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ABSTRACT

The tactical implications of submarine acoustic radiation and UNDEX-survivability
have motivated the development of an advanced machinery cradle which will provide shock
and vibration isolation of the submarine internals, thereby minimizing the resulting acoustic
radiation. The cradle space frame must be designed and optimized for both minimum
shock/vibration bi-directional transmissibility and minimum total cradle weight. Frequency
domain structural synthesis (structural modification and substructure coupling), is applied
to the cradle design. The method addresses static and complex dynamic problems in
structural design analysis, and allows the direct analytic treatment of specialized equipment,

such as frequency-dependent visco-elastic isolators.
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I. INTRODUCTION

The design of complex structural dynamic systems requires the building of detailed
mathematical models with which to predict static and dynamic response. Most commonly.
the finite element (FE) method is used to generate structure system matrices with which
dynamic response can be calculated. While the FE method currently provides the best
means of predicting response for complex structural systems, the time required to assemble
the system matrices and to process them for the calculation of dynamic response can be
prohibitive. Therefore, the use of the FE method for performing design analyses often
precludes the performance of numerous design analyses in the search for an optimal
design. This is especially true when a FE based analysis is to be used in conjunction with
advanced design techniques such as optimization. The iterative process of modeling the
system and analyzing the model to determine the system performance is the design-analysis
cycle.

The traditional design-analysis cycle consists of the following process. A designer
builds a FE model which best represents the system. The system model is the complete
system structure, for example, a submarine hull and an internal machinery support cradle is
modeled as one structure. The definition of the FE model yields system matrices, which
include stiffness, mass, and less commonly damping. The numerical generation of the
system matrices is referred to as the assembly phase. At this point, loads are applied and
responses, static and/or dynamic, are calculated. The calculation of system response is
referred to as the solution phase. The responses are then used to calculate stresses and
strains in the model. These calculations are referred to as the post-processing phase. The

solution phase is the most costly in terms of time and computing resources.




Based on the acceptability of the displacements. stresses. and strains calculated. the
design or system model may have to be changed in the interest of improving the response
characteristics of the inital or follow on design. For example, a high stress which is
unacceptable may exist at a certain location in the design. The designer decides that if a
particular alteration is made to the design. the stress response will become within tolerable
levels. Traditionally. this alteration requires a repeat of the assembly, solution, and post-
processing phase of the analysis, a cost and time intensive procedure which limits the
number of design re-analyses that can be accomplished. Since the re-analysis is time
consuming, the optimal design is abandoned for a final design which is less than optimal.

Therefore, with the intent of accelerating the design process and lowering the attendant
costs, new methodologies for assembling and modifying system models is presented. The
new method replaces all three of the FE analysis phases with a single computationally
efficient calculation. The method to be described herein, generally referred to as frequency
domain structural synthesis {Refs. 1,2,3], is directed specifically at drastically reducing the
time required to perform a design analysis cycle. This capability for rapid re-analysis makes
structural synthesis ideal for use in advanced automated design environments, such as in

conjunction with optimization codes.




IL. FINITE ELEMENT FORMULATION

The finite element method used for comparison with the solution obtained from
frequency domain structural synthesis is based on Lagrange's equation of motion [Ref. 4|.
Various types of elements are used in modeling of structural systems. including for
example, plate. shell, and beam elements. Our discussion will be limited to beam elements
experiencing combined bending and axial deformations. We are using beam elements to
demonstrate the methodology because the beam element allows for a manageable system of
equations and matrices that are easily handled by a personal computer. The theory remains
valid for all types of elements and is unaffected by the complexity of shell or plate
elements. Beam elements that are subject to bending and axial deformation have three joint
displacements at each end of the beam element. The beam element has six generalized
coordinates and six degrees of freedom (DOF), which yields a mass, stiffness. and

damping matrix for the beam element of size (6 x 6). The beam element is shown in

Figure 1.
y y
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Figure 1. Beam Element with Coordinate and Nodal Orientation

Each node has a set of coordinates, axial (x), lateral (y), and rotational (6), however
elements are not limited to three DOF. Elements can be modeled with six DOF per node.




The derivation presented in reference{4] assumes that the axial forces associated with the
axial joint displacements (x) have only a negligible effect on the shape functions associated
with the joint displacements (y) and (0). With this assumption the mass and stiffness

matnices are derived.
The elemental stiffness and mass matrices are
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where the terms E is Young's Modulus, I is the area moment of inertia, | is the elemental
beam length in inches, y is the weight density, and r is the radius of gyration. The
elemental matrices are partitioned in the following way:

The damping matrix is usually impossible to determine analytically and is typically
determined experimentally. Here damping is applied to the system model by one of three
ways. The three methods generally used are:

Type (1): Proportional structural damping of the form:

[C]=alk]+BIM] (M




[T

Type (2): Proportional viscous damping of the torm:

[Cl=alK] (2)

Type (3): Frequency-dependent viscous damping of the form:

[Cl=][Ce™ (3)

Type (1) damping is used in adding damping to structural elements. and Types (2) and (3)
are used in adding damping to vibration isolators which are a combination of springs and
dampers; adding proportional damping to just the isolators constitutes non-proportional
damping for the whole structure.

The equation of motion of these finite elements can be written in terms of their joint

displacements as

(ml (iif, +lel fa.} + (kL {u}, = {£}. (@)

where {u} = axial, lateral, or angular joint displacements

{m], = mass matrix of element

[c), = damping matrix of element

(], = stiffness matrix of element

{£}. = joint forces and moments

Since the elements vary in orientation with respect to the system axis, the elemental

mass and stiffness matrices must be transformed into global coordinates. The
transformation of the damping matrix is neglected, since the elemental damping matrix is
modeled as a function of the transformed elemental mass and stiffness matrix. A method
for relating local joint displacements of each element to the global system displacements




must be incorporated. This method is referred to as a coordinate transformation. The

elemental mass and stffness matrices after transformation are in the following form

[Ref. 4}.
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Noting that:
I = elemental beam length in inches

E = Young's modules in psi

1= Area Moment of Inertia in in’

r = radius of gyration in inches

y = mass density per unit length in /- s° / in’
C=cosa

S=sina




Once the finite elements are transformed to global coordinates. the elements are
assembled to generate the giobal mass, stiffness. and damping matrices. The equation of

motion for the modeled system in global coordinates is
[Mit +[Cllut +[ Kt = {F) (5)

where {u} = axial. lateral. or angular global joint displacements

[M] = global mass matrix

[C]= global damping matrix

[K]= global stiffness matrix

{F} = global jbint forces and moments

The following example will demonstrate how the global mass and stiffness matrices are

generated. Consider the structural system modeled with two beam elements and having no
boundary conditions shown in Figure 2.

1,2,3 7 4,5,6 ; 7.8,9
{ ! ]
1 2 3

Figure 2. A Beam Modeled Using Two Elements

For this example % =1.0 lbs/in, 4—Y’%=1'0 Ib-s’, 1 =1.0inandr=1.0 in.. Since the

beam elements lie horizontally along the x axis, the angle a = 0. The global mass and
stiffness matrices are generated from the assembly of the elemental matrices. The elemental

matrices are:




"t 0 0 -1 0 0 140 0 0 70 0 O
0 12 6 0 -12 6 0 156 2 0 54 -13,
0 6 4 0 -6 2 .0 2 4 0 13 -3
Mz!-l 0o 0 1 o =70 0 o 140 0 o
10 -12 6 0 12 -6 0 54 13 0 156 -22
0 6 2 0 6 4. L0 -3 -3 0 22 4

Referring to Figure 2. the lower bold type numerals represent the node numbering and the
upper numbers represent the beam nodal coordinates. Coordinates 1. 2. 3. 4. 5, 6. 7. 8.
and 9 are respectively x,.y,.0,.x,,v,.8,.x,.Vv,, and 6,. Remembering how the matrices are
partitioned and noting that coordinates 4, 5 and 6 of beam element 1 are the same
coordinates of beam element 2 and thus are shared. The two elemental matrices are
assembled together through the shared coordinates. Figure 3 shows the beam element

arrangements.

1,2,3 4,56 4,56 ¢ 7,89
L ] [ —
1 2 2 3

Figure 3. Beam Elements with Node and Global Nodal Coordinate Numbering

For discussion purposes only, the stiffness matrices will be demonstrated, since the
mass and damping matrices are generated in the same manner. The elemental stiffness

matrices are in the following form.

12 3456 4 5 6 7 89

1 1 4[ ]
2 S
k=2 [kes) =5
5 8

61 ] 9 J




The two matrices are combined by adding shared nodal coordinates. this process is
determined by the element connectivity. Figure 3 shows that element 1 is coupled to
element 2 through global nodal coordinates 4. 5 and 6. These global coordinates are the
combination of local coordinates x.. v,. 6, of element 1 and x.. v.. 6, of element 2. The
resulting matrix is a (9x9) global matrix represented by [ K}. The size of the global matrix
is the number of nodes times the DOF. The global stiffness matrix [ K] is shown below
with the numbers installed, take special note to the shared coordinates which are additive.

T 0 0 -1 0 0 0 0 O
0 12 6 0 -12 6 0 0 O
0 6 4 0 6 2 0 0 O
-1 0 0 2 0 06 -1 0 0O
K]=|0 -12 -6 0 24 0 0 -12 6
0 6 2 0 0 8 0 -6 2
0 0 0 -1 0 0 I 0 O
0 0 0 0 -12 -6 0 12 -6
L0 0 0 0 6 2 0 -6 4

The shared coordinates are demonstrated by looking at the 3x3 partition, rows 4 through 6
and columns 4 through 6. After the global matrix is generated, the boundary conditions are
applied. Boundary conditions are determined by coordinate restraints. If a coordinate is
restrained then the row and column oomspbnding to that coordinate are deleted. For
example, if in Figure 2, the left end had been fixed, displacements for global coordinates 1,
2, and the slope of coordinate 3 are zero, and therefore the rows and columns
corresponding to these coordinates would be deleted resulting in a (6x6) [ K] matrix.

The derivation of the equation for a second order linear structural system described in
the frequency domain is presented below. The differential equation of motion for a second
order linear structural system is written as




mx+cx+ke=FsinQr. (6)

The solution to equation (6). which is the total system response is
X=X,+X (7)

where X, is the real or homogeneous solution and X, is the particular solution. We

consider only steady state harmonic excitation, therefore the particular solution is used as

the total solution. The solution is assumed to have the form

X=X,= Xe™. (8)
Taking the first and second derivatives of X and substituting into equation (v, . *lds
(~Q’mX + jQcX + kX)e™™ = Fe™. 9)
Dividing both sides by ¢’ and rearranging equation (9) gives the equation of motion as
(k-Q°m + jQc)X = F. (10)

Writing equation (10) in matrix form gives the equation for second order linear
structural systems described in the frequency domain.

[(x1- @[ M]+ fJAQ)]Jix} = {F} (1)

10




where the vector {x} is the set of generalized responses in the global coordinate system.

The vector {F| contains generalized global forces and moments. {K| and [M] are

symmetric. real valued and of order n. The damping matrix [C1Q)] is in general. frequency

dependent. but here ts modeled as a linear proportional combination of the mass and

stiffness matrices. Equation (6) is generally written in compact form as

[2(Q)]{x} = (F) (12)

where the matrix [ Z((2))] is called the system impedance matrix. Equation (12) is the system

impedance relationship and represents the dynamic response of the system. The impedance
matrix is the dynamic stiffness of the system. The static case is when Q =0 and then the
system impedance matrix is just the stiffness matrix { K.

The impedance matrix for the assembled beam (Figure 2) is

[Z]=[k]- Q*[M]. (13)

Equation (13) is reduced because damping [C((Q)] is neglected in this example. [ Z(Q)] is
calculated over the frequency band of interest, where ) is the frequency band of interest in

rad/sec.
The frequency response function (FRF) matrix for the assembled beam is

[HQ)]=[zQ)]". (14)

11




The FRF matrix allows the calculation of the steady state harmonic response amplitude { X}
resulting from a harmonic force amplitude {F}. The frequency response relation is

determined by matrix inversion of equation (12), which yields

{X} = [HQ){F}. (15)

Any element H; of the frequency response matrix is defined as the dynamic response of
motion coordinate i due to a unit harmonic generalized force acting on motion coordinate j.
The FRF matrix can be used to represent information about displacements, velocities.
accelerations, stress, or strains. For example, if a structure is excited at nodal coordinate 5,
then H is the complex amplitude of the response at nodal coordinate 1 due to a unit
harmonic excitation at nodal coordinate 5 at some frequency Q of interest.

A typical frequency response function plot is shown in Figure 4. The peaks shown in
Figure 4 occur at the frequency of peak response. The reiationship between the natural
undamped frequency, the damped natural frequency, and the frequency of peak response is
shown on the following page. The plot shows at what frequencies the structure will have
maximum responses and enables the designer to redesign the structure so that the system
will have small responses in the frequency bandwidth of interest.

12




FRF at coordinate of interest db

0 10 20 30 40 50 60
Frequency Hz

Figure 4. Typical Frequency Response Function Plot

Generally there are three distinct frequencies of interest, the undamped natural
frequency, the damped natural frequency, and the frequency of peak response. These
frequencies are related by the modal damping factor. The amplitude of the response of a
forced vibration can become very large when the frequency of the excitation approaches
one of the natural frequencies of the system . This condition where the excitation frequency
is the same as one of the natural frequencies is referred to as resonance. When a system
vibrates at resonance, the attendant stresses and strains have the potential of causing
structural failure. A structural system will have a maximum response when the frequency
of excitation is near the undamped natural frequency. If the system has no damping, then
the maximum response will occur at the undamped natural frequency. The undamped
natural frequency is a function of the system mass and stiffness and is analytically
expressed as the solution to the eigensystem ‘

[k - w” M](®} = (0} (16)

13




Every real structural system has an infinite number of natural frequencies and mode shapes.
The finite modeling of the structural system yields a finite number of eigensolutions or
mode shapes and eigenvalues or natural frequencies depending on how many degrees of
freedom the structural system is modeled with. Each eigenvector has a corresponding
eigenvalue or natural frequency. However, all systems inherently have some degree of
damping and the relationship that relates the damped natural frequency to the undamped
natural frequency is

w, =w, Y1} (17

where {, is the modal damping factor for mode i. The damped natural frequency is slightly
lower than the undamped natural frequency and a typical damping factor for structural
systems is 0.2. The frequency of peak response is the frequency of excitation where the
response of the system is maximum. The analytical relation that relates the frequency of

peak response to the undamped natural frequency is determined by taking the derivative
with respect to io— of equation (18) and setting it equal to zero.

(18)

14




and substituting back into equation (18) yields

(19)
Now performing % =0
—%[(1- @) + (2@ )’]7[-46)(1 @)+ & @] =0 (20)

and knowing for equation (20) to equal zero, the numerator must equal zero. Setting the

numerator equal to zero

20(1-@°)-&» =0 (21)

and simplifying

@ =1-2] (22)

and solving for w , which is the frequency of peak response yields

W, =w J1-220%. (23)

It is important when designing a structural system that the excitation frequency is not close
to these frequencies or failure of the structural system is likely to occur.

1§




III.  FREQUENCY DOMAIN STRUCTURAL SYNTHESIS

The theory presented herein is taken directly and exclusively from references [1. 2. and
3). The purpose of this thesis is to explore the application of this previously developed
theory to the analysis of a submarine cradle structure.

Frequency domain structural synthesis was tirst presented in 1939 and has evolved to
the latest formulation, which was published in Journal of Sound and Vibration (1991)
[Ref. 1]). The most recent formulation of the theory is a new method for analyzing
structural systems [Ref. 3]. This method handles all types of structural models and is more
efficient and cost effective compared with traditional finite element solution procedures.
Frequency domain structural synthesis refers to substructure coupling and structural
modification using frequency response function data. The previously developed
formulation for structural synthesis, Ref. [3], is applicable to the static and dynamic
structural analysis of direct coupling of substructures, indirect coupling of substructures,
modification of substructures, and constraint application. The theory allows the synthesis
of displacements, velocities, accelerations, stresses, and strains.

An important feature of the frequency domain formulation is the arbitrary and exact
model order reduction possible when performing a synthesis. A finite element method
(FEM) when applied to practical problems typically generates between 102 to 105 degrees-
of-freedom (DOF). The frequency domain formulation allows, as a minimum, only those
DOF of interest to be included in the analysis. This feature is in fact the reason for the high
computational efficiency of the method. Using one of the numerical examples presented in
the section “Numerical Examples, " the computing time required for a frequency domain
synthesis can be compared with the same analysis using traditional finite element (FE)

16




procedure. Referring to Example (6) the following count of floating point operations

(FLOPS) shows the efficiency of the frequency domain method:

FEM direct assembly: Time - 25876 sec or 431.3 mins
FLOPS - 1.49 x 109

FRF synthesis: Time - 1167 sec or 19.45 mins
FLOPS - 517.2 x 106

This clearly demonstrates that synthesis by FRF is more efficient and better suited for the
re-analysis of compiex structures with large numbers of DOF. Moreover, the savings in
time grows with increasing model size.

There are two major classifications of structural synthesis. These classifications are
coupling and modification and each classification can be viewed as direct or indirect.
Coupling is defined as the joining of two separate substructures to form one structure and
modification is defined as the creation of a new load path in an existing structure. An
example of coupling is the coupling of a submarine hull and the machinery support cradle.
The hull is modeled as one substructure and the cradle is modeled as another substructure.
We want to join these two substructures together to create one complete structural system.
This process is known as structural coupling. As an example of the use of structural
modification, an analysis of the complete cradle structural system shows that a certain
element has unacceptable stresses. By installing an additional support, the stresses become
acceptable. This process of changing the structure is known as structural modification.
Indirect coupling is the joining of structures with the introduction of an intermediate or
interconnecting structural element, referred to as an interconnection impedance element or
impedance patch [Ref. 1]. Direct modification can be viewed as the application of a
constraint equation to a given structural model; direct coupling is simple substructure
synthesis [Ref. 1]. The theory is unique in that it allows any linear structural element to be

17
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used as an interconnection impedance. for example a spring and viscous damper may be
installed between two elements of a structure. The synthesis is performed at each frequency
of interest. which makes possible the efficient treatment of frequency dependent properties.
like the properties in the spring and viscous damper. Frequency domain structural synthesis
allows changes to a finite element model without reassembly of the mass. stiffness, or

damping matrices.

A. GENERALIZED FREQUENCY RESPONSE
The derivations presented here are taken exclusively from References 1, 2, and 3. The
derivations are reproduced with more intermediate steps leading to the final operative

equations. We begin the development with the previously derived formulation for a second
order linear structural system described in the frequency domain.
The differential equation of motion for a second order linear structural system is
written as
mi + cx + kx = Fsin Q. (6)
The solution to equation (6), which is the total system response is

X=X, +X, (7)

where X, is the real or homogeneous solution and X, is the particular solution. We

consider only steady state harmonic excitation, therefore the particular solution is used as
the total solution. The solution is assumed to have the form

X=X,=X™. (8)

18




Taking the tirst and second derivatives of X and substituting into equation (6) vields

(- mX + jQcX + kX)e'" = Fe™. (9)

Dividing both sides by e** and rearranging equation (9) gives the equation of motion as

(k-Q’m+ jQc)X =F. (10)

The dynamic stiffness of the structural system is known as the system impedance which is

written as

2(Q)=k-Q’m+ Qc. (24)

The static system stiffness k is determined by the case where Q=0 and the system
impedance is

Z(Q)=k. (25)

The matrix notation for the structural system impedance is
[z(@)]{x) = {£}. (26)
The system impedance matrix [Z(Q)] is both complex valued and frequency dependent.

The general equation for the frequency response structural model is found by taking the

matrix inversion of equation (26) and is indicated as
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(dQ)} = [HQ]{F1Q). (27

{x} and {f} are vectors of complex valued generalized response and excitation coordinates
at a specific frequency Q. and [H| is the frequency response function (FRF) matrix

evaluated at the frequency Q. In general an element of the FRF matrix is defined by taking
the partial derivative of {x} with respect to { f}. Referring to equation (24) and writing the

equation for x;, we get

x=H f+H,L+H,.f,++H,f (28)

and taking the partial derivative of equation (28), the general form for an element of the

FRF matrix is

H, == (29)

and is defined as the partial derivative of the ith generalized response coordinate with
respect to the jth generalized excitation coordinate.

There are other types of frequency response which are classified by the type of
coordinates involved. For example, strain-force and stress-force frequency response are
defined as

=& )iA tol=[a)ir). (30.31)

The difference between equation (27) and the two equations (30,31) is the FRF matrix [ 4]

contains displacement-force information in equation (27) and strain/stress-force information
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in equations (30.31). The general element of the strain and stress FRF is determined in the

same manner as the displacement-force FRF. The general elements are defined as

H=— H =— (32.33)

where €, and o, are complex valued strains and stresses at coordinates i at a specific
frequency Q

Here we will show the development of the frequency response function in the modal
coordinate system. We start with the differential equation of motion for a second order

linear structural system in physical coordinates.
mx+cx+kx=F(t) (34)

where we assume F(t) is of the form {Fle”™ and the vector {F| is the set of force

amplitudes. Now we apply the linear transformation -
{x} = [®Hg} (35)

to equation (34) where the vector {x} is the set of physical coordinates to be transformed.
the vector {q]} is the set of modal coordinates, and the matrix [®] is the set of mass

normalized normal mode shapes. Pre multiplying the transformed equation by [®] and
using the relation [ ®] [ MI®] = [1] yields

Mg+ e, [lat+] o |lg}=[®F{F}={F}. (36)
\ \
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Rewriting equation (36), the differential equation of motion in the modal coordinate system

is
g, +Awg+w; =Hr). (37

Since we assumed steady state harmonic forces. equation (34), the modal forces are also of

the form {F} = {F]e’™ and the solution is assumed as a steady state harmonic modal

response of the form {g} = {¥}e*. Taking the first and second derivative of {q} and

substituting back into equat:  37) and simplifying yields

\ ‘ \
o |-QU+o 2w, ||F}={T} (38)
\ \

Rewriting equation (38)
o -0+ QXw, [F}={F) (39)
\

and solving equation (39) in terms of the modal response yields

1
wiz -+ jﬂzciwi

¥} = [F1- (40)
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To transform equation (40) back to the phyvsical coordinate system. we use the
transformation of modal force. [®] {F}={T}. and the transformation of modal
coordinates. {.x} =[¢][.¥-", to substitute back into equation (40) and simplify. The

resulting equation in physical coordinates is

1
w - Q%+ Q2 w,

|x} = D] o] {F}. (41)

Remembering the general form of the frequency response, equation (27), the frequency
response function [ H(Q)] in terms of the system modal information is

1

H(Q)|=[® s &)’
[H(Q)] =[®] ST K2l ] (42)
and any specific element of H is given by

B X TR ke, @)

B. MATRIX PARTITIONING

First we will define the classification of coordinates. Figure 5 represents two
substructures A and B that will be joined together by merging coordinates 2 with 3 and 6
with 7. These coordinates are referred to as connection coordinates and are denoted by the
subscript "c". By the definition just stated, the connection coordinates for substructure A is

2 and 6, likewise the connection coordinates for substructure B are 3 and 7. Internal
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coordinates, denoted by the subscript "i." are all the remaining coordinates not directly
involved in the substructure coupling. In Figure S. the internal coordinates for substructure
A are | and S and the internal coordinates for substructure B are 4 and 8. The set of all the
physical coordinates are denoted as coordinate set "e”. If one structure is involved. then the
coordinate set "e" contains only the connection and internal coordinates for that structure. If
two or more substructures are involved, then the coordinate set "e" contains all the

coordinates for all the substructures. The mathematical representationis ¢ =i U c.

Figure §. Structural Model with Internal and Connection Coordinates

Referring to the general equation for frequency response, equation (27), and writing it
in matrix form with coordinate partitioning as

{i} ) [Zd :“]{{} (44)

where xj and fj are a set of generalized responses and excitations at the internal coordinates
and x¢ and f¢ are a set of generalized response and excitation at the connection coordinates.
One of the special features about the frequency response is that in addition to response
information, we can also determine other information at the same time, for example,
stresses. We can append a set of stress coordinates and then equation (44) becomes
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I o { H'?l H‘H‘ f
v, ={H, H, {f} (45)
(x‘. ‘ H, H |

The stress coordinates will allow the direct calculation of synthesized system stress.

The generalized excitations are partitioned into internal and external excitations.
Referring to Figure 5, and looking at the internal coordinates, for example coordinate 1. it
is obvious that the only force possible on this coordinate is an externally applied force.
Since the internal coordinates do not participate in synthesis, there are no coupling forces
present on internal coordinates. The connection coordinates, for example, coordinate 2 in
Figure 5, may experience both externally applied forces and coupling forces which are
established through synthesis. Therefore

L=fT+f" (46)

and by definition of the internal coordinates

f=f" (47

Introducing equations (46 and 47) into equation (45) allows for the expansion of equation
(45) as

(48)

Rl B
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where the asterisk superscript denotes a synthesized quantity due to the fact that we have
introduced the forces of synthesis, f™. Note that with the introduction of equations (46
and 47). a redundant equation, the fourth row of equation (48), has been appended. Using

the definition of the set "e", equation (48) is written in the new condensed form

G

f
x, ’H H {/} (49)
X

¢

T T
where {f} = [ i ff”r] . The vector fe is externally applied forces which may exist at

all physical coordinates, and the vector fc is the coupling forces present only at the

connection coordinates.

C. STRUCTURAL MODIFICATION AND INDIRECT SUBSTRUCTURE

COUPLING

In this section we will develop the goveming equation for structural modification and
indirect substructure coupling. As previously defined, structural modification is the creation
of redundant load paths within a structure, and indirect coupling is the creation of new load
path with a structural element between uncoupled substructures. Indirect coupling and
structural modification are confined to connection coordinates. There is only one restriction
enforced for these processes. The structural change used for modification or
interconnection impedance used for indirect coupling must be described by the following
equation

(£} = {KQ) - o’ ma) + jc@)l{x;} (50)
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(£} =-1Zl{x]| (51
where the negative sign shows that the reaction is on the structure to be modified or
substructures to be coupled. Equation (50) defines the transformation of forces which is

used to transform equation (49). The transformation which operates on equation (49) is
Ll [T 0L
L o))
[ 0 -Z]ix,

Substituting equation (52) into equation (49) yields

‘A1 0 |f
0 -Z]{xt} (53

(3

.

™~ Q
H

T E X
=

e

then performing matrix multiplication and simplifying equation (53), the resulting form is
given by the relationship

o] [H, -HZ f
xt =|H, -HZ {x‘.}. (54)
X, H, -HZzZ|
Extracting the third row of equation (54)
{«} =[H. £} - [HJZ)x) (55)

and rearranging equation (55)
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[1+H.2){<} = [H ]i£)

and solving equation (56) in terms of {x'} yields
[} =[r+H.2] (K1)

Extracting the second row of equation (54)

EARILM FARILM F4i3 5
and substituting equation (57) into equation (58)

EA R RVARICA b4 (R R R TA)
now, using the known relation that
<} =[a )i}
and substituting equation (60) into equation (59) gives the following relation
LARTARLATAR LA IS FJR LA TS

and rearranging equation (61) and setting it equal to zero

CARTARCATARI A IR0 24N IR VARI Y
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(57)

(58)

(59

(60)

(61)

(62)




and rewriting equation (62) as

[B.] -]+ (B )24+ 5.2) (B £} = o).

