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Dealing with Uncertainty about Item Parameters:

Expected Response Functions

Abstract

It is a common practice in item response theory (IRT) to treat estimates of

item parameters, say b, as if they were the known, true quantities, B.

However, ignoring the uncertainty associated with item parameters can lead

to biases and over-confidence in subsequent inferences such as ability

estimation, especially when item-calibration samples are small. This paper

demonstrates how to incorporate uncertainty about B with Lewis's
"expected response functions" (ERFs), pointwise expected values of item

response conditional on examinee proficiency averaged over posterior

distributions of item parameters. This paper presents ERFs, outlines

procedures for computing them and using them in practical work, and gives

an illustration with data from the National Assessment of Educational

Progress. Advantages of approximating ERFs response curves with

members of familiar parametric families of IRT curves are noted.

Key words: Bayesian estimation, expected response functions, item

response theory, multiple imputation, pseudolikelihood

estimation



Introduction

Item response theory (IRT) models posit that an examinee's chances of correctly
answering test items depend on an unobservable parameter for that examinee (0) and for

each of the items (,3j, for j=l,. .. ,n). It is common to estimate the item parameters from the

response of a "calibration sample" of examinees, then treat the estimates A = (A,...,ij 8) as

if they were true parameter values in subsequent inferences such as estimating examinees'

proficiency parameters. Tsutakawa and Johnson (1990) found that ignoring uncertainty

about 3-parameter logistic (3PL) item parameters from a calibration sample of 400 led to

biased posterior means for Os and understatement of posterior standard deviations by more

than 40-percent on the average.

Approaches that take uncertainty about B into account include a second-order

Taylor series expansion with an asymptotic normal approximation for p(B) (Tsutakawa &

Soltys, 1988; Tsutakawa & Johnson, 1990), numerical integration over a normal

approximation (Jones, Wainer, & Kaplan, 1984), multiple imputation (Mislevy & Yan,
1991), and Gibbs sampling (Albert, 1992). This paper presents approximations based on
Lewis's (1985) notion of "expected response functions" (ERFs), pointwise expected
values of item response conditional on 0 as averaged over posterior distributions of item

parameters. (See Mislevy, Sheehan, & Wingersky, 1993, on the use of ERFs in IRT test

equating when information about item parameters is limited.)

The following section describes the problem and reviews previous solutions. ERFs

and computing approximations are then given. Their use is illustrated with data from the

National Assessment of Educational Progress.

Background and Notation

Item Response Theory

This paper confines discusssion to scalar parametric IRT models for dichotomous

(right/wrong) test items, but the ideas can be extended to more complex models. Define
Fj(O), the item response function for Itemrj, as follows:

F (O) = Prob(X, = 110,3 ), (1)
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where Xj is the response to Item j, I for right and 0 for wrong, 0 is the examinee

proficiency parameter, and P.is the (possibly vector-valued) parameter for Itemj. For

example, under the 3-parameter logistic (3PL) model,

Fj (0) = cj+ (I- c, )'1. 7aj (0- b,)],

where TF is the logistic distribution 'P(z)=[l+exp(-z)]-1 and f..sabjc) (Lord, 1980).
The density p(xI0,P,) is thus F,(O) if x=l and I-F,(O) if xj-0. Under the usual IRT

assumption of conditional independence, the probability of a vector of responses
x=(xl,...,xn) to n items is the product over items of terms based on (1):

p(xI0, B) = (j Ol~x i6i)
j=.1 (2)

= fIFj(O)"'[1- Fj(O)]f-.
j=l

Equation 2 is the basis for estimating an examinee's 0. Suppose x and B were

known. For maximum likelihood estimation, one finds the value of 0 that maximizes (2),

namely, the MLE 0. The asymptotic variance of the MLE is the inverse of the Fisher

information function, which is a sum of contributions over items:

S 2

Var- 01(0,B) - [7F(e (3
SF,(0)[i- F,( 0)]

For Bayesian inference, if p(q) represents prior knowledge about an examinee's

proficiency before x is observed, then knowledge posterior to the observation is obtained

by Bayes theorem as

p(OixB) - p(xl 0, B) p(O) (4)Tp(xlG, B) p(O) o(0

The posterior mean and variance are, respectively,

E(0lx,B) = J0 p(Olx,B) d0 (5)

and
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Var(Olx,B) = eO p(Olx,B) ae-[f0 p(61xB) aef. (6)

Uncertainty About Item Parameters

Equations 2 through 6 are written as conditional on B. It is common to evaluate
such expressions using a point estimate of B, or B, as obtained for example from the
responses Xcalib = (x1 ,.. .,x ) of a calibration sample of N examinees. For example, the

Bayes modal estimate of B when p(&) is known maximizes the posterior distribution for B,

p(BIX.,,,)-- p(X.., lB) p(B) r• ']p(x~i1,B)p(O)d~p(B), (7)
i=l

where p(B) expresses prior knowledge about B (e.g., Mislevy, 1986, Tsutakawa,
1984)-perhaps uninformative, perhaps based on items' content or skill requirements,
expert judgments, or experience with similar items (Mislevy, Sheehan, & Wingersky,
1993). In large samples, the posterior distribution can be approximated by a multivariate
normal distribution with mean B and variance

,~Jý-[ IAM'J (8)

Values B and Z. for an approximation could be obtained, for example, as maximum
likelihood or Bayesian modal estimates and asymptotic covariance matrix from Mislevy &
Bock's (1983) BILOG program, as illustrated in the NAEP example below. In the sequel,
we simply use p(B) to stand for knowledge about B at a given point in time, regardless of
its source. Note that p(B) need not incorporate independence over items.

As Tsutakawa et al. demonstrate, ignoring the uncertainty about B (by treating B as
B) can lead to biases and understated uncertainties in subsequent inferences about Os.
Incorporating this kind of uncertainty into analyses is straightforward from a Bayesian
perspective: Marginalize with respect to partially-known quantities. For example, the so-
called "marginal likelihood function" takes uncertainty about B into account in the
likelihood function by integrating (2) with respect to p(B):
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p(x 0) = E[p(x013)]

= Jp(xI0, B) p(B) B

- f1•p(x1 ,ie03)p(B)d (9)
j-I

f=f J'4Fj(0)-TJ [1- Fj(0]- p(B) dB,

j==

effectively the average of (2) over all possible values of B, each weighted by its probability

given the information from the calibration sample. More generally, if G(B) is any

expression involving item parameters, then

EO[G(B)] f G(B)p(B)dB. (10)

Alternative Approaches

Closed-form solutions of (10) are not generally forthcoming in IRT. Before

introducing expected response functions, we briefly review three alternatives: a second-

order analytic approximation, multiple imputation, and Gibbs sampling. The discussion of

multiple imputation is more detailed, because the ERF approximation shares intermediary

steps with multiple imputation and the NAEP example compares numerical results from the

two approaches.

