S27,

respectively) are compared to the reevaluated experimental data in Figure 32a. Both

coarse-grid and fine-grid results are shown. The laminar drag severely underpredicts

the experimental drag due to the much lower friction drag. In addition, the laminar

drag trend with Mach number does not agree well with the experimental trend.

The turbulent drag predicts the trend with Mach number much better, but the

computations using the coarse grid still underpredict the drag significantly. The

computations with the fine grid (Cases S33-S34) accurately resolve the boundary

layer on the missile body, giving much better results.

The drag from the fine-grid turbulent computations in Figure 32a is still lower

than the experimental drag because of the coarseness of the grid in the azimuthal

direction. Due to inadequate resolution near the fin surfaces, the boundary layers

on the fins are not well resolved. Subsequently, fin friction drag is underpredicted,

especially for the turbulent cases. Based on the excellent agreement obtained be-

tween computations of forebody friction drag and an equivalent flat plate (compress-

ible), the turbulent fin friction drag used to obtain the total drag in Figure 32b is

determined using (2) with a compressibility correction obtained graphically from

White [101]. This approach yields friction drag that agrees well with the flat-plate

theory of van Driest (van Driest II) [101]. When the coarse grid results are corrected

using this equivalent flat plate method, excellent correlation is obtained between the
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Table 8. Experimental drag and pitching-moment coefficients for sharp-nosetip
model with clipped-delta fins (a = 00)

Free-,flight No. 1 .C . m oC M
(original)[ ,,,C° C,,,°

(Yymm~d I (original) I ____I (reevaluated) ____
90012359 2.805 0.574 -42.24 2.811 0.577 -45.267
90011957 2.914 0.554 -42.87 2.916 0.553 -50.465
89090794 3.174 0.535 - *- -

89090896 3.188 0.525 -28.88 3.190 0.524 -28.717
89090895 3.363 0.512 -27.51 3.363 0.508 -27.557
89053149 3.499 0.444 -25.93 3.501 0.444 -26.758
90011654 3.541 0.482 - *

89060150 3.572 0.473 -23.51 3.556 0.461 -19.943
89103134 3.603 0.518 -22.67 *

90020564 3.621 0.452 - 3.633 0.461 -21.881
89060758 3.677 0.460 -24.93 3.678 0.446 -25.913
90020263 3.725 0.445 -27.45 *

90011856 3.801 0.462 -

89103032 3.823 0.490 -25.06 - -
90041706 4.119 0.419 -28.42 4.123 0.410 -29.650
90041203 4.138 0.416 -27.82 4.143 0.415 -28.484
90041304 4.193 0.418 -29.25 4.194 0.416 -29.816
90041605 4.239 0.418 -30.09 4.240 0.415 -28.563

Poor fit between theoretical trajectory and experimental trajectory.

Table 9. Error between theoretical trajectory and experimental trajectory (from
reevaluation of free-flight data)

Free-flight No. Longitudinal Lateral or Swerve Pitch or Yaw Roll(yymmdd##) error (m) error(m error (deg) error (deg)]

90012359 0.0014 0.0028 0.230 10.810
90011957 0.0017 0.0012 0.128 6.865
89090896 0.0023 0.0012 0.206 12.220
89090895 0.0023 0.0018 0.190 6.982
89053149 0.0023 0.0022 0.132 9.264
89060150* 0.0022 0.0057 0.443* 7.308
90020564* 0.0018 0.0051 0.588* 10.200
89060758 0.0023 0.0007 0.199 10.710
90041706 0.0017 0.0025 0.255 24.370
90041203 0.0017 0.0019 0.127 5.598
90041304 0.0016 0.0010 0.151 9.863
90041605 0.0021 0.0021 0.306 16.670

- Not use in this study due to larger pitch error.
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experimental data and the present turbulent results, as seen in Figure 32b. Nearly

identical results are obtained from the fine-grid calculations when only the fin friction
drag is corrected using the flat-plate method.

Drag on the blunt-nosetip model for Moo = 2 - 6 and a = 0* is compared to
experimental data (Table 10) in Figure 33. Laminar and turbulent calculations are

made for only two Mach numbers, so extensive comparison is not possible. How-
ever, it is apparent that the computations predict higher drag; both laminar and
turbulent predictions exceed the free-flight data. It is important to note that the
blunt-nosetip experimental data was not reevaluated, so accuracy for those free-flight

tests is uncertain.

4.5 Static-stability Analysis

Next, the static stability is assessed for the clipped-delta-fin HART missile.
There are two goals to this phase of the analysis. First, corroborate and/or identify
the cause of the restabilization trend observed in free-flight testing. This trend is
shown in Figure 34, where experimentally determined Cn0 is plotted versus M".

Figure 34 shows the pitching-moment coefficient obtained from the original experi-
mental data for the sharp-nosetip configuration (Table 8), the original experimental
data for the blunt-nosetip configuration (Table 10), and recent experimental data for
a grooved version of the sharp-nosetip model (Table 11), [37]. A second-order poly-
nomial is fit through the combined data. The static stability apparently increases
(Cn becomes more negative) from Mach 3.5 to Mach 4.5. The second goal of the
analysis in this section is to determine the stability characteristics above Mach 4.5.
Recall that for the baseline model, the ZEUS and EAGLE computations differed
markedly above Mach 4.5 (Figure 4). The data used in Figure 4 is summarized in

Table 12.

The pitching-moment coefficient from the reevaluation of the free-flight data
confirmed the change in stability trend. As discussed in Section 4.4.3, a reevalu-
ation of the raw experimental data was initiated by the author because the error
for individual free-flight tests is not available. The pitching-moment coefficient from
the reevaluated data is shown in Figure 35 versus Mach number. The second-order
polynomial curve fit that was used in Figure 34 is included for comparison. The
agreement between the curve fit and the reevaluated data suggests that the restabi-
lization trend is confirmed with the reevaluation.
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Figure 31. Total-drag coefficient, Cd, extracted from free-flight tests of the sharp-
nosetip, clipped-delta-fin, HART missile

Table 10. Experimental drag and pitching-moment coefficients for blunt-nosetip
model with clipped-delta fins

Free-flight No. MC, I Cd I C,.
(yymmdd##) __M_ [_d _

91041741 1.653 0.708 -72.38
91041740 1.667 0.756 -7171
91041742 1.669 0.731 -71.64
91041843 3.070 0.640 -42.67
91041944 3.125 0.593 -36.86
91050248 4.336 0.514 -27.01
91050147 4.369 0.531 -27.72
91050249 4.393 0.544 -31.22
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Figure 32. Comparison of the total-drag coefficient, Cd, between computation
and experiment for the sharp-nosetip, clipped-delta-fin, HART missile
(a = 00): (a) fin friction drag not accounted for, (b) fiat-plate model of
fin friction drag
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Figure 33. Comparison of the total-drag coefficient, Cd, between computation
and experiment for the blunt-nosetip, clipped-delta-fin, HART missile

°a= 00)

Table 11. Pitching-moment coefficient, C,,,., from free-flight tests of the grooved,
sharp-nosetip model with clipped-delta fins

Free-flight No. Moo C"_
(yymm##)

930710 2.958 -33.567
930707 3.260 -26.513
930708 3.357 -27.794
930705 3.767 -24.226
930709 3.777 -24.178
930706 3.838 -21.910
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Table 12. Pitching-moment coefficient, C,., from ZEUS and EAGLE results for
sharp-nosetip model with delta fins

Mw ZEUS EAGLE]

1.2 - -100.05
1.5 - -89.26
2.5 - -59.37
3.0 -43.0 -47.02
3.5 -32.0 -

4.0 -23.0 -25.41
4.5 -17.0 -17.37
5.0 -14.0 -12.06
6.0 -12.7 -4.69
7.0 -12.0 0.02
8.0 2.42
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Figure 34. Pitching-moment coefficient, Cm., for HART missile showing restabi-
lization trend at higher Mach numbers
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4.5.1 Experimental Model Uncertainty. Based on shadowgraph photography

from the free-flight tests, the author proposes that model inconsistencies might be

the cause of the apparent restabilization. Several shadowgraphs appear to show

different size fins on identical missile bodies [93]. The documented size is depicted

in Figure 36. This size provides a surface area equal to the delta fin on the baseline

model [93]. Also, this is the fin size used in the post-processing of the time, position,

and orientation data to extract the aerodynamic coefficients [37].

Free-flight tests in the ARF (see Section 1.1.1 for a description) are destructive,

therefore, obtaining verification of model anomalies is difficult. Three key pieces of

documentation are available, however. These are the model construction log, the

test range log, and still photographs of the models taken prior to launch. The pho-

tographs are digitized for inclusion in this thesis (Figure 37 and Figure 38). Figure 37

shows a model with a clipped-delta fin that agrees with the documented fin size and

fin location. Conversely, Figure 38 shows that models were constructed with larger

fins. It is impossible to associate specific models with specific data points.

During the 1989-1990 time frame, 45 individual free-flight tests were performed

(sharp-nosetip model), including the clipped-delta-fin models discussed throughout

this document, and several inverted-delta-fin models. The construction of the models

for these tests was not done at one time. The construction log from the Eglin AFB

model shop indicates that 30 models were fabricated in May 1988 and 15 models

were fabricated in February 1990. The pitching-moment coefficient for all 45 tests

is summarized by Figure 39. Due to model failure, and poor trajectory fits, only 28

data points are shown.

The purpose of Figure 39 is to propose a relation between when a model was

constructed and at what Mach number it was fired. In Figure 39, a line is used

to distinguish the highest Mach number tests. The records regarding the date and

Mach number for individual tests show that 15 models were fired between 29 March

1990 and 17 April 1990. More importantly, these 15 models correspond to the 15

highest Mach numbers (due to model failures Figure 39 shows only 12 data points

above Mach 3.88). While it is not possible to associate specific models with specific

tests, the construction and test logs indicate that the 15 models for the tests above

Mach 3.88 were fabricated later than the models for the 30 other tests.

The author suggests that the higher Mach number tests were flown with models

that had larger fins. To further confirm this possibility, three numerical experiments
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Figure 36. Documented fin size and position of clipped-delta fin (normalized by the
body diameter)

are conducted with a larger fin. The size and position of this large fin are determined

solely from the photograph shown in Figure 38: the larger fin's root cord is 3.2D,

the tip cord is 1.6D, and the distance from the missile base is unchanged. Large-

fin computations are made for Moo = 2, Mo, = 3.5, and Mo = 4.5. These are

designated Cases SB9, S35, and S36, respectively. The pitching-moment coefficient

from computations with the original fin size (Cases $28-S32) are compared to Cases

SB9, S35, and S36 in Figure 40; the results for the original fin size will be discussed

at length in Sections 4.5.2-4.5.4. Spline curves are fit through the computed data in

Figure 40. The small-fin data correlates best with the free-flight data below Mach 3.9

and the large-fin data correlates best with the data above Mach 3.9. Although it is

not possible to link the photograph of the larger fin to specific tests, the information

available suggests that the restabilization trend is the result of a model discrepancy

and not aerodynamics.

The stability analysis is now continued to determine the stability characteristics

at Mach numbers exceeding 4.5. Throughout the remaining analysis of static stability

for the HART missile, experimental data for any sharp-nosetip test that exceeded

M.o = 3.9 is treated as unreliable. The models for the blunt-nosetip tests were

constructed in February 1991, and the fins for those models are believed to be correct.

Therefore, all data from blunt-nosetip experiments are used for comparison.

Results from all thin-fin calculations are summarized in Tables 13-16. In Ta-

ble 13, C,,. is tabulated for the sharp-nosetip computations for Mo, = 2 to Moo = 6

under inviscid, laminar, and turbulent conditions. Similarly, in Table 14, C,,. is

tabulated for the blunt-nosetip computations for M.. = 2 to Moo = 6 under inviscid,

laminar, and turbulent conditions. The normal-force coefficient and the center of
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Figure 37. A model that was constructed in agreement with the documented fin
size and position

Figure 38. A model that was constructed with a larger fin
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Figure 39. Experimental pitching-moment coefficient, C..: (a) clipped-delta-fin
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pressure are tabulated in Tables 15 and 16 for the sharp-nosetip and blunt-nosetip

computations, respectively. The data in these tables are also for M,, = 2 to A1o = 6.

Before boundary-layer effects (laminar and turbulent) are discussed, the primary

pitching characteristics are determined from the inviscid data in Tables 15 and 16.

4.5.2 Inviscid Results. The inviscid pitching-moment results are primarily

compared with EAGLE results and the theory provided by (9) and (10). Compar-

isons are also made to the experimental data to confirm the trends of Cm. with

Moo at lower Mach numbers. The coefficients in (10) are recalculated for a center

of gravity located at 43.5% of length to establish consistency with the experimental

clipped-delta-fin model. The locations of the centroid for the fins and the center of

gravity for the clipped-delta-fin model differ slightly from the baseline model, and
are discussed in Section 4.5.6. Equation (9) is shown with the EAGLE results, the
experimental data, and the current inviscid results (Cases $1-$10) in Figure 41a

for the sharp-nosetip model. The experimental data in Figure 41b are from the

blunt-nosetip tests and the reevaluated sharp-nosetip tests. Sharp-nosetip exper-

imental data above Mach 3.9 is not shown in either figure based on the possible

experimental model variations noted in Section 4.5.1.