Since by definition {f ] = {0}. then
(A1) -[#. )+ (B2l + 1,2) (A = (0]
and solving equation (64) in terms of [H,,|” yields

(2] =(4.]- B N2l + 8.2 (4],

(63)

(63

(63)

Now we will simplify the third term of equation (65). Extracting the following portion

(z]|1+ H 2]

factoring the inverse term
-1

[z](z" +H.)Z]

and applying the identity (ab) = a”'b”

[zfz'(z" + H.)"]
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and then simplifying yields

[Z'i + H]L

Substituting the above simplified portion back into equation (65) and performing the same
process on the first row of equation (54) yields the final operative equation for structural

modification and indirect coupling

[Ha,] [H} [H] ey T
a | =lu A [z +H | [H,] (66)

[ 4 e

Note for the static case when Q = 0. the impedance matrix [Z] = (K] and (K] is a singular
matrix which is not invertible, therefore equation (66) is not valid and a form of the
equation which does not require the matrix inversion of [Z] must be used. The following

equation is for the static case when 1= 0.

[Z] - [Zu] - [Zﬂ[l]{l +HZ]'[H.] (67)

o oe

Terms on the right side of equations (66 and 67) are pre-synthesized values and the left
hand side is the synthesized values. The matrix [Z] describes the modification to be made
for structural modification and can be negative if the modification to be made is the removal
of a structural modification, or it describes the new load path between two structures for
indirect coupling. The quantity [H,,] allows for the direct calculation of stress due to
externally applied loads in the synthesized structure. Stress frequency response could be
replaced with strain or other structural frequency response.




D. SUBSTRUCTURE COUPLING AND CONSTRAINT IMPOSITION

In this section. the development of the theory of direct substructure coupling using
boolean mapping matrices is shown. A formal discussion of the mapping matrix is
presented in the next section. The development of this theory also applies to constraint
imposition. Substructure coupling involves the joining of two or more separate
substructures where constraint imposition involves one structure, the coupled structure.
Constraint imposition is the application of two conditions on the synthesized connection
coordinates. The first condition being force equilibrium where the summation of forces on
a coordinate are equal to zero and the second condition being compatibility where the
displacement of the synthesized coordinates are equal to zero. Compatibility is interpreted
as the connection coordinate from the first substructure most have the same displacement as
the connection coordinate from the second substructure in order for them to be merged as a
single coordinate.

We extract the third row from equation (49) which is shown here again for reader

convenience.
0 ) HM Hat f
x(=|H, H, {,} (49)
X, H, H_ |
The third row of equation (49) is
() = [H £} + BN £)- (68)

We construct the conditions for equilibrium and compatibility to be imposed on the
connection coordinates. Figure 6 shows two connection coordinates from two
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substructures and Figure 7 shows the equilibrium and compatibility conditions applied to

the merged connection coordinate of the synthesized structure.

C
o «—»
1

I\J'()

Figure 6. Connection Coordinates from Two Substructures

> c
f:‘ﬁ- I'
c

Figure 7. Merged Connection Coordinate

Referring to Figure 7, we write the equilibrium equation for the pair of connection
coordinates shown in Figure 6 as

flefi=0 (69)

where the superscript denotes the substructure and the compatibility equation for the
merged connection coordinates is

x-x>=0. (70)

Converting equations (69 and 70) into the general equations which will encompass all the
connection coordinates. The general form uses the mapping matrix to relate each pair of
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coordinates. Noting that f* = ~f and x' = x’. we can write the general equations. The

general equation for the force equilibrium is

(£} =1m| 7} (71

where the vector l }:} represents the arbitrarily selected independent subset of the

connection coordinates. Noting that the mapping matrix [ Af] must remain constant for the

constraint imposition to hold, the general form of the compatibility equation is
[£)=[M]"{x} = {0} 7

where the vector {X.} represents the compatibility for the pairs of connection coordinates.

This vector is the zero vector.
The transformation equations that operate on equation (49) are derived from the general

equilibrium and compatibility equations and are of the form

Gilo wlir ™

ag I i 0 g
X X

Substituting equation (73 and 74) into equation (49)

{x,}’ [1 0 IH,, H“II 0 f,} 75
x 0 MJH, H_10 MJf (1)

(o
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noting that we are using the displacement frequency response only for derivation purposes.
and then performing matrix multiplication and simplifying equation (75). The resulting

{' 1. [ e r ; r }{ (}
X“J H’, M M H M _f: ) ( )

Extracting the second row of equation (76)

(%} = (B M)} + [ H M) w
and rewriting the second term ot the left hand side
[M"H_M)= (4]

and enforcing compatibility between pairs of connection coordinates,

(%} = (0} (72)
equation (70) becomes
(ot = [ M7]( £} +[A. ][ £}. (78)
Rearranging equation (78)
CAIARE Y TS (19)




and pre multiplying both sides of oquation (79) by [, ] vields
HERCRS PANTAY

Extracting the first row of equation (76)

(xf" = (HNA) + (M) 7]

and substituting equation (80) into equation (81)

() = (HA - (HM{E M A (1)
and substituting the known relation
{x} =[#)i£)

for the right hand side of equation (82)

[ 1) = (2 - [Ho Ml M7 L] (1)

(80)

(81)

(82)

(60)

(83)

and dividing both sides by {f.} yields the operative equation for direct substructure

coupling

CARCARCR Y ARV '8
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where the terms on the right hand side are frequency response values calculated from the
uncoupled structures and the left hand side is the frequency response values for the coupled
system.

Performing the same derivation presented above on the first row of equation (49),

yields the operative equation for direct substructure coupling with coupled system stress

[ill] =[z]_[l:1”]w CARCYLE (85)

ee

response.

E. DIRECTED GRAPHS AND MAPPING MATRICES

The theory of direct substructure coupling requires mapping matrices to invoke the
constraints of equilibrium and compatibility. The theory developed in the preceding section
demonstrated how the mapping matrix represented the conditions of equilibrium and
compatibility on the synthesized connection coordinates. The mapping matrix can be
constructed from a graph which represents the connectivity that is established when
substructures are coupled through synthesis. The general formulation of the mapping
matrices using directed graphs presented below is taken directly from reference {3).

The use of equation (85) to perform substructure coupling requires the construction
of the mapping matrices, [M]. As was developed in the preceding section, each column
of [M] represents a statement of the equilibrium and compatibility which is enforced for
each pair of connection coordinates being coupled. We will now monstrate that [M}

can be constructed from a graph which is drawn to represent the connectivity to be
established through the synthesis.
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Figure 8. Substructure Couplings and Directed Graphs

Consider the coupling depicted on the left in Figure 8. Substructure “A™ is being
coupled to substructure “B,” through, say, a single pair of connection coordinates, x
and x. The coupling of this pair of coordinates creates load path “L." To construct the
mapping matrix for this connection “I,” we arbitrarily assign a value of “1” to the
connection coordinate of substructure “A™ and a value “-1™ to the connection coordinate
of substructure “B.” The mapping matrix for this connection is

"["
1 "A"
(MI= - |-

Considering now the more complicated coupling on the right of Figure 8, and also
acknowledging that in general two substructures are coupled using more than one pair
of connection coordinates, we may construct the mapping matrix. Here, the
connections “I”, “J”, and “K” consist of more than one pair of connection coordinates
each; these are, in general, sets of connection coordinate pairs. The mapping matrix is

"l" "J!l "Kﬂ
I 0 1I{ "A"
[M]=|-I I 0] "B"
0 -1 -1 "C"

where each column contains plus/minus identity matrices whose elements correspond to
the coupling to be established between each pair of connection coordinates. For
example, in column 2 of the above mapping matrix, all connection coordinates
associated with substructure “A” are assigned a “1” (i.e. [I]) and they are to be coupled
to their in substructure “C” which have been assigned a “-1” (i.e. —{[I}).
The coupling of these coordinates constitutes the set of load paths denoted as “J”.

The directed graphs and their boolean mapping matrices provide a means of
organizing complex couplings, and also provide a for the i
implementation of the synthesis, i.e. equation (85). Of course, care must be exercised
to mnsure that all matrices in equation (85) are appropriately partitioned.
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An example of using directed graphs to generate the mapping matrix is presented here.
Figure 9 shows substructure coupling and the associated directed graph for the load paths

created when connection coordinates are coupled through synthesis

o—0

1 2

A
. —» , 0
1 @—>0:22:04—@:
A 9,40

Figure 9. Substructure Coupling Using Directed Graphs

The upper portion of Figure 9 shows two nodes from two substructures that are to be
coupled and the lower portion of Figure 9 shows that each node has three degrees of
freedom which correlates to three coordinates. Each coordinate of node 1 is synthesized to
its corresponding coordinate of node 2. The synthesis. of the these coordinates creates load
paths "A", "B", and "C". Invoking the constraints of equilibrium and compatibility, the
mapping matrix is constructed. Using the equilibrium equation presented earlier

(£} =[mi{ £} (1))

where the vector { £} is the complete set of connection coordinates from both substructures
and the vector l;‘cl is the arbitrary selected subset of connection coordinates to be retained

pertaining to the selected substructure. From the equilibrium equation, we get the
relationship between the two subsets of connection coordinates, £ = -£.. If we arbitrarily

select the connection coordinates from substructure 1 as our set to retain, then we assign a
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1 to those coordinates and from the relationship shown above, we assign a -1 to the

connection coordinates of substructure 2. The mapping matrix for the system in Figure 9 is

determined using equation (71)
- A" "B *C
0t o 0]
2 10 1 0,
3(_jo 0t (2( (86)
1 -t o oll’!
2| lo -t o
3 [o 0 -1
where
‘1T 0 0]
0 1 0
0 0 1
[M] = -l ...... 0 ..0
0 -1 0
(0 0 -1

The upper partition of equation (86) corresponds to arbitrarily selected coordinates of
substructure 1 and the lower partition corresponds to connection coordinates of
substructure 2. The mapping matrix relates how theses coordinates are connected.

F. MODIFICATION AND INDIRECT COUPLING USING MAPPINC
MATRICES
This section will show the development of the operative equation of synthesis for
indirect substructure coupling and structural modification. There are two classes of
synthesis for which mapping matrices are used. The first class is direct substructure
coupling which was discussed in Section C and the second class is for indirect substructure
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coupling and structural modification. This class of synthesis again uses interconnection
impedance to synthesize two substructures or modify an existing structure. The mapping
matrix contains the connectivity information corresponding to the equilibrium of the
interconnection impedance and the equilibrium of the modification. The interconnection
impedance for this method of synthesis has the requirement that the structural element used
as an interconnection impedance must be described without mass terms. The
interconnection impedance is a function of stiffness and damping. This method is well
suited for the synthesis of visco-elastic isolators between substructures.

Visco-elastic isolators are modeled as a combination of a spring and dash pot damper.
The isolators are treated as having proportional viscous dampers or as having frequency
dependent viscous dampers. A special note here is that adding proportional damping to just
the isolators constitutes non-proportional damping for the complete synthesized structure.

We begin the derivation with the description of the structural system, equation (49).

c H, H, ¢
x.(=|H, H, {,} (49)
xt H(‘t Hﬁ.‘ ‘

The transformation matrices which operate on equation (49) and lead to the operative
equation for indirect coupling and modification using mapping matrices are

{);}’[; —:fz]{f} (87)

and
o 1 0 0o
x,t =0 I 0 Qx, (88)
] 10 0 Mllx
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The impedance introduced in equation (87) is a reduced system impedance that is massiess

and is of the form

+

[2] = M2 M)

(89)

Using the displacement frequency response of equation (49) and substituting the

transformation equations, equation (87 and 88) into equation (49)
GHelo wli s -walti)
) 0 M'IH, H_|0 -MZ]|x
and simplifying equation (90) yields

(x, }’[ H, -HMZ ]
X MH, -MHMZ

(3

i)

Extracting the second row of equation (91)

(&) =[M B )£} -|M H.MZx)

and rewriting equation (92) yields

(5] +[M H MZ)|%) = [M"H (1)

Equation (93) is rewritten so that the left hand side is a product of sums

a1

(90)

9N

(92)

(93)




[1+ M'H MZ|(x ) <[M"H,]if). (94)
Pre multiplying both sides of equation (94) by [1+ M"H,.M2| " and simplifying yields
(&) =1+ M 5 m2] (M8} x). (95)
Extracting the first row of equation (91)
EXIUAIPARILA 1) b4Eo (96)

and substituting equation (93) into equation (96)

() = (B + (B AMYZ] s M7 2] [ 1) 1) t

and using the definition of the frequency response
EARI LM T (60)
to substitute into the left hand side of equation (97) yields
(6] = (8] - [H MY 2] 1+ M H M2] [M7] A (98)
Noting that

(M M]|=[A,]
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we will simplify the third term of equation (94). Extracting the following portion

[Z]1+ A.2]

factoring the inverse term
-1

2+,

and then simplifying yields

AN

Substituting the above simplified portion back into equation (98) yields the final operative
equation, equation (99), for indirect synthesis and modification using mapping matrices

CARICARA T FaRy - ANId 1A (99)

where the terms on the right hand side are frequency response values calculated from the
uncoupled structures and the left hand side is the frequency response values for the coupled
system.

Performing the same derivation presented above on the first row of equation (49),
yields the operative equation for indirect substructure coupling and modification using
mapping matrices with coupled system stress response.

T[] e Tbns oo
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IV. NUMERICAL EXAMPLES

The following numerical examples are provided to give a detailed explanation for each
type of synthesis. The results of each example are presented graphically and are compared
with the traditional finite element method (FEM) solution.

Three types of damping that are addressed in the numerical examples are:

Type (1): Proportional structural damping of the form:

[C]=alk]+B[M] (1
Type (2): Proportional viscous damping of the form:
[C]=alK] (2)
Type (3): Frequency-dependent viscous damping of the form:
[C1=[Ce™] (3)

Type (1) damping is used in adding damping to a substructure, and Types (2) and (3) are
used in adding damping to the isolators which are a combination of spring and dampers.
The system impedance matrix Z for these damping types are:

Type (1): [Z(Q)] = [ K] - Q*[M] + AC], where [C] = a[K] + B[ M]. (100)
Type 2): [Z(Q)] = [K] - Q*[M]+ K{C], where [C]=a[K]. (101)
Type (3): [Z1Q)] = [ K] - Q*[M] + {CAQ)], where [C]=[C,e™]. (102)




A. EXAMPLE (1): DYNAMIC INDIRECT COUPLING
Consider the structures shown in the following figures. The structure shown in Figure
1.1 will be directly assembled by the finite element method in order to compare a traditional

calculation of the frequency response with that synthesized from the substructures shown

in Figure 1.2.
/ 1.23 356 739 10.11.12 \
f —T T §
71 2 3 4 §
3 element beam

Figure 1.1. Structure Analyzed Using Traditional FE Procedures.

/ 1.2.3 156 1.2.3 4.5.6 123 456

/ | L ] L §

ﬁl 2 1 2 1 2 %
Structre | Inserconnection impedance z Structure 2

Figure 1.2. Synthesis of Structure

The total structure shown in Figure 1.1 is synthesized from Structure 1 and Structure 2
through the interconnection impedance Z or “new load path.” For this example, the
following beam parameters will be used:

Young's Modulus E = 30.0 x 10° psi

Area moment of inertia I = 0.1666 x 10 in*

Cross-sectional area A = 0.2 in’

Weight density WTD= 0.2832 Ibffin’

2 percent proportional structural damping o = 0.02

Beam element lengths = 24 in

Proportional structural damping is applied only to structures 1 and 2, and the

interconnection impedance Z is undamped. The damping applied in this example was
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arbitrarily selected. The synthesis method is not limited to proportional structural damping,
any arbitrary linear frequency dependent damping can be used. Referring to Figure 1.2, the
system of structures 1 and 2 and the interconnection impedance z are synthesized in the
frequency domain to yield exact results as the FEM direct assembly method. The general

synthesis equation for dynamic indirect coupling is

(] =[H.]-[H.Jz" + H.]'[H.] (66)

Note again that structures 1| and 2 have proportional structural damping and the
interconnection impedance Z is undamped. The general procedure for performing the
synthesis is as follows.

The mass and stiffness matrices [ K] and [ M] for the three substructures (including the
middie beam analytically treated as an interconnection impedance) are generated using
traditional FEM. Since each structure is comprised of only one beam element, the elemental
matrices with boundary conditions applied are the substructure global matrices. The
impedance matrix is calculated for each structure as |

[z]=[k,]-Q1M]
[z] =(&,]- @°[m,] . (103)
[2.]=(k.]- 0[]

Note that | K, | and [ K, ] are complex-valued and [K,] is real-valued. The FRF matrix [ H]
for structures 1 and 2 is calculated by inverting the impedance matrix [Z]. We now have
[H], [H,] and [Z.]. Referring to the general synthesis equation provided above, the
matrices [H,.], [H..], [H..], and [H,] are generated by assembling [H,] and [H.] by
appropriate partitioning. [#_] is the combination of [H,] and [H,] and is partitioned by




internal and connection coordinates. Referring to Figure 1.2, after the boundary conditions
are applied, coordinates 4, 5. and 6 are renumbered 1. 2, and 3 respectively for structure 1.
Structure 2 is unaffected since the boundary conditions remove coordinates 4. 5. and 6 and

coordinates 1. 2, and 3 remain the same. The impedance z is unchanged. [H_] is

partitioned in the following manner

H(i,i) Hl(ic)
[H"']S[H(c.i) H(c,c):l

where the subscript “i” represents the set of internal coordinates and “c™ represents the set
of connection coordinates. A more detailed representation is

i i C, c,
il Hl (il ’il ) 0 Hl (il ’Cl) O

(H = b 0 H,(inis) 0 H,y(iy,c,)
“ alHck) 0 [Hfc.q) 0

G 0 112("‘2".‘.’) 0 HQ(C-_,,C-_.)

In this representation “il” denotes the internal coordinates of structure 1 and “c1” denotes
the connection coordinates of structure 1. The same principle follows for “i2” and “c2”
relating to structure 2. The partitioning for Hec, Hee, and Hee are

¢ G
i) Hi.c) 0 G <
b 0 H,(iy,c,) G [Hl(cl’cl ) 0 J
H_|= Hcc =
[ «] G Hx(cn‘&) 0 [ ] G 0 Hy(c;.c,)

G 0 Hz(‘-’v"z)
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L I ¢ ¢,

_ ¢ H(c.i) 0 H(c.c) 0
[H’?] Cz[ 0 H(c,.i.) 0 H:(Crc:J

In this example there are no internal coordinates. The connection coordinates for structure |
are (1, 2, 3) and for structure 2 are (1. 2, 3). With the appropriate partitioning complete,

the synthesis can now be performed. Using the indirect coupling relation
[H.] =[H.)-[H]z" + 2] '[A.], (66)

structure | is synthesized to structure 2 through the "new load path” Z. [H”]. is the

synthesized FRF relation representing the exact dynamics of the total structure. Finally the
FRF relation is calculated over the frequency range 0.1 - 65 Hz and plotted in the figures

which follow.

FRF at coordinate of interest db

_zm ' 4 . . .
0 10 20 30 40 50 60
Frequency Hz

Figure 1.3. Plot of Hee (2,2) from Synthesis
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FRF at coordinate of interest db

0 10 20 30 40 50 60
Frequency Hz

Figure 1.4. Plot H (2,2) from Traditional FE Calculation

Figures 1.3 is a plot of the synthesized [ .| matrix, element (2,2), and Figure 1.4 is

the same FRF element calculated using the traditional FE procedure. The FRF element
plotted in both figures corresponds to coordinate 5 of Figure 1.1, a lateral motion
coordinate. Notice both plots are identical, demonstrating that the synthesis procedure
provides an exact solution for the synthesized system dynamics. The figures show the first
four damped natural frequencies. The FRF plots show the magnitude of the response at
coordinate S due to a unit excitation of varying frequency at coordinate 5.

B. EXAMPLE (2): DYNAMIC DIRECT COUPLING
Consider the following figures. The structure shown in Figure 2.1 will be directly
assembled using FEM for the purpose of comparing with the results obtained by

synthesizing structures 1 and 2 of Figure 2.2.
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Figure 2.1. Hull-Cradle Structure Analyzed by Traditional FE Techniques
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Figure 2.2. Synthesis is Used to Directly Assemble Substructures

Structure 2 will be coupled to structure 1 at coordinates 10, 11, 12, 13, 14, 15, 31, 32, 33,
34, 35, and 36. These coordinates are the connection coordinates and the remaining
coordinates are internal coordinates. Coordinates 1, 2, 3, 13, 14, 15, 16, 17, 18 19, 20,
and 21 of structure 2 are connection coordinates and the remaining are internal. The
following beam element data will be used:

Young's Modulus E = 30.0 x 10° psi

Area moment of inertia I = 0.02083 in*

Cross-sectional area A =1 in
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Weight density WTD = 0.2832 Ibf/in'
Proportional structural damping (1%) a = 0.01
The proportional structural damping was arbitranly selected and is applied to both

structures. The general equation for dynamic direct coupling is

AECARER Y CARCHEA] (84

In this equation, M is the boolean mapping matrix which is used to establish the
connectivity between the two substructures for synthesis. The mapping matrix is
determined by the connectivity i.e. what is connected to what and by imposing the
equilibrium and compatibility relations associated with each pair of coordinates. We can
define the mapping matrix by {f} =[M]l.f(l.Whete {£} is a vector of all the connection

coordinates of both structures and { f ‘I is the arbitrarily selected independent subset of the

connection coordinates relating to one of the substructures. We have selected the
connection coordinates of structure 1 as the arbitrary subset of connection coordinates. The
mapping matrix [ M| is a matrix of size (24 x 12) and is depicted as:
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We will calculate the FRF matrix [H] for both substructures. First the [K| and [M)]
matrices are generated for each substructure. K| and [K.| are both complex since
proportional structural damping was applied to both structures; again this damping is
arbitrary. | K.] and [K.] are of the form [K]=[K + jak]. We next form the impedance
matrix for each substructure. The impedance matrix is of the form [ Z] = [K] - Q’[ M]. With
the impedance matrix generated for each substructure, the FRF matrix H can be calculated
by inverting the impedance matrix. This process is done at each frequency of interest.

These FRF matrices are required in order to couple the two structures together to form the
structure in figure 2.1. Referring to the synthesis equation above, the matrices [H.,,],

[H.), [H.], and [H,] are formed by combining [H,] and [H,] by appropriate

partitioning. The partitioning is shown below.

j I ¢ ¢;
if HGi) o] | Hi.q) (0]
(H.]- L1 o] H,y(iy,i,) (0] H,y(iyc,)
“ ¢ H](Cpl] [0] 1("1""1 [0]
ol [0] Hy(cy,iy) (0] H){c,.c,)

i [ ¢ c,
¢|Hfc,i) [0] H(c,c) (o]
[H“]-cz[ [0] cz,zz)l (0] Hz(cz’cz)J

C C
1 2 ¢ ¢,

G| Hika) (0] o
. . cne) (0] ]
A e e L e

G [o] Hz(czvcz)
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Referring to Figure 2.2, “i1~ denotes the set of internal coordinates of structure I which are
1.2.3.4,5.6.7.8,9,16. 17. 18. 19, 20. 21. 22, 23, 24, 25, 26. 27. 28. 29, and 30.
“c1” denotes the set of connection coordinates of structure 1 which are 10, 11, 12, 13, 14,
15. 31. 32, 33, 34, 35. and 36. “i2" denotes the set of internal coordinates of structure 2
which are 4. 5,6, 7, 8,9, 10, 11, and 12, "c2" denotes the set of connection coordinates
of structure 2 which are 1. 2, 3. 13, 14, 15, 16. 17. 18, 19. 20. and 21. With the
appropriate pastitioning complete, the synthesis of structure | to structure 2 can be

performed using the direct coupling relation

(1] =815 m]a,] (mT[8,]. (84)

[H“]. is the synthesized FRF relation which is the combination of both structures. The

synthesis is done over the frequency range of interest and plotted in Figure 2.3. The
frequency range for this example was 0.1 to 10.0 Hz. Figure 2.4 is the solution from
traditional FE calculations included for direct comparison. Both plots are identical.

200 3 " T T

FRF at coordinate of interest dB

Frequency Hz

Figure 2.3. Plot of Synthesized He(8,8)
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FRF at coordinate of interest dB
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Frequency Hz

Figure 2.4. Plot of H (8,8) from Traditional FE Calculations.

Figures 2.3 and 2.4 are the plots of the FRF at element (8,8) from the synthesized and FE
[ H] matrices. This element corresponds to the lateral motion coordinate 8 of Figure 2.1.
Notice both plots are identical and both show the first seven damped natural frequencies.
The plots show the magnitude of the response of unit amplitude at coordinate 8 due to a
unit excitation at varying frequency at coordinate 8. As the frequency of excitation
approaches the damped natural frequency, the response approaches infinity.

C.EXAMPLE (3): STRUCTURAL MODIFICATION (REMOVAL OF A

BEAM ELEMENT)

Consider the following figures. Figure 3.1 depicts a combined hull-cradle structure
which will be directly assembled by traditional FE procedures. Note that the structure in
Figure 3.1 has asymmetric reinforcing trusses. The synthesis methodology will be used to
arrive at the structural configuration shown on the left of Figure 3.1 by removing the beam
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shown on the right of Figure 3.2. The FRF calculated trom the FE model (Figure 3.1) will

be compared with that calculated using synthesis.

25227 22 24 ‘9202t
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Figure 3.1. Final Hull-Cradle Configuration
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Figure 3.2. Synthesis Used to Remove a Beam Element

Referring to Figure 3.2, structure 1 will be modified by removing the beam, structure 2,
located between nodal coordinates 10, 11, 12, 43, 44, and 45. The following beam element
data will be used:

Young's Modulus E = 30.0 = 10° psi

Area moment of inertia I = 0.02083 in*

Cross-sectional area A=1 in
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Weight density WTD = 0.2832 Ibffin'
1 percent proportional structural damping a = 0.01
The proportional structural damping was arbitrarily selected and is applied to both

structures. The general equation for dynamic indirect coupling/modification is

(H.] =[H.]-[H]H. - 2] [H.]. (66)

Note that the sign in the term [H,, ~Z"'|" is opposite from that in the original indirect
coupling equation. This is because we are removing the beam element from the structure
instead of synthesizing it to the structure. The first step is to generate the [ K] and {M]
matrices for structure 1 and structure 2. The [ K] matrices for both structures are complex
since proportional damping was applied. They are of the form [K]=[K + jaK]. Next we
form the impedance matrices for each structure, [ Z] = [K] - Q’[ M]. This method requires
the calculation of the FRF matrix [ H] only for the structure to be modified. structure 1 of
Figure 3.2. The impedance and the FRF matrices are calculated at the frequency of interest.
Once the FRF and impedance matrices are generated, we are ready to partition the FRF
matrix. The matrices [H_,], [H..], [H..], and [H_,] are formed by partitioning [H,] . The
partitioning is shown below.
oo i G

’i, H(i,i,) I H(i.c) -c , .
)| LM (- g | )

G

i | Hi,c) f
)| )] (.0 ef o)
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The connection coordinates for structure 1 are 10, 11, 12, 43, .+ and 45. The rest are ali
treated as internal coordinates. With the appropriate partitioning of {#,]| completed. the
removal of the beam from the structure can now be completed by using the correct form of
the indirect coupling relation mentioned above. [H,,| is the synthesized FRF relation
which reflects the removal of structure 2 from of structure 1. This modification is
calculated over the frequency range of interest and plotted in Figure 3.3. The frequency
range for this example was 0.1 to 7.0 Hz. Figure 3.4 is the solution from the traditional
FE procedure and is provided to allow direct comparison of the two solutions. Both plots
are identical.