Tsutakawa's second-order expansion uses an approximation due to Lindley (1980):

Ea[G(B)] =r G(B)+ +XG,.,-,, (11)
ra

where Grs is the r,sth element of d2[G(B)]/dB3B' and rs is the rsth element of -B, with

r and s indexing elements of B. When calculating an examinee's posterior mean (5), for

example, G(B) is jf p(6lx, B) dO. Because such approximations would be exact if p(B)

were MVN(B,,IB), their performance in (10) depends on the accuracy of the asymptotic

normal approximation to p(B)-which is often satisfactory in practice since even the usual

first-order approximation G( B ) suffices when the calibration sample is large and p(BIX)

is concentrated around hB. An impediment to using (11) in practical work is that

derivatives must be calculated for each function G to which it is applied.
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Albert (1992) employed Gibbs &=bg (Gelfand & Smith, 1990) to obtain a

discrete approximation to the joint posterior distribution of B and the vector of examinee
abilities e under the 2-parameter normal (2PN) IRT model. From vectors B(t) and e(t)

that approximate B and e, one obtains a subsequent approximation by drawing B(t+l)

from p(BI -= e('),X), then drawinge (t+1) from p(elB = B('+'),X). From initial

approximations, repeated cycles achieve (under regularity conditions) a stochastic
convergence such that a (eB) draw obtained in this manner is essentially a draw from the
correct posterior p(e,B)X). Widely spaced draws from a sequence which has attained

convergence (or, better still, from separate sequences initiated from different starting
points; see Gelman & Rubin, 1992) are essentially independent draws from p(e, BIX).

Evaluating any function G(6,B) of the parameters with respect to each of these draws

constitutes a discrete approximation of its posterior distribution. (This last idea will be

illustrated below with multiple imputation.) In particular, the discrete approximation of

p(B) can serve as a basis for calculating expected response functions. Gibbs sampling is
much more computationally intensive than the other approximations described in this paper.

Multiple imputation, introduced by Rubin (1987) to handle missing responses in

sample surveys, creates pseudo datasets with draws from the posterior distributions of

missing data, and combines the resuls of standard analyses of pseudo data sets so as to

incorporate the uncertainty that missingness engenders. B plays the role of missing data in

the problem of imperfect knowledge about item parameters (Mislevy & Yan, 1991).
Suppose that if B were known, we could calculate the posterior mean and variance of
G(B), say, G(B) and V(B). An example again would be the posterior mean and variance

for an examinee's 0 via (5) and (6). The steps for multiple-imputation approximations of

the posterior mean and variance that take uncertainty about B into account, say. G and V,

are outlined below. The reader is referred to Rubin (1987) for theoretical justification.

1. Obtain the posterior distribution for B, p(B) (e.g., the multivariate normal
approximation MVN(B,EB) used in the following NAEP example).

2. Draw K item parameter vectors from p(B), say Bk for k=-l,...,K.

3. For each k, calculate the posterior mean and variance conditional on B=Bk, denoted
G(B,) and V(Bk).

4. The posterior mean for G, accounting for uncertainty about B, is approximated by

the average of the K conditional posterior means:



Expected response functions

Page 6

' Z (12)

5. The posterior variance for G, accounting for uncertainty about B, is approximated

by the sum of two terms:

j (13)

where the first,

approximates the variance that would exist even if B were known with certainty,

and the second,

(K -1)--Y]

quantifies additional uncertainty due to not knowing B.

Example: Data from NAEP

We shall use a running example with data from the National Assessment of

Educational Progress (NAEP): responses to 19 items from 100 8- and 13-year old students

who participated in the 1986 and 1988 mathematics trend assessment. Table 1 gives

descriptive statistics and Bayesian posterior modal estimates h = (,b,•) obtained with

Mislevy and Bock's (1983) BILOG computer program. Table 2 gives the accompanying

approximation of the posterior covariance matrix I.. Covariances among the three

parameters for the same item can be quite high, but relationships among parameters for

different items are uniformly much lower.

[[Tables 1 & 2 about here]]

A practical problem in applying multiple imputations is to determine the value of K

that provides the desired accuracy, which may differ with the target G. In the NAEP

example, Mislevy and Yan (1991) calculated examinees' posterior means and variances

with K=10, 100, and 1000. K=1O proved stable for estimating posterior means, but not

for posterior variances, which were stable with K=l00. Results for K=100 and K=1000
were indistinguishable. We use the K=100 results below as a baseline comparison for
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corresponding estimates calculated with ERFs. The dotted lines in Figure 1 illustrate the

item response functions for four items from the NAEP example that correspond to 100

draws of B. (The solid and dashed lines will be discussed below). These graphs depict

the nature and magnitude of uncertainty about item response functions, but not the mild co-

relationship among the curves induced by the nonzero inter-item covariances.

[[Figure 1 about here]]

Expected Response Functions

Definition

In dichotomous IRT models, the expected value of a correct response to Itemj

given 0 and B is Fj(6)=P(xj=liO9,j). If 13j is only partially known, through p(B), the

probability of a correct response conditional on 0 but marginal with respect to B can be

written as
F (e)-a E, [F(0)]

=f P(Xj = 116,fpj)p(B) B (14)

= P(Xj = 11Ifpj)p(I,) df3j,

an "expected response function" that gives the probability of correct response conditional
on 0 taking into account uncertainty about B (Lewis, 1985).

Even though F; is the expected value of a correct response at each value of 6, it is

not the same as Fj(6) evaluated with the expected value of I3j. This can be seen in Figure

1, which shows expected response functions (dashed lines) for the four items from the

NAEP example, along with the curves that correspond to Fj(0) as evaluated with the point

estimate I3j (solid lines). In particular, the ERF is generally flatter.

The shape of F* depends on the shape of Fj and the character of p(flj). In general,

F* and Fj will not be of the same functional form. Lewis (1985) shows that if Fj were

2PN and p(j)=-'p(ajbj) were bivariate normal, then F* would be a 2-parameter ogive with

a Student's t shape. Its location parameter, b, would have the same value as the Bayes

mean estimate for bj, or S,, but its slope parameter, a, would be attenuated from the
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Bayes mean estimate for aj. A simpler result is obtained if aj is known with certainty a
priori. If p(bj) is N(b,,aj), then F; is also 2PN, with b,*fb and

a, = (a;+ )-.

