
AFIT/DS/ENG/94-03

AD-A280 59511ll111i11

MULTIRATE TIME-FREQUENCY DISTRIBUTIONS

DISSERTATION

John R. O'Hair, B.S., M.B.A., M.S.
Captain, USAF DTIC

AF1T/DS/ENG/94-03 ELECTE94-19382 g U

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

94 6 24 013

The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the Department of Defense for the U. S. Government.

Aeo esion For

STIS GRA&IDTIC TAB
Uynanzouwced 0
Justif•Iation

By

Availability COdegl

blot Special

S.. .. •, z z I i z II I I I I I

AFIT/DS/ENG/94-03

MULTIRATE TIME-FREQUENCY DISTRIBUTIONS

DISSERTATION

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

John R. O'Hair, B.S., M.B.A., M.S.

Captain, USAF

June 1994

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

MULTIRATE TMBE-PRBQUBNCY DISTRIBUTIONS

John RL O'Huir, B.S., .B.A., M.S.
Cftain, USAF

Appmwed:

bgftwo SowD

Acknowledgments

I would like to extend my deepest appreciation to the members of my research advi-

sory committee, Dr. Steve Rogers and Dr. Mark Oxley. I would also like to thank Dr. Mat-

thew Kabrisky for his sage advice throughout my stay at AFIT, and to Dr. Leon Cohen for

his guidance and support. My thanks also go to Dr. Martin DeSimio for serving as the

Dean's Representative to my advisory committee.

My most heartfelt gratitude goes to Dr. Bruce Suter who had the unenviable task of

serving as my advisor. His patience, endurance and willingness to go the extra mile were

what got me through the Ph.D. program at AFIT. Without his help, I would never have

graduated.

My final thanks go the One for whom all this is done and who makes it all worth-

while. To my Lord and Saviour, Christ Jesus, THANK YOU!

iii

7i

Table of Contents

Page

Acknow ledgm ents .. iii

List of Figures ... vii

List of Tables ... x

List of A lgorithm s .. xi

List of Term s .. xii

A bstract ... xiii

Introduction ... 1.1

Historical Background ... 1.1

Problem Statement and Scope 1.2

General Approach 1.2

O rganization ... 1.3

B ackground ... 2.1

Introduction ... 2.1

Some Important Domains .. 2.1

Generalized Time-Frequency Distributions 2.2

M ultirate Background ... 2.6

Parallel Algorithm Background 2.8

Tensor Notation Background .. 2.9

Zak Transform .. 2.11

Conclusion ... 2.12

Multirate: A New Computational Paradigm 3.1

Introduction ... 3.1

Paradigm ... 3.1

Multirate as a Paradigm for Numerical Linear Algebra 3.3

iv

Multirate as a Paradigm for Signal Processing 3.10

C onclusion ... 3.24

Kernel Design Techniques for Alias-Free Time-Frequency Distributions 4.1

Introduction ... 4.1

"A Faster GDTFD ... 4.2

"A Simple Method to Design Alias-Free Kernels 4.4

Comparison of M ethods .. 4.6

Further Exam ples 4.11

C onclusion ... 4.17

The Zak Transform and Decimated Time-Frequency Distributions 5.1

Introduction ... 5.1

Background ... 5.2

Zak-Spectrogram ... 5.7

Generalization of ZS to Arbitrary GDTFD 5.10

Implementation Considerations 5.13

Exam ple ... 5.16

Conclusion ... 5.26

Multirate Time-Frequency Distributions 6.1

Introduction ... 6.1

Singular Value Decomposition MRTFD 6.3

Circular Convolution Multirate Time-Frequency Distribution 6.13

Comparison of SVD MRTFD and CC MRTFD 6.21

Exam ple ... 6.22

Conclusion ... 6.23

C onclusion .. 7.1

Summary and Findings .. 7.1

V

Recom mendations .. 7.4

Spectrograms and GDTFD's ... A. I

BIBLIOGRAPHY .. Bib. I

vi

List of Figures

Figure Page

2.1. The Domains of the AF-GDTFD and Their Relationships One to Another 2.1

2.2a Rlt,k) - Rectangular Grid
2.2b R(,k) - Hexagonally Decimated Rectangular Grid 2.3

2.3. M apping of Points in V to 2.5

2.4. Processor Loads Within Stages of a Parallel Algorithm 2.9

2.5. Mapping off into Two-Dimensional Array 2.12

3.1. Single Stage Multirate Summation 3.3

3.2. Two Stage Multirate Summation with Analysis Filters 3.4

3.3. Multirate Matrix-Vector Multiplication 3.7

3.4. Block diagram of the Multirate Fast Fourier Transform 3.14

3.5 Relative Time to Compute MR FFT Compared to Sequential FFT 3.17

3.6. Block diagram of Multirate Discrete Hartley Transform 3.25

4.1 The Region of Support for the Bilinear Form of the Signal (i.e. Rf)
and The Region of Support for a Kernel of the "Bow-Tie" Class 4.3

4.2. Result of Convolution of Impulse and Kernel Before and After
Interpolation .. 4.8

4.3 Multicomponent Signal Consisting of Two Tones, Two Impulses
and a Chirp ... 4.9

4.4. Comparison of Discrete Butterworth Kernel Sampled in Time-Lag
and Kernel Sampled in Ambiguity Plane and Fourier Transformed 4.10

4.5. AF-GDTFD Using the Butterworth Kernel via the Continuous Kernel
Method, Interpolation Method and Phase Shift Method 4.11

4.6. AF-GDTFD Using the Binomial Kernel via the Continuous Kernel
Method the Interpolation Method and the Phase Shift Method 4.12

vii

4.7. GDTFD Wigner of a Simple Chirp via the Continuous Kernel
(not Alias-Free) Method the Interpolation Method and the Phase
Shift M ethod ... 4.14

4.8. The Alias-Free Discrete Wigner Distribution of a Simple Chirp Using
the Kernel Given by Jeong and Williams and by the Phase Shift Method 4.16

4.9 The Value of the Odd Rows of the Time-Lag Kernel of
Alias-Free DWD (i.e. the Impulse Response of the Filter
Implemented by the Odd Rows of the Time-Lag Kernel 4.18

5.1. Interrelation of Logical Elements Discussed in This Chapter 5.2

5.2 Block Diagram of Multirate Implementation of STFT 5.4

5.3. Multirate Block Diagram of Windowed Zak Transform 5.5

5.4. Multirate Block Diagram of Zak-Spectrogram 5.9

5.5a. The Original Binomial Kernel
5.5b. The Decimated Binomial Kernel 5.14

5.6. The First 25 Singular Values for the Normal Binomial Kernel and
the Decimated Binomial Kernel 5.15

5.7. Multirate Implementation of Decimated Generalized Discrete
Time-Frequency Distribution 5.17

5.8. Binomial TFD of Bandlimited Signal 5.19

5.9a. Window Function Corresponding to the Largest Singular Value
(i.e. Singular Vector v1)

5.9b. Approximate Binomial GDTFD Using One Weighted Spectrogram
with the Singular Vector v, Shown in Figure 5.9a as the Window
Function

5.9c. Approximate Decimated Binomial GDTFD Using One Weighted
Zak-Spectrogram with the Singular Sector v, Shown in Figure 5.9a
as the W indow Function .. 5.20

5. 1Oa. Window Function Corresponding to Second Largest Singular Value
5. 1Ob. Window Function Corresponding to Third Largest Singular Value
5.1Oc. Approximate Binomial GDTFD Using Three Weighted Spectrograms

Based upon the Window Functions Seen in Figures 5.9a, 5. 10a
and 5.1Ob

5.1Od. Approximate Decimated Binomial GDTFD Using Three Weighted

viii

Zak-Spectrograms Based upon the Window Functions Seen in
Figures 5.9a, 5.1Oa and 5.1Ob 5.21

5.11. The L-2 and L., Error Between the Binomial GDTFD and the
Approximate Binomial GDTFD as a Function of the Number of
Spectrograms Being Summed 5.23

5.12. The L2 and L., Error Between the Decimated Binomial GDTFD
and the Approximate Decimated Binomial GDTFD as a Function
of the Number of Weighted Zak-Spectrograms 5.24

5.13. The L2 and L,. Error Between the Binomial GDTFD and the Approximate
Decimated Binomial GDTFD as a Function of the Number of Weighted
Zak-Spectrogram Being Summed 5.25

5.14a. Final Approximation to the Binomial GDTFD Using 31 Weighted
Spectrograms

5.14b. Final Approximation to the Decimated Binomial GDTFD Using 31
W eighted Spectrograms .. 5.26

6.1 Comparison of Cost to Compute Parallel Baseline and SVD MRTFD
with Normalized Cost of Baseline Algorithm 6.13

6.2 A Three Stage Multirate Circular Convolution. Y Represents the Fourier
Coefficients of the Kernel ... 6.16

6.3. Block Diagram of Circular Convolution Multirate TFD. The Function
xi(t) and yi(t) Refer to the ith Row of the Bilinear Signal and Kernel,
Respectively ... 6.17

6.4 Comparison of Efficient CC MRTFD and Fast CC MRTFD to
Baseline Algorithm s ... 6.20

6.5. Comparison of Distribution Calculated by CC MRTFD, Cunningham
and Williams Baseline Using Seven Eigenvalues and a Condition Number
of 1.5, SVD MRTFD Approximation Using a Condition Number of 1.5 6.22

ix

List of Tables

Table Page

3.1 Computational Cost of Multirate Fast Fourier Transform 3.17

4.1 Comparison of Alias-Free Methods 4.13

6.1 Computational Costs of the PWS TFD 6.3

6.2 Computational Costs of the SVD MRTFD 6.11

6.3 Computational Cost of the Fast CC MRTFD 6.19

6.4 Computational Costs of the Efficient CC MRTFD 6.19

List of Algorithms

Algorithm Page

3.1. Multirate Fast Fourier Transform 3.15

3.2. Multirate Discrete Hartley Transform 3.24

6.1 SVD MRTFD for Hermitian Kernels 6.10

6.2 CC M RTFD Algorithms .. 6.18

xi

List of Terms

Term Definition

AF-DWD Alias-Free Discrete Wigner Distribution

AF-GDTFD Alias-Free Generalized Discrete Time-Frequency Distribution

In this dissertation, this is synonomous to GDTFD

CK .. Continuous Kernel

DFT .. Discrete Fourier Transform

D-GDTFD Decimated Generalized Discrete Time-Frequency Distribution

DHT ... Discrete Hartley Transform

DTFD Discrete Time-Frequency Distribution

DW D .. Discrete W igner Distribution

FFT .. Fast Fourier Transform

GDHT Generalized Discrete Hartley Transform

GDTFD Generalized Discrete Time-Frequency Distribution
In this dissertation, this is synonomous to AF-GDTFD

GTFD Generalized Time-Frequency Distribution

MIMD Multiple Instruction streams Multiple Data streams

MR DHT Multirate Discrete Hartley Transform

MR FFT Multirate Fast Fourier Transform

MRTFD Multirate Time-Frequency Distribution

STFT ... Short-Time Fourier Transform

TFA ... Time-Frequency Analysis

TFD ... Time-Frequency Distribution

W ZT .. W indowed Zak Transform

ZS ... Zak-Spectrogram

xii

Abstract

Multirate systems, which find application in the design and analysis of filter banks,

are demonstrated to also be useful as a computational paradigm. It is shown that any prob-

lem which can be expressed as a set of vector-vector, matrix-vector or matrix-matrix oper-

ations can be recast using multirate. This means all of numerical linear algebra can be re-

cast using multirate as the underlying computational paradigm. By viewing multirate as a

computational paradigm, many problems found in signal processing can also be reformu-

lated into fast parallel algorithms. For example, this paradigm is applied in a straight for-

ward fashion to the Fast Fourier Transform (FFT) and the Discrete Hartley Transform

(DHT) to create fast parallel, or multirate, versions of these algorithms.

As a non-trivial example, the multirate computational paradigm is applied to the

problem of Generalized Discrete Time-Frequency Distributions (GDTFD) to create a new

family of fast algorithms for the calculation of Time-Frequency Distributions (TFD). The

first result of the application of multirate as a computational paradigm to GDTFD's is a

new class of distributions called the Decimated GDTFD (D-GDTFD). These distributions,

which are based upon the Zak transform, trade bandwidth for speed. For a decimation fac-

tor of m, there is an m fold increase in throughput (or speed of calculation). The corre-

sponding reduction in discrete bandwidth is from 2n for the GDTFD to 21r/m for the D-

GDTFD. An important attribute of the D-GDTFD is that it requires significantly less stor-

age than the GDTFD. The D-GDTFD requires only 1/m2 of the storage of the GDTFD.

By combining several D-GDTFD's, it is possible to reconstruct a GDTFD. This re-

construction of D-GDTFD's is the Multirate Time-Frequency Distribution (MRTFD).

Each D-GDTFD is independent, and as a result, the MRTFD can easily be implemented in

parallel for an increase in throughput on the order of m. If additional parallel paths are

X1i1

available, the individual D-GDTFD's can also be implemented in parallel leading to im-

provements in throughput on the order of m2 or more.

Two distinct MRTFD algorithms are presented. The first MRTFD is based upon the

inner product form of the GDTFD and combines the Zak transform, weighted spectro-

grams and Singular Value Decomposition (SVD). It is called the SVD MRTFD and calcu-

lates the distribution for particular instants of time. The second MRTFD is based upon the

outer product form of the GDTFD and is called the Circular Convolution MRTFD. It also

builds upon the Zak transform and calculates the distribution for blocks of time instead of

isolated instants.

Three kernel design techniques are also developed to allow the movement of alias-

free kernels between the ambiguity and time-lag domains. This allows the use of any ker-

nel defined in either domain in continuous or discrete form in a D-GDTFD or MRTFD.

These techniques can also be used with the GDTFD.

xiv

Multirate Time-Frequency Distributions

1. Introduction

An important part of understanding a nonstationary signal is being able to character-

ize its changing frequency content as a function of time. Important examples of this are

found in areas such as speech recognition and analysis, machine fault detection, sonar,

radar, spread spectrum and low probability of intercept communications, etc. The field of

Time-Frequency Analysis (TFA) is dedicated to the task of determining this aspect of sig-

nal behavior. This dissertation introduces several new TFA tools.

1.1. Historical Background

Time-Frequency could be said to have started in 1946 when Koenig, Dunn and Lacy

published "The Sound Spectrograph" which presented a method to examine changing

spectral content of speech as a function of time [31]. In 1948, Ville [53] showed that joint

Time-Frequency Distributions (TFD) in signal processing could be created based upon a

bilinear form of a one dimensional signal. It turns out that this result is mathematically

equivalent to Wigner's distribution which was originally developed as Position-Momen-

tum representation in quantum mechanics [55]. Many efforts were subsequently made to

create TFA tools. Each tool had its advantages and disadvantages, and they were each

thought to be unique and unrelated. Then, in 1966, Leon Cohen unified the field of TFA by

introducing the Generalized Time-Frequency Distribution (GTFD) [17]. He showed that

all the previous TFA tools (or distributions as they are called) were in fact members of the

same family of equations related by a variable kernel function.

Unfortunately, the GTFD generates distortions between the "correct" terms. Their

removal while maintaining the other desired properties of the TFD is largely dependent

upon the correct selection of the kernel function. Since the kernel function profoundly

1.1

influences the behavior of the cross-terms in TFD's and defines the other characteristics of

the TFD, proper selection of the kernel is paramount. As such, kernel design has been the

main focus of Time-Frequency Distribution research. It can be argued that the purpose of

this sub-area of research is to improve the accuracy of Time-Frequency Distributions.

Another important sub-area of research is to improve the performance of TFD's.

Using traditional techniques, solution of the Generalized Discrete Time-Frequency Distri-

bution (GDTFD) is an O(N2 log N) process which can make it impractical for many real

time applications [9]. Except for one recent paper by Cunningham and Williams [19], fast

algorithms to calculate the GDTFD have been largely overlooked. The goal of this

research is to rectify this shortcoming by developing fast algorithms to calculate the

GDTFD.

1.2. Problem Statement and Scope

The problem answered in this dissertation is: Is there a systematic means to deter-

mine a fast method (or methods) for calculating the GDTFD? If so, what is it, and how can

it be used to implement a fast GDTFD? The ideas found in multirate provide a basis for

the approach to solve this problem. It furnishes a powerful divide and conquer formalism

which can incorporate the Time-Frequency Distribution problem as a particular applica-

tion. Multirate provides the scope for this problem and is, in fact, the systematic means

that is sought.

1.3. General Approach

The approach to fast algorithms taken in this dissertation is to use multirate as an

underlying computational paradigm. This is a new computational paradigm. Instead of

using multirate as a tool to design and implement filter banks only, multirate is used as a

powerful tool to design and implement, in parallel, divide and conquer algorithms. While

the focus of this dissertation is to develop new TFA tools, it is shown that this computa-

1.2

tional paradigm can be applied to any problem which is composed of a set of vector-vec-

tor, matrix-vector or matrix-matrix operations. This effectively encompasses all of

numerical linear algebra and much of signal processing.

The first step in developing a fast GDTFD algorithm is to demonstrate that the new

paradigm is useful for commonly used, rather straightforward, signal processing algo-

rithms-the Fast Fourier Transform (FFT) and the Discrete Hartly Transform (DHT). The

remainder of the dissertation applies this new computational paradigm to a non-trivial

application--the calculation of Generalized Discrete Time-Frequency Distributions.

The successful development of the multirate FFT and DHT suggest that multirate

can be extended to other, more complicated, algorithms such as the GDTFD, but, before

developing a Multirate Time-Frequency Distribution (MRTFD), it is first necessary to

extend the state-of-the-art in kernel design techniques. Three new methods to move ker-

nels between the ambiguity and time-lag domains are developed. This allows the easy cal-

culation or modification of kernels for use with the MRTFD regardless of the domain in

which the kernel was designed.

Utilizing the new kernel design techniques, together with the Zak transform and the

idea of weighted spectrograms, permits the creation of a new class of distributions called

the Decimated Generalized Discrete Time-Frequency Distribution (D-GDTFD). The D-

GDTFD forms the basic building block for the MRTFD. Each of these building blocks

requires less storage and can be implemented much faster than the GDTFD. By combining

D-GDTFD's, it is possible to create a MRTFD which is exactly equivalent to the GDTFD

but can be calculated in parallel and in significantly less time.

IA. Oranzation

In Chapter 2, background information on Time-Frequency Distributions, multirate

and other necessary subject areas is given. The new computational paradigm is introduced

in Chapter 3 along with the multirate vector-vector, matrix-vector and matrix-matrix oper-

1.3

ations as well as the multirate FFT and DHT. In Chapter 4, the new tools for kernel design

are presented, and the Zak transform and its connection to the D-GDTFD is developed in

Chapter 5. With these tools, the Multirate Time-Frequency Distribution is developed and

presented in Chapter 6. Finally, in Chapter 7, the summary and recommendations are

given.

1.4

2. Background

2.1. Intrduction

An overview consisting of definitions and properties of Time-Frequency Distribu-

tions, multirate, parallel algorithms, tensor notation and the Zak transform is presented.

This material forms a foundation for the following chapters and establishes conventions

with regard to definitions and notation that will be followed throughout the dissertation.

2.2. Some Important Domains

In this dissertation, reference is continually made to three different domains or

planes. These are the time-lag (or t-r) domain, ambiguity (or 0-T) domain and time-fre-

quency (or t-o)) domain. The time-lag plane is the domain of the bilinear form of the sig-

nal, RjtT), defined as

Rf(tr)= f(t+ 2f*(t-2) (2.1)

Ambiguity Domain or Plane Time-Lag Domain or Plane
4 (0, Tr) F- [4 (t, ")-e (t,')

Domain of the Ambiguity Function, of Domain of the Bilinear Signal defined as,
the Generalized Ambiguity Function Rf(t,) =f I+ f* t-2
and the Characteristic Function 2) 2'I)

F[• ••'~~~[• t)1

Time-Frequency Domain or Plane

4 (t, 0)
Domain of the 7Ime-Frequency Distribu-
tion, Time-Frequency Representation and
Probability Distribution.

Figure 2.1. The Domains of the AF-GDTFD and Their Relationships One to Another.

2.1

"wheref is a one dimensional signal. It is related to the ambiguity function by the inverse

Fourier transform of Rjt,j) with respect to t. The ambiguity plane is also the domain of the

generalized ambiguity function (the product of the bilinear signal, Rjt,j), and the ambigu-

ity plane kernel, V(t,r)). In the case where the end result is a probability density function,

the generalized ambiguity function is also called the characteristic function. The ambigu-

ity plane is related to the time-frequency plane via a two dimensional Fourier transform.

(See Figure 2.1.)

2.3. Generalized Time-Frequency Distributions

2.3.1. Outer Product Formulation. The Generalized Time-Frequency Distribution

(GTFD) is given by Cohen [161
00 00

C1 (t, 0;4) (t -!- uT jT)d (2.2)

where #Q(t,j) is the kernel in the time-lag domain. It is related to the kernel in the ambigu-

ity plane, 4(O,¶), by

-00

0 (t,) f ý (0,,r) e -jotdO. (2.3)

A common discrete form of equation (2.2), called the Discrete Time-Frequency Dis-

tribution (DTFD) is given by

-(N- 1 ~j2itkc
C(n,k;fT) = * +N(u -r) V(n-u,x) e (2.4)

,=N u=-

2

where N is the number of samples and for ease of computation is chosen to be a power of

two.

2.2

k k

4 T 4 T

3-- - -3-

2 - --- -------------- --- ----------- - - 2 - - -....... _ .. .

2 2

1- -- I 2 - TIT - 1- -4ý 2

Sample points

Figure 2.2a. ROt,k) - Rectangular Grid. Figure 2.2b. R/t,k) - Hexagonally
Decimated Rectangular Grid.

For a discrete signal,f the values of ft), t E Z, are known, but the formulation

f (m + T) f* (u - T) , u, T e Z, includes only half of the possible bilinear data points. To

illustrate, define a function ROt~k) such that

Rf (t, k) = f t + k)f*(t- (2.5)

where t, k (Z. Now examine Rf on the t-k plane for the case of t and k restricted to inte-

gers values. The support of the function is on a rectangular sampling grid, but it does not

have any non-zero values for k odd. Thus, half of the information in the k-direction is lost.

Figure 2.2a demonstrates this property. This inadvertent decimation in the k-direction

means that the GDTFD has only half of the bandwidth theoretically possible for a given

sampling rate. It is, therefore, considered to be periodic in 71 rather than 27t.

In [29], Jeong and Williams note data is available whenever the argument off, i.e.

t ± k/2, is an integer. This suggests that data is present when k is even and t is an integer

and when k is odd and t is an integer plus one-half. As Jeong and Williams point out,

2.3

0

ROt,k) can be thought of as lying on the grid shown in Figure 2.2b. This is a function

which has been sampled at intervals of 1/2 in t and k and then hexagonally decimated by a

factor of four (see, for example, Vaidyanathan [50], p573 and p6 4 8).

By taking Rlt~k) to be on the hexagonally decimated rectangular sampling grid (or,

simply, hexagonal grid) and using this instead of the rectangular grid, all terms of the dis-

crete signal,f, are being used, making the new distribution periodic in 2n. This is the basis

of the Jeong and Williams method which they call the Alias-Free Generalized Discrete

Time-Frequency Distribution (AF-GDTFD). This will be the outer product form of the

GDTFD which will be used throughout this dissertation, and GDTFD will be synonymous

to AF-GDTFD.