8

FRF at coordinate of interest dB

Frequency Hz

Figure 3.3. Plot of Hee(11,11) as Calculated Using Synthesis
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FRF at coordinate of interest dB

0 1 2 3 4 5 6 7
Frequency Hz

Figure 3.4. Plot of H(14.14) Calculated Using Traditional FE Procedures

Figures 3.3 and 3.4 are the plots of the FRF corresponding to the lateral motion coordinate
14 of Figure 3.1. A special note here is that the element (14,14) of the FRF generated by
FEM is the coordinate 14, which corresponds to the element (11,11) of the FRF generated
by the indirect coupling relation. The reason for this is because of the partitioning. [H,,|  is
partitioned with internal coordinates first followed by the connection coordinates. Care is
required here to ensure the coordinate of interest is actually being used. Notice both plots
are identical and show the first six damped natural frequencies. The plots show the
magnitude of the response at coordinate 14 due to a unit excitation at varying frequency at
coordinate 14. As the frequency of excitation approaches the damped natural frequency, the
response approaches infinity.
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D. EXAMPLE (4): STRUCTURAL MODIFICATION (ADDITION U A
BEAM)
Consider the following figures. The FRF for the structure shown in Figure 4.1 will be
calculated by traditional FE procedures to compare with that calculated using the synthesis
procedure to add the beam element, as shown in Figure 4.2,

25 26 27 22 24 192021
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Figure 4.1. Hull-Cradle Structure Analyzed by Traditional FE Techniques.
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Structure 1 Structure 2
Figure 4.2. Synthesis is Used to Add the Beam Element
Referring to Figure 4.2, structure 1 will be modified by adding the beam, structure 2, at the
nodal coordinates 10, 11, 12, 43, 44, and 45. The following beam element data was used:
Young's Modulus E = 30.0 x 10° psi

Area moment of inertia I = 0.02083 in*
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Cross-sectional area A = 1 in
Weight density WTD = 0.2832 Ibffin’
Proportional structural damping (1%) a = 0.01
The proportional structural damping was arbitrarily selected and is applied to both

structures. The general equation for dynamic indirect coupling/modification is
[A.] =(H.)-[H]z" + 8. [4.). (66)

The first step is to generate the [ K] and [ M] matrices for structure 1 and structure 2. The
[K] matrices for both structures are complex since proportional damping was applied.
They are of the form [K]=[K + jaK]. Next. impedance matrices are formed for each
structure as [Z] = [K] - Q’[M]. This method requires the calculation of the FRF matrix
[ H] only for the structure to be modified, structure 1 of Figure 4.2. The impedance and the
FRF matrices are calculated at the frequency of interest. Once the FRF and impedance
matrices are generated, partition of the FRF matrix is required. The matrices [H.|, [H..],
[H..], and [H.,] are formed by partitioning | ;] . The partitioning is shown below.

A
[ B | Hfhe)
B Ao R
WLH(c,.i) | Hig,c)

4 ¢
] [H.]= cx[”n(%ix) | Hx(cxvcl)]

G
P G
)= By e

The connection coordinates for structure 1 are 10, 11, 12, 43, 44, and 45. The rest are all
treated as intemal coordinates. With the appropriate partitioning of [H,| completed, the
synthesis of the beam to the structure can now be completed by using the correct form of




the indirect coupling relation mentioned above. [H. | is the modified FRF relation which

is the combination of structure | and the added element. structure 2. The synthesis is
performed over the frequency range of interest and plotted in Figure 4.3. The frequency
range for this example is 0.1 to 8.5 Hz. Figure 4.4 is the solution from a traditional FE

calculation for direct comparison of the two solutions. Both plots are identical.

FRF at coordinate of interest dB

Frequency Hz

Figure 4.3. Plot of Synthesized FRF Element Heg(8.8)
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100 - _ _ : -

FRF at coordinate of interest dB
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Figure 4.4. Plot of H (8,8) Calculated Using Traditional FE Procedures.
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Figures 4.3 and 4.4 are the plots of the FRF corresponding to the lateral motion coordinate
8 of Figure 4.1. A special note here is that the element (8.8) of the FRF generated by FEM
corresponds to the coordinate 8, as does the element (8.8) of the FRF generated by the
indirect coupling relation. This is different from the previous example. The reason for this
is because of the partitioning. [H,,| is partitioned with internal coordinates first followed
by the connection coordinates. Care is required here to ensure the coordinate of interest is
actually being used. Notice both plots are identical and show the first six damped natural
frequencies. The plots show the magnitude of the response at coordinate 8 due to a unit
excitation at varying frequency at coordinate 8. As the frequency of excitation approaches
the damped natural frequency, the response approaches infinity.

E. EXAMPLE (5): INDIRECT COUPLING WITH ISOLATORS

Consider the following figures. The FRF for the structure shown in Figure 5.1 will be
calculated using traditional FE procedures to compare with the FRF calculated using the
synthesis method. The synthesis will combine the various components shown in Figure
5.2. In this figure, the hull model (structure 1) will be coupled to the cradle model
(structure 2). Note that this example demonstrates that the synthesis procedure easily and
exactly treats problems with non-proportional damping, a truly unique feature of the
methodology.
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Hull-Isolator-Cradle Structural System.
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Figure 5.2. Total Hull-Isolator-Cradle System is Synthesized from Components.
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Referring to Figure 5.2, structure 1, structure 2, and four spring-damper isolator sets will
be synthesized together to form the svstem in Figure 5.1. Each isolator set consists of three
spring-damper isolators, ore for each connection coordinate. The connection coordinates
for structure 1 are 10, 11, 12, 13, 14, 15, 31, 32, 33, 34, 35, and 36. The remaining




coordinates are internal coordinates. Coordinates 1. 2. 3. 13, 14. 15, 16. 17, 18 19, 20,
and 21 of structure 2 are connection coordinates and the remaining are internal. For this
structural synthesis method, the spring-damper isolators are treated as a lumped system
(with no physical dimensions) installed at the connection coordinates. The connection
coordinates do not merge into one but are joined by way of the isolators. The following
beam element data will be used:

Young's Modulus E = 30.0 x 10° psi

Area moment of inertia I = 0.02083 in*

Cross-sectional area A =1 in

Weight density WTD = 0.2832 Ibffin’

Proportional structural damping (2%) o = 0.02

Proportional viscous damping (2%) 8 =0.02

Isolator spring constant £ = 25 lbs/in

The proportional structural damping was arbitrarily selected and is applied to both

structure 1 and 2 of Figure 5.2. The proportional viscous damping used for the damper in
the isolator is arbitrary and is not limited to being proportional but could be any frequency
dependent function. For our example the isolator is of the analytic form [k + jQBk| where
j=+~T1. Recalling the impedance relation [2(Q)]=[K]-Q’[M]+ jC] , [C] is the
proportional viscous damping, | Bk]. The operative equation for indirect coupling with

mapping matrices is
CARICARCA T bRy AR A} (99)

where [ 2] = [M][ZIM]" and [A..]= [M)'[ &, ] M.




Note that [2] reduces to [/{(k + jQBk) and its size is ( 12 x 12 ). The boolean mapping

matrix [M] is determined the same way as explained in example two. The connection
coordinates for structure | and structure 2 are listed above. We can define the mapping
matrix by |f} = [M]{fc l . Where | £} is a vector of all the connection coordinates of both

structures and [ f‘ is the arbitrarily selected independent subset of the connection

coordinates relating to one of the substructures. We have selected structure 1 as the
arbitrary subset of connection coordinates. The mapping matrix [ M] is a matrix of size (24

x 12) and is

G

The FRF matrix [ H] for both substructures is required. First the [ K] and [ M] matrices are
generated for each substructure. [K,] and [K,] are both complex since proportional
structural damping was applied to both structures, again this damping is arbitrary. [ X, | and
[K,] are of the form [K]=[K + jaK]. We next form the impedance matrix for each
substructure. The impedance matrix is of the form [Z] = [K] - Q’[ M]. With the impedance
matrix generated for each substructure, the FRF matrix H can be calculated by inverting the
impedance matrix. This process is done at each frequency of interest. Now with the FRF
matrix for each substructure calculated, we are ready to synthesize the two structures and
isolators together to form the structure in Figure 5.1. Referring to the synthesis equation
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above. the matrices [H.]. [H..]. [H..]. and [# ] are formed by combining [ H,] and [ H.]

by appropriate partitioning. The partitioning is shown below.

i i ¢ ¢,
(H,]- i, [O] H,(iy.i [0] H(i..c.)
“1 | Hlc.i [0] H{c.c) [0]
H.(c,.i,)

. [0] [0] Hc,.c.)
i i ¢, ¢

[H la(,'x {Hl(clvil) [0] l Hl(cl*cl) [O] }

el [0 Hfeh)| 0] Hie.c)

G G c c
i Hig) (0] o[ Hie ?
, . _al i xscx) (0] ]
[Hﬂ.'] -" ol Alh.c) [H“] CZ[ [0] Hy(¢;.c,)

G| Hlc.q) (0]
G (0] Hyc,,c,)

Referring to Figure 5.2, “i1” denotes the set of internal coordinates of structure 1 which
include 1, 2, 3,4,5,6,7, 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 )29,
and 30, “c1” denotes the set of connection coordinates of structure 1 which include 10, 11,
12, 13, 14, 15, 31, 32, 33, 34, 35, and 36, “i2” denotes the set of internal coordinates of
structure 2 which include 4, 5, 6, 7, 8, 9, 10, 11, and 12, “c2” denotes the set of
connection coordinates of structure 2 which are 1, 2, 3, 13, 14, 15, 16, 17, 18, 19, 20,
and 21. With the appropriate partitioning complete, the synthesis of structure 1 to structure
2 can be performed using the indirect coupling relation




(4] =[H.)- [0 Mz &) (MY [H ). (99

Structure | is synthesized to structure 2 by the 1solators or load paths described by [Z]
[H] is the synthesized FRF relation which is the combination of both structures and
isolators. The synthesis is done over the frequency range of interest and the response is
plotted in Figure 5.3. The frequency range for this example was 0.1 to 8.0 Hz. Figure 5.4

is the solution from traditional FE calculations for direct comparison. Both plots are
identical.
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Figure 5.3. Plot of He(8,8) for Synthesized System.
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Figure S5.4. Plot of H(8.8) from Traditional FE Calculations.

Figures 5.3 and 5.4 are the plots of the FRF at element (8,8) of the synthesized [H,,].and
traditional FE [ H] matrices, respectively. This element (8.8) corresronds to the lateral
motion coordinate 8 of Figure 5.1. Notice both plots are identical and show the first five
damped natural frequencies. The plots show the magnitude of the response at coordinate 8
due to a unit excitation at varying frequency at coordinate 8. As the frequency of excitation
approaches the damped natural frequency, the response approaches infinity.

F. EXAMPLE (6): INDIRECT COUPLING WITH FREQUENCY
DEPENDENT ISOLATORS
In this example, we demonstrate the capability of synthesizing components with
frequency dependent properties. Specifically, we will repeat the preceding example using
isolators that have frequency dependent damping. Consider the following figures. The FRF
for the structure shown in Figure 6.1 will be calculated using traditional FE procedures to




compare with the FRF calculated using the synthesizé method. The components to be

synthesized are shown in Figure 6.2.
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Figure 6.1. Traditional FE Procedures are Used to Calculate FRF for the Combined
Hull-Isolator-Cradle Structural System
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Figure 6.2. Total Hull-Isolator-Cradle System is Synthesized from Components.

In Example (5), the isolators were treated as having proportional viscous damping. This
example will use viscous damping which is frequency dependent. The methodology is the
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same as in the previous example and will not be repeated here. The discussio:: here will

focus on the only difference which is the damping applied to the isolator. Referring to the
general impedance relation |[Z(Q)]=[K]-Q’[M]+ C] . [C] is now a function of Q.

The equation is now of the form

[zt)] = K] - Q°[M]+ jolaQ)]. (104)

The damping applied to the isolator was arbitrarily selected as an exponential decay
dependent on frequency. The form of the function used is

C=Ce ™ (3)

(1

where C, =k =25 Ib+sfin and a =0.1.
The damping function is plotted in Figure 6.3.
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Figure 6.3. Plot of Isolator Damping Versus Frequency

The reduced impedance in this example is now of the form [2] =[Ifk +jQke™”) and the

size of the matrix is (12 x 12).
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Structure | is coupled to structure 2 with isolators described by [Z] [H.,] is the

synthesized FRF relation which is the combination of both structures and isolators. The
synthesis is done over the frequency range of interest and plotted, Figure 6.4. The
frequency range for this example was 0.1 to 8.0 Hz. Figure 6.5 is the solution from

traditional FE calculations provided for direct comparison. Both plots are identical.

FRF at coordinate of interest dB
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Figure 6.4. Plot of Hee(8,8) Calculated Using the Synthesis Method.
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Figure 6.5. Plot of H(8,8) Calculated Using Traditional FE Procedures.
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Figures 6.4 and 6.5 are the plots of the FRF at element (8.8) calculated using the
synthesized [H,,].and FE [ H] matrices. respectively The FRF element (8.8) corresponds
to the lateral motion coordinate 8 of Figure 6.1. Notice both plots are identical and show
the first five damped natural frequencies. The plots show the magnitude of the response at
coordinate 8 due to a unit excitation at varying frequency at coordinate 8. As the frequency
of excitation approaches the damped natural frequency, the response approaches infinity.

A comparison of the compute time required for the synthesis versus traditional FE
calculation. The actual computing time and the number of floating point operations (flops)
for each method is provided:

FEM direct assembly: time - 25876 sec or 431.3 mins

FLOPS - 1.49 x 109
FRF synthesis: time - 1167 sec or 19.45 mins

FLOPS - 517.2 x 106
This clearly demonstrates that synthesis by FRF is more efficient and well suited for design

analysis.

G. EXAMPLE (7): STRESS CALCULATION BY DYNAMIC INDIRECT

COUPLING

Consider the structures shown in the following figures. The structure shown in Figure
7.1 will be directly assembled by the finite element method and the peak bending stress
frequency response will be calculated in beam element #4 whose location is shown by the
dashed line A--A. The same structure will be synthesized using the frequency domain
method and the same stress frequency response will be calculated. The FRF results
calculated by the synthesis methodology, shown in Figure 7.5, will be compared with that
calculated by traditional FEM, Figure 7.6. Again, the structure (specifically, its FRF) as
shown in Figure 7.1 will be obtained by synthesizing structure | and the modification,
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structure 2, as shown in Figure 7.2. Note that a stress frequency response allows the direct
calculation of stress due to the application of a force or moment. The equation for

determining synthesized stress is shown as equation (105).
(o(Q)) =[H,.(Q)] (AQ). (105)

where the synthesized stress FRF matrix [H,(Q )]‘ reflects the total structure, including
any modifications or couplings.
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Figure 7.1, Structure Analyzed for Peak Bending Stress
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Structure 1 Structure 2

Figure 7.2. Components of Synthesized Structure
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Referring to Figure 7.2, structure | will be modified by adding the beam. structure 2 at the
nodal coordinates 4, 5, 6, 10, 11, and 12. The following beam element data will be used:

Young's Modulus E = 30.0 x 10° psi

Area moment of inertia [ = 0.02083 in*

Cross-sectional area A = | in

Weight density WTD = 0.2832 Ibffin’

Distance from beam center to outer most fiber ¢ = 0.05 in

For this example, damping was not used, but the methodology is able to handle all

forms of linear damping as described earlier. The general equation for synthesizing stress
information by dynamic indirect coupling/modification is

(H,.] =[#.]-[H. ]z + 5] [H.). (66)

This equation is the first row extracted from the relationship shown as equation (12). Note
that the synthesis of stresses can be done at the same time as the synthesis of
displacements. We are here demonstrating just the synthesis of stress information.

The first step is to generate the [ K] and [M] matrices for structure 1 and the beam
element shown in Figure 7.2. Next the impedance matrices are generated for each structure
as [Z(Q)] = [K] - Q*[M]. Since we are modifying structure 1, the FRF matrix [ H] is only
calculated for structure 1 of Figure 7.2, The complete process as described here is
performed over the frequency range of interest. There is basically two sections to this
process: (1) the partitioning of the [ H] matrix into its required sub matrices for the general
synthesis process and (2) the extraction of the information from the [ H] matrix and the
processing of that information to calculate the stress frequency response.
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Referring to Example (4). we partition [ H| for structure | in the same manner. For the

synthesis of stress frequency response only. only the partitions of [H | and [H_]| are

required. These partition are shown below.

i C ¢

[Hn] = C'.[Hl((".'i'.) | H(c.c, )] [Hc('] = (.R[H‘.((‘Z‘(“. )]

The internal coordinates "i " are 1, 2, 3, 7. 8, and 9. The connection coordinates "¢," are
4,5, 6, 10, 11, and 12. The second part of the process requires all or part of the FRF
matrix for structure 1, depending on where the external loads are applied. The connection
coordinates are required for the synthesis process, as always, and internal coordinates are
required if the stress frequency response which is of interest is associated with an element
whose nodal coordinates are internal coordinates, i.e. they are not directly associated with
the synthesis. In this example, all coordinates are used for the stress information. We apply

a unit load at each coordinate using the following equation,
i) =[Hl £} (106)

where i is an element of the required coordinates. This equation is interpreted as the
displacements at the structural system coordinates due to the unit load at the desired
coordinates of interest, which is the combination of connection coordinates and any internal
coordinates desired. {x}' is the i'th column of [ H] when using unit forces. Using the i'th
column of [H], we extract the elements corresponding to the beam element that stress
information is desired for, getting a partitioned form of the i'th column. The complete
reduced form of the [ H] matrix is [ H(bc,dc)},_, ., . where bc are the coordinates of the

beam of interest and dc is the set of required coordinates we wish to keep. In our example,
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the set of beam coordinates, "bc" is 1. 2. 3. 10. !11. and 12 and the set of required

coordinates, "dc" is 1.2, 3.4.5.6.7.8.9, 10, 1l.and 12. [H], .., Isa matrix of size
(6 x 12). Each column of [ Hl,, .., isin the global coordinate system and needs to be

transformed to local coordinates by using the following relation

‘H l Redwced,, = [T]{H‘ Ikedu'ed,w ( 107)

where the transformation matrix [T} is

[cosa sina 0 O 0 O]
~si-x cosa O 0 0 0
0 0 1 0 0O 0

[T]= . .
0 0 0 cosa sina O
0 0 0 -sina cosa O
. O 0 O 0 0 1]

Now with the H transformed to the local coordinate system, we can get the nodal forces by

the following relation

(£ = e (108)

where [k,] is the elemental stiffness matrix in the local coordinates system. We are ready to
solve for the FRF stress, first combining all the column vectors {f'} into a nodal force
matrix [F] and then muitiplying it by the moment equation to solve for the FRF peak
internal bending stress of the beam element.
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The FREF stress equation is

{H,}=§[M,,,][F] . (109)

The {H,} is a row vector size (1 x 12). since we used all the coordinates as our set of

desired coordinates. Noting that lM,q} is determined from equilibrium for the element in

question, and here we provide the internal bending moment. The derivation is shown using

Figures 7.3 and 7.4.

~tle———t -

I\

|
Bcam Element

Figure 7.3. Beam Element for Stress Calculation

=)

Sectioned Bearn Element

Figure 7.4. Beam Section Cut at the Midpoint

Consider the beam element in Figure 7.3, The moment is to be calculated at the midpoint of
the beam. First the beam is cut , Figure 7.4 and the moment at A is solved for:

M, =Ml+‘{é (110)

The moment equation in vector form is shown as equation (111).
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M )=IM)=10 72 1 0 0 o (1

Noting that the nodal force of the beam element is

(112

> X < >

19

7=

y; l~l<

where “A" indicates an axial force, “V” a shear force, and “M.” 2 moment. The internal

bending stress frequency response component is determined by equation (113).

H;‘--‘ll{o 112 10 0 0 (113)

TR> <>

|,

H, is evaluated over all the chosen required coordinates to form {H,}, which in our

example is a row vector size (1 x 12). If more then one beam element is used for stress
calculations then [H, | could be of the size: (number of beam elements) x (number of

desired coordinates). With [ H, | generated, we can now partition it into the required sub-
partitions for synthesis. The partitions required are [H, ] and [H,.] and are
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cl il cl
[H..]|= nH{H,(nb.c1) [H..|=n{H.(nb.0t) H (nb.cl))

The beam element set is indicated by "nb". In this exampie "nb" could have been 1. 2. 3.
and 4 since there are four beam elements in the substructure to be modified. Beam element
4 was chosen as the beam to calculate FRF stress information so "nb" is 4 and the sizes of
the matrices are (1 x 6) and (1 x 12) respectively. To get the stress information for beam
five, the synthesis method of direct coupling must be used. With the appropriate
partitioning completed the synthesis can now be performed. [H,,,]‘is the modified FRF
stress relation which is the combination of structure 1 and the added element structure 2 of
Figure 7.2. The synthesis is performed over the frequency range of interest and plotted in
figure 7.5. The frequency range for this example is 0.3 to 102 Hz. Figure 7.6 is the
solution from the traditional FE calculation for direct comparison of the two solutions. Both
plots are identical.

300 4 ; s ! T
250 . . . . .

200
150

0 50 100 150 200 250 300
Frequency Hz

Stress FRF at coordinate of interest dB

Figure 7.5. Plot of Synthesized FRF Stress Element H,_(1,9)
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Frequency Hz

Stress FRF at coordinate of interest dB

Figure 7.6. Plot of H, (1,6) Calculated Using Traditional FE Procedures.
Figures 7.5 and 7.6 are the plots of the FRF stress corresponding to beam element four of
Figure 7.1. These plots represent the stress amplitude in beam element four due to a unit
force applied at coordinate 6. Both plots are identical. Note that the frequency of peak
response is slightly lower than the undamped natural frequency.

H. EXAMPLE (8): DYNAMIC DIRECT COUPLING USING MODAL

REPRESENTATION OF FRF

Consider the structures shown in the following figures. The structure shown in Figure
8.1 will be directly assembled by the finite element method in order to compare the
frequency response calculated by traditional FE methods and the solution obtained by
synthesizing structure 1 and structure 2 as shown in Figure 8.2. This example will show
three results, the first being the solution from synthesis using the modal representation of
the frequency response, the second being direct assembly using FE and the modal
representation and thirdly, direct assembly using FE where frequency response is
calculated by the inverse of the impedance matrix.




3 456 789

123 456 123 456

7 T ] [ T N

/ Structure i Structure 2

Figure 8.2. Structures to be Synthesized Using Modal Representation

Referring to Figure 8.2, structures 1 and 2 will be synthesized by direct coupling using
connection coordinates 4, 5, and 6 of structure 1 and connection coordinates 1, 2. and 3 of
structure 2. One intemal coordinate will be kept in this synthesis process to show that the
frequency response for a specific coordinate can be synthesized using just the connection
coordinates and any internal coordinates that might be of interest. This example will use the
internal coordinate "2" of structure 1 as the coordinate of interest. The information desired
in this example is the frequency response at coordinate 2 due to a unit harmonic load at
coordinate 6. Note that when structure 1 and structure 2 are synthesized, the coordinate
numbering becomes the same as depicted in Figure 8.1. The following beam element data
was used:

Young's Modulus E = 30.0 x 10° psi
Area moment of inertia [ = 0.02083 in*
Cross-sectional area A =1 in

Weight density WTD = 0.2832 Ibf/in’

Structural proportional damping wis not used, but the methodology will handle all
forms of damping discussed earlier. The frequency response matrix [ H] can be generated
by two methods. The first is by the relationship
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[HQ)] =[zQ[ (14)

where [Z(Q)] = [K] - Q’[M] + jOC] .

The second method is by matrix modal representation. The relationship is

[EH(Q)] = [®] — [o] (42)
oo

where [ ®] is the set of eigenvectors or mode shapes, and the middle term is the diagonal
matrix of the natural frequencies or eigenvalues less the frequency of interest. This

relationship can also be expressed in terms of individual elements of the frequency

response function by equation (114)
0 modes ¢’¢'
= —_i
Hy= ¥ ——o (114)

r=1 r

which allows the calculation of specific frequency response of interest without having to
generate the complete FRF.
The general synthesis equation for dynamic direct coupling is

CARICAREAT CARCAR (84)
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This equation is written in terms of all the coordinates. This example concemns the synthesis
of a single FRF matrix element involving one coordinate. In general, the synthesis process
requires FRF information for all connection coordinates, and FRF information for any
internal coordinates of interest. Rewriting the general equation for this specific example. the

equation becomes

(] =(Ho ] - [H DM A (m17(H,] (115)

where the subscript “2” signifies the internal coordinate "2" of structure | and the subscript
“c” signifies the set of connection coordinates of both structures. In this equation, [M] is
the boolean mapping matrix which is used to establish the connectivity between the two
substructures for synthesis. The mapping matrix is determined by the connectivity i.e. what
is connected to what and by imposing the equi**hrium and compatibility relations associated
with each pair of coordinates. We can define the mapping matrix by |f.} =[M]{f,.).
Where [£ ] is a vector of all the connection coordinates of both structures and {f] is the

arbitrarily selected independent subset of the connection coordinates relating to one of the
substructures. We have selected the connection coordinates of structure 1 as the arbitrary
subset of connection coordinates. The mapping matrix [M] is a matrix of size (6 x 3) and is
depicted as:

[M]=
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The FRF matrix [ H] for both substructures 1 and 2 is calculated using the matrix modal
representation relation discussed earlier. The important point here is that we are not using
all the coordinates. The coordinates used from substructure 1 are 2, 4, S, and 6. the first
coordinate is the coordinate of interest and the rest are connection coordinates which must
be used. The coordinates used from substructure 2 are just the required connection

coordinates 1, 2, and 3. All six mode shapes for each coordinate are kept for the calculation
of the FRF matrix. The FRF matrix [H,| is calculated by using the appropriate

partitioning of the modal matrix [®,|. The diagram of the relation on the next page is

showing the coordinates kept and the number of modes.

6 6 2 4 56
2 [\ .
4 @ _ !
[Hl]’S l 6 w--ﬂ 1
! \
6 \

The size of [ H, ] is now a (4 x 4) matrix which contains all the necessary information. This
also shows a significant computational advantage because the size has been reduced from a
(6 x 6) to a (4 x 4) matrix which requires less computational time t0o manipulate the matrix.
| H,) is generated in the same manner. We will use all six mode shapes for each coordinate
kept of substructure 2. The required coordinates are the connection coordinates 1, 2, and
3. The diagram of the relation is given on the next page showing the coordinates kept and
the number of modes.