Several levels of agreement exist in Figures 41a and b. First, each set of
data indicate the decreasing trend in static stability with increasing Mach number,

predicted by inviscid, linear theory. Second, the qualitative relation between Cm.

and Aio that is exhibited by the experimental data (for Moo < 3.9) is equally well

predicted by the current computations and previous EAGLE solver computations.

Third, below AIoo = 4, the magnitude of Cm,. from Cases SI-SO agrees reasonably

well with the EAGLE results.

The interesting disagreements in Figures 41a and b exist above Mach 4. In

contrast to the EAGLE results, the current results show a much gentler decrease
in the stability margin as Mach number increases beyond 4. The author believes

the difference is related to the azimuthal clustering of nodes in the present study

versus coarse unclustered nodes in the EAGLE study. Although free-flight data

is apparently unreliable for Moo > 3.88, it also appears to exhibit a more modest

decline in C,,.. The difference between the values predicted by the EAGLE solver
and those predicted by the current solver are very important. Neutral stability is
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Figure 40. Pitching-moment coefficients from the correct fin and the larger fin

Table 13. Pitching-moment coefficient, C,,., from current computations for sharp-
nosetip model with clipped-delta fins (Cases SI-S34)

MMol Inviscid Laminar Turbulent
2.0 -58.53 -57.36 -50.37
3.0 -34.79 -33.60 -31.46
3.5 -27.64 -27.93 -23.73
4.5 -17.26 -19.20 -15.34
6.0 -11.50 -14.72 -10.44

Table 14. Pitching-moment coefficient, C.., from current computations for blunt-
nosetip model with clipped-delta fins (Cases BI-B31)

Moollnviscid Laminar Turbulent

2.0 -66.00 -64.89 -58.64
2.95 -43.32 -42.73 -38.63
3.5 -35.00 -34.59 -30.79
4.0 -29.69 -30.83 -27.06
4.5 -27.14 -28.34 -24.51
5.0 -24.89 -26.03 -22.17
6.0 -21.46 -23.96 -20.54
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Table 15. Normal-force coefficient, C,,., and center of pressure, xqI from current
computations for sharp-nosetip model with clipped-delta fins

M00  Laminar Laminar Turbulent Turbulent
Xo z,plL C. xc, lL

2.0 12.89 0.621 11.92 0.611
3.0 10.88 0.564 10.15 0.564
3.5 10.23 0.549 9.56 0.538
4.5 9.50 0.519 8.81 0.508
6.0 8.84 0.504 8.09 0.489

Table 16. Normal-force coefficient, C,,., and center of pressure, xz,, from current
computations for blunt-nosetip model with clipped-delta fins

Moo Laminar J Laminar Turbulent Turbulent
C..° XplL C..o xmlL

2.0 13.08 0.642 12.50 0.631
3.5 9.83 0.582 9.05 0.577
5.0 8.03 0.570 7.62 0.556
6.0 7.48 0.569 7.01 0.557
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sus experiment
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Figure 42. Comparison of pitching-moment coefficient, C,,,., from three inviscid
solvers

reached at Mo. = 7 with EAGLE, but beyond Moo = 7 with extrapolation of the

current sharp-nosetip results, and beyond that with the blunt-nosetip results.

The blunt-nosetip results differ from the sharp-nosetip results, at higher Mach
numbers, due to a shift in the center of pressure on the missile body. This is di-

rectly related to the nosetip geometries, and persists for the laminar and turbulent

calculations, as shown in Sections 4.5.3-4.5.4. In Figure 41b, at Moo = 2, C,,. for

the blunt-nosetip model is 13 % more negative than the sharp-nosetip model. At

M.. = 6, Cm for the blunt model is twice that for the sharp model.

In Figure 42, the Cn.•-Mo trends for all inviscid computations (prior and

present) on the sharp-nosetip model are compared. The experimental data are in-
cluded for reference. The ZEUS results from the baseline delta-fin configuration are

included to provide useful qualitative information at higher Mach numbers. All three

sets of computational data predict similar trends in C,,,m with MO, below Mach 4.

Above Mach 4, the present computations depict a trend with Mach number that is
between the EAGLE trend and the ZEUS trend. Again, the difference is believed to

be related to azimuthal clustering near the fin surfaces.
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The cross-plane velocity components are shown in Figure 43 for inviscid flow at

Moo = 2 and a = 50 (Case S6). Streamlines created from the cross-plane velocities
are also shown in Figure 43. The shape of the streamline which begins on the
windside of the missile near the symmetry plane (y = -1.25, z = 0), shows that the
cross flow is not significantly displaced from the missile surface (expect for the region
above the leeside fin). In addition, the velocity vectors show that the crossflow is
small, and the expansion and compression on each fin are distinctly separated.

4.5.3 Laminar Results. The effects of viscosity are initially assessed for lami-
nar boundary-layer conditions. Most experiments indicated that the boundary layer
had become turbulent upstream of the fins, but the impact of turbulence is best
determined after laminar results are documented. Again, the sharp-nosetip and
blunt-nosetip pitching-moment coefficients from the present study are plotted versus
Mach number with the experimental data (Figure 44). The inviscid results that were
previously discussed are included for reference. Interestingly, the laminar and invis-
cid results agree at low Mach numbers, and begin to diverge at about Moo = 3.5.
At the higher Mach numbers, the boundary layer appears to improve C,.o (i.e., C,.

is more negative). The impact of the boundary layer is approximately the same for
the sharp and blunt models.

The agreement at low Mach number is also evidenced by the fins' surface
pressures. In Figure 45, the pressure contours are shown on the fin surfaces for

laminar flow, a = 50, and Moo = 2. The pressure contours in Figure 45 are very
similar to those for inviscid flow (Figures 22 and 23).

The pressure contours in the cross plane (y-z plane) for ca = 5°, M". = 2 to
Mo, = 6, and laminar flow (Cases S16-S20) are compared to those for inviscid flow
(Cases S6-S1O) in Figures 46-55, These cross-plane contour plots are for E = 21.8.D
This is a point near the middle of the fins.

As Mo, increases, the pressure gradient near the fin surfaces increases. This is
evidenced by the piling up of pressure contours on the bottom of the leeward fin. It
also shows that a refined grid is needed in this area (clustering near fin surfaces is

employed in all computations in this study).

The cross-plane pressure contours in Figures 46-55, also indicate that the lam-
inar flow structure is similar to the inviscid structure below Mach 3.5. At higher
Mach numbers, however, the boundary layer has influenced the pressure distribution
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Figure 43. Cross-plane velocity components, Case S6 (Mo, = 2, c = 50)
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Figure 46. Pressure contours, Case S6 (Moo = 2, a = 50, inviscid)
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Figure 47. Pressure contours, Case S16 (Mo, = 2, a = 50, laminar)
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Figure 48. Pressure contours, Case S29 (M, = 3, a = 5o, inviscid)
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Figure 49. Pressure contours, Case S17 (Moo = 3, a = 50, laminar)
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Figure 50. Pressure contours, Case S30 (M, = 3.5, a = 5°, inviscid)
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Figure 51. Pressure contours, Case S18 (Mo = 3.5, a = 5°, laminar)
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Figure 52. Pressure contours, Case S31 (M, = 4.5, a = 50, inviscid)
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Figure 53. Pressure contours, Case S19 (Mo = 4.5, a = 50, laminar)
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Figure 55. Pressure contours, Case S20 (Mo. = 6, a = 5°, laminar)
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slightly. The higher pressure values on the compression sides of the fins for M,, = 6

can be seen in Figure 55 versus Figure 54. Thus, the pitching-moment coefficient

decreases less with increased Mach number owing to the presence of viscosity.

Figure 56 shows the cross-plane velocity components for laminar flow at

Moo = 2 and a = 5* (Case S16). The cross-plane velocity components show that

crossflow is small for laminar flcw also. Streamlines are again created from the

cross-plane velocities, and shown in Figure 56. These streamlines are slightly more

displaced than those for inviscid flow.

4.5.4 Turbulent Results. The influence of turbulence is now addressed. The

sharp-nosetip and blunt-nosetip turbulent results are plotted with the laminar results

in Figures 57a and 57b, respectively. The position of the transition point does not

seem to have a large impact on C,., since sharp-nosetip results (Figure 57a) and

blunt-nosetip results (Figure 57b) show similar decreases in Cn, from the laminar

results. Recall that the sharp-nosetip models and the blunt-nosetip models have

different transition points (Section 3.4). Also, the same modest trend with Mach

number is seen for both nosetips at higher Mach number. The pitching-moment

coefficient for turbulent flow increases measurably over that for laminar flow. The

lower static stability (C,,. less negative) for the turbulent computations is due to

the compression bleeding around the leading edge of the windside fin, and affecting

the pressure on the expansion side of the fin.

The cause of this phenomenon is seen in the streamlines of the cross-plane

velocity components (Figure 58). The streamlines are significantly displaced from

the missile body between the windside fin and the symmetry plane. This indicates

that the turbulence plays a significant role in the region where the cross flow is

blocked.

The bleeding effect for turbulent flow is also seen in the cross-plane pressure

contours. The cross-plane pressure contours for turbulent flow, a = 50, and Mo, = 2

(Cases S28) are compared to those from laminar flow in Figures 59 and 60. The

bleeding of higher pressure air around the fin leading edges is visible in the turbulent

case.

Figure 61 compares the turbulent pitching-moment results for both nosetips.

The experimental values are added for comparison. Agreement between the com-

puted and experimental values of Cm. is within about 10%. The blunt-nosetip re-
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Figure 56. Cross-plane velocity components, Case S16 (Moo = 2, Ct = 50)
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Figure 59. Pressure contours, Case S28 (Mo = 2, a = 50, turbulent)
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100



suits provide further clarification to the suspected restabilization phenomenon. The

present computations indicate that the stability of the blunted model is superior; the

blunt-data curve has more negative Cm, values than the sharp-data curve. A more

favorable pressure distribution on the missile body causes a small shift in the center
of pressure, and thus better stability. The correlation of the blunt-nosetip experimen-
tal pitching-moment coefficients with the erroneous sharp-nosetip pitching-moment

coefficients was purely coincidental.

4.5.5 Influence of Base Flow. The effects of the base flow on pitching moment
are examined next. Four computations are performed to assess the impact of the
base region on the pitching-moment coefficient. These computations are made for

a = 50 and Mo = 2 to M,, = 6 (Cases SB5-SB8). Throughout the range of
Mach numbers tested, the base flow did not appreciably affect the pitching-moment
coefficient (Table 13). The variation of pressure across the missile base is mild
(Figure 62), thus producing almost no contribution to the pitching moment.

4.5.6 Comparison Between the Clipped-delta-fin Configuration and the Base-

line Configuration. First, differences between the two configurations are discussed.

The aerodynamic coefficients (drag and pitching moment) are then contrasted to
determine the impact of changing the planform of the fins.

4.5.6.1 Change in Center-of-gravity and Fin Position. In order to com-

pare the results for the clipped-delta-fin model to the baseline model, which has delta
fins, similarities and differences in the models must be taken into account. Both mod-
els had identical tangent-ogive noses with smooth cylindrical bodies, and equivalent
fin surface areas. Two differences that do exist, however, are the center-of-gravity
locations and the fin-leading-edge locations. The delta-fin model has a center of
gravity at 43% of length, while the clipped-delta-fin model has a center of gravity

at 43.5% of length. Although this may not seem very dramatic, it does affect the
pitching-moment coefficient measurably. In addition to a slightly different center of
gravity, the locations of the fin leading edges differed. Figure 63 shows both fins and
their positions on the missile body. The different leading-edge locations will also

affect the pitching-moment coefficient.

4.5.6.2 Aerodynamic Comparison. Given the differences stated above,

characteristics for the clipped-delta-fin model are contrasted with the traits of the
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Figure 62. Pressure contours on the missile base, Case SB7 (Mo = 6, a = 50)

baseline, delta-fin model. The effect on drag is minor. Figure 64 combines the drag

data from delta-fin free-flight analysis, and the drag data from the clipped-delta-fin

free-flight analysis, and compares it to the current turbulent results. The wave drag

on the fins of the delta-fin model should be slightly greater than the wave drag on

the fins of the clipped-delta-fin model. This difference is impossible to detect within

the scatter of the data. Thus, the experimental data is in agreement, despite the

small discrepancies in the models.

The static-stability characteristics differ much more. The pitching-moment

coefficients from both models are shown in Figure 65. The delta-fin model demon-

strates better (more negative) stability due to the more forward center of gravity and

the more rearward fin position. The difference is smaller at higher Mach numbers.

In addition, the slope of the C,.-Moo curve for the clipped-delta-fin configuration is

slightly less steep than the curve for the delta-fin configuration. The direct compar-

ison indicates that the clipped-delta-fin has slightly inferior stability characteristics

at lower Mach numbers, but potentially superior characteristics at higher Mach num-
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Figure 63. Positions of the clipped-delta fin and the delta fin relative to the base

bers. This is supported by the present viscous calculation which extend to M. = 6.