2.3.2. Inner Product Formulation. The inner product formulation can be derived

from the outer product by means of a double change of variables. Starting with (2.2), let

U = ti - t-r/2, then

Cf(t, co;M) = f f f (t + t) f* (t+tl-) -+ 2, t)e-J2•°•dt 1 dt. (2.6)
-00 -00o

Next, interchanging orders of integration and substituting t2 = tj -,r results in the inner

product form, [2][3][18][26]

Cf(t, (o;W) = f f (+ ,) e2(t+tl) - -t2)

-j2nm (t Y 2
x [f (t + t2) e dt dt2

= *Sf-M- S-M->j) (2.7)

where

2.4

tt2

k m I

e h a f b

t ti

f "g d h c

1 a j m

Figure 2.3. Mapping of Points in xV to j.

Time Shift (by t) Operator (Stf) (T) = f (t - t)

Frequency Shift (by (o) Operator (MO~f) (-T) = f (,r) e jW (2.8)

and

(tt = Y 2- ,t)-t2) (2.9)

One advantage of the inner product form over the outer product form is seen in the

discrete case. The outer product form requires the kernel to be sampled on hexagonally

decimated sampling grid to avoid aliasing [29]. This can cause some difficulties when de-

signing kernels as will be discussed in Chapter 4; however, the inner product form is natu-

rally alias-free (i.e. it is 2nr periodic rather than 7c periodic). The sample points in

* (tj, t 2) , where tj and t2 are integers, correspond to the points in 4t when it has been

sampled on the hexagonally decimated grid. Pictorially, this can be seen in Figure 2.3.

A GDTFD can be generated by calculating the sum of weighted spectrograms [18].

The weighting factors are simply the eigenvalues of the kernel *J, and the window func-

tions in the spectrograms are the eigenvectors corresponding to the eigenvalues. In other

words, (2.7) can be rewritten as

2.5

N -j2N (I + I

Cf(t,();41) = X f f(t+ti)xk*(tI)e dt1 (2.10)
k=!

where Xk is the kth non-zero eigenvalue and Xk is the kth eigenvector of *. With this formu-

lation, any GDTFD which has a Hermitian kernel (and hence a complete set of eigenvec-

tors) can be written as the sum of weighted spectrograms.

Only those properties of Time-Frequency Distributions needed for this work are in-

cluded here. Further details are given in Cohen [16] and Boashash [8].

2.4. Multirate Background

The first multirate building block that is needed is the decimator. The m fold decima-

tor takes an input sequence and shortens it by keeping only every mth sample. A decimator

can also be used on multidimensional signals. In this dissertation, both one and two di-

mensional signals are encountered. The one dimensional decimator is represented by a

block containing the down arrow symbol (,I,) and the decimation factor, i.e.

Sample 0 1 2 Sample 0 1 2

x(n) = x(0),x(l),x(2),... y- m y(n) = x(0),x(m),x(2m),

The two dimensional decimator is a two by two matrix. The matrix need not be diagonal in

general; however, in this work the matrix is always a diagonal integer matrix which pro-

duces a rectangular decimation scheme (i.e. the decimation in one dimension is indepen-

dent of that in the other). The decimation matrix,

M2](2.11)

would have the effect of decimating a two dimensional signal by mI in the horizontal (or

x) direction and m2 in the vertical (or y) direction, i.e.

2.6

0,0o S0, 1 . . . SO, N _I S , O. •", SO,N-m

SI,0 SIl, . . . S1,N-_I $m2,0 Sm M, n •.. Sm'. N -m,

M2]•'M-1, 0 SM- 1, 1 ... SM- 1,N- I S M-m2.0 S M - m2, M, " M • "-2 N -
-MxN -M N

X_
m 2 m 1

The final multirate element to be defined is the delay. The delay can also operate on

multidimensional signals. In this dissertation, both the one and two dimensional delays

will be used. The one dimensional delay by m would delay a signal by m samples. The

symbol for a delay is z-C. In block diagrams, it is placed above an arrow indicating a delay

between the blocks being connected by the arrow, i.e.

-m

x(n) = ... ,x(m),x(m+l),x(m+2),...- --- y(n) = (0),x(1),x(2),

The two dimensional delay is represented by z-*, wher., gt is defined by (2.11). It has the

effect of delaying the signal in the horizontal direction by m, and in the vertical direction

by M2 , i.e.

$-m 2. -m1 S-m 2, -m1 + I """ S-M2, N - M1 -

5 0,0 " O, N- 1 - ,-I S M2+1 M 1S M2 1N m -

SM- ,0 . . . _i-n,N- NMxN

SMlO. SM..]IN .IMXN'Mf 1SM-r2-1' ,! $ -m 2 -1,-rn+. ". " S -mo 2 -1"N-m 1 -1 MxN

Additional information on digital filter design using multirate signal processing, may

be found in Chen and Vaidyanathan [14] and Vaidyanathan [50]. Multirate as a computa-

tional paradigm is discussed in Chapter 3.

2.7

2.5. Parallel Algorithm Background

For the purposes of this dissertation, computer architecture is restricted to Multiple

Instruction streams Multiple Data streams (MIMD) shared memory computers, such as the

Cray YMP. (For more information on this type of architecture, see, for example, Hwang

and Briggs [27].) Thus, the phrase "parallel algorithm" will be used synonymously with

the phrase "parallel algorithms on MIMD shared memory computers."

An important concept in parallel algorithms is synchronization of the parallel paths.

Synchronization is a place in the algorithm when the results from different processing

paths must be recombined before the algorithm can proceed. A place in the algorithm

where synchronization is necessary is called a barrier and the computations done between

barriers is called a stage. (See, for example, [51].)

Suppose there is an algorithm which has three stages. It would have four barriers:

one at the start, between each stage and one at the end. The number of computations nec-

essary in any given path to go from barrier to barrier is not necessarily a constant amount

between processor paths; thus, some processors will finish before the others in a given

stage and be idle while the others complete their task. The greater the difference between

the time it takes to compute the paths in a given stage (i.e. the computational cost of the

pathways), the less efficient the algorithm.

For example, consider the algorithm depicted in Figure 2.4. The length of the hori-

zontal arrows indicate the number of computations (or amount of time) it takes to process

the job given to a particular processor. Stage one has a good balance of the load between

the processors, and as such, it is highly efficient. Stage two, on the other hand, is poorly

balanced and, as a result, is inefficient. Stage two also shows a sub-stage. This is caused by

a synchronization which is necessary between some fraction of the total processors. If the

fraction is small, this would create a sub-stage rather than a stage since most of the proces-

2.8

Stage I Stage 2 Stage 3

Barrier 0 Barrier I Barrier 2 Barrier 4

Processor I

Processor 2

Processor 3
Sub-Stage 2.1 Sub-Stage 2.2

Processor 4

Processor 5

High Efficiency Low Efficiency 100% Efficiency tim

(Good Balance) (Unbalanced) (Balanced)

Figure 2.4. Processor Loads Within Stages of a Parallel Algorithm.

sors are unaffected. The final stage is perfectly balanced and is, therefore, 100 percent effi-

cient.

For additional information on parallel algorithms and associated computer architec-

ture, see, for example, Van Loan [51], Hwang and Briggs [27] or Akl [1].

2.6. Tensor Notation Background

The tensor product (also known as the Kronecker product) of two matrices, A and B,

is represented by the symbol A @ B. There are two possible definition of the tensor prod-

uct: the left tensor product and the right tensor product. Since both are equally valid, the

right tensor product has been chosen. Suppose A is n x m and B is i x j, then the right ten-

sor product is defined as [25] [43]

a0, 0B a0, 1 B ... aOm IB

a1,oB a,, B . . ai.m- B

An,m Bi = (2.12)

an- I,OB a.-,IB "."." an-l, m-2 nixm9

2,9

The second form of tensor notation used is the direct sum represented by A (B. It

creates a block diagonal matrix and defined as [43]

A(DB= [A6 (2.13)

If A is n x m and B is i xj, then A @ B is (n + i) x (m +j). For the set of matrices {Ai), i =

0,..., N- 1, the direct sum is

A0 0

N-I A1

@ Ai =(2.14)
i=O

0 ANI!

Tensor notation also makes use of a particular type of permutation matrix called the

stride by m permutation. It is represented by PNm where N is the length of the sequence

being permuted and m is the stride. The effect of the stride permutation is to rearrange a

vector, x = [x(O)x(1) ... x(N- 1)]T, such that its permutation, PN,mx = x', is given by

X (n) = [x(O) x(m) ... x((L-l)m) I ... I x(m-1) x(2m-1) ... x(N- 1)]T

- [xo(n) xI(n) ... xi(n) ... x_LU_ ,XL) (2.15)

where L = N/m E Z and

x,(n) = [x(i) x(m+i) ... x(mn+i) ... x(m(L-1) +i)], (2.16)

n = 0, 1, ... , L - 1. This implies

x'(k) = x m(mkmodulo N) + .lj) (2.17)

where k =0, 1, ... , N- 1, and LU indicates the integer portion of the quantity.

2.10

It is important to note that the stride permutation is a mathematical operation which

is often implemented as an addressing operation [25]. This means that for many hardware

configurations it can be implemented at almost no cost; however, the mathematical nature

of the operation must never be forgotten.

Additional theorems and definitions for tensor products may be found in many

sources, including Granata, et al, [25], Van Loan [51] and Regalia and Mitra [43].

2.7. Zak Transform

The Zak transform, like a TFD, transforms a one-dimensional signal into a two-di-

mensional representation. It comes in several forms [6][28], but only the finite discrete

Zak transform is of interest in this work. Suppose there is a continuous one-dimensional

signal,fc, which is sampled at intervals of p to produce a discrete signal,f, then the finite

discrete signal is given byf(up), where u E (0, 1, ... , N - 1), N, m, L E Z+ and N = Lm.

The two-dimensional discrete Zak transform of the finite discrete one-dimensional signal,

f, is given by

L-I

Zf(n, k) = •, f ([ml + n] p) eJ 2Klk/L (2.18)
I=0

where n = 0, 1,..., m- 1 andk= 0, 1,..., L- 1.

Another way to look at (2.18) is to consider laying out the samples off in a two-di-

mensional array indexed by the integers n and 1. Call this two-dimensional function z^n,l).

Figure 2.5 shows this mapping. Then, take the discrete Fourier transform of each column

of zn,d). The result is the discrete Zak transform, ZOn,k).

Additional information regarding Zak transforms may be found in Zak [57], Aus-

lander, Gertner and Tolimieri [6] and Jansen [28].

2.11

f(0) f(l) ... f[(m-l)p]
f(mp) f[(m+l)pJ . . f(2m-l)pl

f (up) - = zI (n,l)

fl(L-I)mpl f{1(L-l)m+lJp} ... f[(N-I)pl
Lxm

Figure 2.5. Mapping off into Two-Dimensional Array

The preceding contains the fundamenval background and definitions used throughout

this dissertation. It is important to keep in mind the relationship of the three domains

(time-lag, ambiguity and time-frequency) and to understand that the function of the GTFD

is to project a bilinear signal defined in the time-lag domain onto the time-frequency do-

main. It is sometimes fastest computationally to do this by first projecting the bilinear sig-

nal from the time-lag domain into the ambiguity plane and subsequently projecting it into

the time-frequency plane. This concept is the basis of TFD's.

Multirate is a means of sub-dividing a problem into smaller, more manageable, piec-

es. The basic building blocks for the sub-division process are the decimator and the delay.

These are the two main multirate tools used throughout this dissertation, and they will be

applied to the problem of creating a Multirate Time-Frequency Distribution.

With this foundation laid, a new computational paradigm will be introduced in the

next chapter. Specifically, multirate will be examined as a computational paradigm for the

solution of numerical linear algebraic problems and for two special signal processing cas-

es: the Fast Fourier Transform and the Discrete Hartley Transform.

2.12

3. Multirate: A New Computational Paradigm

3. 1. Introduction

A new multirate computational paradigm is presented along with a natural way to

express numerical linear algebra and signal processing algorithms. This is the first step to-

ward the goal of creating a Multirate Time-Frequency Distribution. The paradigm intro-

duced and the techniques which result from that paradigm form the basic building blocks

of the MRTFD.

The field of multirate signal processing, while rich in its potential, has remained lim-

ited in the types of problems it has been used to solve. From the start, it has been used as a

means to design and implement filter banks for signal processing systems. Multirate has

shown itself to be a powerful design tool, (see, for example, [50]) but it has the potential to

be used to solve a much larger class of problems.

Because multirate breaks the problem into smaller independent sub-problems which

require fewer computations to solve, a multirate system provides three benefits. First, for a

given throughput, the individual components can operate at significantly reduced speed

when compared to a non-multirate systems performing the same task. This means the indi-

vidual components can be much less expensive to produce. Second, by reducing the re-

quired clock rate of the individual components the heat dissipation and power consump-

tion budget per device (and, occasionally, for the entire multirate system) will be reduced.

Finally, if throughput is the governing factor, multirate can be used to design systems

which perform faster than the fastest possible sequential system. This improvement in

speed can be several orders of magnitude over a non-multirate sequential system. The

MRTFD algorithms presented in Chapter 6 are examples of this improvement in speed.

3.1

There are two fundamental underlying assumptions made in the vast majority of the

multirate literature: the process to which multirate is applied, and the type of data on

which the process will act. Multirate has been almost exclusively viewed as a tool for de-

signing digital filter banks, usually for the purpose of encoding or compressing a signal.

The data has been assumed to be an infinite length sequence. These assumptions have lim-

ited the possible applications for which multirate is appropriate and profitable. There has

been a limited amount of filter bank design which has been done with finite length (or

blocked) input data (See, for example, Chapter 10 in [501 or [45]). The utilization of

blocked input data provides a starting point for the new multirate applications discussed in

this chapter.

Underlying multirate is a larger class of problem solving techniques known as divide

and conquer algorithms. Divide and conquer is a broad field of algorithmic techniques

used to break problems into smaller independent sub-problems, solve those sub-problems

independently and recombine their results to gain the solution to the entire problem. (See,

for example, [12].)

It is clear that multirate partitions a given problem into a set of sub-problems and is,

therefore, a divide and conquer algorithm. Can it be applied to a broader class of prob-

lems? The answer is a resounding, yes. In this chapter, multirate will be shown to be a

powerful tool useful as a means of rapidly solving problems encountered in numerical lin-

ear algebra and digital signal processing. In section 3.3, the utility of multirate when ap-

plied to the basic building blocks of numerical linear algebra will be discussed. In section

3.4, some examples of numerical linear algebraic building blocks will be applied to signal

processing applications. By making use of multirate in this unconventional sense, signifi-

cant improvement in performance is possible for traditional signal processing tasks. This

is demonstrated later in this chapter and in Chapter 5 and Chapter 6.

3.2

ýIN

Z-1 XN

(x, y)

Figure 3.1. Single Stage Multirate Summation.

3.3. Multirate as a Paradigm for Numerical Linear Algebra

Traditional multirate uses finite filters to process a non-finite length sequence. What

if both filter and sequence were considered as blocks? This is called block filtering. (See,

for example, Chapter 10 in [501 or [45].) Used on block data, it has an inherent benefit of

increasing the parallel nature of the filter bank. Moreover, block multirate will be shown to

be a powerful tool to implement divide and conquer algorithms on numerical linear alge-

braic problems. In this section, it will be shown that multirate ideas can be applied to per-

form any vector-vector, matrix-vector or matrix-matrix operation. It is important to realize

that state-of-the-art numerical linear algebraic software, such as LAPACK [4], is built up-

on a set of core routines called Basic Linear Algebra Subroutines (BLAS) [201[211 which

are frequently utilized combinations of vector-vector, matrix-vector and matrix-matrix op-

erations. Thus, it will be shown that multirate provides an important new paradigm for

solving problems in numerical linear algebra.

3.3.1. The Multirate Inner Product: A Vector-Vector Operation. The standard dis-

crete inner product is given by

N-I

(x,y) x x(n)y(n). (3.1)
n=O

3.3

x(O)y(O)

X-Nm) -m)Y(Nm)

z-I
Z-I • x(N- m-l1) I _ -ltx(N-m- I)y(N-m-1

x~m +) xi) y(i) - m~ + -m

Z-In +X(m1) [yIml) t

elemeZ-n in yte s n x(N - m)y(N - m)

e n x(mn +pm o t x(m -and T is, i i c ut hin)y(2m-ru
n ~~- =(2 -, 2 -- z1)(m -) [y(m l

C-•_ x(N-l1) [y(N-I1) (x(- 1)y(N)

Figure 3.2. Two Stage Multirate Summation with Analysis Filters.

Suppose the sequences x is passed through a delay chain and decimated by N. The analysis

filters have an impulse response given by a single coefficient corresponding to a particular

element in the sequence y. Figure 3.2 is then a N channel multirate system which sums N

elements of the product of the sequences x and y. That is, it calculates the inner product.

Another, equally valid way to decimate x is to decimate in two stages. For example,

the first stage would decimate by m and the second stage would decimate by N/m. The

analysis filters have an impulse response given by a single coefficient corresponding to a

particular element in the sequence y. In other words, Figure 3.2 is a two stage multirate in-

ner product of two sequences. This is expressed mathematically as

NM-1

(x,y) - E x(nmr+i)y(nm+i) (3.2)
i=O n=O

3.4

Note that (3.2) indicates that both of the sequences have been decimated prior to pointwise

multiplication of the sequences. This is considered a m channel multirate system since in

practice it would be expected that the computation done after the m fold decimators would

be performed in a single channel; hence, there would be m channels.

3.3.2. The Multirate Matrix-Vector Multiply: A Matrix-Vector Operation. Multi-

rate may also be applied to matrix-vector operations. In the case of the vector-vector oper-

ation, both sequences were decimated in the same fashion. In the matrix-vector operation

both elements will also be decimated. Since the matrix is a two dimensional object, some

added complexity has been introduced into the decimation operation. A multirate matrix-

vector operation could be developed by decimating the matrix in only one direction, name-

ly decimating in the horizontal direction only; however, this is not the standard way an ar-

ray is decimated.

Decimation in two dincnsions requires a decimation factor for both dimensions. The

simplest case is for these to be equal. This is called square decimation and is represented

by a decimation matrix

The multirate decomposition by this decimation matrix would require one channel for ev-

ery possible delay in either dimension. Since their are m possible delays in each direction,

a total of m2 channels are required creating M2 sub-matrices.

Suppose this decimation scheme was applied to A, an N x N matrix where NIm = L c

Z. If the sub-matrices were put in block matrix form, a new matrix, call it A', would be

created. It would have the form

3.5

A0 ,0 A 1 ... Ao,-I

A1'o Al, . . AimI

A"' (3.4)

where the subscripts represent the delay applied to A before it was decimated. The first

subscript is the delay in the vertical direction, and the second is the delay in the horizontal

direction. The the block matrix Ai,, is constructed from the elements of A in the following

fashion:

ai, j ai,j+m . . ai, j+ (L- 1)m

ai+m,j ai+m,j+m ... ai+m,j+ (L-1)m

Ai, j =(3.5)

i+ (L-)m,j ai+ (L-I)Mj+m ai+ (L-1)m,j+ (L-)M LXL

where the aij terms are the elements of A.

It can be seen from the definition for the stride by m operator, (2.17), and from (3.4)

and (3.5) that A' is really A' = PN, mAPPN, m and the elements of A' are apm +j, nm + j- The

value i is the delay in the horizontal direction, j is the delay in the vertical direction and p,

n=O, , ...1, L-1.

The signal, x, must also be delayed and decimated but, naturally, in only one direc-

tion. It must be delayed and decimated exactly as the rows of A are (i.e. in the horizontal

direction). Therefore, there are m sub-sequences produced by m channels. If the sub-se-

quences of x from each channel of the delay and decimation chain are concatenated, the

result is the sequence, x', seen in (2.15). In other words, it is PN, mx.

The matrix-vector product can be written as the product of A' and x, i.e.

3.6

y(j) yAmm)..y(N-nOj

Nlm

1. rn-I m

y m , 0m- i

Cl NIM x(I)-m
S~x(mn + 1) X (I-)

z- x(M + I

: A j,

z-he= x(N - o gaNIM

Z-I L x(mn m--l) =[•'n x-)-(

z-1 x(2m -l)

n=O,l .. N- I• "" Aj, m_1

y Q) y (m +j)... y(N- m +j)I

Figure 3.3. Multirate Matrix-Vector Multiplication.

f a complt(PN, mAiPN, m) PN, mX o (3.6)

Note the result is y' and not y. This is a consequence of the shuffling of the rows done in

(3.4). By (2.17), (3.6) could also be written as the double summation

M -I M x nm+3.77

y(pm+j) = I. I apm+j, nm+iX~m i 37

i=O n=O

where p = 0, 1,-., N/m - I andi = 0, 1,-.., m - 1. A block diagram of this for a particular

value ofj is shown in Figure 3.3. There would be m 2 channels (one for each block of A')

for a complete implementation of (3.7).

The decimation matrix, p., can be generalized such that the values along the diagonal

need not be equal. The resulting decimation matrix would have the form

3.7

(3.8)[0m
Changing g will change (3.7) and allow the rows and columns of A to be decimated at dif-

ferent rates. Let the N x Mmatrix, A, be decimated according to R, then the new multirate

matrix-vector product is

m1-I mI
y(pm 2 +k) = I apM2+k,nm,+ix(nml +i) (3.9)

i=O n=O

where p = 0, 1,..., N/m2 - 1, k = 0, 1 ... ,m 2 - 1. The only restriction is that M/m1, N/m2 E

Z. This may be useful in certain applications such as under-defined or over-defined sys-

tems of equations where N # M. This is the multirate matrix-vector multiply.

3.3.3. Multirate Matrix-Matrix Multiplication: Matrix-matrix multiplication can be

viewed as an extension of the matrix-vector multiplication discussed in the previous sec-

tion. In the product, AB, the operation repeatedly calculates a matrix-vector multiply for

each column of B. This implies that the decimation of B in the vertical direction must be

the same as that of A in the horizontal direction. The decimation in the vertical direction of

A and the horizontal direction of B do not need to be the same, but these will impact the

structure of the result.

Define three decimation factors, Mi, M2 , and M3. Let mi be the decimation factor in

the horizontal direction for A and the vertical direction for B. Let M2 be the decimation

factor in the vertical direction for A, and m3 be the decimation factor in the horizontal di-

rection for B. Then, for a N x M matrix, A, and a M x K matrix, B, define A' and B' as

3.8

A0'0 A01 I ... AOM,-Ii

A1 0o Al, I ... A1 I, i,

A' (3.10)

B0 0o B01 I ... B 'rn 3 -i

B' = (3.11)

where

ai, a, ij+(-- ,

= .j (3.12)

a i+(1)mlj a i+4. I)m 2j+(N)mý x

and

bi, ... b i j .+ K I M 3

=i . (3.13)

3.9

From the definition for the stride given in (2.15) and from (3.10) through (3.13), it

can be seen that A' = PN,m2APMmi and B' = PM m BPK, m * If the product of AB = Y,

then the product of A' and B' is

P= N, m2YPK, m3 = (PN, m2APM m) (PMm BPK, m) (3.14)

and applying (2.17), it is possible to write the equation for a multirate matrix-matrix mul-

tiply as

M

m1-1 m1

Ypm2 +q, zm3 +k = I apm2+q,nm1 +ibnm1 +i,1m 3+k (3.15)
i=0 n=0

wherek=0, 1,...,m3 - l,q=O, 1, M2 - 1,1=0, l,...,K/m3 - l,andp=0, 1...,

N/m2 - 1.

