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Abstract

A subgrouped version of the Real Time Recurrent Learning (RTRL) network was

written in C, and its capabilities were evaluated. Although the RTRL net architecturally

consists of one layer of neurons it successfully learns the XOR problem, and can be trained

to perform time dependent functions such as emulating a digital low pass filter, and

internalizing a state model of a data sequence. The net was tested as a predictor, to

evaluate it's ability to predict the future value of a chaotic signal based on past behavior.

While the net was not able to predict a chaotic signal's future output, it tracked the signal

clooely. The net was also tested as a classifier for time varying phenomena; for the

differentiation of five classes of vehicle images based on features extracted from the visual

informaion. The net achieved a 99.2% accuracy in recognizing the five vehicle classes.

Recognition was based on the sequences of vector quantized codewords which represented

feature changes caused by shifting the vehicle image aspect over time.

The various operating parameters of the subgrouped recurrent net program (initial

learning rate, momentum, minimum allowed sigmoidal derivative, teacher forced learning,

weight update error threshold and continuity of recurrence between training epochs) were

tested for their impact in learning performance, as applied to phoneme group classification

and a low pass Butterworth filter emulation. The behavior of the subgrouped RTRL net

was compared to the RTRL net described in Capt Randall Lindsey's AFIT Master's

thesis(7). Varying the net operating parameters demonstrated how gains in network error

reduction could be obtained, and the subgrouped RTRL network performance proved close

to the RTRL algorithm in accuracy while reducing the time required for updating network

weights during training for a multiple output (classification) problem.
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A SUBGROUPED REAL TIME RECURRENT

LEARNING NEURAL NETWORK

I. Inftrducdon

Neural networks have been receiving a tremendous amount of interest lately, not

only from the engineers and researchers who are applying them to solve problems, but

from the non-technical general population as well. They are often likened to the human

brain, learning from experience to solve general problems. While an intriguing analogy,

any attempt to imply that neural networks work in the same way as a human brain is

misleading. Neural networks are computer algorithms, many forms of which were

inspired by the apparent method in which neurons process information in biological

systems. New variations of neural networks are being generated continuously, and the

best type of neural net to apply depends on the characteristics of the problem being

solved.

Many of the problems being attacked by neural networks are time dependent, i.e.

the pattern learned by the network varies over time, and each state of the output is in

some way dependent on information processed prior to that point. This makes it essential

to know what happened in the past to correctly process the current data. To solve such

tasks with neural nets requires some method of capturing temporal information.

Recurrent neural networks perform this feat by feeding back information from the hidden

and/or output nodes back into the network inputs. This allows the network to see the

current data as well as a processed version of prior input data.



The addition of temporal information may make a recurrent network better at

solving problems such as predicting commodity prices, identifying moving targets or

identifying the different sounds, called phonemes, in human speech.

1.1 Problem

The Real Time Recurrent Learning (RTRL) network is a recurrent neural net that

has been proven to be able to learn time dependent functions such as tracking analog

signals, imitating a digital filter and recognizing sequences (1 7)(7). One well known (20)

limitation of the RTRL algorithm however is the level of computer processing required

for updating the weights, which is on the order of O(neurons4). This makes large,

multiple network output problems expensive computationally to train, and in some cases

impractical. The goal of this thesis was to determine the behavior and performance of the

subgrouped RTRL network described by Zipser (20). This variation of the RTRL

algorithm reduces the computational requirements for training the network for multiple

output problems requiring larger numbers of neurons.

The problem faced in this thesis was to quantify the behavior and performance of

the subgrouped RTRL network, and to apply it to problems where the characteristics of

the net will be beneficial. Because the subgrouped RTRL network is a time dependent

neural network, it was applied to two problems with inherent time dependencies within

the data:

A. Predicting the daily opening values of the pound in the London

Exchange based on past performance.

B. The problem of classifying images based on sequences of vector

quantized data, representing aspect or point of view changes in the

observation of 5 different vehicles over time.

2
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1.2 Background

With the myriad symposia, conferences, and publications currently devoted to

neural nets, it is often difficult to maintain a current understanding of the "state of the art"

in neural networks. Not only are new forms of networks continually being developed, but

the more established neural networks (Cybenko, feedforward, Hopfield, Adaptive

Resonance Theory, etc.) are continuously being modified, tweaked and improved upon,

creating a multitude of related offspring. This thesis will focus on those networks that

specifically incorporate time as part of the processing of information, and particularly on

the subgrouped Real Time Recurrent Learning (RTRL) network.

1.3 Scope

The scope of this thesis is to characterize the behavior of the subgrouped RTRL

network, as applied to the problems examined. This includes its application to the

prediction of the opening value of the pound on the London Exchange, and the vehicle

identification problem based on sequences of feature vectors(3) as the image aspect

changes over time. The subgrouped RTRL network is a modified version of Capt Randall

Lindsey's thesis program (7), which is based on the RTRL algorithm(17)(20).

Comparisons in performance of the RTRL and subgrouped RTRL nets are also made, to

determine how subgrouping impacts the training time and accuracy to the network.

1.4 Approach

The differences between the performance of the RTRL and subgrouped RTRL

networks will be examined by performing the several of the demonstration tasks

performed in Lindsey's thesis. This will determine whether the subgrouped RTRL

network has the same fimctionality as Lindsey's RTRL code.

The network will also be evaluated as a predictor and as a classifier. The ability

to predict will be examined by training the network on historical data derived from one

3



year's worth of opening values for the pound on the London Exchange, with the desired

output being the opening value of the next day. After training, the net will be tested using

opening value data from a different year.

The network's ability to classify will be evaluated by applying the subgrouped

RTRL network to the problem of image identification. The network will be trained to

differentiate between the images of five different vehicles, based on sequences of vector

quantized codewords which encode changes in aspect as the viewing angle on the

vehicles changes over time. The 4000 sequences in the data source file (800 sequences

per vehicle, five vehicles) will be placed in random order and divided, using the first 901/6

of the sequences for training the network, and using the other 10% to test the accuracy of

the network after training.

Chapter H provides background information on neural networks, and on time

dependent neural networks in particular. It also discusses the source of the Pound

monetary exchange rate values used to test the net's ability to predict, and the

preprocessing of the data used for the vehicle classification problem. Chapter m delves

into the algorithms used by the RTRL and subgrouped RTRL networks, discusses several

operating parameters to the net to that can be changed to enhance performance, and

reviews the test methodology used to characterize the capabilities of the subgrouped

RTRL network. In Chapter IV, the testing results are examined, and in Chapter V

conclusions and recommendations are presented.

4



II. Literature Review

2.1 Introduction

The purpose of this literature review is to synopsize the current state of time

dependent neural networks, with particular attention paid to recurrent neural networks.

Neural networks represent man's attempts to learn from nature's multi-billion year

experiment with life, in which the more effective and advantageous methods of living in a

potentially hostile world are passed on and improved through the generations of living

things. Because of nature's head start on us in developing sophisticated methods of

coping with the environment, we are only now developing systems with the capacity that

insects take for granted, i.e. pattern recognition, feature extraction, and autonomous

travel.

Recurrent neural networks are a subset of the many varieties of neural nets, and

have the added ability of incorporating time dependency into the evaluation of data. As

many phenomena currently being evaluated with neural networks are time varying

(speech, visual processing), this property may be essential to creating systems that may

understand the spoken word, or interpret it's visual environment.

This section contains an overview of neural network theory, leading into a

discussion of the various neural networks that incorporate changes over time into their

training and function. The focus will be on Time Delay Neural Networks (TDNN),

backpropagation through time (BPTr), real-time recurrent learning (RTRL), and sub-

grouped RTRL networks.

5



2.2 Background

Neural networks are algorithms often based on the observed collective behavior of

neurons in biological systems. In living organisms possessing a nervous system, neurons

interconnect with each other as well as with sensory organs and muscles. The strength of

the signals transferred to a neuron depends on the number of synaptic connections from

other neurons, the activity (nerve depolarizations per second) of a stimulating neuron, the

added stimulation or inhibition provided by other neurons, and how fast the

neurotransmitters being produced at the synapses are broken down and reabsorbed. All

these factors can be considered as weighted inputs which influence whether the neuron

receiving the stimulus will fire, and how fast it will fire. This is modeled in neural

networks by attributing weights to the interconnections in the network, and modifying the

value of the weights in order to train the network to perform a function.

Network Outputs

Layer 2

2nd layer weights

Layer 1

SI st layer weights

Bias Data inputs

Figure 1: A two layer muttilayer perceptron backpropagation network
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In the standard multilayer perceptron network, the "neurons" are arranged in

layers. Figure I shows a two layer network which will be discussed in the following

paragraphs. Data feeds into the lowest layer, and is often represented as layer zero of the

network. In multilayer networks, each level below the output layer provides inputs to the

next higher layer. Each neuron in the network multiplies each of its inputs by a weight

associated with that input, and sums the products together. This sum for a neuron i

receivingj inputs can be described by:
N

s, + b(1)

The weight w. is a member of a matrix, with i ranging "f "n one to the

number of neurons in the layer containing neuron i, andj ranging from , ). the number

of inputs from the layer below. The input x. represents either the outputs of the preceding

layer or, if x. lies on the lowest layer, the data being fed into the net, while b. is a bias

added to the inputs. If the neuron i is linear, s, is the output of the neuron. If th" neuron

has a non-linear output fiuction however, the sum is fed into the non-linear function

(sigmoid, tanh, hard limiter or threshold) to produce the final output.

Training of the network is accomplished by adjusting the weights incrementally in

a way that reduces the error between the output of the neuron and its desired output,

which for the top layer of the network is shown as

e, = di- y (2)

where y, is the output of neuron i, and d, is the neuron's desired output. If the neuron has

a linear output, the error in the output of neuron i caused by weight w. depends on input

x, multiplied by the weight w,,. Changing the weights to reduce the error can be

performed by a simple formula

w÷q = w-q - /e, xj (3)

7



where n1 is the learning constant for updating the weights, and w- and w* refer to the

weight prior to and after updatin respectively.

If the output of the neuron is non-linear, the weight update is a little more

complicated. In the case of a sigmoidal output function, one of the most commonly used

non-linear fimucions, the summed inputs of the neuron are processed by the formula

f(s,) = I / (l + e0) (4)

In this case, the change in the error for that neuron for the weight being updated (8e/8w#)

depends on the input that was multiplied by the weight and the derivative of the non-

linear function. For the sigmoid function, the derivative is

As, XI-A•s)) (5)

leading to a weight update formula of

W+= = w-q - ql e, f(s, )(l - f(s, ))xj (6)

If the network has a layer of neurons below the output layer (usually called a hidden

layer), there is no set desired output for these neurons to train on. Instead, the error

generated by these neurons must be inferred by their net effect on the error of the output

layer neurons. This carrying of the errors produced at the output of the network back to

the hidden layers is the origin of the term backpropagation. For a neuronj in the hidden

layer this error depends on the weights between neuronj and the output neurons, and on

the derivative of the sigmoidal function used by the output neurons. This can be

summarized by

,wu e,As, XI- As,)) (7)

Using this term for the change in the output error generated by the output of neuron j,

and with the same dependencies on the sigmoidal function and the inputs into neuronj for

updating the weights as was seen in the output level, we can update the hidden layer

weights using



w÷= :w'•- Jf(sjXl-f(S$ ))xI we'f(s1 Xl- f(s$)) (8)
1-I

where w., represents the weight matrix used to weight the inputs from the next lower

level. For a network with only two layers of neurons, x, is one of the data inputs being

fed into the network.

By updating the weights in the network incrementally over multiple (often

thousands) of epochs in which the input data is passed through the network each epoch,

the weights eventually reach a point at which the error has reached a minimum. This

minimum may be the lowest possible error that can be achieved, or it may be a "local

minimum" in which the net has become caught Because changing the weights

i ay to travel between a local minimum and the global minimum would raise

the output error temporarily in the process, the learning algorithm described above may

not be able to reach the lowest possible output error.

The preceding paragraphs provide a top level, non-mathematically intensive

description of how a standard backpropagation neural net operates. For the interested

mathematically inclined reader, many excellent texts provide a detailed derivation of the

backpropagation algorithm (12).

2.3 Scope of Literature Review

Because this thesis is based on the use of a time dependent neural network, specifically

the subgrouped RTRL algorithm, this review will focus on those types of neural networks

that are designed to incorporate time as a dimension in the training and function of the

network. There are many forms of networks that use time in some manner, with

variations and entirely new architectures being introduced regularly. Therefore, the broad

classes of the currently well known time based neural networks will be discussed. A brief

description of the derivation of image features used for the vehicle classification problem

is also provided.

9



2.4 Thum Delay Neural Networks

The element of time can be incorporated into the training of neural networks in

several ways. The inputs into the network may include more than one "frame" of the

training data, which is shifted through as the net is trained (Figure 2). The Time Delay

Neural Network (TDNN) (Figure 3) operates on the same principle, where each input is

split N times, with each of the N branches delayed by a different increment in time. This

widens the window that the net "sees" of the data, to incorporate N time slices of the data

stream. Waibel(1$X19) has used this type of network with some success for the

idenifiction of phonemes in Japanese.

yl(t) y2(t)

Bias xl(t-2) x2(t-2) xl(t-1) x2(t-1) xl(t) x2(t)

Figure 2: input data 1I shifted along Inputs to the net In this example, the net

sees three time samples of two Inputs.

10
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2.5 Recw~vnrt Netwok Variations

Recurrency in a neural network basically involves the feeding back of the outputs

of neurons in the network to other neurons on the same layer or at lower levels. Jordan(6)

Propose a network that operated like a standard two layer backpropagation network, but

fed beck the outputs of the network as inputs, allowing the net to "see" what was

produced during the last iteration (Figure 4). The recurrent output values were fed into

the bidden layer neurons, as well as having each state unit neuron feeding back to itself,

mulipledby an attenuation factor. Elman(2) described a variation on this concept, in

which the output of the hidden nodes is fed back as net inputs (Figure 5). These recurrent

arhietures are stagtbwrin that no changes to the standard backpropagation

algorithm is required. The recurrent values are treated as inputs, and the net performs a

gradient descent to minumize the error as it trains.
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Rumelhart(15) proposed a different tack in approaching the treatment of time. In

his recurrent network, the network is treated as a feedforward network that grows one

layer with each iteration. This algorithm is known as back-propagation through time

(BPTT), and while it does solve time-dependent problems it suffers from computer

resource limitations, as the net grows larger with larger input sequences. Rohwer and

Forest(13) modified this approach by creating multiple copies of the starting network,

with each copy representing a time step in the training sequence.

Pineda(10) generalized Rumelhart's(15) learning rule, while eliminating the

requirement to unfold or duplicate the network for each time step. The net, similar in

some ways to the Hopfield network, is designed to adjust the weights in order to produce

a fixed point (corresponding to a memory in a Hopfield net) when an input xi is presented

to the net in an initial state xi. Unlike the Hopfield net, the weights are adjusted to

minimize the error of the system during training.

Pineda (10) later stated that gradient descent cannot create new fixed points, only

move existing ones. To create new fixed points requires "teacher forcing", which

constrains the degrees of freedom in the network during training, and releases them

during recall. He also states that there is no guarantee that after the clamped degrees of

freedom are released that the system will be stable on those fixed points, and that the

fixed points generated by the clamping may become "repellers" rather than "attractors."

Pineda's(10) algorithm for training recurrent networks was adapted and

generalized by Pearlmutter(9) to minimize the net error as a function of the temporal

trajectory of the states of the network. This new algorithm trained slowly and

occasionally became unstable, and was modified by Fang and Sejnowski(4) to overcome

these obstacles.

12



2.6 Real.Time Recurrerd Learning (RTRL)

Another variation in the recurrent network taxonomy is the real-time recurrent

learning (RTRL) network proposed by Williams and Zipser(17) (Figure 6). It also

minimizes the net error along a temporal trajectory using gradient descent, and can be

used to recognize temporal sequences. Unlike the BPTT algorithm and many of its

derivatives however, the network does not grow over long training sequences. The RTRL

network does suffer from large memory and processing requirements, as the algorithm

requires 0(n4) computations per time step for n neurons. Because of this, this algorithm

can be unsuitable for any problem that requires a combination of multiple (>10) inputs,

multiple (>3) outputs and associated hidden units.

Because the net processes information by passing the output of the neurons back

as inputs at the next point in time, the training output values provided to the net must be

delayed one or more time steps as compared to the corresponding network training inputs.

Output Nodes yl(t+l) y2(t+l) y3(t+l) y4(t+l) Hidden nodes

9 /

zk1(t) -> Bins x1(t) x2(t) ylI(t-) \ y2(t) y() 4t
input data recurrent output values

Figure 6: Basic RTRL architecture, with two outputs, two hidden nodee,
and two Inputs.

13



Subgroup I Subgroup 2

Output Nod" yl(t+l) y2(t.-) y3(t+l) y4(t+1) Hiden modes

zjt -> Bias 11(t) z2(t) yl(t) \'y2(t) y3(t) y4(

Input data recurrent output vaius

Figure 7: The subgrouped RTRL architecture, as implemented for this thesis. Each output is
paired with one or more hidden nodes. Note the connectivity between the nodes is the same
as in the basic RTRL architecture.

2.7 Subgrouped RTRL

To address the exponential growth in computational requirements of RTRL,

Zipser(20) proposed a method of breaking the updating of the weights into subgroups

(Figure 7). This method can reduce the computational complexity of the algorithm from

O(wn2) to O(w), where w represents the size of the weight matrix and n equals the number

of neurons. The connectivity within the network is unchanged, but the updating of each

weight depends on only a subset of the error generated by the recurrent neuronal outputs.

For g subgroups the weight updating algorithm is g2 times faster, although each subgroup

now has less of the temporal "memory" than was found in the original algorithm.

Zipser(20) states that this can be compensated for by using more hidden units, while still

operating at a much faster processing rate.

Like the RTRL algorithm, network training outputs must be delayed by one or

more time steps from the corresponding network inputs. The explanation of the RTRL

14



aipridwns, and how subgouping speeds up the network, is discussed in section 3.2. It is

the subgrouped RTRL algorithm that will be the focus of this thesis.

2.8 London Exchange Opening Quotes

There are many examples in this world of data whose changes over time appear on

the surface to be random or chaotic, but are dependent on some underlying mechanism

that drives (or influences) the path the data takes. One example of this would be the

amplitude of a vocal signal, dictated by the mechanics of the vocal chords and the

phoneme being uttered at the moment Another possible example would be the

movement of a pilots head in XYZ space during a mission, which would be influenced

by the voluntary movements (looking at the Heads Up Device) and the inertial forces

generated by aircraft maneuvering. The ability to predict the path of a signal based on

past behavior could be very beneficial, and would depend on the predictor's ability to

internalize and emulate the mechanisms or forces that drive the signal to change. For this

thesis, the opening quotes for the value of the pound on the London Exchange are used to

study the subgrouped RTRL net's ability to perform this function.

2.9 Vector Quantized Image Sequences

The ability to visually recognize objects is one that we take for granted, unless we

try to duplicate this ability in a machine. Generally, this is performed (or attempted) by

extraci - key visual features that are characteristic for the object being identified. The

data used for this thesis was derived from CAD generated 3-D images of an M-60 tank,

an M35 truck, a BTR60 armored personnel carrier, a T62 tank, and an M2 infantry

fighting vehicle. Each image was viewed from multiple (592) different angles around and

above the vehicle representations, and the data was processed and vector quantized(3) to

produce 64 codewords. Each codeword (0 - 63) represents the visual information of areas

of similar aspect or characteristic view. Codewords may be associated with one or more
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of the vehicles; the key information is contained in the sequences of codewords,

representing a changing image aspect over time.

2.10 Summary

Recurrent neural networks have grown in complexity from a basic feeding back of

the output error of neurons at higher levels(2X6) to algorithms that specifically

incorporate the function of time into the weight updates. Because of this, these

algorithms are uniquely capable of following the "trajectory" of the data through the time

steps, allowing the network to predict what can be expected to occur next and respond

accordingly. This added dimension of time expands the observed behavior of neural nets

in generating a probability function as an output, in that the preceding time steps add to

the network's ability to generate the most likely output.

The subgrouped RTRL algorithm is a flexible, time-dependent method of

predicting what the most likely output should be, given the current inputs fed into the net

at this time and the inputs that were fed into the net in the past. As such, its abilities and

limitations need to be evaluated and explored. The full description of this algorithm, and

the tests performed in this thesis to evaluate its effectiveness, are documented in Chapter

HI.
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III. Methodology

3.1 Introduction

Chapter HI provided an overview of how the standard multilayer network with

backpropagation learning operates, as well as a review of the more prominent networks

that are designed for the processing of temporally-dependent data. The real-time

recurrent learning (RTRL) neural network and the subgrouped RTRL were highlighted

due to their importance to this thesis. This thesis involves the modification of the RTRL

C code written by Capt Lindsey(7) into the subgrouped RTRL algorithm, and the

enhancement of the performance and learning effectiveness through several

modifications. The utility of the algorithm is demonstrated via its application to the

prediction of the value of the English pound based on the opening values at the London

Exchange, and the identification of vehicle images based on image features as the

viewing aspect changes with time.

This chapter covers the development, modifications and testing of the subgrouped

RTRL program. The algorithm for the subgrouped RTRL, and how it differs from the

basic RTRL algorithm, is described and discussed. Also, the training and testing

methodology is reviewed.

3.2 Subgrouped RTRL Algorithm

Like the basic RTRL algorithm, the subgrouped RTRL is an error gradient

following algorithm for a completely recurrent network. The subgrouped RTRL

algorithm is structurally the same as the basic RTRL algorithm; the same connectivity

exists between the nodes as in the RTRL. The main difference lies in the extent to which

each node influences the weight updates of the network.

