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Abstract

H2 optimization with convex constraints is considered. The optimal (order-

free) solution is shown to be unique through convex analysis. H., constraints

with feedforward terms and singular constraints (those with no direct control us-

age penalty or perfect measurements and those with associated Hamiltonions that

have jw-axis zeros) are also allowed. The optimal fixed-order solution is shown to

have the same characteristics as a mixed problem with regular H.. constraints. Fur-

thermore, these results are shown to hold for controller orders as low as the optimal

H 2 order. A numerical method is developed based on analytical gradients which

results in sub- and super-optimal fixed-order controllers. The problem is extended

to include an upper bound on a i constraint through a modification of the D-K iter-

ation method. Next, multiple H. constraints are developed. Fixed-order solutions

to the multiple constraint problem are characterized and the numerical method is

extended to include multiple constraints. Next, a continuous L, constraint is added.

A numerical approach is proposed based on bounding the L1-norm by the 4-norm

of an Euler approximating system. Finally, H 2 optimization with a finite set of

H., p, and L1 constraints is characterized. SISO and MIMO numerical examples

demonstrate the application of these methods.
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/H2 OPTIMAL CONTROL WITH H, i, AND L1 CONSTRAINTS

I. Introduction

1.1 Overview

Controller design for a nonlinear system is often based on a linear, time-

invariant model of the system as it operates near an operating point or nominal.

While this approach simplifies the design process and allows powerful tools and

techniques to be applied, there are distinct drawbacks to the method due to the

imprecise modeling of a nonlinear system by a linear model. Moreover, the model is

assumed to be time-invariant, and thus cannot account for changes in the system that

are time-dependent. One can argue that the primary purpose of feedback control is

to provide stability in light of any unmodeled dynamics and system perturbations.

A second, but just as important, use of feedback control is to provide some desired

level of system performance.

Due to the nature of the control problem, the design process is broken down

into two categories, each of which has two parts. This first category is to provide

nominal control-that is, to provide stability and performance for the nominal linear

model. Consider the linear system in Figure 1.1 where w(s) is an exogenous input

and x(s) is the output which we are trying to control (not necessarily realizable). The

plant P(s) is based on some underlying linear model G(s) which transfers the control

u(s) to the measured output y(s). K(s) is a linear, time-invariant controller which

has the measured output y(s) as its input and the control u(s) is its output. Nominal

stability is achieved if the dosed-loop system in Figure 1.1, where the feedback loop

is closed with the controller K(s), is asymptotically stable. If we only consider the

underlying linear model with no input to the system (P(s)=G(s), z(s)=y(s), and

1-1
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Figure 1.1. General nominal block diagram

w(s)=O), this requirement is met if the poles of P(s)[I - P(a)K()]-1 lie in the open

left-half complex-plane. A broader concept of internal stability will be explored later,

but is equivalent for this closed-loop system.

For the nominal performance problem, z(s) generally differs from y(s) and w(s)

is not zero; thus, P(s) is, in general, not equal to G(s). It is assumed that P(s) is

known and w(s) is some exogenous input with known properties such as white noise

of fixed intensity or a deterministic signal with bounded energy. Some performance

measure is defined and the nominal performance problem is to find a K(s) which

provides nominal stability and an acceptable level of the performance measure. If

the performance problem can be expressed as a mathematical program over the set of

possible controllers, the minimization or maximization problem is called an optimal

control problem.

Robust control is the second category the designer must consider. In this

problem, the systems under consideration are every element P)i in the set P P(s) +

AP where AP is a set of unknown perturbation to the nominal plant. The robust

stbility problem is to design a controller K(s) which provides asymptotic stability

for every 'Pi. One way to consider this problem is to combine all the perturbations

to the system into a single unstructured perturbation A(s), which has input e(s) and

output d(s) which are outputs and inputs of P(s), respectively. The resulting system

1-2



d 4A

w P z

U y

K
Figure 1.2. General perturbed block diagram

is shown in Figure 1.2. Then, robust stability requires K(s) to internally stabilize

the system for all possible A(,).

Finally, the feedback controller should provide some measure of robust perfor-

mance-that is, produce a controller K(s) which internally stabilizes the dosed-loop

system and provides an acceptable measure of performance under all expected plant

perturbations. This problem is not as easy to handle as the previous problems, but

p-synthesis is generally acknowledged as the best approach to solving the robust

performance problem [1, 2]. p-synthesis is based on exploiting the known structure

of the perturbation A and will be developed later in this work.

The performance of a system is often measured by the maximum energy of some

controlled output due to some specified input. One example is the familiar linear

quadratic Gaussian (LQG) control problem, where the exogenous input is zero-mean,

white Gaussian noise of unit intensity. This problem is equivalent to minimizing the

two-norm of the transfer function from the input to the output and is referred to as

H2 optimization. Another measure of performance is the model matching problem,

where it is desired to minimize the energy of the controlled output resulting from
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some exogenous but bounded energy input. This is equivalent to minimizing the

infinity-norm of the transfer function from the input to the output and is referred to

as H.. optimization. An example of this problem is the weighted sensitivity problem,

which will be discussed in detail later.

In general, it will be desirable to solve both the LQG and model matching

problems concurrently for a given system, thus leading to a multi-objective or mixed

optimal control problem. Consider the system in Figure 1.3, where the transfer

function from w to z, T.., is associated with the LQG problem and the transfer

function from d to e, Td, represents the model matching problem. The problem

now is to find an internally stabilizing K(s) which minimizes JIT.,II2 for some level of

model matching, IITedJJI ! -. This implies a potential trade-off exists between the

two measures of performance. Furthermore, robustness has not yet been considered.