With the addition of the multirate matrix-matrix multiply to the previously defined

multirate vector-vector and matrix-vector operations, it can now be said that multirate pre-

sents a new paradigm for numerical linear algebraic problems. As a demonstration of the

utility of this paradigm, in the next section, the new multirate linear algebraic tools dis-

cussed above will be used to construct signal processing examples.

3.4. Multirate as a Paradigm for Signal Processing

In this section, two examples are present to show how multirate can be applied in a

new fashion to old problems. The object of these examples is to recast the Fast Fourier

Transform and the Discrete Hartley Transform based upon the paradigm discussed earlier.

In section 3.4.1, the multirate FFT (MR FFT') is presented, and the multirate DHT (MR

DHT) is introduced in section 3.4.2

3.4.1. The Multirate Fast Fourier Transform. In this section, multirate is used as an

alternate means to develop the Four Step FFT reported by Van Loan [5 11 for MIMD

shared memory architectures. The key feature of the multirate FFT is the subdividing of

the transform into smaller blocks which can still be solved using FFT's. This section is di-

3.10

vided into three parts. First, the theoretical background for the MR FFT is discussed in

3.4.1.1, and the MR FFT algorithm is covered in section 3.4.1.2. Lastly, the cost to com-

pute the MR FFT is compared to the cost of the FF1' in section 3.4.1.3.

3.4.1.1. MR FFT Theory. The MR FFT is derived from the discrete Zak

transform. In Chapter 5, it will be shown that with slight modification the Zak transform is

a generalization of the Short-Time Fourier Transform (STFT). In this section, it is shown

that the Zak transform is the basis for a multirate implementation of the STFT which can

make use of the computational speed of the FFT.

The definition of the DFT is given by [391

N-I j2nnr

X(r) = (x~n)e (3.16)

n=O

If all values of r are considered (i.e. r = 0, 1 ... , N- 1), (3.16) is a N x N matrix-vector

multiply. Using (3.9), (3.16) can be rewritten as

r 1- ! rI m-j21n(nm ++i) (pr 2 +k)

X(pm 2 +k) = I , x(nmk+i)e N (3.17)
i=0 n=O

where p = 0, 1,..., N/m2 - 1 and k = 0, 1,..., m2 -1. Let m = mI and m 2 L =Nm, then

(3.17) can be expressed as

rn-I L- 1-j2n (nm + i) (pL + k)

X(pL +k) = • x(nm+i)e N (3.18)

i=O n=0

where now p = 0, 1..., m - I and k = 0, 1,..., L - 1. With some algebraic manipulation,

(3.18) becomes

m-1 L - -j2._nk] -j2nipX N t, LI(.19
X(pL+k) = e N x(nm+i)e L e m (3.19)

i=O n=0

3.11

The innermost summation is the Zak transform which is then multiplied by a phase shift

-j2zak/N
e . The outer summation is a DFT of the rows of the two dimensional product of

the Zak transform and the phase shift.

Equation (3.19) can be expressed in tensor notation as a combination of stride per-

mutations, tensor products and a diagonal matrix multiply. The first step in translating

(3.19) to tensor notation is to apply the stride permutation to the input vector, x, i.e. PN.mX.

Next, the discrete Fourier transform of each L samples of the permuted input must be tak-

en. This is represented by the right tensor product I. 0 WL where WL is the Fourier trans-

form matrix of dimension L.

The phase shift term in (3.19) is implemented as a diagonal matrix, D. It is the direct

sum of the set of diagonal matrices {IQ(/))}i, i = 0, 1,..., m - 1, defined as

rI
(1) j2 nilN (3.20)

e-j2xi (I - 1) /IVe .Ixl
The resulting diagonal matrix, D, is given by

m-I

i=O (3.21)

Next, a permutation is performed to prepare the vector for the second set of DFT's.

The permutation is actually a combination of two strides, PN, i and PN, L performed si-

multaneously. The first removes the original stride of m, and the second establishes a new

stride of L. The last step is to apply the tensor product for the L m point DFT's, i.e.

IL. 0 Wm, followed by another stride to restore the output sequence to the original order.

The entire tensor product form of (3.19) is

X = PN, L (IL& Wm) (PN, LPN, m) D (1. WL) PLX. (3.22)

3.12

It should be noted that the DFT operations Wm and WL would be implemented using se-

quential FFT's. This implies that (3.22) could be further decomposed in terms of tensor

products; however, this would confuse the parallel nature of this formulation and is not

done here.

3.4.1.2. MR FFT Algorithm. The MR FFT algorithm is a parallel algo-

rithm. The most efficient algorithm in terms of processor loading requires a dependence

between the length of the input signal, N, and the decimation factor, m. The MR FFT algo-

rithm will first calculate the Zak transform (which implies the one dimensional vector, x, is

mapped into a two dimensional array as is depicted in Figure 2.5) and apply the phase shift

in the first stage and then calculate the Fourier transform of the rows in the second stage.

The Fourier transforms are calculated using off-the-shelf FFT algorithms. Thus, the MR

FFT performs a FF1 on the columns of the two dimensional array, zf, in the first stage, and

a FFT of the rows of the two dimensional array in the second. The phase shift could be

performed either at the end of the first stage or the beginning of the second. In this imple-

mentation, it is performed in the first stage. If each FFT is assigned to an independent pro-

cessor in each stage, the only way to have the same number of row processors as column

processors (keeping the processor load balanced during each stage) is to set m = ,IN. A

block diagram of the MR FFT can be seen in Figure 3.4.

Algorithm 3.1 is another way to describe the MIMD shared memory Four Step paral-

lel FFT reported by Van Loan [51]. Stage one contains steps one and two, the FFT o- d

phase shift, as well has half of the third step, transposition of the data. The load at the be-

ginning of stage two completes the transpose, and the fourth step is the calculation of L m-

point FFT's.

It is important to note that the multirate paradigm could also be used to efficiently

implement the many significant Fourier transform algorithms of Winograd, Tolimieri and

Auslander. See, for example, [7]. One last comment on the algorithm before moving on to

3.13

x(O) x(I) ... x[(m-1)n I Starting Data Block
x(nm) x(nm + x) . x[(2m- I)nj (Note data has been parsed)

x (t) -

x[(L-l)m] x((L-l)m+1).. x((L-l)m+((m-l)

Result at this point is

Phase the Zak Tmansfionm
Phase-- X) Shift -
Shift(l) (M-i)

Stage Two

X0(0)(0)e. X -0 FF1 '

X0 1) e X, (1) e X _ (1) ,..

j2x (L/- I) 12K(L-I) (r-I)

[IX (L-1L- e) N.. XN . (L -)_-

X(O) X(L) ... Xt(m-I)L]
X(1) X(L+ 1) ... X[(m-1)L+1] •

Fourier
Transform

X(L- 1) X(2(L- I) + 1) ... X(N- 1)

3.14

Algorithm 3.1: Multirate Fast Fourier Transform

Barrier 0: Start

Stage 1: Load N data points by parsing L data points into m processors

Each processor calculates an L point FFT

Each processor multiplies the L point FFT result by a phase shift

Output results to Output Array

Barrier 1:

Stage 2: Load m data points into L processors from Output Array

Each processor calculates an m point FFT

Output results to Output Array

Barrier 2: End

the DHT. The operations performed on each set of L data points in stage one and set of m

data points in stage two are identical in each processor. This implies that the algorithm is

suitable for implementation in a SIMD architecture [27].

3.4.1.3. Computational Cost of MR FFT. The MR FFT like the Four Step

FFT uses multiple instances of the same sequential FFT algorithm implemented in paral-

lel. The MR and Four Step FFT's require more computations than a sequential FFT would

for a given length signal; however, because they are implemented with shorter length se-

quential FFT's in parallel, the execution time is significantly reduced.

If m is incorrectly chosen, it is very easy to obtain an algorithm which is not very ef-

ficient. In considering the cost of this algorithm, it will be assumed that both N and m are

correctly selected such that m = FN results in practical split radix-2 FFT's in both stages

of the algorithm and that the loading of the processors is optimized.

In Table 3. 1, the cost of the algorithm in terms of real multiplications and additions

is presented. The numbers are based upon the split radix-2 FFT introduced by Sorensen,

Heideman and Burrus in [46]. It requires N log2 N - 3N + 4 multiplies and 3N log2 N - 3N

+ 4 additions to calculate an N point DFT via the sp!'It radix-2 FFT. This FFT is the basic

3.15

* building block of the MR FFT. If the type of FF"" is changed, then the cost of computing

the MR FFT will change also.

Assume the time associated with communications between processors and memory

transfers can be neglected and there are as many parallel processors available as needed.

Then, the time it takes to calculate the MR FF1 and the FFT can be compared based upon

the number of computation along the longest path. This is defined to be the processor path

which requires the greatest number of computation within a given stage. For a sequential

algorithm, this is the total number of computations for the algorithm. For a parallel algo-

rithms, it is the sum of the longest path of each stage in the algorithm.

The longest path for the sequential FFT is the number of real multiplications and ad-

ditions it takes to calculate an N point DFT. For the MR FFT, the cost of the longest path in

stage one depends upon the time it takes to compute a single N/m point FF1' followed by

NIm complex multiplies to apply the phase shift for that column of the resulting Zak trans-

form. The cost of stage two is governed by the cost of the FFT of the rows.

The time to compute or the throughput of the MR FF1 system is determined by the

cost of the longest path in stage one plus the longest path in stage two. The result of this is

the Longest Path column in Table 3.1 Next, the Parallel Complexity is calculated which is

the total number of processors necessary times the Longest Path. The total number of cal-

culation necessary to perform the multirate FFT are given under the Sequential Complexi-

ty column. This represents the calculation that would need to be done if the algorithm

where implemented on a single processor.

A graphical comparison of the relative time it takes to implement a N point MR FFT

and FFT is given in Figure 3.5. The figure shows the fraction of the time it takes to calcu-

late the MR FF1 for different decimation values relative to the FFT. The FFT is a sequen-

tial algorithm which is, therefore, processed along a single path and is defined to take a

time of one to implement. The MR FFT"s have as many processors as necessary to achieve

3.16

Table 3. 1: Computational Cost of Multirate Fast Fourier Transform

Oper- Stage One Stage Two Longest Path Parallel Sequential
ation M = fN- Complexity Complexity

X NoN mlog 2m ,Ilog2 N Nlog2N Nlog 2N - 3Nlog 2 -V + 4 M02 N02N02
m m -3m+4 - 3,FN + 5 - 3N + 5rN- + 2,FN + 3

+ 3N!g2 N +4 3mlog 2m 3,rNlog2 N 3Nlog 2N 3Nlog 2N - 3N
m m -3m+4 3FN + 5 -3N+ 54rN +2FN + 3

the fastest possible throughput. In the case of decimation factors of four and eight, This

leads to large numbers of processors being idle in the first stage since only four or eight

processors are needed at that point, but N14 and N/8 processors are needed in the second

stage. For a balanced load between the processors, it is necessary to let the decimation fac-

tor be the square root of the length of the input. This is the line labeled, "Efficient MR

FFI'." For the case of N = 1024, the efficient MR FFT would require 32 processors and

would be approximately 31.6 times faster than the sequential FFT.

MRFFTm=4

o MRFFTm=8

o.Efficient MR FFT

0.01 I I I I
0 200 400 600 800 1000

Length of Signal, N

Figure 3.5. Relative Time to Compute MR FFT Compared to Sequential FFT.

3.17

3.4.2. The Multirate Discrete Hartley Transform. As a further example of the use-

fulness of the paradigm presented in this chapter, the Discrete Hartley Transform is exam-

ined in this section. This section is divided into two sub-sections: first, the theoretical

background for the multirate implementation of the DHT is presented in 3.4.2.1. Next, the

MR DHT algorithm is given in 3.4.2.2

3.4.2. 1. MR DHT Theory. Neng-Chung Hu, Hong-I Chang and 0. K. Er-

soy developed a modified DHT in [32] called the generalized DHT (GDHT). The authors

state that it generalizes the DHT the same way the DFT is generalized; however, a more

useful connection for this example is the similarity between the relationship of the DHT to

the odd GDHT and relationship of DCT-I to DCT-II and DST-I to DST-H. The odd GDHT

is given by

N-i(kx(n

x(k) = 2 (n+ ,k~ x(n)
n---
n=O

N-1 n n I k 2xn+)k(3.23)

S Co[s{ N)j + sin{ N)j (n)(

where k = 0,..., N- 1. Applying (3.9), the two stage multirate formalism for matrix-vector

products, (3.23) can be rewritten as

m- L.-I (21c nm+i+-')(pL+f)

X(pL+f) = N _casf N) x(+i) (3.24)
i-O n=O

wherep = O, 1,..., m-I andf= 0, L... L- 1, L =Nm and cas (a) cs () + sin (a).

Making use of the identities,

cos(a+3) = cos (a) cos(13) -sin (a) sin(f3) , (3.25)
sin (a + 13) = sin (a) cos (13) + cos (a) sin (13)

equation (3.24) can be expressed as

3.18

r- Li)

X(pL+f) 2 ca(2n)xCO Nn +c L
i=0 n=O \(3.26)

rn-1 L-1 21r i +) (pL +f)
+ • sin cas x(N-m(n+ I) +i)

NL
i=O n=O 0

since

cas(2nn(pL+f)) = cas(2-'tf (3.27)L "L3.7

Define

=j L- cas(2gnf)x(nm +i) (3.28)L-L

and

L- I

X1 (f) = cas(L)x(N - m(n+ 1) +i). (3.29)
=0

Then, (3.26) can be expressed as

.-,r{:i+),r ____(i+ + 't~xi •i'k
l(pL+f) = Cos(- [Cos(-- j i(f) +Xin(f),po = m0 .(3.30)

rn-I+ I osint m Co[cs N X(f) -si[N X (f)

i=OII

Because cosine is an even symmetric function,

r21c i + i p] = 2 coi-,P

Cos m j cos m 2)P (3.31)

and sine being an odd symmetric function means

3.19

2n i + 1p 2x M-i- /
sin[=2 -sin I (3.32)

for i = 0, 1..., ni2 - I. This implies (3.30) can be reduced to

X(pL+f) = (3.33)

SM-1 I Ci+• p] M-! [R i +ý p

(kICos 2 "ki (f) + kX sin i(f)

where M = m/2,

= COS[Xi, (ff) + sin N Ii-i-) I

: i+u
N2 2 1t i+)f(]

+ [Cos("(N2fl-mfXm-iI(f) + sif{n 2 1 J MI f]

s N X (f) -sinN(3.35)
[(24i+i)fJ (2x Mi+)f1 (35

'o-21~ N I--I(f-sin[2 NIf Mff1

f- =

p = 1, 2,M(3.36)

This is the multirate DHT.

3.20

In other words, (3.33) is the sum of the type II Discrete Cosine Transforms of

ki (f) and the type II Discrete Sine Transforms of X"' (f) • (For more information on the

DCT and DST, see [42].)

Equation (3.33) directly calculates the values for p = 0, 1,..., M - 1. The values of

X(pL +1) for p = M, M + 1,..., m - I are found indirectly. Prior to adding the results of the

Cosine and Sine transforms together, the value of the transforms for p = M, M + 1..., m -

1 must be calculated. For the DCT-II, they are given by -Xc((m - p + I)L +1) for p = M + !,

M + 2,..., m - I (Xc being the result of the Cosine transform). The value of the DCT-II for

M is zero. For the DST-II, the value of the transform for p = M + 1, M + 2,..., m - I is giv-

en by Xs((m -p + I)L +J), and forp = M, it is the sum

M-1

Xs(f) = Y (-I)'Xi'(f) (3.37)
i=0

The DHT can also be expressed in terms of tensor notation as was done for the MR

FFT. As with the MR FFT, the first step is to perform a stride by m permutation, i.e. PN,mX.

The permuted input is broken into two paths. The first path is operated on by Im ® HL

where HL is the DHT operator of dimension L. The second path is permuted by the inver-

sion operator, Im ® JL' where JL is defined as

JL =(3.38)

LxL

and then operated on by Im ® HL.

The result from each path is again split into two branches. In the first branch the re-

suit is multiplied by a diagonal operator, Dc, and the second branch is multiplied by the di-

agonal operator, D.. The diagonal operators are the direct sums

3.21

m- I

Da ((3.39)
i=O

for ca equal to c or s and i, is defined as

Co(2nti)N

,= (3.40)

Cos 2ilN.1
lxi

and

sin (-i)

9S = (3.41)

sin(2lti(/-N 1)

respectively.

The four branches are recombined such that the first branch of the first path is added

to the second branch of the second path (call this recombined path one) and the second

branch of the first path is subtracted from the first branch of the second path (call this re-

combined path two). The four branches have thus been recombined into two paths.

The paths are permuted by a combination stride permutation operator, PNLPNm.

Once the permutations have been performed, the first path is operated on by IL 0 Cm, and

the second path is operated on by IL ® Sm where Cm is the kernel with elements cos(2ntip/

m) and Sm is the kernel with elements sin(27&ip/m), ip = 0, 1 ... , - . Cm and Sm are

3.22

modified Cosine and Sine Transforms. Each block of the operators IL 9 Cm and 'L ® Sm

are calculated by first forming ki (f) and Xi (f) and then taking the DCT and DST, re-

spectively.

The tensor notation version of the MR DHT can now be stated as

X (k) = PN, L I (1 L ® Cm) PN, LPN,m [D, (Ira ® HL) PN, mX (n) (3.42)

+ Ds (Im ® HL) (Im® JL) PN, mX (n) + (IL (D Sm) PN, LPN, m

[Dc (Jm 0 HL) (Imn @JL) PN mx (nl) - D, (Im ® HL) PN, mX() (}

3.4.2.2. MR DHT Algorithm. The first stage of the MR DHT implements

the 2m L-point DHT's calculated using a standard Fast DHT algorithm such as that given

in [47]. There are m DHT's associated with the decimated signal and m associated with the

decimated and reversed signal. The second stage performs the multiplication by Qi, for a

= c and s. For each i, there are four sets of multiplications, Qi, 1 with the DHT of the deci-

mated signal and the decimated and reversed signal and 1si, 1 with the DHT of the deci-

mated signal and the decimated and reversed signal.

Each combination is calculated in independent processors. For maximum speed, this

requires 4m processors, but maximum efficiency is obtained with 2m processors. The algo-

rithm given here is the maximum efficiency version. The results of the Ri, multiplica-

tions are summed together producing 2m L-point sequences which are output to two L x m

arrays. The first array is the solution of

Ai(f) = [cos(_.-f_)Xi (f) + sin(__.i(f)] ie [O,m) , (3.43)

and the second array is the solution of

Bi(f) = Lcos•--f-)ir,(f) - sin•-•)Xi(f)] iE [O,m) (3.44)

from equation (3.30). This is the end of the second stage.

3.23

The final stage calculates the modified cosine and sine transforms of the rows of the

two arrays, respectively, and sums the result to produce the permuted DHT, X(pL +J). A

block diagrams of the multirate DHT is shown in Figure 3.6. The MR DHT algorithm is

given in Algorithm 3.2.

Algorithm 3.2: Multirate Discrete Hartley Transform

Barrier 0: Start

Stage I: Load N data points by parsing N/m data points into 2m processors. (This
includes both the decimated data and the decimated and reversed data
which go to separated groups of processors.)

Calculate the DHT of each subsequence

Barrier 1:

Stage 2: Swap data between DHT processor pairs

Multiply by Cosine and Sine terms

Output results to intermediate result array

Barrier 2:

Stage 3: Load rows of intermediate result array into processors

Calculate modified Sine and Cosine transforms

Output result

Barrier 3: End

Like the multirate FFT, the multirate DHT performs identical operations in each

channel on differing sets of data (all of the same length) meaning there is only one instruc-

tion set for a number of processors. This implies that the algorithm is suitable for imple-

mentation in a SIMD architecture [27].

3.5. Conclusi

In this chapter, a new multirate paradigm was introduced. The idea that multirate

was limited to the area of filter bank design was discarded and replaced by a realization

3.24

A~n) 1

ILL...IL IL I-L .. L ILJ IL I~L IL

ee

HLtrm He Dat HLI..IHLH

..._ _ j._.._. ._..

B 1 (1) [Bin

1__ 0) Q AoQa

Fiur 3.6 Bloc diga ofs '10trat Dicrt Hartle TransformL , 0 ",

0 3.25, QC,

that multirate is a powerful divide and conquer strategy for the entire field of Numerical

Linear Algebra.

Multirate, as a computational paradigm, was successfully applied to vector-vector,

matrix-vector and matrix-matrix operations. Since these operation form the foundation of

modem numerical linear algebra, it can be seen that multirate as a computational paradigm

may be applied to all problems encountered throughout the field of numerical linear alge-

bra.

Using the multirate numerical linear algebraic operations developed here, the new

multirate paradigm was applied to two commonly used algorithms: the FF1 and the DHT.

The resulting multirate algorithms are parallel implementations of the FFT and DHT, re-

spectively. They require slightly more computations to calculate; however, when pro-

cessed in parallel, they can deliver dramatic increases in throughput.

It has now been demonstrated that multirate as a computational paradigm is suitable

for all numerical linear algebraic problems including many encountered in signal process-

ing. It remains to apply the paradigm to the problem of the GDTFD. The first step in this

process is to design the computational tools which will allow any discrete kernel to be

used with the multirate TFD. In Chapter 4, these tools are developed.

3.26

4. Kernel Design Techniques for Alias-Free Time-Frequency Distributions

4.1. Introduction

The kernels used for the GDTFD are designed in either the time-lag domain or the

ambiguity domain. In order for them to be used with the MRTFD presented in the follow-

ing chapters, they must be discretely represented in the time-lag domain. For certain ker-

nels, this can be difficult. Therefore, in this chapter, three different methods are presented

which allow kernels developed in either domain to be discretely represented in the other.

Recently, Jeong and Williams introduced a generalized method to calculate an Alias-

Free Generalized Discrete Time-Frequency Distribution (AF-GDTFD) [29][30]. In this

dissertation, the term AF-GDTFD will be used synonymously with the term GDTFD as

the AF-GDTFD is the form of GDTFD which is of interest in this work. Rather than using

only half of the possible sample points in the discrete bilinear signal as the Discrete TFD

(DTFD) does, their method makes use of all the available samples of the bilinear signal.

Since the DTFD uses only half of the available sample points, it has a discrete bandwidth

of it and will suffer aliasing for a Nyquist sampled signal. The Jeong and Williams

GDTFD is 2n periodic since it keeps all the sample points and is, therefore, alias-free for a

Nyquist sampled signal.

The GDTFD is an O(N3) process and requires the continuous form of a kernel in the

time-lag plane be known. The modifications to the basic GDTFD decrease the computa-

tional complexity to O(N2 log N). They, also, allow the use of kernels designed in the am-

biguity plane where the continuous form of the kernel in the time-lag plane is unavailable

or difficult to obtain.