In the implementation of the subgrouped RTRL for this thesis, some restrictions

into the algorithm have been incorporated to simplify the design. Both Lindsey's(7)
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original RTRL code and the modified subgrouped RTRL allow the user to specify the

number of output nodes, input nodes and hidden nodes. The user's selection of the

number of hidden nodes however is changed, if required, to make the number of hidden

nodes an integer multiple of the number of output nodes selected. Each output node is

then grouped with an equal number of hidden nodes. As in the basic RTRL algorithm,

the linear and/or sigmoidal outputs of the output and hidden nodes are fed back into base

of the net, comprising part of the input for the next iteration.

The subgrouped RTRL algorithm was proposed by Zipser(20) in response to

observations that the RTRL algorithm required a great deal of computation to train. This

is due to the O(n4) complexity of each time step, with n representing the total number of

output and hidden nodes. This thesis will review the subgrouped RTRL algorithm, and

demonstrate where it deviates from the basic RTRL algorithm. Terms used in this

derivation will be consistent with those used in Zipser's(20) article and Lindsey's(7)

thesis. Specific portions of the discussion are attributed to the subroutines in the C code

in Appendix B, to help the reader associate the algorithm to its implementation.

Basic terms:

The network (Figures 6 & 7) consists of n neural node units and has m external

inputs (the first of which is a bias of 1). At time t,

the output of the kth neuron is represented by yk(t), where k ranges from 0 to n - 1.

the summed activation value of neuron k at time t is sk(t)

the jth external input into the net is x/)., wherej ranges from 0 to m - 1.

the m + n net inputs comprise the input vector as time t, zj(t), wherej ranges from
0 to m + n - 1. This is shown by:

J(t) ifjGUI (9)zj (t) = tj-1(t) if j 6U

where U identifies the subset of the j indices in zj derived from the n
network outputs of the prior iteration, while I identifies the subset of j
indices in z, in which thejth member is one of the m external inputs.
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the error measured at mnr k is represented by e&(t).

the Kronecker delta function, 8•, equals I if i = k, and is 0 otherwise.

the non-linear sigmoidal function at neuron k is shown asfk

the pi matrix represents 8yk(t+l)/ 8 wu where in the original RTRL network,

i ranges from 0 to n -l,j ranges from 0 to m + n -1, and k ranges from 0 to n-l.
In the subgrouped RTRL net, iranges from 0tog- 1, where g is the size of the
net subgroups,j ranges from 0 to m + n - l, and k ranges from 0 to n - 1.

As was covered in the discussion of the basic backprop net (Chapter I) there is a

weight matrix w., where i is the index of one of the n neurons, andj refers to one of m+n

inputs.

Subroutine ComputeError:

This routine calculates the error at the net outputs, based on the net's prediction of

what the output should be, which was calculated during the prior iteration. The error is

found by taking the difference between the linear or sigmoidal output of those nodes

designated as "output" nodes, and the desired output of the network. The error at each

output node k is defined as

ekt = Ld(t)--y. (t) if k e T (0e•(t) =1 (10)
otherwise

where T represents the subset of neurons that produce the net outputs.

In the original RTRL code (Figure 6), the first k nodes were output nodes, while

the remaining n - k nodes were the hidden nodes. For this implementation of the

subgrouped RTRL (Figure 7), the output nodes are every ith neuron, where i - (n /

number of net outputs).

The total mean squared network error is then calculated as

Jl (t)= X,(l/2)X.[e.(t)J (11)
I keU
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Subroutine ResetDelw_$:

This subroutine multiplies the delta weight matrix with a momentum term after

each iteration of data is processed by the net, allowing the net to use momentum while

training. The rationale for the addition of the momentum term is discussed in section

3.3.2.

Subroutine Propagate:

The yk(t-l) outputs of the n neurons that were computed during the last iteration

are incorporated in the input vector z(t). The nodal activation, or the weighted sum of the

inputs for each node (sk), is calculated as

Sk(t) - •wk, z, (t) (12)
I eUui

In other words, each neuron sums all of its inputs multiplied by their respective

weights to form the activation value for that neuron at time t.

Subroutine ComputeOutput:

The output for the following iteration is calculated next. This is expressed by

Yk (t+1)=fA (sk(t)) (13)

wherefk is the sigmoidal function for the hidden nodes, and can be sigmoidal or linear for

the output nodes. This yk(t+l) term is the network's predicted value of what the desired

value will be next iteration.

Subroutine Update:

The updating of the weights in this algorithm is the most complex and

computationally intensive portion of the RTRL algorithm. It was due to the

computational requirements of this function that the subgrouped RTRL algorithm was
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poop oed by Zlpr(20), and utilized for this thsis. To understand this, we must look at

the effet of using recurrence in the network

yt(t70) y2 t+l) y3(t01) y4(t0+)

B zIt) X2(t) yI(t) A2(t) y3(t) yd(t)

Figure 8: The output of neuron y2 at me t1 is dependent on the highlighted
weight connections and their Inputs.

yI(t+2) y2(t+2) y3(t42) y4(t+2)

z1•t) -> Ds zn(t4-) z2(t4-0) yi(t+1) y2(t+l) y3(t+1) y4(t0+)

Figure 9: At the next Iteration, the output of neuron y2 has been fed back into the
network as an Input, thereby affecting the output (and error) of each of the
neurons at t02. Note that neuron y2 can affect its own output (dashed line) during
the next iteration.

In order to calculate the update to the weight wy for the next iteration using the

RTRL algorithm, we must look at the error in the net caused by that weight Weight w.

affT"s the output of neuron i at time t (Figure 8). Since the output of the neuron i is fed

back into the net along with whatever error it may contain, w. impacts the error in the

next iteration of all the neurons (Figure 9).
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The relationship between the energy level in the network and the network weights

is repreented by:

8 i( t ) - F e ( ) 8 Y k( )( 4 )
W k.U 't oWy

Because this is a recurrent network, a change in w. at time t affects the output and rror of

neuron k at time t +1. For the RTRL network, this is expressed by

AY(t+i) =f '(t{Xuj8az()](5
'8~ W W "+ .Z

where keU,ieU, andjEU I. The term p, represents the effect that a change in

weight w# would have on the output of neuron I at a following iteration. Since neuron I is

then fed back into the network and becomes an input to neuron k at time t + 1, the

F ipt term is a summation of each of the weights associated with the recurrent inputs

to neuron k, times the changes in the recurrent inputs that were caused by weight w.. In

other words, this term sums the indirect effect that weight w, has on the output of neuron

k from changing the output of neuron L.

If neuron i and neuron k are the same (separated by time), the effect of a change in

weight wV on the output of neuron k can be expressed by the added term

8Z (W) (16)

The 81k term is the Kronecker delta function, which equals one if i = k, and equals zero

otherwise; zA) represents the jth input to neuron j. The need for this term can be

explained as follows: At time t, neuron i receives the value of input z, (t) multiplied by

weight w., At t+l, neuron k receives the output of neuron i as an input. Note that in this

ca there is no intermediate neuron I for weight w. to influence neuron k through, hence

no J term. If neuron i and neuron k are the same, but at different time steps, weight

change Awe affects neuron ks output indirectly through changing its output directly

during the previous time step.
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1U d.g in dte output of neuron k in raspec to a change in the wight w con

be rPreene pQml) by the equation

(t +l)-= Yk (1 + ) (17)

T'hw equation (17) can be rewritten

p(,+1 =ft +,(,)] (18)

IOU

TMW lP' term is implmente in the C code as a n z n x (m+n) matrix (p matrix), and is

used to update the n x (m+n) weight matrix. This is the direct cause of the O(wn2 )

om.ezlt•y of this alerlthbn, and the reason why RTRL too slow to train for other than

small problems, limited in the number of outputs or of hidden nodes. Each weight is

updated based on its effect on all of the neurons in the net To avoid this, the net can be

subrouped in such a way that when weight w, is updated, it is only based on its effect on

the neurons within its group.

In the subgrouped RTRL implementation used for this thesis, the number of

groups in the net is equal to the number of network outputs. Because of this, the p matrix

(pk) becomes an s x n x (re+n) matrix, where s equals the number of nodes in each of the

subgroups in the net. The size of the p matrix has been reduced by a factor of g, which is

the number of groups in the net.

In the subgrouped RTRL algorithm, equation (18) becomes

pk (t+l)=f'(4 w p +8• z,)(,)] (19)

where ke U, I eUg, ieU, andj eluU. Ug is that subset of the recurrent neuronal

outputs that belongs the group containing neuron i. In other words, the Z.wk py term
IOyU,

represents the summation of the recurrent (neuron 1) inputs to neuron A; where neuron I is

from within neuron k's subgroup, times the change in neuron I's output caused by changes
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to weight wV during a previous iteration. The effiect that weight w. has on neurons and

weights outside the subgroup are not calculated. The consequence of this change is that

the p matrix is smaller, the net runs approximately g2 times faster. Zipser(20)

hypothesized that the subgrouping of the network may impact net accuracy, but believed

this can be compensated for with the addition of extra hidden nodes. He also stated that

the time delay caused by the additional nodes should be more than compensated for by

the speedup caused by the subgrouping.

All of this theory being said, the Update subroutine begins by first calculating the

delta weights ( Awu) based on the p matrix calculated during the last iteration. In the

RTRL algorithm, this weight update is derived from equation 16 as

Aw, = aye(k)pk (20)

wherei e U,j e Uul, k e U, andaisthe learning constant. In the subgrouped RTRL

algorithm, this becomes

Aw = ae(k)pk (21)

where i E Us, j e U I, and k e Us . Thus only the error at each group's output node

drives the weight updates for the weights associated with that group.

Next, the subroutine calculates a new p matrix based on the above algorithm, and

saves the new p matrix for the next weight update.

3.3 Network Parameters

The RTRL algorithm, as implemented by Capt. Randall L. Lindsey(7), was able to

perform several time dependent tasks quite well. These tasks, however, required only one

or two outputs. When research on this thesis was begun, it was quickly determined that

the algorithm as outlined in Lindsey's thesis was not appropriate for some of the larger,

more complex tasks. Processing time required for training on phoneme broad classes for

more than one voice was measured in days. The outputs of the network would tend to

lock onto zero or one, even if the output was in error. To avoid this problem, research
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into mem of inpoving the taining time and accuracy of the network was initiated.

Tis led to the exploration of the subgrouped network as proposed by Zipser(20), as well

as several other methods of manipulating network performance.

The following is a discussion of the network parameters or algorithms added to

modify the learning behavior of the implementation of the subgrouped RTRL network

used for this thesis, in an attempt to improve network lemaing speed and accuracy.

Evaluation of the initial learning rate, momentum, minimum sigmoidal derivative, teacher

forced leaming, and weight update skipping error threshold parameters were performed

using a Payton algorithm (8) processed TIMIT voice file. The voice file selected has 389

data points of 20 inputs and 6 outputs, each output corresponding to one of six broad

classes of phonemes. Each training run using these parameters was performed on ten

networks with different initial random weights, and the results of the training runs were

averaged for a composite graph of the network output accuracy. The graphs showing the

composite accuracy for the above parameters are shown in Chapter IV.

One network parameter was evaluated without using the voice file data. It allows

the net to treat the training data as continuous between the end of one epoch and the start

of the next, and is discussed in section 3.3.6. This capability was added to address a

byproduct of the way in which the RTRL algorithm learns, and so is discussed using the

type training problem in which this byproduct can be observed.

3.3.1 Variable Learning Rate

The subgrouped RTRL network used for this thesis reduces the learning rate

(alpha) by a factor of ten whenever the network error rises more than 1% over the

minimum error reported to that point, or if the difference in error between the current

epoch and the previous epoch is less than 0.0000001. This is done to prevent the network

from becoming unstable if the learning rate is too high, and to improve the network error

minimization when the net error has reached a plateau.
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Setting the learning rate at a high or low level at the beginning of training has a

definite impact on the network's ability to learn a task over the training period. Set the

rate too high, and it immediately adapts to the inputs at time t, forgetting previously

learned behavior and therefore losing it's ability to generalize. Start with too low an

initial learning rate, and the net learns slowly and may become stuck in a local minimum.

To observe the effect of the initial learning rate on network training, the net was

trained using the Payton processed voice file for 200 epochs, with initial learning rates of

0.1, 0.01 and 0.001. The network configuration was the 20 neural activity level inputs

produced by the Payton algorithm, 6 sigmoidal outputs, and 12 sigmoidal hidden nodes.

The training output was delayed two time steps. For this problem, the best learning results

were obtained using an initial rate of 0.01. The differences in network performance

caused by different initial learning rates are discussed in Chapter IV.

3.3.2 Momentum

The use of momentum to speed up the learning of a backpropagation network is

well established (14). Use of momentum tends to dampen out the oscillations in network

accuracy during learning, and carry the net down the averaged out path to an error

minimum. To add momentum to the network, the delta weights are simply multiplied by

the momentum factor after the weights are updated. This is summed with the next

calculated set of delta weights, to allow the carry over a portion of the weight update from

time t-1. The momentum factor is a parameter read by the network during initiation.

The impact of using momentum was measured by training the subgrouped RTRL

nct using momentum set at 0, 0.5 and 0.9, with a network configuration of 20 inputs, six

sigmoidal outputs and 12 sigmoidal hidden nodes. The network with a momentum of 0.9

demonstrated the highest accuracy and lowest error during training, followed by the net

with 0.5 momentum factor. This indicates that momentum does improve training

performance for this problem. Further discussion of this test is provided in Chapter IV.
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33.3 MAbdmum value for output derhartefactor

For an output y(l), the derivative of the sigmoid transfer function is yffl(l-y[i]).

One common problem encountered Amn using neural networks for categorization of

inputs is that the derivative of the sigmoid output function tends towards zero when the

output approaches zero or one.

(y[IJXI-y[i) = (lXl-1) = (OXI-O) = 0 (22)

Even if the output is wrong, the error feedback used to update the weights is zero

or very small. This can cause an output to "hang" or latch on a wrong value, slowing

down learning tremendously. Van Ooyen and Nienhuis (16) proposed the use of a

different energy equation,

E=- ,I[t, lnz +(l-t:)In(l-z,)] (23)

where tj represent the desired nodal output, and zj represents the actual output of node j.

When this function is used, the partial derivative of the error function contains the inverse

term to the sigmoid function derivative, canceling it out. Thus during weight updates the

error at the output is fed back directly without the sigmoid derivative term, avoiding the

latching of the neuron in the wrong state during training. Rather than redefining the error

fimction for the subgrouped RTRL network however, a similar effect was gained by

setting a minimum value for the sigmoid derivative of the output neurons. When the

derivative falls below the minimum set value, the set value is used for the updating the p

matrix (equation 24). Above the set value, the sigmoid derivative value is used.

Py,(,+l)=f-'[ '+5k Z;(t)]

This one change appears to have caused the biggest improvement is learning

effectiveness, compared to the other variables used to manipulate the network.
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3.3.4 Teacher forced learning

Williams and Zipser(17) stated that learning could be accelerated if teacher forced

learning is used. Teacher forced learning involves replacing network output values from

time t with the desired values (after computing the error), which are then used as the

recurrent inputs at time t + 1. This helps to train the network faster for some problems, as

the net does not have to unlearn weights as the recurrent output values transition from

incorrect to correct values during training. In some cases however, this approach

backfires. When the net is being tested with new data, any erroneous outputs are fed back

as inputs. As the network weights were trained to work with the "correct" outputs,

erroneous outputs can make the net unstable. In this case, teacher forced learning causes

the correct response to represent an energy repellor rather than attractor. The RTRL code

was modified to allow for teacher forced learning if the user selects it. This is set using a

flag in the parameters file access by the net upon initialization.

3.3.5 Skipping weight updates for learned outputs

Allred and Kelly(l) proposed performing backpropagation of the error during

training only when the error for a neuron was greater that the learning rate value squared

(a 2 ). As the network error decreases and the number of data iterations that skip error

backpropagation passes 90%, a is decreased. This idea was incorporated into the

recurrent network code by feeding a parameter to the network during initialization which

sets an error threshold for weight updates. When the output error is below the threshold,

the weights are not updated. Since the calculation of the weight updates in the RTRL

algorithm is the most time consuming part of training the network, skipping weight

updates holds the potential for speeding up network training considerably.
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3.3.6 Condtnuity of Recurence Between Epociw

During each iteration of the RTRL training the net output and hidden node values

are forwarded as inputs for the calculation of the next iteration. The exception to this is

at the end of the epoch, when the output value of the neurons (and the p matrix) are

replaced with zeroes. When training the RTRL network for some functions, it was found

to be better not to zero out the net outputs at the end of each epoch. This is due to the

discontinuity the zeroing of the outputs induces at the beginning of each epoch. An

example of this phenomenon can be seen when training the network to emulate a low

pass Butterworth filter (paragraph 3.4.3). At the initial iteration of the epoch (=-0), if the

training data is zero and the output from the previous epoch has been zeroed, the net sees

only the bias as a non zero input (Figure 10).

hidden nodes
net output //

0 /0 0 0 \ 0
1/ "I

1 Input date 0 0 0 0 0
Bias at t - 0 Zeroed recurrent values at t =0

Figure 10: The RTRL network (1 output, 4 hidden nodes) at t•O, after zeroing the
output values from the last iteration of the prior epoch

The weighted bias drives the output values of the RTRL neurons, which are fed

back into the net during the next iteration. The net treats this input as an impulse, and

generates the filter's impulse response (Figure 10).
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Figure 11: The recurrent network shows the Butterworth filter's impulse response at the beginning
of the epoch, after training with inputs zeroed at the beginning of each epoch

The enabling of this continuity option causes the output from the final iteration of

the previous epoch to be forwarded, as the RTRL net does in all other iterations, as inputs

into the calculation of dhe next iteration, the first of the current epoch. One complication

to this option is the fact %at all RTRL training files have some delay imposed in the

network outputs, due to the time dependent nature of the network. To make the training

on the data truly continuous, the desired outputs generated by the last data iterations in the

training file must be placed as training outputs at the beginning of the file. If the outputs

are delayed for two iterations for example, the outputs associated with the last two data

iterations must be placed as the desired output with the first two iterations of data at the

start of the file.

3.4 Subgrouped RTRL Functional Capabilities

To demonstrate the functional equivalence and/or improvements gained using the

subgrouped RTRL code over the original RTRL program explored by Capt. Lindsey,

several of the Pme tests were performed as were described in his thesis(7). The repeated

tests were the Exclusive OR problem, the internal state problem, and the Infinite Impulse

Response (HR) filter simulation. The subgrouped RTRL was also tested by training it to

categorize the phoneme groups in a sample of digitized voice that had been pre-processed

by the Payton(8) algorithm. During the training/testing of the network on the pre-
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processed voice data, the differences in performance in training speed and accuracy for

this task between the subgrouped RTRL and the original RTRL code were measured

3.4.1 Exclusive OR (XOR)

The Exclusive OR problem is a classic test of the performance of a neural

network, as it requires the identification of two distinct and separate areas in the solution

space. This is a task beyond the capabilities of a single layer network. From

appearances, the RTRL network seems to be a single layer network, and therefore

incapable of learning an XOR solution.

1.0 The hidden nodes of an

0.9- RTRL network, unlike a standard

0.-- Class I inputs Class 2 inputs backpropagation network, do not
0.7 --

0.6- feed directly into a higher layer

0.5 - during the processing of a data set at
0.4- the input layer. Instead, they feed

0.3 --

0.: - Class 2 inputs Class I inputs into the output layer, and to

0.1 themselves, during the next iteration.

Thisti teprlten oWnetn0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.9 1.0 This temporal means of connecting

Figure 12: For the XOR function, valid input values can the hidden nodes to the output nodes

not be Isolated into one contiguous area. enables the network to solve the

XOR problem. To allow for the

temporal delay in passing the hidden node outputs to the output nodes however, the

desired output of the network must be shifted ahead in time.

The network configuration used to solve the XOR problem with the subgrouped

RTRL network was identical to the network used by Lindsey's code, i.e. two external

inputs, one sigmodal output and four hidden sigmoidal units. The ones and zeros used as

inputs were generated randomly, and the training output for the XORed function of the
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two inputs delayed by two time steps. Using 1024 training vectors the network was

trained over 20 epochs, and then tested using the trained network weights on a test XOR

sequence.

The training of the networks was repeated using non-integer training values

between 0 and 1, with the range 0 to 0.5 treated as a zero input, and 0.5 to 1 equivalent to

a input of 1 for the determination of the XOR output. Using a two input, one sigmoidal

output node and 5 hidden node configuration, the net was trained for 300 epochs through

the 512 training vectors. The trained net was then tested on a 1024 vector non-integer test

set.

While the net scored perfectly on the integer portion of this test, it only scored in

the 91+ percentile when trained and tested on non-integers. Interestingly enough, the

misses were not at the boundary data values where one would expect. The complete

results of these tests are discussed in Chapter IV.

3.4.2 Internal State

Backpropagation networks have no temporal memory; they only train or respond

to the data at the network inputs during each iteration. This property makes these

networks unsuitable for training on patterns that occur over a series of iterations. To

recognize a pattern over time, a network must maintain some form of internal memory or

state over one or more time intervals. A test of this function, as discussed by Williams

and Zipser(17) and documented in Lindsey's thesis(7), consists of presenting the network

with data vectors of 4 inputs labeled a, b, c u..- d. Within each data vector one input

randomly selected is valued at I, the others are zero. The output of the network is

normally zero, except for the interval immediately after a valid b input (b=l) follows a

valid a input. When this occurs, the desired network output is 1 for one time interval.

Inputs c and d have no effect on the desired network output. Training and test files for
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this problem were created using different random number seeds, so that the order of

inputs, internal states and intervals between valid a and b inputs were varied.

The network configuration for the internal state test was four inputs, one

sigmoidal output, and one sigmoidal bidden node. When tested, the net apparently had

learned this task perfectly, as had the original RTRL algorithm. The discussion of the

results of the internal state test is presented in Chapter IV.

3.4.3 Second Order fIR Lowpass Filter Simulation

In this test, the subgrouped RTRL network was trained to simulate a second order

low bandpass Butterworth filter. The filter algorithm used to produce the training and

test output data for the network is described by the equation

y[t]=O.0676(x[t]+ 2x[t - l]+x[t - 2])+ l.1422y[t - l]-O.4124y[t- 2] (25)

The inputs to the network, and to the above algorithm, consisted of a several different

data series: a set of random values between -1 and 1, a set of impulses (1 followed by a

string of zeros), a step function (0 0 0 0 0 1 1 1 1 1 1 1 1) and a sampled cosine wave.