1 \
[H.)=2] &,
3 ’ \

Now with hl and h2 generated, the two substructures can be synthesized. Referring to the
example-specific synthesis equation above, the matrices [H, | and [H, | are formed by
combining hl and h2 by appropriate partitioning. The partitioning is shown on the next
page.

G G

[HZ‘.] ) ll[Hl(‘“Cl) [0]] [Hw] ) Z[Hl(lc(‘;iq ) Hz([cozlvcz )]

Cl “2

Referring to Figure 8.2, "il" is the set of internal coordinates for substructure 1. Since
coordinate 2 is the only coordinate of interest, the set of internal coordinates is just
coordinate 2. The set of connection coordinates "cl” consists of 3, 4, and 5 and "c2"
consists of 1, 2, and 3. With the appropriate partitioning complete, the two structures are
synthesized together, to form the structure in Figure 8.1, using the case specific form of the
direct coupling relation

(&, ] =[H2t]-[HIIMI[?“]-I[M]T[H“]. (115)

[Hzt]' is the synthesized FRF by modal representation relation which is the combination of
both structures. The synthesis is done over the frequency range of interest and plotted in
Figure 8.3. The frequency range for this example was 0.1 to 80.0 Hz. Figure 8.4 is the
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solution from traditional FE calculatons using the inverse of the impedance matrix to
calculate the FRF and Figure 8.5 is the solution from traditional FE calculations using the
modal representation to calculate the FRF. Figures 8.4 and 8.5 are included for direct
comparison. All three plots are identical.

FRF at coordinate of interest dB

1020 30 40 50 60 70 80
Frequency Hz

Figure 8.3. Plot of Synthesized H, (1,3)




FRF at coordinate of interest dB

1020 30 40 S0 60 70 80
Frequency Hz

Figure 8.4. Plot of H(2,6) from Traditional FE Calculations
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FRF at coordinate of interest dB
|

Figure 8.5. Plot of H(1,4) from Traditional FE Calculations Using Modal Representation

Figures 8.3, 8.4 and 8.5 are the plots of the FRF at element (1,3), (2,6), and (1,4)
respectively. These elements corresponds to the lateral motion coordinate 2 of Figure 8.1.
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A special note here is that the element (2.6) of the FRF generated by FEM is the response at
coordinate 2. which corresponds to the element (1,3) of the synthesized FRF generated by
the direct coupling relation using modal representation, and element (1.4) of the FRF
generated by traditional FE using modal representation. The reason for this is because of
the partitioning and the coordinates used in the caiculation. Care is required here to ensure
the coordinate of interest is actually being used. The plots show the magnitude of the
response at coordinate 2 due to a unit excitation at varying frequency at coordinate 6. As the
frequency of excitation approaches the natural frequency of response, the response
approaches infinity.

Figure 8.6 is the plot of the determinant of ii, which shows the natural frequencies of

the synthesized structure. The frequencies where the plot crosses the axis or equivalently,
the frequencies for which the det[ ilrr] = correspond to the natural frequencies of the
synthesized structure. This information is important because it gives the designer a starting
point on deciding how many modes to keep in the modeling of the system and the
frequency bandwidih over which to perform the synthesis. Reducing the number of
retained modes will decrease the computational cost and the computer time required tc
analyze a given design. The number of modes required to accurately model a given

structure is case specific.
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Figure 8.6. Plot of the Determinant of H,, (Plotted over Reduced Bandwidth)
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V. CONCLUSIONS AND RECOMMENDATIONS

The most important conclusion from this study is that the analysis ar.d re-analysis of
structural systems is performed most efficiently by working in the frequency domain. It
was shown in example (6) that synthesis of complex structures was approximately 22
times faster than the traditional FE methods. The large increase in efficiency means that
rapid analysis and re analysis of structures can be performed. Large scale structural
analysis can now be looked at in man hours where analysis by traditional FE methods is in
man days.

Structural synthesis in the frequency domain provides for an arbitrary order model
reduction that requires only the coordinates involved in the synthesis and any other
coordinates that might be of interest. The solution to the reduced model is exact. Th.is isa
significant point because a 10,000 degree of freedom model can be reduced to a system of
tens or hundreds of degrees of freedom, significantly improving the computational
efficiency.

The frequency response theory allows for the direct synthesis of response information
of any kind. Using a generalized definition of frequency response, displacement, velocity,
acceleration, stress, and strain information may be directly synthesized. based on this
generalization, the theory is an ideal means for doing static and dynamic design re-analysis.
Static problems are treated as the zero frequency case.

The frequency domain structural synthesis theory allows for any combination of
substructure coupling and structural modification to be performed, either simultaneously or
sequentially.




Recommendations to further utilize and demonstrate the theory of frequency domain
structural synthesis is first, to write computer code that will interface with existing finite
element codes, for example NASTRANS (MSC, Corp.) or IDEAS (SDRC, Corp.) to
synthesize substructures in three dimensions using plate. shell. and beam elements with six
degrees of freedom per node which allows for out of plane analysis. Using the combination
of plate, shell, and beam elements will more closely approximate actual structures. Second.
build a scaled prototype of a submarine and equipment cradle and compare the theoretical

results with experimental results.
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APPENDIX A MATLAB CODE FOR EXAMPLE ONE

Cclig

clear

% unifineel

¥

% This program will calculate the eigenvalues, eigenvectors
% natural frequencies, and frequency response function matrix
$ for a three degree of freedom at each node element.

% The system is modeled with beam elements that are

% aligned in the same plane but at any angle (2-D).

% @ -- - - .

% | |

% | J

% L °

% | i

% | |

% ® - s .. .

% This program works for a beam element modeled with six general
% coordinates and thus six DOF.

: {|-0--~--- -1

%

% the user must enter the following data to meet the beam configuration
% (E) youngs modulus psi ’

$ (I) area moment of inertia in*4

% (WTD) weight density lbf/in*3

% (A) cross sectional area in*2

% conductivity [ the node connection mapping ]

% node coordinates [ cartesian coordinates for each node |
% (bb) proportional damping constant

clear;

% call the data file

beam2

%

¢ start the program clock and flops to determine program running
$ time and floating point calculations

tO0=clock;

flops(0);

%

$ calculate the number of beam elements

a=gize(con);

numel=a(l);

%

$ calculate the number of beam elements proportionally damped
aa=size(dcon) ;




numel _damp=aa(l);
$
% calculate the number 2f nodes.
b=gize (coord) ;
nodes=b (1) ;
%
% ccnvert the coordinates in to the correct units (in.:
coord=coordrll;
%
% calculate the beam eiement lengths and beam angles
% in radians
for i=1:numel
IC=con{i,l);
ID=con(i,2);
1(1l,i)=sqrt((coord(ID, 1} -coord(IC,1l}}*2+(coord(ID,2) -coord(IC,2:12);
DX (i)=coord(ID, 1) -coord(1C, 1) ;
DY (i)=coord(ID,2) -coord(IC,2);
if DX(i)>=0 & DY(i)>=0;
t(l,i)=acos(DX(i)/1(1,1));
elseif DX(i)<0 & DY(i)>=0;
£{l,1)=acos(DY(i)/1(1,1)}+pi/2;
elseif DX(i)<0 & DY(i)<=0;
t({l,i)=acos{abs(DX(i))/1(1,1i))+pi;
else
t(l,i)=acos(abs(DY(i))}/1(1,1))+(3*pi/2);
end;
end;
%
% call trig function
(c,s]l=ftrig(t,numel) ;
%
% calculate radius of gyration
for i=l:numel
r(i,i)=sqre(I(i)/A(i));
end;
%
% create the global matrix which is all zeroces.
%
kg=[zeros (nodes*3,nodes*3)] ;
mg=[zeros (nodes*3,nodes*3)] ;
]
% assemble the elemental matrices to the global matrix.
%
for i=l:numel
[kel,mel) =felement6(1(i) ,WID(i),1(i),E(1),A(i),r(i),c(i),s(i));
3
vacon(i,l);
w=con(i,2);
]
kg(3%v-2:3%v,3*y-2:3%y) = kg(3*v-2:3*v,3*y-2:3*v) + kel(l:3,1
kg(3®v-2:3*v,3%w-2:3%W) = Kkg(3*v-2:3*%y, 3*w-2:3*w) + kel(1l:3,4

:3);
:6);

93




kg 3*w-2:3*W,3*Vv-2:3*%y, = Kg 3*w-2:3*w, 3%y-2:3%yv. - Kol 4:6,.:3. ;
Kg(3*w-2:3*%W,3*w-2:3*w, = kgi3*w-2:3%w, 3*w-2:3*w) - Xel . 4:6,4:6. ;
%

mgi3*v-2:3%v,3%v-2:3%y) = mg:3%v-2:3%y,3*v-2:3*y; + mel:1:3,1:3});
mgi3*v-2:3*v,3*w-2:3*w) = Mg(3*v-2:3*v, 3*w-2:3*w. + mel(l:3,4:6);
mg(3*w-2:3*w,3*v-2:3%v) = mgi3*w-2:3"w,3*v-2:3*y) + meli4:6,1:3;;
mg{3*w-2:3%*w,3*w-2:3%w) = MJ(3*W-2:3*w, 3*Ww-2:3%w) + meli4:6,4:5) ;
end

%

%

% apply structural prop. damping to the k matrix and set

% giobal k matrix to equal damped matrix

%

kgd=kg;

for i=l:numel_damp

u=dconii,l);

[kel]=felementé6 (1l {u) ,WID(u),I(u),E(ui,A(u),r{u),c(u),s(u));

%

v=dcon({i,l);

w=dcon (i, 2);

%

kgd(3*v-2:3%v,3*v-2:3%v) = kgd(3*v-2:3%v,3*y-2:3%y) + j*bb*kel(l1:3,1:3);
kgd(3*v-2:3%v,3*w-2:3*w) kgd(3*v-2:3%y,3%w-2:3%*w) + j*bb*kel(1:3,4:6);
kgd (3*w-2:3%w, 3*v-2:3*y) kgd(3*w-2:3*w,63*v-2:3%v) + j*bb*kel(4:6,1:3);
kgd(3*w-2:3*w,3*w-2:3*w) kgd(3*w-2:3*w,3*w-2:3*w) + j*bb*kel(4:6,4:6);
%

end

%

% apply the boundary conditions

$ the user must adjust the global matrix to meet the boundary conditions
%

$ to delete rows
kg({BC],:) = [ ]
kgd((BC],:) = [
mg({BCl,:) = [ ];
$ to delete columns

kg(:,[BC]) = [ ];

kgd(:,[BC]) = [ ];

mg(:,[BC]) = [ ];

$

% call the function and calculate eigenvectors and the eigenvalues

% which are the mode shapes and undamped natural frequency in
(rad/sec) *2

%

{lambda,phi]=fgmodes (kg,mg} ;

% this now converts the eigenvalues to nat frequency in (rad/sec) and
% and hertz(l/sec)

]

omega = sqrt(lambda);

freq = omega/(2*pi);

]

o =t =g

.
’




4]

% construct the frequency respconse plo2t sver th
% of interest

count=0;

for Comega=2:.%:375

ccunt=count+1l;

2=kgd-Comega“2*mg;

H=inv 2} ;

%

% this determines the coordinate of incerest to piot
HH{(count)=H(5,5);

end;

% end the program clock and f£lops
etime{clock,t0),flops

Comega=2:.5:375;

Freq=Comega/ (2*pi) ;

plot (Freq,20*1log{(HH) ) ,grid

xlabel (' Frequency Hz ')

ylabel ('FRF at coordinate of interest dB')

%

% END

% beam2

% This is the data for the full structure |--:--:--

%

%

% The data will be in the form of

% - (E) youngs modulus psi

% - (I) area moment of inertia in*4

% - (WTD) weight density lbf/in-3

$ - (A) cross sectional area in*2

% - conductivity ([ the node connection mapping |

$ - node coordinates [ cartesian coords for each node in ft.
% the main program will convert to in..
% - (bb) structural proportional damping constant

3

E=[30 30 30 ]J*le6;
I=[,1666 .1666 .1666 J*le-3;
A=[.2 .2 .2 1;
WID={.2832 .2832 .2832 ];
bb=.02;
% nodal connectivity
con=[1,2;
2,3;
3,4];
% nodal damping connectivity
dcon=(1,2;
314];
% nodal cartesian coordinates
coord={0,0;
2,0;
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4,0;

6,0];
% boundary conditions
BC=(1 2 3 10 L1 12};

beaml
This data handies all three substrucrures for synthesis

R TR

The data will be in the form of
- (E) youngs modulus psi
- (I' area moment of inertia in*4
- (WID) weight density 1lbf/in*3
- (A) cross sectional area in*2
- conductivity [ the node connection mapping ]
- node coordinates [ cartesian coords for each node in ft. |
the main program will convert to in..
- (bb) structural proportional damping constant
E=[30 ]*le6;
I=[.1666 ]*le-3;
A={.2 ];
WID=[.2832 ];
bb=.02;
% nodal connectivity
con=(1,2];
$ nodal damping connectivity
dcon={1,2];
% nodal cartesian coordinates
coord={Q,0;
2,0];
$ Boundary conditions
$ structure 1
$BC=(1 2 3];
% structure 2
BC=[4 5 6];
% impedence z
$BC=[ ];

9P dP P P OP 0P OP 0P AP JP 0P IP IP

clear;

clg;

¢ This is example 1 which demonstrates dynamic indirect coupling.

§ Two structures will be synthesized together by way of the new load
$ path z to form one structure that is restrained at both ends

Hee = Hee* - Hec * inv( inv(z) + Hcc) * Hce

P df dP P dP oP




% Lcad data from running “unifinee: program" £or sach suostructure,
$ the K and M matrix for each structure s saved

load cl.mat % kl,ml is stored here

load c2.mat % k2,m2 is stored here

lcad c3.mat % kz,mz is stcored here

%

% We r2ed =2 create a single FRF matrix representing

% both substructures in the form:

%

% 'hee] = [ hi{i,i) hii, o) |

$ { hic, 1} hic,ey ]

%

% S0 we create arrays containing the DOF numbers of our originai
% mcdels which correspond to the “c* and *i* coordinates for
% each substructure.

%

% call the synthesis data file in now which contains the

% internal coordinates and connection coordinates for each sub
% structure.

% il= internal coords of sub structure 1

% i2= internal coords of sub structure 2

% cl= connection coords of sub structure 1

§ c2= connection coords of sub structure 2

%

FRF_INDIR_DATA

t0=clock;

flops(0);

count=0;

for Comega=2:.5:375
count=count+1l;

1
% Form Frequency Response Models for Each Substructure
% .............................. - v -y o ot o o - - - - -

zl=kl-Comega“2*ml;
22=k2 -Comega“2+*m2;
Z=k3-Comega“2*m3;
hi=inv(zl);
h2=inv(z2);
am=size(il);
b=size(cl);
c=gize(i2);
d=gize(c2);

%

aa=a(2);

bb=b(2) ;

cc=c(2);

dd=a(2) ;

%

] Remember, we are trying to calculate the following:
]
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hee* = hee - hec * inviinviz: + "ot * nce

So we need to assemble ‘hee, (hec!, [hcei and 'hcc) using tne
the coordinate sets we just defined.

These matrices contain the FRF data for both substructures
prior to coupling, i.e the pre-synthesis FRF data.

Coordirnate Partitioning

v o - o v e e e ot oy e o - v oo -

Build up uncoupled FRF matrix and sub-particions:

W I I P P I AP I I W P

hee [hi(il,il) =zeros(aa,cc! hi(¢ii,cl) =zeros(aa,dd);
zeros (cc,aa) h2(i2,1i2) =zeros{cc,bb) h2(i2,c2);
hi(cl,il) zeros{bb,cc hiicti,cl) zeros(bb,dd);

zeros(dd,aa) h2(c2,i2) zeros(dd,bb) h2(c2,c2)];

hec = [hl(il,cl) zeros(aa,dd);
zeros(cc,bb) h2(i2,c2);
hi(cl,cl) zeros (bb,dd) ;
zeros(dd,bb) h2(c2,c2)];

hcc = [hl(cl,cl) zeros{bb,dd);
zeros{dd,bb) h2(c2,c2)];

3

hce = [hl(cl,il) zeros (bb, cc) hi(cl,cl) zeros(bb,dd);
zeros(dd,aa} h2(c2,i2) =zerosl(dd,bb) h2(c2,c2)]);

3

§ We can now perform the synthesis:

%

heestar = hee - hec * inv(inv(z) + hcc) * hce;

%

$ remove the redundant information
heestar = heestar(l:nodes*3, l:nodes*3);
3

% look at the coordinate of interest

HH (count ) =heestar(5,5) ;

end;

etime(clock,t0),flops

Comega=2:.5:375;

Freq=Comega/ (2*pi) ;

plot (Freq,20*log(HH) ) ,grid

xlabel (' Frequency Hz ')

ylabel (' FRF at coordinate of interest db ')

FRF_INDIR_DATA

The following data will be provided by this file
for the synthesis program.

d@ P dP P Jf oP

98




% il- interna. cocords sup structoure
¥ 12- internal coords sub structurs
% cl- connecticn cocrds sup structure
%
£

[N

2- connectizn coords sub structure 2

Ll={ I;
Cl=(1 2 3i;
i2=[ ]
2={l 2 31;

% enter the number of unrestrained nocdes of the synthesized
% structure
nodes = 2;




APPENDIX B MATLAB CODE FOR EXAMPLE TWO

unifineell

This program will calculate the eigenvalues, eigenvectors
natural frequencies, and frequency response function matrix
for a three degree of freedom at each node element.

The system is modeled with beam elemerits that are

aligned in the same plane but at any angle (2-D)

| |
| i
i |
f ]

This program works for a beam element modeled with six general
coordinates and thus six DOF.

The ugser must enter the following data to meet the beam configuration.
(E) youngs modulus psi

(I) area moment of inertia in*4

(WTD) weight density 1bf/in*3

(A) cross sectional area in*2

conductivity ([ the node connection mapping ]

node coordinates ( cartesian coordinates for each node ]
(bb) proportional damping constant

call the data file

minihull_data2a

$ Start the program clock and flops to determine program runniag
$ time and floating point calculations.

tO=clock;

flops(0);

%

% calculate the number of beam elements

a=gize(con) ;

numel=a(l);

%

$ calculate the number of beam elements porportionally damped
aa=gize(dcon);

numel_ damp=aa(l);

9P AP P I OP AP P OP OP OP P dP OP IP P JP IP IP P P IP JP P dE P I
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%

$ calculate the numker >f nodes

b=gize (coord);

wodes=Cc(l);

%

% convert the coordinates in to the correct unizs :'in.
coord=coord*l2;

%

% calculate the beam element lengths and beam angles in radians
fcr i=l:numel

IC=con(i,l);

ID=conti,z);

lil,ir=sqre({(coord(ID, 1) -coord(IC, 1)) *2+(coordiiD,2)-coordiIC, 2 *2:;

DX (i)=coord(ID, 1) -coord(IC,1);
DY {i)=coord(ID,2) -coord(IC,b2);
if DX{(i)>=0 & DY(i)>=0;
t(l,i})=acos(DX(1)/1(1,1i));
elseif DX(1)<0 & DY(i)>=0;
t(l,i)=acos(DY(i;/1(1,1))+pi/2;
elseif DX(i)<0 & DY (i) <=0;
t(l,i)=acos(abs(DX(1))/1(1,1))+pi;
else
t(l,i)=acos(abs(DY(i))/1(1,1))+(3*pi/2);
end;
end;
3
% call trig function
[c,s]=ftrig(t,numel) ;
%
% calculate radius of gyration
for i=1:numel
r(1l,i)=sqrt(I(i)/A(i));
end;
3
% create the global matrix which is all zeroes
|
kg=[zeros (nodes*3,nodes*3)];
mg={zeros (nodes*3,nodes*3)} ;
%
% assembel the elemental matricies to the global matrix
%
for i=l:numel
[kel,mel]=felement6{(1(i) ,WID(i),I(i),E(1),A(i),r(i),c(i),s(i));
3
v=con(i,l);
w=con(i,2);
%
kg (3*v-2:3%v,3*yv-2:3*v)
kKg(3*v-2:3*v,3%w-2:3*w)
kg (3*w-2:3%w,3*v-2:3%v)
kg(3*w-2:3*w, 3*yw-2:3%w)

kg(3*v-2:3%y,3%y-2;:3%y)
Kg(3*v-2:3%y, 3%yw-2:3%y)
kg(3*w-2:3*w,3*v-2:3*y)
kg(3*w-2:3*w, 3*w-2:3*w)

kel(1:3,1:3);
kel(1:3,4:6);
kel(4:6,1:3);
kel(4:6,4:6);

+ + + +
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¥

mgi3*v-2:3%v,3%v-2;: 30y ng 3*v-

13*V,3%y-2:3%y. - mel!

< < < L:3,0:3.;
mg{3*v-2:3*V,3*w-2:3*w, = Mg 3*V-2:3%*y,3%w-2:3*W, - mel: l:3,4:5 ;
Mg (3*wW-2:3*w,3*v-2:3*%v: = mg:3*w-2:3*w,3*v-2:3%v.  + mel 4:6,.:3;;
mgi3*w-2:3%W,3*w-2:3*w;, = mg(3*wW Z:3%w,3*w-2:3*wW: -+ mel 4:6,4:6 ;
end
3
%
% appiy structural prop. damping to the x matrix and set glokal
% k matrix to equal damped matrix
%

%
% calculate the beam element lengtns and beam angles in radians
% for the damped beams
for i=l:numel_ damp
IC=dcon(i,l);
ID=dcon(i,2);
1(1,1i)=sqret ({coord(ID, 1) -coord(1C, 1)) *2+{coord(ID,2)-coord{IC,2))*2);
DX (i)=coord(ID, 1) -coord{IC,1);
DY {i)=coord(ID,2) -coord(IC,2);
if DX{(i)>=0 & DY(1i)>=0;
t(l,i)=acos(DX(i)/1(L,1i));
elseif DX(i)<0 & DY(i)>=0;
t(l,i)=acos(DY(i)/1(1,1i))+pi/2;
elseif DX(i)<0 & DY(i)<=0;
t(l,i)=acos(abs(DX(i))/1(1,1i))+pi;
else
t(l,i)=acos(abs(DY(i))/1(1,1))+(3*pi/2);
end;
end;
%
% call trig function
[c,s]=ftrig(t,numel_damp) ;
%
% calculate radius of gyration
for i=1l:numel_damp
r(l,i)=sqrt(I1(i)/A(i));
end;
%
%
|
kgd=kg;
for u=1:numel_damp
(kel]=felementé6(1(u),WID(u),I(u),E(u),A(u),r{u),clu),s{u));
%
v=dcon{u, 1) ;
w=dcon (u, 2) ;
]
kgd(3*v-2:3%y,3*y-2:3%v) = kgd(3*v-2:3*%y, 3%v-2:3*v) + jebb*kel(1:3,1:3);
kgd(3*v-2:3%y,3*w-2:3*w) = kgd(3*v-2:3%y, 3*w-2:3%w) + jr*bbr*kel(1:3,4:6);
kgd(3*w-2:3%w,3*v-2:3%y) = kgd(3*w-2:3*w, 3*v-2:3%y) + j*bbrkel(4:6,1:3);
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kgd (3*w-2:3*wW,3*w-2:3%*w. = Kgd:i3*w-Z:3%W,3*w-2:3%W) + Z*Cp*col i

SEPEE 3 H

T

%

end

%

% arply the bcundary ccnditions
% the user must adjust the global matrix to meet the boundary conditions
%

$ to delete rows

kg({BC],:) = [i;

kgd{[BC},:) = {];

mg{(BC],:) = [];

% to delete cclumns

kgi:, (BC]: = (};

kgd(:, [BC)) = {}];

mg(:, [BCl) = [];

%

% call the function and calculate eigenvectors and the eigenvalues
$ which are the mode shapes and undamped natural frequency in
% (rad/sec) *2

%

{lambda,phi]=fgmodes (kg,mg) ;

% convert the eigenvalues to nat frequency in (rad/sec) and
% and hertz(i/sec)

%

omega = sqrt{lambda) ;

freq = omega/(2*pi);

%

% construct the frequency response plot over the frequencies
% of interest

count=0;

for Comega=.1:.1:22

count=count+1;

Z=kgd-Comega“2+*mg;

H=inv(Z) ;

%

$ determines the coordinate of intrest to plot

HH (count)=H (8, 8) ;

end;

% end the program clock and flops

etime(clock,t0),flops

Comega=.1l:.1:22;

Freg=Comega/ (2*pi) ;

plot (Freq,20*1log{(HH) ) ,grid

xlabel (' Frequency Hz ')

ylabel ('FRF at coordinate of interest dB ')

%

% END

% minihull_data2a
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This is the data for -he finite element program witr ~-res
degrees of freedom at a node.

The data will be in the form of
(E, ycungs modulus psi
- {I) area moment of inertia in-"4
- (WTD) weight density lbf/in*3
(A) cross sectional area in*2
- conductivity [ the node connection mapping ]
- node coordinates [ cartesian coords for each node in fr. ]
the main program will convert toc in..
- (bb) structural proportional damping constant

G P P OP P P IP OP OP IR JP dP IR JP W I

E={30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30}*le6;

I=(.02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083
.02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083];%1/12bh*3 b=z,
h=.5

A=[1 1 1111111111111 11 11;

WTD=(.2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832
.2832 .2832 .2832 .2832 .2832 .2832 .2832];

bb=0.01;

con=[1,2;

11,13;

13,14;

14,15;

15,5;

13,12;

15,4];
% this determines what elements have damping
dcon=[1,2;

2,3;
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9,10;
10,11;
11,12;
i2,1;
11,13;
13,14;
i4,1%;
15,5;
13,12;
15,41 ;
%
coord=(4,0;
8,0;
12,0;
16,4;
16,8;
16,12;
12,16;
8,16;
4,16;
0,12;
0,8;
0,4;
4,8;
8,8;
12,8];

BC=[ };

inner_struc2a

This is the data for the finite element program with three
degrees of freedom at a node.

The data will be in the form of

- (E) youngs modulus psi

- (I) area moment of inertia in"4

- (WTD) weight density lbf/in*3

- (A) cross sectional area in*2

- conductivity [ the node connection mapping |

- node coordinates | cartesian coords for each node in ft. ]
the main program will convert to in..