This chapter is divided into two sections. First, a description of the modifications

made to the alias-free algorithm developed by Jeong and Williams [29] to create an

4.1

"O(N21og N) algorithm is given, and second, a simple method to modify kernels designed in

the ambiguity plane to the alias-free form is developed. The ability to design kernels in the

time-lag domain will be critical to the development of the Multirate Time-Frequency Dis-

tribution.

4.2. A Faster GDTFD

Assume the number of samples, N, is a power of two. Then, the method reported by

Jeong and Williams in [29] is an O(N3) process. With a slight modification, the GDTFD

can be implemented in O(N 2 log N) computations. The faster form is based upon the Co-

hen's class using the form

C (t, ,0;,) = JJA (0,,c) 0 (0, r) ej-10-jet'ddO (4.1)

where A (t, T) = lif(U + j)f(u -)eJUtdu is the ambiguity function off. The dis-

crete form of (4.1) is given by

NL N_1
N-1 2 j2nup -j2npn -j2nkt

C(n,k;ý) = X N(p,) Rf(u,) e e N (4.2)
k =-N P=N N

P=--j 2 -

To calculate the GDTFD, the first step is to determine the ambiguity function off. It

is found by calculating the inverse FFT of the rows of R(u,k)-an O(N2 log N) process.

Next, the product of the kernel and the ambiguity function is determined-an O(N2) pro-

cess. Finally, the two-dimensional FF1 is performed to find the GDTFD-an O(N2 log N)

process. Thus, the overall process is O(N2 log N).

In comparison, the method given in [29] makes use of the form

C(n,k;ý) :-- F[RfF (n,t)]xk (4.3)

f k
=F[, f f(m +) f*(m)V'(n -m,4)2

4.2

(a) (b)

Figure 4.1 (a) The Region of Support for the Bilinear Form of
the Signal (i.e. Rf). (b) The Region of Support for a Kernel of the
"Bow-Tie" Class.

where Wp' is the appropriately sampled and shifted kernel in the time-lag plane and Fis the

Fourier transform operator. The calculation of the linear convolution within the brackets

requires O(N3) operations to complete followed by an O(N2 log N) operation to calculate

the Fourier transform of the columns; thus, the overall process is dominated by the linear

convolution and is O(N3).

Because of the fixed overhead associated with the FFT, for small N (e.g. N < 16)

solving the linear convolution directly may be faster. Also, the support of the kernel plays

a role as well. The support of Rf is diamond shaped (See Figure 4. Ia.). If the kernel is of

the "bow-tie" class (See Figure 4. l b.), then aliasing does not occur and the circular convo-

lution implemented by the FFM creates no error. However, if the kernel extends beyond the

"bow-tie" region, then aliasing will occur if the rows of the kernel and the bilinear signal

are not zero padded. This will result in the cross-over point (i.e. the point at which the FFT'

method is faster than the original method) increasing by a factor of four.

One subtlety is encountered as a result of using the DFT. For the odd rows of the ker-

nel, the sampling shifts for the kernel and the bilinear signal must be in opposite direc-

tions. For example, if

4.3

[~ +!f*t k even
R(t, k) 2 2(4.4)

then kernel, (p,k), which is the inverse Fourier transform in the p direction of a kernel

function, y, defined in the t-k plane, is given by

rN/2- 1
YI j21rin/N

I(t,k)e k even
*(n, k) = -N/2 (4.5)N12 -1 (1)kd

S t-!,k ej2xtn/Nkod

t=-N12

This is now a discrete formulation which uses the complete sampling bandwidth and is 2Xc

periodic instead of 7c periodic and can be implemented in O(N2 log N).

4.3. A Simple Method to Design Alias-Free Kernels

One problem with the GDTFD is the calculation of an appropriately sampled kernel,

. Often, it is convenient to design kernels in the ambiguity plane where the kernel acts as

a two-dimensional multiplicative filter. Unfortunately, that filter must be altered such that

the values used are equivalent to the inverse Fourier transform of N on the hexagonal grid.

This will be called the shifted kernel function, 4(0,).

4.3.1. Method 1: The Continuous Kernel (CK) Method. Although Jeong and Will-

iams address the continuous kernel in the time-lag domain [291, no work has previously

been done with continuous kernel in the ambiguity plane. The most straightforward meth-

od of calculating the shifted V(O,,) is to select a continuous ambiguity domain kernel,

4(0,r), which meets some user defined criteria and to take its Fourier transform in the 0 di-

rection. This yields the continuous time-lag domain kernel, Ni. The shifted sampled ý(nk)

(note this is n-3w discrete) is then found via equation (4.3).

4.3.2. Method 2: Interpolation Method. The second method approaches the prob-

4.4

lem of finding the shifted (n,k) in a different manner. N.tLc from Chapter 2, the outer

product formulation is actually performing a convolution of a kernel defined in t-T with the

bilinear signal. Examine the convolution in more detail. Let a given even indexed row of

the rotated outer product of the signal be represented by X[k], an odd indexed row be rep-

resented by X[k+l/21. Further let an even indexed row of the kernel be given by Y[k] and

for an odd row let it be Y[k- 1/21. The result of the convolution of the even rows of the ker-

nel and bilinear signal is

X[k]*Y[k] = F[x[n]y[nI] =Z[k], (4.6)

and the convolutions of the odd rows of the kernel with the odd rows of the bilinear signal

is

X[k + F]*Y[k- -- F [el-in/NX [n] ejyn/Nl [n]] (4.7)

= FT[x[nly[nl] = Z[k].

Thus, the convolution of both the even and odd rows results in a function sampled only at

integer values (i.e. rectangular sampling). Note that it is necessary in finite circular convo-

lution for the shifts of X and Y to be in opposite direction.

The above result is the justification for attempting to find the shifted kernel ý(n,k).

Suppose the kernel were not shifted. Equation (4.6) would be unchanged, but (4.7) would

become

X[k+I]*Y[k] = Fle- x[nly[n]] (4.8)

= -[e-xnn/Nz[n]] = Z[k+ .

From this it is seen that the result of not calculating the shifted ý(n,k) is the convolution of

the rotated outer product of the signal and kernel will still be on the hexagonally decimat-

ed rectangular grid.

4.5

This structure can be exploited by interpolating to fill in the missing elements, take

the Fourier transform along -T and create a TFD which is 21t periodic and has twice the res-

olution in time; hence, the time axis in the examples for the interpolation method is twice

the length of the frequency axis.

4.3.3. Method 3: Phase Shift Method. Another method which could be used to find

the shifted ý(n,k) is to sample ý(0,t) on a rectangular grid at intervals of 1/2 along 0 for t

odd, take its discrete Fourier transform and decimate the result. This is equivalent to hav-

ing sampled %(t,x = odd integer) at intervals of 1/2. If V is decimated by taking the odd in-

dexed samples (i.e. Wj(t=0.5, 'r = odd integer), WQ(t = 1.5, r = odd integer), ...) and take the

inverse DFT of the resulting sequence, then the result is the shifted ý(n,k).

This method is exactly equivalent to the well known transform relationship,

eJ2xin/Nx [n] n+-+ X [k - 1], (4.9)

where x[n] +-+ X[k] represent a N point DFT pair [39]. As a result, this is called the phase

shift method. In practice, the phase shift relationship is used rather than decimating the

oversampled DFT and inverting.

With 1--0.5, the shifted ý(n,k) can be easily be determined by starting with the un-

shifted 0(nk) and modifying that as follows:

•(n~k) = {•(n, k) keven (4.10)
e(nn/N { ? (n, k) k odd.

4.4. Comparison of Methods.

The Butterworth kernel [40] demonstrates the difficulty that can arise using the CK

method. The Butterworth kernel is given by

!
(0, (4.11)

4.6

where r and 01 are constants greater than zero and N and M are integers greater than zero.

Using contour integration, the Fourier transform of (4.11) is
)' 2M N-I (zz~JZlt4

(t, = lim _ oz 2N(0N(t) l 2M{ ZN e (4.12)
Z4 kk = '- 02 i +z 2

where

k MI(N)M/Neji(2k+l)/2N
(4.13)zk = 01(, (413

For a more detailed discussion of the calculation of the time-lag Butterworth kernel and a

slightly different resulting form see [40].

While (4.12) does have a closed form solution, it does not follow that all kernels de-

fined in the ambiguity plane have an inverse Fourier transform in the 0 direction. Another

problem occurs when NI(t,x) is sampled and the inverse discrete Fourier transform is taken.

Since neither (4.11) or (4.12) have finite support, sampling the waveforms with a finite

number of points over a finite window is going to introduce error, and for this case, the

DFT magnifies the error. For example, the DFT of O(n,k) where N is 128 bears only little

resemblance to Vj(pk). (See Figure 4.4.) The result is, in fact, two different kernels which

will asymptotically approach each other as the number and density of samples goes up.

The question which naturally arises is which one is best? About the only thing that can be

said is that it depends upon the particular signal, kernel and choice for N.

Unfortunately, the CK method requires the continuous form of the kernel in the

time-lag plane. Thus, for a kernel defined in the ambiguity plane, if a closed form solution

to the continuous Fourier transform does not exist, the CK method will not work. Further,

in applications where the kernel is changing on a regular basis but cannot be predeter-

mined, it may be impractical or impossible to use the CK method. As a result of the re-

4.7

Before After

0 001 0 00 0 0 0 00 0

-1.5 Y -0 A A Y.5 0.5 -0. 0. n

0 0 0 0 0 0 0 0 0' 0 0 0

Figure 4.2. Result of Convolution of Impulse and Kernel (a) Before and

(b) After Interpolation.

strictive requirement of needing the continuous form of the kernel in the time-lag plane,

the CK method is not as robust as the Interpolation or the phase shift methods.

In the case of the Interpolation method, with two dimensional interpolation, some

time and frequency resolution is lost. For example, suppose a weighted linear interpolation

is used and the signal is the unit sample sequence. Then, the result of convolving the bilin-

ear form of this signal with a kernel where W(n,0) = 1 for n = 0 and 0 otherwise is one at

the origin and zero elsewhere. (See Figure 4.2a.) After interpolation, the impulse gets

spread. Now, the impulse will show in the -0.5, 0 and 0.5 columns of the TFD. Further, the

terms in the zero column will decay with r of increasing magnitude rather than being a

constant as it should. (See Figure 4.2b.) This is the worst case example for the interpola-

tion method and demonstrates that the localization of a feature in the time-frequency plane

can decrease by as much 50 percent. Localization performance could be improved by us-

ing more sophisticated types of interpolation. However, this comes with increased compu-

tational complexity.

The phase shift method does not require the continuous form of the kernel in either

the ambiguity or time-lag plane; however, this method is only approximately equal to the

shifted 4(n,k) found by (4.5) and is dependent upon the size of N. As N increases, the dif-

ference between (4.5) and (4.10) decreases. In practice, the transform relationship given in

4.8

ft)

2

0

-It)

0.0 0.5 1.0 Time

Figure 4.3. Multicomponent Signal Consisting of Two Tones, Two Impulses
and a Chirp.

(4.9) is only approximate with an error that decays as IIN, but even for N as low as 128,

the effect on the TFD is minor. See Table 4.1 at the end of this section for a side-by-side

comparison of the three methods.

To demonstrate the differences between the methods discussed above, examine the

result of applying each method to the Butterworth kernel given by (4.5) in the GDTFD of

a multicomponent signal. The signal consists of two tones, one at 0.136R and the other at

0.7771t, two impulses at t = 0.25 and t = 0.625, and a rising chirp starting at 0. 18n with a

slope of 0.562n. It is depicted in Figure 4.3.

If, in (4.12), 01 = T, = 10.0 andM= N= 1, by the CK method, the kernel in the time-

lag plane becomes

(t,k) e-100k (4.14)
k

If this is sampled appropriately and the inverse DFT is taken as per (4.5), the kernel which

results is shown in Figure 4.4. Compare this result to the kernel generated by the shifted

kernel calculated via the phase shift method. Here, the kernel is calculated in the ambigu-

ity plane by sampling (4.5) and applying a phase shift as given by (4.7). (See Figure 4.4.)

4.9

!ButttrworM Ximel ND(t,T) BAutterworthi KArnel AV(OMt)

120 120

100 100

80 80

60 60

40 40

20 20

.. .'0 'iiome' so 16 • 0z' o _____________________

0 20 40 60 80 100 1 0 20 40 60 80 100 120
(a) (b)

Figure 4.4. (a) Comparison of Discrete Butterworth Kernel Sampled in Time-Lag
and (b) Kernel Sampled in Ambiguity Plane and Fourier transformed.

Although the continuous forms of the Butterworth kernel in the time-lag plane and

ambiguity plane are equivalent when calculating the continuous TFD, when they are sam-

pled and windowed that relationship no longer holds. Hence, the TFD's shown in Figure

4.5a and Figure 4.5c are actually two different TFD's which will approach each other as

the size of the window and the density of the sampling increase.

The Interpolation method produces a TFD shown in Figure 4.5b. In this case, a

weighted linear interpolation based on the four nearest neighbors in the time-lag domain is

used. Note the interpolation is performed after the kernel and signal have been convolved

but prior to taking the Fourier transform in the lag direction. As expected, the tones and

impulses are more difficult to detect visually and are somewhat less localized in the Inter-

polated GDTFD than they are in either the Continuous Kernel GDTFD or phase shifted

GDTFD.The difference between the GDTFD's created using the Continuous Kernel meth-

od and the Phase Shift method are the result of the kernels not being equivalent (i.e. they

will not produce they same distribution since they are not the same themselves).

4.10

Frequency
q1F c1 _ __ _ _ _ _ _ __ _ _ __ _ _

X -ow'7

2I

0051000.5 1.0
(a) .00(c)

2

0 0 .5 . . . 1.0 Tm

(b)
Figure 4.5. GDTFD Using the Butterworth Kernel via (a) the Continuous
Kernel Method, (b) Interpolation Method and (c) Phase Shift Method.

4.5. Further Examples.

To demonstraif the versatility of the methods presented, they were also applied to

the Binomial Reduced Interference Kernel developed by W. J. Williams and J. Jeong [56].

"t"

0 0.5 1.0 0 0.5 1.0

(a) (c)

row
0 0.5 1.0

(b)

Figure 4.6. GDTF-D Using the Binomial Kernel via (a) the Continuous
Kernel Method (b) the Interpolation Method and (c) the Phase Shift Method.

The Binomial kernel provides a good trade-off between cross-term suppression and auto-

term spreading. In the time-lag plane, the sampled form is

k)= I i 6 t8i i, (4.15)

(b)(

and the ambiguity plane sampled form is

4.12

Table 4. 1: Comparison of Alias-Free Methods

Comparison Methods

Criteria Continuous Kernel Interpolation Phase Shift

Requires Continu- Yes No No
ous Form of Ker-
nel in Time-Lag
Domain

Accuracy Generates the correct Suffers from low pass Encounters some
result for the linear con- filter effects which blur error (very minor) in
volution if aliasing is features in Time-Fre- calculating the equiv-
avoided quency plane alent of the phase

shifted linear convolu-
tion

Cost of Computing O(N2 log N) O(N2 log N) process O(N2 log N)
that requires additional
computation for inter-
polation
(e.g. linear Interpolation
requires an additional
O(N2) computations)

Truly Alias-Free? Yes, except for Discrete No. Aliasing is reduced Yes
Wigner Distribution. but dependent upon

interpolation method.

Ambiguity Kernel No Yes Yes
Yields Same Distri-
bution as Time-
Lag Kernel

(n,-k) = cosk(in n= N_ 1. (4.16)

Figure 4.6 shows the GDTFD generated using the Continuous Kernel, Interpolation and

Phase Shift methods.

As a final example, consider the case of the Wigner distribution. Suppose the three

methods were applied to the Wigner distribution. Is it possible to generate an alias-free

Wigner distribution? The answer is yes, but only for the Interpolation and Phase Shift

methods. The CK method produces a standard aliased Discrete Wigner Distribution

(DWD). This is the result of the hexagonal sampling yielding only zero terms for the odd

4.13

Frmquen" F-Pquenq

0 ... %If it • -llw I'l

0 0.5 1.0 0 0.5 1.0

(a) (c)
lrequenqr

0
0 0.5 1.0

(b)

Figure 4.7. GDTFD Wigner of a Simple Chirp via (a) the Continuous Kernel (not
Alias-Free) Method (b) the Interpolation Method and (c) the Phase Shift Method.

rows of the kernel; hence, the result of the convolution has non-zero values only at every

other row. (The same as if each column is up-sampled.) Thus, the result is expected for an

up-sampled signal when the Fourier transform of the columns is taken-aliasing. (See

Figure 4.7.) In [29], Jeong and Williams propose a solution to this problem by defining the

alias-free DWD (AF-DWD) with the kernel

4.14

k even
•(~)= { (t+•)+•(t-•)kodd. (4.17)

However, this is only an approximation to a alias-free Wigner. It imposes a two point mov-

ing average filter, but that is not a Wigner. In fact, the AF-DWD using this kernel does con-

tain aliasing which can be seen as a small ridge running from the upper left corner toward

the lower right. Cross-terms are evident along the top and bottom of the figure. The cross-

terms in the upper right and lower left corners are the result of the interaction of the posi-

tive (0 to x) frequencies and the negative (-n to 0) frequencies. The cross-terms in the up-

per left and lower right corners are the result of the interactions of the positive and nega-

tive frequency aliasing terms. The curved ridges seen in the center are cross-terms which

result from the rectangular window which was applied to the chirp prior to calculating the

distribution. (See Figure 4.8a.)

Consider the Phase Shift method. Define the AF-DWD by (4. 10) where ý(nk) = 1,

then the corresponding kernel in the time-lag domain is defined by

(t) k even
•.p'(t,k) = N21(.81 e-n (2t -) N k odd. (4.18)

n = -N12

Figure 4.9 shows the impulse response of the odd rows for the case N = 128. As can be

seen, its central peak is similar to the kernel in (4.17); however, other than that, all similar-

ity is lost. Significantly, the AF-DWD calculated this way exhibits no aliasing. (See Figure

4.8b.)

The phase shift method produces a truly AF-DWD. It is a consistent method between

odd and even rows. Furthermore, it generates the desired delta function for the even rows.

4.15

Cross-term largely

due to ali ng

IN'-

Cross-terms largely
'~7due to aliasing

0

0 (a) o I'im

x

0 (b) .im

Figure 4.8. The Alias-Free Discrete Wigner Distribution of a Simple Chirp Using
the Kernel Given by Jeong and Williams (a) and by the Ph '>ýift Method (b).

4.16

As a result, it is claimed that this is a more accurate description of the kernel for the alias-

free DWD and should be used rather than (4.17).

In the interpolation method, aliasing has not been completely avoided, but is present

as a side-effect of the interpolation algorithm used; however, the peak magnitude of the

aliasing terms are between 10 and 20 dB down relative to the primary signal.

The phase shift method produces an AF-DWD, but it does have cross terms present.

The cross terms are seen in the lower left and upper right comers of Figure 4.8b and are a

result of the interaction of the positive and negative frequencies (only the positive frequen-

cy is shown). These are expected when dealing with a real signal. The curved ridges in the

center are also expected and are the result of the rectangular window which was applied to

the chirp prior to calculating the AF-DWD.

4.6. Conclusion

In this chapter, a method was presented to reduce the computations necessary to cal-

culate the GDTFD from O(N3) to O(N2 log N) by using circular rather than linear convolu-

tion via FFT. Three methods were presented for this algorithm to move kernels between

the ambiguity and time-lag domains.

The Continuous Kernel method is the most accurate of the three methods in deter-

mining the outcome of the interpolatic ever, it has the major drawback of requiring

the continuous form of the kernel in the time-lag plane. Also, since the sampled W(tj) is

not necessarily the DFT of the sampled ý(et), kernels may inadvertently be changed. In

addition, it is often impractical or impossible to obtain the continuous form of the kernel.

The CK method, therefore, has more restricted application than the other methods.

The Interpolation method has problems in regard to loss of localization in time as

well as imposing extra low pass filtering along the frequency axis. Also, it requires an ad-

ditional O(N2) computations as a minimum to implement. Selection of the interpolation

algorithm used has a significant impact on the performance of the Interpolation method. In

4.17

I(t,k odd)

0.6

0.4

0.2

20 4 100 120 'O

-0.2

Figure 4.9. The Value of the Odd Rows of the Time-Lag Kernel
of Alias-Free DWD (i.e. the Impulse Response of the Filter
Implemented by the Odd Rows of the Time-Lag Kernel.

this chapter, the results are based on a linear interpolation of the four nearest neighbors.

While this is a fast interpolation method, it does introduce some aliasing into the final

TFD.

On the positive side, the Interpolation method does give a TFD which is largely

alias-free up to the Nyquist frequency (meaning the aliasing effects are attenuated), and it

has twice the resolution in time as the other two methods. It also has the strength of not

needing the continuous form of the kernel in either the ambiguity or time-lag planes.

The most robust of the three methods is the Phase Shift method. It yields a reason-

ably accurate estimate of the shifted ý(nk), providing a TFD very similar to that produced

by the CK method. Because it does not suffer the problems associated with the Interpola-

tion method and does not require the continuous form of the kernel in the ambiguity or

time-lag planes, this is the most versatile of the three methods for calculating the alias-free

form of a kernel designed in the ambiguity plane. It even allows the calculation of an alias-

free Wigner distribution.

4.18

With the tools developed in this chapter it is now possible to easily use a kernel de-

veloped in the ambiguity plane or in the time-lag plane and still have an alias-free kernel.

In the following chapters, fixed kernels defined in the time-lag plane are used exclusively

to develop first decimated Time-Frequency Distribution in Chapter 5 and finally multirate

Time-Frequency Distributions in Chapter 6, but these developments are predicated on the

fact that it is now possible to easily obtain the alias-free form of a kernel in the time-lag

domain no matter where the kernel was designed.

4.19

5. The Zak Transform and Decimated Time-Frequency Distributions

5.. 1. Introduction

A new Decimated Generalized Discrete Time-Frequency Distribution is developed

using the kernel design techniques of Chapter 4 combined with the Zak transform and

Weighted Spectrograms. These resulting decimated distributions will be used as building

blocks to create MRTFD in Chapter 6.

In this chapter, it is shown that the discrete Zak transform is, with slight modifica-

tion, a generalization of the STFT. The modification made to the Zak transform creates a

new transform called the Windowed Zak Transform (WZT). The squared magnitude of the

WZT is a generalization of the spectrogram which is called the Zak-Spectrogram (ZS).

The connection between the Zak transform and the STFT makes it possible to create fast

spectrograms which trade bandwidth for speed while maintaining the same frequency res-

olution. The link between the spectrogram and ZS hints at a more interesting, new, re-

sult-D-GDTFD. A D-GDTFD generates a distribution which has the same trade-offs

seen between the ZS and the spectrogram (i.e. bandwidth for speed). Implementation of

the D-GDTFD is done via a modification of the weighted spectrograms method.

The idea of D-GDTFD and its companion multirate implementation builds upon sev-

eral different disciplines. It ties together a numerical method for calculating Gabor trans-

forms (the Zak transform), Time-Frequency Distributions, Weighted Spectrograms and

Multirate. Figure 5.1 shows a block diagram of the interrelationships between these fields

and how they are combined to achieve a multirate D-GDTFD.