The author attributes the difference to greater portions of the fin area being sub-
merged in the boundary layer. As stated in Section 4.5.3, for the present calculations,
at higher Mach numbers, the boundary layer affects the pressure distribution in a

manner which increases fin effectiveness.
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5. Summary and Conclusions from Thin-fin Investigation

An efficient and accurate computational tool has been constructed to predict

the aerodynamics for fin-stabilized missiles in supersonic flow. An infinitely thin-

fin assumption is used to decrease the grid requirements, and the method can be

used on sharp-nosetip or blunt-nosetip configurations, with or without a base re-

gion. Inviscid, laminar, or turbulent conditions can be simulated. The accuracy to

which shock waves, boundary-layer properties and base-flow effects are calculated

is documented over a broad range of Reynolds numbers and Mach numbers. Using

the present developed technique, the flow about the complete Hypersonic Applied

Research Technology (HART) missile configuration is simulated.

In general, all forces on the body and normal forces on the fins are accurately

modeled with the present method. Due to the degenerate cross sections of the

fins, forces on fin edges cannot be directly calculated, so semi-empirical corrections

are proposed for fin wave drag and fin base drag. These overcome the deficiency

in drag prediction from the thin-fin assumption, as demonstrated by the fine-grid

calculations on the sharp-nosetip model. By using an empirical correction for the

viscous drag on the fins (required due to the coarseness of the grid in the azimuthal

direction), an accurate upper limit on drag is established. This limit corresponds to

turbulent conditions over most of the body (V > 1.25).

Both drag and pitching moment are dominated by compressibility effects. For

the former, the base drag and turbulent viscous drag decrease substantially with

increasing Mach number. For the latter, fin effectiveness is seen to decrease with

increasing Mach number.

Also, the presence of turbulence is found to be significant. The expansion

and compression associated with the upper and lower surfaces of the inclined fins

produce less net lift for the present turbulent computations than the present inviscid

or laminar computations. The discrepancy between the present prediction of C,,.

and the experimental prediction of C,. around MO" = 2.9 cannot be explained by the

author. Most experimentally determined pitching-moment coefficients fall between

the present laminar and turbulent calculations (Figure 66).

The base flow is found not to affect the pitching characteristics significantly.

For the small angle of attack used in this study, a = 50, the flow structure between
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Figure 66. Pitching-moment coefficient, C.., for sharp-nosetip HART missile with
clipped-delta fins (a = 0*).

the fins and the base does not change significantly from the structure for simulations

made without a wake. In addition, the variation of pressure across the base does not

contribute measurably to the pitching moment.

The aerodynamic characteristics of the HART missile, at Mach numbers be-

yond the experimental testing capabilities, are predicted. The current predictions

indicate that C.. decreases with increasing Mach number much less than the pre-

vious EAGLE computations. The differences in C,. between the current inviscid

results and EAGLE results above M.. = 4 are not fully explained. The clustering of

nodes near the fin surfaces may explain the difference, and should be explored fur-

ther for future EAGLE computations. The current results agree more closely with

the trends predicted by ZEUS. Extrapolating the current results beyond M, = 6

suggests that the clipped-delta-fin configuration is stable past M. = 7.

The larger than expected drag scatter, that is seen experimentally for the

sharp-nosetip configuration, is explained. A reevaluation of the experimental data
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reveals that much of the scatter is due to poor fits between theoretical and experi-

mental trajectories. Boundary-layer effects are the presumed cause for the remaining

scatter. The reevaluated drag data falls between the current laminar and turbu-

lent calculations, and very close to the latter. This suggests that for most flights

boundary-layer transition does occur on the ogive nose, as modeled, and for a few

flights the boundary layer was laminar over a larger portion of the forebody.

The poor correlation between previous computational predictions of drag

(EAGLE with corrections) and experimental drag is also explained. The poor agree-
ment is caused by the empirical corrections not the EAGLE results. The empirical

relation used for turbulent viscous drag does not take into account compressibility

and the large Mach number dependence exhibited by turbulent skin friction. In

addition, fin pressure drag is neglected. In this study, it is determined that the
wave drag and base drag on the fins are not negligible. The same causes (neglecting

compressibility effects and fin pressure drag) are traced to the mediocre agreement
between corrected EAGLE results aud experimental results for the baseline HART

missile (delta-fin configuration).

An explanation for the restabilization trend with increasing Mach number has
been offered. This trend is seen only in the experimental data, and is believed to
be the result of model discrepancies. Documentation is provided to show that a

larger fin was used in some of the free-flight tests. In addition, a reevaluation of the
data, using the correct smaller fin size, confirmed the apparent change in the static-
stability trend with increasing Mach number. Finally, computations were performed
with a larger fin, and these calculations agree with the suspect experimental data.

The effects of nosetip blunting are demonstrated. As expected, drag is much

higher for a blunt nosetip. Fin effectiveness decreases due to compressibility by an
amount approximately equal to that for the sharp-nosetip model, but the contribu-
tion to pitching moment from the missile body is demonstrated to depend on nosetip
shape. The pressure distribution on the blunt-nosetip missile body affects the center
of pressure significantly, and results in better static-stability characteristics, partic-

ular as M, increases.

A direct comparison of the drag and pitching moment between the clipped-
delta-fin configuration and the baseline, delta-fin configuration reveals two impor-
tant points. First, the effect on drag in minor. Although the wave drag on the

fins of the delta-fin model should be slightly greater than the wave drag on the fins
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of the clipped-delta-fin model, the difference is within the scatter of data. Second,
the static-stability characteristics differ markedly. The slope of the C,.-M.. curve

for the clipped-delta-fin model is slightly less steep than the curve for the delta-fin

model, and indicates that the clipped-delta-fin configuration has slightly inferior sta-

bility characteristics at lower Mach numbers, put potentially superior characteristics
at higher Mach numbers. This is supported by the current viscous calculations which
extend to M,,- = 6. The author attributes the effect to greater portions of the fins
being submerged in the boundary layer. For the present computations, at higher

Mach numbers, the boundary layer affects the pressure distribution in a manner
which increases fin effectiveness. This remains an unresolved issue, and viscous cal-

culations for the delta-fin configuration are warranted to further discern the cause(s)

of the differences.

The grid requirements are found to be demanding to simulate flow for a com-
plete missile configuration. It is demonstrated that accurate calculation of turbulent
skin friction necessitates a very small node size near the missile surface. In terms of

the nondimensional, boundary-layer length scale, y+, a spacing of y+ t 1 is needed
with at least 40 points (cells) in the boundary layer. Simulating the flow in the base

or wake region adds considerably to the computational requirements. It is important

to emphasize that these requirements are needed to achieve grid independence for
skin friction. The requirements are less to predict other boundary-layer properties

and surface pressure with reasonable accuracy.

Two simplifications are found to greatly reduce the grid requirements in gen-
eral. First, it is not necessary to simulate the base flow in order to predict Cd or
Co. This is because the effects of the base region on pitching moment are small,

and the accuracy of the empirical base drag relation is reasonable. Eliminating
the wake region decreases the overall number of grid points required. In addition,
the pitching characteristics of the HART missile are accurately predicted with the
thin-fin assumption. The deficiency in the pressure-gradient boundary condition is

overcome by clustering nodes near fin surfaces, and the drag on the fins is calculated

using the degenerate cross sections with semi-empirical corrections. Therefore, a
reasonably small number of nodes are required in the azimuthal direction (33 for the

bisymmetric half plane in this study).
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Part II: Investigation Using Thick Fin
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6. Methodology for Thick-fin Investigation

Many aspects of the fins influence the stability characteristics of a fin-stabilized

missile. Obviously, the size, shape, location, and orientation of a fin will dominate

its pitching capability, by virtue of the fin's impermeable nature. This was seen

in Part I with a series of inviscid computations. Other factors will affect pitching

moment and static stability in a second-order manner. In general, these include

viscous effects, the amount of fin area submerged in the missile boundary layer,

and the cross-sectional shape of a fin. The precise values of properties within the

boundary layer on the fin will impact the pitching moment at a tertiary level. The

secondary viscous effects were examined in Part I by neglecting the impact of cross-

sectional shape and thickness. The accuracy of this assumption, and thereby the

effect of thickness and cross section, is addressed in this part of the research.

First, the flow structure near a blunt-swept-fin/body junction is reviewed with

the emphasis on highly swept fins. A boundary for incipient separation at the fin-

leading-edge/body junction was suggested by Stollery [80], and is also discussed.

Finally, the numerical implementation of the thick fin is presented.

6.1 Increased Modeling Complexity

The intent of this part of the research is to determine whether the thickness and

cross-sectional shape of the fins influence the pitching moment of the HART missile

significantly. As stated above, the author has categorized the effect as secondary.

It is possible that the shock waves created by the highly swept fins do not induce

boundary-layer separation. In this case, the effect of fin thickness may be tertiary,

and would depend on the average thickness of the fin in causing flow blockage, not on

the actual cross-sectional shape. The results from the infinitely thin fin assumption

in Part I agree very well with the experimental data. This suggests that the impact of

the fin's thickness and cross section may in fact be small. Unfortunately, to the best

of the author's knowledge, nobody has investigated turbulent, supersonic flow past

a swept, flat-faced fin. Therefore, no quantitative information is readily available in

the literature.
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6.2 Flow Structure Near a Blunt-Swept-Fin/Body Junction

The flow structure which should be predicted for this fin geometry is not en-

tirely clear. In general, a fin/body junction results in the formation of a corner

vortex, which influences the flow near the body and around the fin, near its root.

Also, for a blunt fin, it is possible (definite for an unswept fin) that the shock cre-

ated by the fin separates the boundary layer on the missile body. This results in

flow reversal, and the development of a horseshoe vortex structure [80]. The higher

pressure in the interaction region, and the lower pressure associated with the vortical

flow region may in turn modify the static-stability characteristics of the missile.

The interaction weakens dramatically, however, as the fin sweep angle increases.

Several researchers have questioned whether separation occurs for severely swept,

cylindrically-blunted fins at high Mach numbers [64, 99, 55]. Again, there is a general

lack of data for flat-faced fins. To gauge the benefit of sweep in reducing the level

and extent of the disturbed pressure field, the pressure distributions generated by

a blunt, swept fin at incidence are taken from [41] for A = 30* and A = 750 and

M.. = 2.95 (Figure 67). The current turbulent thin fin results (A = 70°) are also

shown in Figure 67 for Case S29 (M. = 2.95 and a = 50). The pressure is measured

along the junction line and nondimensionalized by the pressure 5 fin thicknesses,

t, upstream of the fin-leading-edge/body junction, P. Because the fin from [41] is

spherically blunted, some data does not correspond to the fin/body junction, but is

from a line projected upstream from the junction.

Both the pressure ahead of the fin/body junction and the pressure immediately

downstream are affected significantly by sweep. As discussed in Chapter 4, the

boundary layer does not separate in the current computations with the thin-fin

assumption. This could be due to the severe sweep angle, as suggested by the data

from [41]. To further clarify the thin-fin results, calculations are made for two Mach

numbers and a thick fin.

6.3 Suggested Boundary for Incipient Separation at Fin Leading Edge

The strength of the interaction at the fin/body junction relies on the sweep

angle of the fin. This was discussed in Secion 2.4.2. However, it may be possible to

identify more precisely the sweep angle required to prevent separation. Stollery [80]

suggests that there is a direct relationship between the Mach number and sweep
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Figure 67. Surface pressure from a swept-blunt-fin/flat-plate interaction and the
current thin-fin/missile-body interaction.

angle such that a boundary for incipient separation exists. Within a A - Mo,, region

defined by this boundary, separation is possible; everywhere else, it is not.

The boundary is established by two conditions required for an attached shock

at the nose. The first condition is the maximum sweep angle that ensures the leading

edges are supersonic, in the sense that the normal component of the Mach number

is greater than one (MN > 1). The second condition is the minimum sweep angle

required for an attached oblique shock to a wedge. The region bounded by these

two conditions is shown in Figure 68. In Figure 69, a line is added to show where

incipient separation occurs in supersonic flow over a compression corner [80]. Kubota

and Stollery [48] have shown that separation occurs more readily for a glancing

interaction (fin/body) than for a two-dimensional interaction. Therefore, the line

representing separation over a compression corner helps to further define the region

where the shock is attached at the leading edge. The region above this line is where

an attached boundary layer is likely, and below the line it is only possible. Also, in

Figure 69, the two Mach numbers examined in Part II of this study are indicated.
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Figure 68. Boundary for an attached shock at the leading edge of a blunt fin.

The point M., = 2 and A = 70° lies outside the "attached" region, and the point

M,, = 6 and A = 70° lies well within the region.

6.4 Numerical Implementation

Due to increased computational demand, necessitated by grid refinement near

the fin leading edge, the entire configuration is not reexamined. Instead, a much

smaller region is defined around the fins and aft part of the missile. The thick fin is

modeled using an H-grid [86] to minimize algorithm and boundary condition changes.

The structure of the grid and -nodifications to the boundary conditions are discussed

in the next two sections.

6.4.1 Grid Structure. The domain size is reduced to add more cells in the

finned region. The inflow boundary is placed ten fin thicknesses upstream of the

fin-leading-edge/missile-body junction, allowing for potential disturbances ahead of

the junction. The shape of the inflow boundary is taken from grid points used in

Part I. In addition, the outer boundary is placed only three body diameters from

the missile surface. Both of these boundaries require different boundary conditions

than used in Part I. The new boundary conditions are described in Section 6.4.2.
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Figure 69 Boundary for incipient separation at the leading edge of a blunt fin.