To add robust stability to the above problem, the Small Gain Theorem can be

used. Define H.. as the space of all transfer functions which are analytic and bounded

in the closed right-half complex-plane. Internal stability implies that all the states

of the system are asymptotically stable (the concept of internal stability will be

developed more in Chapter II). Then the following theorem gives us a condition for

stability robustness.
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Theorem 1.1.1 (Small Gain Theorem) Let Td E H4 ,. Assume A E H,, is con-

nected from e to d as shown in Figure 1.4. Then the closed-loop system is internally

stable if

IlTed(8)A(8)ll. _5 IlTed(s)lloolIA(,)llo < 1 (1.1)

Proof: See [3]. E

Therefore, as IIT II. is decreased, a larger level of unstructured uncertainty

can be allowed and internal stability still be guaranteed. Thus, robust stability can

be incorporated into the mixed problem using an H.. constraint. However, this

measure of robustness is conservative since it does not account for the structure

of the perturbations and only provides information for the worst case frequency.

Through i-synthesis, a less conservative measure of robust stability can be added to

the mixed problem by exploiting the structure and frequency content of the pertur-

bation. Moreover, p-synthesis can be used to add robust performance into the mixed

problem. While H.. optimization and p-synthesis provide powerful techniques for de-

signing optimal controllers, both methods have limitations. In general, the methods

tend to result in high bandwidth controllers and thus have increased high frequency

noise response. A slight increase in the infinity-norm often results in a substantial
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reduction in the high frequency response, which demonstrates an available trade-off

which will be exploited in the mixed problem.

Finally, H. and p-synthesis are based on bounded energy inputs and outputs.

It is often the case that the designer is interested in bounding the magnitude of

a controlled output due to a worst case bounded magnitude input. This is par-

ticularly important when considering surface deflections and aircraft rotation rates

where physical limitations are not modeled by the linear system. L1 optimal control

can handle this control problem. This technique minimizes the magnitude of the

controlled output due to an exogenous but bounded magnitude input by minimizing

the LI-norm of the resulting transfer function. Moreover, we can replace the infinity-

norm in the above discussion with the one-norm, and the robustness properties hold.

Thus, we desire a method of including L, constraints into the mixed optimization

problem.

To solve the mixed control problem, the /2 problem will be selected as the

objective function. Throughout this dissertation, we will a~sume the H12 problem

has tractable solutions. To incorporate a desired level of robustness and/or nominal

performance, an inequality constraint will be appended to the 112 problem. Thus,

the problem to be addressed in this dissertation is: Find an internally stabilizing

K(s) that achieves

inf { IITY,,l 2 I IIT~dJ '- -- 7} (1.2)
K(s)stabihzrng

where a = {oo, p, 1} and -f is fixed a priori and is based on the desired level of ro-

bustness and/or nominal performance. This problem is a mathematical programming

problem which can be approached using the rich theory which exists for optimization

problems.

There has been a great deal of interest in the mixed H2/H.. problem and

variations on it with simpliyng assumptions. This work will take the most general

approach to date and remove some of the remaining simplifying assumptions. In
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addition, the mixed framework will be extended to a more general multi-objective

problem. First, a review of previous work is necessary to set the stage.

1.2 Review of Related Work

1.2.1 Mixed H 2/Hoo with a single input or single output. The initial

approaches to the mixed objective control problem were taken on a subset of the

problem given in Figure 1.3, where it is assumed that either d = w or z = e.

Bernstein and Haddad [4] presented one of the earliest formulations of the problem

with d = w. Their formulation used a Lagrange multiplier approach and resulted

in necessary conditions for a fixed-order controller which provides an overbound

to the H2 problem and satisfies the H., constraint. The controller order must be

determined a priori. While this technique allows reduced order controllers which are

desirable, it does not provide conditions for determining the order of the controller

which is globally optimal. Zhou, et al, [5, 61 formed the mixed problem for two

independent inputs with e = z. Their approach defined a new performance index

which reduced to the 12 performance index when d = 0 and the H.. performance

index when w - 0. If both inputs are non-zero, a mixed performance index is

obtained. Necessary and sufficient conditions for the existence of a mixed controller

were derived and controllers were parametrized through a set of coupled matrix

equations. Yeh, et al [7j, showed that, when the order of the controller is fixed to

that of the plant, the results of the above two works are the duals of each other.

1.2.2 General Mixed H2/Ho, optimization. Rotea and Khargonekar [8]

presented the first attempt a.t solving the general problem shown in Figure 1.3, where

no relationship is assumed between d and w or e and z. Their formulation was based

on full state availability only. In addition, their approach was nonconservative in

regards to optimizing the actual H2 norm, rather than just providing an overbound

to the norm. Ridgely, et al [9, 10], added output feedback into the formulation of

the general mixed optimal control problem. They derived the necessary conditions
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for an optimal fixed-order controller. The formulation assumed a strictly proper,

regular H, constraint. In addition, Ridgely, et al, developed a numerical solution

which requires unique solutions to Lyapunov equations and stabilizing solutions to

Riccati equations. A homotopy method was used between the central Hoo problem

[11] and the optimal mixed problem. The method was shown to converge to the

optimal mixed problem.

The above approaches are based on a single H 2 and a single Hoo transfer

function. Sch6mig, et al, [12] developed a time domain approach for solving the

mixed problem with multiple transfer functions. The approach combined the optimal

H2 problem with a penalty function, which incorporates the H.0 constraint. A fixed-

order controller and a finite final time were used. The resulting controller approaches

a controller which infimizes a linear combination of H 2 performance bounds while

satisfying a set of H.o constraints as the final time approaches infinity. However,

there was no attempt to characterize the optimal controller or provide conditions for

its existence.

All of the above works based their results on a fixed-order controller with order

equal to the plant order.

1.2.S Mized H2/14 optimization. Madiwale [13] first proposed adding ro-

bustness to the mixed control problem. His approach was based on the work of

Bernstein and Haddad [4], and thus only provides an overbound to the 12 portion.

However, his development does attempt to provide robustness to both the 12 and

H.. performance. Bambang, et al, [14] presented a static state feedback solution to

the mixed H2/1 problem based on the work of Rotea and Khargonekar (15]. Both of

these approaches only address a subproblem due the restrictive assumptions on the

inputs, outputs, and controller.

Hall and How [16] used a dissipative system approach to develop a worst ctase

bound on H2 robust performance for a system with uncertainty. Their work gener-
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arises a measure of robust performance to the H2 framework. However, it does not

address a mixed norm approach to the optimization.