The network was trained on the filtered series of random values, followed by training on a

filtered series of impulses. The trained network was then tested on the filtered impulse,

step function, cosine wave and random number data sets. This training approach differs

from the one described in Lindsey's thesis(7), where the filtered impulse series was used

for training. The method used for the subgrouped RTRL resulted in faster training and

higher accuracy after training. The net configuration consisted of one input, one linear

output node, and one sigmoidal hidden node.

The net learned to emulate the Butterworth filter with good fidelity, with only

minor deviations from the desired response. The details and accuracy of the network's

filter emulation is discussed in Chapter IV.
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3.4.4 RTRL Versus SubgroupedRTRL Performance

The subgrouped RTRL network was evaluated for performance by comparing

how quickly both of the RTRL algorithms (original and subgrouped) performed 10

training epochs using 0, 6, 12, 18, 24 and 30 hidden nodes. Training was performed on a

Sun Spare 10 workstation, and processing time was obtained using the UNIX time

command, which reports how much CPU time was dedicated to the process in question.

This allows time data to be taken without concern over varying CPU workloads.

The training file consisted of 389 data vectors (20 inputs and six outputs) from a

single voice data file. The input data used to train the networks consisted of digitized

voices derived from the TIIvT voice database, which have been processed through the

Payton(8) auditory model algorithms. This training data required the RTRL networks to

differentiate between six classes of phonemes (nasals, vowels, stops, fricatives, silence

and liquid-glides). Training runs with the subgrouped RTRL network were performed

twice, first without allowing weight update skipping, and the second time with the error

threshold for performing weight updates set at 0.00001.

The subgrouped RTRL network trained in substantially less time than the RTRL

algorithm, but the RTRL network showed a higher average accuracy in identifying the

phoneme classes as compared to either subgrouped RTRL network. Skipping weight

updates in the subgrouped RTRL network incurred a small penalty in network error, but

depending on the application, this may be offset by the increase in training speed. The

time required for training, and the increase in processing speed for these network

configurations, is discussed in Chapter IV.

3.5 Applications

Since the strength of the RTRL algorithm is in the ability to deal with data that

changes over time, the subgrouped RTRL was applied to two time dependent problems.

The first deals with testing the predictive ability of the network, using the opening value
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of die pound at the London Exchage for training and then testing the network. The other

problem deals with classification of time dependent data; image classification based on

feature changes over time.

3.5.1 London Exchange Prediction

It is the dream of every financial analyst to possess a sure method for predicting

the value of a stock, commodity or currency at some point in the future. One potential

method for this, evaluated in this thesis, is to present a time dependent neural network

with a sequence of values (daily pound exchange rates) over time, with desired output

being the value at some point in the future.

The data used to train the network was derived from the London Exchange, and

consisted of the opening exchange value of the pound over a period of one year. The

desired output provided to the network was the same data sequence, shifted in time one

day. At any particular time t, the desired output of the net would be the next input value

at time t+l. The network consisted of one input, one linear output, and three sigmoidal

hidden nodes. It was trained for 500 epochs, with an initial learning rate of 0.0001. The

net was then tested on the opening exchange rates for a different year.

While the net learned to closely match the desired response, examination of the

plotted net output shows that it consistently lagged behind the desired (future) output.

This plot of the results, and the future of this network as a financial analyst, is discussed

in Chapter IV.

3.5.2 Vehicle Image Classification

For the application of the subgrouped RTRL network to the problem of image

classification, the net had to associate sequences of single value codewords with the

vehicle the sequence had been derived from.
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The sequences of codewords or feature vectors used to train and test the network

were derived from the 3 dimensional CAD representations of five different vehicles: an

M-60 tank, an M35 truck, a BTR60 armored personnel carrier, a T62 tank, and an M2

infantry fighting vehicle. The CAD images of each vehicle were captured from multiple

points above and around the vehicle representation, to uniformly cover possible

perspective points for viewing the vehicle. The multiple images of the five vehicles were

processed(3), and the features extracted into 64 possible states, represented with

codeword values of 0 - 63. Sequences of the codewords represented a series of discrete

perspectives or image frames of a vehicle, changing over time as the viewer perspective

point changes.

The 64 codewords did not in themselves represent any of the vehicles; each may

be found in a sequence associated with any of the five vehicles. Instead, it is the

sequencing of the codewords that differentiates between the vehicles.

The data files associated with each of the vehicles contained 200 sequences of

codewords of four different lengths; 50 sequences each of 14, 16, 18 and 20 codewords.

The five data files were combined, with each sequence associated with a vehicle category.

Categories were represented by six network outputs, one for each of the vehicles plus one

for the "header" information between the sequences. The codewords were represented to

the network in binary form, with the header assigned a value of one, and codewords 0 -

63 presented as 0 0 0 0 0 10 to 10 0 0 0 0 1. The order of the codeword sequences in the

datafile was randomized, and the first 90% of the sequences were used as training data for

the network.

The network consisted of seven inputs (binary representation of codewords), six

sigmoidal outputs, and six sigmoidal hidden nodes. The desired output values used to

train the network were delayed two time periods, so that the network "saw" the desired

output at time t that corresponded with the input presented at time t - 2. The initial

learning rate of the network was 0.01, momentum was set at 0.98, and the net was trained
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for 1000 epochs. After training, the network was tested on the remaining 10% of the

randomized datafile. The net scored a 99+% accuracy in identifying sequences with the

correct vehicular image. Chapter IV expands on the results of this application, with a

discussion of the network's performance.

3.6 Summay

The subgrouped RTRL algorithm, and the modifications made to the algorithm in

the development of the C code used for this thesis, were described. The methodology for

the testing of the subgrouped RTRL was also discussed. The results of these tests

demonstrate how the performance of the subgrouped RTRL algorithm relates to the

RTRL algorithm described by Lindsey(7), as well as how the network performs at

prediction and classification based on time varying phenomena. Chapter IV contains the

results and discussion of these tests.
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IV. Results and Discussion

The history, theory and testing of the subgrouped RTRL algorithm were discussed

in Chapter M. This chapter reviews the operating parameters of the network and their

effects, and the resits of the tests conducted to demonstrate the network's abilities.

The subgrouped RTRL was tested to quantify the impact of the various operating

parameters (momentum, minimum derivative factor, teacher forced learning, weight

update skipping, continuity between epochs) that had been added to the net to enhance

performance. The net was then tested to determine how the subgrouping of the network

caused the capabilities of the network to change from that of the RTRL algorithm, using

the performance described in Lindseys (9) thesis as a reference.

The problems presented to the subgrouped RTRL net as potential applications

were twofold: testing the net as a predictor using the daily opening values of the British

pound as trining data; and testing the net as an image classifier based on learning vector

quantized codewords derived from vehicle images.

4.1 Network Parameters

To demonstrate the effects of the different operating parameters on the

performance of the subgrouped RTRL network, several of the factors (initial learning rate,

momentum, minimum derivative factor, weight update skipping) were varied during

network training. The training file used was a Payton (8) model processed digitized voice

file, derived from the TIMIT database. This file contained 389 data vectors, and was set

up to train the net to provide six outputs, one for each of the broad phoneme classes.

This data set was chosen as an example because it was difficult enough that the

network does not completely solve it, reaching a maximum accuracy of approximately

800. It was believed that this environment would help to demonstrate the effects of the

network's parameters, more so than a problem where the error rapidly drops to a low
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value. The initial learning rate (alpha) for the momentum, minimum derivative factor,

and weight update skipping trials was set at 0.01, with a network configuration of 20

inputs, 6 sigmoidal outputs, and 12 sigmoidal hidden nodes. Training time was set at 200

epochs. The default settings of the parameters (aside from those varied for the test) are:

Initial learning rate (alpha) = 0.01

Momentum = 0.0

Sigmoidal derivative minimum = 0.01

Output is sigmoidal

No teacher forced learning

Weight updates skipped if error <= 0.0

End of training epoch not continuous with beginning of next epoch

The effect of making the training data and network operation continuous over

different epochs (continuity between epochs) is demonstrated while training the net to

emulate the impulse response of a Butterworth filter. This was due to the fact that this

option was added to eliminate a phenomenon found while training the network for this

task.

Each line on the graphs shown in this section average the results of ten training

runs, using different initial values of the randomized weights. Reported net accuracy was

based on matching the desired output category with the network output with the highest

activation value.

4.1.1 Initial Learning Rate

The value of an adjustable learning rate can be seen using the subgrouped RTRL

code evaluated in this thesis. In many cases after the network error levels off, a cut in the

learning rate produces an immediate improvement in net accuracy and error. While the
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net will lower the learning rate if the net eror increases, a high initial learning rate is not

necessarily harmless to the overall learning behavior of the net during training. If the rate

is initially too high, it may push the weights to a state that the net must recover from after

the rate is decreased. If the rate remains too high the net error tends to climb over time, in

some cases to the point of creating overflow errors.

The effect of the initial leaming rate on net performance was examined by training

the sbgrouped RTRL net with three different alphas at initialization (0.1, 0.01 and

0.001). The configuration of the network was 20 inputs, 6 sigmoidal outputs and 12

sismoidal hidden nodes. Figure 13 shows how the different initial learning rates

impacted the network accuracy during training. As can be seen from this graph, the best

performance was achieved with an initial learning rate (alpha) of 0.01.

Effect of Initial alpha on accuracy
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Figure 13: The impact of different initial learning rates on network accuracy during training. The
average standard deviation of the data was 6.13.

The higher accuracy reported at the start for the initial learning rate of 0.1 was

caused by the net rapidly changing its weights to adapt to the most recent inputs. This

causes the net to be correct at time t, but after passing time t the weights would change

enough that the same inputs might produce different and erroneous outputs. When the

net training is halted and tested while in this reported higher accuracy state (circa 5
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e hds) the net performs poody, and the test reports a low accuracy result. This is due to

the fact that the test uses fixed weights, rather than the rapidly adapting weights generated

by training with a high alpha that creates temporary error minima as it goes.

4.1.2 Momentum

The inclusion of a momentum term (p) as a means of increasing the learning rate

of a neural net is a well understood mechanism for improving learning performance. By

retaining a fraction of the weight update from the previous learning iteration and adding it

to the current weight update, weight changes tend to continue along the same direction

over time. This has the tendency of damping oscillations in the network as it learns, and

maintaining the progression of the net to an energy minimum. The effect of the

momentum term in the broad class phoneme identification problem is shown in Figure

14.

Effect of momentum on net accuracy
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Figure 14: The accuracy of the network over 200 epochs is shown, with the momentum term set
at 0, 0.5 and 0.9. The average standard deviation of the data was 3.79.

The network exhibited a higher accuracy during training with a momentum of 0.9.

Thus the apparent benefit of momentum appears to work with RTRL type networks as

well as for standard backprop networks, at least for this type of problem.
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4.1.3 Minimum wlue for output deriaive factor

The establishing of minimum value for the sigmoidal derivative factor in the

weight update formula has a profound effect on the learning rate for a certain class of

problems. This class includes those problems for which the desired output(s) of the

network are either zero or one, usually to signify Boolean decisions (yes or no) and in

determining membership in categories. Figure 15 shows how setting the minimum level

for the sigmoidal derivative affected the learning rate of the subgrouped RTRL network

when solving the broad phoneme category problem.

Impact of sigmoidal minimum on accuracy
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Figure 15: The effects of setting a minimum sigmoidal derivative factor for error backpropagation.
Note how the network did not progress when a minimum factor was not set The average
standard deviation for the lines was 5.25.

The addition of the minimum derivative term to the RTRL network was perhaps

the most effective modification in terms of enhancing learning for any categorization

problem. Prior to this modification, the RTRL network would "latch" and not progress

unless the learning constant was set very low. This reduced the effective learning rate to

an unacceptable level, and the network appeared to be unsuitable for differentiating

between several categories.
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It is also noteworthy that the runs with the highest sigmoidal minimum set

(minimum=O.1) reported a higher accuracy at first, which then dropped in much the same

way as the nets training with a high initial learning rate. Again, when tested after a few

(-5) training epochs these nets report a low accuracy, because the net was adapting too

quickly to the inputs. Based on having applied this minimum factor to a wide range of

differ nt problems, the optimum level for the derivative minimum appears to be on the

order of 0.01 for almost all training problems where a sigmoidal network output is

required.

4.1.4 Teacher forced learning

As stated in Chapter HI, teacher forced learning can cause the network to train

faster, but may reduce the network accuracy once the constraint of passing only the

correct outputs back as network inputs is removed, such as during testing of the trained

network. To demonstrate the use of teacher forced learning therefore, not only must the

learning rates with and without teacher forced learning be examined, but the accuracies of

the network after training must be checked as well. The differences in reported accuracy

during training is shown in Figure 16.

Effect of teacher forced learning on net accuracy
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Figure 16: A comparison of learning rates with and without teacher forced leaming. The average
standard deviation for the data used to plot the graph lines was 4.98.
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As can be seen from the Figure 16, the addition of teacher forced learning for this

problem had little impact on the learning rate of the network. Testing the network on the

training data file showed a 70.4 percent accuracy (a = 17.69) in identifying the phoneme

groups with teacher forced learning, and a 79.4 percent accuracy without. (This was in

part due to an outlying test result of 20.3% for one of the ten networks trained using

teacher forced learning, pulling the average down. Without this outlying value, the

teacher forced learning nets tested at an average 75.85% accuracy.) For this type problem

teacher forced learning provided no real gains, but instead induced a loss in phoneme

group recognition performance.

4.1.5 Skipping Weight Updates forLearned Outputs

The computation of the p matrix is the most time consuming routine in the RTRL

network, and therefore the primary driver for the investigation of optimization methods to

speed up learning for this algorithm. The addition of the weight (and p matrix) update

skipping can cut the time required for processing each epoch of data up to 50%,

significantly improving the training rate of the network.

Impact of weight update skipping on not accuracy
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Figure 17: The effects of skipping iterations during learning when error is below the skip threshold.
The average standard deviation for the lines was 4.29.
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As can be seen in Figure 17 however, skipping weight updates for outputs with

low errors does impact the accuracy of the network to some small extent. Paradoxically,

the accuracy shown by the nets training with a 0.1 error threshold shows a higher overall

accuracy during training than training with lower error thresholds. Skipping more of the

weight updates may allow the net to focus more on inputs that are outside the average

location in the input space, or perhaps causing the net to learn to classify some inputs that

may be in the minority, and therefore normally not caught by the net. The effect of

changing the error threshold on network accuracy was the primary reason why the skip

threshold was made to be changeable by the network user; the user can determine where

the error threshold should be set.

4.1.6 Continuity of Recurrence Between Epochs

In paragraph 3.3.9, the problem caused by zeroing out the network outputs at the

end of each training epoch was discussed. The effect of not zeroing out the net outputs

was evaluated by training the RTRL network to emulate a low pass Butterworth digital

filter. The net was trained using the methods detailed in paragraph 3.4.3, with and

without the data continuous at the ends of the training epochs. Each net was trained first

on a sequence of random floating point values (between -1 to 1) with their low pass filter

response, followed by training on impulses ( 0 0 0 1 0 0... ) coupled with the filter's

impulse responsr. The nets were then tested on the impulse response training data. The

reactions of the networks to the impulse are shown in Figure 18.

As can be seen in Figure 18b, removing the discontinuity between the epochs

removed the additional impulse response, shown in Figure 18a. Using this option caused

the network to train to a closer match of its output to the desired response, to the extent

that the lines (desired vs. output) are almost indistinguishable.
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Figure 18: These charts show the impulse response of the RTRL network without
(a) and with (b) continuity between epochs. The net was trained to emulate a
Butterworth wr.

4.2 Subgrouped RTRL Functional Capabilities

So far in this chapter only the parameters of the network have been discussed.

These parameters can more or less enhance the learning efficiency of the RTRL network

program, but do not necessarily demonstrate the subgrouped RTRL network's

characteristics or capabilities. Subgrouping the RTRL network could have negatively

impacted the ability of the network to perform various functions. This section of the

thesis therefore evaluates the subgrouped RTRL network's properties and abilities, as

compared to the RTRL algorithm described in Lindseys(7) thesis. Several tests described

in that thesis were therefore used as a benchmark to measure the impact of subgrouping

the network.
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4.2.1 Eclwive OR

As in Lindseys(7) thesis, the first problem to be examined to demonstrate the

capabilities of the network is the eXclusive OR (XOR). As described in section 3.4.1, the

net was trained using 1024 binary training vectors, with the two inputs, one sigmoidal

output neuron and four hidden neurons. The outputs provided in the training file were

delayed by two time steps. After 20 epochs, the network established 1000/0 accuracy with

a mean squared error of 0.030. The criteria for a valid response from the network was an

error of less than 0.5, meaning that the mean squared error had to be less than 0.125. The

network was then tested on a separate binary XOR data set created with a different

random number seed, and was found to have a 100% accuracy on the test file as well.

This demonstrated that for binary (0 and 1) data, the net was able to generalize the XOR

problem.
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Figure 19: Plot of the subgrouped RTRL network's hits and misses for the third
analog XOR test set Network accuracy for this test set was 91.2%. Hits are
designaled with open diamonds, while misses are show with filled diamonds.

The next step in training the network to recognize the XOR problem was to use an

analog test set, with two input data values between 0 and 1. If one input was greater than
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0.5 and the other less than 0.5, the output (delayed two time steps) was 1, otherwise the

output was 0. After training the network over 300 training epochs using 512 training

vectors, the net achieved an accuracy of 99.6%. The net was then tested on three analog

XOR test files, and received accuracies of 92.6%, 94.5% and 91.2%. This corresponded

with the results seen by Lindsey(7).

As can be seen in Figure 19, the misses in the third test file (91.2% accuracy) do

not correspond to the axis between the decision areas, but are scattered throughout the

test space. This implies that the net is solving a temporal path through the test data,

rather that differentiating each pair of inputs as valid or not.

It was interesting to note that neither the original RTRL code nor the subgrouped

RTRL code could solve the XOR problem for an output time delay of less that 2 time

steps. This may indicate that to solve the XOR problem, the data must recursively pass

through the hidden nodes at least twice, effectively solving the problem with two or more

hidden layers. Because of this, it may be feasible that for any problem, a balance must be

struck between delaying the outputs long enough to use multiple hidden layers in the

problem, and having the outputs close enough in time to the associated inputs that the net

can infer a causal connection between the two.

4.2.2 Internal State

The ability of the subgrouped RTRL network to internalize a time dependent state

was demonstrated by the test described in section 3.4.2 of this thesis. The net was trained

using four binary inputs (a, b, c and d), with the desired response of recognizing the

occurrence of the first valid b input (value = 1) after a valid a input. After training on the

95 input vectors, the subgrouped RTRL network obtained an accuracy of 100%, given a

decision threshold of 0.5 for valid (high) versus nonvalid (low) network outputs. Figure

20 shows the network output over the 95 training vectors versus the desired output.

48



4-7

4- + + +

Figure 20: Internal State Training Results

,° , - ,0 ' , '0 * 0 0 '0 0 --

++ 4.V +V+
4" +

+•mmm+

Figure 21: Internal state Testing Results

The network was then tested on a different internal state data file, and the

subgrouped RTRL net again demonstrated a 100% accuracy level (Figure 21). The

network therefore was able to generalize the solution to the internal state problem, as had

the non-subgrouped RTRL network used by Lindsey(7) in his thesis.

4.2.3 Second Order IIR Lowpass Filter Simulation

The subgrouped RTRL network was trained to emulate a lowpass Butterworth

filter, as was described in section 3.4.3. The training files were generated calculating the

Butterworth filter response to a binary impulse string (0 0 0 0 0 1 0 0 0 0 0 00), and to a

series of random values between -1 and 1. Training took place in two steps, first training

the network using the random number Butterworth response, and then continuing training

on the impulse string training file. This was done because the network appeared to "catch

on" to emulating the filter response faster with the random value training file, perhaps due

to the richer source of input data to associate with the desired output.
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4.2. 3. 1 Network Impulse Response

The impulse response and frequency response of the network is shown in Figure

22. The frequency response was plotted by performing a fast Fourier transformation

(FF'r) of the desired network response, and of the network's trained response to a binary

impulse.
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Figure 22: Impulse response and frequency response of the subgrouped RTRL network after
training as a Butterworth filter

The impulse frequency response of the trained network matches the desired

frequency response well, except for deviations at both the high and low frequencies. This

match is closer than was observed by Lindsey, which may be due to several factors. First,

Lindsey's training file provided the net with the impulse at the first iteration, while the

training file used for the subgrouped RTRL network placed the impulse at t-50. Also,

the training data for the subgrouped RTRL network was continuous, i.e. the delayed

output from the last iteration was placed as the desired output at r0. The network

outputs were not zeroed at the end of each epoch (see section 4.1.8), removing the

discontinuity at 1=0. This eliminated the spurious impulse response discussed in section

4.1.8.

4.2.3.2 Unit Step Response

After training the network in emulating the Butterworth impulse response, it was

tested c.. file containing a step function (0 0 0 0 1 1 1 1 1 1), with the H1R filter response

as the desired output data. Figure 23 shows the network output versus the desired
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Figure 23: Plot of the Butlworth filte's response to a unit step function versus the subgroup
RTRL nebworles resposm. Note th• hick of overshoot and the lower steady stab output of the

The lack of overshoot indicates that the RTRL filter is slightly overdamped in its

response, while the lower steady state output shows that the network possesses a DC

offset after transitioning to the higher state. This DC offset may be caused to some extent

by training the network using continous rcurt outputs between epochs (section 4.1.6).

Whe the network outputs are zeroed at the transition between training epochs, a positive

DC bias of approximately 0.007 appears at the network output whenever the value should

be approaching zero. Making the epochs continuous appears to nearly eliminate this bias.

The lower steady state output level for the unit step response finction may however be a

byproduct of removing the DC bias during training.