Approximation with ERFs

ERFs serve as a potential basis for taking uncertainty about B into account, by
replacing occurrences of Fjs with F; s in functions of interest G(B). As examples,

consider the following:

Likelihood estimation of 0 proceeds by maximizing an ERF-based analogue of the

likelihood, namely

p'(xI 9) I-IF;O()-j [I - F;(O)]'-'.
j=1 (15)

One way to justify maximizing p" (xl 0) is to view it as an approximation of the marginal

likelihood:

p(xl 0)= E.[p(xl 0,B)]

= ft HFj(o)z,[1,- •,Fj(0)1'-z' p(B) dB
j=1

- ... -- -L .J--JF, )"[l-Fj(°)] -A d(
j-1

f J.. fJft F,(0)-v [I1- F, (0)fIzj p(Pj) Ofi
j-I

jul

AI

=. .F.('IF, [I - -F,(0)]
jol

p*(xl9).

The step in which the approximation occurs replaces each p(PjIP,_,..,) with

p(f6,). Thus, if the information about items is independent-that is, p(B)=H p(fij)-the

result is exact. Likelihood and Bayesian inferences about 0 that take uncertainty about B
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into account exhibit in this case the same conditional independence form as when item

parameters are known. In particular, applying standard procedures for known item
response functions to obtain MLEs and asymptotic variances (3), but with F; s in place of

F•s, gives the correct results. Independent posteriors for items can be assured or closely

approximated by coupling special item-calibration sampling designs and test construction

designs; the idea is for the items appearing in a test, the sets of examinees in the calibration

sample responding to each of them were completely or nearly disjoint. For example,

randomly equivalent calibration samples of examinees can be administered disjoint blocks

of items, and operational test forms can be built with items from different blocks.

A second justification applies even if p(B) is not independent over items. Although

the dependencies among items are ignored, (15) is an example of what Arnold and Strauss
(1991) call a "pseudo-likelihood" (see Appendix); under regularity conditions on the F* s,

its maximum is a consistent estimator of 0. Thus likelihood point estimates of 0 based on

(15) tend to have the correct central tendency. Applying the standard MLE variance
formula (3) with F; s tends to give too optimistic of an impression of the uncertainty about

&s, however. But if the dependencies among items are small-and they tend toward zero

in long tests (Mislevy & Sheehan, 1989)-the degree to which this value understates

uncertainty will also be small.

Bayesian inference about 6 can employ the above approximation p*(xl0) for

likelihoods. The posterior distribution for 0 is thus approximated as

p*(Olx)= p*(XI 0) p(O)
fp*(xIO)p(O)do

and the posterior mean and variance are approximated as

E(Olx) f Jf0 p(Oix,B) d96dB

f p(OIX) do(16)

and

Var(O1x) =f Jo 2 p(Olx,B) do- [fJ0 p(OlxB) do] 2dB (7

f 02 p* (O1 X) do [f * (61 p X) 3(17)
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Again the approximations are exact if p(B) is independent over items, and indicators of

uncertainty tend to be optimistic to the extent that dependencies among items are
nonnegligible. Some numerical results on this point appear in the NAEP example.

The test characteristic function is the expected number-correct score on a test of n
items as a function of 0. Mislevy, Sheehan, & Wingersky (1993) obtained test
characteristic functions with ERFs, in order to equate tests with sparse item-calibration
data. IRT true-score equating determines number-right (or formula) scores on different
tests that correspond to the same values of 9 (Lord, 1980). The expected number-right
score on Test A for an examinee with proficiency 0 is obtained as

TA(O)= FPXp~=l10,/3)= XFj(6), (18)
jeTA jGTA

where TA is the set of indices of items that appear in Test A. The expected score on Test
B, %B(0), is defined analogously. A score on Test A and a score on Test B are "true-score

equated" if they are the respective expected scores of the same value of 0.

When knowledge about B is imperfect, one must equate scores that are expectations
conditional on 0 but marginal with respect to p(B), rather than expected scores conditional
on 0 and B. The expected true score on Test A given 0 under these circumstances is thus

r(0)= E [A(0)]= Xfp(x = 110,8j)p(3j) i3pj= X *F(0). (19)
jeTA jeTA

This is simply the sum of the probabilities of correct response item by item, whether or not
p(B) is independent over items. A score on Test A and a score on Test B are "expected
true-score equated" if they are the respective expected scores of the same value of 0, as
defined by (19). Because only expected scores are needed for this equating method, the
expected test characteristic curves obtained in (19) are correct whether or not the posteriors
for individual items are independent.

Computing Approximations

As noted above, closed-form solutions for F* are not generally available. This

section describes how to use multiple-imputations or Gibbs-sampler discrete estimates of
p(I3j) to estimate F; point by point across a grid of 0 values for each item. Because only

p(fJj) is involved for Item j, not the posteriors for other items, this process can be carried
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out independently over items. Subsequent inferences about 0 can be drawn using these

points in a discrete approximation of the 0 distribution and the response curve, or a smooth

curve can be fit to the probabilities thus obtained.

There are operational advantages to using the closest curve from a familiar family to

approximate F;---for example, the closest 3PL curve in applications based on the 3PL

model, or the closest 2PL model in applications based on the 1PL or 2PL. Let F7 denote

such an approximation. This expedient makes it possible to use standard off-the-shelf

software designed for popular parametric IRT models to estimate examinee scores,
construct tests, or draw equating lines. If additional information about item parameters

becomes available over time, as might occur as examinee responses are acquired over time

in operational testing, it can be incorporated into the system by merely updating item

parameter values under the same model. If the IRT model were correct and the response

function were stable over time, the sequence of expected response curves would converge

toward the closest member of the family to the true curve-to the true curve itself, if it were

a member of the family.

We now describe the operational procedures we have used for applied work with

ERFs. The expected response function for a particular item, F;, is approxa., ted as

follows:

1. Obtain an estimate of the posterior distribution p(13i). As noted above, this is

usually based on a calibration sample of examinee responses-say, MVN (pI, z;)

with parameter estimates from BILOG- but it may also be based partly or wholly

on collateral information about items such as content specifications and cognitive

processing requirements (Mislevy, Sheehan, & Wingersky, 1993).