1.3 Research Objectives and Contributions

The purpose of this research is to first explore the nature of the optimal solution

to the mixed H 2 /H.. optimal control problem. Next, the set of problems which

can be handled by the mixed H2/H, optimal control problem will be extended

beyond the set discussed in the previous section. Furthermore, formal incorporation

of multiple H.. constraints and u into the general framework will be accomplished.

A general numerical approach for fixed-order controllers will be developed. Finally,

the H2 problem with a finite set of convex constraints, including H.., p, and L 1, will

be examined.

The first contribution of this dissertation will be to characterize the optimal

controller for a mixed H 2/1H, optimization problem where the controller order is

not assumed a priori but allowed to be free. It will be shown that the optimal

solution is unique by approaching the problem through convex programming. More-

over, necessary conditions for optimality will be derived. Next, a dual approach to

computing the optimal controller will show that the optimal controller for a class of

mixed H2/H.. problems is a non-rational H 2 function. Furthermore, this method

will be used to develop an analytical method for determining the minimum two-norm

for a fixed -y for a class of mixed H 2 /H.. problem.

The second contribution of this work is to extend the set of H.. constraints

which can be handled by the fixed-order mixed problem. As discussed in Section 1.2,

previous methods for solving the fixed order H2/H. problem have been based on the

assumptions that the H1, constraint is non-singular and strictly proper. However,

it is often desirable to allow both singular and non-strictly proper constraints. A

common example of this is the weighted sensitivity problem, which is singular and

can also be non-strictly proper. Thus, the set of allowable H.. constraints will be
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expanded to include singalar constraints as well as non-strictly proper ones. Fur-

thermore, for practical applications, the order of the controller must be as low as

possible. Previous approaches to the general mixed problem have assumed the con-

troller order is equal to or greater than the order of the plant augmented with both

the H2 and H,. weighting transfer functions. It will be shown that the conditions

developed for a fixed-order solution in this work hold for a controller order as low as

the order of the H2 problem alone.

Next, a numerical approach for finding fixed-order controllers in the neighbor-

hood of the optimal fixed-order controller will be developed. This approach has the

advantage (over previous methods) of handling singular H,, constraints and those

with a feedforward term. Furthermore, the order of the solutions can be reduced to

greater than or equal to that of the H2 problem. Finally, the computation time for

the new method is significantly reduced from that of the existing method.

The fourth contribution of this work is to extend the method to include incor-

porate p-synthesis into the framework. This will allow a less conservative measure

of robust stability and also allow robust performance to be included in the mixed

framework.

The next contribution is to extend the above results to mixed problems with

multiple H.. constraints. The uniqueness of the optimal controller is shown and nec-

essary conditions for order-free and fixed-order solutions will be developed. Further-

more, numerical epproaches for finding solutions to the multiple constraint problem

are given.

The last contribution will show that any finite set of convex constraints can

be augmented to the 12 optimization problem in the framework developed in this

dissertation. First, the H2/L, problem will be set up and a numerical approach for

designing fixed-order controllers will be given. This allows the mixed approach to

be applied to bounded magnitude outputs. Finally, the framework will be expanded

to allow H12 problems with a finite set of Hoo, p, and 11 constraints. It will be
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shown that all these constraints can be augmented and the problem solved in an

analogous manner to the multiple Ho, constraint problem. Thus, all the design

methodologies discussed in this work can be combined into a single problem allowing

the design engineer a wide latitude in setting up competing objectives for synthesizing

a controller which provides nominal and robust stability and performance.

1.4 Outline

This dissertation consists of 10 chapters including this introduction. Chapter

2 will present some necessary mathematical review, including a discussion of linear

vector spaces, Lyapunov and Riccati equations, convex programming, and minimum

norm duality theory. Next, Chapter 3 will review 12 and H., optimization tech-

niques and present an introduction to p-synthesis.

Chapter 4 will develop the key theoretical results for mixed H2/H.o optimiza-

tion. To begin, the set of all stabilizing controllers will be parametrized over a convex

set. Then, the uniqueness of the optimal controller will be shown through convex

analysis. Furthermore, a duality approach to the minimum norm problem will be de-

veloped to characterize the optimal controller. This development will solve a special

case of the optimal problem with a particular form of the H.. constraint.

Fixed-order solutions to the mixed problem will be addressed in Chapter 5.

A Lagrange multiplier approach will be taken by appending a Lyapunov equation

associated with the H2 problem and a Riccati equation associated with the H.. con-

straint. This development will allow singular and non-strictly proper Ho, constraints,

and can handle controllers with order fixed to greater than or equal to the H2 prob-

lem. Chapter 6 will develop a numerical method based in the frequency domain

which computes fixed-order controllers in the neighborhood of the optimal. The re-

sulting algorithm will be demonstrated through the design of a single input/single

output (SISO) F-16 longitudinal controller.
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Robust performance will be added into the framework in Chapter 7 by incorpo-

rating p-synthesis into the mixed H2/H.. optimal control problem. The fixed-order

controller will be characterized and the trade-off between robustness and disturbance

rejection will be demonstrated through an F-16 normal acceleration control problem

and a multiple input/multiple output (MIMO) HIMAT pitch control design example.

The utility of the mixed problem will be further increased in Chapter 8 by in-

cluding multiple H., constraints. First, the uniqueness of the optimal controller will

be addressed and the question of existence will be discussed. Next, the fixed-order

solution will be developed and the nature of fixed-order controllers with order greater

than or equal to the H2 problem will be characterized. The numerical approach from

Chapter 6 will be modified to handle multiple constraints, and methods for finding

controllers will be developed. Finally, an F-16 normal acceleration example will be

used to demonstrate the power of the multiple constraint optimization.