This chapter is divided into five sections. First, background material on the Win-

dowed Zak transform, spectrogram, weighted spectrograms and Time-Frequency Distribu-

tions is given. Next, the Windowed Zak Transform is used to develop a new ger:eralization

5.1

Old Multirate Implementation Methodology New Multirate Implementation Methodology
Degenerate Case: Decimation Factor = I Generalized Case: Decimation Factor I 1

Zak Transform

Short Time Fourier Zak [491, Auslander et al. [61.
Transform Jansen 1271

Runge 136Windowed Zak Transform

Section 5.2.1

Spectrogramr Zak-SpectrogramF
Koenig, et al. 130 Section 5.3

Weighted Specrga [Weighted Zak-Spectr~ogra~m

Cuningham and dltiams 117,181, S
Amin [2,31, White 461 Section 5.4

Time-Frequency Decimated Time-Frequency
Distributions Distributions

Wigner [471, Cohen [15,16) n4

Multirate Implementation

Section 5.5

Figure 5.1. Interrelation of Logical Elements Discussed in This Chapter.

of the spectrogram, called the ZS. Then, arbitrary time-frequency distributions are charac-

terized and extended using ZS's. After this, a possible multirate implementation of the D-

GDTFD is presented. In the final section, an example is given to demonstrate the relation-

ship between GDTFD, weighted spectrograms and the D-GDTFD.

5.2. Background

5.2.1. Windowed Zak Transform. The Zak transform was originally developed in

the field of solid state physics [571. Since that time it has been used to solve various prob-

lems in mathematics and physics. In the area of signal processing, the Zak transform has

5.2

been used of determining coefficients in Gabor transforms [61, but the physical meaning of

the resulting coefficients have been called into question [41].

The Zak transform has been largely overlooked by the Time-Frequency Distribution

(TFD) community, except for passing remarks that it is possible to produce a Wigner dis-

tribution (WD) using the Zak [281; however, the problems associated with creating the dis-

crete WD (DWD)-such as finite window effects, non-rectangular sampling of bilinear

signal and aliasing (see, for example, Chapter 4)-were not addressed.

In this section, the definition of the Zak transform given in Chapter 2 is expanded.

The existing definition assumes a rectangularly shaped window. A natural extension to this

definition of the Zak transform allows for arbitrary windows and is called the Windowed

Zak transform. Using the multirate implementation of the STFT given by Vaidyanathan

[50], a multirate form of the Windowed Zak transform is presented.

5.2.1.1. LOefinition. The basic Zak transforms relies on the STFT using a

rectangular window. Now, let the definition of the Zak transform to be broadened to in-

clude a non-rectangular window.

The definition of the STFT of some signal,f, is [391

Tf(t,0)) = f(,) h (-t) e -JtdT f (f + t)h(,)e-jo dr (5.1)

Letting t =np, (o =WMN andc = lp, 1, n E Z, the discrete STFT is

N-I

Tf(n,k) = f ([n + l] p) h (lp) eJ2flk/N (5.2)
I=0

Without much effort, (5.2) can be rewritten as

L-I

WZf (n, k) = X f ([Im + n] p) h (Imp) e-j2ntlk/L (5.3)
/=0

where N = Lm. As can be seen, (5.3) is a generalization of the Zak transform which now

5.3

,np) a . N (z)

WN
N

Short-71me Fourier Transform Filter Bank

Figure 5.2. Block Diagram of Multirate Implementation of STFT.

includes an arbitrary window; thus, for h() = rect(t), Z/n,k) = WZ/(n,k).This formulation is

called the Windowed Zak Transform (WZT).

5.2.1.2. Multirate Interpretation. It is possible to consider the WZT in a

multirate sense. This has an advantage of providing a direct means of implementation

which reduces the required component speed for a given throughput. It provides an alter-

nate interpretation both conceptually and mathematically for analysis of the Zak transform

and WZT as nothing more than the result of decimation and filtering operations, and as

will be seen ins section 5.4, it can be expanded to handle any discrete Time-Frequency

Distribution.

Since both the Zak transform and WZT are based upon the discrete STFT, a multi-

rate implementation of the STFT is examined first. In [50], Vaidyanathan presents a block

diagram of the multirate implementation of the STFT (See Figure 5.2.). The multirate

STFT takes the input signal,f, passes it through a delay chain such that at time n = N,

ftNp) is at a,([N - lIp) is at b andftp) is at c. The delay chain is followed by a bank of N

fold decimators which pass only every /th sample to the filters Ek(z). The filters imple-

ment the window function in the STFT. For example, the filter EN - k - I(z) is just a multi-

plier whose value is h(kp). The block WN* is the discrete Fourier transform coefficient

matrix of dimension N x N; thus, at every Mh clock cycle the system will output an N point

5.4

A np).z(o
M L Eo~z)Zf (0 0)

z
L

z- ZZf(0, L- 1)

Short-Time Fourier Transform Filter Bank

M- L• Eo- --- --P_ Zf (m - 1, O)

: zf Z(m-iL-1

Short-Time Fourier Transform Filter Bank

Figure 5.3. Multi ,,,e Block Diagram of Windowed Zak Transform.

Fourier transform.

With the system shown in Figure 5.2 as a building block, it is simple to extend the

multirate implementation to include the WZ transform. Figure 5.3 shows the block dia-

gram for this implementation. Now, instead of a single STFT filter bank, there is a set of

filter banks precc'ed by an additional delay chain/decimator combination. The filters Ek(z)

are equivalent between parallel STFT filter banks as are the coefficients in the matrix

WL*. Thus, a highly parallel multirate implementation of the Windowed Zak transform

can be formed. At every Nth clock cycle this system will output an m x L WZ transform

(i.e. m WZ transforms which are L long).

5.2.2. Spectrogram. In this section, the spectrogram is discussed. The spectrogram

can be calculated in numerous ways. Two are discussed here. The first method for calculat-

ing the spectrogram is via Cohen's class of TFD [15]. It can be regarded as an outer prod-

uct formulation and is discussed in 5.2.2.1. The second method takes magnitude square of

the values of the STFT. This can be thought of as an inner product formulation, and it is

discussed in 5.2.2.2. In section 5.2.2.3, a means of calculating GDTFD s based upon a

5.5

Li

sum of weighted spectrograms is given. This is called the method of Weighted Spectro-

grams.

5.2.2. 1. Outer Product Formulation. The spectrogram has been shown to be

a time-frequency representation by Classen and Mecklenbraiuker in [151. In Appendix A, it

is shown that in order for (2.2) (the outer product formulation) and the squared magnitude

of the STFT to pioduce the same result, the time-lag kernel and the window in the STFT

must be based upon a window which is real symmetric and/or imaginary anti-symmetric.

In other words, the TFD can be written in the form seen in (2.2) where the kernel is de-

fined as

ly(u, "t)= h(u+2)h*(u-j) (5.4)

and h(t) is a real symmetric and/or imaginary anti-symmetric window function. This

means W is equivalent to a Hermitian operator and the resulting distribution will be real.

5.2.2.2. Inner Product Formulation. The inner product formulation as

shown in section 2.3.2 can be derived from the outer product by means of a double change

of variables. When the kernel is of the form seen in (5.4), (2.2) can be rewritten as

Tf(t, co) Tf*(t,O) = f (t +t)/h('c)e-JXodt (5.5)

which has the discrete form

N-1 2

Tf (n, k) Tf* (n, k) = f(l+ n) h(l) e-2 I/N . (5.6)

11=0

One advaritage of the inner product form over the outer product form is seen in the

discrete case. The outer product form requires the kernel to be sampled on hexagonally

decimated sampling grid to avoid aliasing [29]. This can cause some difficulties when de-

signing kernels as was shown in Chapter 4; however, the inner product form is naturally

alias-free. The sample points in *t (ti, t2) , where tj and t2 are integers, correspond to the

5.6

points in W when it has been sampled on the hexagonally decimated grid. Pictorially, this

can be seen in Figure 2.3.

5.2.2.3. Arbitrary Time-Frequency Distributions Using Weighted Spectro-

grams. A generalized discrete TFD can be generated by calculating the sum of weighted

spectrograms. The weighting factors are simply the eigenvalues of the kernel *, and the

window functions in the spectrogram is the eigenvector corresponding to the eigenvalue

1181. In other words, (2.7) can be rewritten as

N 2

Cf(tO;j) = Xkk f(t+t+)Xk*(t,)e dt+ (5.7)

where Xk is the kth non-zero eigenvalue and xk is the keh eigenvector of *. With this formu-

lation, any GDTFD can be written as the sum of weighted spectrograms.

5.3. Zak-Spectrogram

This section develops the ZS. First the ZS is defined in 5.3.1, and its connection to

Time-Frequency Distributions is given in 5.3.2. Lastly, a multirate implementation is giv-

en for calculating the ZS in 5.3.3.

5.3.1. Definition and Properties. In [281, Jansen describes an ambiguity function

based upon the continuous Zak transform. This work was expanded by Auslander, et al., in

[6] to include the finite discrete Zak transform. Auslander, et al., dealt with the problem of

calculating Gabor transforms and as such they consider only the cross-Zak transform. A

study of the Zak transform and its relationship to TFD's has not previously been per-

formed. It should be noted that Auslander's result [61 for the cross-ambiguity function and

the work done by Jansen [28] lead to the supposition that WZf (n, k) WZf (n, k) would

result in a TFD.

If, in (5.3), m = 1, then WZf (n, k) WZf (n, k) is nothing more than the discrete

spectrogram. For m > 1, (5.3) becomes

5.7

WZf (n, k) WZf (n, k) =e• f[(lm + n) p] h [/mpi e- 2flk/L (5.8)

1=0I

which can be interpreted as a decimated spectrogram which will be called the ZS.

At each time, n, the ZS is related to the spectrogram by the relation of the STFT of a

decimated and non-decimated signal. Since the STFIT is being used, it is known that each

filter output has a passband governed by the relation, l/(sampling period x number of sam-

ples). In the case of the spectrogram, the sampling period is p and the number of samples

is N. In the ZS, the sampling period is pm and the number of samples is L; thus, for both

the spectrogram and the ZS, the passband of the individual filters is exactly the same, 1/

(pLm) = lI(pN). The decimation factor, m, instead of changing the passband of the filters,

changes the bandwidth of the transform. The spectrogram has a bandwidth of 1/2p while

the ZS has a bandwidth of 1/2pm.

This is the fundamental relationship between the ZS and the spectrogram. Band-

width is being traded for speed without reducing resolution.

5.3.2. Time-Frequency Interpretation. From Appendix A, it is known that for h

symmetric or anti-symmetric, there is a corresponding outer product form of (5.8) which

is given by

WZf (n, k) WZ; (n, k) =L1X[u+~ j~*[5p
1=0 "

x (u-+L•]] [(u-nlm'p e -j2nlk/L
x h uI1 - n + V h u - n - -•--)p1j e (5.9)

KA 2,.~L 2~ (5.9)

This is nothing more than a GDTFD with a kernel defined as

,h(n,l) = h[(n+L-)p]h*[(n-lm)p], (5.10)

and a signal decimated by m at each time interval.

There is, therefore, justification for calling the ZS a TFD. Specifically, the ZS is a

5.8

I I - I II I I I JI III I I I

M2
fl n p) z - _ [w : o 21

- Ev (z) ,z z 0)

zz

zz• L Ez (Oz))]

iz~~W (0 L- 1w:m-)l

Short-Time Fourier Transform Filter Bank f

Figure 5.4. Multirate Block Diagram of Zak-Spectrogram

member of a new general class of TFD's which is called the Decimated Time-Frequency

Distributions.

5.3.3. Multirate Interpretation. The ZS can be implemented using the multirate

techniques discussed earlier. By a simple extension of Figure 5.3, the multirate implemen-

tation of the ZS can be obtained. The modification adds a time varying filter at the output

of the WZT. The filter is a one point filter whose coefficient is dependent upon the input

such that the real input equals the real coefficient and the imaginary input equals the nega-

tive of the imaginary coefficient. The output at each time, n, is then the ZS. See Figure 5.4.

Using this multirate implementation reduces the required speed of the components

of the system by a factor of m less than a multirate spectrogram. Further it reduces the

storage requirement for the coefficients from N filter coefficient to L and the number of

complex exponential coefficients in the discrete Fourier transform from N x N to L x L.

Overall, the ZS requires m2 + m less storage than the spectrogram.

5.9

5.4. Generalization of ZS to Arbitrary GDTFD

This section builds upon the idea of the ZS and the weighted spectrogram to produce

a Decimated Time-Frequency Distribution. Two ways the ZS can be extended to cover all

of Cohen's class using the weighted spectrogram method are by Eigenvalue Decomposi-

tion [2][3][18] (covered in 5.4. 1) and by Singular Value Decomposition (SVD) (covered in

5.4.2). Both methods can be used to extend the ZS concept to the GDTFD. This extension

will be called the Decimated GDTFD (D-GDTFD). The next subsection discusses the sim-

ilarities and differences between the Eigenvalue and Singular Value Decomposition meth-

ods (section 5.4.3).

5.4.1. Extension of Zak-Spectrogram via Eigenvalue Decomposition. The eigen-

values and eigenvectors of the discrete operator, *, can be used to calculate the GDTFD

by means of the discrete form of (5.7),

r N-i j20_k12

Cf= (n, Xof[(+ *n)Pxi*(1p)elN(5.11)
i I 1=0

where N is the dimension of the operator (i.e. * is N x N), r <_ N, r is the number of non-

zero eigenvalues, ki is the ith eigenvalue and xi is the corresponding eigenvector. Letting N

= Lm and applying (5.2) to (5.11), the formula for the Decimated GDTFD results,

r L-I 2ink 2

= ~~X, Xf [lm + n) p]xj* (Imp)e L(12

i =I 1=0

This yields a TFD which is decimated by a factor of m and has a digital bandwidth of ±n/

m vice ±n of the normal alias-free GDTFD.

5.4.2. Extension of Zak-Spectrogram via Singular Value Decomposition. One

problem with the Eigenvalue Decomposition method is, in general, eigenvalues and eigen-

vectors do not provide very much information about the operator. On the other hand, Sin-

gular Value Decomposition (SVD) does. The SVD method is based upon that proposed by

White [54] and Amin [3] for use in creating approximate kernels. This section extends the

5.10

application of the SVD to D-GDTFD. It should also be noted that there has recently been

interest in designing and using asymmetric kernels [51 for which the SVD is ideally suited.

A well known property of the SVD is its decomposition of any L x m rectangular op-

erator into an L x L orthogonal matrix, U, an L x m diagonal matrix, 1, and an m x m or-

thogonal matrix, V. The product of these matrices equals the original matrix, i.e. A = UMVt

(t indicates complex conjugate transpose). This may also be written as

r

A = you uv (5.13)
j=i

where r is the rank of A, oj is thejth singular value corresponding to [Eyl, uj E 9•L is theth

column vector of U and v i E9'A is the jth column vector of V (For more information, see,

for example, [24].)

Starting with a general form of the inner product operator, (iff, f) , take the SVD

and recast the equation as follows

r

(*f'f f) = (I Iv~f
<q~ff> < _, jujvjf, D>

j=!

r
Y- G j(f, uj)* (f, Vi)

j = I (5.14)

Now, add the time shift and frequency shift operators defined in (2.8).

r
-j2xk(n + 1) -jnk (+1)

r_,(if (n + l) e- ,ui)* (f (n + l) e-2 k ,vi)i=!

=i=Y I f-_- f(1) vi' (l- n)e [0f (1) ui*(1l- n) e

= Cf(n,fk;W) (5.15)

Equation (5.15) provides a new general formulation for the GDTFD which depends upon

5.11

the product of the STFT using two potentially different window functions. In the degener-

ate case of ui = vi or more generally, for the Hermitian kernels discussed in Section 5.4.3,

the weighted spectrogram results.

The advantages of tne SVD TFD are: (1) it is easy to obtain the condition number,

(2) it is easy to create an approximate operator for which the condition number is automat-

ically known and (3) the SVD based TFD opens up a whole new arena of approximate op-

erators which in turn provides insight into the characteristics of the original operators.

Extending the ZS via the SVD TFD is just as easy as it was via the Eigenvalue De-

composition. By performing the same substitution, the D-GDTFD via the SVD TFD is

r r[L _ I -2 Lk
Cf(nk;W) = i f(1m)vi* (lm-n)e

i Ij1=0

X��i.fm)u* (Im-n)e L

1= (5.16)

5.4.3. Relationship of Eigenvalue and Singular Value Decomposition. If the class

of kernels is restricted to those which are Hermitian about the lag axis in the time-lag do-

main, i.e. V(,T) = •*(-t,¶), Singular Value Decomposition becomes Eigenvalue Decompo-

sition. A brief explanation of this important relationship follows.

A kernel which is real symmetric and/or imaginary anti-symmetric about the lag axis

has an inner product representation which is Hermitian such that A = At. For a Hermitian

matrix, A, it is known that there exists a unitary operator, Q, (i.e. a complex matrix which

has orthonormal column vectors) and a real diagonal operator, A, such that A = QAQt

[48]. The diagonal elements of A are the eigenvalues (always real) of A and the columns of

Q are the corresponding eigenvectors.

A being Hermitian implies AAt = AfA = A 2 . Since A can be rewritten by a similarity

transform, A2 = QA2Qt. The values A2 are then the eigenvalues of AA 1 and AtA. The

5.12

eigenvalues of AAt and AtA are the square of the singular values, oi, of A [24]. From this,

it can be seen that for Hermitian operators, oi = Jil is always the result [48]. This im-

plies in this case that all of the information obtainable from the SVD can be interpreted di-

rectly from the Eigenvalue Decomposition.

The relationship between the singular values and eigenvalues implies a tie between

the columns of the orthonormal operators U and V in the SVD (where A = U1Vt) and the

eigenvectors in Q. Let V = Q, and define a new diagonal operator, S, such that si = sign(,i).

Then, A = VSZOVt. Since VS is also orthonormal and spans the same space as V (which is

the same as U since AAt = AtA), it is possible to define U = VS; thus, the Singular Value

Decomposition, A = UXV where oi = I ,il , V= Q and U = QS, can be derived from the

Eigenvalue Decomposition. Therefore, for kernels real symmetric and/or imaginary anti-

symmetric about the lag axis (i.e. Q(t,t) = v*(-t)) (5.15) can be simplified to

r N-1 j2nlk 2

Cf (n, k;V) = 0s~ n) f(l) vi*(1~~ (5.17)
i I 1=0

C(n,k;1v) in (5.17) will always be real-valued; however, this is not necessarily true for

C/n,k;W) in (5.15). It is therefore a sufficient condition for real-valuedness of Cjn,k;x) if

the operator is Hermitian. Further, if si is restricted to positive values only, the resulting

distribution will always be positive [181.

Thus, for the case of a ,eal distribution where the kernel must be Hermitian, the Sin-

gular Value Decomposition and the Eigenvalue Decomposition provide the same informa-

tion.

5.5. Implementation Considerations

In this section, some of the details involved in implementing a decimated TFD are

discussed. In subsection 5.5.1. , a decimated kernel is developed which could be used to

implement the decimated TED in the same fashion as any other distribution. In subsection

5.13

t2 t2

Sti . tI

Figure 5.5a. The Original Binomial Figure 5.5b. The Decimated Binomial

Kernel Kernel

5.5.2. , a multirate implementation is proposed which takes advantage of the decimated

structure of the ZS using a weighted ZS approach.

5.5.1. Decimated and Non-Decimated Kernels. Consider Equation (5.16). A new

kernel can be created using (5.16) via (5.13). The new kernel can be thought of as a deci-

mated and upsampled version of the original kernel. This follows from the decimation per-

formed in (5.16).

There are two ways to look at the kernel created by (5.16). First, a decimated kernel

operating on a decimated signal. For example, suppose the level of decimation is four (i.e.

m = 4). Then, every fourth value in the t1 and t2 directions in the kernel is taken and

formed into a new kernel. If the original kernel was N x N, the new kernel is N14 x N/4.

This kernel is then applied to the decimated signal which also must be decimated by four

and has length NA4.

The second way to look at the new kernel is to consider (5.16) as having the window

functions v and u which have been decimated and then upsampled. The dimension of the

new kernel is the same as the original and the signal need not be decimated. It does cause

5.14

2

U

0.)

1 10 20
Singular Value

-Singular Values of Singular Values of
Binomial Kernel Decimated Binomial Kernel

Figure 5.6. The First 25 Singular Values for the Normal Binomial Kernel and the
Decimated Binomial Kernel.

the result of (5.16) to be periodic with period 2n/m rather than 2nr, but in practice, the m -

1 periodic images need not be calculated.

By this second method, a new kernel is created which can operate on the same signal

as the original kernel, or put another way it operates in the same dimension 12 space as the

original; therefore, this kernel is considered the Decimated GDTFD kernel. In Figure 5.5a,

an example of an original kernel is shown. In this case, it is the Binomial kernel [56]. In

Figure 5.5b, the new kernel is shown. As can be seen, it is considerably more sparse than

the original containing 1/16th as many non-zero terms, and it is the Decimated GDTFD

kernel.

While the original kernel and the new kernel are obviously related, they are decided-

ly non-similar (in a mathematical sense), and hence, have different Eigenvalue and Singu-

lar Value Decompositions. This point is driven home by an analysis of the singular values

of the examples in Figure 6. If the two kernels were similar, the singular values would be

the same; however, as Figure 5.6 shows, they are not. The significance of this is that a

5.15

method to create a new set of kernels from ones previously defined has been formed. The

new kernels are truly different, as evidenced by their different singular values, from their

"parent," but they behave the same over the bandwidth ±i-/m.

5.5.2. Possible Implementation Strategy. One possible way of implementing the D-

GDTFD is by means of multirate techniques. By using multirate methods, it is possible to

define a strategy which makes use of parallel design to reduce the clock rate of the individ-

ual computational elements; thus, for a given clock rate the throughput of the system is

significantly higher than standard sequential design techniques. The implementation pre-

sented here is based upon (5.16) and the previous multirate examples.

A multirate implementation of the D-GDTFD consists of parallel ZS's with some

modification. Each Windowed Zak uses a different set of windows corresponding to the

right and left singular vectors. The WZ based on the left singular vector is conjugated and

multiplied by the WZ using the right singular vectors and the singular value. The result of

each branch is summed to create the final result. For Hermitian operators, the filters

S. (z) = L(z) are the values Vii or uji of the right or left singular vectors, respective-

ly, and ai is the singular value multiplied by si from (5.17). In other words, for Hermitian

operators, the window functions in the STFT are identical and the weights correspond to

the eigenvalues. Figure 5.7 presents a block diagram of one possible multirate implemen-

tation.