4.2. 3.3 Sinusoidal Response

The IIR Butterworth filter trained network was tested using a sinusoidal signal as

the input, coupled with the Butterworth filtered response as the desired output. As in

Lindsey's(7) thesis, the sinusoid consisted of two cycles of a cosine wave divided into 128
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ample points. The subgrouped RTRL network closely matched the desired filter

rempaoe as can be see in Figure 24.
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Figure 24: Thesbgoue RTRL network closely matched the Buttlrworth filtered response to a

cosie inpt sinsoi. The frequenc respone plot is log-lnn.r

The frequency domain representations of the network output and Butterworth filter

response matched rather closely, indicating that the RTRL network was indeed emulating

the Butterwort filter for sinusoidal inputs.

4.2.3.4 Pseudo-Random Number Sequence Response

The final test of the subgrouped RTRL algorithm's ability to emulate a

Butterwort IR filter was in the form of the network matching the fIR filtered response to

a series of random values, rngsing from -l to 1. The series of random values generated

for this test could be interpreted as representing the sampling of a broad spectrum noise

signal sou'ee. The impulse response trained RTRL network was tested using the random

values as the net input, with the Butterworth algorithm filtered response (delayed 1 time

step) provided as the desired output.

U sa

6.

Figure 25: h A segment of the Buttetwoith filtered random noise signal data, with the tubgrouped
RTRL network's output b. A compareson of tse desired frequency response to a nosy (random)
signal, versus lhe subgrouped RTRL output

52



Figure 25a diplays one segmen of the filtered signal data with the network's output. The

net was able to very closely matr~h the filtered signal, almost to the point of being

inditiinguisble from the desired si41. used as a reference.

A comparison of the spectral characteristics of the filtered noisy signal versus the

output generated by the network (Figure25b) reveals that the network closely matched the

desired frequency response. The close agreement, throughout the spectrum evaluated,

explains why the network output was able to follow the desired filtered response to the

noisy signal so accurately. The degree of similarity between the two signals may be due

in part to the stage in training the neural network that was performed using a random

noise signal as input prior to training on the impulse response.

4.2.3.5 RTRL Versus Subgrouped RTRL Performance

The previously described tests demonstrate the comparable capabilities of the

subgrouped RTRL network and the original RTRL algorithm described in Lindsey's

thesis(7). While parameters may be changed to enhance the learning accuracy of the

network, with the exception of the skipping of the weight update they have no effect on

how fast the network learns. The question therefore is, what does subgrouping the

network gain us?

This question was answered by comparing the time required to process 10 training

epochs by both algorithms, Lindsey's(7) RTRL program and the subgrouped RTRL

network. The number of training epochs was chosen to be a small number due to the

processing time required by the RTRL network. Longer training runs would show a

slight proportional difference in the time required by the subgrouped RTRL network

employing weight update skipping, as the percentage of data points skipped varies over

time.
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To make an honest comparison, the original RTRL code was modified to provide

it with the minimum sigmoidal derivative function, which has a major effect on network

classification performance. Both networks were set with the minimum sigmoidal

derivative factor at 0.01. Each algorithm was tested while varying the number of hidden

nodes, to determine the effect on training time. The networks consisted of 20 inputs, six

sigmoidal outputs, and 0, 6, 12, 18, 24 and 30 hidden nodes. Training data was a single

voice data file derived from the TIMIT voice database and preprocessed using the

Payton(8) auditory system algorithm. The subgrouped algorithm was tested under two

conditions, with weight update skipping disabled, and with the weight update error

threshold set at 0.00001.

Figure 26 shows how the time required to process the 10 training epochs varied

between the different algorithms and with varying numbers of hidden nodes. Although

only six data points each are shown for the different test runs, it can be clearly seen that

the original RTRL code takes much longer to process multi-output problems, and the

difference increases geometrically as the number of hidden nodes increase.

Processing time versus number hidden nodes

l • •Original RTRL

S..... s .ub§gpe RTRL

_ees- - -".ubgroopod RTRL w skip

25ff

6 12 Is 24 30
Hidden nodes

Figure 26: Comparison of network training time between original RTRL code, subgrouped RTRL
code, and subgrouped RTRL with weight update skipping enabled.
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Figure 27 shows the increase in processing speed obtained when using the

subgrouped RTRL algorithm. The speedup was calculated by dividing the time required

by the subgrouped RTRL networks into the time required by the original code. The net

not utilizing weight update skipping shows a relatively linear speedup when compared to

the number of network nodes, showing an approximately O(n) speedup caused by the

subgrouping. This is not true of the net that employed weight update skipping, as the

speedup is not constant across the different number of hidden nodes. As more hidden

nodes are added the improvement for the net employing weight update skipping appears

to level off as the network become larger. As the net becomes more complex the average

error per iteration rises, and the weight update skipping occurs with less frequency.

Increase In speed versus original RTRL

40

36 -- -- -- -- -- -- - -

30

---- SubrouI RTRL w sip

0 S 36-4
a12 Is 4 30 3

TOW neurons (outt + hiden) In net

Figure 27: Increase in processing speed of the subgrouped RTRL networks (with and without

weight update skipping), versus the original RTRL algorithm

If time to process is not the critical issue, then network accuracy must be

examined as well. Figure 28 shows how the accuracy reported by the three network

training runs differed over 200 epochs, when each network used 6 hidden nodes. The

subgrouped RTRL algorithms performed with lower accuracy than the original non-

subgrouped algorithm, while employing the same number of hidden nodes.

The original RTRL code reported a higher average accuracy over the two hundred

training epochs, indicating that the subgrouping does incur some reduction in network
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caability. This validates Zipser's(20) observation that subgrouping the net can reduce

the net accuracy.

Accuracy of RTRL and subgrouped RTRL networks

100
90

70

60 RTRL net
50 . Subgrouped RTRL
40
30 Subgrouped RTRL

20 with skip

10

1 100 199
Epochs

Figure 28: Comparison of the accuracy reported by the original RTRL algorithm, the subgrouped
RTRL algorithm, and the subgrouped RTRL algorithm with weight update skipping enabled.

4.3 Network Applications

In section 4.1 of this thesis the effects of varying the network parameters was

examined, using the broad class phoneme problem to baseline their impact for that

application. Section 4.2 compared the performance of the subgrouped RTRL algorithm

with the original RTRL, to examine what the network lost (or gained) in speed, accuracy

and capability when it was subgrouped. In this section, the subgrouped RTRL network

was applied to two time dependent problems: predicting future behavior based on

behavior in the past, and classification based on sequences of feature changes over time.

4.3.1 London Exchange Prediction

The configuration of the network for this application was one input, one linear

output, and three sigmnoidal hidden nodes. The input to the network, one year's worth of

opening market values for the pound in the London Exchange, was paired with the same
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dau shiMed one day ahead in time. This was to train the network to predict what the next

day's opening quote would be. Training was initiated with a learning rate of 0.0001, and

was competed after 500 epochs. The network was then tested using the opening market

values for the pound for a different year, to determine whether the net would match the

desired next day values.

The output of the network is shown in Figure 29, along with the desired output.

Examination of the figure shows that the network consistently lags behind the desired

output. The match, although close, does not demonstrate the net being able to predict the

next day's opening quote. Although an enticing possibility, the RTRL algorithm

apparently can not be used as a means of predicting changes in the value of the pound

using past performance as training data.

1458

140

115

110

Dsys

Figure 29: Net performance on test data for London exchange rate prediction

4.3.2 Vehicle Image Classification

The application of the subgrouped RTRL network to the task of classifying

vehicles required some repeated attempts before the correct approach was determined.

Initially, the net was trained using the sequences of codewords as a single input,

providing the net with a "signal" that was hoped would be characteristic of each vehicle.
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The net consisted of that single input, plus six sigmoidal hidden nodes and six signoidal

output neurons. Five of the sigmoidal outputs represented a class of vehicle, one output

per type. The sixth output was used to identify the strings of -1 values used to separate

the vehicle sequences. Training was initiated using a learning rate of 0.1, and the net was

trained for 200 epochs. The net trained very poorly on the sequence information, and so

the attempt was repeated using teacher forced learning.

Adding this function to the net training approach appeared to have an immediate

and positive effect on the network's ability to differentiate between the vehicle sequences.

The net reported a score of +90W within five epochs, and finished after 20 epochs with a

scoring of 96.7%. The test file scored similarly, with a 97% accuracy rate. This figure

does not mean that the net recognized 97% of the sequences. Instead, this means that the

net correctly categorized that percentage of the data points in the file, with each sequence

consisting of 14 - 20 data points, and the header spacing between the sequences

containing six -1 values.

Because of the rapid training and high accuracy, the code for the subgrouped

RTRL was re-examined to verify its startling performance was valid for this task. It was

found that in the subroutine in which the desired outputs were substituted for the

recurrent network outputs (teacher forced learning), the code did not differentiate between

the training and testing of the network. In other words, when the net was being tested

with the teacher forced learning selected the substitution was still occurring; the net was

"cheating" by looking at the answers during test. When this was corrected, the test score

for this task changed to a 46% accuracy.

To resolve this problem, a different approach had to be taken. The net was

apparently not able to discern each of the codewords as a "state." Instead, the net had

been trained much as it would have been on a analog signal, making codewords adjacent

in state nearly equivalent in value for determining a response. To help the net

differentiate between the codewords as distinct "states," the input values were converted
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into binary code. The range of input values had been from -1 (header value) to 63. To

convert this to binary information each input was incremented by two, and then expressed

in binary (0000001 to 1000001).

The recurrent network at this point consisted of 7 inputs (binary representation of

codewords plus header), six sigmoidal outputs, and 12 hidden nodes. Ten nctworks were

trained over 400 epochs, using an initial learning rate of 0.01 and a momentum of 0.98.

After training, the net reported an average 89.7% accuracy rate in recognizing the data

points in the training file. The trained networks were then tested, using the 10% of the

data source file reserved for this purpose. The nets reported an average of recognizing

89.9% of the test data points. Figure 30 shows how the recognized data points translate

into identified sequences.

6 - - - Nst oUtpt
Omired outpu

0 ril rIN n n-E
0 

i

Figure 30: Response of subgrouped RTRL network for sequence test file versus the desired
categorical output

Many of the sequences were identified immediately while others experienced

some transients, usually at the beginning of the sequence, during which the net

misclassified those data points. Because of this, the first data points in the sequences

were ignored when determining the vehicle selected by the network. If the class most

frequently provided by the net in the last seven points of each sequence is used to classify

it, the trained network with the highest accuracy correctly identified almost all (99.22%)

of the test sequences. Average accuracy was 96.13%, with a standard deviation of 2.80.
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It was surprising how quickly the net selected the correct vehicle in many of the

sequences, implying that independent of sequence length, the information necessary to

identify the vehicle is often found within the first two or three values of each sequence.

4.4 Summary

The subgrouped RTRL net was tested both to determine the impact of the

pararmeters added to enhance performance, and to determine the capabilities and

limitations of the network in solving time dependent problems. Each parameter

(momentum, minimum sigmoidal derivative factor, weight update skipping, continuity of

recurrence between epochs, and maximum sigmoidal input) was varied using the broad

class phoneme problem, and the impact of the modification was evaluated.

The effects of the network parameters varied in impact, with the biggest

improvement gained by setting a minimum value for the sigmoidal derivative factor in the

weight updates. Momentum and the initial learning rate each impacted performance to a

lesser extent, and the best values for these parameters are problem dependent, found

through trial and error. Weight update skipping provided enough acceleration in network

training time that it more than compensated for the small fluctuations in accuracy it

caused, and teacher forced learning either did not help net accuracy or dramatically

decreased accuracy when the net was tested. Removal of the discontinuity in data and

recurrent outputs between training epochs eliminated a spurious impulse response

observed when training the net to emulate a low pass filter.

The subgrouped RTRL was also tested to determine whether it was functionally

equivalent in performance and characteristics to the RTRL algorithm evaluated in Capt

Randall Lindsey's thesis(7). The net was tested on the XOR problem, the internal state

problem and the Butterworth filter emulation problems that were discussed in Lindsey's

thesis. For each problem, the subgrouped RTRL network performs as well or better than

the original algorithm.
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For the XOR problem, the subgrouped RTRL net performed similarly in behavior

and accuracy to the RTRL network as described in Lindseys thesis, exhibiting the same

temporal dependence in it's selection of valid and invalid XOR inputs, with the network

misses scattered across the problem space. Also as in Lindsey's thesis, the subgrouped

RTRL network solved the internal state problem with 100% accuracy. For the

Butterworth filter problem, the subgrouped RTRL net matched the required output more

closely that the RTRL network, which is attributed to the removal of the discontinuity in

the impulse response training data and in the recurrent network outputs between training

epochs.

Both forms of RTRL networks were also applied to the problem of determining

broad phoneme class categories for a single voice file, to quantify differences in training

time and accuracy. The number of hidden nodes used by each network was varied during

the training trials, to plot net size against training time. Because the subgrouped RTRL

algorithm could be accelerated by using weight update skipping it was tested twice, once

with weight update skipping disabled and again with the error threshold for skipping

weight updates set at a low (0.0001) level.

The subgrouped RTRL net performed significantly better than the original RTRL

net in the time required to process the training data (a 7 - 37 times increase in training

speed), but it appears subgrouping does cause a tradeoff (8% decrease) in network

accuracy. There was also an additional slight tradeoff in network accuracy (1%) for a

reduced processing time when the subgrouped RTRL net trained with skipping enabled.

After characterizing the performance of the subgrouped RTRL network, it was

applied to two problems: stock market value prediction and vehicle image recognition.

The network was able to match the predicted value it was trained to produce relatively

well, but the net output consistently lagged the desired predicted value. Because of this,

the subgrouped RTRL algorithm would not make a useful tool of any stock analyst if

trained in the same manner.
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The application of the subgrouped RTRL network performed very well in

identifying the five different types of vehicles, based on the sequence of image features

provided. The net was only successful in learning this task after the correct format for the

input data was applied, i.e. the inputs were expressed in binary to allow the net to

differentiate between each codeword as a seperate and distinct state.
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V. Conclusions and Recommendations

This thesis represent an effort to improve on the functionality and speed of the RTRL

algorithm documented in Capt Randall Lindsey's Master's thesis(7). This effort was performed

because of the wide applicability of a time dependent neural network to technical problems facing

the Air Force today.

5.1 Conclusions

The subgrouped RTRL algorithm has been demonstrated to be able to solve multiple time

dependent problems. Chapter IV details how several of the network parameters enhanced

performance in network accuracy and/or time required to process training data. The network was

able to solve problems identical or similar to those that were solvable with the original RTRL

algorithm, so it appears that subgrouping does not reduce the functionality of the network. These

problems (XOR, internal state, second order HR Butterworth filter simulation) demonstrated the

functional equivalence of the two algorithms. It was also demonstrated, using the broad class

phoneme identification problem, that the subgrouped RTRL trained in significantly lees time, but

with less accuracy than the original RTRL network.

The subgrouped RTRL algorithm was applied to two problems: stock market opening

value prediction and vehicle image identification. While closely approximating the predicted value

of the stock market, the net lagged behind the market behavior enough to make it unwise to use it

as a prediction tool. The net performed very well in identifying vehicle images based on time

varying image features when the problem was presented properly.

5.2 Recommendations

Based on the results of comparing the two networks, it is recommended that of the two

forms of RTRL networks, the subgrouped RTRL network be applied to temporally dependent

problems first. If the net fails to provide the required accuracy for the task, then the RTRL
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network should be tried. Other avenues for speeding up the RTRL network should also be

explored, such as locking those p matrix values that do not change over time, so that the net does

not waste training time updating them. It may be possible to start training with a large, multiple

hidden node network, and gradually cull out the weights that remain sufficiently small. From a

programming perspective, this would be less complex to achieve than incrementally enlarging the

net from a smaller configuration to improve accuracy.

On evaluating the differences in performance between the identification of vehicle classes

and broad phoneme classes, it might be beneficial to employ similar processing techniques on the

voice data to those used to process the vehicle images. The image data was Fast Fourier

Transformed (similar in function to the Payton(8) process) and then vector quantized using a

clustering algorithm. It may greatly improve the subgrouped RTRL's performance to use a

clustering algorithm on the Payton processed voice data, and use the cluster coordinates (or

representative codewords) for training the RTRL net. The network would then be using the

information embedded in the sequence of data provided to learn to differentiate phonemes, and

possi'bly not from the data points themselves.

5.3 Future Research

It is apparent from the testing of the subgrouped RTRL network that information for

solving complex problems may be found not only in features found at each point in time, but also

ai how the features change over time. The impact of temporally changing information on

classification and recognition paoblems needs to be further explored. Many problems being

attacked at this time from a static viewpoint may become more solvable if the added dimension of

time is used, particularly in the area of feature recognition. Perhaps time varying features found in

aerial views, or in moving faces, may hold the clue for rapid identification.
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Appendix A. Software Development

The C code for the subgrouped RTRL network is found in Appendix B, along

with associated files required for its compilation and operation. The name of the neural

network file used for this thesis is called "recnet.c." The ANSI C code has been run, with

minor modifications, on Sun workstations, NeXT workstations, and on a 486 processor

IBM compatible PC.

The format for running recnet is "recnet [datafile] [t]". Datafile represents the

name of the file containing the network training or test data. If not provided, the net will

look for a file named "data.dat" for training data. If"t" (or any added third term) is

included with the file name, the net uses the datafile as a test file, based on the weight

values stored in "weights.dat."

A.1 File Parameters

At initialization, recnet requires a parameter file named parameter.dat

(parametr.dat on PCs) to load in the operating parameters it will train or test under. The

following represents the parameters used for most of the tests described in this thesis:

epochs alpha seed moment y_pr min
100 0.01 152367 0.0 0.01
weights linear teacher skip cat loopdata
0 0 0 0.0000 1 0
verbose maxval bpfactor
1 50 0.00
keepsum ( -shold preview
0.000 0.. 0

The epochs value determines the number of training epochs the network will run.

The learning coefficient, alpha, is set at the beginning of the training run but is halved

when the error rate does not change or when the error reported climbs more than a set

threshold as the network trains. The seed value is used to initialize the random number
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generator, used to create the initial weight values. Moment refers to the momentum

factor, while ypr min is the minimum sigmoidal derivative factor set for the output

neurons.

Weights is a flag set to I if the net is to continue using the weights found in the

file "weights.dat," while a value of one tells the net to create net weight values. Linear is

another flag, in which I tells the net to output tha activation values of the output neurons

and 0 causes the net to provide a sigmoidal output. The teacher flag is set to I to enable

teacher forced learning, 0 to disable the function. A I set for the double flag causes the

network to pass through the training data twice during each epoch, with weight updates

disabled during the second run. A 0 disables this feature. Skip sets the error threshold

during each iteration; above the threshold the net performs weight updates, below the

threshold the updates are skipped. Cat set with a value of one tells the net to score the

outputs as categories, selecting the output with the highest activation value. A zero on

this flag makes the net score each output as good or bad based on whether the output error

exceeds the threshold given in OKthreshold. The loopjdata flag causes the net to not

zero the net output values and p matrix at the end of each epoch when enabled.

The verbose flag enables (or disables) the net's output of information to the

screen, while max val sets the threshold for the activation value of a neuron above which

the sigmoidal output is set at one, while a value below the negative of this limit causes

the neuron to output a zero. Bpfctor sets the amount by which the backprop algorithm

added to the net can influence the weight updates, and usually ranges from 0 - 1.

Keepsum give the net the factor by which it multiplies the neural activation values

between data iterations, allowing the past neural activity to influence its current output.

OKthreshold is the error threshold for the output neurons, whenever the categorical

scoring flag is off. If the error at an output node is within the threshold, it is considered

good. Preview is a flag that allows training on the first 25% of the data file, during the

first 25% of the training epochs. If the data is uniformly distributed, the net can quickly

66



Y7"... 7 •F

gmoralim on the first 25% md tvai on the full file for the remaining 75% of the training

epoch&

A.2 Ouput

Recnet will create various files when run, depending on the fimction selected.

These files, and the conditions that cause them to be created are:

Training the network:

weights.dat - save the values of the weight matrix when training is concluded

netou.dat - generated at the end of training, this file contains the network outputs

generated during the last epoch with the desired values in a format that

will allow training a network based on the net outputs and the desired

outputs.

netout2.dat - same as netout.dat, except the activation values of the network are

paired with the desired output values.

sequence.dat - created at the end of training when the categorical output function

is enabled. Pairs the winning network output with the desired output so

that net accuracy can be determined.

Testing the network:

tstcheclkdat - pairs network outputs with desired outputs

testdos.dat - creates a file of the network's desired training values, against which

the network output was scored during test

errortst.dat - provides the net's cumulative error and score as the net passes

through the test data

sequence.dat - same purpose as in training, except compares net output with test

desired categorical output
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Appendix B: Recurrent Neural Network Code

This appendix contains a listing of the subgrouped real time recurrent learning
source code and its associated files. The files "nrutil.c" and "ranl.c" were derived from
the Numerical Recipes in C book (11).

/* RECNET.C

A recurrent neural network which follows the algorithm
proposed by Williams and Zipser in their paper "A Learning
Algorithm for Continually Running Fully Recurrent
Neural Networks", Neural Computation 1, 270-280 (1989).

date: 30 May 91
update: 7 Mar 94

written by: Randall L. Lindsey, GEO-91D
modified by: Jeffrey S. Dean, PTS-92D

#include <stdlib.h>
#include <stdio.h>
#include "definitions.h"
#include "macros.h"
#include <math.h>
#include <string.h>

********.* ***** ********* **** ******* ** *** *** ** ****** *** *** **** ****** * *

ROUTINE NAME: main
DESCRIPTION: Based on the number of arguments presented when recnet

is invoked, main causes the net to:
a. Train on file data.dat
b. Train on the filename following recnet
c. Test the accuracy of trained network on the filename

data

INPUTS: argc - count of arguments following recnet when initiated
argv - array of argument strings given to recnet

FUNCTIONS CALLED:
check_fileo - determines if datafile exists
initnetO - initializes the network. Allocates memory for vectors

and matrices, and initializes them to zero. Sets
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zaadom weight values.
rmdjatmao - reads the data from the input file, which include the

input vectors and training outputs.
wead weightso - reads weights fromn prior traning session, to continue

traiing from that point when the weights were saved.
tranjicto - trains net based on inputs and ftraning data.