Unlike Part I, the grid used in Part II is constructed such that the grid lines

conform to the leading edges of the fins. Additionally, the cells are distributed az-

imuthally so that the grid conforms to the upper and lower surfaces of the fins.

Because the fins now have thickness, some cells are arranged with the curvilinear

grid lines not normal to the missile surface. The deviation from a normal distri-

bution is small. To achieve a grid which is aligned with the fin leading edges, the

cells are skewed substantially. The author assumes that the current finite-volume

methodology of handling grid-cell geometric terms will minimize the error associated

with skewing, as proposed by [91].

A total of 121 cells are distributed in the azimuthal half plane, some of which

are located on the interior of the fin. Those points are essentially ignored during

the computation. The node spacing at the fin-leading-edge/missile-body junction is

0.001D, and the spacing along the fin upper and lower surface is 0.00085D. Spac-

ing at the body surface is the same as for the fine grid computations in Part I

(0.000025D). Like Part I, the boundary conditions for the fin surfaces are enforced

on the interior of the domain, and the flow solver is restrained from obtaining infor-

mation across or through a fin.

115



6.4.2 Modification of Boundary Conditions. The solutions from the compu-

tations in Part I are used for the inflow boundary. Linear interpolation is then

employed to determine boundary data between points available from the solutions
of Part I. Because the shape of the inflow boundary is chosen to correspond to grid

points from the grid used in Part I, the author believes that linear interpolation will

provide an adequate inflow solution.

The initial far-field boundary condition is also an interpolation of the solutions

from Part I. From then after, two point extrapolation is used. This extrapolation is

given by:

qi.maz,k = 2 qijm.x-i,& - qijllz-2,k, (58)

where q is any conserved variable. All other boundary conditions remain unchanged

and are described in Section 3.6.
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7. Results and Conclusions from Thick-fin Investigation

In Part II, the effect of fin thickness on HART missile aerodynamics is ad-

dressed, and the accuracy of the thin-fin assumption (Part I) assessed. The primary

intent of this part of the research is to determine whether the pitching moment

of the HART missile is significantly influenced by the thickness and cross-sectional

shape of the fins. Secondarily, the drag contribution from the fins is computed and

compared to the semi-empirical relations used in Part I. Due to increased memory

requirements, thick-fin effects are determined for only two Mach numbers (Mo, = 2

and Mo = 6) and two angles of attack (a = 0* and a = 5*). All cases are for

clipped-delta fins and turbulent conditions.

The effects of fin thickness are assessed by examining changes in the flow

structure near the fins and the drag and pitching-moment coefficients of the missile.

First, the inviscid structure is examined by measuring the surface pressure on the

missile body and both fins. Next, the structure near the fin/body junction is explored

through the use of streamlines and surface pressure plots. The strength of the

shock/boundary-layer interaction for the thick-fin geometry is gauged by comparing

this data in the fin/body junction region with similar thin-fin data. Finally, the

structure near the missile body and along the fin leading edges is shown with contour

and velocity vector plots. Again this data are compared to the results from the thin-

fin investigation. The impact of any differences found is evaluated by reexamining

the drag and pitching-moment contributions from the fins.

7.1 Flow Structure Changes Near Fin

The flow expands and compresses several times around each fin. The nondi-

mensional surface pressure along the centerline of the fins is used in this section to

show the effects of the shocks and expansions that take place near each fin. The

surface pressure is measured along the missile body, the fin leading edge, and the

fin trailing edge in a plane that intersects each fin's centerline. Figure 70 shows

the surface pressure plotted against the axial coordinate for M.. = 6 and a = 50.

The shock wave created by the fin leading edge results in a rapid pressure rise at

approximately x/D = 20.78. The pressure is then relatively constanit along the fin's

leading edge for the windside fin (4 = 135"), and rises gradually for the leeside fin
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(, = 450). A sudden expansion at the clipped portion of the fin is evidenced by the

fall in pressure at x/D = 22.38. The flow continues to expand along the top of the

fin, then rapidly expands again at the base of the fin (x/D = 23.18). Finally, the

flow recompresses downstream of the fin.

The boundary layer near the fin/body junction is not significantly affected by

fin thickness. Through examination of the velocity field near the fin/body junction,

it is observed that the boundary layer remains attached for the thick-fin geometry,

as was the case for all thin-fin computations. Figure 71 shows the streamlines in

the vicinity of the windside-fin (0 = 135°)/body junction for Moo = 2 and a = Y.

The streamlines are constructed from the axial and radial velocity components

(u and v cos 4, + w sin 4,), which are extracted from the three-dimensional solution in

the plane that intersects the centerline of the windside fin. The streamlines depict

an attached boundary layer. An attached boundary layer is also found at the leeside

fin (4 = 450, not shown).

Although the boundary layer does not separate, the shock/boundary-layer in-

teraction influences the pressure upstream of the fin/body junction. Figure 72 is a

plot of the surface pressure along the curve of intersection joining the fin and missile

body for the thick-fin calculation at Moo = 2 and a = 50. Results are presented for

both the windside and leeside fins. The pressure is nondimensionalized by the pres-

sure 5 fin thicknesses upstream of the fin leading edge, P. The upstream influence

through the boundary layer leads to a gradual pressure rise ahead of the fin/body

junction (x - =x = 0) for the thick-fin geometry.

The upstream influence of the thick fin is also evident in data obtained ex-

perimentally for a blunt-fin/flat-plate geometry [41]. This blunt-fin/flat-plate data

is included in Figure 73 with the present thick-fin results. The data from [41] are

for Mo, = 2.95 and two sweep angles (300 and 700). Exact agreement between the

present results and those from [41] are not expected because of differences in Mach

number, fin cross-sectional shape, and body curvature. Specifically, the fin in [41] is

cylindrically blunted and the current fin is flat-faced. Also, a flat plate in [41] replaces

the curved missile body used in the present computations. The author attributes

the small differences in magnitude to these geometric differences. A sharp drop in

pressure is seen in the current data around x - xi, = 0, and is attributed to the more

abrupt expansion around the leading edge of the flat-faced fin. Clearly, however, the
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upstream extent of the pressure disturbance for the thick-fin calculations agrees well

with the similarly swept fin from [41].

7.2 Analysis of Fin Drag

The fin drag from the thick-fin computations (a = 0* only) is summarized in

Table 17. The pressure drag (wave drag plus base drag) and viscous drag is tabulated

to allow direct comparison to the semi-empirical data used in Part I. Also included

in Table 17 is the total drag'obtained by adding the thin-fin results upstream of the

thick-fin domain to the thick-fin results.

The pressure-drag calculations from the thick-fin tests are in reasonable agree-

ment with the semi-empirical data used in Chapter 4. In fact, the wave and base

drag due to the fins is nearly identical at M, = 2. The thin-fin result is 0.042

and the thick-fin result is 0.041. The agreement between the computed pressure

drag on the thick fins and the semi-empirical drag on the thin fins suggests that the

semi-empirical relations give adequate estimates for the drag.

The turbulent viscous drag differs by a slightly larger amount because the

leading edge and trailing edge contributions are included in the thick-fin calculations,

and an empirical correction for these edges was not added to the thin-fin results. At

MM. = 6, the viscous drag coefficient is 0.006 and 0.011 for the thin fins and thick

fins, respectively. However, the agreement is much closer when only the contribution

from the upper and lower surfaces is examined. Again the coefficient for the thin

fins is 0.006, but now the coefficient for the thick fins is 0.007. This is not surprising,

since the azimuthal distribution near the fin is similar for thin-fin and thick-fin

computations.

Table 17. Drag components from thick-fin computations (a = 0)

A + f C+ Cd C) + Cd- Cd
(thin fins) (thin fins) otal (thick fins) (thick fins) (total)

2.0 0.042* 0.013* 0.619* 0.041 0.019 0.632
6.0 0.045* 0.006* 0.265 0.026 0.011 0.262

* See Table 5.
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7.3 Impact of Fin Interaction on Static Stability

As with the turbulent, thin-fin tests in Chapter 4, bleeding of the pressure

took place around the leading edges of the thick fins. Figure 74 is a contour plot

showing the pressure in the cross plane (y-z plane) for M.o = 2 and a = 5*. The

cross-plane plot is for z/D = 21.8. This is the same location used for the contour

plot of pressure near the thin-fin (Figure 58), and is a point near the middle of the

fins. Figure 58 is duplicated in Figure 75 for convenience. Comparing Figures 74

and 75 shows the bleeding of high-pressure to the leeward side of each fin in both

cases. Although the influence extends further away from the fins in the thick-fin

case, the differences in the pressure along the fin surfaces are relatively small.

Like the thin-fin configuration, the bleeding around the thick fins is caused by

the turbulent transport of momentum in a region of blocked flow. For the windside

fin, the flow is blocked by the fin surface and the symmetry plane. For the leeside

fin, the flow is blocked by the fin surface and the expanding flow near the body.

Figures 76(a) and (b) show the cross-plane velocity components at Mo = 2 and

a = 50, for the thick-fin and thin-fin computations, respectively. The velocity vectors

are also included in Figure 76. Complex flow structures are clearly evident below

each fin. The similarity in the thick-fin cross-plane streamlines with those for the

thin-fin case suggests that the structure of the flow is dominated by the blockage

phenomenon.

Two relatively small effects of fin thickness are discernible in Figure 76. First,

the extent of the structure below the windside fin is greater for the thick fin than

the thin fin. Also, the structure below the leeside fin is more fully developed in the

thick-fin case.

The impact of fin thickness on Co is also relatively small. Figure 77 is a plot

showing the variation of C,,o with M. for the sharp-nosetip missile. The experimen-

tal data are represented as open symbols, and the thin-fin results from Chapter 4

are connected by a cubic spline curve. The two data points from the thick-fin tests

are obtained using the thin-fin data upstream of the thick-fin domain. The level of

correlation between Co from the thick fins and C.. from the thin fins, supports

the categorization of thickness as a secondary effect on pitching moment. The value

of C,,. changed 4.9% at M. = 2 and 31.9% at M. = 6. Therefore, although a

secondary effect, thickness has a growing contribution to C,. with increasing Mach

number.
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Figure 77. Pitching-moment coefficient, Cm,., for sharp-nosetip, clipped-delta-fin
model: thick-fin results versus thin-fin results

Several factors contribute to the differences in the thin-fin and thick-fin pitch-

ing moment. First, the thick fin occupies some of the body surface that was used

to calculate Cm. in the thin-fin tests. Second, the flat-faced fin design allows an

additional contribution to the pitching moment from the fin leading edges in the

thick-fin tests. At M,,- = 2, these two competing factors nearly offset each other,

and the change in Cm. is small. In contrast, at M,, = 6, the leading edges provide

a much larger component and the impact of fin thickness on Cm, is larger.

Interestingly, the pitching moment created by the upper and lower surfaces of

the fins is found not to depend on fin thickness. The contribution from these surfaces

differed less than 2% between the thin-fin and thick-fin computations.

7.4 Summary and Conclusions of Thick-Fin Analysis

Due to the highly swept configuration of the fins, the shock/boundary-layer

interaction at the fin/body junction is very weak. The clearest indication of the
weakness is that separation does not occur at either Mach number tested. In ad-
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dition, the disturbance in pressure is limited to one fin thickness upstream of the

junction. The level of disturbance found in this investigation is similar to that found

by other investigators on simpler geometries [64, 99, 55].

Although the fins are highly swept, the pressure drag is still significant because

the fin edges are square. The contribution to the total drag is 6% at M.. = 2 and

10% at AfM = 6. Changing the leading edge shape through rounding or sharpening

will undoubtedly reduce this drag component considerably.

The structure of the flow near the fins is affected by the turbulent transport

of momentum in regions of blocked flow. As with the thin-fin tests, this blockage

phenomenon causes bleeding of pressure around the fin leading edges. The strength

and extent of the flow structures that develop in the blocked regions appear to be

enhanced by fin thickness. The author speculates that this is caused by further

constraint of the flow geometrically dictated by the physical thickness of the fins.

As stated in Section 7.3, the level of correlation in C,,,. between the thick-fin

and thin-fin configurations supports the categorization of thickness as a secondary

effect on pitching moment. The change in pitching-moment coefficient for the thick-

fin tests is caused by lift on the leading edges.

It may be possible to empirically model the pitching contribution from the fin

leading edges. This could be accomplished in much the same way that the pressure

drag from the leading edges )is determined. An empirical approach to modeling thick-

ness effects is attractive because of the dramatic reduction in memory requirements

for the calculation of the entire missile flowfield.
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Appendix A. Algorithm Validation Using Axisrymmetric Equations

The intent of the validation experiments is to determine the algorithm's ac-

curacy and sensitivity, and then establish the grid requirements for HART missile

research. Therefore, one objective of the current study is to build a computational

methodol-gy that is sufficiently general to compute accurately a wide variety of flow

structures. At the same time, this method must be both frugal in its computer

utilization and accurate in predicting the aerodynamics of long projectiles. These

requirements must be met so that the approach can be effectively used to study the

stability of long, slender, fin-stabilized missiles.