5.6. Example

It is instructive to examine the performance of the D-GDTFD using weighted ZS's

and to compare it to the GDTFD created using weighted spectrograms. The weighted

spectrogram approach serves as our basis for comparison and represents the current state-

of-the-art. It must be emphasized that the spectrogram is a degenerate case of the ZS (i.e.

the spectrogram is the ZS with a decimation factor of one). For clarity the ZS with a deci-

mation factor of one is referred to as the spectrogram and as the ZS for decimation factors

5.16

ith Weighted Zak-Spectrogram

------ - -For S T FeT iitian O perators:

-I L .L (

2I" Weghe : ~ (~;I~.~fOLIN)

STFfT Using Rinh Snular VectorWno

2" ghted 0 [C1 (m-,0;W).C 1(m, L-I;1)]

rst Weighted
Zak-Spectrogram

F ig r t We ighted mf Dit Gnrlz Disrt

Time-Freuecyitribution
weig d spectrogram n

.1 5.17

rt Weighted

I s'W i h e~ihted [Cf (in- 1, 0;v),. .. Cf (m - 1, L - 1;4f)1

Zak-Spectrogra

Figure 5.7. Multirate Implementation of Decimated Generalized Discrete
Time-Frequency Distribution.

other than one. In this example, a comparison is made between the TFD generated by the

weighted spectrogramn and TFD created by the weighted ZS with a decimation factor of

four.

Four types of distributions will be seen here: the Binomial GDTFD, the approximate

5.17

Binomial GDTFD, the decimated Binomial GDTFD and the approximate decimated Bino-

mial GDTFD. The Binomial GDTFD is nothing more than the classical form of the alias-

free discrete TFD using a Binomial kernel developed by Williams and Jeong [56]. The ap-

proximate Binomial GDTFD is created by first decomposing the Binomial kernel via

SVD. Then, the approximate TFD is calculated by means of (5.17) wi •re r is selected to

be less than the dimension of the kernel. For example, for r = 1, only the spectrogram

which is generated by using the singular vector, v1, as the window function would be used

to calculate the approximate distribution. This singular vector is associated with the largest

singular value. For r = 2, the previous spectrogram multiplied (or weighted) by the largest

singular value and the spectrogram created using singular vector v2 weighted by the sec-

ond largest singular value are summed to create an improved approximation to the Bino-

mial GDTFD. For successively better approximations, r is increased until 0 r+1 is zero or r

is equal to the dimension of the kernel. At this point, the distribution obtained by the

weighted spectrogram method is no longer an approximation but the true distribution.

The decimated Binomial GDTFD is calculated by using

r L-1 J2LIk2

Cf(n,ki!jI) = = is__ =f(lm) vi* (lm-n)e (5.18)

i I 1=0

where m = 4 and L = 32. For the true distribution, r is the dimension of the kernel and N =

Lm = 128. Equation (5.18) is equivalent to calculating the distribution usiig the kernel in

Figure 5.5b where only the frequencies between ±x+/4 are calculated. The frequencies

above and below are not needed since they are periodic images of those between ±7+/4. The

approximate decimated Binomial GDTFD is calculated in exactly the same fashion as the

approximate Binomial GDTFD except (5.18) is used instead of (5.17).

Now, suppose there is a bandlimited signal consisting of a rising chirp and a constant

tone where the chirp has twice the amplitude of the tone. Taking the GDTFD of the signal

using the Binomial kernel, the resulting TFD is shown in Figure 5.8. This is, in effect, the

5.18

120

100

80

60

40

20

0.
0 20 40 60 80 100 120 tio n

Figure 5.8. Binomial TFD of Bandlimited Signal

"approved solution" and is the basis of comparison for this example. The signal is band-

limited as can be seen. What cannot be seen is small cross-terms which reside in the region

above Pd4. These terms tend to be less than 10-2.

Next, calculate the approximate Binomial and decimated Binomial GDTFD's. To

start, let r = 1. Then, the approximate Binomial and decimated Binomial distributions

would be the spectrogram and ZS based upon the singular vector v, as the window func-

tion. The distributions are calculated via (5.17) and (5.18), respectively. The window func-

tion is shown in Figure 5.9a. The resulting approximate Binomial distribution is seen in

Figure 5.9b and the approximate decimated Binomial distribution is seen in Figure 5.9c.

To create a better approximation, additional weighted spectrograms and weighted

ZS's are added. In this example, the spectrograms and ZS's using the singular vectors v2

and v3 as the window functions are weighted by their respective singular values (the sec-

ond and third largest) and added to the previous result (which is weighted by the largest

5.19

0.4

0.3

0.2

0.1

Figure 5.9a. Window Function Corresponding to the
Largest Singular Value (i.e. Singular Vector v1).

1240

40

20

0 20 40 60 80 100 120 tbiý,n
Figure 5.9b. Approximate Binomial GDTFD Using One Weighted
Spectrogram with the Singular Vector v, Shown in Figure 5.9a as
the Window Function.

25 •

20
15 ...
10 "

5
0 "

0 20 40 60 80 100 120 tinte n

Figure 5.9c. Approximate Decimated Binomial GDTFD Using One Weighted
Zak-Spectrogram with the Singular Sector v, Shown in Figure 5.9a as the
Window Function.

5.20

0.3

0.1

0.2
0.05

20 40 60 80 100 120

-0.05
"20 40� 0 80 100 120

-0.1
-0.1

Figure 5. 1Oa. Window Function Corre- Figure 5. 1Ob. Window Function Corre-
sponding to Second Largest Singular Value. sponding to Third Largest Singular Value.

1201 .

402 0......
0

0 20 40 60 80 100 120 me, n

Figure 5. lOc. Approximate Binomial GDTFD Using Three Weighted SpectrogramsBased upon the Window Functions Seen in Figures 5.9a, 5." *'a and 5.10Ob.
fitque"u k

25

10

0
0 20 40 60 80 100 120 timen

Figure 5.10d. Approximate Decimated Binomial GDTFD Using Three Weighted Zak-
Spectrograms Based upon the Window Functions Seen in Figures 5.9a, 5. 1Oa and 5. 1Ob.

singular value). Figures 5.11 a and 5.11 b show the singular vectors v2 and v3, respectively.

Figures 5.1 ic and 5.1 Id are the approximate Binomial and decimated Binomial distribu-

tions. These distributions are the result of r being set equal to three in (5.17) and (5.18).

As the value of r increases the closeness of the approximation will improve in a L2

sense and in a L.. sense as well since the 1.2 and L.. norms are related by IIxL• --- IIxIl 2 [241.

Before showing the final approximation in Figure 5.14, it must first be determined how

5.21

many weighted spectrograms and weighted ZS's are necessary for a "good" approxima-

tion. To determine this, the effect on the error in the approximation of additional weighted

spectrograms and weighted ZS's must be examined.

For this example, the instantaneous L2 error is calculated over all the computed fre-

quencies at a given time, n,

(2 1/2
Inst L2error = L2 (n) = [Cf(n,k;l) -Cff(nk;Ni) (5.19)

then the average L2 error over the frame is computed by

128

Avg L2 error = 1--8XL 2 (i) (5.20)
i=!I

where the frame is the interval 1 < n < 128, Cf (n, k;W) is a particular instant in time of

the Binomial GDTFD or the decimated Binomial GDTFD depending upon the compari-

son being made and Cf (n, k;W) is a particular instant in time of the rth approximate Bi-

nomial or decimated Binomial GDTFD.

The L,. error is the maximum pointwise error over the entire frame for all computed

frequencies, i.e.

L. error = max,, k(ICf (n, k;N) - Cr (n, k;I)I) (5.21)

Using (5.20) and (5.21), the error between the Binomial GDTFD and the approxi-

mate Binomial GDTFD is examined. This represents the baseline error performance for

the existing technique. Figure 5.11 shows the average L2 and L.. error for r = I,..., 40. It al-

so shows the maximum excursion of the L2 error over the frame. These are represented as

crosses. The top of the cross is the largest L2 error seen over the frame of 128 instants in

time. The bottom of the cross is the smallest L2 error seen over the frame, and the horizon-

tal bar in the cross is the average of the L2 error over the frame. The magnitude of these

values is read off the left vertical axis. The maximum L. error of all the columns in the

frame is plotted as a gray line. The scale for this plot is read off the left vertical axis. As

5.22

4 10

3 0.1

..0.01

-~~ --1E-05

0~~~~~~~~~~~ -~--- }==-- - -- ~-_-E-06

0 I E -0 7
1 10 20 30 40

Number of Windowed Spectrograms
Enrg Norm High Over Frame

Energy Average Over Frame Log of Average Energy Norm ErrorA Low Over Frame Maximum Pointwise (Infinity Norm) Error

Figure 5.11. The L2 and L. Error Between the Binomial GDTFD and the Approximate
Binomial GDTFD as a Function of the Number of Spectrograms Being Summed.

can be seen, both the L2 and L. error decrease rapidly as successive weighted spectro-

grams are added (i.e. as r in (5.17) is increased). The dashed line is the logarithm of the av-

erage of the L2 error of each column of the distribution. The scale of this plot is read off

the right vertical axis.

It is expected, based upon an analysis of the kernel in Figure 5.5b, that the error be-

tween the decimated Binomial GDTFD and the approximate decimated Binomial GDTFD

will perform similarly to that seen in Figure 5.11. Figure 5.12 shows the error of between

these distributions. As expected, the error decreases as successive weighted ZS's are added

(i.e. as r in (5.17) is increased).

The final error of interest is the error between the Binomial and decimated Binomial

GDTFD over the region of mutual support. To examine this, the error between the Binomi-

al GDTFD and the approximate decimated Binomial GDTFD was calculated. The result

5.23

2.5 10

2.-0.1

0.01 M

- 0.001%-.

f1~~~~. .". E04

-~~ "-1E-05
1-j

i +I-- -\ 1E-06

0 1 1E-07

Number of Windowed Zak-Spectrograms

Energy Norm_ Hgh Over Frame
Energyigh Over Frame - -Log of Average Energy Norm ErrorAverag Over Frame Maximum Pointwise (Infinity Norm) Error

Figure 5.12. The L2 and L.. Error Between the Decimated Binomial GDTFD and the
Approximate Decimated Binomial GDTFD as a Function of the Number of Weighted
Zak-Spectrograms.

of these calculations is shown in Figure 5.13. While the error between the two does de-

crease with additional weighted ZS initially, it can be seen that the error approaches a lim-

it. In the figure, only the first 40 weighted ZS's are shown, but there is no significant im-

provement as additional weighted ZS's are included; thus, the Binomial and decimated Bi-

nomial GDTFD, while producing results which are close, do not produce convergent

results.

This should not be surprising. As shown in section 5.5.1. , the kernels are related but

are not the same. Because the distributions have different bandwidths, the signal compo-

nents will interact differently. That is, the signal separation, especially between positive

and negative frequencies, will be different; hence, the cross-terms will be affected. This

will impact the error between the decimated and non-decimated distributions.

5.24

3 10

01 10 20 30 40

Number of Windowed Spectrograms
Energy NormS High Over Frame

Average Over Frame ... Log of Average Energy Norm Error
L o w O ve r F ra m eM ax im u m P o in tw ise (In fi n ity N o rm) E rro r

Figure 5.13. The L2 and L.. Error Between the Binomial GDTFD and the Approximate
Decimated Binomial GDTFD as a Function of the Number of Weighted Zak-
Spectrograms Being Summed.

The beauty of the SVD and Eigenvalue Decomposition methods is there is no need
to calculate all of the weighted spectrograms/ZS's. For some error threshold, a suitable ap-
proximation can be calculated. For the purposes of this chapter, an arbitrary error thresh-old of-104 was selected. Ibis corresponds to somewhere around 30 weighted spectro-
grams in Figure 5.11 and 20 weighted ZS's in Figure 5.12. Again somewhat arbitrarily, the
value of r = 31 is selected as the approximation cut-off. It will definitely result in the dis-

tributions having errors of less than 10-4 since the 32"d singular value is less than 10-4 .Figure 5.14a shows the final approximation to the Binomial GDTFD, and Figure 5.14b
shows the final approximation to the decimated Binomial GDTFD. The L.. error between
these two distributions is approximately 0.06.

5.25

40

20 AL

0
0 20 40 60 80 100 120 time, n

Figure 5. 14a. Final Approximation to the Binomial GDTFD
Using 31 Weighted Spectrograms.

30
25
20
15

10.

0 20 40 60 80 100 120 hmen

Figure 5.14b. Final Approximation to the Decimated Binomial
GDTFD Using 31 Weighted Spectrograms.

5,7. Conclusion

In this chapter, it has been shown that the Zak transform is, with the Windowed Zak

modification, a generalization of the Short-Time Fourier Transform (STFT). From this, it

was shown that the ZS is a generalization of the spectrogram. The connection between the

ZS and the spectrogram makes it possible to create fast spectrograms which trade band-

width for speed while maintaining the same frequency resolution. The ZS was then used

along with the idea of weighted spectrograms (via both Eigenvalue Decomposition and

SVD) to create Decimated Time-Frequency Distributions.

The power of this formulation lies in its connection with existing multirate tech-

niques and the concept of using small processing building blocks to implement an arbi-

5.26

trary TFD. Multirate techniques provide a means to implement the transforms using slow-

er speed devices operating in parallel to achieve the same throughput of standard computa-

tional techniques. For a decimation factor of m, there is a m fold increase in throughput (or

speed of calculation). The corresponding reduction in discrete bandwidth is from 2n for

the GDTFD to 2ir/m for the D-GDTFD. An important attribute of the D-GDTFD is that

it requires significantly less storage than the GDTFD. The D-GDTFD requires only I 1m2

of the storage of the GDTFD.

Finally, an example based upon the Binomial distribution was given to show how the

ZS and spectrogram could be used to produce D-GDTFD and GDTFD respectively. The

error between the approximate GDTFD and the GDTFD was examined as was the error

between the approximate D-GDTFD and D-GDTFD and the error between the approxi-

mate D-GDTFD and the GDTFD.

It has now been shown that a D-GDTFD does exist and can be created from any dis-

crete kernel. Chapter 6 will discuss the final step in creating the MRTFD: recombining D-

GDTFD's into a GDTFD.

5.27

S

6. Multirate Time-Frequency Distributions

6. 1, Introduction

New Multirate Time-Frequency Distributions (MRTFD) are developed using the

multirate computational paradigm (Chapter 3) combined with the techniques to create a

discrete kernel in the time-lag domain (Chapter 4) and the ability to decimate a Time-Fre-

quency Distribution (Chapter 5). The first method is based upon using the inner product

form of the GDTFD together with the Singular Value Decomposition of the kernel [Singu-

lar Value Decomposition Multirate Time-Frequency Distribution (SVD MRTFD) algo-

rithms]; while the second method is based upon the convolutional interpretation of the out-

er product form of the Generalized Discrete TFD [Circular Convolution Multirate Time-

Frequency Distribution (CC MRTFD)].

6.1.1. Baseline-Time-Frequency Algorithms. This section will present the algo-

rithms which will serve as a baseline for the rest o the paper. The first algorithm discussed

is the fast TFD algorithm of Cunningham and Williams [19]-the only fast TFD algorithm

to appear in the literature. The second algorithm is the straightforward parallel adaptation

of the method of Weighted Spectrograms [181.

6.1.1.1. Cunningham and Williams Fast TFD. The fast algorithm of Cun-

ningham and Williams is based upon an approximation of (2.10) in which only the r eigen-

vectors associated with the largest eigenvalues are used (r << N). It is given by [19]

r 2

f(t, ;0) = I Xff (tf+t,)Xk*(t,)e ti)t . (6.1)
f kl

The error is bound by the magnitude of the largest eigenvalue not used, i.e.

sup C (t, 0);V) - C, (t, .o;Av) < 1Xr + I I 112 (6.2)

6.1

At this point it is necessary to make an assumptions which will be used throughout

this paper. The type of FFT used has a direct impact on the number of computations neces-

sary to implement any GDTFD. To be sure that the comparison made herein are on a level

playing field, all the algorithms will be assumed to be designed using the same FF1 algo-

rithm as a building block. The split radix-2 FFT described by Sorensen, et al, in [461 re-

quires N log2 N - 3N + 4 multiplies and 3N log 2 N - 3N + 4 additions to implement. It rep-

resents the state-of-the-art and, as such, it will be the basic FF1 building block used. It will

also be assumed that all the algorithms will compute 2N frequencies at N instants of time.

This is done so inner produce methods based upon the Weighted Spectrogram approach,

which calculate individual instants of time, can be compared with outer product methods

which calculate all N instants of time at 2N frequencies. Using the split-radix 2 FFT of So-

rensen to calculate all the instants and frequencies, the computational cost of the Cunning-

ham and Williams Fast TFD is then rN(2Nlog2N + 8N + 4) multiplications and

rN(6Nlog2N + 14N + 4) - 4N2 additions. The value, r, is the number of eigenvalues (and

hence spectrograms) that the algorithm ases to approximate the GDTFD.

6.1.1.2. The Parallel Weighted Spectrogram Time-Frequency Distribution

(PWS TFD). For maximum throughput, the parallel version of this algorithm calculates

each weighted spectrogram in a separate processor. If the kernel is not full rank or an ap-

proximation is used, the value N is replaced by r where r < N. The algorithm is a two stage

process where the first stage calculates the individual spectrograms and the second stage

sums all the spectrograms together.

The cost to compute the first stage is then driven by the number of real multiplies

and additions needed to calculate the spectrogram. For 2N frequencies, the number of

multiplies and additions is given in the column titled, "Stage One." The cost of the second

stage is driven by the number of spectrograms which must be summed together. There are

6.2

no multiplications necessary and the number of additions is given in the column titled,

"Stage Two."

The time it takes to calculate a distribution is dependent upon the greatest number of

calculations which must be performed in each stage and the number and types of main

memory transactions which must be done. The memory transactions are extremely device

dependent and are beyond the scope of this paper. In Table 4, the Longest Path is the total

number of multiplies and additions needed to calculate a single column of the GDTFD in

the most heavily loaded processor in each stage. This figure will be used as a device inde-

pendent measure of the throughput of the algorithm.

The Parallel Complexity of the algorithm is given by the cost of the Longest Path

times the number of parallel processors necessary to calculate 2N frequencies at N instants

of time, simultaneously. The Sequential Complexity is the number of multiplies and addi-

tions necessary to implement the algorithm on a sequential machine.

Table 6.1: Computational Costs of the PWS TFD

Stage One Stage Longest Path Parallel Sequential
Two Complexity Complexity

X 2Nlog 2N 0 2Nlog2N N2 (2NIog 2N N2 (2NIog 2N
+8N+4 +8N+4

+8N+4) +8N+4)

+ 6Nlog2N 2Nlog2 N 8Nlog 2N N2 (8Nlog 2N N2 (6Niog 2N
+ 14N+4 + 14N+4

+ 14N+4) + 14N+4)
+ 2N 2 1og 2 N

6.2. Singular Value Decomposition MRTFD

In this section, a MRTFD based upon a modification of the SVD technique intro-

duced in Chapter 5 is presented. The SVD MRTFD is based upon the inner product formu-

lation of the GDTFD, and as a result, it can be used to calculate the GDTFD at a single in-

stant in time. As such, it is called an isolated column method. In section 6.2. 1, the theoret-

ical framework for the SVD MRTFD is presented. Then, in section 6.2.2, the important

6.3

special case of a Hermitian kernel is considered. Finally, the resulting algorithm and its as-

sociated computational complexity are discussed in sections 6.2.3 and 6.2.4, respectively.

6.2.1. Algorithm Development-A General SVD-Based Multirate TFD. The first

step in creating a SVD MRTFD is to decompose the inner product operation into a sum of

smaller operations. Consider the inner product form of the discrete TFD,

Cf (n, k;V) = ((tI, t 2) x (t0),x (Y) (6.3)

where

-j2tk(n +

x (t) = f (n + t) e N (6.4)

where n E Z, and k, t1, t2 = 0,1,2,...,N-I.

Let to and te represent the odd and even terms of ti, respectively. Then,

Cf (n, k;W) can be rewritten in terms of to and t4 as

C (n, k;W) = (i (4,t 2)x(t,) + * (tt 2)x(), x(t 2)), (6.5)

or equivalently as

Cf(nk;W) = (*(t, t2)X(t0),X(t 2)) + (i(tt 2)X(t),X(t 2)). (6.6)

Similarly, replacing x (t 2) with the sum x (t) + x (2), the inner product form of the

GDTFD can be rewritten as

Cf(nk;VN) - o(t, to) X(to), X(to))+ *(to, t)x(tl),X(to)) (6.71 2 1 2 1 1 2(6.7)
+ (f(tet2)x(te),x(t2))+(i(tl,t)x(te),x(te))

Equation (6.7) could be rewritten in the form

Cf(n, kNiV) 1 2'~~~ 2f(,) (ti) 2((6.8)
(te, to) •(to, to)6 (to)J (to)

6.4

In the preceding, the odd-even sampling performed on the kernel and signal is equiv-

alent to decimating the signal by two in both the tj and t2 directions and decimating the

kernel by

= [26] = 212 (6.9)

(see, for example, [141 or [50], for more detail).

A more general case for arbitrary square decimation will now be developed. The

decimation matrix for square decimation is given by

R = [oO] = mr 2 . (6.10)

Now, assume there is an arbitrary square kernel, AN x N, such that its dimension, N, is de-

visable by .-n such that let N/M = L E Z. Define a block matrix, A', as was done in (3.4) and

(3.5). The blocks in (3.4) are called the decimated kernels because, in practice, each block

matrix is the result of two dimensional decimation. They operate on the decimated signal,

each decimated kernel in a different multirate channel. Equation (3.4) is represented in

block form as a notational convenience, but it is important to remember that each block

will be processed as a separate entity.

The signal must also be rearranged to take advantage of the block structure. Return-

ing to x(t) as defined in (6.4), the signal is rearranged as was done in (2.15) to create x'(t).

This is the decimated signal.

The generalized square decimation algorithm (or the square multirate algorithm)

solves

Cf(n,k;A) = (A'(tl, tYx'(t),x'(t2). (6.11)

If m = 2, then (6.11) and (6.8) are identical. Further, if A = ,, then (6.11) is a MRTFD.

6.5

To form the SVD MRTFD, the Singular Value Decomposition of each block of the

decimated kernel must be calculated. Each block of (3.4) when applied to the sub-vector,

xi (t) , defined in (2.16) becomes

(Aa, b (t l't 2) Xa(tdi)Xb(t2) = (6.12)

r

j= I

Substituting the definition for xi(t) as defined in (6.4), letting A = i and summing over

all possible values of a and b, yields the equation for the generalized square decimation

DTFD,

Cf (n, k;iy)

m-1 m-1 j27tk(a-b) r,.b (L- a J2Lkt'

= e N (vi (t)) + a) e L
aI b=I i=I T O

(L-1 j21tkt)*
a b L

x (X (ui' (t)) f(mt+b)e
t=0 , (6.13)

or equivalently,

M-1 m-I j2lt(a-b)kra, *

Cf(n,k;,W) = a= e N bOiXa~ , b(k)((k)) (6.14)

a=O b=O i= I

where

L-I j2nktxb a, ba, (.5
Xa, b(k) = (wa (t)) *f(mt+a)e (6.15)

t=0

a, b a,b a, b Xa, b
and W, represents either v, or ua Note that w, a (k) is periodic with period L =

N/n (ie. W,, a (k) a (pL + k) , p r Z). Using this observation together with

(6.14), (6.13) can be rewritten as

6.6

=fnPV~lx (6.16)

rn-i m-1 j2xic b~ j2xk (a -b). r.,b xa b (k)(,b (
eie a N) u,,a Pb (k))

a=O b=O i= I

wherep = 0, 1,..., m- andk 0, 1, ... , L- 1.