CALLED BY: None
LAST UPDATED: 19 May 1993 BY: Jeffrey S. Dean

Main(argcrgV)
intargc;
Char *argv;

switch (aup)(
Case 1: /* selected if user types "reenet" at prompt.

Trains network using data in "data~dat". ~
dataflle="data.dat"; /* Default name of datafile. *
check-flleO; /* Check to see If the datafile name exists. ~
init_net(1); /* Initialize and define all network variables.

Allocate memory for all vectors and mnatricies
and set initially to zero. Randomly set the
weight matrix using the pseudo-random number
generator. *

read_datao; /* Read data vector array and desired output. *
if (weights,---1)

read weightso; /* Read old weights, If restarting learning *

ftrinLnet(); I' Propagate inputs and update weights based on
gradient descent.1

break-,

case 2: /* selected if user types "recnet <filename>"
at prompt. Trains network using <filename>
data. *

dataflle=argv[1]; /* User specified name of datafile. *
check flleo; /* Check to see if the dataffle name exists. *
init-net(); /* Initialize and define all network variables.

Allocate memory for all vectors and matricles
and set initially to zero. Randomly set the
weight matrix using the pseudo-random number
generator. *

read_dataO); /* Read data vector array and desired output. ~

if(weights=1)
read weightso; /* Read old weights, If restarting learning *
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train net0; /* Propagate inputs, compute outputs, and
update weights based on gradient descent. */

case 3: /* selected if user types "reenet <filenme> t"
at prompt. Tests network using <filename>
data.

dastafileargv[l]; /* User specified name of dataflle. *1
check1fil.0; /* Check to see if the datafille name exists. */
initnet(2); /* Initialize and define all network variables.

Allocate memory for all vectors and matricles
and set initially to zero. Randomly set the
weight matrix using the pseudo-random number
generator. */

read_weightso; /* Read weight matrix and saved p states. *1
read_datao; I* Read data vector array and desired output. */
test netO; /* Propagate inputs and compute outputs. *1

break-

default:
printf("InUsage: rocnet [datafilename.dat [tesflag]\n\n");
break-

)
return 0;

}/* End MAIN0 of NET.C *

ROUTINE NAME: trainneto
DESCRIPTION: Trains the RTRL net over the selected number of epochs. The

user has several options, selected in the "parameters.dat"
file. He can:

- Set the error level above which the net updates its weights.
Skipping weight updates for accurate outputs can speed learning.

- Suppress stdout output of net status. Helps in running
net in background through automatic backup of host.

- If output of net represents category membership (I = member)
error output of net gives error/times category valid.

- Have the net "preview" the training data by training on first 25% of the data
during the first 25% of the training epochs. Training data must be

homogeneous,
i.e. the distribution of outputs classes must be spread throughout the data.

INPUTS: None
FUNCTIONS CALLED: net loopo - Passes data through loop, determines error

updateo - Updates weight matrix
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stMtpO - Zeo out p matr outpu vector
save_weightso - Saves weights of network, plus the outputs

(activation function and sigmoid) of the net for
one pass through the data

CALLED BY: mainO
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void train netO /* Written 10 Jun 91, RLL. */
{
/* Begin main loop portion */

int numvectors;
float climb;
float min_error,
ofpr--fopen("error.dat", "w");
fprintf(ofp,"Total error and percent correct per epoch:\n");
fwintf(ofp,"Epoch\terror\t\tpercent correctd\n");

numvectors = num vectors; /* Set temp variable = number of data vectors */
mrinerror= 0.;
J([J = J[0] = 0.;
for(a-0;a<epochs;a++) {

if(preview--=1&&a<(float)epochs*.25) num vectors = numvectors*.25;
else num-vectors = numvectors;/* If preview selected, 1st 25% of epochs train on

first 25% of training data. */
netloop(l); /* Pass inputs through net, determine error */
resetpO; /* Zero p_.old[]l ][]matrix for next epoch. */

if(verboe1) { /* If stdout output desired */
print("-\ndOts %f/t",a, "total error =",J[ 1]);
printf("%% correct = %5.2ftt",(float)good/(floatXnumnvectors)* 100);
printf("Skipped 8/5.2f %%\n",(float)skip/(float)num vectors* 100);

fpruntf(ofp,"0/od\t'Yot\t/of\n",aJ[1 ],(float)good/(float)numvectors* 100);

if(a-=0)
minerror = J[1]; /* Capture lowest output error */

min_error = mini error < J[1] ? min-error : J[1]
climb = J[] -minerror,
if(a>3)

if(climb>0.01 *minerrortlclimb>101llfabs(J[1 ]-J[0])<0.0000001) {
alpha = alpha/1 0.;
min error J[I];
prin t f("alpha = %f/n", alpha);
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if(J[l]'O.OOOOO5I1alpha<O.O(OO(OOOl) { /*If total error is less than an arbitrary*/
save_weightsO; /* fractional value, then exit.*/
fclose(ofp);
if(verbose-=1)

print/ "Stopped on epoch %/odn",a);
exit(O);

/* End main loop portion hI

fclose(ofp);

save weightsO; /* Save weights, input vector z, and desired
output to a data file for future use. */

return;

/* end function train netO */

ROUTINE NAME: testnetO
DESCRIPTION: Tests the network accuracy against the data in a test file.

Calls savetestfilesO to save test data, the output of the
net as it passes through the test data, and the desired outputs

INPUTS: none
FUNCTIONS CALLED: NetloopO
CALLED BY: maino
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void test_netO
C

/* Begin main loop portion */

ofp-fopen("tstcheck.dat", "w"); /* Open files to record test */
efp~fopen("testdes.dat", "1w";

yfp-fopen("errortst.dat", "w");
if(caout-ol)

ufj-fopen("sequence.dat", "w");
net .loop(2); /* Pass data through the net, determine error */
fclose(ofp);
fclose(efp);
fclose(yfp);
if(catout- I)

fclose(ufp);
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itfverboee1)
ptintf("%f percent correct",(float)good/(float)numvectors* 100.);
printf("File techeck.dat contains test dataAn");
printf("File 'testdes.dat' contains desired net output test datasn");
printf("File 'error-tst.dat' contains test error data.n");

return;

)/* end function testnetO */

ROUTINE NAME: computeerror0
DESCRIPTION: Computes the error of the net output versus desired output.

e(k] - error of output at this point in time
erroryec[k] - error for output k this iteration
J[1] - Cumulative error on all outputs this epoch

INPUTS: none
FUNCTIONS CALLED: check_if good0 - determines whether the output of the net

is close enough to the desired output to be valid
CALLED BY: train_netO and test netO
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void computeerrorO
{

/* Compute error at time t based on desired output values. Returns a
zero error for t-O on first epoch. */

loopk(numoutputs)
errorvec[k] = e[k] = 0.;

error = 0.;

if (t>--td 11 loop data-l--)
loopk(numoutputs) {

e[k] = d[t][k] - y[k*gsize];
/* Calculate error per output and overall error this iteration */
errorvec[k] = 0.5 * e[k] * e[k];
error += error vec[k];

}
if(a=O&&cat_out- 1)

loopk(nurnoutputs) /* If using categories & 1st epoch*/
out count[k] += d[; ]; /* tally up how many times each */

I* category appears */

J[I] "= error;
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good +- checkif good(t);

return;
)

ROUTINE NAME: propagateo
DESCRIPTION: Passes net output from iteration t-1 to net inputs for

iteration t. If teacher forcing function selected, t- 1
outputs to net input replaced with net desired output at t-l.
Noise is added to the inputs (level entered in parameters.dat)
proportional to range of input values.

INPUTS: Flag (train) to determine if net is training (=1) or testing (=2)
FUNCTIONS CALLED: none
CALLED BY: netIoop0
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void propagate(train)
/* Computes the state of the net at time t, and initializes the z vector for time t. */
int train;
{
float max, min, diff;

/* Set previous outputs y~k] as part of the next input zit][k+m]. */
loopk(nrows)

z[t][k+m] = yJk];

if(teacherl&&train--1) I* if teacher forced learning selected, pass *1
loopk(ngroups) /* previous desired net outputs to net input */

z[t][m+k*gsize] = d[t][k];

loopk(nrows)
loopi(ncols)

s[k] += w[kJ[i]*z[t][i]; I* sum weighted inputs */

return;

/*** * ******* **** ** **** ***** *** * *** ***** •** ** ** * * **** *** **** •**** *** ** * **

ROUTINE NAME: computeoutputo
DESCRIPTION: Apply non-linear squashing function (sigmoid) to net output

and hidden layer nodes, unless linear output selected. If
selected, net output nodes receive node summation function
output.

INPUTS: none
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FUNCTIONS CALLED: sigmoido
CALLED BY: net_loopO
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void computeoutputO /* Computes the output at time (t+1), ic y(t+l). */
{
/* Process each of the k nodes as Sigmoidal functions with input sit]

unless linear is selected, in which only output nodes are linear
functions of slt] and the remaining hidden nodes remain Sigmoidal.
The output computed is y~k] - y(t+1) - f(sjt]). */

loopk(nrows)
y[k] = sigmoid(s[k]); /* Here, yfkJ=y(t+l). */

if/linear==1) /* If linear selected, output is summation */
loopk(numoutputs) /* function for output nodes */

y[k*gsize] = s[k*gsize];

return;
}

ROUTINE NAME: update0
DESCRIPTION: Updates weight matrix. Weights can have noise added to update

to avoid memorizing the exact data path.
Variable definitions needed to understand subgrouped RTRL:
- gl is an offset to position the algorithm at the beginning
of each subgroup

- gsize is the size of any subgroup (1 output + hidden nodes)
- ngroups is the number of subgroups in the net (= # outputs)

INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: train_netO
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void updateo
{
/* Compute change of weights at time t. delw is reset to zero at each

iteration (time step), and pold is p(t). *1

/* weight changes in subgroup node i = learning rate*output error* I
I (change in net output g)/(changes in subgroup node output i
I during t-1) */

loopg(ngroups) /* For each subgroup */
loopij(gsize,ncols) f /* Change in weight for each node in */
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/* subgroup between nmod and Input
delw[g*gsize+i][j] += alpha*e[gl*p_old[i]Jl[g*gsize];

P* Update rules. Computes p(t+l). */

loopk(nrows)
yprime[k] = y[k]*(l.-y[k]);/* Sigmold function derivative */

loopk(numoutputs) (
gl = k*gsize; /* gl points to output node k, first node in subgroup */
if(linearO) /* ypmuM sets lower limit for y_prime If output is

sigmoldal. Speeds up training if sigmoid
derivative can not equal zero. */

yprime[gl J = ypmun<yprime[gI ]?yprime[gl ]:yp_min;
else

yprime[gl] = 1.; /* If output linear, y_prime = 1 */}

loopg(ngroups) /* For each subgroup in the network */
loopi(gsize) /* For each node in the subgroup */

loopj(ncols) /* For each input into the network */
loopk(gsize) ( /* loop within subgroup */

kron = 0.0;
if (i=--k) kron = 1.0; /*If input is neuron i's t-1 value */

I*use input in p matrix update */
gi = g*gsize; /* subgroup offset */

/* Sum the product of the p matrix within this subgroup with
the weight interconnects between the subgroup in the output
layer and the t-1 subgroup values in the net input layer */

sum = 0.;
loopl(gsize)

ift(teacher!=1111>0)
sum += w[k+gl][gl+l+m]*pold[i]U][l+gl];

/* Update the p matrix */
p[i][][k+gl] = yprime[k+gl]*(sum+kron*z[t]IjJ);

}/* p[l[In is now for time p(t+1). */

/* Update weights. Computes weights for time w(t+1). */
loopij(nrows,ncols)

wfi][j] += delw[i[j]l;
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/O Save puutia desivties for mei Witnth (tdm 01) and reet
p mtri by swapping the pointers of tie old p matri with the nw
p matrix. *1

pjtemp = p-od;-
p_old = p; /* po.ld is mow p(t+l). 1
p = p-temp;

return;
}

ROUTINE NAME: resetdelwso
DESCRIPTION: Resets the delta weight matrix. Can be set to zero, or can

retain some of the last weight changes as a momentum factor.
Activation outputs for the output layer nodes can have selected
portion retained.

INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: net_loop and save weightso
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void reset delw-sO
(

/* Rot delta weights using momentum term and reset node sum using */
/* keep.sum term for next calculation. */

loopij(nrows,ncols) /* delta weights multiplied by */
delw[i[j] *= momentum; /* momentum factor

loopi(nrows) /* Allows use of a kind of activation */
s[i] *= keep_sum; /* function momentum, or a neuron *1

returm; /* stimulus that decays over time */

ROUTINE NAME: reset_.p
DESCRIPTION: Reinitializes old p matrix and output layer node values.
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: train_neto
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean
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void reaetpo
{

/* Zero p.ok51d001J for next cakumflon. */

iffloop-dat==0 {
loopg(gsize)

loopj(ncols)
loopk(nrows)

p_old[g]U][k] = 0.;

loopi(nrows)
y[il 0.;

}
return;

ROUTINE NAME: sigmoido
DESCRIPTION: Provides sigmoidal squashing function
INPUTS: single precision floating point number
FUNCTIONS CALLED: none
CALLED BY: compute output0
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

float sigmoid(x)
float x;
{

if (x > maxval)
return 1.0;

if (x < -max_val)
return 0.0;

return l/(1 + exp(-x));

}/* end signoid */

ROUTINE NAME: init netO
DESCRIPTION: Reads net operating parameters from "parameter.dat" file, as

well as from the data file.
INPUTS: Flag determining whether net will be trained or tested.
FUNCTIONS CALLED:

fskiplineO.- skips line in input file
ivector( - allocates memory for integer vector
vectoro - allocates memory for floating point vector
matrixo - allocates memory for floating point matrix
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mmtrix3dO - ailocates memlory for 3-D fp matrix
'anlO - random number geeator

CALLED BY: maino
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void imncýnt(train)
int train;

char junk response[256J;
int nrows-w;

1* Read data ffrom the Inaput file "parameterudat" *
ifr(ifp=fopen("parameters.dat". "r"))==NULL)

printf("Error opening parameter file\n");
if((fgets(jnk response, 256, ifp))==NULL)(

printf("Can't get junk line from parameters file~n");
exit(O);

fscanf(ifp,"%/d %/f %d"X&epochs,&lpha,&seed);
fscanf(ifp,"%/f %/f',&momentum,&ypniin);
fskipjmne(ifp);
fskipine~ifp);
fscanf(ifp,"%/d %/d %/d',&weights,&linear,&teacher);
fscanf (ifp,"%/f O/d %/d",&skip thrshold,&cat_out,&loop_d4ata);
fskipWinfp);
fskipjine(ifp';
fscanf(ifp,"0/od 0/d %/f',&verbose,&niax_val,&bp factor);

fskip_4ne(ifp);
ftcanfi~fp,"%/f O/f /od", &keep sumn, &OK-tbreshold,&preview);
fclose(ifp);

1* Read data from the input file dataffle (user specified) *

if~p=open(datafile, "r"');
fscanfifp,"%/d %/d "/od",&num _inputs &num,_outputs,&num_nodes);
fseanfgitp,"/od 'Vod",&num-vectors,&td);
fclose(ifp);
if~numn_nodes1/nunL outputs!=0) /* Add hidden nodes until each

subgroup has the same amount *I
num-nodes = ((intXnum_nodes/num outputs) + 1) * num ~outputs;

/* Output operatIng parameters to stdout, if selected *1
if(verbosel1){
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printf("Recurrent neural net parameters~n");
printf ("Input file,%");

it~train-1)
printf~"epocbsalpba\t\tmomentumi\tyjprimeý_min\ni")
printf ("%dklTetf~t%AtOt/fn\e"epochs,alhamomentum,,yp~min);
pritt"vectors\t\tsldp thresho1&dVtbpjtor~n");
pW/.NW/.tuion"numvecto~vrs,skiptreshocLdbp factr);
Prinfl"keep_sum\trnax..ya1\fVtataoop~n")
printi"ftdtt" keep sum, niaxyal);
iffloopdata==1) printf("Enabled \nn");
else printf("Disabledfn\n");

printf("input\t\toutputs\t\thidden nodes\ttime delay~n");
printt("V/od\t\t4/d\t\tý/d&t\t`*dýn\n",numm,_iputs~um,_outputs,

num nodes-num-otpt, td);
printf ("We-ights\t\tOutput\t\tC.ategories\tF~reviewvn");
if (weights- I ttrain7-2) printf ("Old\tft");
else printf("New\tft");
ifilinear==I ) printt ("Linear~tt");
else printf("Sigmoid\t\t");
if(catout--l) printt("Yes\tft");
else printf("No\tAt);
if preview--l) printf ("Enabledfn\n");
else printf("Disabled\n\n");
if(catout==O)

printf("\nOK-threhold\nO/f\u",OK threshold);

if(weights = 11 Itrain ý2) f
if f(iljt=open("weights.dat", "r"))=NULL){

printf("Error opening weight file\n");
exit(O);

I
fscanf(ifp,"V/od",&nrows-w);
fclose(ifj,);
ifrnrows, w != num._nodes)(

printf(ý"***Warning! Weights don't match data conflguration!**\nh');
pritf1"***Replacing data configuration to match weights."**\n");
mnum nodes = nrows-w;

m num -inputs + 1; P* # of external inputs plus bias *
nrows, = n = num, nodes; I* # of rows for weight matrix *I
ncols = m+num nodes; I* #1 of cobs for weight matrix ~

so



- - inmm nodsamzm..outputs, P~ umber of-sodas in a subgroup *
WoUaPs - nmmoutputs;

I' Ailseate memory for vectors and miatrices,~
out-count-ivector(Ojnrws- 1); /* number of times a category output

Is the supposed to be output *I
erro~e~to(O~nrows-1); /* output error for output mode ~
e~vector(O~nrows-1); 1* error vector *1
Y-vectot(OXnows-I); /* output vector *I

-VeC~tor(OArW~s-i); I* sum of weighted Inputs *

ypduw~vectoi(O,num _nodes-i); 1* dyldw */
w=matrix(Onrows-I,O,ncois-i); /* weight matrix ~
deiw'umatrix(O,nrows-i,Ojncois-i); I* delta weights */
z-matrix(O,num~vectorsO,=cls-i); /* Input vector array *
d-matrix(O,numA_vectors,O,ncols-i); /* desired output array ~
p=matrixd(O,gsize-1,O,ncois-i,O,nrows-i); 1* dy/dw *I
pogld~matix3d(O,gsize-i,O,ncois-i,O,nrws-l); I* dy/dw ~
accuracy=ivector(O,num outputs-i);

1* lintialIze variables to zero ~
J[O]=J[i]=O.O;
loopij(nuM~yectrs,ncols)

z~ib]D 0.;
loopij(num..yectors,num...outputs)

d~io]j = 0.;
ioopi(nrows){

A~il = e[i] = sli] = errorVccli] = 0.;
yprime[i]-= ypnnm;
IOOPj(ncols)

w[iJ]j] = delw[iJWl = 0.;

ioopg(gsize)
loopj(ncois)

Ioopk(nrows)
p[g]D][k] = p__old[g]D][k] = 0.;

loopi(num, outputs)
accuracy~il = 0;

1* InitdalIze weight matrix using pseudo-random numbers ~
idum = -IABS(seed);
ran i(&idum);
loopi(prows)

loopj&nCOIS)



w[io]J - (2*ranl(&-idwm)-1.O);

1* shimmsk &-st input to 1 (umonexterwol)*

loopi(numkvectors)

ROUTINE NAME: read dataO
DESCRIPTION: Reads data file specified for training or test.
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: nuainO
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void readjdataO

/* Read data Mie external inputs *

iff(ifpqfopen(dataflle, "r"))==NULL)
printf("Error opening data ffie\n")
exit(O);

fsiplnip)
loopi(numn_vectors)

loopj(nunkijnputs)
fscanfl(ifp,"%/fX,&z[i][j+lDJ;

loopj(num _outputs){
fscAnfifp,"%/f',&d[illjJ);
if(d~i]DJ!0O&&d~i]W]!1&&cat-out=1I)(

printfflba (not category) training value! %f\n",d[iJW]);
printf ("found on fine 0/od\n",i);
exit(O);

fclose(ifj,);
return;

ROUTINE NAMIE: save weightso
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DUCRJPflN %vave network weiotL Rims network through own mor pass on
d"ta capturing netwok outputs and output node activation
functon values.