The Navier-Stokes equations are solved with an explicit, time-integration tech-

nique, incorporating an upwind, Roe-type, flux-difference splitting (FDS) scheme

[71]. To establish a baseline, an initial assessment of the algorithm is made assuming

axisymmetric flow. This provides an appropriate reference point for future investiga-

tions using the full, three-dimensional equations (Chapter 3). The cylindrical form

of the Navier-Stokes equations is described in Section A.1.

The current research investigates the robustness and accuracy of the basic

algorithm for the flight conditions of interest. Specifically, tests are run for Mach

numbers ranging from 1.5 to 8, and Reynolds numbers from 1 x 106/m to 2 x 10/m.

Calculations are made on axisymmetric bodies with fineness ratios between 9 and

23. In Addison, several different nose-tip shapes (Figure 78), with varying degrees

of bluntness, are investigated. Both laminar and turbulent conditions are simulated

on the forebody and base. Since the ongoing goal of the research is to predict

the aerodynamics of both finned and unfinned bodies, the ability of the algorithm

to calculate a complete configuration is paramount. To demonstrate this ability,

laminar flow is computed on a highly blunted, tangent ogive-cylinder model with a

flat base. The fineness ratio is 23, and Mach number is varied from 2 to 7; total

drag is compared to experimental tests of this shape (with fins) [93]. Laminar flow is

also computed on a hemisphere-cylinder, LID = 14, at Mach 7.78 and compared to

experiments [47]. These comparisons provide a refined level of flow interrogation to

verify the algorithm's accuracy. Then, turbulent flow is computed on pointed, flat,

and spherically tipped tangent ogive shells, LID = 9, at Mach 2.95. These results

are compared to both experiment [13] and independent computational results [29].
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Figure 78. Experimental/computational models and nose-tip shapes
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These tests determine the algorithm's ability to predict accurately the influences of

upstream effects on boundary-layer development. Finally, turbulent flow is computed

for a flat base region and Mach numbers between 1.5 and 7.0. These results are

compared to experimental data reported in [10, 11, 31, 38, 53, 663. The base-flow

tests are performed to demonstrate the validity and accuracy of the wake-region

turbulence model, described later.

Accuracy and sensitivity issues are summarized in Tables 18 and 19. De-

tails are highlighted in the sections that follow. Numerical accuracy is judged from

comparisons with theoretical solutions for stagnation pressure and velocities in a tur-

bulent boundary layer. Additionally, the effect of the entropy correction parameter

on surface pressure is assessed for both the nose and wake regions.

A.1 Axisymmetric Equations

The geometric singularity associated with axisymmetry poses significant dif-

ficulty when employing either two-dimensional or three-dimensional grids. Recent

work reported in [63] proposed two methods of handling this singularity for three-

dimensional grids. Both oi these methods are explored here, in the context of ax-

isymmetric flow. Some differences are found on both the forebody and base. These

are highlighted in subsequent discussions.

A.1.1 Reformulation of Finite-difference Equations. The first procedure re-

formulates the governing equations, transferring the curvilinear terms to source-like

vectors, Ar and IW. For the cylindrical form of the Navier-Stokes equations, which

incorporate the axisymmetric assumption, transformation would yield

a U at ap - aR S -
+ + + H=- +- + W, (59)

where

0 = j-1u, (60)

E = j-i'(E + ,F), (61)

F = J-1 (riE + 7, F), (62)

1 = "J [pv, puv, pv2, (e + p)v] (63)
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Table 18. Summary of sensitivity evaluations

Parameter Min-Max Quantity Change in Tested Notes
Varied Values Observed Quantity Configuration I

Number of Nodes 61-121 Cd 4% HC Laminar
Along Body

Number of Nodes 61-181 Pressure One Body 0.1% HC Laminar
Normal to Body Diam. From Surface

Spacing at Sing. 0.005-0.04 Tip Stagnation 2% HC Laminar
Line, As/D Pressure

Wall Spacing 0.0001-0.001 Tip Stagnation 0.1% HC Laminar
Ay/D Pressure

Wall Spacing 0.6-24.0 cuhhlwall 15% PTOC & Turbulent
Yalwall BTOC

Entropy Func. 0.002-0.85 Base Stagnation 28% CFB Turbulent
Coefficient, cl Pressure

Entropy Func. 0.002-0.85 Integrated 4% CFB Turbulent
Coefficient, cl Base Pressure

Table 19. Summary of comparison between computation and theory or experiment

Basis of Comparison i Configuration Case Difference I Notes
Comparison With Description in Result I

Tip Stagnation Inviscid, Perf. HC Case 5 0.5% Laminar
Pressure Gas Theory (see Table 20)

Streamwise Law of Wall/ PTOC & Y+ ; 1 0.2% Turbulent
Velocities Law of Wake [101] BTOC (see Table 19)

Surface Experiment [12] PTOC & 121 Nodes Along 4% (max) Turbulent
Pressure BTOC Body and y+ : 1 1% (avg)

Integrated Experiment CFB 31 Nodes Along 10% (max) Turbulent
Base Pressure [10, 11, 31, 38, 53, 66] Base and cl = .85 1% (avg)
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and E and F are the convective flux vectors in Cartesian coordinates. The other

vectors R, S, and W are the generalized viscous flux vectors and the viscous source

term, respectively. The explicit forms of E, F and the viscous flux vectors can be

found in [1]; j-i1 is computed from the following expression:

j-' = x~r, - zrc. (64)

Since Hf and W are not evaluated on the singular (symmetry) line, they are never

singular.

Unlike the approach taken in [63], which was finite-difference, the current tech-

nique implements the discretization of (59) with the finite-volume methodology.

Although the transformed equation deviates from its integral formulation roots, local

physical conservation is addressed when applying (59) to a cell in physical space by

calculating the flux terms and geometric terms at the faces of the cell. The grid points

themselves represent the vertices of the cells. This is important at computational

boundaries, where the boundary conditions are handled in a manner consistent with

a cell interface representing a boundary. The geometric terms (metrics and Jacobian)

associated with (60)-(63) are calculated at cell centers from finite-difference expres-

sions, and averaged to obtain values at cell interfaces. This approach is considered

a hybrid finite-difference/finite-volume approach by the author.

A.1.2 Governing Equations for Finite-volume Method. For the second proce-

dure, a pure, three-dimensional, finite-volume representation of the geometric terms

is utilized. Again (59) applies, but now

S= (rj-')U, (65)

= (rJ-')E+ (rJ-1 &)F, (66)

P = (rJ-'i?.)E + (rJ-'7,)F, (67)

H-= i 1 [0, 0, -P, ]T. (68)

As before E and F are the inviscid Cartesian flux vectors, but H differs. Expres-

sions for the geometric terms appearing in (65)-(68) are calculated at cell interfaces

from grid cell vertices (grid points). These evaluations are straightforward for two-

dimensional grids, and the reader is referred to [91] for an excellent treatment of the

subject (expressions for three-dimensional grids are given in Appendix B).
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A.1.3 Discretization of the Navier-Stokes Equations. For both procedures,

the viscous terms are centrally differenced, while the convective terms are upwind

differenced. Discretization of (59) is as follows:

..t i -At 2i+ (-F i+½j ,_.) (69)

_~' -_ _,ri -] ..- •

The exact form of E and F are provided below. The convective fluxes are typically

determined at cell interfaces in two ways, using either MUSCL or non-MUSCL ex-

trapolation. The current scheme uses the non-MUSCL technique; this is discussed

in Section 3.1.

The explicit, second-order formulation employed for this study is based on

the work of Yee and Harten [104, 33]. The formulation is a modification of Roe's

first-order algorithm, and has been referred to in the literature as a modified-flux

scheme. This scheme achieves second-order accuracy by applying Roe's first-order,

flux-difference-splitting algorithm to a modified inviscid flux. The flux is chosen so

that the scheme is second-order accurate in regions of smoothness and first-order

at points of extrema (e.g., shocks). When using finite-volume expressions for the

geometric terms, the convective flux in the c-coordinate direction at the (i + I,j)

interface is approximated by

E,+•j = 2 1(,'-.),+• (E,+,j + Ej) (70)

+ rj-'&,),+j (F+,+,j + Fi ) + (rJ-'),+i. R,+$jt,+4 ].

A similar expression is obtained for the hybrid finite-difference/finite-volume ap-

proach; only the terms involving metrics differ. The vector 0 acts to limit the char-

acteristic variables, thereby providing higher accuracy. The elements of the vector

ti+L , denoted by + are

01+ a133 (71)
= ajai+½j)(gi'+Ij +gj -!(i½ • l+j +
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where a+ is the characteristic speed evaluated at some average of U,+ji and U,4

(here with Roe's average [71]). The function, a, is given by

o(z) = Z- A 2),

where T is an entropy correction to IzI. It is the same as (31) in Chapter 3. The

characteristic speed is modified by -y which is defined by

ooa+.)('1, -9, 1 fC41-9 0;
= ,+½, (72)

2 0, if at = 0.
i+40

The characteristic variables, aj+½i, are given by

= R-+j(Ui+lj - Uj). (73)

Finally, the current study uses the minmod function, for the limiter function, gi,, as

follows:
g•+=j = minmod(al +Lja+ (74)

or

+,(= sgn(mi+n.)[max ( amin [Icj+ i1,sgn(o[+½)a!+a 1])]. (75)

A.1.4 Boundary Conditions. Due to the supersonic condition at both the

inflow and outflow, the boundary conditions are very straightforward. At the inflow,

freestream conditions are applied, and at the outflow, two-point extrapolation is

used. For the body surfaces, no-slip is applied, zero normal pressure gradient is

used, and either constant wall temperature or an adiabatic wall is used. Finally,

centerline symmetry is enforced using ghost cells for the finite-volume grid, and

second-order expressions for the finite-difference grid.
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A.1.5 Stability Analysis for Source Term. Since a source term appears in

the governing equations, a scheme developed for a homogeneous system may not be

stable. Therefore, a simplified stability analysis was done to anticipate any stability

restrictions. Consider a scalar, one-dimensional, nonlinear, inhomogeneous equation

of the form
a-+ of .(76)

Linearizing the equation yields

Ott Ou+ A = Bu. (77)
5i ax

Implementing the current algorithm gives:

u+'= U"- AA? (ui+i - Ui"1)AtBu! (78)

IAIJt (Un.. 20 + un-.i + AA U!, u
AX+ ( 2• AX AX 2

first-orer term second-order term

The above form of the equation applies away from discontinuities. Near a discon-

tinuity the second-order term is zero. For the limiter evaluations, it is assumed

that a local extrema did not exist. Therefore, without additional loss of generality:

Ui+2 _Ž ui+1 _> ui _> ui- 1 _> Ui-2. Furthermore, it is assumed that the algorithm does

not modify the wave speed (e.g., no entropy correction function). Since the purpose

for this stability analysis is to investigate limitations due to the source term, these

assumptions should not hinder the analysis.

Using a Fourier stability analysis [1] produces the following relationships for

the amplification factor, G:

?nd - order G = 1- v(isin#1) +Iv( \ )+lvl(cosa -1) + lvI(1 - lv1) ( - cos 2,0

Ist-order G=I-v(isin) +Ivl &( B -" + I(cos'3 - 1)
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where, v = -i and IGI 5 1 for stability.

Enforcing IGI _< 1 produces the following:

?nd -order lJl3 - 22- -jlul 2 + -i 1] IvA + 2-Ax-< 0
JAI ) JAI JA I I+ -<

1st - order Ivl <

Note that for B = 0, both reduce to Imd < 1, which is the familiar Courant-Friedrichs-

Levy (CFL) condition [1]. Clearly, as B gets very large, the stability may be adversely

impacted. Referring to (59)-(63), as r --+ 0, B may get large relative to A for this

study, due to the 1/r dependence of f. The actual effect of the source term in the

second-order formulation is plotted in Figure 79. This shows that the source term

should have negligible impact as the grid is refined.

A. 1.6 Turbulence Modeling. The well known and widely used zero-equation

Baldwin-Lomax turbulence model [5] is incorporated for the forebody boundary-

layer simulations. The boundary layer is divided into inner and outer regions. In

the inner region, the eddy viscosity, pi, is given by the Prandtl-van Driest formula

Pi = p(icyD,,)2 1•w, (79)

where w is the vorticity, y is the normal distance from the surface, X is the von

Karman constant (0.4), and D, is the van Driest damping factor, which is given by

D = 1-ex p- -]. (80)

The superscript "+" in (80) denotes a nondimensional variable; the value of A+ is 26

for a smooth, nonporous, flat-plate in incompressible flow [101]. The nondimensional
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distance, y+, is

Y = /Y2PtWIWkI (81)

The subscript "w" denotes conditions at the wall or surface.

In the outer region of the boundary layer, the eddy viscosity is defined by

p. = pC.,Cl,,,.FF.., (82)

where F,,,, = max(l1wID•,), and I.., is the value of I corresponding to Fma. The

function F,._ is maximized over the I values at each station. The Clauser constant,

Cd0 •,, is 0.0168, and the value for the Cp is modified from the incompressible value

(explained below). The Clebanoff intermitancy factor, F,, is given by

F, = [1 + 5.5(Cdebi/l,,,,)6 ]-1 (83)

The constant, Cjb, is also modified from the incompressible value and is explained

below. The turbulence model switches from the inner to the outer formulation at

the first (closest to surface) value of I for which pi > •o.