In Chapter 9, an approach to H2/L1 problems will be developed. Suggestions

on how to extend this work to include H2 optimization with any combination of

He,, pi, and L1 constraints will be discussed. Finally, Chapter 10 presents some

conclusions and recommendations.
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II. Mathematical Preliminaries

2.1 State Space and Transfer Functions

This section will consider linear, time-invariant systems in continuous state

space form
i(t) = Az(t) + Bw(t) (2.1)

z(t) = Cz(t) + Dw(t)

or in discrete state space form

z(k + 1) = AdZ(k) + Bdw(k) (2.2)
z(h) = CdZ(h) + DdW(k)

where A, Ad E Rxn, B,Bd E Wxm, C, Cd E RPx, and D, Dd E •xP•m are constant

matrices. The vectors z E I", w E Rn, and z E W are the state, control, and

output vectors, respectively. [-](t) represents functions of time for t E [0, +oo),

[.](k) represents sequences with index k E {0, 1,2,.. .}, and [:] represents the time

derivative of [-].

The stability of systems (2.1) and (2.2) is determined by the eigenvalues of A

or Ad. For the continuous case, the system is stable if all the eigenvalues of A are in

the open left-half complex plane; the system is neutrally stable if the eigenvalues are

in the closed left-half complex plane and at least one eigenvalue is on the imaginary

axis; and the system is unstable otherwise. For the discrete case, the system is stable

if all the eigenvalues of Ad are in the open unit disk centered at the origin; the

system is neutrally stable if the eigenvalues are in the closed unit disk and at least

one eigenvalue is on the unit circle; and the system is unstable otherwise.

The state space forms can be realized as input-output transfer functions in the

a-domain for the continuous case through the Laplace transform

T.(s) := C (sI - A)-' B + D (2.3)
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and in the z-domain for the discrete case through the z transform

T•,(z) : Cd (zI - Ad)-' Bd + Dd (2.4)

For the remainder of this section, only the continuous case will be considered;

similar results can be derived for the discrete case. The shorthand notation

+AB• C(aI - A)-' B + D (2.5)

will be used. Conversely, for any real-rational, proper (i. e., analytical at a = oo)

transfer function T,. there exists a realization (non-unique) (A, B, C, D) such that

T=[ +B (2.6)

The realisation is minimal if A is of smallest possible dimension. A realization is

minimal if and only if (A, B) is controllable and (C, A) is observable.

The following definitions and properties will be useful:

T[(S) T DT (2.7)

_C-s +AB (2.8)

Further, the conjugate of T.. is defined by

[_AT -CT1
T : -= T D T  (2.9)
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Figure 2.1. Nominal feedback system

and

poles tT8 (s)] = poles [T•(.)J = -poles [T.(-,()] = -poles [T.,(.)] (2.10)

For T,. E C'Xm, let I = min{me, p}. The singular values ori, i = 1,... , 1, satisfy

', (T..(o)l =, [T.0% = a, [7-.(-s)j = 0-, IT;.(°)l (2.11)

To complete this section, consider the nominal feedback system given in Fig-

ure 2.1. Let P(s) and K(s) be known proper transfer functions matrices; then

Figure 2.1 represents

[] =P [ ] u = Ky (2.12)

V u

where P can be partitioned as

P= P.p• . (2.13)

To simplify notation, it will be assumed that transfer functions and signals are

functions-of-s for the remainder of this dissertation unless otherwise stated. If P and
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K are minimal order, then the closed-loop transfer function T. can be determined

from the lower fractional transformation (LFT) as

T. = Fj(P, K) := P. + PK (I - PyK)-1 P,, (2.14)

Similarly, an upper fractional transformation (UFT) is defined for some block A with

input z and output w shown in Figure 2.2 as

T. = F.(P,A) := Py. + P,&.A(I - P. A)- P,, (2.15)

The system in Figure 2.1 is said to be well posed if and only if (I - P,.K) is

invertible. If P. or K is strictly proper (i. e., P,.(oo) = 0 or K(oo) = 0), as will be

assumed in this work, then the system is well posed.

The system in Figure 2.1 can be written in state space form as

A B. B.

P= C. D D.. K= A B. (2216)
C'u Dy. Dy.
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The well posedness of the system can now be seen as (I - DcDO) being invertible.

Furthermore, the closed-loop transfer function T,. can be written in state space form

as

T [ =](2.17)

where

. = r A + B,(I - DBD,)-ID•C, B,,(I - DDv,,)- (2.18)

S B(I - DvDe.)-'C, A + B0(I - D•,Do)-ID,,,C

B B. + B,(I - D.D,)-'DCD. 1
B.(I - DyD.)-1 Du,, 1(

C = [ aC + DZUDc(I - DDD)-'C, D.,(I - D.D,)-yC] (2.20)

V = [D.. + DDý(I - DDc)-'DIw] (2.21)

Thus, given a realization of the open-loop system and the feedback controller, we

can always determine the resulting closed-loop transfer function.

2.2 Stability Theory

This section will examine the stability of open- and closed-loop systems and

give some useful theorems relating to internal stability. The open-loop system (2.1)

is said to be stable if the A matrix is stable. Similarly, the closed-loop system is said

to be internally stable if the closed-loop A matrix defined by (2.18) is stable. The

following theorems give some conditions for internal stability.

Theorem 2.2.1 Assume the realization of P in (2.16) is minimal. Then there ezists

a proper K which achieves internal stability for the system in Figure 2.1 iff (A, B,)

is stabilizable and (C., A) is detectable.

Proof: See [17], Chapter 4.
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A controller K which achieves internal stability is said to be a stabilizing controller.

If such a K exists, then P is said to be stabilizable.

Theorem 2.2.2 K is a stabilizing controller for P iff K is a stabilizing controller

for P..

Proof: See [17], Theorem 4.2. a

Thus, from Theorem 2.2.2, only P.. must be considered for analyzing the

internal stability of a system. Internal stability can now be viewed as bounded

input-bounded output stability for the system shown in Figure 2.3 where the inputTs[ TTT

is IV, W2] , and the output is [eTj 41V. The system in Figure 2.1 is internally

stable if and only if the system in Figure 2.3 is internally stable. Finally, the internal

stability of the system in Figure 2.3 is given by the following theorem.

Theorem 2.2.3 The system in Figure 2.3 is internally stable iff (I - PyuK) is

invertible and all four transfer functions in

[ I -K =[ I + K(I - PK)-'P K(I - PK)-1 (2.22)

- p. I (I - PyK)-1Pu (I - PyK)- J

wohich transfers the input IV, i4 12 t [e. e2T are proper and stable.