NPUTS: non
FUNCTONS CALLED: reset deiws propagate, compurte output
CALLED BY: train netO
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void save_weightsO

bit out, desired.
float max;
ufp-fopen("weights.dat", "w");
fprintf (*f,"V/Od"",nrows);
loopj(prows)

loopi(nrows) I* save network weights *

loopj(ncols)

fclose(ufp);

if(catout-1)
otfpopen(" sequence.dat , w)

I* save Imputfoutputs in recnet input file format *

/* to allow further processing using net output data *
efp~fopen("netout2.dat", $"W); /* Saves activation and desired outputs */
fprintf (efp,"%/d O/od ",nuii inputs, num _outputs);
fprint~efp,"%/d %/d %dofn",num~nodes, num-vectors~td);

ufp--fopen("netout.dat", "w"); 1* Saves net output versus desired output*/
fp~ufp,"0 /oci %/d "num inputs, num,_outputs);

fprintt(up,"%/d %Yd %/d\n",num-nodes, num-vectors~td);

loopi(hnumoutputs)
accuracy[i] = 0;

desired =old-des =out =old-out-1;

for(t=~O;t<num,.yectors~t++) ( 1* Loop network through data again ~

loopj(nuM outputs) I* save output nodes output *
fprinfukp,"%/f \t",ybjgsize]);

loopj(num ~outputs) /* save desired output *

83



if(catoqut-=l) fprintf(ufp,-% d N,(int)d[t[jo]);
else fprintf(ulj,,"Vo5.3f ",d[tujj);

if(cat-out-l) {
ax = -1000.; /*fBnd out whlchof the outputs h

loop(num ~outputs) /* bas the highest value
if(sujgsizej >max){

mnax = soj*gize];
out =j;

loopj(nuný_outputs) I' Determine the co..ect output ~
if(d[t]o]=- 1.) desired =j;

fprintf(ofp)"O/.d\t/od\n", out~desired); /* Save act output/desired ouput h

} 1/* to sequence.dat file for scoring */

loopj(num,_outputs) /* save activation function, desired output h

fprin~tf(efp,"%/f ",so *gsize]);

loopj(numL outputs) /*print desired outputs h

else fprintf(efp,"%/5.3f ",d[tJfjJ);

reset delw eO;

propagateO; 1* Computes the state of the net at tinm. t.
Store previous outputs ylt-1] as part of
the new input vector zitiljil. Sum all
zDDf*w[JD inputs into the activation
vector siti for input into y~tJ. */

compute outputo; /* Compute the output y(t+1)=fls(t)J. h

if(catout==l){
fprintf(ofp,"\n\nPercent correct per category:\n");
Ioopk(yaumL outputs)

fprintf(ofp,,"%/f "lOO0.*(float)accuracy[k]/out-countfkD);
fprintf (ofp,"Wn);

fI oe~f)
fclose(ufp);

if(catout-l)
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fcloue0fP);

ROUTINE NAME: read weightsO
DESCRIPTION: Reads weights for testing network or for additional training
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: maino
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void readweightso
(

int nrows_w;
ifj--fopen("weights.dat", "r");

fscanf4ifp,"/od ",&nrowsw);
loopj(nrows)

fscanf(ifp,"%f ",&yj]);
loeoi(nrows) /* load network weights */

loopj(ncols)
fs can f(ifp,"% f ,w [i][I)

fclose(ifp);
return;

ROUTINE NAME: checkfileO)
DESCRIPTION: Determines if data file exists. If not, program exits.
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: maino
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

void check fileo
{

ofp = fopen(datafile,"r");
if(ofp = NULL) {

prirtf("\n/os /sWn",datafile,": File not found.");
exit(O);

}
else fclose(ofp);
return;
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ROUTINE NAME: save testfllesO
DESCRIPTION: Saves daa from network test.
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: testnetO
LAST UPDATED: 7 Mar 94 BY: Jeffirey S. Dean

void save-testfilesO

mnt desired, out;
float max;
/* Output to testcheck~dat, gives inputs, training values

and outputs of the net ~
loopj(numý.outputs){

else frintf(ofp,"(%/ f :",d~t]0J);
fprintf (of~po % f ",ybj~gsize]);

if(errr>0K,_thireshold) fprintf(ofp,,"** *** 1)

fprintf(ofp,"\n");

/* Output to testdes.dat, shows training values 0

Ioopj(num -outputs)

else fprintt(efj,,"% f ",dftlaj]);

if~t>0)
fprintfryfp,"%t\t0/of\n",J[1 I ,(float)good/(float)t* 100);

ift(caOtouV I){
max = -1000.; /0flnd out which of the outputs *
loopj(num ~outputs) /* has the highest value

if(soj~gsize] > max) I
max =sajgsize];

out =J

loopj (num ~outputs) /0 Determine the correct output 0

if~d[t] Di] ==1.) desired = j;
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fpfiutu,"%/&\tOt'n",outdesired);

return;
I

ROUTINE NAME: checkif goodO
DESCRIPTION: Determines if net output matches desired output. If outputs

represent membership in categories, routine first checks if any
output category should be valid.

INPUTS: Integer value representing position in data stream (iteration)
FUNCTIONS CALLED: none
CALLED BY: net_loopO
LAST UPDATED: 7 Mar 94 BY: Jeffrey S. Dean

int check_if good(iter)
int iter,
{
int goodone, out, count;
float max;

good_one = 0; /* initialize flag */
if((t<td) && (loopjdata - 0))

++good_one;
else {

if(catout-l) {
max = -1000.; /* find out which of the outputs */
loopj(numoutputs) /* has the highest value

if(sU*gsize] >max) {
max = sU*gsize];
out=j;
if(out<OIIout>numoutputs-i) {

printf("out = 0/"11);
exit(0);

I
I

if((int)d[iter][out]--1){ /* If the highest value matches *1
goodone++; /* the desired category, its good.*/
accuracy[out] += 1; /* Net has hit in category, inc count*/

I

else { /* If the output is not a category */
count = 0;
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loopj(num outputs)
if(errorvcO]>OK threshold) /* check if the error is low */

count++;
if(count-O)

good one++;
}

)
if(good_one > 1)

goodone = 1;
return goodone;

******.************.*. **** ******** *** **.**** **************. *********

ROUTINE NAME: netjloop•
DESCRIPTION: Called for each data point, it computes the error from the

last iteration, checks whether the output can be considered
valid, resets the delta weight matrix, passes the output and
hidden node values from the last iteration to the net input
layer, and computes the net output for this iteration.

INPUTS: Flag (train) to determine if net is training (=1) or testing (=2)
FUNCTIONS CALLED:

computeerrorO - determines the error between the net
output from the last iteration and the desired output

reset delw sO - Resets the delta weight matrix and zeros
out the weighted summed inputs from the Ir -;t iteration

propagateO - passes the values produced by the top layer
of the network (hidden and output nodes) back to the
net input for this iteration

compute outputO - computes the values of the output and
hidden nodes of the net

save testfilesO - saves test data, net output & desired
output

CALLED BY: train_neto, test netO, saveweightso
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void net_loop(train)
int train;
{

J[O] = J[1]; /* Update error from last epoch. */
J[l] = 0.; /* Initialize error for current epoch. */
skip = 0; I* Initialize skipped updates counter. *1
good =0 ; I* Initialize # right answers counter. */
for(t=0-;t<numvectors;t++) {
computeerrorO; /* Computes the error at time t.

How far off are the outputs from the
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desired values? Compute total error.*/

if(ftain-.2)
save testfllesO;

reset_delw sO;

propagatetrain); /* Computes the state of the net at time t.
Store previous outputs ylt-1 as part of
the new Input vector z[tli[]. Sum all
zflJ*wll inputs Into the activation
vector sit] for input into y[t]. */

Compute outputO; /* Compute the output y(t+l)-fqs(t)J. */

if(fti l= ){
if(error>skipthreshold) /*If error above threshold, update weights */
updateo; /*Computes deLw(t), and p(t+1). Backprop */

else skip++; /* error through net and perform gradient */
/* descent to calculate the delta weights. */

ifibp_fActr>O.&ft1>O)
loopij(numoutputs,ncols)

w[i*gsize][j] += alpha*e[i]*bpfctor*yprime[i*gsize]*z[t-1][j;
}
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File embntaininghedon delrtesad variable
deIc laalms for the main program calle net~c.

date: 30 May 91

writte by: Randall L. Lndsey

float *vectorO;
float **matrixO;
float ***matrix3dO;
float ranlO;
mnt *ivectoro;
hit **imatrixO;

FILE *ifp, *of~p, *aflj *efp, *U1fp, *yfp;
int nm=l;
char strf 80], Odataflle;
int *out-count;
int mrows, ncols, g, i, j, k, 1, m i, num ~categ~output sel~cat_out;
int epochs, a, b, t, hold=5,inc, weights, norm~teacher~td, verbose;
int num inputs, num kountpus numý_nodes, num_vectors, Mbe, reset;
hit seed, idumn=l outjfb, linecar~gsize~glnroups~datagroup~good~bad;
hit loop data, mnax_val, skip;
float J[2J, sum, kron~xyp_minrmomnentumnjunk;
float alpha, bp factor~keep sum;
float alphal,error~skip_threhold,*latency, *lat -value;
float input noise, weight noise, *erro -vec;,
float *y, *s, *e, *f, *yprjme,*y ýwn,*mean, vect,*vect-max;
float **Z, **d, **Wy, **delw,**y old,**sum ~out;
float **p, **popld, ***ptemqp;
int *accuracy;
float sigmoido;
void imit netO;
void trainL_neto;
void test~neto;
void read_dataQ;
void propagateo;
void propagate to;
void compute outputO;
void compute erfror;
void updateO;
void reset del%, S`O;
void resetpo;
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void mini weigbtso;
void saveL_weightaO;
void readweightso;
void check fileO;
void save testfileO;.
int check i(.goodo;
void netjoopo;

/*** MACROMH***********************

/*#define TRAIN te;*/

charjunkrjesponse[256];

#define fskidpjine(A) fgets(jun~kjesponse, 256, A)

#define skip lin gets(junk response)

#define rloopj(A) for~=A)-1j>=O0j-)
#define rioopk(A) fo~j=A)- Ik>=0k-)

#define rloopl(A) forQ=(A)-1;1>0;1-)
#define rloopij(AB) for(i=(A)-1;i>=O;i-) foo(B)-1j>!0j-)

#define loopg(A) for~g=O;g<A;g++)
#define loopi(A) for(i0,;i•A;i++)
#define Ioopj(A) for~pj•Ai++)
#define loopk(A) for(k=O;k<A~k44)
#define loopl(A) forQO;1•A;1I-I-)
#define loopij(AB) for(i=O;i<A;i++) forjOj<B~j-H-)

#define CREATE,_FIE(ABC) if ((A--fopen(B,-"w")) ==NULL){\
printf(strcat(C,": can't open for writing - O/s.\n"),B);\
exit (-1); )

#define OPENFELE(AB,C) if((A-fopen(B,1"r)) = NULL) I
piinfstrat(C,": can't open for reading - O/os.\n"),B);\
exit (-'); )

#define IABS(A) ((intX(-(A)<<A))?((A)):(-(A))))
#define INT MAX (2147483647)
/** Dividing by 100 insures that cc and gcc give same results ~
#define IRANI1(A) ((intXrnl (A)*(float)UIT _MAX)/1100)
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NRUTIL.C Numerical utiliy routines; allocte memory for vectors and matrices

#finclude Mmalloc.h"
#include <stdio.h>

void nrerror(error text)
char error texti];

void exitO;

1printAderr,WNumerical Recipes rnm-time error ... \n");
fp~rintf(stdefr,"O/os\n",error _text);
fprintf(stderr,"...now exiting to system ... \n");
exit0l);

floa *vector(nIlnh)
int nljinh

floa *y.;

v=(float *)malloc((unsigned) (nh-n +l)*sizeof~floa~t));
if (!v) Mrerror("allocation failure in vectoroy')
return v-ni;

int *ivector(nlnh)
int nilnh

int *v;

v=(int *)malloc((unsigned) (nh-nl+1)*sizeof(int));
if (Iv) nrerror("allocation failure in ivectorty');
return v-ni;

double *dvector(nIlnh)
int nl~nh;

double *v;

v=(double *)nalloc((unsigned) (nh-nl+1 )*sizeof(double));
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if (Iv) nreroro("ailocation failure in dvectoro");
return v-ni;

float **znatrix(qnrIhrbnc1nch)
int nrl~nrh~ncl~nch,

int i;
float **M;

M=la **) mailoc((unsgned) (nrh-nr1+l)*sizoof~float*));
if (1m) nrerror("ailocation failure I in matrixo");
m -=nrl;

for(i-nil;i<--nrh;i++){
m[ijm(float *) malloc((unsigned) (nch-ncIl+)'sizeof(float));
if (Im~iJ) nrerror("ailocation failur 2 in uatrixo");
mli] -= ncl;

return m;

float **matd(nrlnrhncl~nch~ndl~ndh)
int mrl~rh~ncl~nch~ndl~ndh;

int ij;
floa ***ni;

M=(float ***) malloc((unsigned) (nrh-nr1+l)*sizeof(float**));
if (tim) nrerrr("Allocation failure I in matrixdo");
m -nrI;

for(i=nrl;i<=-nrhi++){
m[iJ=(flomt **) inalloc((unsigned) (nch-ncl+ )*sizeof(float*));
if (!m[i]) nrerror("allocation failure 2 in matrix3dO");
n[I] - oci;
foronclj<=nchj++){

m[i~j]&(float *) malloc((unsigned) (ndh-nd1+1)*sizeof~float));
if (!m(ilW]) nrerror("allocation failure 3 in inatrix3dO");
m[illj] - ndl;

retur m;
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lit ivlb nclnh.

int i;
double **M;

m-(double **) mailoc((unsigned) (nrh-ni+1)*sizeof(double*));
if (tin) nvrezorC'allocation failure I in dinatrixo");
m -= ri;

m[i]}(double *) malloc((unsigned) (nch-ncl+l )sizeof(double));
if (!m~i]) reromr("ailocation failure 2 in dinatrixO");
m[i] - ncl;

return m;

int **irntrix~nrlIfhxclch)
int nrl~xrhncl~nch;

int i,**m;

m=(int **)mailoc((unsigncd) (nrh-nr1+1)*sizeof(int*));
if (Wm nrerror("aliocation failure I in ftmatrixO");
M -= nr;

for(i-nrli<=nrhi++){
m~iJ=(int *)inaioc((unsigned) (nch-ncl+l )sizoof~int));
if (!m[i]) nrerror("aliocation failure 2 in iinatrixo");
mfiJ -= nel;

return in;

float **subintrix(aoldrl,oldrh~oldcI,oldch~ncwrl~newcl)
float* a;
int oldrl~oldrh~oldcl~oldch~newrl~newcl;

int ij;
float **m;

zn=(float **) rnailoc((unsigncd) (oldrh-oldrl+I )*sizoot(float*));
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if (tin) nrerwr("allocation failure in submatrixO");

mn -= newrl;

for(i-ioldrlja-newrl;i<aholdrh~i++j++) mU]=a[i]+oldcl-newcl;

return in;

void freeý_VeCtor(V~nlnh)
floa *,V;

int nl~nh;

free((char), (v+nl));

void free_ivector(v~nl~nh)
hit *v~nlb,

free((char*) (v+pJ));

void free,_dveCtor(Vnl~nh)
double *v;
int nlinh

free((char*) (v+nl));

void freeý_inarix(mlnrlxnrncl~nch)
float *in;
int mlnr~h~ncl~nch,

int i;

for(iuhiirh~i>-nl;i-~) free((char*) (m[ij+ncl));
free((char*) (m+nrl));

void free dinatrix(inrlnrhmnlnch)
double *;M
hit nrLnrbnclwnh;

int i;
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void fiee imatrix(rndiiinh~nclnch)
int *M;
int nrlxrhncl~nch;

int i;

for(i-nrh~i>'=nl;i-) free(cbar*) (m[iJ+ncl));
fr*e(ch~ar*) (m+nrl));

void free-submatrix(bnrlInrhncl~nch)
float *b;
jut nrljnh~ncl~nch;,

free((char*) (b+nrl));

float **convertInatrix(adrlirhncl~nch)
float *a;
int nrlwnrhncl~nch;

int i~jnrow~ncol;
floa **m;

nrovr-nrh-nrl+1;
ncol~nch-ncl+1;
m = (float **) malloc((unsigned) (nrow)*sizeof~float*));
if (1mn) nrerroi("Aliocation, failure in convert_matrixO");
m -nrl;
for(i=Oj-nr;i<=nrow-1 ;i++j++) mD]=a+ncol*i-ncl;
return mn;

void fivee-convert inatrix(b~nrlnrh~ncl~nch)
float **b;
hit nrlxdrhncl~nch;

free((char*) (b+nrl));



/*******************maIloc~h 1.2

I,

Constants defining mallopt operations
*/

#define MMXFAST 1 /* set size of blocks to be fast /
#deflne M NLBLKS 2 /* set number of block in a holding block /
#define MGRAIN 3 /* set number of sizes mapped to one, for

small blocks */
#define MKEEP 4 /* retain contents of block after a free until

another allocation */
I*

structure filled by
*/

struct mallinfo {
int arena; /* total space in arena*/
int ordblks; /* number of ordinary blocks */
int smblks; /* number of small blocks */
int hblks; /* number of holding blocks */
int hblkhd; /* space in holding block headers *
int usmblks; /* space in small blocks in use */
int fsmblks; /* space in free small blocks */
int uordblks; /* space in ordinary blocks in use*/
int fordblks; /* space in free ordinary blocks */
int keepcost; /* cost of enabling keep option */

char *malloc0;
void freeO;
char *reallocO;
int malloptO;
struct mallinfo mallinfoO;

RAN1.C - Numerical recipes pseudo-random number generator

#define MI 259200
#define LAI 7141
#define IC 154773
#define RM1 (1.O/Ml)
#define M2 134456
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AdefinulIA2 8121
#define IC2 28411
#define RM2 (1.0842)
#define M3 243000
#define LA3 4561
#define IC3 51349

extern float ran 1(idum)
hit *id'um;

static long ixlWix,ix3;
static float 4[98];
float temp;
static mnt iff=O;
intj;
void nremnor;

if (*idum <011iff ==0) 1

ix1=0IC1-(*idum)) % MI;
ixlr(IAI*ixl+IC1) % Ml;
ix2-ixl % M2;
ixl=(IAI*ixl+IC1) % Ml;
ix3=ixl % M3;
for 0=1 j<--97;j++){

ixlQ(Al'ixl+IC1) % MI;
ix2=(LA2*ix2+1C2) % M2;
rW]=(xl+ix2*RM2)*RMI;

*idum=1;

ixl=(T.AI*ixl+ICI) % Ml;
ix2=0A*ix2+1C2) % M2;
ix3=QA3*ix3+1C3) % M3;
j1l + ((97*ix3)/M3);
if a > 97 11 j < 1) nrerror("RANlI: This cannot happen.");
temp~rJ;
rofN~ixl+ix2*RM2)*RM1;
return temp;

#udfM
#undef MlI

#undefIC 1
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#undef RMl
#undeofM2
#undefLA2
#undefiC2
#undef RM2
#undef M3
#undef IA3
#umdefIC3

MAKEFILE

CFLAGS = -02 -im

recnet : recnetc nrutil.o ranl.o
cc -o recnet recnet.c nrutil.o ranl.o $(CFLAGS)

nrutil.o : nrutil.c
cc -02 -c nrutil.c

ranl.o : ranl.c
cc -02 -c ranl.c

clean:
rm -f *.o net recnet

The following listing is from the "parameters.dat" file, used to define the working
parameters under which the recurrent net is operating

epochs alpha seed moment ypr min
1000 0.01 152367 0.0 0.01
weights linear teacher skip cat loopdata
1 0 0 0.0000 1 0
verbose max val bpctor
1 50 0.50
keep__sum OKthreshold preview
0.000 0.125 0
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epochs - number of times net trains on data file
alpha - learning constant
seed - ranlom number seed
moment - momentum term
ypr mm - minimum value allowed for sigmoidal derivative function f(l-f)

weights = 0: generate new weights for this training session
1: used the weights in "weights.dat" to continue training

linear : output nodes use sigmoidal output
1: output nodes use linear output

teacher = 0: do not use teacher forced training

1: use teacher forced training

skip - error threshold above which weights are updated

cat 0 0: outputs of net do not represent categories
1: outputs of net represent categories (i.e. are 1 or 0)

loopjdata= 0: zero out outputs after end of epoch
1: Do not zero out outputs. Allows continuity of data

passing through the net between epochs

verbose = 0: Do not print messages to stdout (screen)
1: Print messages to stdout (screen)

maxval = limit of activation value. Above maxval, the sigmoid function
returns 1; below -maxval, the sigmoid function returns 0.

bpfc = Gives net capability to update weights by means of standard backprop
algorithm, in addition to RTRL. Factor determines how much emphasis
given to backprop weight updates. Usual range between 0 and 1.
Backprop only used on weights to output nodes.

keepsum = Provides a momentum term for the activation values of the neurons.

preview 0 0: Net trains on all the training data, each epoch
1: For 1st 25% of epochs, net trains on 1st 25% of training data.
Remaining 75% of epochs training occurs with all training data.
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Appendix C: Source Code for Creation/Manipulation of Data

This appendix contains listings of the source code for the program used to
generate/ modify the data used to train or test the subgrouped recurrent network, or to
evaluate network accuracy based on net outputs. Code was added as need occured, so no
claim is made as to program efficiency or organization.

CREATE.C

A tool to allow manipulation of the data files used to train
and test recnet.

date: 7 May 93

written by: Jeffrey S. Dean

#define M1 259200
#define 1A1 7141
#define IC1 54773
#define RM1 (1.0/Mi)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 243000
#define IA3 4561
#define IC3 51349

#include <stdio.h>
#include "macros.h"
#include <math.h>
#include "def.h"
#include <string.h>

ROUTINE NAME: main
DESCRIPTION: Prompts the user whether he wants to create a file to train

or test the net on a Butterworth filter response, or to load
and mainipulate a data file.

INPUTS: default inputs argc and argv, not used
FUNCTIONS CALLED:
ButterworthO - Prompts user to select type of Butterworth filter data
FileworkO - Prompts user for file name to be loaded, then for function

to be performed
CALLED BY: none
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LAST UPDATED: 7 May 93 BY: Jefily S. Dean

char *argvfl;

o = matrix(0,25000,0,64);
v - matrix(0,25000,0,50);
pick¢marix(0,25000,0,1);
pnft1(0,500,0,1);
o2 - matrix(0,.5000,0,6);
v2 - matrix(0,25000,0,28);
num vectors = numvectors - 0.;
SeleCt0;
exit(0);

}
void SelectO{

int choice;
for (;;) {
printf("Choose one of the following: \n");
printf("\nl. Create a Butterworth filter response file \n");
print("\n2. Load and modify an existing file \n");
printf("Wn3. Create a XOR data file \n");
printf("\n4. Manipulate sequence identification files \n");
scanf("'d", &choice);

if(choie==1) Butterwortho;
if(choiew-2) {

Appendo;
File..workO;

}
if(choice=3) Xoro;
if(choice==4) SequenceO;
printf("That is not a valid choice\nnn");

}

ROUTINE NAME: ButterworthO
DESCRIPTION: Prompts user to select between cosine, step, random or impulse

flmctions for building a Butterworth filter data file for
recret.