2. Specify a grid of M theta values across the ability range of interest. Let 0. denote

the mth grid point.

3. Draw K item parameter vectors from p(Pj). Let,_8j") be the kth such draw.

4. For each of the K sets of item parameters, determine Pr'), the probability of a

correct response to Itemj at 0,., where P_ý2 = p(x, =ii0=0,,i, =0.4 k).

(X"
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5. Compute the expectation at each point e. by averaging the probabilities obtained in

Step 4:

F*(o.) -K-

We refer to the collection of points (e., Fj(0.)): m=f1,...,M) as the
"nonpara•etric" expected response function because it does not assume any particular

parametric form.

For applied work, it may be convenient to approximate the nonparametric ERF with
a continuous approximation F7, say a spline or a close-fitting 2PL or 3PL curve. The usr

of a 3PL will be illustrated below. Maximum likelihood estimates for the 3PL item

parameters f" = (a,-,b,-,c7-) that best approximate F; are found by maximizing

F1{-FF('I0 37 [j (6.) (20)

over the M-point theta grid, where Wm is a weight that specifies the relative importance of
fitting F** at 6. For example, weights may be selected to simulate a rectangular

distribution of examinees or a normal distribution of examinees. The maximum may be

obtained iteratively by using Newton's method to obtain successive corrections to the
parameter estimates. We refer to the solution as a "fitted" expected response function.

Example (continued)

The BILOG calibration of the 19 previously-described NAEP items with 100

examinees provided the posterior mode estimates (ai, 6,, ,) and the corresponding larg

sample approximation of the covariance matrix discussed above. Due to range restrictions

on the a's and c's, we worked with a multivariate normal (MVN) approximation for the
posterior of 18, = (log(aj),bj,logit(cj)), where logit(cj)=log[cj/(l-cj)J. p(fi,) was thus

approximated as MVN with mean vector ffi (log(aj),bj,logit(•j)) and covariance matrix
1-6, obtained through the delta method from the covariance matrix for the untsformed

parameters. Nonparametric and fitted 3PL ERFs were calculated for each itm. Figure 2

presents results for the four items which previously appeared in Figure 1. The
nonparametric ERFs were obtained using 100 draws from P(Pj) and a grid of 31 evenly-

spaced e values ranging from -3 to +3 in steps of .2. The fitted curves employed a
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standard normal weighting function over the same range. The item response functions that

correspond to Fj(O) evaluated with the point estimate ij are also plotted for comparison.

These curves are noticeably steeper than the two expected response curves. Thus, one

effect of ignoring uncertainty about item parameters is a tendency to inflate belief about the

discriminating power of an item.

[[Figure 2 about here]]

For most of the 19 items, the 3PL approximation captured the nonparametric
approximation quite well. The only discrepancies encountered were for items with fairly

high a's, such as Item 19. For these highly discriminating items, the fitted curves tended to

be slightly flatter than the nonparametric curves. The discrepancies were slightly more

pronounced when the ERFs were recalculated with a rectangular weighting function,
indicating that they are related to the inability of the 3PL form to capture the pattern of

curvature in the tails of the theta range.

Figure 3 presents a comparison of results regarding Bayesian inference about 0 for

a sample of 100 students. The plots show posterior means and associated posterior

standard deviations (PSDs) calculated using point estimates of the item parameters,
nonparametric ERFs, and fitted ERFs. In each case, the multiple imputation solution

(Equations 12 and 13) is employed as a standard of evaluation, as it is nonparametric and

accounts for dependencies among the parameters of different items. As can be seen, the
various methods for handling uncertainty about , have had negligible effect on the

calculation of posterior means. However, the effect on the associated PSDs is quite

pronounced. As would be expected, the practice of using point estimates of item parameters

as if they were known true values seriously understates the uncertainty associated with
examinees' Os. This effect is less pronounced when ERFs are used. Table 3 presents

average PSDs calculated for the multiple imputation approach, the nonparametric and fitted
ERFs, and the point estimates. In this example, the PSD of a typical examinee's 0, when

calculated using point estimates of the item parameters, was understated by about 10%.
This can be attributed to ignoring uncertainty about B altogether. For the nonparametric

and fitted ERFs the understatement was only 3.6% and 3.9% respectively. This is

obtained by incorporating uncertainty about B item by item, but ignoring dependencies

across items. In terms of variance, about 60% of the typically-ignored variance was

accounted for in this example through the use of ERFs.



Expected response functons
Page 14

[[Figure 3 about here]]

[[Table 3 about here]]

Conclusion

As increasingly ambitious applications push item response theory closer to the

boundaries of its applicability, increasingly strenuous efforts are required to deal with

issues of uncertainty, both as to model fit and knowledge of parameters within the model.

This paper addresses a problem of the latter type, namely, dealing with uncertainty about

item parameters. Fortunately, statisticians' recent interest in numerical and Bayesian

approaches to such problems provide a variety of tools, each with their own strengths and

weaknesses to be matched with the purposes and characteristics of applications. Expected

response functions (ERFs) account for uncertainty that is usually ignored in a way that

allow us to employ familiar formulas for known item response functions-even to apply

the same formulas but with attenuated parameter estimates. This would be especially

convenient in item-banking and adaptive-testing applications, in which tests are assembled

from collections of pre-calibrated items. Uncertainty about item parameters (under the

assumed model!) would be implicit in the parameter estimates available at a given point in

time, no additional steps would be required at the point of calculating scores for individual

examinees, and improved knowledge about item parameters would merely require updating

a file of ERF parameters.
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Table 1

Statistics and Point Estimates of Item Parameters A

for 19 NAEP Mathematics Items

Item Correc r-bis a A

1 .78 .35 .39 -1.59 .20

2 .92 .63 .90 -1.98 .20

3 .78 .45 .55 -1.23 .19

4 .85 .45 .77 -1.45 .20

5 .79 .45 .63 -1.17 .20

6 .91 .47 .54 -2.60 .20

7 .65 .65 1.20 -.26 .17

8 .86 .64 .99 -1.37 .18

9 .72 .62 1.22 -.50 .19

10 .67 .61 1.27 -.26 .20

11 .48 .56 1.96 .53 .23

12 .77 .44 .60 -1.06 .20

13 .85 .59 .95 -1.30 .19

14 .51 .69 1.89 .20 .15

15 .55 .49 .86 .19 .18

16 .43 .41 .65 .81 .16

17 .30 .56 1.10 1.04 .12

18 .53 .44 2.59 .56 .30

19 .21 .63 3.03 1.09 .10
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Table 2