% - (bb) structural proportional damping constant

E=[30 30 30 30 30 30]*leé6;

I=[ .02083 .02083 .02083 .02083 .02083 .02083];%1/12bh*3 b=2, h=.5

A=[ 1 1111 1];

WTD=[ .2832 .2832 .2832 .2832 .2832 .2832];

P P P OP P P 0P P M dP OP dP I P 0P OP

105




bb=0.01;
con={1,2;
2,3;
3,4;
4,5;
2.,6;
4,71;
%
% this determines what elements have damping
dcon=(1,2;
2,3;
3,4;
4,5;
2,6;
4,71;
2
coord=(0,4;
4,4;
8,4;
12,4;
16,4;
0,0;
16,0];
%
BC={( ];
% out_struc2a
%
%
% This is the data for the finite element program with three
% degrees of freedom at a node.
%
% ({-0---~---- e-1)
%
§ the data will be in the form of
% - (E) youngs modulus psi
% - (I) area moment of inertia in+4
% - (WID) weight density 1lbf/in*3
$ - (A) cross sectional area in*2
$ - conductivity [ the node connection mapping ]
$ - node coordinates [ cartesian coords for each node in ft. |
3 the main program will convert to in..
% - (bb) structural proportional damping constant

E=(30 30 30 30 30 30 30 30 30 30 30 30]*les;

Is={ .02083 .02083 .02083 .02083 .02083 .02083 .02083
.02083 .02083 .02083];%1/12bh*3 b=2, h=.5

A=[ 1 1 1111111111};

WID=[.2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832
.2832);

bb=0.01;
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% this determines what elements have damping

@ N U s Wb

O
-
o

[ !
10,11;
11,12;
12,1]1;

%

coord=[4,0;

8,0;

12,0;

16,4;

16,8;

% FRF_Synth2A

This is example 2, dynamic direct coupling using the boolean
mapping macrix to synthesize two structures together.

Load data from running unifineel program for each substructure
where the K and M matrix for each structure is saved
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ad ex2aa.mat % ki ml is stored her=
cad exz2ab.mat % k2 m2 is stcored hers

O

We need t0 Create a single FRF matrix representing
both substructures in the form:
‘hee! = [ hii,i) hii,ci j

. hic, 1) hic,c) |

So we create arrays containing the DOF numbers of our original
models which correspond the the *c” and *i” coordinates for
each substructure.

Call the synthesis data file which contains the
internal coordinates and connection coordinates for each substructure.

il= internal coords of sub structure 1l
i2= internal coords of sub structure 2
cl= connection coords of sub structure 1
c2= connection coords of sub structure 2

P WP P 0P I N P I O P P I P P I IO P P I W

FRF_Synth _data2A

%

t0=clock;

flops(0);

count=0;

for Comega=.1:.3:60
count=count+l;

%

% Form Frequency Response Models for Each Substructure
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
zl=kl-Comega“2*ml;
z2=k2-Comega“2#*m2;
hl=inv(zl);
h2=inv{22);

L]

a=size(il);
b=gize(cl);
c=gize(i2);
d=gize(c2);

%

aa=a(2);

bb=b(2) ;

ce=Cc(2);

ddé=d(2) ;

Remember, we are trying to calculate the following:

hee* = hee - hec * M * inv( hccr ) * M' * hce

%
%
%
%
% hecr = M' * hce * M
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So we need to assemble (hee!, _heci, .nre! and .nt2. using
the cocrdinate sets we just defined.

These matrices contain the FRF data for beotn substructures
prior to Zoupling, i.e the pre-synthesis FRF data.

~oordinate Particionin

Build up uncoupled FRF matrix and sub-partitions:

IF 0P 0P d¢ ap JIP dP OP P I P o

ee = {(hltil,il} =zerosi{aa,cc: hi(ii,cl; =zeros(aa,dd:;
zeros(cc,aa) 2¢1i2,12) =zerecsl(cc,bb; h2tiZ,c2;
hiici,il) zexos {bb, c¢) hl(cl,ci; =zerosi(bb,dd ;
zerog{dd,aa) h2ic2,i2) =zeros(dd,bb: h2(c2,c2'];

%

]

hec = [hl{il,cl) =zeros(aa,dd);
zeros(cc,bb) h2(i2,c2);
hl(cl,cl) zeros (bb,dd) ;
zeros{dd,bb) h2(c2,c2)];

%

%

hce = [hl(cl,cl) zeros(bb,dd);
zeros(dd,bb) h2{(c2,c2)};

%

hce = [hl(ec1,il) zeros (bb, cc) hl(cl,cl) zeros(bb,dd);
zeros(dd,aa) h2(c2,i2) =zeros(dd,bb) h2(c2,c2)];

]

%

%

% We can now perform the synthesis:
hcersM* * hee * M;

heestar = hee - hec * M * inv( hccr ) * M' * hce;
%

% remove the redundent information
heestar = heestar{l:nodes+*3,l:nodes*3);

% look at the coordinate of interest

HH (count) =heestar (8, 8) ;

end;

etime(clock,t0),flops

Comega=.1:.3:60;

Freqg=Comega/ (2*pi) ;

plot (Freq,20+*log(HH) ) ,grid

xlabel (' Frequency Hz ')

ylabel ('FRF at coordinate of interest dB')

] FRF_Synth_data2A
¥ This is the data file for the synthesis program.
%
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The following data will be provided Lty zhis file.

il- internal coords sub structure 1
i2- internal coords sub structure 2
cl- connection coords sub structure
c2- connection coords sub structure 2

[

P dP dP AP P W oF

ii={1 2 34567 89 16 17 18 19 20 21 22 23 24 25 26 27 28 23 30!;
cl={10 11 12 13 14 15 31 32 33 34 35 36];

i2=(4 5 6 7 8 9 10 11 12}];

c2={1 2 3 13 14 15 16 17 18 19 20 21];

3

% The following is the mapping matrix.

% The mapping matrix is not general and is

§ case specific.

%

M=[eye (12
00

1

OO OO0DO0O0OO0OO
OO0 00O O0OO0OOoO

OO;OOOOOOOOO
- O

[« N1
'

3

%

% Enter the number of unrestrained nodes of the synthesized
$ structure.

nodes = 15;
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APPENDIX C MATLAB CODE FOR EXAMPLE THREE

o
Q D
Y]
a ]

unifineel

This program will caiculate the eigenvalues,eigenvectors
natural frequencies, and frequency response function matrix
for a three degree of freedom at each node element.

The system is modeled with beam elements that are

aligned in the same plane but at any angle (2-D).

This program works for a beam element modeled with six general
coordinates and thus six DOF.

the user must enter the following data to meet the beam configuration
(E) youngs modulus psi
(I) area moment of inertia in*4
(WI'D) weight density lbf/in"3
(A) cross sectional area in*2
conductivity [ the node ccanection mapping )
node coordinates [ cartesian coordinates for each node |}
{bb) proportional damping constant
clear;
% call the data file
minihull_data3
]
% start the program clock and flops to determine program running
% time and floating point calculations
to=clock;
flops(0);
$ calculate the number of beam elements
amgize(con);
numel=a (1) ;
]
$ calculate the number of beam elements porportionally damped
aamgize(dcon) ;

AP dO OP AP OP IP OP IP IP IP OP P OP IP P P OP I IP I OP P P I N W I () O
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numel _damp=aa(l’;

$

% ralculate the number of nciss.

b=gize (coord) ;

nodes=ptl!;

%

§ conver: the cocrdinates in to the correct units iin.:
coord=coordr_2;

% calculate the beam element lengths and beam angles in radians
for i=l:numel
IC=coni{i,l);
ID=con(i,2);
1(1,i,=sqrri{(coord(ID,l)-coord(IC,1})*2+(coord(1D,2)-coord(IC,2}))"2
DX{i)=coord(1ID, 1) -coord(IC,1);
DY (i)=coord(ID,2) -coord(IC,2);
if DX(i)>=0 & DY(i)>=0;
t(l,i)=acos(DX(i)/1(1,1i));
elseif DX(i)<0 & DY (i)>=0;
t(l,i)=acos(DY(i)/1(1,1i))+pi/2;
elseif DX(i)<0 & DY(i)<=0;
t{l,i)=acos(abs(DX(i))/1(1,1i))+pi;
else
t{l,i)=acos(abs(DY(i))/1(1,1i))+(3*pi/2);
end;
end;
]
% call trig function
[c,s]l=ftrig(t,numel) ;
]
$ calculate radius of gyration
for i=}l:numel
r(l,i)=sqrt(I(i)/A(i));
end;
%
% create the global matrix which is all zeroes.
%
kg={zeros (nodes+*3,nodes*3)] ;
mg={2eros (nodes*3,nodes*3) ] ;
%
% assembel the elemental matricies to the global matrix.
]
for i=}l:numel
[kel,mel]l=felement6 (1(i),wWwID(i),I(i),E{(i),A(i),r(i),c(i),s(i));
%
vmcon(i,l);
we=con(i,2);
%
kg(3*v-2:3%y,3%yv-2:3%y) = kg(3*v-2:3*v,3*y-2:3*y) + kel(l:3,1:3);
kg(3*v-2:3*v,3*w-2:3*w) = kg(3*v-2:3*v,3*w-2:3*w) + kel(l:3,4:6);
kg(3*w-2:3*w,3%v-2:3*v) = kg(3*w-2:3*w,3*v-2:3*%v) + kel(4:6,1:3);
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KF I*W-2:3*W, 3*W-2:3%W! = Kg 3*W-2:3%W, 3*w-2:3%W. - Kel 4:6,4:5 ;
L

mgt3ev-2:3*V,3%v-2:3%y = m@iI*Vv-2:13%V,3%-2:3% » mell:3,l:3;
mgi(3*v-2:3*v,3*w-2:3*w} = mg(3*v-2:3*Vv,3*w-2:3*w + mel(.:3,4:6:;
mg:3*w-2:3*W,3*v-2:3*y; = Mg (3*w-2:3*W,3*v-2:3*V! - meli.4:6,1:3:;
mg:3*w-2:3*wW,3*w-2:3*w) = mg(3*w-2:3*wW,3%*w-2:3"W) + mel1i4:6,4:6);
end

¥

%

% appiy structural prop. damping to the k matrix and set glokal

$ k matrix to equal damped matrix

¥

%

§ caiculate the beam element lengths and beam angles in radians
% for the damped beams
for i=l:numel_damp
IC=dcon(i, 1) ;
ID=dconi{i,2);
1(1,i)=sgrec({coord(ID, 1) -coord(IC, 1)) *2+(coord(ID,2) -coord(IC,2))*2)}
DX {i}=coord(ID, 1) -coord(I1C,1);
DY (i)=coord (1D, 2) -coord(IC,2);
if DX(i)>=0 & DY (i)>=0;
t(l,i)=acos(DX(i)/1(1,1));
elseif DX(i)<0 & DY(i)>=0;
t(l,i)=acos(DY(i)/1(1,1))+pi/2;
elseif DX(1i)<0 & DY(i)<=0;
t(l,i)=acos{abs(DX(i))/1(1,1i))+pi;
else
t(l,i)=acos(abs(DY(i))/1(1,1i))+(3*pi/2);
end;
end;
]
% call trig function
[c,s]=ftrig(t,numel_damp) ;
]
% calculate radius of gyration
for i=l:numel damp
r(l,i)=sqre(I(i)/a(i));
end;
|
%
%
kgd=kg;
for u=l:numel_damp
[kel]=felement6 (1 (u) ,WID(u),I{u),E(u),A(u),r(u),c{u),s(u));
]
v=dcon(u, 1) ;
w=dcon(u, 2) ;
%
kgd(3*v-2:3%v,3%v-2:3%v) = kgd(3*v-2:3%y, 3*y-2:3*%*y) + j*bb*kel(l:3,1:3);
kgd(3*v-2:3*v,3*w-2:3*w) = kgd(3*v-2:3*v,3*w-2:3*w) + j*bb*kel(1:3,4:6);
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kgd{3*w-2:3*w,3*Vv-2:3%v, = Kgd ' 3Ivw-2:3%*w,3%v-2:3%y: - Swopwkal 414, 13
kgd(3*w-2:3*w,3*w-2:3*w; = KGQ.3*w-2:3%wW,3*w-2:3%w -+ S*bpTkel 4:4,4:6
%

end

3

% apply the initial conditions

% the user must adjust the giobal matrix to meer the initial condicicrns
3

% to delete rows

kg([BCl,:) = [ 1;
kgd([BC},:; = [ i;
mg({BC,,:) = [ ];

% to delete columns

kg(:,[BC]) = [ ];

kgd(:,'BCl) = [ ];

mg(:, [BC]) = [ ];

3

% call the function and calculate eigenvectors and the eigenvalues
% which are the mode shapes and undamped natural frequency in
(rad/sec) *2

3

{lambda, phi] =fgmodes (kg,mg) ;

% this now converts the eigenvalues to nat frequency in (rad/sec) and
$ hertz(l/sec)

%

omega = sSqrt (lambda);

freq = omega/(2*pi};

]

% constuct the frequency response plot over the frequencies
% of interest

count=0;

for Comega=.1:.3:40

count=count+1;

Z=kgd-Comega*2*mg;

H=inv(Z) ;

%

% this determines the coordinate of intrest to plot
HH(count)=H(14,14);

end;

% end the program clock and flops

etime(clock,t0),flops

Comega=.1l:.3:40;

Fregq=Comega/ (2*pi) ;

plot (Freq, 20*1og (HH) ) ,grid

xlabel (' Frequency Hz ')

ylabel ('FRF at coordinate of interest dB')

% END

3 minihull_data3
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% This is the data file for exampie 3

%

% The data will be in zhe form cof

% - (E! youngs modulus psi

% - (I' area moment of inertia in-4

§ - (WTD) weight density lbf/in*2

% - ‘A Cross sectional area in*2

% - conductivity [ the node connection mapring |

% - node coordinates . cartesian coords for each node in ft., |
% the main program will convert o in..
% - ’bb) structural proportional damping constant

%

E={ 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30!=*les;

I={ .02083 .02083 .02083 .02083 .02083 .02083 .02083 .12083 .02083
.02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083];%./12bh"3 b=2,
h=.5

A={ I 1 11111111111 111111};

WTD={ .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .28212
.2832 .2832 .2832 .2832 .2832 .2832];

bb=0.01;

con=[1,2;
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’ ’
10,11;
11,12;
12,1;
11,13;
13,14;
14,15;
15,5;
13,12);

% this deteremines what elements have damping

dcon=(1,2;

2,3;
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~
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12,1;
11,13;
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13,14;
14,15;
15,5;

12,12);

coord=|

~a

, 0
0

-
~

c U s

)
4

bay vy
16,4;
16,8;
16,12;
12,16;
8,16;
4,16;
0,12;
0,8;
0,4;
4,8;
8,8;
12,8);

BC={];

hull_mod3

This is the data file for the beam modification.

The data will be in the form of

- (E) youngs modulus psi

- (I) area moment of inertia in-4

- (WTD) weight density 1bf/in*3

- (A) cross sectional area in*2

- conductivity [ the node connection mapping |

- node coordinates [ cartesian coords for each node in ft.
the main program will convert to in..

- (bb) structural proportional damping constant

dP 0P 0P JP OF JP IP dP P OP IP OP I AP IP

E=(30 ]*le6;

I=(.02083 ];

A={1 ];

WID=[.2832];

bb=0.01;

con={1,2];

% this determines what elements have damping
dcon=[1,2];

%
coord=[4,0;

0,4]1;
3

116

]




red_mod3

This is the data file for =he main sukscrucrture.

The data will be in the fcrm of
(E) youngs modulus psi
- (I} area moment of inertia in*“4
- (WTD; weight density 1lbf/in*3
- (A) cross sectional area in*2
- conducrivity { the node connection mapping !
- node coordinates | cartesian coords fcr each ncde in fr. ]
the main program will convert to in..
- (bb) structural proportional damping constant

OGP I I dP I W I DO I P v O P P IP

E={30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30]*les;

I=[.02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083
.02083 .(£2083 .02083 .02083 .02083 .02083 .02083 .02083];%1/12bh*3 b=2,
h=.5

A=[1 111111111111 111111});

WID=[.2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832
.2832 .2832 .2832 .2832 .2832 .2832 .2832]);

bb=0.01;

3

con=[1,2;

15,4]);
% this determines what elements have damping
dcon=(1,2;

2,3;

’

-

[ R W]
~

a0 »

-~ N e
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6,7;
7,8;
8,9;
g,10;
12,11;
1l,%2;
ii,13;
13,14;
14,15;
15,5;
13,12;
15,41 ;
%
coord={4¢,0;
8,0;
12,0;
16,4;
16,8;
16,12;
12,167

3
BC=(];

% This program will modify a substructure by removing a beam
% element from the structure.

]

% program FRF_MOD3

clear;

clg;

load ex3a.mat $ k1, ml are stored here

load ex3b.mat % k2, m2 are stored here

% call the data file

MOD_DAT3

%

% we need to partion the H matrix of the structure to be
$ modified in the following way

P oP dP 9P ¢
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3 [hee, = ic
% ci co |
%

% thec] = [ ic

% cc |
%

% Azl o= 0 oce
%

%

td=clock;

flopsidi;

count=0;

for Comega=.1:.3:40
Count=CCunt+1i;

zl=kl-Comega“2*ml;
z=k2-Comega‘*2*mz2;

h=invizl);

%

hee = [hi{ic,ic) hiic,cc);
h(ec,ic) hicc,ccii;

E

hec = [h{ic,cc);
h{cec,cc)l;

E

hce = [hi(cec,ce)l:

3

hce = [h(cc,ic) hicc,ce)];

%

$ this is for adding a component

$heestar = hee - hec * inv(inv(z) + hcc) * hce;
3

$ this is for removing a component

heestar = hee - hec * inv(hcc - inv(z)) * hce;
3

HH (count) =heestar(1il,1l);

end;

etime(clock,t0),flops

Comega=.1l:.3:40;

Freg=Comega/ {(2*pi) ;

plot (Freq,20*1og(HH) ) ,grid

xlabel (' Frequency Hz ')

ylabel ('FRF at coordinate of interest dB ')

% MOD_DAT3

% This is the data file for the modification program,
% the following data will be provided by this file

]

% ic- internal coords of synthesized structure

% cc- connection coords of synthesized structure
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]

ic=[1L 2 34567 89 L3 14 15 16 17 1
30 31 32 33 34 35 36 37 38 39 40 41 42 |;
ce={10 11 12 43 44 45];
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APPENDIX D MATLAB CODE FOR EXAMPLE FOUR

clear

[®]
[
Q

unifineell

This program will calcuiate the eigenvalues, eigenvectors
natural frequencies, and frequency response function matrix
for a three degree of freedom at each node element.

The system is modeled with beam elements that are

aligned in the same plane but at any angle (2-D).

This program works for a beam element modeled with six general
coordinates and thus six DOF.

the user must enter the following data to meet the beam configuration
(E) youngs modulus psi
(I) area moment of inertia in*4
(WTD) weight density 1lbf/in*3
(A) cross sectional area in*2
conductivity [ the node connection mapping |
node coordinates ([ cartesian coordinates for each node ]
(bb) proportional damping constant
clear;
% call the data file
minihull data4
3
§ start the nrogram clock and flops to determine program running
% time and floating point calculations
tO=clock;
flops (0} ;
3
$ calculate the number of beam elements
a=gize(con);
numel=a(l);
%
$ calculate the number of beam elements porportionally damped
aa=size(dcon) ;

P JP 0P IO JP IP I OP 0P AP OP IO I AP IP IP P P P IP OP I WP W P JdP
.
'
'
'
[
1
)
L}
.
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numel_damp=aa..:;
%
$ calculate the number of nodes.
b=size(coord) ;
ncdes=bi{l);
3
% convert che <-ocrdinates in to the correct units rin.;
coord=coord*iz;
%
% now calculate the beam element lengths and beam angles in radians
for i=l:numel
IC=con(i,l);
ID=con(i,2);
1(1,1i)=sqrt{(coord(ID, 1) -coord(IC,1))*2+(coord(ID,2)-coord(IC,2)*2;
DX (i)=coord(ID, 1) -coord(Ic,1);
DY (i)=coord(ID,2) -coord(1C,2);
if OX{i)>=0 & DY(i)>=0;
tii,i)=acos{DX(1)/1(1,1));
els=2if DX(i1)<0 & DY(i)>=Q;
t(l,i)=acos(DY(i}/1(1,1))+pi/2;
elseif DX(i)<0 & DY(i)<=0Q;
t(l,i)=acos(abs (DX(i))/1(1,1))+pi;
else
t{l,i)=acos({abs(DY(i))/1(1,1))+(3*pi/2);
end;
end;
%
% call trig function
(c,s]=ftrig(t,numel);
]
% calculate radius of gyration
for i=l:numel
r{l,i)=sqrt(I(i)/A(i));
end;
%
$ create the global matrix which is all zeroes.
%
kg=[zeros (nodes*3,nodes*3) )
mg=[zeros (nodes*3,nodes*3) ]
$
§ assembel the elemental matricies to the global matrix.
%
for i=1:numel
[kel,mel]=felement6 (1(i) ,WID(i),I(i),E(i),A{i),r(i),c(i),s(i));
$
vecon(i,l);
w=con(i,2);
%
kg(3#v-2:3%v,3%v-2:3%v) = kg(3*v-2:3*v,3*v-2:3%y) + kel(l:3,1:3);
kg(3*v-2:3%y,3%w-2:3%y) = kg(3*v-2:3*v,3*w-2:3*w) + kel(1:3,4:6);
kg(3*w-2:3%w,3*yv-2:3%y) = kg(3*w-2:3*w,3*v-2:3%y) + kel(4:6,1:3);

.
’
-
4
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Kg ' 3*W-2:3*W,3*W-2:3*w = XG 3*W-2:3%W,3*W-o:13*Ww - gel'd:g,d:5
%

mgi3*v-2:3*v,3*v-2:3*y. = m@3*v-2:3*V,3%v-2:3*y, +» melil:3,::3);
mgi3*v-2:3*v,3*w-2:3%y) = mg(3*v-2:3*v,3%w-2:3*w: + mel:il:3,4:€;;
mg:3*w-2:3%*w,3%v-2:3%y! = mg(3*w-2:3%w,3*v-2:3%y: - meli{d:6,1:3);
mgi3*w-2:3*%*w,3*w-2:3*w) = mg(3*w-2:3*w,3*w-2:3*w; + melid:6,4:6);
end

i

% aprly structural prop. damping to the kx matrix and set global
$ k matrix to equal damped matrix
%
$ calculate the beam eiement lengths and beam anglies in radians
% for the damped beams
for i=l:numel_damp
IC=dconi(i,li;
ID=dcon(i,2);
1¢(1,i)=gqre{(coord(ID, i) -coord{iC, i)} *2+{coord(iD,2) -coord(IC,2);*2);
DX (i)=coord(ID, 1) -coord(IC,1);
DY(i)=coord(ID,2) -coord(IC,2);
if DX(i)>=0 & DY(i)>=0;
t(l,i)=acos(DX(i)/1(1,1));
elseif DX(i)<0 & DY(i)>=0;
t(l,i)=acos(DY(i)/1(1,1i))+pi/2;
elseif DX(1)<0 & DY (i)<=0;
t(l,i)=acos(abs(DX(i))/1(1,1))+pi;
else
t(1,i)=acos(ab8(DY(i))/1(1,1))+(3*pi/2);
end;
end;
%
% call trig function
[c,sl=ftrig(t,numel_damp) ;
3
% calculate radius of gyration
for i=l:numel_damp
r(l1,i)=sqrt{I(i)/A(i));
end;
]
kgd=kg;
for u=l:numel_damp
[kel]=felement6 (1 (u) ,WID{u),I(u),E{u),A(u),r(u),clu),s(ul));
%
v=dcon(u,l);
w=dcon{(u,2);
3

kgd(3*v-2:3*v,3%v-2:3*v) = kgd(3*v-2:3*%v,3*v-2:3*v) + j*bb*kel(l:3,1:3);
kgd (3ov-2:3*yv,3%w-2:3%w) = kgd(3*v-2:3*v,3*w-2:3*w) + j*bb*kel(1:3,4:6);
kgd(3*w-2:3*w,3%v-2:3%v) = kgd(3*w-2:3*w,3*v-2:3*v) + j*bbrkel(4:6,1:3);
kgd(3ew-2:3vw,3*w-2:3*w) = kgd(3*w-2:3*w,3*w-2:3*w) + j*bb*kel(4:6,4:6);
2

end
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$

% apply the boundary zconditions

§ the user must adjust the gicbal ma:zrix to meet the kcundary condi-inns
%

% to delete rows

kgt [BC],:) = [];
kgd. . BCi,: = {];
mgt [BCj,: = [i;

% to delete columns

kg(:,[BC]) = [];

kgd(:, [BCIY = [1;

mg(:, [BC]) = [];

3

% call the function and calculate eigenvectors and the eigenvalues
% which are the mode shapes and undamped natural frequency in
% (rad/sec)*2

]

[lambda,phi] =fgmodes (kg,mg) ;

$ this now converts the eigenvalues to nat frequency in (rad/sec) and
$ hertz(l/sec)

%

omega = sqrt (lambda) ;

freq = omega/ (2*pi);

3

% constuct the frequency response plot over the frequencies
% of interest

count=Q;

for Comega=.1:.3:53

count=count+1l;

Z=kgd-Comega“2+*mg;

H=inv(2) ;

%

% this determines the coordinate of intrest to plot

HH (count)=H (8, 8) ;

end;

$ end the program clock and flops

etime(clock,t0),flops

Comega=.l1:.3:53;

Freg=Comega/ (2*pi) ;

plot (Freq,20*1log (HH) ) ,grid

xlabel (' Frequency Hz ')

ylabel ('FRF at coordinate of interest dB')

% end

minihull_data4

aP P 9P

$ This is the data file for the finite element program.
%
% the data will be in the form of
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(E} youngs modulus ps:i

(I) area moment of insrtia in*4

{A) Ccross sectional area in“2

conductivity [ the node connection mapping |

node coordinates [ cartesian coordinrates for each node |
(bb) proportional damping constant

P P P P I P o

E={30 30 3C 3C 3 30 3C 30 32 30 30 30 3C 30 30 3C 30 30)l*1es;
I=(.02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083
.02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083];%1/i2bh*3 L=z,
h=.5
A={1 1 1 1 1111111311 3i1111j;
WID=[.2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832
.2832 .2832 .2832 .2832 .2832 .2832 .2832];
bb=0.01;
con=[1,2;

2,3;

14,15;

15,5;

13,12;

15,4} ;
$ this determines what elements have damping
dcon=(1,2;

2,3;
’
,

’

3
4
S
6'
7
8,

we We nwe wg

’

\DQ\)O\U"Q

- ™

9,10;
10,11;
11,12;
12,1;
11,13;
13,14;
14,15;
15,5;
13,12;
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P s
15,41 ;
%
coord=(4,0;
8,0;
12,0;
16,4;
16,8;
i%,12;
12,16;
8,16;
4,16;
0,12;
0,8;
0,4;
4,8;
8,8;
12,8];
%
BC=(];
% hull_mod4
$
% This is the data file for the finite element program.
% This is the data for the modification
3
$ the data will be in the form of
% (E) youngs modulus psi
% (I) area moment of inertia in*4
§ (A) cross sectional area in°*2
% conductivity { the node connection mapping }
$ node coordinates [ cartesian coordinates for each node |
$ (bb) proportional damping constant
E=(30 ]*le6;
I={.020813 ];
A=[1 }1;
WTD=[.2832];
bb=0.01;

con=[1,2];
% this determines what elements have damping
dcon={1,2];

coord=(4,0;
0,4];
$
BC=([] ;
$ red mod4
L ]
% This is the data file for the main structure to be modified.
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the data will ke in -he form
{E) youngs modulus psi

(I' area moment of inertia in*4

{A) cross sectional area in*2

conductivity [ the node ccanection mapping |

ncde ~ocrdinates | cartesian c¢cordinates for each node |
{bb) prcoporticnal damping constant

¥

£

P P P IP dP IP OP W P

E={ 30 30 30 30 30 30 30 30 3C 30 30 30 3C 30 30 30 301*.e6;

I={ .02083 .02083 .02083 .02083 .02083 .(02083 .02083 .02083 .(C2083
.02083 .02083 ,02083 .02083 .02083 .02083 .02083 .02083);%./i2ch"3 b=2,
h=_5

A=! 1 11111111 3i1111111);

WID=( .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832Z .2832
.2832 .2832 .2832 .2832 .2832 .2832];

bb=0.01;

%
con=

% this determines what elements have damping

dcon=(1,2;
2,3;
3,4;
4,5;
5,6;
6,7;
7.8;
8,9;
9,10;
10,11;
11,12;
12,1;
11,13;
13,14;
14,15;
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3 program FRF_MOD4

% This program will modify a structure by adding a beam element.
%

load ex4a.mat % k1, ml are stored here

load ex4b.mat % k2, m2 are stored here

MOD_DAT4
%

% we need to partion the H matrix of the structure to be
% modified in the following way

%

3 { i1 1 ic ]

% ...........