INPUTS: none
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FUNCTIONS CALLED:
CosinO - creates 128 point cosine wave values, with Butterworth filter

response as uraing values
Stepo - creates a step fiction (0 to 1) input file, with Butterworth

filter response as training values
Randomo - Creates a 699 point random number strng (0 to I values), with

-u- -rwo filter response as training values
ImpulseO - creates a 200 point series of impulses, with Butterworth filter

values as training data
CALLED BY: mainO
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean
***************.*****.********.****************************************/

void ButterworthO
{
int choice;
for (;;) {

printf("\nDo you want to:\n");
printf(" 1. Generate a cosine function training file?\n");
printf("2. Generate a step function training file?\n");
printf("3. Generate a random function training fileT");
printf("4. Generate an impulse function training filen");printf("5. Exi•");
skipjine;
scanf("%d", &choice);
printff"\n");
if(choice=l) Cosino;
if(choice=f2) Step0;
if(choicef3) Random0;
if(choice=-4) Impulseo;
if(choice==5) exit(O);
printf("That is not a valid choice~n~n~n");

}
}

ROUTINE NAME: Filework(
DESCRIPTION: Allows the user to select from multiple data file manipulation

options
INPUTS: none
FUNCTIONS CALLED:
AppendO - Appends another data file to the data in memory. Number of file

inputs and outputs must match data format in memory
SaveO - Saves the current form of data as a file
Mergeo - Allows the user to replace the inputs or outputs of the data in

memory with those in a data file. Number of file data vectors must
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mt•oh with the number of data vecton in memory.
Timi deIl() - shifs the outputs ahead in tame
Categorie.O Prmt the user to select an output (integer) and eqwxpad

the output into category Mat (1 - member, 0 - nonmembr)
CullO - Extracts the data vectors in the data file that belong to one of

the possible categories
Nortno - Normalizes the inputs
ClearO - Reinitiales inputs and outputs
OnecatO - Specifically for phoneme group extraction. Performs one of two

functions: Expands outputs to all categories in a phoneme
group (nasal, vowel, etc.), with one category for non-members;
or converts output to two membership finctions, either in group
or not in group.

e- Dfirentias inputs across each vector and between
vectors.

StatusO - displays number of data vectors, number of inputs/outputs, and
the time delay in the outputs.

Out typeso - Displays how many of the potential categories are present in
the deat

ViewO - Allows user to display current inputs and outputs
Phomeme - Shows user which phonemes of each of the phoneme types are

present in the data
CompareO - If user merges outputs of file used to train/test net with

outputs net produced, the routine checks to see if the net
provided the right answer, broken down across output categories

CALLED BY: mainO
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void FileworkO
{
int select;
for (;;) {

piintf("\nDo you want to:\n");
printf("FILE TRANSFER FUNCTIONS An");
printf("l. Append file~t2. Save file\t3. Merge file\n");
printf("\nDATA MANIPULATION FUNCTIONS -\n");
zrintf("4. Add time delayAt\t5. Expand in/outputst6. Cull outputs\n");
printfl"7. Normalize inputsTt\tS. Clear data\t\t9. Select category\n");
printf("10. Differentiate inputs~n");
puintf~"\nDATA VIEWING FUNCTIONS -\n");
printf("l 1. Check status\tl2. Check outputs\t13. View data~n");
puintf("14. Show phoneme breakdown\tl5. Compare inputs/outputs\n");
primi("n16. Exit\n");
skipjline;

scani("%d", &select);

104



if~selectmm1) AppendO;
if~select-.2) Saveo;
if~iseect'-3) MeieO;
if~select'-4) Time delayO;
if(select-mS) Cntegorieso;
il(ueleta..6) CullO;
if(select-7) Normno;
if~solect-8=) CleatO;
iiruelect'-9) One catO;
ifraelect-10l) Difterentiateo;

if~aelect-12) OutAtypes;
if~aelct==l 3) Viewo;
it~select-l14) PhonemeO;
if~select'==5) ComparcO;
ifrselect-=16) exit(O);

ROUTINE NAME: Appendo
DESCRIPTION: Prompts usm for another file name, to append to the data

already in memory. Wili not load fie if the number of
inputs or outputs in the file do not match the data in memory.

INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: Filewok
LAST UPDATED: 7 May 93 BY: Jeffr~ey S. Dean

void AppendO

Char choice;
hit num nputs, uumLoutputs;

prin~"~nhatis the namne of the file? :");
sdpjint;

"scnRea",daaingle);W aafl)

p MVntFicdin %s n",daafle)

fw=mnifp,"%d %d %d",&num ~inputs,&numý_outputs,&numvectrs);
pfntl"hs fie has %/d inputs 6/ outputs, ",numjnputs~nuni outputs);
prn and %d vectors.\",numvectors);
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ifbm4pO I- nuin~Apu&&,=ninputs1u 0)(
pgIW~***********CAN NOT CONT1NUE11******\n");
I inti-ronumber of inputs not the same as beforeWn);
return

ifiM:nm outputs = nuotus&uotus= 0)(
pgjntf(W***********CAN NOT CONTNUNLEt!*********\n");
printf("number of outputs not the same as beforeWn);

prinffContinue? (yin)");
skripjine;
scanf"%c",. &choice);

ifrchoiwe-Thf
numinputs - numjnputs;
rnmoutputs = nun ~outputs;
fskipjineifp);
printf("looding data file ... \n");
loopi(numvectors) (

Ioopj(numinPuts)
fscntifp,"%f'.&:v[i+num_vectorsilu]);

loopj(numoutputs)
fscanfifp,"V*f',o~i+num..yectorsJW]);

num -vectors += mnumvectors;

fcoseMip);
return

ROUTINE NAME: Time-delayO
DESCRIPTION: Shifts output values in data a user selected number of

data vectors.
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: File work()
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void T-ime delayo

float tail[5][50J;
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pdnt(How many ticks do you want to delay the output?\n");
uddpjint;
scang"d", &Wd);

"pmi"numvec'4d, numout=/d, td=%ds~n",num vectors, numoutputs~td);

loopitd)
loopj(numoutputs)
tailfiJlj] - o[numk_vectors+i-tdJ]jJ;

loopi(numý_vectors-td)
loopj(numoutputs)

o[numk vectorsi-I1] U]=o[numLvectors-i-I-td](j];
Ioopitd)

loopj(nunioutputs)

TD+'td;

ROUTINE NAME: Categorieso
DESCRIPTION: -Selects one of integer ouftpus asks for the range of values

repreene by the outpu (how many potential categories) and
expand the output value to a string of I s and Os, with 1
riepresentinmlgla membership in a category.

INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: fileý_work(
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void Categorieso

hit index io, max, rep;

skipjine;
scanfg"%d" &iO);

printi("How many categories does this break down to?\n");
skipline;
scnl"%d", Aca1t);
pdntfrw);
if(io-2) (

pritfWWhich output do you want? (1 - 6/d)\n"numoutputs);
skip line;
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index - orijfsul-l];
lOOPj(cat)

olijO] - 0.;

o~iff(int)indexj = 1.;

nxmouitputs= cat;

eLse if Uol )(
printf("1. Binary representation.n2. Fuly expandedfn");
skipjine;
scanffld" , &rep);

if(rep==2) (
loopi(numk_vector)(

index = v[i][O]+l;
lOOPj(cat)

vAi]lu = 0.;
if (ndwP-0)

v[il[(int)indexl I .;
else V[i][0J = I.;

nummnputs = cat;

else if(rep"1I){
loopi(nmM.vectors){

max=64;
index = v~iJ(O]+2;
loopj(7)

AijiD] 0.;
loopj(7)(

if(index>=max)
index -max;

max = max/2,

numinputs =7;
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)

ROUTINE NAME: CullO
DESCRIPTION: Prompts user to select one of integer outputs, and asks user to

select one of potential categories represented by this output.
Culls out those data vectors that do not belong to this category.
Allows user to include those non-selected category vectors
just before and immediately after the data vectors selected.
This routine allows user to extract only vowels or a specific
phoneme from a voice data file.

INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: File_worko
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void CullO

int out, count, count2;
char chooselead, all;
printf("Which output do you want (1-%d)? ",numoutputs);
skipine;
scanf("%/d", &out);prmntf("n"i);
printf("Which category do you want to extract? ");
skipine;
scanf(4"/d", &cat);
printfirn");
printf("Do you want the vector before the desired category?\n");
printf("(This will provide a lead in to the desired section)\n");
skipline;
scanf("/oe", &choose lead);
printf("'n");
printf("Do you want all the vectors? ");
skpjine;
scanf("//c", &all);
printf("\n");
loopi(num vectors)

pick[i][O] = 0;
Wfall -Y)

loopi(num_vectors)
pick[i][0] = 1;

loopi(numvectors)
if(o[i][out-]--cat)
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$.kWJ[OJ- 1;
il(chousejkd - Y)

ktoommmvetor) I
if>l&A.imnkwn..ctom2) Ii/•ofi+l][out-11--ma[i+2][out-l-]-cd)

pick(iJ[oJ - 1;
iW0o0-1][out-l]==•o[i-2][out-l-ct•)
pickEi][0] = 1;

}

coumt =0;
count2O-;,
loopi(numyeetmrs)

ii(picki][o] =1) {
loopj(numinputs)

v[countJoj = v[i]j];
if(o[iJ[out-l.catH){

o[count][o] = 1.;
o[count][l] = 0.;
count2++;

}
else {

o[count][0] = 0.;
o[count][1] = 1.;

}
count- + 1;

}
num_vectors = count - 1;
numoutputs =2;
printf("Number of vectors %d,",numvectors);
printf(" number of desired categories = %d,",count2);
return;}

ROUTINE NAME: Normo
DESCRIPTION: Determines max and mim of each data vector, subtracts the

average of the max and min values to center data on zero.
Divides each input by half the range of input values to size
the values between -l and 1.

INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: File_workO
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void NormO
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flwa min, max;

loqpi~nuM~yectors)(
min -100000.;
loopj(numinputs)

ifi~min~v[io]j) min = vfflaj;
max =0.;
loopj(nmmunput)

if~max<v[ilijJ) max = lu;
loopj(numinputs)

v[iJDJ -~ (max+min)/2;
loopj(mnunmputs)

v[i]jjJ /= (max-min)/2;

ROUTINE NAME: SaveQ
DESCRIPTION: Saves the data as a fie
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: File worko
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void SaveO

char integer_out, integer n;
printf(" What do you call the output file? )
skipjline;
scanf r/os",outflle);
pdinf(How many hidden nodes do you want? )
skip line;
scanf ("I/ad", &numnodes);
printf("Are the outputs integers? (y/n)")
skipline;
scanfr"0Ac",&intcger out);

printf("Arc the inputs integers? (yin) )
skipline;

priti"\nSaving data .... W)



f~iitx~fpo~"%d *Ad %W ",numinputs, numoutputs~numnodes+numoutputs);
fpinWofp,'%dW %5",numL vectors, TD);
loopi(nunm vectors)(

if~inteWcrn==y)
loopj(numinputs)

else
loopj(numinputs)

if (intege prouY)
loopj(numoutPuts)

fprintf(ofp,"*/od ",(int)o~io]fj);
else

I )opj(numoutputs)

fprintf(,ofp,"\n");

fclose(ofp);
return;

ROUTINE NAME: View()
DESCRIPTION: Prints current values of inputs and outputs to screen
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: File_worko
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void ViewQ

char cont;
int count =0;

cont = NULL,
loopi(num ~vectors){

loopj(numinputs)

"pnf\n");
loopj(numoutputs)

"p0t/6V4.2f ",ORiJ[i);

count -f= 1;
if(count >10)(

"pIif"Press <return> to continue, q to quit~n");
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skip~line;
scang-iAc" &.cont);

count - 0;

if(cont - q) break;

return;

ROUTINE NAME: ran 10
DESCRIPTION: Random number generator
INPUTS: intege pointer for random number seed
FUNCTIONS CALLED: none
CALLED BY: File worko
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

float ranl (idum)
hit *idum;

static long ixlW,iix3;
static float r[98];
float tenip;
static int iff=O;
intj;
void DrerrorO;

if (idum <Oj11iff=O ){

ixl=QICI-(*idum)) % Ml;
ixlF(IA1*ixl+ICI) % Ml;
ix2=ixl % M2;
ixfr(IAI*ixl+ICl) % Ml;
ix3=ixl % M3;
for 0=1 j<-97*H-){

ixl=([A1*ixl+ICl) % Ml;
ix2Q(A2*ix2+1C2) % M2;
rrj]=Qixl+ix2*RM2)*RMI;

*iduml--;

ixlz(IA1*ixl+IC1) % Ml;
ix2=(LA2*ix2+1C2) % M2;
ix3=(LA3*ix3+IC3) % M3;
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J-1 +. ((97Ix3YM),
if a > 97 0 j < 1) pnintK"%s~n","RANi: This cannot happen.");
temp-rb],
ro]m(ixl+ix2*RM2)*RMI;
retwrn temp;

ROUTINE NAME: Randomno
DESCRIPTON: Grenerates a 699 point random number sequence, with the response

of a Butterworth filter associated with each point.
INPUTS: none
FUNCTIONS CALLED: ranlO, Saveo
CALLED BY: ButterworthO
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void Randomo

float class~a0,a1,a2,bO,bl;
int idum--1,ij~bubba,

a0=0.0676; al=0.1352; a2=0.0676;
W1l.1422; bl=-0.4124;

idum = -IALBS(737496732);
rant (&idum);
o0J(01o10 11101=0.0;
loopi(7 10)

vliJ[0] = olillO] = 0.;
loopi(600)

v[i+50][0] =2.0*ran1(&idumn)-l.0;

numn-vectors =700;

loopj(3) {
loopi(700)
o~i+2][0]=aO*v[i+2]LO]+al v[i+1 ][0]+a2*v[i][0]+bO*o[i+1 J[0J+bl *o~i][0];
o[o][0]=aO*v[0][0]+aI *v[6991[L0+

a2*v[698][0]+bO~o[699110J+bl o[698J(0];
o[1i[0]=a0*v[l][0J+al *v[o][o]+

a2*v[699][o]+bO*o[o][0]+bl 'o[699][0];

numinputs = 1;
numoutputs = 1;
Timne_delayo;
Saveo;
exit(0);
return;
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ROUTINE NAME: Impulseo
DESCRIPTION: Generates a series of impuse data points, with the response

of a Butterworth filter associated with each point
INPUTS: none
FUNCTIONS CALLED: SaveO
CALLED BY: ButterworthO
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void JmfpUlseO

float class~aO~al,a2,bO,bl;
int idum~l,ij~bubba-

a0-0.0676; aI=0.1352; a2=0.0676;
W1~.1422; b1=-0.4124;

o[0J[0]o=lJ0110=0-0;
loopi(302)

V011[O] = o0i010] = 0.;
loopi(2)

v[20+(i)*1281[0] = 1.;
num-vectors = 300;
loopj(5) {

loopi(300)
o[i+2][01-a0*v[i+2][0]+al *v[i+l][0]+

a2*vli][0]+bO*o[i+l ][0]+bl o[i][0];
o[0][01=aO*v[0][0J+aI *v[299](0]+

a2*v[298][0]+bOo[299][0]+bI *o[298] [0];
o~l ][0J=aO*v~lll[0]+al *v[0][0]+

a2*v[299J[0]+b00o[GJ[0]+bl ~o[299] [01;

numinputs = 1;
numoutputs -1;
Time delayO;
Saveo;
exit(0);
return;

ROUTINE NAME: Cosino
DESCRIPTION: Generates a series of data points representing a cosine wave,

with a Butterworth filter response associated with each data
point.
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FUNCTIONS CALLE: SaveO
CALLE BY: Buuterwortho
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void Cosin

float aO~al~a2,bObl;
int ij;

aO=O.0676; al-O.1352; a2=0.0676;
W01.1422; bI-O.4 124;

o[0O]LO=o[1 ][OJO.O;
loopi( 128)

v[i][O] = cos(2*3.14159*i/64);
loopi(1 26)
o[i+2J[O]-uaO*v[i+2][OJ+al v[i+1l][O]+a2*v[i][O]+bO*o[i+1 J[O]+bl o[i][OJ;
numn vectors = 128;
numinputs = 1;
numoutputs = 1;
Time ~delayo;
SaveQ;
exit(O);
return;

ROUTINE NAME: Step()
DESCRIPTION: Genertes a step function input, with the Butterworth filter

response associated with each data point.
INPUTS: none
FUNCTIONS CALLED: SaveO
CALLED BY: Butterwortho
LAST UPDATED: 7 May 93 BY: Jeffirey S. Dean

void StepO

float class~aO,al a2,bO~bl;
a0=0.0676; al=O.1352; a2=0.0676;
W01.1422; blh-O.4124;

loopi(1 50)
o~ilO=v~i1[O]=00.;

loopi(30)
v~i][lOJ 0.;
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loopi(128)
v[i+25][0] = 1.;

loopi(126)
o[i+2][0]=aO*v[i+2][0]+al*v[i+1][0]+a2*v[i][OJ+bO*o[i+l][O]+bl *o[i][0];
num vectors = 128;
numinputs = 1;
numoutputs - 1;
Time delayQ;
Saveo;
exit(o);
retumn;

ROUTINE NAME: Clear0
DESCRIPTION: Clears the data vectors in memory, and reinitializes the vector

count, number of inputs and outputs to zero.
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: File_workO
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void ClearO
{

loopi(num_vectors) {
loopj(numinputs)

v5i15] = 0.;
loopj(numoutputs)

oi0]U] = 0.;

numvectors - numvectors = 0;
numinputs = numoutputs = 0;
td-TD=0;
SelectO;
return;

ROUTINE NAME: Mergeo
DESCRIPTION: Allows the user to replace the inputs or outputs in memory

with the inputs or outputs found in a data file. The number
of data vectors in memory must match the number of vectors in
the data file.

INPUTS: none
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FUNCTIONS CALLED: none
CALLED BY: Filewok
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void MeruO

int choice~choice2;
hit num ~inputs num ~outputs;
float junk;,

"pit"\uiWhat is the name of the file? :)
skipjine;
scanf("Ais", datafile);

"pit"Reading O/os... \n",datafile);
ifp=&pen(datafile,"r");
fscAnf~lp,"%od %d %/d",&num _inputs,&num,_outputs,&nuznvectrs);

"prt(TIs file has %/d inputs, %od outputs, ",numn~nputs~numkoutputs);
"riifand %/d vectors.\n",numvectors);

if~nunk vectors != numvectors&&num-vectors != 0)(
prinfr*********** **CA.N NOT CONTlNUE!!******~*****\nH);
printfflnumber of vectors not the same as current data\n");
return

"pntfDo you want to swap in: \.n");
"pInil. File inputs\n");
"pitf2. File outputs\n");
skpine;

scanffl/od", &choice);

fskip ine(ifp);
if~choice'-){

prmf("Do you want the inputs to be used as: \n");
printif("1. File inputs\n");
printt("2. File outputsWn);
skipjine;
scanffl%d", &choice2);
pnnfl~n");
f&kip ine(ifp~);
if~choice2I--2)(

numinputs =num inputs;
printifiloading data file \ii");
loopi(numvectors){

loopj(numinPuts)

ftcanifP,,0/0",&vi118



if(choios2-2)(
nunioutptft - numjnpufxts;
F r -rloading dafta Meu Wa);

baR xnuminp Wa)

facmtgifp, ,&junk);

iit~coice-2)(
prhdtW'Do you want output to be used as: \n");
PWit 1. Ffileipt )

prinW'2. FMe outputs )
ukipline;

Nukp. ine(ifp);w
if( mie~)

nuominputs = nurmno~
piz~boadin data lu outputs\")

loopi(numvectors)( 1
loapj(MB-npums)

fscuii~ifp,"%r,&ju~k);
loopjnmoutputs)

ilrchoice2m2)f
numoutputs- nm~aoutputs
pdntfr*loeding afta Mie out"ut .-An");

k) (numvem )

Ffrcafifp "%f",&,o[illjD;
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ROUTINE NAME: StatusO
DESCRIPTION: Displays the current number of data vectors, number of inputs

and outputs, and the time delay of the outputs.
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: FileworkO
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void StatusO
{

intf"•\nWn~n STATUS OF DATA: \n");
printf("Numbe of vectors: %dýn", num yectors);

t("M inputs and %d outputs, ", numinputs, numoutputs);
prinil"with a time delay of %/d ticks.\n", TD);

"Wn("");

return

ROUTINE NAME: OuttypesO
DESCRIPTION: Prints out the categories present in the data. Assumes

output integ represents range of categories.
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: FileworkO
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void Out_tpe(s
{
int sel, types[1o0];
pintf("OUTPUT CATEGORIES PRESENT IN DATA\n");
printf("Which output do you want to check? (1- d) ",numoutputs);
skip-line;
scanf(g"d", &sel);

printf("How many categories re there in this output? ");

print",");
loopi(cat)
types[i] - 0;
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loopi(Anumt )qves((itm)o~i][s-l]] - 1;
loo~ce)
if~iyee.-.) primtf("/,d ".i);

ROUTINE NAME: One catO
DESCRIPTION: Selects one output or one output group as valid, all other

data vectors re classed together. If file has two outputs,
(as fiund in voice data files for this project), routine asks
if data should be broken into subgroups (i.e. vowels, nasals,
etc.). If sekctd the routine asks which group is to be
used. The routine then checks the file phon_transl", which
lists all 64 phnemes. The number of pWnm in the subgroup
is determined, and the data outputs are expanded to provide
a cateory for each phoneme in the group. If the outputs are
not to be broken into subgroups or there are more than 2 outputs,
the routine assumes that the outputs represent categories, and
prompt the user to slect one output. The routine then creates
two output categories for the data, one for the selected
category and one for all other data vectors.

INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: File_work0
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void One_catO

int index, junk, out vect[64], cnt, sub, cont;
float cat -ata

char choice, out_vects[64][5], group[10], phon[l0], sel.group[l0];

choice = NULL;ilmn~outputs-2) {
pinff "Do you need it broken into subgroups? (y/n) ");
skipjine;
scamn1"%c", &choice);

ifmchoice•-y)
print*"Which subgroup do you want? (0 - 5)\n");
sddpjine;
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'774

umf(' 3 (Ohm~Ub); , e

Ioopi(63) I
fwacaiifp,"%d Va s %d %s",&junk~phon,&catgroup);

strewy~eLgBroup, group);
out-vectfcoumtj -junk;
stcpy~outvects[count],phon);
count-1+;

loopi(inkm..ectors)

cat dafta -o(i][OJ;
loopj(count)

ifront)cat datou-oxvectU])
oRiDjJ= .
cnt++;

else oPiDl] =0.;

if(ctO-) opiJ[countj = I.;

numoutputs =count+ 1;
Mrntf "The selected category is Gls~n",segroup);
loopi(Count)

pritf"%d ",out vectf i]);
pritf"\n);
loi~count).

printfr",Vos ",out_vect~s[iJ);

else(
pritf"Whici category do you want? (I - /Yod)Nn",numoutputs);
skpipine;
s c anf i"%/d" , &sel);
pdnW"n");
loopi(nuin_vectors){

ifo[i][sel-1JI.;
o* 0i][O] = I.;
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else(
0(1110] - 0.;

numoutputs 1I;

pdWt~Press <return> to continueWn);
skipjine;
scanftrc", Locont);

ROUTINE NAME: PhonemeO
DESCRIPTION: Checks data to determine which phonemes are present
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: File-_worko
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void PhonemeO

hit phon[6][64];
char cont;

loopi(6)
loopj(64)

phonijill = 0;

loopi(numkvectors)
phon[(int)o[i][1JJ[(int)o[ilJ][0= 1;

pfiWt~Members of the nasal phoneme group areAn");
loopi(64)

printf"\n);

printf ('Members of the vowel phoneme group are.\n");
loopi(64)

ifiphon[I][i]=-1) printf("*/od ",i);

printf('Members of the stop phoneme group are:\n");
loopi(64)

if~pon[J~i=1)printf("O/od "Ji);
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peWWMembers of the fricative phonemne group are:\n");
loo*i64)

if~pbo3J(ijinl) printf(*Od ,)
pdndf("n");

printf("Members of the silence phoneme group arecn");
Ioopi(64)

printi("Members of the liq.-glide phoneme group are:\n");
loopi(64)

printft"Pres <return> to continue~n"),
skipjine;
scnf"%c", &cont);
return

ROU71NE NAME: Conmpare
DESCRIPTION: Determines whinch input value is the largest, then check to see

whether corresponding output value is a 1. Used to compare net
outputs with the desired outputs; checks net accuracy for each
Output category.

INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: Fileý_workO
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void CompareO

float max;
int high_out;
hit score[64][2];
char cont;

loopi(64)
loopj(2)

scoreC0llj = 0;

it~nminuts=numoutputs){
printfi("Different number of inputs and outputs. Can't compare.\n");
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loopi(mwu-vectors){
max - -1000.;

if(V~IJOJ'rn)
max - vfiJDJ;
high-put = j;

it(OPillh - 1) scorejjJ(OJ++;
if (o[iJ[highout] -1)

loopi(numiniputs)
prltf"Categoy I%& */od examples",i,score[iJ[0]);
ik~score~iJ[0J>0)

prnFW", %PA%% corretwn,((floa)score[iJ[1 ]/score[i] [0])*100);
printf(");

printfr'Press <return> to continue\n");
skipjine;
scar~%c", &cont);
return;

ROUTINE NAME: Diferentiateo
DESCRIPTION: Replaces inputs in each data vector with the difference between

the inputs, then replaces inputs in each data vector with the
difference between the input and the next data vector input.

INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: File,_worko
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void DifferentiateO

loopi(numvectors){
Ioopj(numinpus- 1)

AM~j]= VDiJO+1] - v0101j;
v[iJ[0] = 0.;

loopi(numvectors-1)

125



vri~jjJ - vfi+t1b] -V~IM];J

loopjnummnputs)
V10O01j 0.;

ROUTINE NAME: Xor()
DESCRIPTION: Creates XOR training/test data for the neural net, with either integer or
floating point values.
INPUTS: none
FUNCTIONS CALLED: none
CALLED BY: Select()
LAST UPDATED: 7 May 93 BY: Jeffrey S. Dean

void Xoro

float class seed;,
int iduml1, choice;

printf("\nEnter random number seed~n");
scanf(/.d", &.seed);
Mdum = -IABS(seed);
printf("\nDo you wish:\nl. Integer values\n2. Floating point values\ni");
sca4f"Vod", &choice);

loopi(024)
loopj(2) (

v[ij0jJ=ral(&idxun);
if~choice1l) (

if (v~i]VJ>O.5) v[iJ~]U=l.0;
else v[i]0J=0.0;

if ((v[iJ[0]>O.5) && (v[iJ[1]>0.5))
o[iJ[0J=0.0;

if ((v[i][OJ<-0.5) && (v[i[Il]>0.5))
olil[01=1 .0;

if ((vli]LOI)O.5) && (v[il~ll]<=0.5))
oliJ[01= .0;

if ((v[i][0]<=0.5) && (v~ijllh<'O.5))
oli][OJ1mO.0;
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}
numoutputs= 1;
num vectors = 1024;
numinputs = 2;
Time_delayO;
SaveO;
exit(0);
return;

}

ROUTINE NAME: SequenceO
DESCRIPTION: Allows the user to select function for dealing with sequentially related
data. Functions include:
1. Converting codeword sequences (seq length codewordl codeword2 ...) into net
format
2. Randomize training/test sequences, so that sequence categories are mixed
3. Convert sequences with Fourier coefficient inputs to net format
4. Read in "sequence.dat" file and check accuracy of net output
INPUTS: none
FUNCTIONS CALLED: ConvertO, Randomizeo, Fourier inputO, and Scoreseqo
CA]_ LED BY: SelectO
LAST UPDATED: 7 Jan 94 BY: Jeffrey S. Dean

void Sequenceo
(

int choice;
numvectors = numvectors = 0.;
for (;;) (
pintf("Choose one of the following: \n");
pnntf("\nl. Convert codeword sequences to net format \n");
printf("\n2. Randomize sequence of codeword strings \no);
printf("\n3. Convert Fourier magnitude sequences to net format~n");
printf("\4. Score the accuracy of a sequence.dat file\n");
scanf("'Yod", &choice);
pintf("Wn");

if(choice=l) ConvertO;
if(choice2) RandomizeO;
if(choice=3) FourierjinputO;
if(choice---4) Score seqo;

}
rern;
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ROUT'INE NAME: Converto
DESCRPTIO: Convert codewotrI sequences to net format

NIPUTS: none
FUNCTIONS CALLED: Fileyok
CALLED BY: Sequenceo
LAST UPDATED: 7 Jan 94 BY: Jeffrey S. Dean

void Converto

hit t, categ, length, sect;
float junk;
IDO= ;

"rnf"\nWhat is the name of the file? :");
skidp ine;
SCanf("YKS", dataffie);

"rnf"\nWbch category does this belong to? :)
skipjne;
scanf("%/d", &categ);

ifpfopen(dataffle,"r");
t-- 0;
loopk(4)
loopi(50)(

fscanf(49p "%/d", &length);
loopj~length) {

fscanf~ifp,"%te", &v[t][OJ);
loopl(6)

oft][l] = 0;
o[tJ[catcg] = I;

loopj(6){
viltilo] = -1;
loopl(6 )

o[t][lJ = 0;
o[t][0] = 1;
t++;

num.-vectors =t -1;
numinputs =I;
numoutpfts= 6;
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fcoseeip);
File_workO;
num vectors = 0;
refturn

ROUTINE NAME: Randomizeo
DESCRIPTION: Randomize sequences for training/zest data
INPUTS: none
FUNCTIONS CALLED: Fileý_ok
CALLED BY: Sequenceo
LAST UPDATED: 7 Jan 94 BY: Jeffrey S. Dean

void RandomizeO

hit choice, idum--1- 5756, junk, range, incr, max;
printf("\nWhat is the name of the file? :)
skipjine;
scanf("Is", datafile);

prinhf("RaAdi ,/... \n",datafile);
afp~fbpen(datafile,"r");
ficanf (ifp,"%/d O/od %/d %/d

low,&numiputs,&numoutputs,&junk,&nurnvectors,&TD);
numl-vectors = numvectors;
loopi(1 000)

pickliJ[0] = 0;
loopi(numvectors) { /* Load in data *

loopj(nunuinputs)
fscanf~ifp,"%/f",&v2[iJ]j]);

loopj(numoutputs)
ficanf(ifp,"%/f',&.o2[i][j]);

hir0;
pntr[0][0J = 0;
count = 1;

"rtf"Examining sequence starting positionsWn);
lpi(numvectors-I) /* find out where sequences start ~
if(o2[i+1][0] != 1. &A o2[illO] - 1.){

pntr[count][0] = i+1;
/* printf("*/d V/od\n ",pntr~count] (0], count); *
count++;
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Count 0;,
prntWRandomaizing sequencesWn);
loopi(max) ( /0 Pick one of sequences in Mie randomly/

for(;.*)
choice - (intXmax~ranl(&idumi));
if~choic&--4O&Achoi~ce<max)

break-

pick[choice][O] = I.; /* Identify sequence as picked *
range -pntr[choice+l][O]-pntrf choice] [0];

printf ("%/d %ed 0/d %dof", incrchoice, pntr[choice] [0], range);

incr44;

/0 Loop from beginning of this sequence to next/
loopj(range)

loopk(nuininputs)
v~count][k] -v2jlpntchoice)[0]+1j][k];

loopk(hnumoutputs)
o[count][k] - o2[pntrchoice][0]±+jJ[k];

count++-i;

fcose(ifp);
File_workO;

ROUTINE NAME: Fourier inputO
DESCRIPTION: Reads in sequences of 28 Fourier amplitude coefficients and converts
them to network input format.
INPUTS: none
FUNCTIONS CALLED: Fileý_workO
CALLED BY: Sequenceo
LAST UPDATED: 7 Jan 94 BY: Jeffrey S. Dean

void Fourier _inputO
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mnt Startk categ, t;
PWIet~\What is the name of the file? :");
skipjine;
incanf(%s, datafile);

rIntf"\~ ich category does this belong to? :)

"%da "W, &:aeg);

"rui"Reading Oles... \n",dataflle);
ijp-fopen(datafile,"r");

Start -14;
t -0;
loopi(4)

loopj(50){
loopkStart){

loopl(28)
fscanfAMp,"%/f",&vRt [1]);

loopl(4)
oflt] = 0.;

Oct] lcateg]= .

loopk(4){
loopl(28)

V[tj[a]J 0.;
loopl(4)

oftlulh=O0.;
0[t][0] I .;

Start += 2;

num vectors= t;
numinputs = 28;
numoutputs =4;
fcloseifp);
File, workO;

ROUTIN NAME: Scorie .seqo
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DeCR 1~o*sm.. network on ccray in ddtennning sequence category, based o
netwwoek remp a a on Iau ten points eah sequence
NhPUTS: no
FUNCTIONS CALLED: File worko
CALLED BY: Soquenceo
LAST UPDATIED: 7 Jan 94 BY: Jeffrey S. Dewn

void Scovreseqo

int check[lOJ, index, count, max, total[lO], good[lO], nuni _sequence;
int num,.seq;
float score;
ifpfropen("sequence.dat",er);
fs~canfifp,"%d *Ad %Vd",&nurninputs,&numkoutputs,&num -vectors);

pritf(Thi fie has 4M inputs, Yod outputs, "mnum,_nputsXnumL-pututs);
pit(and O/o vectors.\n",numk_vectors);

"pitrloading data file ... \n");
loopi(num-vectors) {

fimanfifp."/f*',&v[i1[OJ);

if(v~illOJ>911v[i][O]<O) printf("Out of bounds. line 0/"dn,i);
if(o[iJ[O])9jlo[iJ[O]<O) printf("Out of bounds, line O/odfn",);

fclose(ifp);
p In"nData file loaded. Wn);

mnum sequence =0;
lo0oinum4-vectors) I

if(oli][O] O &&oli+l][OJ!=0)
numAsequence++;

"ini"Thene are %/d sequences\n",num, sequence);
looi0l) (

good~i] =0;
total[iJ =0;

num _seq = 0;
"int"Starting to process sequencesfn");

i =0;
loopk(nurn sequence)

while(o[iJ[0] - 0.) /* Move to next sequence1

loopj(10) /* Zero count of categories for sequence/
checkfj] = 0;
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countm -
whilh(ofiJ(0J I- 0&&iwnumvectors) ( 1* While in a sequence

if(COUnt> 1)
check[(int~v[iJ[0J] +- 1; /* Tally outputs of net

i++; /*Increment to next position
count++-; /* Count length of sequence 1

numj~eq++;
max -l-;
loopj(10) /* find out which output most often/

if(check4]>max) (1/ chosen. by net for this sequence1
max - chck~j];
findex = j; /* Index is most chosen category ~

if(index -o[i-l )[0]) 1* If index is right answer1
uood[mdex]-1; 1* Show that category was scored .

t0ta[(int)o[i-1JO]J++; /*correctly. Inc. count of category *

count =0;
loopi( 10)

count +- goodfi];
score = 100*(float) count/(float) num ýsequence;
printfK'The net scored %/fV0/ of the sequences correctly~nrn", score);
loopi000)

if(totali] > 0){
score = IlOO*(float) good[iy(float) total[iJ;
prnFW" Category 5d was scored %P%% correctly~n", i, score);

exit(0);
return;

#undef MC3
#undef IAl
#undeflICI

#undef RMl

#undef MA2

wafIC2
#undef RM2
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A^iefIA3

Fie containing function declarations and vaiable

dclwaratios fbr the main program called create.c.

date: 11IJun 93

written by: Jeffrey S. Dean

hit *vectorO;
float **mgtrixO;
hit **hmstrixQ;

FILE *ifj, *ofp;
char st4[SO], Mataflle[20], *outfile[20J;

int numinputs, nurnoutputs, numnodes, numvectors nimL_vectrs td, TD;
int nuM_inputs, numýouotpuscount;
hit *pick,
floa *vI **0;
void Buttemrwo&O;
void Fileý_wowkQ;
void Appendo,
void Time _delayO;
void Categorieso;
void CuIJO,
void Normo;
void ViewO;
void RandomO;
void Cosino;
void StepO;
void Save();
void Jmpulseo,
void ClearO;
void MergeO;-
void Statuso;
void Out_typeso;
VOid One-cato;
void PhonerneO,
void CompreO,-
void DdffrentiateO;
void XorO;
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Oiuclikl <a1diob>

FFT.C - Fasd Fourier Transform program

#define loopi(A) for(i0;k(<A);i+4)
#def ine Ioopi(A) fo~r~mj<(--A)14+)
#dsfine loopij(AB) for (i-0; i<(A); i++)\
for Q-0; j<(B); j++);

#deflne, SQ(A) (A*A)
#define Pl 3.1415926

nm~aguagv)
int arc;
charargvlJ;

FILE Ofin, *fout;
float o%utput,*input,*trumc-out;
float norm;
float *vectorO;
/*void doffipO;*/
void fournO;

/*void *freq_vectolO;*/
chat name[30J;
int ij, nn[lJ, ndim, isign, new _order, order, image size;
ilfarg!= 3) (

printf(!!!The command line should be!!!:\n~n ifittrunc infillcoutfile nWn");
exit(O);

printt("I 11 Input the input images SIZE and ORDER:")
, 1tnf"%dcPd",&imagcqsize,&order);

/******************set up dynamic allocation**************~*/

input - 11O2iaeieimgsz~);
output - vwtor(Ojimagcsic* imagesize- 1);
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,*..**.*********Set Up Files

if ((fin'mfopeWarv[l],"r)) - NUL)
puintfq"I can't open the input file");

if ((fbut-bpenargv[2],"ww)) - NULL)(
prznf(I cant open the outpu file");
exit(-);

loopi(2*umage size*imaVe sze-I) /* initalize array to zero*/
inputliI 0.0;

loopi(image size~image size-i) /*read data in the fourn format/
ficangfifn, "%/ftn", &input[i*2]); /* see numerical recipes in c1

fclose(fin); /close input file */

/"*** Initialization parameters for iFTT

nn[O]=iiage .size; P size of input lAW fourno
nn[ 1]=image _size;

ndim~l; P*one dim FFT .
/*ndm=2;/*two dimFFl,

iSign-=1; /* FF1 */

foumninput-1 Inn-I ndim~isign);

~~ Find Fourier Magnitude

j-0;
for(i0O;i(2*image size'image size-i); i+=2) f

outpufj=sqrt((double)SQ(input~i])+(double)SQ(input[i+I ]));
j++;
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norm-output(O]; /* d~c component used for nomlzatio n

printf("%4.Of~n",norm);

/*** normalize and write output of FF~inargv[2] file ~

loopi~imaesze~imagefize)(

oiputi~foutputKI./n",orm u~i)

Mbose(fout);

/Pdofiip(output,iinage-size); */ /* converts fourn format to human forma
t */

/*prinff@o4.4Bn",output[8 128j);*/

/**** truncate *********************/

1* truncate takes ff(output) of size(image size) and truncates the FFT to ~
P order specified plus d.c. the array is returned in truncý_out, the argv[2]*/
1* is used as a header when truncate writes the output in nctffi~dat *

1*ifforder I= O)(
now-order = 2*order+l;
trunc-out = vector(O~image -size*imaeý-size-I);
truncate(output,image size,ordcr,trunc _out, argv[2]);
frcee vector(truncý_out,O~imagcsizeiage~size-l);

freeý_veccrinp,O,2*image _size~imageý_size- I);
free_vectoI(output,O,imagecsize*imagcsize-l);
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NAME: fournc
DESCRIPTON: Numerical Recipies multi dimensional FFT routine.
Requires a complex column vector as follows:
Ireal a(1y/
/Complexa80 y
/real a(2)/
/complex a(2)/
/etc/

SUBROUTINES CALLED:
WRrrrEN BY: Numerical Recipies in C

#hiclude <matth>

#define SWAP(a~b) tempr=(a);(a)=(b);(b)=tempr

void foumn(dataiinnndim~isign)
float data[];
hit nn[],ndim~isign;

intij,3irvirvili2i3ip~f2
hit ibit~idim~kl k2,nnprev~nrem~ntot;
float tempi~tenlpr,
double theta~wi~wpiwpr~wrwtemp;

nUth--1;
for (idim~l;idim<-ndim;idim++)

ntot *= nn~idimJ;
nprev--l;
for (idim~ndim;idim>=l ;idim-)f

n-nn[idim];
ne=ntot/(n~nprev);

ipl~nprev«< 1;
ip2=ipl *f;
ip3-ip2*nrem;
i2rev=1I;
for (i2l1;i2<=ip2;i2+-ipl){

if (i2 <i2rey) {
for (il--i2;il<--i2+ip1-2;il+=2)(

for (i3=i1;i3<=ip3;i3+=ip2)(
i3rev--Urev+i3-2;
SWAP(data[i3J,data[i3revJ);
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SWAP(dsat~i3+l1j,dataji3rev+1 ]);

ibit'ip2»> 1;
while (ibit >= ip I && i2rev > ibit){

i2rev - ibit;
ibit »> 1;

i2rev += ibit,

ifp 1-ipi;
while (ifpI < ip2){

ifp2=ifpl «<1;
theta=isign6.283 1853071 7959/(if~p2/ip1);
wtewpxasin(O.5*th~ta);
wpr = -2.0Owtcmp~wtemp;
wpi-sin(tbeta);
wrl1.0;
wiO0.0;
for (i3=l;i3<--fpl;i3+=ipl)

for (il~i3;il<=i3+ipl-2;il+=2){
for (i2wi1;i2<=ip3;i2+=if~p2){

kl~i2;
k2=k1+ifpl;
tempr-wr~dataPk]-wi*datatk2+ 1];
tempi--wr*datapk+1]+wi*data[k2];
d~ata2]=dftaIkl I]-tempr.
data~k2+1 J=data[kl +1 ]-tempi;
data[kl] += tempr;
datafkl+1] +=tempi;

wr=(WteMPwr"%)*wpr-wi*wpi+wr:,
wi=Wi*vtpr+wtemp*wpi+wi;

ifpl-ifp2;

nprev *=n

#undef SWAP
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Appendix D. Payton Auditory Model

One of the functions that is always cited as a potential use for recurrent neural

networks is speech analysis. Because of the grammatical rules inherent in language,

speech naturally has a sequential structure that can be learned by a recurrent network,

which can learn temporal probabilities as well as the spatial (frequency) probabilities

calculated by a standard backprop net. The speech data used to train the net can be

generated in several ways. One standard method is to Fast Fourier Transform (FFT) the

sampled and digitfizd speech, and use the Fourier coefficients as the training data for the

network. Variations on this approach include using Cepstral, Discrete Cosine Transform

(DCT) or wavelet coefficients. All of these approaches are based on transform algorithms

that convert the temporal domain information into a frequency domain. Each of these

approaches have their advantages and disadvantages.

In the same way that neural network designs are inspired by how neurons work in

living systems, many researchers have been trying to emulate the way in which the hearing

systems in animals process sound energy into information encoded in the auditory nerves.

The acoustical mechanics of the ear allow us to pick out one voice among many, to make

sense out of the series of vowels and consonants we hear with relatively high reliability.

The ear works in a very non-linear way to pick out the formants, or peak frequency points,

which are critical in understanding speech.

The Payton(8) auditory model is one of many algorithms(5)(8) that model the way

in which our auditory systems convert sound into neural impulses. This model produces

20 outputs, that correspond to the predicted activity of 20 cochlear neurons that carry

sound information to the brain in a living mammal.
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Figure 31: A plot of voice data preprocesed by the Payton algorithm. Note the peaks in
the data representing the speech formants.
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