Proof: See [17], Chapter 4.

2.3 Operator Spaces

The transfer functions in this work can be treated as elements of operator

(vector) spaces. In particular, we will consider members of the Hardy spaces H 2 and

H., the function space L1 , and the sequence space 41. The functions in these spaces

are representations of the actual operators, but we shall abuse the notation and refer

to the functions as operators in this work. For further information on operators and

their representations, the reader is referred to [181. This section will define these

2-6



Seyl

SK V2

Figure 2.3. Internal stability system

spaces, the associated norms, and methods for computing the norms. First we need

to define the following Lebesgue spaces. L2(-joo, +joo) is defined as the space of

all functions F(s) which are analytic on the imaginary axis and

jJ F*(jw)F(jw)dw] < +00 (2.23)

Lno(-j0o, +joo) is defined as the space of all functions F(s) which are analytic on

the imaginary axis and

ess supB [F(jw)] < +0o (2.24)
wElt

where -(.) denotes the maximum singular value.

2.3.1 H 2 Space. H 2 is defined as the space of all transfer function matrices

which are analytic in the open right-half complex plane and have a bounded two-

norm, where

2TI[ := . f•J tr [T;,(jw)T=•(jw)] dw (2.25)

Furthermore, we shall define the subspace RH2 as the space of real-rational functions

(rational functions with real coefficients) in H2 . H 2 is a closed subspace of the Hibert

space (or complete inner product space) L2.
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Unfortunately, (2.25) is not easy to compute, but there is a fairly standard

method for finding the two-norm of a transfer function (see, for example, [19]).

Consider the transfer function

G(s) = R •H 2  (2.26)

Then the two-norm is given by

IG(a)Ji: = tr (LCTC) = tr (LoBBT) (2.27)

where L, and L. are the controllability and observability gramians of G(s), respec-

tively. The gramians are the positive semidefinitive solutions to the Lyapunov equa-

tions

AL, + LA7 + BBH T = 0 (2.28)

LoA + ATLo + CTC = 0 (2.29)

If G(s) E RL 2 := RH2 D RH2 , then the transfer function G(s) can be written

as

G(J) = G1 (s) + G2(8) (2.30)

where Gl(s) E RH2 and G2(a) E RH 2
1 . Since the inner product (GI, G2 ) = 0,

JIG(a)ll2 = IIG1(,)I11 + IG(•)11 (2.31)

The two-norm of G2(8) is

JIG2112 = [IG;(8)11 2  (2.32)

where GC(8) E RH 2 and its two-norm can be computed using (2.27).
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2.3.2 H. Space. The next space of operators which will be discussed is

H... H. is defined as the space of transfer function matrices which are analytic and

bounded in the open right-half complex plane. Again, the subspace of real-rational

H.. functions will be denoted as RHo. H1,, is a closed subspace of the Banach space

(or complete normed linear space) L,,. Furthermore, Ho is the space of bounded

operators which map L2(0, +0o) into L2 (0, +oo); thus the norm of interest is the

induced operator norm

ITmI I(2.33)

sup IIT..0WI[) (2.34)

I sup IIZ112 (2.35)

= sup [TU(jW)j (2.36)

This norm will be referred to as the infinity-norm. The infinity-norm can be seen

to be the maximum possible gain of the system; thus, to minimize the energy of

the output due to a unknown but deterministic bounded energy input, one must

minimize the infinity-norm of the transfer function. Another important property of

the infinity-norm is the submultiplicative property of induced operator norms [18];

given F, CG E H then

IIFGII. _ •FIIFII.IIGIG• (2.37)

This property, which does not hold for two-norms, is very important for robustness

problems, as was seen in Theorem 1.1.1.

The infinity-norm can be determined by computing the maximum singular

value of the transfer function over a sufficiently large range of frequencies and se-

lecting the maximum value. However, this is not always numerically practical since

some a priori knowledge of the maximum singular value behavior over frequency is
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needed. Another more precise approach is based on the eigenstructure of a Hamil-

tonian matrix associated with a state space realization of a proper stable transfer

function [17]. Consider the transfer function

G(s) = (2.38)C D

Then the associated Hamiltonian is

S+ [ A +BR-DTC BR-B (2.39)
H = -CT(I + DDT)-1 C -(A + BR - 1DTC)T J

where R =/21 - DTD. The infinity-norm of the transfer function is the smallest

"I such that the eigenvalues of H on the imaginary axis (if any) have even partial

multiplicities. Effectively, this reduces to finding the smallest -" such that H has no

eigenvalues on the imaginary axis. In Chapter VI, a refined method for computing

the infinity-norm will be developed.

2.3.3 L1 and 41 Spaces. The final spaces discussed in this work are the

L1 function space and the 41 sequence space. As with the H2- and H.o-norms, the

L1-norm will be developed for continuous-time systems; however, the 4-norm will

be developed in discrete-time. Furthermore, we will only discuss scalar transfer

functions (SISO) in this section.

2.3.3.1 L1 Space. Let LI(0, +oo) denote the space of all causal

functions g(t) such that

f+00
HlgAlI = J jg(t)ldt < +oo (2.40)
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For convenience, we will denote the space as L1 . Associated with each g(t) E L1

there is a Laplace transform Q(s), where

9(.9) := fo +00g(t)e-"dt (2.41)

Let A denote the space of all bounded linear operators on L1 . Given 9 E A, the

induced norm on A is given by

11911A sup 119rl- - (2.42)

= ulghl (2.43)

= Ig(t)Idt (2.44)

where rE L. (O,+oo).

Since this is an induced operator norm, the submultiplicative property holds

and the norm can be used for robustness analysis. Computation of the Ll-norm is not

as convenient as the previous norms. Since we will only consider stable systems, the

impulse response will be bounded below by some epsilon after a fixed time. Therefore,

an approximation of the L1-norm can be made through a truncated approximation

of the integral (2.44).