Variances and Covariances of Item Parameter Estimates
for 19 NAEP Mathematics Items

Item Var(a) Cov(ab) Var(b) Cov(ac) Cov(bc) Var(c)

1 .059 .233 1.212 .001 .027 .008

2 .435 .632 1.086 .003 .012 .008

3 .069 .141 .509 .002 .019 .008

4 .264 .320 .536 .004 .016 .008

5 .119 .174 .401 .004 .020 .008

6 .078 .325 1.673 .001 .017 .008

7 .300 .055 .073 .011 .010 .006

8 .208 .179 .251 .003 .011 .007

9 .259 .094 .108 .010 .012 .007

10 .339 .074 .077 .016 .012 .007

11 2.513 .056 .058 .053 .008 .006

12 .114 .181 .527 .004 .021 .008

13 .280 .261 .354 .004 .012 .007

14 1.519 .073 .041 .034 .007 .004

15 .203 .037 .132 .011 .015 .007

16 .118 -.043 .201 .009 .014 .006

17 .366 -.075 .104 .012 .005 .003

18 10.944 .232 .058 .129 .009 .008

19 11.626 -.210 .051 .042 .002 .002
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Table 3

Average Posterior Variances and Standard Deviations
for a Sample of 100 Examinees

Average Average
Posterior Posterior %

Estimation Method Variance S.D. Decrease

Multiple Imputation 0.2151 .4585 ---

Nonparametric ERF 0.1995 .4418 3.6

Fitted ERF 0.1977 .4406 3.9

Point Estimates 0.1743 .4113 10.3
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Figure Captions

Fizure 1. 100 Draws from Item Parameter Posterior Distributions for Four Items.

Figure 2. Item Response Functions for the Four Items.

Figure 3. Scatterplots of Posterior Means and Standard Deviations for 100 Examinees.
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Appendix A

Pseudolikelihood Estimation of 0 from Marginalized Likelihoods

The first section below paraphrases Arnold and Strauss's (1991; denoted AS
below) framework and results on pseudolikelihood estimation. The reader is referred to

AS for regularity conditions, proofs, and examples. The second section shows how this

framework accommodates likelihood estimation of 0 using the product of expected

response curves.

Pseudolikelihood Estimation

Let (X 1,....,XN) represent N fid n-dimensional observations with common joint

density f(x;O) where 9 is an element of a p-dimensional parameter domain 8. Denote by S

the set of all n-dimensional vectors consisting of O's and l's, with at least one 1. For a
particular s in S, the random vector Xi(s) contains the coordinates Xij of Xi for which

sj=l. For example, if Xi =(Xil, Xt2. Xi3) and s=(1,0,1), then XI(S)=(Xil, X13 ). The
density of XMs) will be denoted f, (x('); 0), although it may depend on only some of the

components of 9. Let 5 = [8,:s e S1 be a vector of 2n-l real numbers, not all zero,

corresponding to the elements of S. The pseudolikelihood PL(8,0) of the data is defined

by

PL(3,0)=rl EIf,(x); 0)]. (Al)
JsS I iN=1

Equivalently, in terms of logarithms,

N
log PL(6, 0) = •8,.log f 00(x'); 0).

$aS i=1

A pseudolikelihood(b) estimate of 0 is a value of 0 that maximizes (A1). Under

regularity conditions, (A 1) can be maximiz•d by solving the pseudolikelihood equations,
obtained by differentiating the log of the pseudolikelihood with respect to the elements of 0

and setting them to zero; that is,

dN d fJ(xi(,);oo 0=0 fork =,...,p. (A2)logP 0 IS =1 f,(xi');0)6'Uk $sS i=1
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If regularity conditions given in AS for f and the fs's are satisfied, then with
probability tending to 1 as N - - the pseudolikelihood equation (A2) has a root 60 such

that is - 00, the true parameter value; i.e., the pseudolikelihood estimator is

consistent. (The regularity conditions ensure, among other things, that the choice of 8does
not omit any elements of a multidimensional 9 from PL(3,6).) Moreover, the

pseudolikelihood estimator is asymptotically normal. AS give an expression for its large-
sample variance, which depends on the choice of 8 and is bounded from below by the

large-sample variance of the MLE. In the univariate case, any consistent sequence
.oN(X,,..., XN) ofroots of (A2) satisfies

fFN - N 0, 2 (A3)

where

.t.desdoo

and

J (O) = - e 8 - logf,(X(); e)S= °s d02

Application to Expected Response Curves

The above results can be applied to the estimation of examinee ability under an IRT

model. Let X=(X1, ... , Xn) represent a response vector from an examinee to n items,

governed by the IRT model F,(0) S P(Xj = 110,,0,) with= Ny

P(X = xl,B) rI[FFj(o)]zi [1- F (o)]'-
j/=1

Let knowledge about B be expressed as p(B). The marginalized likelihood function for
maximum likelihood estimation of 0 is

P(X = XI)= f(1i[rjF, (O)]Ix[1 - F (0)1'-x' Jp(B)dB.



Pseudolikelihood estimation

Page A-3

For pseudolikelihood estimation, define 8 as a selector for the subspace of S

consisting of vectors that isolate a single item response; i.e.,

{1 if jsj=l

otherwise

The pseudolikelihood PL(8,G) corresponding to one observed response vector (i.e., N=il)

is obtained by specializing (Al) as follows:

PL(8, 6) = j[f,(x(); 0)]

= 1P(x,;0)
j=1

= I7J[F; (6)]"[1- F;(e)]"-'.j
jul

where F;(0) is the expected response curve for Item j.

If knowledge about items is independent-ie., p(B)=l'p(fP)-then the asymptotic

variance of the pseudolikelihood estimate (A3) simplifies to the usual inverse of the sum
Fisher information over items, as calculated with expected response curves.

The AS consistency results imply the asymptotic equivalence of maximizing values

of the full marginal likelihood, which does take dependencies among parameters from
different items into account, and the product cf the expected response curves, which does
not, for large samples of response vectors for the same 0. Since we typically observe only

one response vector per examinee in practical work, small-sample behavior remains to be
examined.
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Program Docum taton

This appendix provides detailed documentation for two computer programs: EXPRESFN
and PLOTRF. The EXPRESFN program computes EXPected RESponse FuNctions, both
nonparametric and fitted, for a set of items, given a set of multivariate normal item parameter
posterior distributions specified in terms of a set of mean vectors and an associated set of
independent variance-covariance matrices. The PLOTIRF program provides plots of all
estimated curves.