Two modifications prove important. The first changes the van Driest damping

factor to account for compressibility and pressure gradients [49, 28, 1011. The near-

wall region, denoted by A+, is redefined as

A+ = 26-N.Z. (84)

Again, the non-dimensional distance 26 is the incompressible value for a smooth,

non-porous, flat plate [101], N is the pressure gradient contribution, and Z is the

compressibility contribution. Both N and Z are defined in Section 3.4 by (39). The

second alteration improves the two coefficients in the outer region, C• and Ckleb.

These modifications are also outlined in Section 3.4.
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For a flat base with a large, nearly stagnant region, it is difficult to apply a

conventional zero-equation turbulence model. So, a strictly empirical relation is used

to compute turbulent viscosity in the wake. This technique was originally applied to

subsonic flow in [541. The method is adapted, and its validity tested, for supersonic

flow in this investigation. Turbulent viscosity is determined from (42) in Section 3.2.

The method has the advantage of speed and low memory requirement. Although

highly empirical, the validity of this approach is shown through numerical examples.

A.1.7 Computer Resources All grids are obtained using GRIDGEN [80], an

elliptical grid generator developed for Wright Laboratory, Wright-Patterson Air

Force Base, OH. Both finite-volume grid types (cell interface along singular line),

and finite-difference grid types (cell center along singular line) are employed. Sur-

face clustering is employed in the generation of all grids. A typical grid, 61 x 61, for

the hemisphere-cylinder is shown in Figure 80.

A.2 Integration of the Navier-Stokes Equations for a Laminar Forebody

Numerical simulations are performed for several geometries and flow conditions

to assess the general applicability of the methodology developed.

A.2.1 Spherical Nosetip.

A.2.1.1 Adiabatic Wall Results. Freestream conditions representative

of flight at an altitude of 30km are used. The freestream velocity is varied through

the Mach number, and the nose radius is varied through the Reynolds number.

Figures 81a and 81b are the pressure and density contours for Moo = 5 and R, = lm.

The solution fidelity is quite good, and representative of the second-order accuracy.

The accurate calculation of stagnation quantities behind the shock, and the precise

prediction of the expansion around the sphere are illustrative of the accuracy. A

first-order TVD scheme does not predict the stagnation quantities as well, nor does
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it predict the expansion as precisely [57].

Of primary concern is the surface pressure. Figure 82 is a plot of the nondi-

mensional surface pressure around the body. The stagnation pressure is within 0.5

percent of the value predicted from the normal-shock relations. Also the pressure

around the body agrees well with the experimental data of Oliver [62].

For Pr = 1, the adiabatic-wall temperature is the stagnation temperature

(TIW = To). This is an excellent test for the adiabatic-wall condition. When Pr was

set to 1, the computed temperature was constant to within 1K and very close to the

stagnation temperature predicted by the normal-shock relations (within 100).

A.2.1.2 Cold Wall Results. Freestream conditions representative of

flight at an altitude of 30km are maintained. A surface temperature of 300°K and

a nose radius of .66cm are selected to make direct comparisons with experimental

data [72]. At these conditions and M. = 10, the Reynolds number based on nose

radius is ReR. = 24,400.

Again the solution fidelity is very good. Figure 83 is a density contour plot

showing the large density gradients across the boundary layer. Note the smooth

expansion in the inviscid region, and the growth of the boundary layer around the

body. Since surface pressure is perhaps the most important computed quantity,

this is examined in detail. No appreciable change in the surface pressure from the

adiabatic tests is noted; the same level of agreement with the experimental data of

Oliver is achieved using the cold-wall boundary condition.

Heat transfer is much less important for the current study than surface pres-

sure or skin friction, but provides some further measure of overall accuracy. The

stagnation point heating is within 15 percent of the experimental value of Rose [72].

Since no chemistry effects are included in the numerical calculations, this level of

agreement is good. Away from the shoulder, the heat transfer distribution can be

well modeled with a cost 0 profile [2]. Figure 84 shows the heat transfer distribution
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nondimensionalized by the stagnation point heating. Note the excellent agreement

with the cost 0 rule.

A.2.1.3 Skin Friction and Heat Transfer Coefficients. Local skin fric-

tion and heat transfer coefficients (C1 , and CH,) are usually based on local informa-

tion at the boundary-layer edge. The following relations are used to compute Cif

and CH,:

Cf. U2' and CH.= q- (85)
u -petie(hawh)

or

Ch e) I (86)

CH.-'-" =w (2 (87)G,.~ ~ ~ ' =; - -rPu[(1 + -Y-M.) - T; - (1 -,./-Pr) (-1) M' -f].2o

These relations are only slightly modified when computing Cf. and CH..

Cf. P an*(88)o.-

=)Re.Pr) (89)T
C-H• i•* 1. (89)

(We [(r) 1 + 'I-I MM2) - T - (1 P-r /)(•-Y 1M'
2--f 2 _u

A reliable set of experimental data for skin friction could not be obtained by the

author. However, the order of magnitude agrees with other computational results on

similar geometries [2]. Perhaps equally important is the trend in skin frictior. On a

log-log scale, the skin friction should exhibit a linear proportionality with distance

around the body, approaching zero at the stagnation point [2]. The heat transfer

coefficient should be nearly constant over a fairly large portion of the nose region.

Both of these trends can be seen in Figure 85.
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A.2.1.4 Effect of Nose Radius on Stagnation Heating. The behavior of

"a computational model when various parameters (e.g., M and Re) are changed is

"a good indication of its accuracy. In other words, the computational procedure

may give remarkably good results at one set of conditions, but unexpectedly poor

results at some other conditions. Since a well known trend in stagnation point

heating exists (qw ca 7X), the nose radius is systematically varied to test accuracy

in this somewhat broader sense. Calculations are done with three grids of successive

refinement. The three grids are 61 x 61, 91 x 91, and 121 x 121, with spacing near the

surface equal to 0.01D, 0.001D, and 0.0001D, respectively. The results are shown in

Figure 86. The variation in stagnation heating clearly follows the ' theory. Note

that a finer grid is required to model accurately the thinner boundary layers, that

develop at higher Reynolds numbers.

A.2.2 Hemisphere-Cylinder (HC). The experimental data for flow over a

hemisphere-cylinder [47], provides a more complete basis for evaluating the accu-

racy of computed solutions both near the body and away from the body. Again,

laminar flow is assumed in all simulations for this configuration.

The experiment was conducted in the continuous flow, closed return, hy-

personic, wind tunnel located at the California Institute of Technology. Com-

puted solutions are compared to experimental estimates of shock location, sur-

face pressure, and impact pressure. For the experiment, the reservoir pressure was

2.17 x 10 6N/m 2 ± 0.01%, the supply temperature was 645"K ± 0.4%, and the Mach

number was 7.7 ± 1%. At Mach 7.78, the freestream test conditions correspond to

Re = 9.2 x 10'/m. The experimental model was 19.1 mm in diameter (Figure 78).

Measured surface pressure and impact pressure are accurate to within 2%; shock

slope and position are accurate to within 3% [47].

Except where noted, all solutions are obtained using T, = 700*K, local time

stepping, and the cylindrical transformation, (59)-(63). Table 20 summarizes the
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case history of numerical experiments. The distance along the body is s, and 0 is

the angular spacing near the symmetry line. The grid type [finite-volume (FV) or

finite-difference (FD)J has an undesirably large influence on the solution character

near the stagnation point. Again, a FV grid has cell interfaces on the symmetry line,

while a FD grid has cell centers on the symmetry line. As seen in Figure 87, the FV

grid produces a local aberration in the pressure, manifested as an over-prediction in

stagnation pressure. It is important to note that this error is not the same as dis-

tortions in the stagnation region reported in the literature as "carbuncles" [63, 43].

This phenomenon does not appear to begin at the shock, and is not accompanied by

recirculating flow as with the carbuncle. The entropy function appears to prevent

effectively the carbuncle anomaly. Since similar calculations, using MUSCL extrap-

olation to achieve higher accuracy [43], do not demonstrate this error, the author

believes non-MUSCL extrapolation accentuates the geometric singularity when us-

ing a FV grid. According to Palmer and Ventkatapathy [63], the "key to effectively

treating the singularity line boundary lies not in boundary conditions themselves,

but rather in the proper determination of the metric and flux terms on the singular

line." This observation is underscored by the results of this work. A different form

of extrapolation (non-MUSCL versus MUSCL) is used in the current scheme, as well

as cylindrical versus Cartesian equations. None the less, either technique works well

when using a FD grid (Figure 88). For the remainder of tests on this geometry, and

the rest of the validation study, a FD grid is employed.

Since the entropy correction function is not used in the boundary layer on

the nose and forebody computations, its magnitude primarily affects the solution

away from the body. As previously stated, the entropy correction function is made

large enough to prevent non-physical solutions; increases beyond that point affect

stagnation pressure less than 0.2%.

The grid-refinement experiments (Cases 1-6) are evaluated by examining the

stagnation pressure as a function of the node spacing at the surface, A (y/D)min,
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and the node spacing at the singular line, A~min. The computed stagnation pressure

is compared to the value predicted from inviscid, perfect gas theory. The computed

stagnation pressure accuracy depends primarily on the grid spacing, along the body,

near the symmetry line; the error decreases as this spacing decreases. The effect due

to spacing at the singular line is shown in Figure 89. The computed pressure (nondi-

mensional) appears to approach asymptotically the theoretical value of 0.925. The

values differ by about 2% for the coarsest grid and less than 0.5% for -, 0.570

(see Table 19). In contrast, stagnation pressure error is virtually unaffected by grid

refinement normal to the body, and varied < .1% for the range of spacing tested,

.0001 < A (y/D)min _< .001 (see Table 18). Although not compared to an exact so-

lution, surface pressure away from the stagnation point exhibits identical sensitivity

to grid refinement. A comparison with experiment is shown in Figure 90 for Cases 1

and 7. Agreement within experimental accuracy is achieved. The computed pressure

contours illustrate that shock location and shape are also accurately predicted (Fig-

ure 91). A notable exception is the slight over prediction in standoff distance, which

the author attributes to the perfect gas assumption. Finally, impact pressure profiles

examined at a station downstream of the nose, i/D = 3 are given in Figure 92 for

Cases 1, 3, 7, and 10. There are two important results from the comparisons of

the impact pressure profiles. First as with surface pressure, grid refinement does

not appreciably alter the solutio, the body. Second, although undocumented

by the experiment, an adiabatic-wall condition matches the experimental data best.

Again, agreement within the experimental accuracy is achieved.

A.2.3 Highly Blunted Tangent Ogive-Cylinder (HBTOC). This is the longest

model used (LID = 23), and is particularly blunt in comparison to other tangent

ogive models tested. Its length, highly blunted nose, and flat base make it a demand-

ing choice for full-configuration analysis. To increase the demand on the algorithm,

the solution is impulsively started from freestream initial conditions. These condi-

tions are set to match those of the ballistic gun range testing facility at Eglin AFB.
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Table 20. Summary of numerical experiments for hemnisphere-cylinder

ICase] Grid Size A(s/D),ni IAfmin CommentsI
1 61 x 61 0.0390 4.49 Ay/D = .001, Finite-Difference (FD) Grid
2 91 x 61 0.0150 1.72
3 121 x 121 0.0100 1.15
4 121 x 121 0.0075 0.86
5 121 x 121 0.0050 0.57
6 121 x 181 0.0100 1.15
7 121 x 181 0.0100 1.15 AyD= .0001, FD Grid
8 121 x 181 0.0100 1.15 Global Time Step (GTS), FD Grid
9 121 x 181 0.0100 1.15 FV Metrics, GTS, FD Grid
10 121 x 181 0.0100 1.15 Adiabatic Wall, GTS, FD Grid
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Figure 89. Sensitivity of stagnation pressure to refinement of node spacing near the
axisyminetry line
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A description of the system is given in [93]. This is essentially an open atmosphere

system, so standard sea-level conditions are chosen. To provide an unambiguous

baseline for subsequent turbulent calculations, strictly laminar flow is simulated on

this configuration.

The computed solution for Mo = 3 and Re = 6.99 x 107/m is presented in

terms of pressure contours and surface pressure in Figures 93(a) and 93(b) respec-

tively. The effects of the highly blunted nose are evidenced by the relatively long

recovery of surface pressure to the freestream value.

A.3 Computations for a Pointed and Blunted Tangent Ogive-Cylinder (PTOC and

BTOC) in Turbulent Flow

The turbulent boundary layer on a projectile or missile is affected by the nose

geometry for several reasons. First, the transition to turbulent flow is affected by the

higher entropy, lower Mach number fluid near the stagnation point of blunt noses.

Second, the vorticity associated with shock curvature interacts with the boundary

layer downstream of the nosetip. Third, for the case of a flat nosetip, the flow

separates. Therefore, a series of nose shapes are investigated to evaluate the accuracy

of the current algorithm to calculate a developing boundary layer, under differing

upstream conditions. Experiments are used for comparison [12].