2.3.3.2 11 Space. Let 11 denote the space of all sequences h = {h(k)}

such that
+00

I1hl!1 = E Ih(k)l < "00 (2.45)
k=O

Given a sequence h& E 41 we can define the z-transform

2-11



If WI is the s-transform of the pulse response h of a linear system, then Wf is stable if

and only if h E 11 [20]. Let I. denote the space of all bounded sequences f = {f(k)}

with a norm defined by

lif 1lo = max If(k)l (2.47)

Define A as the space of all stable functions and let 'H E A be a particular

function which maps r E Iw to m E I,. Then h E 41 is the pulse response associated

with Xf. The induced operator norm of 7W on A is given by

+00
117H1A := E jh(k)l (2.48)

k=1

Thus,

117-1IIA = 11h1ll (2.49)

If r is an unknown but deterministic bounded magnitude input, and it is desired

to minimize the worst case maximum magnitude of the output m, then the 11-norm

of the pulse response function should be minimized. For convenience, the induced

norm on A will be referred to as the 4l-norm of the transfer function. The 41-norm

is an induced norm; therefore, the submultiplicative property holds and the norm

can be used for robustness analysis.

For the SISO case, the I4-norm can be approximated to an a priori tolerance

e through the sum of a truncated series [21]. Let h be a finite dimensional linear,

time-invariant system, and let W" be the z-transform of h with a minimal realization

•'/(Z= I~ l~dtd Dd(2.50)

The 41-norm of h is given by
+00

Ilhli - X• Ih(k)l (2.51)
A=O
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This sum can be rewritten in state space form as

+00
III&Ill - X ICdABdI + IDdI (2.52)

k=O

If h is stable, Al approaches zero as k approaches infinity; thus, (2.52) can be approx-

imated by truncating at some integer N. Suppose Ad has distinct roots a,, a2,. • •, an.

These ai are the poles of the z-transform 7(z) of h, and since h is stable, Jail < 1

for i = 1,...,n. Therefore,

W(z) = -ba + d = Cd(zI - Ad)-I'Bd + Dd (2.53)

where

b, = (z - ai)G(z)l.__• (2.54)

Let a. max I=aI and b -= mjax JbI1. Given some c > 0, whenever N is such that

ýLv+' <( a...) (2.55)

n"~

then
N N

SICdAABdI + IDdl < II:Il1 < ICdA BdI + IDdI + (2.56)
k=O h=O

Therefore, for the SISO case, the 11-norm can be approximated to any desired accu-

racy.

2.3.3.3 Relationship Between L1 and l. For a particular transforma-

tion from the continuous domain to the discrete domain, an asymptotic relationship

between the L1-norm and the 42-norm can be derived. The transformation is known

as a forward rule, which results from substituting

z- (2.57)
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where r is the discrete time step. Thus, given a continuous system

T.' [+AB] (2.58)Y.,s)= C D

then the transformed system is

T, [A)I+A DJ (2.59)CE D 8 C D

The system in (2.59) will be referred to as an Euler approximating system (EAS)

for the continuous system [221.

Now the relationship between continuous and discrete one-norms is given by

the following theorems.

Theorem 2.3.1 Assume the continuous system

S= A m + B r (2.60)

m = Cz+Dr (2.61)

is stable. Then, given r > 0, the EAS system

mk+I = (I + rA),k + rBrk (2.62)

mh = Cxk + Drk (2.63)

is stable, and

IIT."111 < IIT2''III (2.64)

Furthermore, JIT•,As'I1 -- IITmHI1 monotonically as r --- 0.

Proof: See [221, Theorems 2 and 3.
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Thus, using the EAS transformation, the e1 -norm will always provide an upper bound

on the L1-norm for a given system.

2.4 Lyapunov Equations

As was already seen in the computation of the two-norm, equations of the form

ATX +XA+Z=O (2.65)

play an integral part in modern control theory. This type of equation is known as

a Lyapunov equation. This section will present some key theorems on existence and

uniqueness of solutions to Lyapunov equations. First, a theorem on uniqueness is

presented.

Theorem 2.4.1 If Z > 0 and A is stable, the Lyapunov equation (2.65) has a

unique solution and X > 0.

Proof: See [23], Lemma 12.1

The existence of solutions to (2.65) is related to the stability of A through the

following.

Theorem 2.4.2 Suppose X > 0, Z > 0, (%/i-, A) is detectable and (2.65) holds.

Then A is stable. If (vf/, A) is observable, then X > 0.

Proof: See [23], Lemma 12.2

Theorem 2.4.3 The Lyapunov equation (2.65) has a unique solution iff A is stable.

If A is stable, then X = 0 is the unique solution to

ATX +XA=O (2.66)

Proof: See [24], Theorem 2.1. 0

2-15



2.5 Riccati Equations

Two forms of the algebraic Riccati equation (ARE) which are associated with

H12 and H. optimization will be used in this dissertation. This section will present

some existence and uniqueness conditions for solutions to both types of Riccati equa-

tions.

2.5.1 H 2 Type. The algebraic Riccati equation associated with the H 2

problem is

ATX + XA - XBR-lBTX + CTC = 0 (2.67)

where R = RT > 0. Given a minimal realization (A, B, C, 0), the following theorem

characterizes the solution to (2.67).

Theorem 2.5.1 Assume (A,B) controllable and (CA) observable. Then there ezists

a real symmetric solution X to (2.67) with the property Re [k-(A - BR-1BTX)j < 0

(> 0) for all i. Moreover, it is unique and such that X > 0 (< 0). Fgrtkermore, it

is the only solution in the set of all positive (negative) semidefinite matrices.

Proof: See [251, Lemma 4. 0

The controllability and observability conditions can be relaxed with the fol-

lowing results.

Theorem 2.5.2 Assume (A,B) is stabilizable. If (2.67) has a real symmetric so-

lution, then it has a mazimal solution X+ such that X+ ._ X for all X satisfying

(2.67). Moreover, Re [k.(A - BR-1BTX,)] < 0 for all i.

Proof: See [26], Theorem 2.1.