The EXPRESFN Program

The EXPRESFN program assumes that item responses may be modeled using a 2PL or a
3PL IRT model. Both nonparanetric and fitted expected response functions are estimated for
all items. The procedures used to estimate the fitted expected response functions are very
similar to the procedures employed in LOGIST. The program also computes EAP ability
estimates and standard errors for a set of examinees using the nonparametric and fitted
expected response functions as well as the point estimates of the item parameter means.
I The program has the following options:

1. The user may specify either a 2PL or a 3PL model.

2. The input point estimates of the item parameter means and variance-covariance

matrices may be specified on the (ab,c) scale or on the transformed (log(a),b,logit(c)) scale.

3. The range of the 0 grid and the total number of grid points may be specified.

4. In computing the fitted expected response function, the weighting distribution may be
either normal or rectangular and the sum of the weights, ie. the total number of pseudo-
examinees, may be specified.

5. In estimating the item parameters for the fitted expected response functions, the
iterative procedure requires initial item parameter estimates. The program supplies default
values for these initial estimates. However, the user may set all initial a's to a given value,
all initial c's to a specified value or may supply the initial values.

6. To control the problem of estimating c's when the fitted expected response function
becomes asymptotic below the minimum ability of interest, one may fix the c's at a common
c for items where the estimated b-2/a is less than some criterion, fix all c's at a common c,
put a beta prior on the c's and estimate the mean of the prior, or put a beta prior on the c's
fixing the mean at a value specified by the user. The common c may be fixed or estimated.

7. Abilities may be estimated for an existing set of item responses or for a set of
responses generated by the program for a random sample of examinees drawn from either a
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normal or rectangular disuribution. The generated data can be used to assess the differences
between the abilities estimated using the three item response functions.

Non-arametric &ggectd Resvonse Function

The nonpaaeic expected response function estimation procedure requires point
estimates of the item parameters and associated variane-covariance matrices expressed on a
transformed scale. If the input data has not already been transformed, then the following
trnformations will be applied:

'= log(•

e= log( c(1V-)

var(a') = var(aj)/(aA)

cov(a!,b t) = cov(aj,b/aj

cov(adc') = cov(aj,c)/(acj(l-c,))

var(b" ) = varb

cov(bt),e = cov4cP/(cj(l-c0)

var(ep = var(c)/(cj(l-cP)

A grid of M O values are specified from O... to E.. Then a random sample of K parameter
values are drawn from the multivariate normal disaribution with means ad, bW, c and with the
transfommd variance-covariance matrix, N. If the point estimate of cj is 0, the cj is held
fixed and only log aj and bý sampled. The cj for this item will also not be estimated for the
fitted ERF. If the point estimate for cj is less than or equal to .001, the mean for cj used for
the multivariate normal is set to the standard error of c. F'j(e.) is computed for each of the
M values of 0 for each of the K IRF's. F-j is the average of the Fdj(Oe)'s.
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Fitted EM ecj~on&M Fu=tio

The nonparametric ERF is the input for estimating the parameters of the fitted
expected response function. The abilities are fixed at the Q. values in the grid. A sample of
pseudo-examinees is generated to weight the grid values according to a weighting distribution
specified by the user. The distribution may be either normal or rectangular. If normal the
user may specify the nw.an and standard deviation. The user specifies the number of
examinees for the sample. Newton's method is used to solve for the corrections to the
estimated parmeters by solving the likelihood equations. Since there are no omits, this
procedure uses the expected values of the second derivatives which removes any possibilities
of nonpositive definite matrices. If an item has a zero determinant, the item is removed from
further estimation and the parameters are set to the values before the zero determinant.

The iteration procedure requires initial values for the item parameters. The default
value for a is one. The default value for c is 1/(# choices) -.05. The default value for b is a
function of the proportion correct. The formulas to compute the default values of b are:

where hj is given by the following equations

p, -. g2

and
N

E WF;(em)
N

and N is the number of pseudo-examinees.

The procedure estimates the parameters for one item at a time until the relative change
in a is less than .001 if a is being estimated. If a is fixed, the procedure iterates until the
change in b is less than .001. One pass through all of the items constitutes a stage. In the
first stage the c's are held fixed. In the second and following stages the c's are estimated
unless a two parameter model is requested. If all c's are being estimated, or there is a prior
on the c's, stages are repeated until the change in the likelihood is less than .02% between
stages.

If no prior is imposed on the c's and the poorly estimated c's are restricted to a
common c value, the following procedure is used

In the second and third stages the c's for all items are estimated.
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At the end of the third stage, the c's for items with b-2/a less than the criterion for
fixing the c, (CRITFIXC), are fixed at a conmmon c value. If all c's are to be
fixed at a common c value, they are set to the common c value at this point.

The common c value is then estimated once per stage until the change in the common
c is less than the standard error of the common c estimate for two successive
stages. Only the items with c fixed at the common c are estimated in these
stages-

The common c is then fixed and all items are again estimated until the criterion
function increases by less than .02%

If a prior on c is requested and the mean is estimated, the mean is computed as the
average of the c's at the end of each stage. Note: the beta prior is included in the
computation of the likelihood and since the mean isn't actually a maximum likelihood
estimate of the mean, the likelihood may not increase uniformly. To prevent premature
stopping of the estimation procedure in this situation, the procedure will continue until the
maximum difference between IRFs between stages is less than .001. The difference is
computed for 5 abilities from -2 to 2 at intervals of 1.

The a parameter is restricted to a range of .01 to 99, c to a range of 0. to .99. The
maximum amount that a parameter may change in any iteration is restricted. The amount for
a is .1 times the previous value for a plus .2, b is . times previous value of b plus .4, and c
is .06.

In~ut
The input to the program consists of a sysin file containing file names for the input

and output files and parameters for controlling the procedure and a file containing the point
estimates for the parameters and the variance-covariance of these estimates. If abilities are to
be estimated for a group of examinees, the file of their responses is also read.

The Sysin File.

Record Set 1:

The first set of records in the sysin file define the input and output files.
The set contains one record for each file to be defined. The last record in this set must be
blank. The format for the file definition card is:

col I F
col 3 - 4 Unit number
col 6 - 45 File name, with all qualifiers



Page B-5

The fils to be specified are:
Input files:

Unit 5 File containing the sysin dataset.
Unit 10 File containing, for each item, the point estimates and the

variance-covariance matrix. They may be either on the a,b,c
scale or on the log a, b, logit c scale but both the point estimates
and the variance-covariance matrix must be on the same scale.