% [ ci | cc]

3

[hee] = [ ii ic

% cicc ]

%

% {hec] = [ ic

% cc ]

%

% (hee]l = [ cc ]

%

tO0=clock;

flops(0);

count=0;
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for Comega=..:.3:53
count=count-+1i;
zi=kl-Comega“*2+*ml;
z=K2-Comega‘2+*m2;
h=inv{zl);

%
hee

hec = (hiic,cci;
htcc,cci];

hce [(hicec,zc));

hce = (hicc,ic) hlecec,cc)l;

% this is for adding a component
heestar = hee - hec * inv(invi{(z) + hcc) * hce;

% this is for removing a component
gheestar = hee - hec * inv{hcc - inv(z)) * hce;

HH (count)=heestar(8,8) ;

end;

etime(clock,t0),flops

Comega=.1:.3:53;

Freqg=Comega/ (2*pi) ;

plot (Freq,20*1log(HH)) ,grid

xlabel (' Frequency Hz ')

vlabel ('FRF at coordinate of interest dB ')

MOD_DAT4

This is the data file for the synthesis program
the following data will be provided by this file

9P I 9P d¢ P IP

[

c- internal coords of synthesized structure

% cc- connection coords of synthesized structure

]

ic=[1 2 3 4567 89 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 40 41 42 };

cc=[10 11 12 43 44 45];

%

% enter the number of unrestrained nodes of the synthesized

$ structure

nodes = 15;
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APPENDIX E MATLAB CODE FOR EXAMPLE FIVE

ear;

clg;

$
3
¥
%
%
3
%
%
%
¥
%
%
3
3
%
%
L
%
3
3
%
3
$
$
%
%
3
]
3
]
L

unifineelsprdam

This program will calculate the eigenvalues, eigenvectors
natural frequencies, and frequency response function matrix
for a three degree of freedom at each node element.

The system is modeled with beam elements that are

iligned in the same plane but at any angle (2-D).

! [
[ 1
l !
t |

This program works for a beam element modeled with six general
coordinates and thus six DOF.

the user must enter the following data to meet the beam configuration
(E) youngs modulus psi

(I) area moment of inertia in*4

(WID) weight density 1lbf/in*3

(A) cross sectional area in-"2

conductivity [ the node connection mapping I

node coordinates [ cartesian coordinates for each node |
spring-damper conductivity

(bb) proportional damping constant

(B) viscous proportional damping constant

(k) spring constant

call the data file

minihullsprdam_das

3
%

start the program clock and flops to determine program running

$ time and floating point calculations
tO=cluck;

flops(0);

]

% calculate the number of beam elements

a=gize(con);
numel=a(l) ;
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%
% calculate the number of beam elements porportional.y damped
aa=size(dcon) ;
numel _damp=aa(li;
%
$ calculate the number of nodes.
b=gize (coord);
nodes=b (.. ;
%
$ convert the coordinates in to the correct units iin.)
coord=coord=*12;
%
% calculate the beam element lengths and beam angles in radians
for i=l:numel
IC=con(i,l);
ID=con(i,2);
1{(l,i)=sqgrt{(coord(1ID, 1) -coord(IC,1))*2+{coord(ID,2;-coord{IC,2})*2);
DX (i)=coord(ID, 1) -coord(IC,1);
DY (i)=coord(ID,2) -coord(IC,2);
if DX(i)>=0 & DY{i)>=0;
t(l,i)=acos(DX(i)/1(1,1i));
2lseif DX(i)<0 & DY (i)>=0;
t{l,i)=acos(DY(1)/1(1,1))+pi/2;
2lgeif DX(i)<0 & DY (i) <=0;
t(l,i)=acos(abs(DX(i))/1(1,1))+pi;
else ‘
t(l,i)=acos{abs(DY(1i))/1(L,1i})+{3*pi/2);
end;
end;
3
$ call trig function
[c,s]l=frrig{t,numel) ;
%
% calculate radius of gyration
for i=l:numel
r(l,i)=sqre(I(i)/Aa(i));
end;
]
% create the global matrix which is all zeroes.
%
kg={zeros (nodes*3,nodes*3)] ;
mg={zeros (nodes*3,nodes*3)] ;
%
% assemble the elemental matricies to the global matrix.
]
for i=l:numel
[kel,mel]=felement6 (1l (i) ,WID(i),I(i),E(i),A(i),r(i),c(i),s(i));
$
v=con{i,1l);
w=con (i, 2);
%




kg .3*v-2:3*v,3%v-2:3%v. = Kg3%V-Z:3%y,3%v-2:3%. » k2l 1:3,.:3.;
kgi3*v-2:3*v,3*w-2:3*w) = Kgi3*v-2:3*v,3*w-2:3%w, - Kel..}1:3,4:6 ;
Kg(3*w-2:3*%*w,3*v-2:3*v| = kgi3*w-2:3%w,3"v-2:3*v' - Xelid4:6,1:3 ;
kg(3*w-2:3*w,3*w-2:3%w; = kg(3*w-2:3*w,3*w-2:3*%*w) + kel 4:6,4:6);
%

mg(3*v-2:3*v,3*v-2:3*v) = mg(3*v-2:3%v,3%v-2:3*v) +» mel(l:3,1:3);
mg(3*v-2:3*v,3*w-2:3%*w) = mg{(3*v-2:3%v,3*w-2:3%*w) + mel 1:3,4:6};
Mg (3*w-2:3%*w,3*v-2:3%v! = mgi3*wW-2:3%w,3*v-2:3%v) + melid:6,1:3;
mg(3*w-2:3*w,3*w-2:3*w) = mg{3*w-2:3*w,3*w-2:3*w) + mel(4:6,4:6);
end

%

% This section will apply structural prop. damping to the k
§ matrix and set global k matrix to equal damped matrix
%
% calculate the beam element lengths and beam angles in radians
% for the damped beams
for i=l:numel_damp
IC=dconti,l);
ID=dcon(i,2);
1(1,1)=sqrt({coord(ID, 1) -coord(IC, 1)) *2+(coord(ID,2)-coord(IC,2))*2);
DX (i)=coord(ID,1l) -coord(IC,1);
DY (i)=coord (1D, 2) -coord(IC,2);
if DX(i)>=0 & DY(1i)>=0;
t(l,i)=acos(DX(1)/1(1,1));
elseif DX(i)<0 & DY(i)>=0;
t(l,i)=acos(DY{i)/1(1,1i))+pi/2;
elseif DX(i)<0 & DY (i)<=0;
t(l,i)=acos(abs(DX(i))/1(1,i))+pi;
else
t(1,i)=acos(abs(DY(i))/1(1,1i))+(3*pi/2);
end;
end;
]
% call trig function
[c,sl=ftrig(t,numel_damp) ;
%
% calculate radius of gyration
for i=l:numel_damp
r(l,i)=sqre(I(i)/A(i));
end;
%
kgd=kg;
for u=1:numel_ damp
(kel]}=felement6 (1 (u) ,WID(u),I(u),E(),A(u),r(u),c(uw),s({u));
%
v=dcon(u, 1) ;
w=dcon(u,2) ;
%
kgd(3*v-2:3#%v,3%v-2:3%v) = kgd(3%v-2:3*y,3*v-2:3*%y) + j*bb*kel(l:3,1:3);
kgd(3*v-2:3*v,3*w-2:3%w) = kgd(3*v-2:3*v,3*w-2:3%w) + j*bb*kel(1:3,4:6);
kgd(3*w-2:3*w,3*v-2:3*v) = kgd(3*w-2:3*w,3*v-2:3*y) + j*bb*kel(4:6,1:3);
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kgd(3*w-2:3*W,3*w-2:3*w; = xgd . 3*w-2:3*wW,3*w-2:3*w; + 3ivbb*kelid:6,4:%
%

end

3

% this section will connect a spring-damper system to the glcbal

% stiffness matrix. the spring-damper system is made up of a set of
three springs and dampers that correspond to the degrees of freedom
% at a ncde. It attaches to the global stiffness matrix based on the
$ spring damper connectivity.

%

kgds=kgd;

d = size{sdcon);

numspg = 4l ;

count=0;

for Comega=.1:.2:50

count=count+1i;

for j=1:numspg;

{kdsprg]=fsprngdamp (k(j) , Comega,B{(j)) ;

%

x=sdcon(j,1);

y=sdcon(j,2);

%

.

kgds (3*x-2:3#*x,3*x-2:3*x) = kgd(3*x-2:3*x,3*x-2:3*x) + kdsprg(l:3,1:3);
kgds (3*x-2:3%x,3*y-2:3*y) = kgd(3+*x-2:3%*x,3%y-2:3*y) + kdsprg(l:3,4:6);
kgds (3*y-2:3*y,3*x-2:3*x) = kgd(3*y-2:3*%y,3*x-2:3*x) + kdsprg(4:6,1:3);
kgds (3*y-2:3*y,3*y-2:3*y) = kgd(3*y-2:3*%y,3*y-2:3*%y) + kdsprg(4:6,4:6) ;
end

$

% apply the boundary conditions
% the user must adjust the global matrix to meet the boundary conditions
%

$ to delete rows

kgds([BC],:) = [];:

mg(([(BCl,:) = (I;

§ to delete columns

kgds(:, [BC)) = [];

mg(:, [BC]l) = [];

%

Z=kgds-Comega“2+*mg;

H=inv(Z) ;

%

HH (count)=H(8,8) ;

end;

%
(lambda,phil =fgmodes (kgds, mg) ;
% this now converts the eigenvalues to nat frequency in (rad/sec) and
% hertz(l/sec)

%

omega = sqrt(lambda);

freq = omega/ (2*pi);

%
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etime(clock,td) ,flops

Comega=.1l:.2:50;

¥

Freg=Comega/ (2*pi) ;

plot (Freq,20*1og(HH) ) ,grid

xlabel (' Frequency Hz ')

yvlabel ('FRF at coordinate of interest 4B ':

$ end

L minihullsprdam datas

%

%

% This is the data for the finite element program.
%

$ the data will be in the form of

§ - (E) youngs modulus psi

% - (I) area moment of inertia in+“4

% - (A) cross sectional area in*2

$ - conductivity [ the node connection mapping |

% - node coordinates [ cartesian coordinates for each node ]
% - (bb) proportional damping constant

% - (k) spring constant lbs/in

$ - (B) proportional viscous damping constant

%

E=[30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30]*leé6;
I=[.02083 .02083 .02083 .02083 .02083 ,02083 .02083 .02083 .02083

.02083

.02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083];%1/12bh*3 b=2,

h=.5
A={1 11111111111 111111];
WID=[.2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832
.2832 .2832 .2832 .2832 .2832 .2832 .2832];
B={.01 .01 .01 .01]; % porp damp 2%
k=[25 25 25 25]; % 1lbs/in
bb=0.02; $ structural porp damp 2%
con=(1,2;

2,3;

3,4;

5

4

5,6;
6,7;
7,8;
8,9

’ 1

221
9,10;
10,11;
11,12;
12,1;
13,14;
14,15;
1%,16;
16,17;
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14,18;

16,19];
% this determines what elements have damping
dcon={1,2;

2,3;

~
. w0~

-~

-

W o~ o ke W
O @O N D

~

~

10,11;
11,12;
12,1;
13,14;
14,15;
15,16;
16,17;
14,18;
16,19];
% this is the isolator connectivity
sdcon=[11,13;
17,5;
12,18;
19,4);
%
coord=(4,0;
8,0;
12,0;
16,4;
16,8;
16,12;
12,16;
8,16;
4,16;
0,12;
0,8;
0,4;
0,8;
4,8;
8,8;
12,8;
16,8;
0,4;
16,4];

BC=(] ;

1 out_struch
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This is the data file for the cuter structure :tC be synthesized.

O

the data will be in the form of

- (E) youngs modulus psi

- (I) area moment of inertia in*4

- {(A) cross sectional area in-"2

- conductivizy [ the node connection mapping ]

- node coordinates [ cartesian coordinates for each node }
- (bb) proportional damping constant

P IP 90 0P P OP OP P OP P OF

E=[30 30 30 30 30 30 30 3C 30 30 30 30j*leé;

I={ .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083
.02083 .02083 .02083);%1/12bh*3 b=2, h=.5

A=[ 1 1111111111 1];

WID=[.2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832
.2832];

bb=0.02;

con=(1,2;

% this determines what elements have damping
dcon=[1,2;
2,3;

]

coord={4,0;
8,0;
12,0;
16,4;
16,8;
16,12;

136




[+ 3

12,1
8,16;
4,156;
0,12;
0.,8;
0,4}
%
BC=i];
3 inner_strucs
%
%
% This is the data file for the inner structure to be synthesized
%
% the data will be in the form of
% - (E) youngs modulus psi
§ - (I) area moment of inertia in*4
% - (WTD) weight density 1lbf/in-"3
$ - (A) cross sectional area in*2
% - conductivity [ the node connection mapping ]
% - node coordinates [ cartesian coords for each node in ft. |}
3 the main program will convert to in..
$ - (bb) structural proportional damping constant
]

E=[30 30 30 30 30 30]*le6;
I=[ .02083 .02083 .02083 .02083 .02083 .02083];%1/12bh*3 b=2, h=.5
A= 1 111 11];
WID={ .2832 .2832 .2832 .2832 .2832 .2832];
bb=0.02; I
con=(1,2;
2,3;
3,4;
4,5;
2,6;
4,7);
% this determines what elements have damping
dcon=(1,2;
2,3;
3,4;
4,5;
2,6;
417] H
]
coord=(0,4;
4,4;
8,4;
12,4;
16,4;
0,0;
16,0];
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% FRE_TUDSTRIAM_Z

$ Load data from running urifineel program for each substructure.
% The K and M matrix for ea:-h structure is saved.

load exSa.mat $ k1 mi are sctored here

load exsSb.mat % k2 mZ are stored here

We need to create a single FRF matrix representing
both substructures in the form:

{hee] = [ h(i, i) hei,c! ]
[ hic,iy h c,cr |}

SO we Create arrays containing the DOF numbers of our original
models which correspond the the “c* and #“i” coordinates for
each substructure.

call the synthesis data file in now which contains the
internal coordinates and connection coordinates for each sub
structure.

il= intermnal coords of sub structure 1
i2= internal coords of sub structure 2
cl= connection coords of sub structure 1
c2= connection coords of sub structure 2

P 0P P P I OP 0P OP 0P IP IP IP MW WP WP P I P P W

FRF_Indsprdam_datas

%

t0 = clock;

flops(0) ;

count=0;

for Comega=.l1:.2:50

count=count+1;

%

% Form Frequency Response Models for Each Substructure
% sy me oo oy R - o e vy - - oy - -
%

zl=kl-Comega*2+*ml;

z2=k2-Comega“2+mz;

hl=inv(zl);

h2=inv(z2);

%

a=gize(il);

b=gize(cl);
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c=gize(i2);
d=gize(c2l};
3

aa=a(2);
bb=b(2) ;
cco=c(2);
dd=d(2 ;

Remember, we are trying to calculate the following:

hee* = hee - hec * M * inv(zr + hcer ) *» M' * hce

hcer = M' » hee * M

2r = pinv(M) * z = pinv(M') which is just identity matrix size
3 times the number of spring-damp systems

3

%

$

%

%

%

]

3

% So we need to assemble [hee], [hec], [hcel and [hcc] using the
$ the coordinate sets we just defined.

§ These matrices contain the FRF data for both substructures

$ prior to coupling, i.e the pre-synthesis FRF data.

%
%
%
]
]
4
h

Coordinate Partitioning

- - -~ " - -~ - -

Build up uncoupled FRF matrix and sub-partitions:

ee = [hl(il,il) zeros(aa,cc) hl(iil,cl) zeros{aa,dd);
zeros(cc,aa)l h2(i2,i2) zeros(cc,bb) h2{iz2,c2);
hl(ci,il) zeros (bb, cc) hl(cl,cl) zeros(bb,dd);

zeros(dd,aa) h2(c2,i2) zeros(dd,bb) h2(c2,c2)]};
%
hec = [hil(il,c1) zeros(aa,dd);
zeros(cc,bb) h2(i2,c2);
hi(cl,cl) zeros (bb,dd) ;
zeros (dd,bb) h2(c2,c2)1];
3
hce = [hl(cl,cl) zeros(bb,dd);
zeros (dd,bb) h2(c2,c2)];
$
hce= [hi{cl,il) zeros (bb, cc) hi(cl,cl) zeros(bb,dd);
zeros(dd,aa) h2(c2,i2) zeros(dd,bb) h2(c2,c2)];
]
$ We can now perform the synthesis:
zr = (k + j*Comega*B*k) * eye(l2);
hcer = M' *» hce * M;
heestar = hee - hec * M * inv(inv(zr) + hccr ) * M' * hce;
HH (count '=heestar(8,8) ;
end;
etime(clock,t0),flops
$
Comega=.1:.2:50;
FregeComega/ (2*pi) ;
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plot {Freq,20*1log(HH) i ,grid
xlabel (' Frequency Hz "
ylabel ('FRF at coordinate o2f interest 4B *.

L FRF_Indsprdam_datas

%

% This is the data file for the synthesis program.
% The following daza will be prcocvided by this file
%

% il1- internal coords sub structure 1l

% i2- internal coords sub structure 2

§ cl- connection coords sub structure |

% Cc2- connection coords sub structure 2

3

il={1 2 3 4 56 7 8 9 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3C];
cl={10 11 12 13 14 15 31 32 33 34 35 36];

i2={4 S 6 7 8 9 10 11 12];

c2=[1 2 3 13 14 15 16 17 18 19 20 211};

%

% The following is the mapping matrix.

% The mapping matrix is not general and is case specific

%

M=[eye(12);
0000C0O0-100000;
00000O0OC-10000;
00000000 -1000;
0 00-200000000;
0000-10000000;
0000Q00C-12000000;
000000000 -100;
000000C00G0GO0 -1 0;
000000000O0COC -1;
-1 000000000030 0;
0-1000000000 0;
00 -100000000 0];

%

k= 25; $ spring constant

B=,02; % viscous damping constant
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APPENDIX F MATLAB CODE FOR EXAMPLE SIX

finesprdamp?7

This program will calculate the eigenvalues, eigenvectors
natural frequencies, and frequency response function matrix
for a three degree of freedom at each rnode element.

The system is modeled with beam elements that are

aligned in the same plane but at any angle (2-D).

| !
| I
L .
| !
! !

This program works for a beam element modeled with six general
coordinates and cthus six DOF.

the user must enter the following data to meet the beam configuration
(E) youngs modulus psi

(I) area moment of inertia in*4

(WID) weight density lbf/in*3

(A) cross sectional area in*2

conductivity [ the node connection mapping |}

node coordinates { cartesian coordinates for each node ]
spring-damper conductivity

(k) spring constant

(q) viscous frequency dependent damping coefficient

P AP dP P 0P dP P dP P P P OP P OP OP OF OP I IR P IP JIP JP P I IR I I WK W

call the data file
minihullisprdam_dg7

]

$ calculate the number of beam elements
t0=clock;

flops(0);

a=gize(con);

numel=a(l);

%

% calculate the number of nodes.
b=gize(coord) ;

nodes=b (1) ;

$
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Al A

% convert rthe ccocordinates in -2 The corrscs uniss in,s
coord=cocrd*12;
%
% calculate the beam element lengths and beam angles in radians
for i=l:numel
IC=coni{i,1};
ID=cconii, 2! ;
1.1,ij=sqrc 2oord(iD,1l: -cocrdiIC, 1. "2+ :220rdi{il,2’ -cocrd. 1C,2:1%2;
DX {i)=coord(ID, 1) -cooxrd(IC, 1) ;
DY (i)=coord(1ID,2) -¢coord(IC,2};
if DX(i)>=0 & DY(i)>=0;
t(l,i)=acos(DX(1)/1(1,1);
elseif DX(i)<0 & DY(i)>=0;
t(l,i)=acos(DY(i)/1(1,1i))+pi/2;
elseif DX(i)<0 & DY(i)<=0;
t{l,i)=acos{abs(DX(1i))/1(1,1))+pi;
else
t{l,i)=acos(abs(DY(i))/1(1,1))+(3*pi/2);
end;
end;
%
% call trig function
(c,s8]=ftrig(t,numel);
%
% calculate radius of gyration
for i=l:numel
r(l,i)=sqrt({I(i) /A(i));
end;
3
$ create the global matrix which is all zeroes.
]
kg=[zeros (nodes*3,nodes*3)];
mg= [zeros (nodes+*3,nodes*3) ] ;
2
% assemble the elemental matricies to the global matrix.
%
for i=1:numel
[kel,mel]l=felement6(1(i) ,WwrD(i),I(1i),E(i),A(i),r(i),c(i),s(i));
%
v=con(i,1);
w=con(i,2);
%

kg(3*v-2:3*v,3%v-2:3*v) = kg(3*v-2:3*v,3*v-2:3*v) + kel(1:3,1:3);
kg{(3*v-2:3*v,3*w-2:3%w) = kg(3*v-2:3*v, 3*w-2:3%*w) + kel(1:3,4:6);
kg (3*w-2:3*w,3%v-2:3%y) = kg(3*w-2:3*w,3*v-2:3%v) + kel(4:6,1:3);
kg(3*w-2:3*w,3*%*w-2:3%w) = kg(3*w-2:3*w,3*w-2:3*w) + kel(4:6,4:6);
%

mg(3*v-2:3%v, 3*y-2:3%y) = mg(3*v-2:3*v,3%v-2:3%y) + mel(l:3,1:3);
mg(3*v-2:3%v,3%w-2:3%*w) = mg{3*v-2:3*v, 3*w-2:3%w) + mel(1:3,4:6);
mg(3*w-2:3*w,3*%v-2:3%) = mg({3*w-2:3*W,3*v-2:3*y) + mel{4:6,1:3);
mg(3*w-2:3*w,3*w-2:3*w) = mg(3*w-2:3*w,3*w-2:3*w) + mel(4:6,4:6);
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end

This section will connect a spring-damper system to the glcbal
stiffness matrix. The spring-damper system is made up of a set of
three springs and dampers that correspond tc the degrees of freedom
at node. It attaches to the global stiffness matrix based on the
the spring-damper connecrivity.

IR I OP I P O O

kgds=kg;

d = size(scon);

numspg = d(l);

count=0;

for Comega=.l:.1:25

count=count+1;

for j=l:numspg;

[kdsprgl =fsprngdampC (k(j),Comega,q(j;};
%

x=scon(j,1l);

y=scon(j,2);

%

kgds (3*x-2:3*x,3*x-2:3*x)
kgds (3*x-2:3*x,3*%y-2:3*y)
kgds(3*y-2:3*y,3*x-2:3*xX)
kgds (3*y-2:3*%y, 3*y-2:3*y)
end

%

% apply the boundary conditions

$ the user must adjust the global matrix to meet the bourndary conditions
%

$ to delete rows

kgds(([BC],:) = [];

mg([BCl,:) = [];

% to delete columns

kgds(:, [BC]) = [];

mg(:, [BCl) = [];

%

% call the function and calculate eigenvectors and the eigenvalues

$ which are the mode shapes and natural frequency in (rad/sec)*2

%

[lambda,phil =fgmodes (kgds, mg) ;

$ now convert the eigenvalues to nat frequency in (rad/sec) and

$ hertz(1/sec)

]

omega = sqrt(lambda);

freq = omega/(2*pi) ;

kg(3#*x-2:3*x,3%x-2:3%x)
kg(3*x-2:3%x,3*y-2:3*y)
kg(3%y-2:3*y,3%*x-2:3*%x)
KQ(3%*y-2:3%y,3*y-2:3*y)

kdsprg(1:3,1:3);
kdsprg(l:3,4:6!;
kdsprg(4:6,1:3) ;
kdsprg(4:6,4:6) ;

[ ]
+ + 4

+

Z=kgds-Comega“2+*mg;
H=inv(2Z) ;

%

HH (count)=H(8, 8) ;
end;
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ectime(ziock,td:,flops

Comega=.1l:.1:5;

Freq=Comega/ (2*pi; ;
plot:Freqg,20*lcg(HH) ) ,grid
xl.abel{'Frequency Hz')

ylapel ( 'FRF at coordinate of interest dB')
%

% EID

minihullsprdam_d7

This is the data for the finite element program with three
degress cf freedom at a node.

the data will be in the form of

- (E) youngs modulus psi

- (I) area moment of inertia in*4

- (WID) weight density 1lbf/in*3

- (A) cross sectional area in*2

- conductivity [ the node connection mapping ]

- node coordinates [ cartesian coords for each node in ft. ]
the main program will convert to in..

- (q) frequency dependent viscous damping coefficient

- (k) spring constant

E={30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30]*les6;

I=[.02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083

.02083 .02083 .02083 .02083 .02083 .02083 .02083 .02083];%1/12bh*3 b=2,

h=_5

A=f{1 1 1111111111111111};

WID=(.2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832 .2832

.2832 .2832 .2832 .2832 .2832 .2832 .2832];

g={.1 .1 .1 .1l]; $ damping coefficient

k=[25 25 25 25]; % lbs/in

%

con=(1,2;

2,3;

3,4;

4,5;

5,6;

6.7;

7,8;

8,9;

9,10;

10,11;

11,12;

12,1;

13,14;

AP O 0P P I OO P JP IR I IP P P OP JP IP I oP
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14,19;
15,16;
16,17;
14,18;
16,191 ;
%
§ spring Ionnectivity
scon=(il,.3;
17,5;
12,18;
19,4];
%
coord=(4,90;
8,0;
12,0;
16,4;
16,8;
16,12;
12,16;

@ s OO C
®» O ® & ©

.~ we

H
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“«e @ 00 “¢ we ~e ws we

0,4
16,4];

BC={];

out_struc?

This is the data for the finite element program with three
degrees of freedom at a node.

the data will be in the form of

- (E) youngs modulus psi

- (1) area moment of inertia in*4

- (WTD) weight density 1lbf/in*3

- {(A) cross sectional area in*2

- conductivity [ the node connection mapping 1

- node coordinates [ cartesian coords for each node in ft.
the main program will convert to in..