Theorem 2.5.3 Assume (A,B) is stabilizable. Then the real symmetric solution to

(2.-67) exists and its maximal solution is positive semidefinite. If (C,A) is detectable,

then Re [k-(A - BR-BTX+)] < 0 for all i, and if (C,A) is observable, then X+ > 0.
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Proof: See [261, Theorem 2.2. 0

These results hold for the dual of (2.67)

AX + XAT - XCTR-lCX + BBT = 0 (2.68)

with the following substitutions: A = AT, B = CT, and C = BT, and making the

appropriate substitutions of observability (detectability) and controllability (stabi-

lizability).

The above theorems and their duals can be used to develop a set of assumptions

which will ensure the existence of symmetric solutions to an H 2 type Riccati equation.

This will be useful in the next chapter when we develop a parametrization of all H2

controllers.

2.5.2 HJ, Type. The algebraic Riccati equation of interest for the H..

constraint in this work is

AX + XAT + XBR-iBTX + CTC = 0 (2.69)

Associated with the Riccati equation (2.69) is the Hamiltonian matrix

[ A BR-lBT 1

M. C A AT J (2.70)CTC -A T

Define

f(s) := R - G**(s)G(s) G(s) = C(9I - A)-1 B (2.71)

2.5.2.1 Existence and Uniqueness. If (A, B) is controllable, then

the existence and uniqueness of the solutions to (2.69) are given by the following

theorem.

Theorem 2.5.4 Assume (A, B) is controllable. Then, the following are equivalent:
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i. there exists a solution X of (2.69) such that X = X"

ii. there exists a solution X- of (2.69) such that Re [,j(A + BR-1BTX_)] < 0

for all j

iii. there exists a solution X+ of (2.69) such that Re [1Aj(A + BR-1BTX+)] > 0

for all j

iv. the partial multiplicities of the imaginary azis eigenvalues of the Hamiltonian

(2.70) (if any) are even (the partial multiplicity of an eigenvalue is defined as

the order of its associated Jordan block when the matriz is in Jordan form)

v. 4(jw) > 0 for all W E[(0, +0o0

Moreover, if i-v hold, then the following are true:

vi. the solution X_ of (2.69) with the properties of ii is un.,ique

vii. the solution X+ of (2.69) with the properties of iii is unique

viii. X_ = X+ iff all the eigenvalues of (2.70) are on the imaginary azis

Proof: See [27], Theorems 1, 3 and Corollary 5; [281, Theorem 3.11; and [29],

Theorem 3. 0

Based on this theorem, the existence of solutions to (2.69) can be determined. Fur-

thermore, the minimal solution, which is the one we are most interested in, is unique.

The controllability assumption can be relaxed using the next theorem.

Theorem 2.5.5 Define

Q(X) AX + XAT + XCTR-lCX + BBT (2.72)

Assume there ezists an X = X* such that Q(X) < 0. Then
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i. if (A,B) is stabilizable, there exists a unique minimal solution X- to (2.69).

Furthermore, X_ < X for all X such that Q(X) < 0 and

Re [1,(A + BR'B"X_)] < 0 for all i

ii. if (-A,B) is stabilizable, there exists a unique maximal solution X+ to (2.69).

Furthermore, X+ ._ X for all X such that Q(X) • 0 and

Re [k,(A + BR-1BTX+)] > 0 for all i

iii. if (A,B) is controllable, both X+ and X- exist. Furthermore, X+ > X- iff

Re [N,(A + BR-'BTX_)] <0 for all i if Re [A,(A + BR-'BTX+)] > 0 for all

i

iv. if Q(X) < 0, then i and ii above can be strengthened to

X. < X, Re F[A(A + BR-1BTX_)] < 0 for all i, and

X+ > X, Re [AX(A + BR-1 BTX+)] > 0 for all i, respectively

Proof: See [28], Corollary 3.4.

Thus, if the assumption on (A, B) is relaxed to stabilizable, we can still determine

if solutions to (2.69) exist and the uniqueness of the minimal solution.

The next theorems are key results which will be used in this work.

Theorem 2.5.6 Assume (A,B) stabilizable and Re [Ai(A)] _< 0 for all i. If X = X*

satisfies (2.69), then X > 0.

Proof: See [30], Lemma.

Theorem 2.5.7 If (CA) is detectable, then there exists an X > 0 satisfying (2.69)

only if A is stable.

Proof: Since (C,A) is detectable, CTC > 0, and BR-1BT > 0. Then from

[23], Theorem 3.6, (vrXBR-IBTX + CTC, A) is detectable. Furthermore, assume

a solution X > 0 exists, then (2.69) can be treated as a Lyapunov equation and

Theorem 2.4.1 implies A is stable.
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Combining the above two theorems, we can determine what conditions are necessary

for a positive semi-definite solution to (2.69) to exist. Further, the nature of real

symmetric solutions can be determined from the stability of the matrix A.

2.5.2.2 The Riccati Operator and Stabilizing Solutions. Consider a

Hamiltonian matrix M of order 2n which has no eigenvalues on the imaginary axis.

One can then define two n-dimensional subspaces X_(M) and X+(M). X_(M) is

the invariant subspace associated with the eigenvalues of M in the left-half complex

plane and eX+(M) is the invariant subspace associated with the eigenvalues of M in

the right-half complex plane. The matrix which is comprised of the basis vectors of

•Y_(M) can be partitioned as

Xs(M)=ePan[i] (2.73)

where X 1, X2 E R,,"n. X1 is nonsingular if and only if the two subspaces

X_(M) and [0] (2.74)

are complementary. In this case, X := X2Xj1 and the Riccati operator is defined

as Ric : M --+ X or X = Ric(M). The domain of the Riccati operator, denoted

dom(Ric), is defined by all Hamiltonian matrices such that

i. M has no eigenvalues on the imaginary axis

ii. the two subspaces in (2.74) are complementary.