The experiments were carried out in the Princeton University 20 x 20 cm,

supersonic, high Reynolds number, blow-down tunnel [12]. The reservoir pressure

was 6.8 x 105 N/M2 ± 1% and the supply temperature was 265"K ± 5%. At Mach

2.95 these correspond to Re = 6.3 x 107/m. The experimental models were 4.95 cm

in diameter and are shown in Figure 78. To distinguish between the nose shapes,

the experimental terminology is adopted; tip 'P' refers to the pointed model, tip 'F3'

refers to the flat nose model, and tip 'R3' refers to the spherically blunted model.

During the Princeton experiments, the wall temperature remained within 3%

of the adiabatic value. Boundary-layer transition occurred at s/D ,, 0.9 - 1.5 for
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tip P, at sID - 0.7 - 1.1 for tip F3, and at sID - 1.5 - 2.5 for tip R3, where s

is the distance along the surface from the stagnation point. The accuracy in the

surface pressure measurements was ±1.0%. However, variations in the data due

to changing stagnation conditions over the duration of the experiments showed a

stagnation pressure variance of about ±3%.

Boundary-layer transition is not simulated. Rather, a point of transition to a

fully turbulent boundary layer is specified. Downstream of this point, the turbulence

model is used. These "transition" points are s/D = 0.8, sID = 1.0, and sID = 1.7

for tips F3, P, and R3 respectively. The performance of the algorithm is not adversely

affected by the abrupt change in effective viscosity (a small variance is detectable in

the pressure at the surface).

It is well known that Roe-type approximate Riemann solvers, which include

information about all waves, can calculate accurately boundary layers with relatively

coarse meshes [90]. Therefore, the grid-refinement analysis concentrated on the

appropriate spacing nearest the body. For turbulent flow computations, the velocity

gradients at the surface vary significantly with grid spacing normal to the surface.

However, there are no further variations for grid refinement equivalent to 1wall <1;

see Table 18 (1+ is the distance from the body surface nondimensionalized using shear

velocity as given in [5]). For 1+w ;, 1, the time-averaged velocities in the turbulent

boundary layer are compared to the law of the wall/law of the wake. Velocity error

throughout the boundary layer is ±0.2% (see Table 19). This is an appropriate

comparison, since the Baldwin-Lomax turbulence model was developed to produce

law of the wall/law of the wake profiles.

Surface pressures are computed to within experimental accuracy; a comparison

is shown in Figure 94 for tips P, R3, and F3. Also shown is the computations of

[30] for tip R3. Figure 95 shows the comparison for the first six pressure taps on the

nose of tips R3 and F3. The current calculation shows expansion on tip F3 slightly

sooner than the experimental data. The pressure rise due to the recompression shock
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is accurately predicted, however.

Since boundary-layer development is sensitive to a pressure gradient, the mod-

ifications to the turbulence model described earlier prove important in this region.

Figure 96 shows computed velocity profiles for tip R3 using the original Baldwin-

Lomax turbulence model and the modified model. The computations of [30] are also

included for comparison. In [30], the original Baldwin-Lomax model and a transition

model (polynomial function) were used; transition was initiated at s/D z .5, and

fully turbulent conditions were achieved at s/D ;ts 1.5. Results from [30] agree qual-

itatively with the current results using the original Baldwin-Lomax model. The au-

thor attributes differences between the current calculations using the original model

and those of [30] to differences in transition modeling. Significant improvement with

the modified Baldwin-Lomax model is visible.

The boundary layer thickens quickly downstream of the transition point. This

is discernible from the vorticity contours (Figure 97a). The vorticity associated with

the bow-shock interacts with the rapidly thickening boundary layer near the ogive-

cylinder shoulder. The vorticity contours clearly depict that the shock layer and

boundary layer merge. The arrow in Figure 97b shows the approximate point above

the surface where this merger can be seen for x/D = 3.26. The small depression in

the velocity profile is further evidence of the interaction.

Computed profiles from the modified model are also shown for tips P and F3

in Figures 98 and 99, respectively. Excellent agreement with experiment is again ob-

tained, with the exception of the final station on tip P. The author has no explanation

for this isolated discrepancy.

Separation on the flat nose tip, F3, is visible in the streamlines produced from

the current calculations (Figure 100). The extent of the separation region is approx-

imately I caliber. Although separation was not clearly visible in the experimental

data, this result agrees both qualitatively and quantitatively with the calculations

of [30].
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A-4 Calculations for a Cylinder-Flat Base (CFB) Configuration Using an Empirical

Turbulence Model

To establish the validity of the wake-region turbulence model, the analysis

is done with the base flow isolated from the forebody. The computational model

has a small cylindrical section (- .05D) prior to the flat base allowing upstream

influence of the corner expansion within the boundary layer. The boundary-layer

solution, specified at the inflow boundary of the computational domain, is taken

from theory [101]. Upstream of the corner, the modified Baldwin-Lomax model is

used. Downstream of the corner, (42) is implemented. Over the range of Mach

numbers, the Reynolds number is held fixed at ReD = 5 x 105.

The compiled experimental measurements [31, 10, 53, 66, 38, 11] are all for

pointed, cylindrical, unfinned bodies with LID =z 10, and turbulent flow at the

body/base corner. The exception is [38] which had fins and 6.5 < LID < 30. For

all bodies, ReL = 2 to 9 x 10i.

The computed solution at the rearward stagnation point exhibits behavior

similar to the forward stagnation point; local aberration in pressure results in an

overprediction at the stagnation point. Although some improvement results from

using a FD grid type, the pressure still varies across the base an order of magnitude

above experimental measurements. By increasing the coefficient in the entropy cor-

rection function to 0.85, much better behavior is seen (Figure 101). The effect of

changing the entropy function on the total or integrated base pressure coefficient is

small (about 4%). Therefore, all base flow numerical experiments were conducted

with f = 0.85. It is very important to keep in mind that entropy corrections manifest

themselves as additional artificial dissipation in the algorithm. In addition, a univer-

sal function does not yet exist, and they remain very geometry dependent. Due to

the empiricism of the turbulence model, a more rigorous approach is not attempted.

The integrated pressure coefficient compares very well with the experimental

data (Figure 102). In spite of its empiricism, the wake turbulence model accurately
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simulates the macroscopic nature of the flow.

A.5 Convergence Acceleration Techniques for Steady-State Computations

Local time stepping is used to accelerate the solution to steady-state. The

convergence criterion is the reduction of the correction norm, IIA UII 2, by 5 orders

of magnitude from the initial conditions. The correction norm is defined by

IIAUII= ) - (u,)]2  (90)

where n represents an arbitrary time level, and the subscript I denotes one of the

four conserved variables. For a turbulent solution, 5 microseconds of CPU time are

required per time step, per node point, on a CRAY Y-MP8. Also, approximately

110 words of memory are required per node point, or 2.4 megawords for the finest

grids used (22,000 points).

Two techniques dramatically accelerate convergence to steady state. First, the

Reynolds number is artificially set to 1 x 1010 at t = 0. After the shock wave moves

away from the body (outside the boundary layer), the Reynolds number is reset

to the correct value. Second, during the transient flow development, a lower limit

on density and pressure is used to prevent negative values on the base. Typically,

Pm•n = 0.01 poo and Pin = 0.01 p00are enforced. This additional restriction on the

base is continuously enforced, but actually only necessary for the first few hundred

iterations from an impulsive start.

The convergence history shows the robustness of the present method (Fig-

ure 103). Total computing time, using the convergence criterion related above, is

about 9 minutes on a CRAY Y-MP8.
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A.6 Conclusions from Axisrymmetric Validation

The current algorithm represents an efficient implementation of finite-volume

methodology, both in terms of computational rate and memory requirement. The

general applicability of the method is validated through the accurate calculation of

a wide variety of axisymmetric flow structures: detached bow shocks, recompres-

sion shocks (both in the wake and at a separated region near the nosetip), corner-

point expansions, base-flow separations and associated recirculations, and turbulent

boundary layers. Results are in close agreement with published experimental esti-

mates (within experimental accuracy). The complicated turbulent boundary-layer

development is accurately calculated for various nose-tip shapes with a modified

Baldwin-Lomax turbulence model. The algorithm's robustness is enhanced by arti-

ficially increasing the Reynolds number and controlling the boundary conditions on

the base during the initially transient flow development. The effectiveness of this

approach is demonstrated by the algorithm's efficiency throughout the range of con-

ditions tested, including the case of a complicated boundary layer/Lhock interaction

associated with the separation near the corner of the flat nosetip.

The results bolster the primary purpose of this investigation: the de P-

ment and validation of an efficient, accurate, and flexible numerical scheme for the

simulation of high-speed, viscous flows. The axisymmetric algorithm is the founda-

tion for the construction of the three-dimensional algorithm described in Chapter 3.

While completing the validation, some notable complexities arose that required the

development of important modifications of previously published techniques. These

improvements are reflected in the analyses of three-dimensional flows in Part I and

Part II.

Modifications are primarily made to the treatment of singular lines, the wake

turbulence model and the entropy correction function of Yee. An aberration is en-

countered near stagnation points that is different from the previously documented

carbuncle phenomenon. When using non-MUSCL extrapolation to obtain fluxes,
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Appendix B. Validation of Three-dimensional Equations

The axisymmetric form of the algorithm is capable of determining the many

aspects of the general behavior of the current method. In particular, the effects of

dissipation and the influence of grid refinement along the body and normal to the

body are addressed in Appendix A for several forebody configurations in both lam-

inar and turbulent flow. The extension of the algorithm for three-dimensional flow

requires that further validation be performed. First, the differences in the algorithm

which arise out of the extension to a higher dimension are outlined. Then, a compar-

ison with previous results is made for the ogive/cylinder body analyzed in Appendix

A. Next, a nonconformal grid structure is applied to a combination axisymmetric

compression ramp and axisymmetric expansion ramp. These computations are per-

formed to determine the accuracy of the method developed to compute the flow

near a surface (Section 3.3). Finally, the three-dimensional algorithm is applied to

an ogive/cylinder forebody at a small angle of attack. These computations serve

two purposes: assessing the ability of the present method to capture the azimuthal

variation in the flow, and determining the sensitivity to azimuthal refinement.

B.1 Modifications to Algorithm for Three-dimensional Equations

The governing equations for a three-dimensional flow are described in

Chapter 2. There are three differences between the axisymmetric form and the three-

dimensional form of the governing equations that require the algorithm to be mod-

ified. First, there is no source term associated with the three-dimensional form of

the equations. This represents a small simplification to the algorithm. Second, an

additional momentum equation is added to the set of conservation equations. The

added equation necessitates a rederivation of the generalized inviscid flux Jacobians

and the associated eigenvectors. This is addressed below in Section B.1.1. Finally,
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the geometric terms that correspond to projections of cell faces into the Cartesian

directions become more complicated. They are discussed in Section B.1.2.

B.1.1 Generalized Jacobian and eigenvector. The generalized inviscid flux

Jacobian for the c-direction is now given by [25]

0 G G 0

- U~ts (1 - fi)&4U + Uc -f34v + Gu -13 4W + GU /34

- Ucv -N3u + -v (1 - )•v% + UC -/O3w •±v /3 , (91)

ff. - Uw -/4u + Gw -#34v + 4w (1 -/3)4,w + uc 63,

iUo - UcH -#uUc + H4. -WvU, + H4 -IwUo + H4 QU

where -y is the ratio of specific heats, -= "y - 1, and

j= (y- l)(u + v + w).

Also, H is the total enthalpy and Uc is the contravariant velocity given by

U, = 4u + 4v + 4w.

The generalized inviscid flux Jacobians for the other two directions have similar

construction and are obtained by replacing ý with q or C, and replacing U, with V,,

or Wc. The terms G, 4, and 4z are computed from the projected cell-face surface

areas from:
=Sy and C., (92)

where 1ý is some average cell volume at the interface that St is evaluated (Sf is

defined in Section B.1.2).
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The associated right eigenvectors are [25]

k,u kU - k'P ku + kVp , + k.'C u - k'C

k, + k'P kV kV- k•P , + kC V-kc

k., - kP k,1, + kP kW W+k'c W-k~c

sk. + (kv - k,,,)p sk, + (k.,,- k~u)p 9k, +(ku - k,,v)p H + UOc H - (.ci

where
S q2 1 .

The density, p, is averaged using the following [25]: p = V/•p7. The subscripts R

and L denote a value to the right and left of an interface, respectively. The terms

k.,, k,, and k.. are defined by

4: = $S" (93)

ky = s V) (94)

k:, =S! (95)

The normalized contravariant velocity, U6, is given by

C,= k.,u + kYv + kW

B.1.2 Geometric Terms of a Three-dimensional Fluid Cell. The geometric

terms for a finite-volume methodology are obtained by using the two diagonals for

each face on a cell. For the typical cell (Figure 104), the terms are defined by [91]

S4378 = (F4 - X) (r8 - ), (96)
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Figure 104. Typical six-sided fluid cell from a structured grid

S123 = S = (r, - r3) x V4 - r2), (97)

415 = §C = V( - r5) x(vs - rl). (98)

B.2 Application to Azisymmetric Baseline

Validation of the three-dimensional algorithm is begun using the results from

Appendix A. Specifically, the axisymmetric results from the supersonic, turbulent

flow over a spherically blunted tangent-ogive/cylinder are used for comparison. The

pressure and boundary-layer velocity profiles are directly compared to assess any

differences. The computation is performed in only half the azimuthal plane by en-

forcing a symmetry condition (Section 3.4). A two-dimensional grid is constructed
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with spacing normal to the body identical to that used for the axisymmetric cal-

culation, (0.000025D). This grid is rotated about the body centerline to produce a

three-dimensional grid with dimensions 61 x 201 x 33 for the half plane. This is the

same procedure used to obtain grids for the analysis of the HART missile in Part I

and Part II.