P dP 0P OP OP OP OP W OP dP JIP P JIP W I W
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30 30 3C 30 3v 30 3C 3C 3C 3¢

{ 30 32«
([ .02083 .02083 .02083 .0<083
I

.02083 .¢C
3 .02083 .02083];%:/12bh*3 b=2, h=.5
111111111 1};

832 .2832 .2832 .2832 .2832 .2832

NS

%

coord=[4,0;
8,0;
12,0;
16,4;
16,8;
16,12;
12,16;
8,16;
4,16;
0,12;
0,8;
0'4];

BC=(];

inner_struc?

This is the data for the finite element program with three
degrees of freedom at a node.

the data will be in the form of

- (E) youngs modulus psi

- (I) area moment of inertia in*4

- (WD) weight density 1bf/in*"3

- (A) cross sectional area in"2

- conductivity [ the node connection mapping |

P P P P OP IP dP P IP IP OP OP P I
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%
3
%

- node coordinates . cartesian <o fcr eacn node io -,
the main program will convert T in..

E= .30 30 30 30 30 30]*leé;
I={ .02083 .02083 .02083 .02083 .G2083 .02083):;%1/12bh"3 b=2, h=.

A={ 1 Ll 1 11 1i};
WTD=. .28232 .2832 .2832 .2832 .z832 .z832};
con={1l,2;
2,3;
3,4;
4,5;
2,6;
4,71} ;
%
coord= (0, 4;
4,4;
8,4;
12,4;
16,4;
Q0,0;
16,0] ;
%
BC=(1];
clear;
clg;
%
$ FRF_INDSPRDAM 7
3
% Load data from running unifineel program for each substructure.
% The K and M matrix for each substructure is saved.
%
load ex7a.mat % k1 ml are stored here
load ex7b.mat % k2 m2 are stored here
$
% We need tc create a single FRF matrix representing
% both substructures in the form:
%
% (hee] = [ hi(i,i) h(i,c) 1
% [ hi(c,1) h(c,c) 1
%
$
% So we create arrays containing the DOF numbers of our original
% models which correspond the the “c” and *“i” coordinates for
% each substructure.
%
% call the synthesis data file in now which contains the
$ internal coordinates and connection coordinates for each sub
% structure.
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3

% il= internal coords of sub structure .

% i2= internal coords of sub structure 2

% cl= connection coords of sub structure 1

% c2= connection coords of sub structure 2

%

FRF_Indsprdam_data?

3

t0 = clock;

flops(0);

count=0;

for Comega=.1:.1:50

count=count+1l;

%

% Form Frequency Response Models for Each Substructure
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3

zl=kl-Comega*2+*ml;
z2=k2-Comega“2*m2;
hl=inv(zl);
h2=inv(22);

%

a=size(il);
b=gize(cl):;
c=gize(i2);
d=size(c2);

%

aa=a(2);

bb=b(2) ;

cec=c(2);

dd=da(2);

Remember, we are trying to calculate the following:

hee* = hee - hec * M * inv(zr + hcer ) * M' * hce

hcer = M' * hce * M

zr = pinv(M) * z * pinv(M') which is just the identity matrix size
3 times the number of spring-damp systems

So we need to assemble [heel, [hec], [hce] and [hcc] using the
the coordinate sets we just defined.

These matrices contain the FRF data for both substructures
prior to coupling, i.e the pre-synthesis FRF data.

Coordinate Partitioning

Build up uncoupled FRF matrix and sub-partitions:

P P IP 0P dP 0P 0P dP 9P dP OP P 0P OP dP dP JP IP

hee = [hl(il,il) zeros(aa,cc) hl(il,cl) =zeros{aa,dqd);
zeros (¢cc,aa) h2(i2,i2) zeros(cc,bb) h2(i2,c2);
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hi-cl, il zercs:'bb,c: niizi, oL zzrzs tp, 438 ;
zeros(dd,aa) h2:c2,i2; zeros'dd,bb) LI 2,0 @
%
hec = hiill,cl) zerosiaa,dd:;
zerosi‘cc,bb) h2(i2,c2:;
ni.ocLl, o zerosi{bb,dd.! ;
zerss:3dd,ek: h2icZ,c2:;;
¥
acc = hici,cli zerosibkk,dd);
zercsidd,bb) h2(c2,c2:];
%
hce= thi.ci,ily zercs (bb, cc) hi(cl,cl) zeros:bb,dd);
zerosidd,aa) hatcz,i2) zeros(dd,bb) hai{c2,c2i};
%

% We can now perform the synthesis:

zZr = (k + j*Comegar*k*exp(-g*Comegal) * eye(l2);
hccr = M' * hee * M;

heestar = hee - hec * M * inv{invizr) + hccr )} * M' * hce;
HH (count)=heestar(8,8) ;

end;

etime(clock,t0),£flops

%

Comega=.1:.1:50;

Freq=Comega/ (2*pi) ;

plot (Freq,20*1log(HH) ) ,grid

xlabel (' Frequency Hz ')

vlabel ('FRF at coordinate of interest dB ')

FRF_Indsprdam_data7

This is the data file for the synthesis program.
The following data will be provided by this file.

il- internal coords sub structure 1
i2- internal coords sub structure 2
cl- connection coords sub structure 1
¢2- connection coords sub structure 2

90 P I OP I IP P P I W

il={1 2 3 4 56 7 8 9 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30);
cl={10 11 12 13 14 15 31 32 33 34 35 36]:

iz={4 5 6 7 8 9 10 11 12]};

c2={1 2 3 13 14 15 16 17 18 19 20 21};

%

$ the following is the mapping matrix

% the mapping matrix is not general and is

% case specific

$

M=[eye(12);
000000 -100000;
00000060 -20000;
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022300200

g C;
0

4]
g

-1 000C00

0o¢

-1l 0 GO0OQ J;

0000

-1 00000 0Q;

00000

-1 0 0;

cd000O00O0
000C0000CG0O00

3¢

-1 0;

-lL000O0CCCOO0OQO0;

J

00

-1000000000];
$ spring constant and damping coefficient

k= 25;

%
q=.1;
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APPENDIX G MATLAB CODE FOR EXAMPLE SEVEN

ciear
unifineelscress

This program wilil caiculate the eigenvalues, eigenvecrors

natural frequencies, and stress frequency response funccion matrix
for a three degree of freedom at each node element.

The system is modeled with beam elements that are

aligned in the same plane but at any angle (2-D,.

| i
! I
! I
I ]

This program works for a beam element modeled with six general
coordinates and thus six DOF.

the user must enter the following data to meet the beam configuration
(E) youngs modulus psi

(I) area moment of inertia in*a

(WTD) weight density lbf/in*3

{A) cross sectional area in*2

conductivity [ the node connection mapping |

node coordinates [ cartesian coordinates for each node ]
({beam) the beam element of interest

{cc) structure connection coordinates

{bcoord) beam element coordinates

(cd) distance from beam center to outer most fiber
clear;

% call the data file

hullstressdata

3

% calculate the number of beam elements

a=gize(con);

numel=a (1) ;

%

% calculate the number of nodes.

b=gize (coord) ;

nodes=b(l) ;

]

% convert the coordinates in to the correct units (in.)

OGP dP dP P 0P 0P P OGP P dP IP P IP P P P AP P AP OP 0P U0 AP OP O IR W N W




gcoord=coord*lz;
$
§ calculate the beam element .engths and keam angles in radians
for i=!:numel
IC=con(i,i};
ID=conii,2);
lil, i =sgre’tzoord(ID, L -coord(IC, L.  *2+coord ID,2; -ccordiIC, 2t
DXii)=cocrd . ID, i) -coord{Il, 1l ;
DY(i,=coord(1D,2) -coord(IC,2;;
if DX{1)>=0 & DY (i)>=0;
ti(l,i)=acos(DX(ii/1(L,i):;
elseif DX(i)<0 & DY(i)>=0;
t(l,i)=acos(DY(i)/1(1,1))+pi/2;
elseif DX(i)<0 & DY(i)<=0;
til,i)=acos(abs(DX{i))/1(i,1),+pi;
else
t(l,i)=acos(abs(DY(i))/1(Ll,1i})+(3*pi/2);
end;
end;
%
% call trig function
{c,s]=ftrig(t,numel);
%
% calculate radius of gyration
for i=i:numel
r{l,i)=g9qre(I(i)/A(i));
end;
]
$ create the global matrix which is all zeroes.
3
kg=[zeros (nodes*3,nodes*3)];
mg=[zeros (nodes*3,nodes+*3)];
]
% assemble the elemental matricies to the global matrix.
for i=1:numel
[kel, mel]=felement6 (1 (i) ,WID(i),I(i),E(i),A(i),r(i),cl{i),s(i));
]
v=con(i,l);
w=con(i, 2);
%

kg(3#*#v-2:3*v,3%v-2:3%v) = kg(3*v-2:3%v,3*v-2:3*v) + kel(l:3,1:3);
kg (3*v-2:3%v,3*w-2:3%w) = kg(3*v-2:3*v,3*yw-2:3%*w) + kel (1l:3,4:6);
kg(3*w-2:3*w,3*v-2:3*v) = kg(3*w-2:3*w,3*v-2:3*v) + kel(4:6,1:3);
kg(3*w-2:3%w,3*w-2:3%*w) = kg(3*w-2:3%w,3*w-2:3*w) + kel(4:6,4:6);
%

MF(3*v-2:3*v,3%v-2:3%v) = mg(3*v-2:3%v, 3*v-2:3*v) + mel(l:3,1:3);
mg(3*v-2:3*v,3*w-2:3%w) = mg(3*v-2:3%*y,3*w-2:3*w) + mel(l:3,4:6);
mG(3*w-2:3%w,3*v-2:3*%V) = mg(3*w-2:3%w,3*v-2:3*v) + mel(4:6,1:3);
MG (3*w-2:3%w,3*Ww-2:3%W) = Mg (3*w-2:3*w, 3*w-2:3*w) + mel(4:6,4:6);

end
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apply the bourndary condicions
the user must adjust the global matrix <o meer the boundary ~onditions

I WP e P

% ¢o delate rows

kg« {BCl,:i = [l;

mg: B3, = 1.;

% to del2z2 zolumns

kgt:, [BCI) = {];

mg(:, (BCl: = [];

¥

% call the function and calculate eigenvectors and the eigenvalues
% which are the mode shapes and natural frequency in (rad/sec;*2
%

{lambda,phi)=fgmodes (kg,mg) ;

$

% this converts the eigenvalues to nat frequency in (rad/sec) and
% and hertz(l/sec)

E

omega = sqrt{lambda);

freq = omega/ (2*pi);

%

% calculate the FRF over the freq. of interest

%

count=0;

for Comega=2:1:1600

count=count+1i;

Z=kg-Comega“2*mg;

H=inv(Z) ;

% save the coordinate of interest to plot

HH(count)=H(1,1);

% this portion calculates the stress FRF in a given element
%

HCOL=size(cc) ;

NHCOL=HCOL(2) ;

MEQ=(0 l(beam)/2 1 0 0 0];

[Trmatrix]=ftrans(c, s,beam) ;

(kel]=fkelementé (1 (beam) ,WTD (beam) , I (beam),E(beam) ,A(beam),r(beam)) ;
for i=1:NHCOL

HEL=H(:,cc(i));

HELR=HEL (bcoord, :) ;

HLOCAL=Trmatrix*HELR;

NODEF=kel*HLOCAL;

stress(l,i)=cd/I (beam) *MEQ*NODEF;

end;

Stress (count)=stress(1,3);

§ $ this is the end of the stress FRF calculation

end;

Comega=2:1:1600;

Freg=Comega/(2*pi) ;
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plot (Freq,20*log{HH) ' ,grid, pause
plot{Freq,20*log(Stress: j,gricd

%

% end

hullstressdata

This is the data for the finite element program.

the data will be in the form of

- (E) youngs modulus psi

- (I) area moment of inertia in*4

- {WID) weight density 1lbf/in*3

- (A) cross sectional area in*2

- conductivity [ the node connection mapping |

- (beam) the beam element of interest

- (bcoord) the beam element coordinates

- {(cc) structure connection coordinates

- (cd) distance from beam center to outer most fiber in

OGP dP dP dP OP 0P 0P OP IP OP OP OP P P P P P o

E=[30 30 30 30 30 )*le6;
I={.1666 .1666 .1666 .1666 .1666)J*le-3;%1/12bh*3 b=2, h=0.l
A=[.2 .2 .2 .2 .2];
WID={,2832 .2832 .2832 .2832 .2832);
beam=4 ;
cce={4 5 6 10 11 12];
becoord={1 2 3 10 11 12];
Ccd=,05;
3
con=(1,2;
2,3;
3,4;
4,1;
4121 H
]
coord=(10,0;
20,10;
10,20;
0,10]; % this is in (in.)
3
BC={];

hullstressdatal

oP P 9P o

This is the data for the finite element program.
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- node coordinates { cartesian coords for each node in ft.
the main program will convert to in..

]




This is the outer structure.

the data will be in =he form of

- {E) youngs modulus psi

!I) area moment of inertia in*4

(WID) weight density 1lbf/in*3

- A} cross sectional area in*2

- conduczivity [ the node connection mapping |

- node coordinates | cartesian coords for each node in ft.
the main program will ccnvert to in..

OF 0P dP OP 0P OGP IP P P P I
T—

E={30 30 30 30]*leé;

I=[.1666 .1666 .1666 .l666]*ie-3;%1/12bh"*3 b=2, h=0.1
A=(.2 .2 .2 .2];

WTD=(.2832 ,2832 .2832 .2832];

%
con={1,2;
2,3;
3,4;
4,11;
%
coord={10,0;
20,10;
10,20;
0,10]; % this is in (in.)
3
BC=[];
] hullstressdataz2
]
%
$ This is the data for the finite element program.
$ This is the inner structure.
%
% the data will be in the form of
$ - (E) youngs modulus psi
% - (I) area moment of inertia in*4
% - (WTD) weight density 1lbf/in*3
% - (A) cross sectional area in*2
$ - conductivity [ the node connection mapping |
% - node coordinates [ cartesian coords for each node in ft.
% the main program will convert to in..
]

E=[30]*le6;

I=[.1666 ]*le-3;%1/12bh"3 b=2, h=0.1
A=[ . 2];

WTD={.2832];

%

con=[1,2];

%

155

4

]




coord=[(20,0;

0,9]; % in.

fad
T
o8
i
ya
/7]
-
3

]
BC={];

program FRF _stresss

%
%
% this program will calculate stress FRF by the indirect
% coupling method

$

clear;

clg;

%¥load ex8a.mat % kl, ml are stored here

%load ex8b.mat $ k2, m2 are stored here

%

stressdatas

%

% We need to partion the H matrix of the structure to
% be modified in the following way.
]

% [ i1 | ic ]

% ...........

% lcilt ccj

%

3 (hee] = [ ii ic

] ci cc )

%

% fhec] = [ ic

% cc ]

3

3 (hee] = [ cc ]

%

% define the variables

% internal moment equation in vector form

MEQ={0 11/2 1 0 0 0];

% number of columns in the frf matrix

nhcol=nodes*3;

$ calling functions

[kel]l=frfkelement6(1l1l,WID,I,E,A,rx);

[Trmatrix]=frftrans(ccc, s8)

% set the clock and flops

t0=clock;

flops(0);

count=0;

for Comega=2:1:1600

count=count+1;

] Form Frequency Response Models for Each Substructure
% ..............................................
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zl=kl-Comega“2=*ml;

z=k2-Comega‘*Z*m2;

h=invizl);

%

3 Coordinate Parzitionin
% ~~~~~~~~~~~~~~~~~~~~~~
%

nce = »n 77,05

%

hce = [hilcc,iec) hlcc,cc)i;

%

% calculate the stress of desired beam

for i=l:nhcol

hel=h(:,i);

helr=hel (bcoord, : !} ;

hlocal=Trmatrix+*helr;

nodalF=kel*hlocal;

S!1,i)=cd/I*MEQ*nodalF;

end;

hse={S(l,ic) S(l,cc)];

hsc=([S{1,cc)];

% now we will synthesize the stresses
hsestar=hse - hsc * inv(inv(z) + hce) * hee;
HS(count) = hsestar(l,9); % thig is for coord 6
end

etime(clock,t0),flops

Comega=2:1:1600;

Freg=Comega/ (2*pi) ;

plot (Freq,20*1log(HS)) ,grid

xlabel (' Frequency Hz ')

vlabel ('Stress FRF at coordinate of interest dB ')

% stressdatas

%

% This is the data file for the stress synthesis program.
% The following data will be provided by this file.
%

% ic- internal coords of synthesized structure

$ cc- connection coords of synthesized structure

3

ic=[{1 2 37 8 9];

cc=[{4 5 6 10 11 12};

becoord={1 2 3 10 11 12]:

%

E=[30]*le6;

I=~[.1666 ]*le-3;%1/12bh"*3 b=2, h=0.1

A=[.2];

WID={.2832];

cd=.05;

nodes=4;
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APPENDIX H MATLAB CODE FOR EXAMPLE EIGHT

clear;
clg;
%
unifineell

This program will calculate the eigenvalues, eigenvectors
natural frequencies, and frequency response function matrix
for a three degree of freedcm at each node element.

The system is modeled with beam elements that are

aligned in the same plane but at any angle (2-D).

coordinates and thus six DOF.

%

3

$

%

$

%

%

¥

]

%

%

%

¥

%

% This program works for a beam element modeled with six general
%

%

%

% the user must enter the following data to meet the beam configuration
$¢ (E) youngs modulus psi

% (I) area moment of inertia in*4

% (WTD) weight density lbf/in*3

% (A) cross sectional area in*2

% conductivity [ the node connection mapping |

% node coordinates [ cartesian coordinates for each node )
% (bb) structural proportional damping constant

%

% call the data file

fxbeam_data9

3

% gtart the program clock and flops to determine program running
% time and floating point calculations

tO=clock;

flops(0);

%

% calculate the number of beam elements

a=gize(con) ;

numel=a(l);

]

% calculate the number of beam elements proportionally damped
aa=gize(dcon) ;
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numel damp=aaii:®;
¥
% calculate the number of nodes.
b=size ' coord!;
nodes=pb 1) ;
%
% corvert the ~cordinates in T2 the correct unitzs in.;
coQrd=cc2rd*.z;
%
% calculate the beam element lengths and team arngles in radians
for i=l:numel
IC=conti,i);
ID=conii,2):
1(l,iy=sqrt({coord(ID,1)-coordiiC,1); "2+ (coord(ID,2)-coordIC,2::*2;
DX(i)=coord{ID,li-coord{IC,1};
DY‘it=cooxrd(ID,2})-coord(IC,2);
if DX(1)>=0 & DY(i)>=0;
til,i)=acos{DX(i)/1«l,1i;/;
elseif DX(1!'<0 & DY (i)>=0;
t(l,i)=acos(DY(i)/1(1,1))+pi/2;
elseif DX(i)<0 & DY(i)<=0;
t(l,i)=acos(abs(DX(i))/1(1,1))+pi;
else
t(l,i)=acos(abs(DY(i))/1(1,1)}+{3*pi/2);
end;
end;
%
% call trig function
[c,s)=ftrig(t,numel) ;
%
% calculate radius of gyration
for i=1:numel
r(l,i)=sqre(I{i)/A(i));
end;
3
% create the global matrix which is all zeroes.
%
kg={[zeros (nodes+*3,nodes*3)] ;
mg={zeros (nodes*3,nodes*3)] ;
%
$ assemble the elemental matricies to the global matrix.
%
for i=l:numel
(kel,mel]l=felementé6 (1(i) ,wrn(i),I(i),E(i),A(1),r(i),c(i),s(i));
%
v=conii,l);
w=con (i, 2);
3
kg{3*v-2:3%v,32v-2:3%v) = kg(3*v-2:3*%v,3*v-2:3%v) + kel(l:3,1:3);
kg(3*v-2:3*%v,37w-2:3%w) = kg(3*v-2:3#%v,3%w-2:3*w) + kel(l:3,4:6);
kg(3*w-2:3*w,3%v-2:3%v) = kg(3*w-2:3*w,3%v-2:3*v) + kel(4:6,1:3);
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kg(3*w-2:3%wW, 3*w-2:3*w Kt 3*w-2:3%w, 3%w-2:3%w: kelrd:6,4:4

%

mg{(3*v-2:3%v,3*v-2:3%y) = mg{3*v-2:3%Vv,3%y-2:3%y; melil:3,1:3,;
mg(3*v-2:3%v,3*wW-2:3*%w, mg(3*v-2:3%v, 3*w-2:3%w/ meli(l:3,4:6!;
mg(3*w-2:3*w,3%v-2:3%v) = mg(3*w-2:3%wW, 3*V-2:3*%y) mel(4:6,1:3);
mg{3*w-2:3%*w,3*w-2:3*w) = mg(3*w-2:3*W,3*w-2:3*w) + mel(4:6,4:6);
end

%

% apply structural prop. damping to the k matrix and set global
% k matrix to equal damped matrix
]
% calculate the beam element lengths and beam angles in radians
% for the damped beams
for i=l:numel_damp
IC=dcon(i,l);
ID=dcon(i,2);
1(1,1i)=8qrt((coord(ID, 1) -coord(IC, 1)) *2+{coord(ID,2)-coord(IC,2))"2);
DX(i)=coord(ID, 1) -coord{IC,1);
DY (i)=coord(ID, 2) -coord{IC,2);
if DX(i)>=0 & DY(i)>=0;
t(l,i)=acos (DX(i)/1(1,1));
elseif DX (i) <0 & DY(i)>=0;
t(l,i)=acos(DY(i)/1(1,1i))+pi/2;
elseif DX(i)<0 & DY(i)<=0;
t(l,i)=acos(abs({DX(i))/1(1,1i))+pi;
else
t(l,i)=acos(abs(DY(i))/1(1,1))+(3*pi/2);
end;
end;
%
% call trig function
[c,s]=ftrig(t,numel_damp) ;
%
$ calculate radius of gyration
for i=1:numel_ damp
r(l,i)=sqre(1(i)/a(i));
end;
]
kgd=kg;
for u=i:numel damp
[kel]l=felementé6 (1(u),WID(u),I(u),E(u),A(u),r(u),c(u),s(u));
]
v=dcon(u,l);
w=dcon (u, 2) ;
%
kgd (3*v-2:3%v,3%v-2;:3*v)

+

= kgd(3*v-2:3%v, 3%v-2:3*%v) j*bb*kel(1:3,1:3);

kgd(3*v-2:3%v, 3*w-2:3%w) = kgd(3*v-2:3*v,3*w-2:3*w) + jr*bb*kel(l:3,4:6);
kgd(3*w-2:3%w,3*v-2:3*v) = kgd(3*w-2:3*w,3*v-2:3*v) + j*bb*kel(4:6,1:3);
kgd{(3*w-2:3*w,3*w-2:3%*w) = kgd(3*w-2:3*w,3*w-2:3*w) + j*bb*kel(4:6,4:6);
%

end
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3

$ now apply the boundary condicions

% the user must adjust the global matrix o meet the boundary conditions
%

% o deliete rows

kg(iBCl,:' = [];
kxgd« 2C!,: = '];
mgiiBC;,: = (.;

% to delete columns
kg(:, (BC]) = (];
kgd(:, [BC]) = [];
mg(:, (BC}) = [];

E 1

% call the function and calculate eigenvectors and the eigenvalues
% which are the mode shapes and undamped natural frequency in
(rad/sec) *2

%

[lambda,phil=fgmodes (kg,mg) ;

% this now converts the eigenvalues to nat frequency in (rad/sec) and
%t hertz(l/sec)

omega = sqrt(lambda) ;

freq = omega/ (2*pi);

%

% constuct the frequency response plot over the frequencies

§ of interest

count=0;

for Comega=.1:.5:500

count=count+1l;

Z=kgd-Comega“2*mg;

H=inv(2) ;

]

% this determines the coordinate of intrest to plot

HH (count)=H(2,6) ;

end;

% end the program clock and flops

etime(clock,t0),flops

Comega=.1:.5:500;

Freg=Comega/ (2*pi) ;

plot (Freq,20*1log(HH)) ,grid

xlabel (' Frequency Hz ')

ylabel ('FRF at coordinate of interest 4B ')

% end

clear;

clg;

% unifineellmode

%

% This program will calculate the eigenvalues, eigenvectors
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natural frequencies, and fremqisncy respcrse funcTizn matrix

for a three degree of freedom at each node eiement using modal
representation. The system is modeled with beam elements that are
aligned in the same plane but at any angle (2-D;.