Unit 11 Input file containing the examinee responses if abilities are to be
estimated for an existing item response file.

Output files:
Unit 6 Printed output file
Unit 7 Item parameter output in LOGIST7 format. The abilities written

are the pseudo-abilities used to estimate the fitted ERF's.
Unit 12 Binary scratch output file, used to temporarily store the

nonparametric ERFs and then the examinee responses.
Unit 13 Output file containing the point estimate item parameters, the

fitted ERF, and the nonparametric ERF for each item.
Unit 14 Output file containing the sample of item response functions, if

it was requested that the sample be saved.
Unit 15 Output file containing ability estimates, standard errors, and item

responses, if abilities are estimated.

Record Set 2.
In record set 2, the options for running the procedure are specified. Only those

options where the default says "Required" must be specified. The required parameters are the
title, the number of items, the number of choices per item, and the format for reading the
point estimates file. Defaults are supplied for all of the other parameters. The parameters are
specified by entering the parameter name in positions 1 through 11 of the record and the
value in positions 13 through 20. Formats are entered in positions 13 - 80. Right justify all
integer values. The last record in this set must be blank.

Parameter input

Parameter Description / Options Default

TITLE Tid-' for the run required

#ITEMS Number of items. (Maximum 800) required

SEED Random number seed. Integer between 0 and 275927
1048576.

DEBUG Debugging printout? NO

ITEMIDEN Read in 8-character item identification codes? NO
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Parameter Description / Options Default

GENFIXC Is c fixed in var/cov ie. var/cov for c are O? If so c NO
will be fixed in fitting the ERF.

IFWRANS Are the input point estimates and var/coy matrix on NO
the log a. b, logit c scale?

FMTVAR Format for reading point estimates and var/cov Required
matrix. The values are read in following order:
item number, a, b, c, var(a), cov(ab), cov(ac),
var(b), cov(bc), var(c). If abilities are to be
estimated for a group of examinees, the item
number must be the sequence number of the item in
the record of item responses.

#SAMPIRF Number of item parameter values to sample 100
(Maximumnl,000)

MNThHETA Minimum ability for e grid -3.

MAXrHETA Maximum ability for e grid 3.

#ABILGRP Number of points in e grid. (Maximum 201) 31

WEIGHTFN Weighting distribution for fitting ERF. Enter NORMAL

RECTANGULAR or NORMAL

WEIGHTMN If weighting distribution NORMAL, specify mean 0.

WEIGHISD If weighting distribution NORMAL, specify 1.
standard deviation.

#ERFEXAM Number of pseudo examinees for estimating the 3100
fitted ERF's. These will be apportioned by the
weighting distribution to the M 0 grid points and
adjusted so that there is an integral number of
examinees at each grid point.

SAVESAMP Save the sample of item response functions to a NO
file?

READA Read in initial a's? NO

READB Read in initial b's? NO

READC Read in initial c's? NO
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Parameter Description / Options Default

PRIORC prior on c? 0
0 - no, estimate all c's, don't fix any at the common
c value.
I - no, fix c's at a common c (COMCx) if

b-2/a<CRXFC. Estimate COMCx.
2 - no, fix all items at a common c. Estimate
COMCx.
3 - yes, estimate the mean of prior.
4 - yes, fix the mean of prior.

CRITFIXC Criterion for fixing c, if no prior requested and -2.5

PRIORC = 1.

AINIT Initial a value, if READA is NO. 1.

AMAX Maximum a. 99.0

PARMCODE What parameters are to be estimated 3
-1 - read in parmcode for each item
Otherwise set parameter code for all items to the
specified code. The definitions of the codes are:

code parameters
estimated

2 a,b
3 ab,c

CHOICESx Number of choices per item. x indicates a sequence Required
number for different item types. Specify a different
CHOICESx for each item type. For example, if a
test has 4 and 5 choice items, set CHOICES 1 to 4
and CHOICES2 to 5. x must be between 0 and 98.

CINiTx Initial c for the CHOICESx items. 1/CHOICESx -.05

COMCx If no prior on c , common c value for the 1/CHOICESx -.05
CHOICESx items.
If prior on c, mean c of prior for the CHOICESx
items.
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Parameter Description / Options Default

N-INFx This is only used if there is a prior on c. It is the 20
weight for the prior on c in terms of the number in
a hypothetical group of examinees at minus infinity.
It controls the variance of the beta prior. A
separate N-INFx must be specified for every
CHOICESx altematives.

CHIx Maximum c .99

ESTABIL Estimate abilities? NO

#EXAMINEE Number of examinees for which abilities are to be 20
estimated if ESTABILfYES. (Maximum 10,000)

PRIORMN Prior mean of p(O) 0.

PRIORSD Prior standard deviation of p(e) 1.

GENRESP Generate artificial data, abilities and item responses. YES

DISTABIL If generating artificial data, specify type of ability RECTANGULAR
distribution to generate, either 'RECTANGULAR'
or 'NORMAL'.

DISTMN If DISTABIL is 'NORMAL', specify the mean of 0.
the distribution.

DISTSD If DISTABIL is 'NORMAL', specify the standard 1.
deviation of the distribution.

RECIIHN If DISTABIL is 'RECTANGULAR', specify -3.
minimum ability for distribution.

RECTMAX If DISTABIL is 'RECTANGULAR', specify 3.
maximum ability for distribution.

FMTRESP If reading in examinee responses, specify format for Required if
reading the item responses. They will be selected ESTABILfYES
as specified by item number read from the point and
estimates file. They are read in integer format. As GENRESPf-NO.
many integer fields must be specified as the
maximum item number read from the point
estimates. For example, if the item numbers read
from the point estimates are 1,5, and 10. The
format must specify reading in 10 integer fields.
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Additional input
If PARMCODE = -1, read in a parameter code for each item with Record set 3.
If more than one CHOICESx read, specify the items for each number of choices in

Record set 4.
If ITEMIDEN requested, read in item identification in Record set 5.

Record set 3.
This record set is only required if PARMCODE is set to -1 to read in a parameter

code for each item.
col 1 - 8 "PARMCODE"
col 9-10 Sequence number for this PARMCODE record.
col 11-80 Parameter codes for the items in 3512 format.
Repeat for as many records as necessary, increasing the sequence number for each
record. For example, for items 36.40, the sequence number must be 2.