Alternately, letting d = a - b and c = a + b, equation (6.16) could be written as

Cf (n, pL +k;*

m-I jcp j2 kE c n- m -c rd+c.d d+cd-m N d+cd d c (d +c,d.)*

e e di Xv,,d (k1) (X Ud+c (kl))

c=0 d=O i=lI

M-I rd,d dd d,d , d

I I ZOi Xd(pL+kj du d (pL +k))
d=O i=1 . (6.17)

This is easier to implement as it makes the outer summation a DFT which can, of course

be solved by taking the FFT. This is the SVD MRTFD for the general case, no assumption

have been made as to the form of the kernel.

Equation (6.17) can be thought of as summing the result (6.13) along each diagonal

of (3.4). This results in a single L point vector for each diagonal. The vectors form an array

which has columns indexed by -m + 1 to m - I representing each diagonal and rows in-

dexed by 0 to L - 1 . If the array is broken into two arrays [0,L) x (-m,O0 and [0,L) x [0,-

m) (the zero column is duplicated) and the DFT of the rows are taken and summed togeth-

er, the result is almost the GDTFD for time n. Since the zero column was included twice, it

must be subtracted to produce the true GDTFD.

6.2.2. A SVD MRTFD for Hermitian Kernels. It is possible to significantly im-

prove the performance of the SVD MRTFD algorithm by assuming that the kernel is Her-

6.7

mitian. Only a Hermitian kernel will produce a strictly real TFD, and realness is a very

common constraint placed upon TFD's.

Given that the kernel is Hermitian, the sub-kernels along the main diagonal of (3.4)

are also Hermitian. This can be seen by examining the elements of (3.5) when i =j. Since

the elements of A are Hermitian, i.e. ai, j = a'j, it the diagonal elements of (3.4) will also

be Hermitian since ai + in, j + km = a* .+km,j+Im when i =j.

The off-diagonal elements of (3.4), on the other hand, will not be Hermitian, but

each sub-kernel will be the complex conjugate transpose of transpose elements of A' (i.e.

A = jt where t indicates complex conjugate transpose). This can be seen by examin-

ing the elements of Aij and Aj,i. The elements of Aij are ai + bm, j + cm and the elements of
t

Aji are aj + bin, i + cm where b, c r [0,...,N/m - I]. It follows that the elements of At are

2*•j + cm, i + b ,but this is the same as ai + bm, j + cm since ai, j = a%, i is given; thus,

= A j,. This property makes it unnecessary to compute both the sub-kernels above

and below the main diagonal.

FrmtherelationshipA, j A, 'it is possible to show that the singular values of

the transpose element of A' are the same. This combined with the fact that the left singular

vectors of A are the eigenvectors of AAt and the right singular vectors are the eigenvectors

of AtA, it can be seen that the left (right) singular vectors of Aij and the right (left) singular

vectors of Ai, are the same. This can be used to reduce the complexity of (6.17).

Consider (6.13) for just the case of a transpose pair of sub-kernels (i.e. Aiu and Aji),

rab L1 -3~ 1-~ski va b t))*f L ab tu a)))*f ytb)e L

i=1I t=O ýt=O

+ (6.18)

r., L- (. ikt'l- b -j22tkt

Cr (Vb L Lit (t))* f(mt+,bat+a).e

6.8

This is equivalent to

a * * L-I C; a b * 1:- Ua. b *f)

i = (Vi (t)) f(mt+a)eL[(ui = (t)) f(mt+b)e

+ .(6.19)

rbha (L- 1 L- I -i2Rkt*L! ,Ia, b a,b *b

0 [i' (t) f(mt+b) e L(Vi (t) fm+ a) eL

i= I t---0 1=0

Since the second part of the sum in (6.19) is just the complex conjugate of the first part,

only the real part of one of them must be calculated and the result multiplied by two.

The resulting improved algorithm is given by

C,(n, pL+kl;,#)

r-i m(I r reNd+ cd d+cd +c d *ii

i v,,d+c(ki) (ud (k))
Lc=O d--- i = I,

M-I rd F d d d,d xd, d

d= L i Av.,d~pLikI) UPi d (pL +k Id= 0 i=--1 (6.20)

This is the SVD MRTFD for Hermitian kernels. It is important to note that for the sub-ker-

nels along the main diagonal of (3.4), the eigenvalue decomposition may be used in place

of the SVD-resulting in a reduction by a factor of two of the number of STFT's that need

to be performed for these sub-kernels.

6.2.3. The SVD MRTFD Algorithm. The algorithm given in this section will im-

plement the SVD MRTFD for Hermitian kernels. The algorithm for the general case given

in section 6.2.1 can be obtained by a very simple modification of the one presented below.

These modifications will be briefly discussed at the end of this section.

Using the singular vectors as windows and the singular values as weights, the first

stage calculates each STFT pair and multiplies them together for each sub-kernel off the

main diagonal. For the main diagonal sub-kernels, the corresponding eigenvectors are

6.9

used as window functions and the eigenvalues are used as weights. Stage two calculates

the sum of the each sub-block. The result is a [0, L - I] x [0, m - I] matrix. In the third

stage, the FFT of each row is taken, the real portion is multiplied by two and each kdh row

is subtracted by the constant (which is also real) representing the k h element of the sum-

mation of the blocks of the main diagonal. If the summation stage is implemented using a

binary tree structure, then it is possible to sum the L outputs of m processors in the time it

would take one processor to perform Llog 2m additions.

For maximum throughput, this algorithm requires ra,b processors for each block;

thus, a total of rab(m2 + m)/2 processors are necessary. The calculation of the main diago-

nal (via eigenvalues) is slightly different than the remainder of the blocks (via SVD).

Algorithm 6.1: SVD MRTFD for Hermitian Kernels

Barrier 0: Start

Stage 1: Load each of the r, b(m 2 + m)/2 processors with the appropriate por-
tions of the signal

Calculate the two STFT's (one in the case of the main diagonal)

Pointwise multiply the result (spectrogram for the main diagonal)

Barrier 1:

Stage 2: Sum each block and along each diagonal

Output the result of the sum of each diagonal as a column in a matrix

Stage 3: Load the rows of the matrix into L processors

Take the FFT of each row

Multiply the real part by two

Subtract by the main diagonal

Barrier 3: End

In the general case of the SVD MRTFD algorithm, ra,bm2 processors would be re-

quired for maximum throughput. These would be loaded with the appropriate sub-kernels

and the two STFT's would be calculated for all of the blocks. This includes the main diag-

6.10

onal sub-kernels which are no longer Hermitian, and as such, they cannot make use of

eigenvalues and eigenvectors. All other operations would be the same as in the algorithm

for Hermitian kernels.

6.2.4. Computational Costs of the Improved Algorithm. The computational costs

described in this section are for the SVD MRTFD for Hermitian kernels. The modifica-

tions to these results for the general case will be briefly discussed at the end of the section.

The longest path in the first stage of the algorithm is the number of additions and

multiplications it takes to compute two L point FFT's and a L point complex multiply. The

cost of stage two is the cost to compute the sums of the blocks and the diagonals. Stage

three has a cost driven by a m point FFT and a m point real multiply and add.

Table 6.2: Computational Costs of the SVD MRTFD

Stage One Stage Two Stage Three Longest Path
× 2_Nlog2(_LV) + 4_V + 8 0 mlog2 M-2m +4 2-log2(NV + 4N

m m m m m m

+ mlog 2m - 2m + 12

+ 6 N1og2(L)+ 2 -+m N+ g2(ra m) 3mlog2 m-2m+4 6Nl g2(N)+2-Nm

+ Nlog 2 (r. bm)

+3milog 2Mi-2mi+ 12

Table 6.2: Computational Costs of the SVD MRTFD (continued)

Parallel Complexity Sequential Complexity

X r(mi2 + m) (Nlog 2(N) + 2N rN(mnog2(NV) + 2m + 2)

in N 2+!!og2 m - m + 6 + Nlog2 m - 2N + 4- + 4rm
m2+m

+ r(2 + ?.(6lNog2(L) + 2N rN(3minDg 2(NV)+iM+l)

+ Nlog 2m - 2N + 4N + 4rm2+ mlog0 2 (r., bm) m

+ 3mlog2m - 2m + 12)

6.11

In order to compare this new algorithm to the baseline algorithms in section 6. 1. 1, it

will be assumed that the memory access times and associated communications costs are

negligible compared to the computational costs. The time it takes to compute the parallel

baseline and SVD MRTFD with Hermitian kernels are displayed relative to the time it

takes to compute the Cunningham and Williams fast algorithm. In Figure 6. 1, the line indi-

cating the fraction of the time it takes to compute the parallel baseline compared to the

Cunningham and Williams baseline is labeled "Parallel Baseline Algorithm." The parallel

baseline is calculated as detailed in section 6.1. 1.2 where each weighted spectrogram is

calculated in a separate processor. The fastest performance possible by this algorithm is

the time it takes to calculate a 2N point weighted spectrogram.

The relative time it takes to compute the SVD MRTFD compared to the Cunning-

ham and Williams baseline is given for two levels of decimation, m. As can be seen, as the

level of decimation is increased the relative time it takes to calculate the distribution de-

creases. This is due to the increased number of parallel paths and the reduced size of the

problem each path must solve. The total number of additions and multiplications will rise

somewhat with increasing levels of decimation. The plot compares the total number of

multiplies and additions for the three algorithms.

The speed of the Parallel Baseline and SVD MRTFD are largely unaffected by the

number of singular values and eigenvalues weights which are used. Since, for maximum

throughput, it is assumed that there are as many parallel paths as desired, additional singu-

lar values and eigenvalues weights will only slightly increase the number of additions per-

formed in the second stage, and compared to the cost of the overall algorithms, these addi-

tions can be neglected Thus, the time to compute these algorithms compared to the Cun-

ningham and William baseline are unaffected by the accuracy of the Parallel Baseline and

the SVD MRTFD.

6.12

0.2 1 I

Parallel Baseline Algorithm

0.1

U

SSVD MRTFD for m =4

SVD MRTFD for m =8

0 I I I

0 100 200 300 400 500
Length of Signal (N)

Figure 6.1. Comparison of Cost to Compute Parallel Baseline and SVD MRTFD with
Normalized Cost of Cunningham and Williams Baseline Algorithm.

For the case of a signal which is 128 point long, the SVD MRTFD with a decimation

factor of eight can have and increase throughput of over 50 fold relative to the baseline

Cunningham and Williams algorithm. For a decimation factor of 16, the throughput can

increase by a factor of 100.

The cost of the general (non-Hermitian) SVD MRTFD is only slightly larger than the

SVD MRTFD with Hermitian kernels. If it is assumed that there are as many parallel paths

as desired, then the cost is roughly the same between the two algorithms; however, the

general SVD MRTFD will require twice as many parallel paths to achieve that throughput.

6.3. Circular Convolution Multirate Time-Frequency Distribution

The CC MRTFD is based upon the outer product form of the GDTFD, and as such, it

is a two stage algorithm. It is a block Time-Frequency method calculating every column

(instants of time) in a block, simultaneously. First, it performs a multirate circular convo-

6.13

lution of the kernel and the bilinear signal using MR FFT's. In other words, the algorithm

uses multirate techniques to implement the circular convolution of the rows. It then uses

the MR FFT to calculate the Fourier transform of the columns.

This section has three parts: first, the CC MRTFD theoretical background is intro-

duced in section 6.3.1 In section 6.3.2, the algorithm is given, and then, in section 6.3.3,

the computational cost of the algorithm is discussed.

6.3.1. The Circular Convolution MRTFD Algorithm Theory. Consider the outer

product formulation of the GDTFD given by

N-1 2 j~~p-j2irpn -jxkf

C (n, f; I I ý_O(p, k)f .Rf (u, k) eN Ie N e N (6.21)k=---N NR(,l

where

R, (u, k) = f(U+ý)f (U-~j (6.22)

and

N/2- I

I W1 (t, k) ej2xtp/N k even

*(p, k) = t=-N/2 (6.23)N12- 1

t = -N/2

Equation (6.21) can be thought of as a two stage processes. The first stage calculates the

circular convolution of the row of the hexagonally decimated kernel, V, and the bilinear

signal, Rf Each row is independent and can be broken off as a separate process. The output

of this stage is placed in a rectangular array indexed by n and k such that N E (-N/2,...,

N12 - I) and k r {-N, ... ,N - I). The second stage takes the output of the circular convo-

lutions which now lie on a rectangular grid and calculates the Fourier transform of each

column, n.

6.14

The main computational building block in the CC MRTFD is the MR FFT which

was presented in Chapter 3. The MR FFT is a two stage process. A convolution built upon

the MR FFT is, in general, a four stage process. If the kernel is fixed and can be calculated

a priori, the MR FFT based circular convolution is a three stage process.

To perform the multirate circular convolution, first zero pad the rows of the kernel to

prevent convolution aliasing and perform the MR FF1 of the kernel (this will be precom-

puted a priori for fixed kernels). Next, the MR FFT of the rows of the bilinear signal are

calculated followed by the pointwise multiplication of the transformed kernel and trans-

formed bilinear signal, i.e.

r N NrNX()()X(M')q M') ... X[(I -I)N y m-I

X(1) Y (1I)) + . X (m -- nm +L

(6.24)

X[(LV- I) (... X (N -1) Y(N-I,)

where X(i) and Y(i) is a particular Fourier coefficient of the signal and kernel, respectively.

If each row of (6.24) is local to a single processor, then there is no synchronization re-

quirement and the inverse MR FFT can be directly calculated.

The inverse MR FFT is performed by first calculating the inverse FFT of the rows of

(6.24) followed by the application of the inverse phase shift. At this point a barrier is en-

countered and the second stage is complete. The result of this operation is the Zak trans-

form of the convolution of a row of the kernel and bilinear signal. The final step is to cal-

culate the inverse FF1' of the columns to produce the circular convolution of a single row

of the kernel and the bilinear signal. The complete process is illustrated in Figure 6.2.

This method for calculating a multirate circular convolution is applied to all the rows

of the bilinear signal and the kernel. Each of the 2N multirate convolutions is a three stage

6.15

MR FFf Inverse MR FFT

Stage I: Zak Transform Y inverse FFT ofY"(i
X(t) - and Phase Shift aflrows f (d shf4 X(k)"FFT o rows ?]• -'-Y (i)rows of (14) and Phaseshf

FFT of rows K Stage 3: inverse Zak
of result of stage one 2N Transform and Phase Shift

Stage 2

Figure 6.2. A Three Stage Multirate Circular Convolution. Y Represents the
Fourier Coefficients of the Kernel.

process; however, each convolution is independent and all must be completed prior to tak-

ing the Fourier transform of the columns.

Once all the convolutions have been calculated, it is time to perform the Fourier

transform of the columns. The columns are calculated using the multirate FF1. The two

stages of the MR FFT are considered to be sub-stages, and the Fourier transform of the all

the columns is Stage Two. With the completion of Stage Two, the GDTFD is done.

6.3.2. The CC MRTFD Algorithm. The loading of the individual processors aver-

ages far less than 100 percent with this algorithm. If throughput is maximized, then the 2N

convolutions require J2IN7 processors each resulting in a total of (2N) 3/ 2 processors for

the first stage; however, only N MR FFT need to be done in the second stage which sug-

gests that for maximum throughput a total of NFf2-N processors are needed. Thus, half of

the processor are idle during the second pass; however, the second pass is not as long as

the first so the total idle time for the processors is less than 50 percent. A system which us-
3/2

es (2N) processor will be called the fast CC MRTFD since this configuration would

maximized throughput.

An alternative algorithm can be defined which maximizes processor utilization. If

the input is broken into two N x 2N arrays which are processed sequentially prior to calcu-

lating the Fourier transform of the column, none of the processors will be idle during the

6.16

X-N (t)

yN() Multirate Convolution N Z (_1_ N II (
t Multirate Convolution No Z-N+I(-2 ... Z-N+2-

XN I
Y I(t) Multirate Convolution zN-.- " ZN N-Y -I,. - ZN_ I(L

Generalized Discrete lime- Stage Two Inte ediate Data lock

Frequency Distribution MR FFT
Sub-Stage I: Zak

7f(k Transform and Phase Shift
Sub-Stage 2: FFT of rows
of result of stage one

MR FVT
C(N)Sub-Stage 1: Zak

Cf(- 1, k;y) . Transform and Phase Shift2 Sub-Stage 2: FFT of rows

ke [-N, N-) of result of stage one

Figure 6.3. Block Diagram of Circular Convolution Multirate TFD. The Function
x#t) and yi(t) Refer to the ith Row of the Bilinear Signal and Kernel, Respectively.

second stage. This algorithm will increase the time it takes to compute the GDTFD by

slightly more than 50 percent. This algorithm will be called the efficient CC MRTFD since

it maximizes processor utilization. A block diagram of this algorithm is shown in Figure

6.3.

It is assumed that m = A2fr in the both algorithms to prevent excess idle time in

the processors during each MR FFT. The algorithms flow as shown in Algorithm 3.2

6.3.3. The Computational Cost of the Circular Convolution MRTFD. The cost for

the longest path in stage one is the cost of one 2N point MR convolution. Assuming

m = 12 and the MR FFT of the kernel has been pre-calculated, the cost of the longest

path is twice the cost of a MR FFT plus J2hN point complex multiply for the fast algo-

6.17

Algorithm 6.2: CC MRTFD Algorithms

Fast CC MRTFD Efficient CC MRTFD

Barrier 0: Start Barrier 0: Start

Stage 1: Load 2N rows of bilinear Stage 1: Load first N rows of bilinear
signal into r2IN proces- signal into 12 processor
sors per row per row

Each set of J2 proces- Each set of ,2ff proces-
sors perform a MR convo- sors perform a MR convo-
lution lution

Place result in temporary Place result in temporary
storage storage

Load second N rows of
bilinear signal into ,/Y-N
processor per row

Each set of F2N- proces-
sors perform a MR convo-
lution

Place result in temporary
storage

Barrier 1: Barrier 1:

Stage 2: Load the -N/2 to N/2 - 1 Stage 2: Load the -N/2 to N/2 - 1
columns of the temporary columns of the temporary
storage into the V2 pro- storage into the 12N pro-
cessors per column cessors per column

Each set of F2N- proces- Each set of F2N- proces-
sors perform a MR FFT sors perform a MR FFT

Barrier 2: End Barrier 2: End

rithm and twice this figure for the efficient algorithm. The cost of the second stage for both

algorithms is identical and is equivalent to the longest path of a single MR FFT. The long-

est path for the CC MRTFD is the sum of the first and second stages. The Parallel Corn-
3/2

plexity is simply the Longest Path times the number of processors: in this case, (2N)

for the fast algorithm and NJ12JI for the efficient algorithm. The Sequential Complexity

is the same for both algorithms and is the twice the sequential cost of a MR convolution

6.18

L~~ ~~ ~ ~~.

plus a MR FFT times NV2.

Table 6.3: Computational Costs of the Fast CC MRTFD

Stage One Stage Two Longest Path Parallel Sequential
Complexity Complexity

*(2 I2•log 2N /2NI•og 2N 3.T2hlog 2N 2N (6Nlog 2N N (O10NIog 2N
- 2N+ 10 - 2,Ff-+5 -32N+ IS -6N+ 15[2N) -8N

+ 10i2N+ 15)

+ 62.4'og2 N 342NTog 2N + 5 9.f2-NIog 2 N 2N(i8Nlog 2N N (30NIog 2N

+3 2 +10 +3 42+15 +6N+ 15 2) +12N
+ 1Oi2N + 15)

Table 6.4: Computational Costs of the Efficient CC MRTFD

Stage One Stage Two Longest Path Parallel Sequential
Complexity Complexity

* 4 12-og2N f2N1og 2N 5 [2-log2N N (ON10og 2N N (10NIog 2N
-2 2N+20 -2,F2+5 -4J2W+25 -8N+25.2Nf) -8N

+ i102 + 15)

+ 12dW2Nog 2N 3j2NIog 2N + 5 15 2_9log 2N N (30Nlog 2N N (30Nlog 2N

+6 2N+20 +642N+25 +12N+25 .2) +12N
+ IJ2 + 15)

As was done in the case of the SVD MRTFD, a comparison of the time it takes to

compute the CC MRTFD with the baseline algorithms must be performed. Again, the as-

sumption is made that the time to compute is directly proportional to the number of multi-

plies and additions needed to calculate the longest path and communications costs are neg-

ligible.

In order to compare the CC MRTFD algorithm to the baseline algorithms found in

section 6.1.1, it will be assumed that the memory access times and associated communica-

tions costs are negligible compared to the computational costs. The time it takes to com-

pute the parallel baseline and the fast and efficient CC MRTFD's are displayed relative to

the time it takes to compute the Cunningham and Williams fast algorithm. In Figure 6.4,

the line indicating the fraction of the time it takes to compute the parallel baseline com-

6.19

Parallel Baseline Algorithm

"0.1

S 0.01

0.001

0 "" •_ Efficient CC MRTFD

1.10-4

Fast CC MRTFD

1"10 ~ I I I I

0 100 200 300 400 500
Length of Signal (N)

Figure 6.4. Comparison of Efficient CC MRTFD and Fast CC MRTFD to
Parallel Baseline Algorithm and Normalized Cunningham and Williams
Baseline Algorithm.

pared to the Cunningham and Williams baseline is labeled, "Parallel Baseline Algorithm."

The parallel baseline is calculated as detailed in section 6.1.1.2 where each weighted spec-

trogram is calculated in a separate processor. The fastest performance possible by this al-

gorithm is the time it takes to calculate a 2N point weighted spectrogram.

Figure 6.4 shows the potential speed up of the CC MRTFD over the Cunningham

and Williams and parallel baselines. Note that unlike the SVD MRTFD which is depicted

with constant values of m, the CC MRTFD uses a decimation factor, m, which changes

with the length of the signal since m = 2N.

The CC MRTFD produces a distribution which is equivalent to having kept all the

singular values and eigenvalue weights. The Parallel Baseline's throughput is largely unaf-

fected by increased accuracy, as before. Thus, both the CC MRTFD and Parallel Baseline

6.20

provide methods for calculating the actual GDTFD while the Cunningham and Williams

Baseline provides only an approximation.

For the case of a 128 point long signal, the potential speed up of the CC MRTFD

over the baseline is on the order of 1000 fold for the efficient CC MRTFD and slightly

more for the fast CC MRTFD. The decimation factor which is used for this length signal is

16 which implies 2048 processors are needed for maximum throughput for the efficient

CC MRTFD and 4096 processors are needed for maximum throughput for the fast CC

MRTFD to achieve this increase.

6.4. Comparison of SVD MRTFD and CC MRTFD

If the application to which the MRTFD is applied requires the time-frequency distri-

bution at each possible instant of time, the CC MRTFD algorithm is the most logical

choice. When calculating a block of data the CC MRTFD can be over an order of magni-

tude faster than the SVD MRTFD for the same number of parallel processors. The SVD

MRTFD is appropriate when only a fraction of the distributions at the possible instants of

time need to be calculated.