3

%

%

%

$

%

%

%

]

%

%

% This program works for a beam element modeled with six general
% coordinates and thus six DOF.
%
%
%
%
]
%
%
%
¥
%
%
%

the user must enter the following data to meet the beam configuration
{E) youngs modulus psi

(I) area moment of inertia in-"4

(WID) weight density 1lbf/in*3

(A) cross sectional area in*2

conductivity [ the node connection mapping ]

node coordinates [ cartesian coordinates for each node ]

(bb) structural proportional damping constant

call the data file
fxbeam_datad
]
§ start the program clock and flops to determine program running
% time and floating point calculations
tO0=clock;
flops(0) ;
]
$ calculate the number of beam elements
a=gize(con) ;
numel=a(l) ;
%
% calculate the number of Foam elements proportionally damped
aa=size(dcon) ;
numel damp=aa(l):
%
% calculate the number of nodes.
b=size (coord) ;
nodes=b (1) ;
3
% convert the coordinates in to the correct units (in.)
coord=coord*12;
3
% calculate the beam element lengths and beam angles in radians
for i=1:numel
IC=con{(i,l);
ID=con(i,2);
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1ii,1)=8q@rcitcoord:io, .’ -coord 1T, L. "2+ :2oQrd(ID, 2 -coord.IC, 2
DX {1i)=coord (1D, l) -coordIC,1l:;
DY (i)=coord(ID,2)-cocrd IC,2:;

if DX(i)>=0 & DY(i)>=0;

ti{l,l)=acos(DX(i)/11L,i1;
elseif DX(i)<0 & DY(i)>=0;
c:l, i v=acos (DY) /1L, +pi/2;

elseif DX:1:<0 & DY(i.<=0;
t(l,i)=acos(abs{DX«i1}/111,1))+pi;
else
t{l,i)=acos(abs{CY(i:)/1l(1l,1) +(3*pi/2);

end;
end;
3
$ call trig function
[c,s]=ftrig(t,numel) ;
%
% calculate radius of gyration
for i=1l:numel
ri{l,i)=sqre(I(i)/Aa(i));
end;
%
¥ create the glcbal matrix which is all zeroes.
%
kg=[zeros (nodes*3,nodes*3)] ;
mg={zeros (nodes*3,nodes*3)] ;
]
% assemble the elemental matricies to the global matrix.
]
for i=1l:numel
(kel,mel]=felemencé6(1(i),Wwrn(i),1(i),E(1}),A(i),r(i),c(i),s{i));
%
v=con(i,1);
w=con(i,2);
%
kg(3*v-2:3%v,3%v-2:3%v)
kg(3%v-2:3%v, 3*w-2:3%y)
kg(3*w-2:3%w,3%v-2:3%y)
kg(3*w-2:3*%*w,3*w-2:3%y)
%

kg (3*v-2:3%v, 3%y-2:3%y)
kg (3*v-2:3#*v,3*w-2:3%w)
kg (3*w-2:3%w, 3*%v-2:3%y)
kg (3*w-2:3*w, 3*w-2:3*w)

kel(1:3,1:3);
kel(1:3,4:6);
kel(4:6,1:3);
kel(4:6,4:6);

W
+ o+ + 4

mg(3*v-2:3%v, 3%v-2:3*v) = mg(3*v-2:3*v,3*v-2:3*v) + mel(l:3,1:3);
mg(3*v-2:3%v, 3I*w-2:3%w) = mg(3*v-2:3*v,3*w-2:3*w) + mel(l:3,4:6);
mg(3*w-2:3%w,3%*v-2:3*v) = mg(3*w-2:3%w,3*v-2:3*v) + mel(4:6,1:3);
mg(3*w-2:3*w,3*Ww-2:3%w) = mg(3*w-2:3*w,3*w-2:3*w) + mel(4:6,4:6);
end

%

%

% apply structural prop. damping to the k matrix and set global
$ k matrix to equal damped matrix

%

3
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% calculate the beam elementc lengths and pbeam angles in radians
% for the damped beams
for i=l:numel damp
IC=dcon'i, 1) ;
ID=dcon(i,2);
1(1,ii=s8qrt{(coord(ID,1l) -coord(IC, 1)) "2+ {coord(ID,2; -cocrd(IC,2))*2);
DX (i'=ccord{ID, 1) -coord(1IC,1};
oYiirv=c2ord ID, 2 -coord (1IC,2);
if DX{i)>=0 & DY(1)>=0;
t(l,i)=acos(DX(i)/1(1,1));
elseif DX(i1)<0 & DY(1)>=0;
ti{l,i)=acos(DY(i)/1(1,1i)i+pi/2;
elseif DX(i)<0 & DY(i)<=0;
t(l,i)=acos({abs(DX(1))/1(1,1))+pi;
else
t(l,i)=acos{abs(DY(i))/1(1,1))+(3*pi/2);
end;
end;
%
% call trig function
(c,s]l=ftrig(t,numel damp) ;
%
% calculate radius of gyration
for i=l:numel_damp
r{l,i)=sqrt(I(i)/A(i));
end;
%
kgd=kg;
for u=l:numel_damp
(kel]=felement6{(1l(u) ,WID(u),I(u),E(u),A(u),r(u),c(u),su));
]
v=dcon(u, 1) ;
w=dcon(u, 2) ;
%

kgd (3*v-2:3%v,3*v-2:3%y) = kgd(3*v-2:3*v,3*v-2:3*v) + j*bb*kel(l:3,1:3);
kgd(3#*v-2:3*%v,3%w-2:3%w) = kgd(3*v-2:3*v,3*w-2:3*w) + j*bb*kel(1:3,4:6);
kgd(3*w-2:3*w,3%v-2:3*v) = kgd(3*w-2:3%w,3*v-2:3%v) + j*bb*kel(4:6,1:3);
kgd (3*w-2:3%*w,3*w-2:3*w) = kgd(3*w-2:3%w,3*w-2:3*w) + j*bb*kel(4:6,4:5);
%

end

%

% apply the boundary conditions

% the user must adjust the global matrix to meet the boundary conditions
%

$ to delete rows

kg((BCl,:) = [1;

kgd([BC],:) = (];

mg{[BC],:) = [];

% to delete columns

kg(:, [BCl) = [];

kgd(:, [BC]) = [];
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mg(:, (BCl! = [];

%

% call the function and calcu.ate eigenvectors and the eigenva..es
% which are the mode shapes and undamped natural frequency in
{rad/sec) *2

%

{lambda, phij=fgmodes (kg,mg: ;

% this ncw converts the eigenvalues to nat frequency in (rad/secr and
% hertz(l/sec)

3

omega = sqrt(lambda) ;

freq = omega/(2+*pi);

E

§ constuct the frequency response plot over the frequencies

§ of interest

count=0;

fs=size(freq);

nm=£fs(1) ;

% extract the mode shapes for the coordinates of interest
phired=phi(ci, :);

for Comega=.1:.5:500

count=count+1l;

% generate the diagonal frequency matrix

for i=l:nm

nomega {i)=1/(omega (i) *2-Comega“2) ;

end;

% generate the FRF matrix

Hwphired*diag (nomega) *phired’;

]

% this determines the coordinate of intrest to plot
HH (count)=H(1,3); % this refers to (2,6)

end;

% end the program clock and flops
etime(clock,t0),flops

Comega=.1:.5:500;

Freg=Comega/ (2*pi) ;

plot (Freq, 20*1log(HH)) ,grid

xlabel (' Frequency Hz ')

vlabel ('FRF at coordinate of interest dB ')
% end

fxbeam_datag
This is the data for the finite element program and the finite
element program using modal representation.
the data will be in the form of

- (E) youngs modulus psi
- (I) area moment of inertia in*4

P 0P IP IP OP IP W P o
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$ - (WID) weight densi:zy lpf/in*3

% - (A) Ccross sectional area in*Z

$ - conductivity { the node connection mapping |

% - node coordinates [ cartesian coords for each node in frt.
E ] the main program will convert <0 in..
% - (bb) structural proportional damping constant

% - i coordinates of interest

E={30 32 33 33 (*.e6;

I=(.02083 .02083 .02083 .02083};%1/12bh*3 b=2, h=.%S

A=[]1 1 1 1li;

WTD=[.2832 .2832 .2832 .2832];

bb=0;

% coordinates of interest (any internal and all connection;
ci={(2 4 5 6};

con={1,2;
2,3;
3,4;
4,5} ;
%
dcon=(1,2;
2,3;
3,4;
4,5];
%
coord=(0,0;
4,0;
8,0;
12,0;
16,0];
%

BC=(1 2 3 13 14 15];

right_struc9

This is the data for the finite element program.

the data will be in the form of

- (E) youngs modulus psi

(I) area moment of inertia in*4

- (WID) weight density 1lbf/in“3

- (A) cross sectional area in*2

- conductivity [ the node connection mapping )

- node coordinates [ cartesian coords for each node in ft.
the main program will convert to in..
- (bb) structural proportional damping constant

0P dP OP OP 0P O JUP JUP dP OP JdP OP JOP JOP OP
¢

E=[30 30]*le6;
I=[ .02083 .02083];%1/12bh"3 b=2, h=.5
A=[ 1 11;
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WTD=[.2832 .2832];
bb=0 ;

$

con={1,2;

2,3);
dcon=1[1,2;
2,31 ;
¥
coord={0,0;

4,0;
8,0];
%
BC=([7 8 9];

left_struc9

This is the data for the finite element program.

the data will be in the form of

- (BE) youngs modulus psi

- (1) area moment of inertia in“4

- (WTD) weight density lbf/in*3

- (A) cross sectional area in-2

- conductivity ( the node connection mapping |

- node coordinates [ cartesian coords for each node in ft. ]
the main program will convert to in..

- (bb) structural proportional damping constant

E={30 30])*les6;

I={ .02083 .02083];%1/12bh*3 b=2, h=.5

A={l 1];

WTD=(.2832 .2832];

bb=0Q;

con=(1,2;

213];

P dP 0P OP dP OP OP dP 0P IP OP IP OP OP

 §
dcon={1,2;
2,3);
coord={0,0;
4,0;
8,0];
3
BC=(1 2 3}];

clear
clg
3 FRF_Synth9
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%

% This program synthesizes by dyramic direct Coupling using tnhe bcoisar
$ mapping matrix to synthesize two structures togethner.

3

% Load data from running unifineel program for each substructure.

% The K and M matrix for each structure is saved

iocad ex%a.mat % k1 ml is stored here

load ex5p.max % k2 m2 is stored here

% calculate the eigenvectors and eigenvalues for each structure
(lambda,phi] =fgmodeskl,ml:;

lambdal=lambda;

$ calculate nat freq in rad/sec

omegal=sqrt (lambdal) ;

phil=phi;

[lambda,phi] =fgmodes (k2,m2) ;

lambda2=lambda;

% calculate nat freq in rad/sec

omegaz=sqrt:lambdaz) ;

phi2=phi;

%

¥ We need to create a single FRF matrix representing
% both substructures in the form:

[hee] = [ hi(i,i) h(i,c) ]
{ h(c, i) h(c,c) 1

So we create arrays containing the DOF numbers of our original
models which correspond the the #c” and *i" coordinates for
each substructure.

call the synthesis data file in now which contains the
internal coordinates and connection coordinates for each sub
structure.

il= internal coords of sub structure 1

i2= internal coords of sub structure 2

cl= connection coords of sub structure 1

¢c2= connection coords of sub structure 2

cil= coordinates of interest of sub structure 1

ci2= coordinates of interest of sub structure 2

nil= redefined internal coords of sub structure 1

ncl= redefined connection coords of sub structure 1
ni2= redefined internal coords of sub structure 2

nc2= redefined connection coords of sub structure 2

P dP IP P IO JP P OP OP dP OP OP P OP P AP P JP OP P OP

FRF_Synth_data$

%

tO=clock;

flops(0);

count=0;

% extract the rows of phi relating to the coordinates of interest
phiredl=phil (cil,:);
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phired2=phi2:ci2, :);
for Comega=.1l:.5:500
count=count+1;

%

% Form Frequency Response Models for Each Substructure
% i e e e
for i=1:%8

nomega. i =_./.omegalfi;*2-Comega‘“2;;

end;

hl=phiredl*diagi{nomegal; *phiredi’;

for i=1:6

nomegazl{i)=1/(omega2(i) “2-Comeza“‘2);

end;

h2=phired2*diag(nomega2) *phired2’;

%

a=size(il);

b=size(cl);

c=size(i2);

d=size(c2);

%

aa=a(2);

bb=b(2) ;

cc=c(2) ;

dd=4(2) ;

%

% Remember, we are trying to calculate the following:
%

% hic* = hic - hic * M * inv( hccr ) * M' * hce

L hcer = M' *» hee * M

%

% So we need to assemble [hic] and [hece] using the

§ the coordinate sets we just defined.

% These matrices contain the FRF data for both substructures
% prior to coupling, i.e the pre-synthesis FRF data.

%

%

3 Coordinate Partitioning

% ......................

% Build up uncoupled FRF matrix and sub-partitions:

%

hic = [(hl(nil,ncl) zeros(aa,dd)];

%

hce = [hl{ncl,ncl) zeros(bb,dd);
zeros{dd,bb) h2(nc2,nc2)];

%

$§ We can now perform the synthesis:

hccr=M* * hce * M;

hicstar = hic - hic * M * inv( hccr ) * M' * hco;

1

% look at the coordinate of interest

HH (count)=hicstar(l,3);
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end;

etimeicliocck,tl! ,flops

Comega=.1:.5:509;

Freq=Comega/ (2*pi) ;

plot (Freq,20*log(HH)) ,grid

xlabel (' Frequency Hz ')

ylabel | 'FRF at cocrdinate of interest dB'!

Called FRF_Synth data9

This is the data file for the synthesis prcgram using medal
representatcion.

the following data will ke provided by this file

il- internal coords sub structure 1
i2- internal coords sub structure 2
cl- connection coords sub structure 1
c2- connection coords sub structure 2

These are the coordinates of interest and are not the complete set.
The connection coordinates are complete.

The internal are the coordinates we wish to keep.

This is used for defining the zeros partition

i1=(2}];

cl=[4 5 6];

i2={];

c2=[1 2 3];

%

% The coordinates of interst are internal and connection and the set
% is redefined. This is used for defining the reduced phi matrix
cil=[{2 4 5 6}];

ciz2=[1 2 3});

%

% the following is the mapping matrix

% the mapping matrix is not general and is

% case specific

OP 0P 0P 0P OP P P dP OP OP P IR dP I I W

]
M=(eye(3);
-l*eye(3)];
]
$ H1 and H2 are in the form of the coordinates kept for each structure.
% These reduced H matrices are (ciixcil) and (ci2xci2). The internal
% and connection positions of hl and h2 are redefined by there position
% in Hl and H2 (example internal coord 2 is now position 1 and
% connection coordinate 4 is position 2 etc)
%
% new coordinates

nil=[1};
ncl=(2 3 4];
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FRF_Synth9 hcc reduced

c
c
%
%
% This grogram is used to determine the natural frequencies of
$ the synthesized structure. We are interested in plotting the
% determenent of hcc reduced

]

%

%

Load data from running unifineel program for each substructure.
% The K and M matrix for each structure is saved
load ex9a.mat % k1 ml is stored here
load ex9b.mat % k2 m2 is stored here
% calculate the eigenvectors and eigenvalues for each structure
[lambda,phi] =fgmodes (k1,ml) ;
lambdal=lambda;
% calculate nat freq in rad/sec
omegal=sqrt (lambdal) ;
phil=phi;
[lambda,phi] =fgmodes (k2,m2) ;
lambda2=lambda;
% calculate nat freq in rad/sec
omega2=sqrt (lambda2) ;
phi2=phi;
%
% We need to create a single FRF matrix representing
% both substructures in the form:

[hee] = [ h(i,i) h(i,c) 1
{ hi(c,1i) hic,c) 1

So we create arrays containing the DOF numbers of our original
models which correspond the the *c* and #i” coordinates for
each substructure.

call the synthesis data file in now which contains the
internal coordinates and connection coordinates for eaci sub
structure.

il= internal coords of sub structure 1

i2= internal coords of sub structure 2

Ccl= connection coords of sub structure 1

c2= connection coords of sub structure 2

cil= coordinates of interest of sub structure 1

ci2= coordinates of interest of sub structure 2

nil= redefined internal coords of sub structure 1

ncl= redefined connection coords of sub structure 1
ni2= redefined intermal coords of sub structure 2

nc2= redefined connection coords of sub structure 2

P dP P IP P P JP 0P P OP OP OP OP OP 0P dP 0P 0P dP P

17




%

FRF_Synch_daca9d

%

tr=clock;

fiops: 0 ;

count=Q;

$ ex~ract the rows of phi relating -2 the ccordinates =f intersge
phiredi=phil 2il,:);

phired2=phi2(ci2, :);

for Comega=.1:.5:500

count=count+l;

3

3 Form Frequency Response Models for Each Substructure
0 e e o e e
for i=1:6

nomegal{il=1/(omegal(i)*2-Comega*2);

end;

hl=phiredl+*diag(nomegal) *phiredl’;

for i=1:6

nomegal(i)=1/(omega2(i) *2-Comega“2) ;

end;

h2=phired2+*diag(nomega2) *phired2’';

%

a=size(il);

b=gize(cl);

c=gize(i2);

d=size(c2);

%

aa=a(2);

bb=b (2} ,

ce=c(2) ;

dd=d(2) ;

%

] Remember, we are trying to calculate the following:
%

% hcer = M' * hce » M

%

% So we need to assemble [hec]l using the

% the coordinate sets we just defined.

$§ These matrices contain the FRF data for both substructures
§ prior to coupling, i.e the pre-synthesis FRF data.

%

%

] Coordinate Partitioning

% ~~~~~~~~~~~ - . v - e oo e - -

$ Build up uncoupled FRF matrix and sub-partitions:

]

hce = [hl(ncl,ncl) zeros{bb,dd);
zeros(dd,bb) h2(nc2,nc2)];

%

% We can now perform the synthesis:
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hecer=M' * hcc ~ M;

% determine the nat freq of the synthesized structure
dhcecr=det (heer)

dh (count) =dhcer;

end;
etimeiclock,t0),flops
Comega=.1:1:500;

Fregq=Comega/ 2¥pi.;

axis({0 80 -le-12 le-12j}

plot (Freq,dh),grid

xlabel (' Frequency Hz ',

ylabel ('Determinent of Hcc reduced')
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APPENDIX 1 GENERAL MATLAB FUNCTIONS

funcricgr . 7,8 =frrig(c,numel:

¢ This function is used to calculate the vaiues of

$ cos and sin. The input to the function is the beam
% element angle

%

for i=il:numel

if v(1,1i)<.02 & t(1,1i)>6.25

cil,ii=1;
s(l,1i)=0;
elseif t(l,i)<1.58 & t(l,1)>1.56
c(l,i)=0;
s(i,i)=1;

elseif t(l,1)>3.11 & t(1,1)<3.17
c(l,i)=-1;

s{l,1)=0;

elseif t(l1,i)>4.68 & t(1,1)<4.74
c(l,1i)=0;

s(l,i)=-1;

else

cl{l,i)=cos(t(1,1});
s(l,i)=s8in(t(1,1));

end

end

function {kel,mel] = felementé6(l,wrD,I,E,A,r,C,S)

%

% This function is generating the elementai mass and

¥ stiffness matrix. Input is element length, weight density,
% area moment of inertia, young modulus, radius of gyration
% and the angel of the element with respect to horizontal x
$ axis. Counter clock is positive angle and clock is negative % angle.
%

$ element mass matrix

%

grav = 386.4;

%

mel(l,l) = 140%C*2 + 156*%*8*2;

mel(l,2) = -16*c*s;

mel(l,3) = -22wl*g;

mel(l,4) = 70*C"2 + 54*8°2;

mel(l,5) = lé*c*s;

mel(l1,6) = 13*]l+g;

mel(2,1) = mel(l,2;);
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mel({z2,2) =
mel(2,3) =
mel(2,4) =
mel(2,5) =
meli{2,6) =
mel(3,1) =
mel(3,2) =
mel(3,3: =
mel(3,4) =
mel(3,5) =
mel(3,6)
mel(4,1)
mel(4,2)
mel (4, 3)
mel(4,4)
mel(4,5)
mel (4,6)
mel (5, 1)
mel (5,2)
mel (5, 3)
mel(5,4)
mel(5,5)
mel(5,6)
mel(6,1)
mel(6,2)
mel(6,3)
mel(6,4)
mel (6,5)
mel (6,6)
%

14Q0*g"2 + iS6*C*2;

22%]*C;
lé*c*g;
70%8°2 + 54*C*t2;
-13*1l*c;
mel(l,3);
mel(2,3);
4*1°2;
-l3*l+g;
13*]1*C;
-3%1+2;
mel(l,4);
mel(2,4);
meli(3,4);
mel(l,1l);
mel(2,1);
22%1%g;

= mel(l,5);
= mel(2,5);

mel(3,5);
mel(4,8);
mel(2,2);
-22%]1*c;

mel(l,6);
mel(2,6);
mel(3,6);
mel{4,6);
mel(5,6);
wel(3,3);

$ now calculate gamma.

§ gamma is mass density per unit length and grav is the

$ gravitational constant in in/sec*2.

$

gamma = WID*A/grav;

2

% now apply the mass constant to the elemental matrix

$

mel = mel*(gamma*1/420);

%
% now make
%

kel(1,1) =
kel(l,2)
kel(1,3)
kel(1,4)
kel(1,5)
kel(1,6)
kel(2,1)
kel (2,2)
kel(2,3)

the element stiffness matrix

(1/xr)*2%c*2 + 12*g*2;
(1/r)*2%cwg - 12%c*g;

-6’1*8:

-{(1/r)*2%c2 - 12%g*2;
-(l/r)*2*c*g + l2#%C*g;

-6*]l*g.
kel(l1,2);

(1/r)"2%g"2 + 12%c*2;

6*lecC;
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kel '2,4) = -{1l/r *Z%c*s + _lwC*s;

keli2,5) = -(1l/r ~2%s*Z - l2*c"l;
kei(2,6) = 6*l=c;
kel(3,1} = kel(l,3);
kei(3,2) = keli2,3);
kel(3,3) = 4%1"2;
kel 3,4 = exlxg,;
kelild,3. = -awixC;
kel(3,6} = 2*1°2;
kel(4,1) = kel(l,d);
keli4,2) = kel(2,4);
kel4,3) = kel(3,4);
kelt4,4) = kel(l,1i};
kel (4,5) = kel(l,2);
kel4,6) = kel(4,3);
kel(5,1) = kel(l,9);
kel (%,2) = kel(2,5);
kel(5,3) = kel(3,5);
kel(5,4) = kel(4,5);

kel(5,58) = kel(2,2);
kel(s,6) xel(3,5);
kel(6,1) = kel(l,6);
kel (6,2) = kel(2,6);
kel (6,3) = kel(3,6);
kel(6,4) = kel(4,6);
kel(6,5) = kel(s,6);
kel(6,6) = kel(3,3);
%

% now apply the stiffness constant to the elemental matrix
%

kel=kel* (E*I/(13));

function({lambda, phil=fgmodes (kg, mg)

%

% This function calculates the natural frequencies and
% the mode shapes. Theses are the eigenvalues and
% eigenvectors

%

a=length{mg) ;

(v,Dl=eig(mg\kqg) ;

[omga, index]=sort (diag (D)) ;

lambda=zeros(a,a) ;

for i=l:a;

lambda (i, i)=omga (i) ;

end;

for i=1l:a;

phitemp(:,1i)=V(:,index(i));

end;

lambda=diag(lambda) ;
(phi,orth]=fgmassnorm(phitemp,mg) ;
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function[phin~rm,orth}=fgmassnormipni,mass.

]

% This function mass normalizes the eigenvectors
%

a=gize(phi);

nmodes=a{l,2);

phinorm=zeros(phij ;

for ii=!:nmodes;

modalmagsstii)=phi{:,ii) '*mass*phi(:,il);

if modalmass(ii)-=0
phinorm(:,ii)=(1l/sqrt(modalmass(iii))*phi(:,ii);
else

phinorm(:,ii)=phi(:,ii};

end;

end;

% now check orthoganality
orth=phinorm'*mass*phinorm=100;

function [kdsprg) =fsprngdamp (k, Comega,B) ;

This function will generate a spring and damper system k
matrix of gize (6 x 6] which correlates with the 3 dof of
the beam element kx, ky, k(theca), cx, cy, cl(theta).
Remember that for a spring of stiffness k and a damper
with damping 8k, the matrix looks like

[kx + 38k -kx - 08k

-kx - iRk  kx + jORK].
k has the units of lbs/in

9P P JP OP dP AP I 0P IP P

kdsprg = zeros(6) ;
kdsprg(l,1l} = k + j*Comega*B*k;
kdsprg(l,4) = -k - j*Comega*B¥k;

kdsprg{(2,2) = k + j*Comega*B*k;
kdsprg(2,5) = -k - j*Comega*B*k;
kdsprg(3,3) = k + j*Comega*B*k;
kdsprg(3,6) = -k - j*Comega*B*k;
kdsprg(4,1) = -k - j*Comega*B*k;
kdsprg(4,4) = k + j*Comega*B*k;
kdsprg(5,2) = -k - j*Comega*B*k;
kdsprg(S,5) = k + j*Comega*B*k;
kdsprg(6,3) = -k - j*Comega*B+*k;
kdsprg(6,6) = k + j*Comega*B*k;

function [kdsprg] =fsprngdampC (k, Comega,q) ;

$

$ This function will generate a spring and damper system k

$ matrix of size [6 x 6] which correlates with the 3 dof of

% the beam element kx, ky, k(theta), ¢x, cy, c(theta).

% Remember that for a spring of stiffness k and a damper with
$ damping (Co e“-qgf3), the matrix looks like
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kx + IQCc@Q  -xx - QC
-kx - FIQC kx + QC.Q !
k has the units of lbs/in

I P I N

fe=exp(-g*Comega) ;
kdsprg = zeros(6);

kdsprg!.,l = k + I*Comega*k*fe;
kdsprgii,4 = -k - i*Comegark*ie;
kdsprg(2,2/ = k + j*Comega*k*fe;
kdsprg(2,5) = -k - j*Comegark*fe;
kdsprg(3,3) = k + j*Comega*k*fe;
kdsprg(3,6) = -k - j*Comega*k*fe;
kdsprgid4,l) = -k - j*Comegark*fe;
kdsprg(4,4) = k + j*Comega*k+fe;
kdsprg(5,2) = -k - j*Comegark+fe;
kdsprg(5,5) = k + j*Comega*k*fe;

kdsprg(6,3) = -k - j*Comegark*fe;
kdsprg(6,6) = k + jrComegar*k*fe;

funccion{Trmatrix]=ftrans(c, s, beam)
%

% This function generates the transformation matrix
% used in the finite element program
%

Trmatrix=zeros(6,6) ;

Trmatrix(1l, 1)=c(beam) ;
Trmatrix(1l,2)=s(beam) ;
Trmatrix(2,1)=-s(beam) ;
Trmatrix(2,2)=c{beam) ;
Trmatrix(3,3)=1;
Trmatrix(4,4)=c(beam) ;
Trmatrix{4,5)=s(beam) ;
Trmatrix(5,4)=-s(beam) ;
Trmatrix(5,5)=c(beam) ;
Trmatrix(6,6)=1;

function{Trmatrix]=frftrans(ccc, ss)
%

% This function generates the transformation matrix
$ used in the synthesis program

%

Trmatrix=zeros(6,6) ;
Trmatrix(1l,1l)=ccc;
Trmatrix(l,2)=s8s;
Trmatrix(2,1l)=-89;
Trmatrix(2,2)=ccc;

Trmatrix(3,3)=1;

Trmatrix(4,4)=ccc;
Trmatrix(4,5)=88;
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Trmazrixi5,4)=-88;
Trmatrixi(s, 5 =ccc;
Trmatrix(6,6)=1;

179




LIST OF REFERENCES

1. Gordis. J.H..Bielawa. R.L., Flannelly, W.G.. "A General Theory for Frequency
Domain Structural Synthesis,” Journal of Sound and Vibration, Vol. 150 No. 1. pp.
139-158, 1989.

2. Gordis, J. H., Flannelly, W.G. Analysis of Stress Due to Fastener Tolerance in
Assembled Components. Proceedings of the 34th AIAA/ASME/ASCE/AHS/ACS
Structures, Structural Dynamics, and Materials Conference. La Jolla, CA.. 1993.

3. Gordis, J. H. Structural Synthesis in the Frequency Domain: A General
Formulation. To appear, Proceedings of the 12th International Modal Analysis
Conference. Honolulu, HI., 1993.

4. James, M.L., Smith, G.M., Wolford, J.C., Whaley, P.W., Vibration of Mechanical
arsnzl 5S7t2n¢ctu§¢;l Systems, Harper and Row, Publishers, Inc., New York, NY. pp.
482-572, 1989.

180




INITIAL DISTRIBUTION LIST

. Defense Technical Information Center
Cameron Station
Alexandna, Virginia 22304-6145

Library. Code 52
Naval Postgraduate School
Monterey, California 93943-5002

Professor J. H. Gordis, Code ME/Go
Department of Mechanical Engineering
Naval Postgraduate School
Monterey. California 93943

Professor A. Healey, Code ME/He
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California 93943

Department Chairman, Code ME
Deparlmv.'.nval t of Mechan:nl lEngineering
Naval Postgraduate Schoo

Monterey, California 93943

. Naval Engineering Curricular Office (Code 34)

Naval Postgraduate School
Monterey, California 93943

. LT. Ronald E. Cook

1090 Derby Street
Casper, Wyoming 82609

181

No. Copies

£y

tJ