The pressure comparison shows that the three-dimensional algorithm predicts

essentially the same surface pressure as the axisymmetric algorithm (Figures 105

and 106). Only very small differences in the pressure are discernible. The velocity

profiles show that the growth of the boundary layer is also the same as the axisym-

metric computations (Figures 107a-107c). The small difference in the boundary layer

from the three-dimensional calculations is due primarily to different levels of conver-

gence. The axisymmetric solution is converged such that the residual error is several

orders of magnitude less than the convergence criteria outlined in Appendix A (Sec-

tion A.5). The level of "non-axisymmetry" in the three-dimensional computations

is seen to decrease as the solution converges.

The agreement in pressure and boundary-layer development indicate that ax-

isymmetric flow is accurately calculated with the three-dimensional algorithm.

B.3 Nonconformal Grid Applied to Azisymmetric Compression Ramp

The grid used in the analysis of the HART missile does not conform to the fin

leading edges (Section 3.3). To validate the method developed to handle the noncon-

formal grid structure, turbulent flow is computed for a combination axisymmetric

compression ramp and axisymmetric expansion ramp downstream of an axisymmet-

ric ogive/cylinder forebody (M. = 2.95). Both a conformal grid and a nonconformal

grid are built and used with the three-dimensional algorithm. The two grids are

shown in Figures 108 and 109. Again, two-dimensional grids are built (61 x 81) and

rotated about the body centerline to produce the three-dimensional grids. Also, the

computation is performed in only half the azimuthal plane by enforcing a symmetry
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condition (Section 3.4). For the half plane, both the conformal and nonconformal

grids have dimensions 61 x 81 x 33. The nonconformal grid is intentionally coarsened

to test the limitations of the methodology. The conformal grid is also used with the

axisymmetric form of the algorithm to provide additional data for comparison.

Separation occurs prior to the compression ramp for all three computations.

Figure 110 shows that the extent of the disturbance upstream of the compression

ramp is slightly underpredicted by the nonconformal method. The pressure in the

separated region and at the expansion ramp are equally well predicted by each

method. Given the coarseness of the nonconformal grid, the level of agreement be-

tween the conformal results and the nonconformal results is believed to be acceptable

by the author.

B.4 Calculations for an Ogive-Cylinder Forebody at Angle of Attack (Turbulent

Flow)

Next, the accuracy to which the surface pressure and the turbulent boundary

layer are calculated, for a forebody at some nonzero angle of attack, is determined.

The tangent-ogive/cylinder body used in Appendix A and Section B.2 of this ap-

pendix is pitched 2.90. This angle is selected to compare with experiment. Again

the surface pressure and boundary layer are compared to values determined exper-

imentally [13]. The grid in this part of the validation is the same as that described

in Section B.2. Results using this grid will be referred to as "fine-grid" results.

Grids with slightly coarser spacing near the surface are also implemented to con-

duct an azimuthal refinement study. Results from these grids will be referred to as

"coarse-grid" results. The refinement study is made to determine the sensitivity of

the current method to azimuthal spacing. The number of nodes in the azimuthal

direction is varied from 17 to 65, corresponding to angular spacings of 11.250 and

2.81250, respectively.

For the fine grid, the computed pressure on the leeside (4 = 00) and windside
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Figure 108. Conformal grid for axisymmetric compression ramp

Figure 109. Nonconformal grid for axisymmetric compression ramp
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Figure 110. Surface pressure from computations for an axisymmetric compression
ramp: Moo = 2.95

(4, - 1800) of the ogive/cylinder body is compared to the experimental pressure

in Figures 111 and 112. Agreement within the reported experimental accuracy is

achieved. Also, for the fine grid, the velocity profiles on the leeside and windside are

compared to the experimentally determined profiles (Figures 113 and 114). Agree-

ment within about 10% is seen. For the computations, the point used to separate

laminar and turbulent regions, is the same as the point designated in Appendix A

and Section B.2 (- = 1.7). The point which separates the laminar region from

the turbulent region is not varied around the body because this information is not

available from the experiments. However, boundary-layer transition is not uniform

around a body at angle of attack [79], and the author believes the discrepancy be-
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tween the computations and the experiment are a result of neglecting the azimuthal

variation of transition point.

The results from the grid with coarse and refined spacing near the surface are

compared in Figure 115. The impact on pressure is small.

The solutions from from the grid refinement study also showed little variation

in surface pressure (Figure 116). Only the coarsest angular spacing gave different

results. The velocity profiles for the solutions from the grid refinement study showed

that prediction of the attached boundary layer does not depend on the angular

spacing, over the range of spacing tested. The leeside and windside profiles near the

ogive/cylinder-body junction are compared to the experimental data in Figure 117

and Figure 118, respectively.

B.5 Conclusions from Three-dimensional Validation

The implementation of the three-dimensional equations is demonstrated for

flow on a tangent-ogive/cylinder forebody at M,, = 2.95 with a = 0* and a = 2.9*.

Results for a = 00 agree with previously validated axisymmetric results (shown

in Appendix A). Calculations at angle of attack show fairly good agreement with

experimental data. Computed surface pressure is within the experimental accuracy

and computed boundary-layer velocity profiles are within 10% of experimental. The

azimuthal variation of surface pressure is well predicted by the present method. In

addition, azimuthal grid refinement is shown not to affect the solution significantly.

The accuracy of the method proposed to handle a nonconformal grid structure

is also demonstrated. In general, the separation point and reattachment point for

turbulent, Mach 3 flow over a cylinder-flare configuration compares well with compu-

tations made using a conformal grid. Also, the pressure within the separated region,

and downstream of the attachment point, agrees with the conformal computations.
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Appendix C. Computer Codes and Resources

The following hardware resources were utilized to perform the computational

portions of this dissertation

"* AFIT Stardent ST-2000

"* AFIT Convex C220

"• Cray Y-MP8 (Eglin AFB, FL)

"* Cray C-90 (Vicksburg, MS)

The usage of these resources is normalized by Cray Y-MP8 equivalent central pro-

cessor unit (CPU) hours and summarized in Table 21.

Table 21. Resource utilization.

Computations Machine Utilization (CPU hours)
(normalized to Cray Y-MP8)

Code Development & AFIT Stardent ST-2000 61
Axisymmetric Validation

(Appendix A)
3D Validation & AFIT Convex C220 226

Thin-fin Investigation
(Appendix B & Part I)
Thin-fin Investigation Cray Y-MP8 473

(Part I)
Thick-fin Investigation Cray C-90 40

(Part II)
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C.1 Software Documentatijon for General Algorithm

This document was prepared using Latex on an AFIT Sun SPARC 10. A short

synopsis of the computer codes employed is provided, along with a description of the

subroutines contained therein. Three main codes were employed:

1. AFITENS-AXI Version 2.0

2. AFITENS-3D Version 1.0

3. AFITENS-3D Version 1.1

All three codes allow Euler or full Navier-Stokes calculations using upwind differenc-

ing of the convective terms and central differencing of the viscous terms. Also, each

code encorporates the Baldwin-Lomax turbulence model. AFITENS-AXI Version 2.0

is an axisymmetic code employing a finite-volume methodology, and was used for

the validation tests in Appendix A. AFITENS-3D Version 1.0 uses the finite-volume

method on a single grid block with an H-H topology for a complete missile config-

uration. Optional missile fins are modeled with an infinitely thin-fin approximation

(i.e., using boundary conditions applied on the interior of the domain). The grid

construction and boundary conditions are described in Chapter 3. This version was

used for the validation tests in Appendix B and the thin-fin HART missile simu-

lations in Part I. Finally, AFITENS-3D Version 1.1 allows the missile fins to have

thickness, again utilizing an H-H grid topology. AFITENS-3D Version 1.1 was used

for the thick-fin HART missile simulations in Part II.

A short description of input/output files for the above codes and a short syn-

opsis of the subroutines employed is provided below.
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AFITENS-AXI/AFITENS-3D

"* Input Files

afitens.drv - input file to specify CFL, Re, M., a, etc.
grid.dat - grid file
restart.dat - restart file for conserved variables

"* Output Files

restart.dat - restart file for conserved variables
forces.dat - lift, drag, and pitching moment

"* Subroutines

bcaxi - applies boundary conditions at inflow, outflow, farfield, surface for FD grid

bcaxi2 - applies boundary conditions at bisymmetry plane for FD grid

bcaxi3,

bcaxi4 - applies boundary conditions on domain interior for missile fins for FD grid

bcstag - applies boundary conditions at inflow, outflow, farfield, surface for FV grid

bcstag2 - applies boundary conditions at bisymmetry plane for FV grid

bcstag3,

bcstag4 - applies boundary conditions on domain interior for missile fins for FV grid

cd - computes the axial, normal, lift, and drag forces and the pitching moment

efgvect - constructs the inviscid and viscous flux vectors

eigdt - determines the time step using the linearized stability restriction

etasweep - builds the numerical fluxes and performs the operator in the v, direction

gradient - computes velocity and temperature gradients

gridaxi - constructs a three-dimensional FD grid

gridstag - constructs a three-dimensional FV grid
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lamvisc - computes molecular viscosity

metrics - calculates the geometric terms using a finite-volume method

turbvisc - computes eddy viscosity

xisweepA,

xisweepB - builds the numerical fluxes and performs the operator in the C direction

zetasweepA,

zetasweepB,

zetasweepC,

zetasweepD - builds the numerical fluxes and performs the operator in the ( direction

zl2norm - calculates the residual norm between time steps

The computer codes, and the associated drivers, restart files, and grids, are

archived on the AFIT Sun SPARC 10 (enterprise) in the following directories

1. AFITENS-AXI Version 2.0 - /home/fluids/kmoran/AXI

2. AFITENS-3D Version 1.0 - /home/fluids/kmoran/3D/THIN

3. AFITENS-3D Version 1.1 - /home/fluids/kmoran/3D/THICK

C.2 Algorithm Performance and Memory Requirements

The current three-dimensional solver (AFITENS-3D Version 1.0) requires ap-

proximately 80 words of core memory per grid point. A comparison of computer

code performance is shown in the following tables. Table 22 shows a comparison

between the axisymmetric version of the current solver (AFITENS-AXI) versus ax-

isymmetric solvers used by other researchers. The current technique is very efficient

in terms of CPU usage.

Table 23 shows the data processing rate of AFITENS-AXI Version 2.0 on

several different machines. Resonable computations rates are seen for several AFIT

workstations when they are used in a parallel mode.
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Table 22. Comparison of computer code performance for axisymmetric solvers.

Developer/ Algorithm. Machine Type* DPR** Comments
User Type _ _

BRL Implicit B/W Cray X-MP 1.60 x 10-4 Thin Layer Eqns
WL Implicit B/W Cray X-MP 2.50 x 10-5 2D
WL Explicit FDS-Roe Cray X-MP 1.15 x 10-4 MUSCL

AFIT Implicit B/W Cray X-MP 1.93 x 10-- 2D
AFIT Explicit FDS-Roe*** Cray X-MP/216 1.09 x 10-5 Non-MUSCL

** Data processing rate (DPR) in seconds/iteration/node point

** AFITENS-AXI Version 2.0

Table 23. Comparison of data processing rates for AFITENS-AXI Version 2.0.

Machine Type DPR* Factor over Cray-YMP8

Sun SPARC 2 4.32 x 10-1 81.0
Stardent ST2000** 6.96 x 10-' 13.0

Titan 3000 4.41 x 10-5 8.3
Convex C220*** 2.92 x 10-i 5.5

Cray X-MP 1.09 x 10-1 2.0
Cray 2 7.75 x 10- 1.5

Cray Y-MP8 5.34 x 10-1 1.0

* Data processing rate (DPR) in seconds/iteration/node point

** Run in parallel using four processors
* Run in parallel using two processors
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Finally, Table 24 gives a comparison of the three-dimensional solver devel-

oped for this dissertation with those of several other researchers. Again, excellent

performance is seen with the current method.

Table 24. Comparison of computer code performance for 3D solvers: full Navier-
Stokes and turbulent flow.

Developer/ Algorithm Machine Type DPR* Comments
User Type I I I I

BRL Implicit B/W Cray 2 1.90 X 10-4 PNS
WL Explicit FDS-Roe Cray Y-MP8 5.40 x 10-5 MUSCL
WL Implicit FDS-Roe Cray Y-MP8 1.00 x 10-4 MUSCL

NASA Ames Implicit FDS-Roe Cray Y-MP8 2.50 x 10-i MUSCL, laminar
AFIT Explicit FDS-Roe** Cray Y-MP8 1.50 x 10-1 Non-MUSCL

* Data processing rate (DPR) in seconds/iteration/node point

** AFITENS-3D Version 1.0
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