The performance of the SVD MRTFD can be improved by taking an approximation

to the distribution; however, as the decimation factor rises the benefit associated with the

approximation decreases. As the decimation factor increases, the size of the sub-kernels

decrease. An approximation works by keeping a set number of singular values or eigenval-

ues and excluding the remainder. The performance is improved since fewer STFT's and/or

spectrograms must be calculated, but for smaller sub-kernels, the number of singular val-

ues or eigenvalues excluded decreases; hence, the throughput improvement of the approx-

imation decreases.

When deciding which algorithm to use the deciding factor is generally whether or

not the distribution needs to be calculated at each instant of time. If it does, then the CC

MRTFD is the clear choice. If it does not, then the SVD MRTFD may be appropriate. A

6.21

(a) (b) (c)

Figure 6.5. Comparison of Distribution Calculated by (a) CC MRTFD, (b) Cunningham
and Williams Baseline Using Seven Eigenvalues and a Condition Number of 1.5,
(c) SVD MRTFD Approximation Using a Condition Number of 1.5.

good estimate of the point at which the SVD MRTFD becomes the appropriate choice is

when less than one-in-ten instants in time need to be calculated. The exact cross-over point

depends upon the length of the signal, the size of the kernel, the decimation factor and the

number of available processors. To determine the cross-over point, the Longest Path times

the number of parallel paths needed for a given implementation of the CC MRTFD and

SVD MRTFD must be compared.

6.5. Example

In this section an example is given which compares the Cunningham and Williams

fast algorithm, the SVD MRTFD and CC MRTFD for the Binomial kernel. The signal be-

ing analyzed is composed of a rising chirp and a tone. The chirp has twice the magnitude

of the tone.

In Figure 6.5a, the distribution generated by the CC MRTFD algorithm is shown. It

is identical to the distribution that would be created by means of the Alias-Free General-

ized Discrete Time-Frequency Distribution (See Chapter 4 or [29].), Weighted Spectro-

grams where all non-zero eigenvalues are used [18] or by the SVD MRTFD when all non-

zero singular values are used.

6.22

The GDTFD calculated via the baseline Cunningham and Williams fast algorithm is

shown in Figure 6.5b. This algorithm obtains its speed, primarily, by reducing the number

of eigenvalues that are kept and, hence, the number of weighted spectrograms which must

be calculated. Figure 6.5b is the distribution which results when only the seven largest

eigenvalues are kept. This is equivalent to limiting the condition number of the kernel ap-

proximation to 1.5. For this data set, the resulting distribution is very close to the actual

distribution in Figure 6.5a, but it is an approximation. The 12 error of the approximation is

bound by the largest magnitude of the eigenvalues not included. In this case, the error is

bound by 0.667.

Figure 6.5c shows the approximation to the distribution which is obtained when not

all of the singular values are kept in the SVD MRTFD algorithm. One of the advantages of

the SVD MRTFD is the ability to control both the number of singular values kept in each

sub-kernel and the decimation factor, which in turn affects both throughput and the num-

ber of non-zero singular values. To more accurately compare with Figure 6.5b, all the

blocks of the SVD MRTFD have been limited to an 12 error bound of 0.667 (a condition

number of 1.5). The number of singular values kept in each of the sub-kernels ranges from

one to nine depending upon how quickly the magnitudes of the singular values decay. This

effect is known as deflation. It should be noted that this distribution is an approximation

like the baseline fast algorithm, but it is not the same approximation.

6.6. Conclusion

Two new fast computational methods have been demonstrated for the calculation of

Generalized Discrete Time-Frequency Distributions. The computational paradigm under-

lying the algorithms is multirate. The SVD MRTFD method is based upon the inner prod-

uct formulation of the GDTFD and as such it can be used to calculate the frequency con-

tent of a signal for a particular instant in time. Even for modest decimation value of eight,

throughput can be increased by as much as 50 fold over the current state-of-the-art Cun-

6.23

ningham and Williams fast algorithm and by an order of magnitude over the parallel base-

line algorithm. The SVD MRTFD is less computationally expensive when calculating se-

lected columns of the GDTFD, while the CC MRTFD is less expensive when calculating

every column of the GDTFD.

6.24

7. Conclusion

7.1. Summary and Findings

The most significant and fundamental result presented in this dissertation is the new

computational paradigm for multirate. Viewing multirate as a computational paradigm ex-

tends the multirate benefits (reduced required speed of computational elements, reduced

cost, and increased throughput) to a much wider class of problems than just the design and

implementation of filter banks. Specifically, multirate can be applied to any problem

which can be expressed as a set of vector-vector, matrix-vector or matrix-matrix opera-

tions or any combination of these three types of operations [34]. It can and does lead to

fast and parallel algorithms by revealing the underlying parallelism and the inherent recur-

rent nature of a particular problem.

Considering multirate as a computational model opens new avenues for multirate as

a divide and conquer formalism. In this application, multirate could be used to solve any

problem in numerical linear algebra. More importantly to the field of signal processing,

there is a very large class of problems which, at heart, are numerical linear algebra prob-

lems. Thus, in signal processing, multirate can be used both as a means to design and im-

plement filter banks and as an underlying computational paradigm for other types of prob-

lems. For example, multirate was applied to the Fast Fourier Transform (FFT) and Dis-

crete Hartley Transform (DHT) to produce fast, parallel versions of these well know signal

processing algorithms[34]. In fact, the remainder of the dissertation was an extended ex-

ample of this paradigm.

Creation of a Multirate Time-Frequency Distribution (MRTFD) algorithm opens the

door for a new class of fast and parallel algorithms for Time-Frequency Analysis [33]. The

first algorithms in this new class are the Singular Value Decomposition MRTFD (SVD

7.1

MRTFD) and the Circular Convolution MRTFD (CC MRTFD) which demonstrate the po-

tential to increase the throughput of a Generalized Discrete Time-Frequency Distribution

(GDTFD) by well over an order of magnitude. Specifically, the two MRTFD's presented

here yield increases in throughput, compared to the Cunningham and Williams baseline al-

gorithm (the fastest algorithm reported to date in the literature), of 50 fold for even a mod-

est decimation factor of eight. Unlike the Cunningham and Williams baseline algorithm,

the SVD MRTFD and CC MRTFD do not trade accuracy for speed. As the decimation fac-

tor associated with the MRTFD increases, the parallelization of the algorithm increases

and, as a result, the potential throughput of the MRTFD increases [331.

The SVD MRTFD is based upon the inner product formulation of the GDTFD and is

based upon the Singular Value Decomposition of the kernel. It demonstrates the capability

to produce the GDTFD for a single instant of time significantly faster than any existing al-

gorithm. The improvement is strictly a function of the decimation factor and the number of

parallel processing paths available.

The SVD MRTFD has the advantage of being able to allow engineering trade-offs

between the number of processors in an implementation, the throughput of the system and

the accuracy of the GDTFD produced. If there are insufficient parallel processing paths to

implement the SVD MRTFD using every singular value, then an approximation can be

made to reduce the number of parallel paths without increasing the time it takes to com-

puted the GDTFD via the SVD MRTFD. If each sub-kernel in the SVD MRTFD is ap-

proximated by limiting the condition number of the sub-kernels, it is possible to reduce the

number of Short-Time Fourier Transforms (STFT) necessary to implement the SVD

MRTFD. As the condition number is decreased, the approximation to the GDTFD will be-

come less precise, but the number of parallel processing paths will shrink. The exact re-

duction is dependent upon the specific kernel being used.

7.2

The CC MRTFD is based upon the outer product form of the GDTFD and calculates

N instants in time simultaneously. It does this faster than any existing algorithm including

the SVD MRTFD. Compared to the Cunningham and Williams baseline algorithm, the CC

MRTFD is on the order two orders of magnitude faster given several hundred parallel pro-

cessing paths. The CC MRTFD has the advantage of quickly calculating the exact GDTFD

but must do so in blocks N long.

To create the MRTFD, it was necessary to create another new time-frequency analy-

sis tool--the Decimated Generalized Discrete Time-Frequency Distribution (D-GDTFD).

Its development was the culmination of the development of a new collection of Zak trans-

form based time-frequency analysis tools. First, it was shown that the discrete Zak trans-

form, with the addition of a window, becomes a generalization of the STFT. This new

transform was called the Windowed Zak Transform (WZT). Building upon the WZT, the

Zak-Spectrogram (ZS) was created and shown to be a generalization of the spectrogram.

Lastly, the ZS was used in combination with the method of weighted spectrograms (via

both eigenvalue decomposition and SVD) to create D-GDTFD. These distributions trade

bandwidth for speed. For a decimation factor of m, there is an m fold increase in through-

put (or speed of calculation). The corresponding reduction in discrete bandwidth is from

2n for the GDTFD to 21c/m for the D-GDTFD. An important attribute of the D-GDTFD

is that it requires significantly less storage than the GDTFD. The D-GDTFD requires only

I/m 2 of the storage of the GDTFD [35][38].

To allow the use of alias-free kernels designed in either the ambiguity or time-lag do-

mains, new methods were created to allow the easy (and fast) numerical calculation of ker-

nels in either domain from a kernel defined in the other domain regardless of the plane in

which it was designed [36][371.

7.3

7.2. Recommendations

An interesting area of research which could now be done is to examine the problem

of adaptive kernels from the perspective of multirate as the computational paradigm. Cur-

rent adaptive kernel techniques require the repeated calculation of the entire distribution as

the kernel is iteratively adapted to the signal. The Multirate Time-Frequency Distribution

approach suggests the notion of selectively adapting the decimated kernels. Thus, the size

of each optimization being performed is reduced permitting increased performance for

each iteration of the kernel. Perhaps an interesting variation of this idea would be to adapt

individual window functions in either the weighted spectrogram or SVD approach instead

of adapting the entire kernel.

A second area for further research is the application of multirate to the multidimen-

sional Time-Frequency Distribution. The throughput problems encountered with the Time-

Frequency Distributions of one dimensional signal are greatly magnified with the addition

of more dimensions in the input signal. Multirate, in this case multidimensional multirate,

provides one approach to improving the performance of a multidimensional TFD. One of

the benefits of multidimensional multirate is the ability to select optimum sampling struc-

tures or latices that were not available in the one dimensional case. This can greatly in-

crease the efficiency of the algorithm reducing the overall cost, and the resulting algorithm

can also be implemented in a parallel architecture to obtain the type of performance bene-

fits detailed in this dissertation.

7.4

L

Appendix A. Spectrograms and C QTFD's

The spectrogram is given by

00 2

Sf(t, o) = (o) = f(,)h(,-t)e-J2w°wdT

= f (t) h (r - t) e-j2T~od f f (r) h (r - t) e -2mt d]

Using the transforms pair given in [11], x* (-t) *4 X* (co) , allows (1) to be rewritten as

Sf (t, [)) f f (r) h (r - t) e J2xod [f f* (-r) h* (-.c - t) e-J2nr dj (2)

Note that the convolution and the Fourier transform have the following relationship

xW t*y W) f= x(u)y(t-u)du = FO X X(o)Y(0)) (3)
-00

Applying the Fourier transform to the right hand side of (3), leads to an equation of the

form found in (2) implying the spectrogram can be rewritten as

Sf 0tO0) = f** f f () h (4 -t) f*(-) h*(xt) dt e- °dr (4)

Applying a change of variables to the interior integral, (4) becomes

Sf(t,oO) = j jf(u+ 2)f*(u-2)h(u +-t)h*(u-• -t)du]eJ2•Th•dt (5)

Compare this result with the convolutional form of the Generalized Time-Frequency Dis-

tribution using a kernel based upon the bilinear form of the window, w(t).

A.I

Cf(t, 0o;W) = f f R1 (u, T) W (t- u,)e-j2"• dudT (6)

whereR1 (u,1 = u)f(- T) and W(u, T)= w(u + T)W*(-).Placing

the definitions into (6) yields,

Cf(t, o;x) = f fsf(u+)f*(u T)2 .. . (7)
-0 -j2

x w -u+2+t w u + (-2) + t)e-2 TX°•dudT

Equations (5) and (7) bear a marked similarity. The only difference lies in the vari-

ables for h and w. On inspection, it can be seen that the variables of h are the negative of

w * and the variables of h* are the negative of w. This implies that if h is symmetric or anti-

symmetric and equal to w, then (5) and (7) are identical. In practice, this is not a severe

restriction on the windows used for spectrograms.

A.2

BIBLIOGRAPHY

[I1 S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1989.

[21 Amin, M. G., "Performance Comparison of Wigner-Ville Spectrum Estimators
Using Least-Squares Approximation of Kernels," Proc. ISSPA, Gold Coast Austra-
lia, vol. 2, 1990.

[3] , "Time-Frequency Spectrum Analysis and Estimation for Non-Station-
ary Random Processes," in Time-Frequency Signal Analysis: Methods and Appli-
cations, B. Boashash (ed.), Longman Cheshire, Melbourne, Australia, 1992.

[4] E. Anderson, et al, LAPACK User's Guide, SIAM, Philadelphia, 1992.

[5] F. Auger, "Some Simple Parameter Determinations Rules for the Generalized
Choi-Williams and Butterworth Distributions," IEEE Signal Processing Letters,
Vol. 1, No. 1, pp 9-11, January 1994.

[6] L. Auslander, I. C. Gertner and R. Tolimieri, "The Discrete Zak Transform Appli-
cation to Time-Frequency Analysis and Synthesis of Nonstationary Signals," IEEE
Trans. on Sig. Proc., Vol. 39, No. 4, pp. 825-835, April 1991

[7] L. Auslander and R. Tolimieri, "Is Computing with Finite Fourier Transforms Pure
or Applied Mathematics," Bulletin of the American Mathematical Society, Vol. 1,
pp 847-897, 1979.

[8] B. Boashash, ed. Time-Frequency Signal Analysis: Methods and Applications,
John Wiley & Sons, New York, 1992.

[9] B. Boashash and A. Reilly, "Algorithms for Time-Frequency Signal Analysis,"
Time-Frequency Signal Analysis: Methods and Applications, ed. B. Boashash,
John Wiley & Sons, New York, 1992.

[10] P. J. Boles and B. Boashash, "Application of the Cross-Wigner-Ville Distribution
to Seismic Data Processing," Time-Frequency Signal Analysis: Methods and
Applications, ed. B. Boashash, John Wiley & Sons, New York, 1992.

[11] R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill Book
Company, New York, 1978.

[12] G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

[13] T. Brotherton, T. Pollard and D. Jones, "Application of Time-Frequency and Time-
Scale Representations to Fault Detection and Classification" IEEE International

Bib. 1

I

Symposium on Time-Frequency and Time-Scale Analysis, pp. 95-98, October
1992.

[141 T. Chen and P. P. Vaidyanathan, "Recent Developments in Multidimensional Mul-
tirate Systems," IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 3, No. 2, pp. 1 6-137, April 1993.

[15] T. A. C. M. Classen and W. F. G. Mecklenbrauker, "The Wigner Distribution-A
Tool for Time-Frequency Signal Analysis, Part III: Relations With Other Time-Fre-
quency Signal Transforms," Philips J. Res., Vol. 35, No. 6, pp. 372-389, 1980.

[16] L. Cohen, "Time-Frequency Distributions-A Review," Proceedings of the IEEE,
Vol. 77, No. 7, pp. 941-981, 1989.

[17] , "Generalized Phase-Space Distribution Functions" J. Math. Phys., Vol.
7, pp. 781-786, 1966.

[18] G. S. Cunningham and W. j. Williams, "Kernel Decomposition of Time-Frequency
Distributions," IEEE Transactions on Signal Processing, Vol. 42, No. 6, June 1994.

[19] , "Fast Implementation of Time-Frequency Distributions," IEEE Interna-
tional Symposium on Time-Frequency and Time-Scale Analysis, pp 2 4 1-244, Octo-
ber 1992.

[20] J. J. Dongarra, J. Du Croz, S. Hammarling and 1. Duff, "A Set of Level 3 Basic
Linear Algebra Subprograms," ACM Transactions on Mathematical Software, Vol.
16, pp. 1-17, 1990.

[21] J. J. Dongarra, J. Du Croz, S. Hammarling and R. Hanson, "An Extended Set of
Fortran Basic Linear Algebra Subprograms," ACM Transactions on Mathematical
Software, Vol. 14, pp. 1-17, 1988.

[22] J. Fang, L. Atlas and G. Bernard, "Advantages of Cascaded Quadratic Detectors
for Analysis of Manufacturing Sensor Data," IEEE International Symposium on
Time-Frequency and Time-Scale Analysis, pp. 345-348, October 1992.

[23] B. D. Forrester, "Time-Frcquency Analysis in Machine Fault Detection:" in Time-
Frequency Signal Analysis: Methods and Applications, ed. B. Boashash, John
Wiley & Sons, New York, 1992.

[24] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns-Hopkins
University Press, Baltimore, Maryland, 1991.

[25] J. Granata, M. Conner and R. Tolimieri, "Recursive Fast Algorithms and the Role
of the Tensor Product," IEEE Transactions on Signal Processing, Vol. 40, No. 12,
pp.2 9 2 1-2930, December 1992.

Bib.2

[26] Hlawatsch, F, "Regularity and Unitarity of Bilinear Time-Frequency Signal Rep-
resentations," IEEE Trans. on Information Theory, Vol. 38, No. 1, pp. 82-94, Janu-
ary 1992.

[27] K. Hwang and F. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill, New York, 1984.

[28] A. J. E. M. Jansen, "The Zak Transform: A Signal Transform for Sampled Time-
Continuous Signals," Philips J. Res., Vol. 43, pp. 23-69, 1988.

[29] J. Jeong and W. J. Williams, "Alias-Free Generalized Discrete-Time Time-Fre-
quency Distributions," IEEE Transactions on Signal Processing, Vol. 40, No. 1 I,
pp. 2757-2765, 1992.

[30] - - , "A New Formulation of Generalized Discrete-Time Time-Frequeticy
Distributions;' Proc. International Conference on Acoustics, Speech and Signal
Processing, pp. 3189-3192, March 199 1.

[31] R. Koenig, H. Dunn and L. Lacy, "The Sound Spectrograph," J. Acoust. Soc.
Amer., Vol. 18, pp 19-49, 1946.

[32] Neng-Chung Hu, Hong-I Chang and 0. K. Ersoy, "Generalized Discrete Hartley
Transforms;" IEEE Trans. on Signal Processing, Vol. 40, No. 12, December 1992.

[33] 1. R. O'Hair and B W. Suter, "Multirate: A New Computational Paradigm," Sub-
mitted to IEEE Transactions on Signal Processing, May 1994.

[34] , "Multirate: A New Computational Paradigm," Submitted to IEEE
Transactions on Signal Processing, May 1994.

[351 ,"The Zak Transform and Decimated Time-Frequency Distributions,"
Submitted to IEEE Transactions on Signal Processing, December 1993.

[36] , "Kernel Design Techniques for Alias-Free Time-Frequency Distribu-
tions," Submitted to IEEE Transactions on Signal Processing, July 1993.

[37] , "Kernel Design Techniques for Alias-Free Time-Frequency Distribu-
tions," IEEE International Conference on Acoustic, Speech and Signal Processing,
Adelaide, Australia, Vol. III, pp 333-336. 19-22 April 1994.

[38] , "The Zak Transform and Decimated Spectrograms," IEEE International
Symposium on Circuits and Systems, London, U.K., 30 May-2 June 1994.

[39] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-
Hall, Englewood Cliffs, NJ, 1989.

[40] A. Papandreou and G. F. Boudreaux-Bartels, "Generalization of the Choi-Williams

Bib.3

Distribution and the Butterworth Distribution for Time-Frequency Analysis," IEEE
Transactions on Signal Processing, Vol. 4 1, No. 1, pp. 463-472, 1993.

[41] S. Qian and D. Chen, "Discrete Gabor Transform" IEEE Trans. on Sig. Proc., Vol.
41, No. 7, pp. 2429-2438, July 1993.

[42] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Appli-
cations, Academic Press, Boston, 1990.

[43] P. A. Regalia and S. K. Mitra, "Kronecker Products, Unitary Matrices and Signal
Processing Applications," SIAM Review, Vol. 3 1, No. 4, pp. 586-613, December
1989.

[44] C. Runge, Zeit. fur Math. und Physik, 48 (1903) 943.

[45] V. P. Sathe and P. P. Vaidyanathan, "Effects of Multirate Systems on Statistical
Properties of Random Signals," IEEE Transactions on Signal Processing, Vol. 41,
No. 1, pp. 131-146, January 1993.

[46] H. V. Sorensen, M. T. Heideman and C. S. Burrus, "On Computing the Split-Radix
FFT," IEEE Trans. Acoust., Speech and Sig. Proc., Vol. 34, No. 1, pp. 152-156,
February 1986.

[47] H. V. Sorensen, D. L. Jones, C. S. Burrus and M. T. Heideman, "On Computing the
Discrete Hartley Transform," IEEE Trans. on ASSP, Vol. 33, pp. 1231-1238, Octo-
ber, 1985.

[48] G. W. Stewart, Introduction to Matrix Computations, Academic Press, Orlando,
FL, 1973.

[49] P. L. Tyack, W. J. Williams and G. Cunningham, "Time-Frequency Fine Structure
of Dolphin Whistles'" IEEE International Symposium on Time-Frequency and
Time-Scale Analysis, pp. 17-20, October 1992.

[50] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

[51] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM,
Philadelphia, 1992.

[52] E. F. Vilez and H. Garudadri, "Speech Analysis Based on Smoothed Wigner-Ville
Distribution," in Time-Frequency Signal Analysis: Methods and Applications, ed.
B. Boashash, John Wiley & Sons, New York, 1992.

[53] V. Ville, "Sur la Notion de Signal Analytique," Cables et Transmissions, tome 2,
No. 1, pp. 61-74, 1948.

Bib.4

[54] L. B. White, "Transition Kernels for Bilinear Time-Frequency Distributions,"
IEEE Trans. on Sig. Proc., Vol. 39, No. 2, pp. 542-544, February 1991

[551 E. Wigner, "On the Quantum Correction for Thermodynamic Equilibrium," Phys.
Rev., 40 (1932) 749-759.

[56] W. J. Williams and J. Jeong, "Reduced Interference Time-Frequency Distribu-
tions" in Time-Frequency Signal Analysis: Methods and Applications, B.
Boashash (ed.), Longman Cheshire, Melbourne, Australia, 1992.

[57] Zak, J., "Finite Translations in Solid State Physics," Phys. Rev. Lett. 19, pp. 1385-
1397, 1967.

Bib.5

Vita

Captain John R. O'Hair was born at West Point, New York, on 16 November 1961.

He graduated from Butte Central High School in Butte, Montana in May of 1980, and

entered the United States Air Force Academy the following June. He graduated with a

Bachelor of Science in Electrical Engineering in 1984 and was assigned to Headquarters

Armament Division as an Intelligence Analyst. During the next two years, he performed

technical analysis of radar and Surface-to-Air Missile systems and attended night school

at the University of West Florida (UWF). He earned a Masters of Business Administration

from UWF in 1986. That same year, he entered Texas Tech University in Lubbock, Texas,

under the auspices of the Air Force Institute of Technology's Civilian Institute Program.

He earned a Master of Science in Electrical Engineering from Texas Tech University in

1987 in the area of pulse power solid state devices. Upon graduation, he was assigned to

the Foreign Technology Division at Wright-Patterson, AFB, Ohio, where he was responsi-

ble for the procurement of signal processing and analysis systems. He entered the Air

Force Institute of Technology School of Engineering in July 1991.