Record set 4.
This record set is only necessary if more than one CHOICESx is specified. It is used

to specify the number of choices for each item.
col I - 8 "CHOICESx" where x corresponds to the CHOICESx specified on the

parameter records.
col 9 -10 Sequence number for this CHOICESx record.
col 11 - 80 Item numbers of the items, that have the number of choices specified by

CHOICESx, read in (1015) format. A sequence of items can be
specified by specifying the first number in the sequence followed by
the negative of the last number in the sequence.

Enter as many CHOICESx records as necessary, increasing the sequence number for
each record. Do no split a sequence across two records. If the beginning of a
sequence would be the last field of a record, leave the last field blank and start
the sequence on the next record.

Record set 5.
If ITEMIDEN is "YES", this set is required to read in the 8-character item

identification for each item.
col 1 - 8 "ITEMIDEN"
col 9 - 10 Sequence number
col 11 - 18 Item identification for the first item. Left justify the identification in the

field.
col 19 - 10 Blank
col 21 - 28 Item identification for the second item.
col 29 - 30 Blank
etc. etc.

Enter 7 item identifications per record, repeat for as many records as necessary,
increasing the sequence number for each record. For example, record with
sequence number 2 will contain the identifications for items 8 through 14.
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Detailed descridtion of output

Unit 6 Printed output file
The printout contains:

Check on input parameters and defaults.
For the nonparameic ERF, the point estimates, the input var/coy matrix, the

var/cov for the sampled IRF's for both the a,b,c scale and the
transformed scale, and the nonparametric ERF for a spaced sample of
the 9 grid points are printed.

For the estimation of the parameters for the fitted ERF, the likelihood is
printed for each stage as well as the maximum derivatives for the three
parameters, the maximum change in an iteration, and the maximum
change over all iterations for each type of parameter. If the common c
is being computed, information on the computation of it common c
values is printed.

For each item there is a parameter code that indicates which item parameters
are being estimated. The values for the codes are defined in the input
description. In addition, a 20 is added to the code if the c for an item
is held fixed at the common c. If an item is removed because the
expected matrix of second derivatives had a zero determinant, the
parameter code is set to 996.

The final item parameter estimates are printed as well as the standard errors of
the .stimates.

If abilities are estimated, the EAP ability estimates and the standard errors are
printed for the point estimate IRF, the nonparametric ERF and the fitted
ERF. Only the first and last 10 are printed.

Unit 7 Item parameter output in LOGIST7 format. The abilities written are the
pseudo-abilities used to estimate the fitted ERF's. A subroutine to read this
file is included with the program. The subroutine contains comment statements
that describe the cailing arguments. Output includes the title, the number of
items, the number of pseudo-examinees, the estimated item parameters, the
pseudo-abilities, variables used in the estimation of c, and parameter code

indicator for number of parameters estimated.

Unit 13 File containing the nonparametric item response functions for plotting with the
plot program. The first record contains the title of the run. The second record
contains the number of items (15). The third record contains the M abilities for
the 9 grid in the format (5X,0F8.4). The remaining records contain the item
sequence number, the item number, the item identification, the a,b,c point
estimates, a,b,c estimates for the fitted ERF, the parameter codeand the
nonparametric proportion correct for the M abilities in the format
(215,A8,1X,3F12.6,1X,3F12.6,14/(10F12.6))
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Unit 14 Output file containing the sample of item response functions, if it was
requested that it be saved. For each item, the item number and the three
parameters for each sampled IRF are written in the format
(14,12F12.6/(4X,12F12.6)).
Record l: col 1 - 4: Item number

col 5 - 16: a for first item sampled
col 17 -28: b for first item sampled
col 29 - 40: c for first item sampled
col 41 - 52: a for second item sampled
etc. etc.

Unit 15 Output file containing ability estimates and standard errors, and item responses,
if abilities are estimated.
For each examinee a record is written in the format (15,7F12.6,60011)
containing:

col 1 - 5: examinee sequence number
col 6 - 17 - true ability, (if responses are read, this is set to 999999.)
col 18 - 29 - EAP ability computed using point estimate IRF
col 30 - 41 - EAP ability computed using fitted ERF
col 42 - 53 - EAP ability computed using nonparametric ERF
col 54 - 65 - Standard error of ability computed using point estimate

IRF
col 66 - 77 - Standard error of ability computed using the fitted ERF
col 78 - 89 - Standard error of ability computed using nonparametric

ERF
col 90 + Item responses in I1 format, items 1 to #ITEMS.

The PLOTIRF Program

A plot program was also developed that plots the three item response functions for
comparison of the three curves. This program produces plots on the screen, a laser printer, or
a postscript printer. Input to the program consists of a sysin file with the control parameters
and the file written on the unit 13 by the EXPRESFN program. One, four or eight plots per
page are possible.

Invut
The sysin file consists of a set of records defining the input and output files and a few

control parameters.

Record set defining files.
The set contains one record for each file to be defined.
The last record in this set must be blank.
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The format for the file definition card is:

col I F
col 3 - 4 Unit number
col 6 - 45 File name, with all qualifiers

The files to be specified are:

Input files:
Unit 5 Sysin file containing file definitions and parameters.
Unit 13 File written on unit 13 in EXPRESFN containing the nonparametric

item response functions.
Output file:

Unit 9 Plot output if requested that the plots be saved for printing later.

Record set specifying control parameters.
The last record in this set must be a blank record.

Parameter Description/options Default

TITLE Tide for plots. Tide from
EXPRESFN.

IFSELIT Select items from items in NO
EXPRESFN run.

PLOTDEV Plotting device: LASER
POSTSCRIPT
LASER - HP laser printer
SCREEN - only display on screen.

#PLOTPAGE Number of plots per page. Options are 8
1, 4, or 8.

SAVEPLOT Plot now or write plots to file? NO
NO - print plots now
YES - save plots to a file for

printing later.
Record set 3.

If IFSELlT is YES to select items from the EXPRESFN run, specify the items to
select with this record set.
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The format of record set 3 is as follows:

col I - 8 "IFSEL1rT
col 9 -10 Sequence number for this IFSELIT record.
col 11 - 15 Item number of first item to be selected.
col 16 - 20 Item number of second item to be selected.
etc. etc.
col 76 - 80 Item number of 14th item to be selected.

Indicate a sequence of item numbers by entering the first in the sequence and the negative of
the last in the sequence. Repeat for as many cards as necessary. Increase the sequence
number for each card. Do not split a sequence across two records. If the beginning of a
sequence would be the last field of a record, leave the last field blank and start the sequence
on the next record.
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