Theorem 2.5.8 If M. E dom(Ric), where M.. is defined by (2.70), and

X = Ric(Mo), then

i. X is symmetric
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ii. X satisfies (2.69)

iii. Re [•(A + BR'-BTX)] < 0 for all i

Proof: See [31], Lemma 2.1. a

The Riccati operator can be extended to include cases where the Hamiltonian

M has eigenvalues on the imaginary axis. If M has eigenvalues on the imaginary axis,

then there are at least n eigenvalues in the closed left-half plane. Thus, there is an

invariant subspace X_ (M) (not necessarily unique) corresponding to n eigenvalues

in the closed left-half plane with a basis defined as in (2.73) which satisfies

(2.75)

where T. is any 2n x 2n matrix with Re [i(T.)] _ 0 for all i = 1,.. . ,2n. If X_ (M)

satisfies the complementary property (2.74), then X := X 2Xj', if X is symmetric.

Define the eztended Riccati operator Ric: M --+ X with domain dom(i-c) consisting

of all Hamiltonians which satisfy the following:

i. an X._(M) exists such that the two subspaces in (2.74) are complementary

ii. the resulting X = X 2Xj 1 is symmetric.

RMc(M) may not always be a function since X may not be unique. In this work,

whenever Wic(M) = X is used, it will be a well-defined and X = -c(M) must be

unique.

Theorem 2.5.9 Suppose M.. E dom(- ic) and X = -R-F(Moo) is unique. Then

i. X is symmetric

ii. X satisfies (2.69)

iii. Re [Ai(A + BR• 1 • TX)] __ 0 for all j
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When iii has at least one j such that equality holds, X is referred to as the neutrally

stabilizing solution to (2.69).

Proof: Modification of [31], Lemma 2.1 using the above discussion.

Finally, to conclude the discussion of Riccati equations, consider

G(s) = B (2.76)

and the associated Hamiltonian

[ A+BR-DTC BR-lBT (2.77)
= -C(I - DDT)-IC (A + BR-iDTC)T j

where R = 721 - DTD. Then the following theorem defines bounds on the infinity-

norm.

Theorem 2.5.10 Assume A is stable and R > 0. Then the following are equivalent:

i. IIG(s)iI.o < -y

ii. M,. has no imaginary azis eigenvalues

iii. M.. E dom( Ric)

iv. M. E dom(Ric) and X = Ric(M.) Ž 0 (> 0 if (CA) is observable).

Furthermore, the following are equivalent:

i. JII(s)ll. _< -t

ii. M. E dom(I •)

iii. M. e dom(i-R) and X = -- c(M.) >_ 0 (> 0 if (C,A) is observable) is unique.

Proof: Modification of [31], Lemma 2.4 for general y.
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Thus, upper and lower bounds on the infinity-norm of a transfer function can be

determined by varying -y so that the Hamiltonian has eigenvalues on and off the

imaginary axis. This will be explored further when numerical solutions are discussed.

All of the above theorems hold for the dual of (2.69)

AX + XAT + XCTR-lCX + BBT = 0 (2.78)

by making the substitutions A = AT, B = CT, C = BT, and D = DT and mak-

ing the appropriate substitutions of observability (detectability) and controllability

(stabilisability). Furthermore, the matrix G(s) is replaced by GT(s) and R becomes

7'1 - DDT. With these substitutions, the last theorem of this section is

Theorem 2.5.11 Suppose A is stable. If there exists an X = XT > 0 satisfying

AX + XAT + (XCT + BDT)R-1 (XCT + BDT)T + BBT = 0 (2.79)

where

R = t 2 I - DDT > 0 (2.80)

then

IIC(aI - A)-'B + DIIo ! 5 (2.81)

Proof: Assume there exists an X = XT > 0 satisfying (2.79). Rewrite (2.79) as

sX - aX - AX - XAT = (XCT + BDT)R-'(XCT + BDT)T + BBT (2.82)

or

(sI - A)X + X(-sI - AT) = (XCT + BD T)R-' (XCT + BDT)T + BBT (2.83)
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Premultiply by C(aI - A)-' and postmultiply by (-sI - A T)-ICT to get

CX(-sYI - A T)-1 CT + C(aI - A) 'XC T =

C(sI - A)-'(XCT + BD T)R-' (XCT + BD T)TC(sI - A-

+ C(aI - A)-IBBTC(SI - A)-' (2.84)

Define L(s) := CX(sI - A)-'CT , L*(s) :=C(-sI - A T)-IXCT,

6(s) := C(sI - A)-'B, and F(s): G(s)D T. Then (2.84) becomes

LV(s) + L(s) - £(s)R-IL*(a) - L(s)R-lP*(s)

-P(sg)Rl'L*(.s) - P(a)R-lP*(.s) = G)*()(2.85)

Since R? = R* > 0 there exists an R"2 such that R-1 /2(Rl/2)* = I) R1/2 (R'/ 2)* = R,

and the following is true:

(R'/2 - L(a)R-1/2 - P(sg)R1/2 ) (R'/2 - L(s)R-'/ 2 - P(s)R-1/2) Y=

R - L*(.s) - L(a) - P*(s) - F(s) + L(,s)R-lL*(s9) + L(.s)Rl'P*(,s)

+ P(s)Rl'L*(s) -Ir P(a)R-lP*(s) (2.86)

Thus, letting C(s) = C(.sI - A)-'B + D and using (2.86) we can rewrite (2.85) as

(/2- L(s)R'/12 _ P(s)R-1/2 ) (R 2/2 - L(a)R'11 2 - P(s)R-1,12)* =

y21 - DD T - D&* - 6(.s)D T _ 6~(s)O*(s) + _y2 J - G(s)G*(s) (2.87)
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The left term of (2.87) is Hermitian on the jw-axis; thus, it is positive semidefinite.

Therefore

2721 - G(s)G*(a) - (G(a)G*(a) + G(a)DT + DG* + DDT) • 0 (2.88)

= 72I - G(s)G*(a) • 0 (2.89)

= IIG(a)Io -• (2.90)

The above theorem allows us to determine whether an Ho, constraint is met based on

the stability of the A matrix and the existence of a positive semi-definite symmetric

solution to the algebraic Riccati equation (2.79). This theorem will be very useful

in setting up the fixed order mixed H2 /Ho, problem.

2.6 Convex Optimization

This section is an introduction into some key concepts of convex programming

which will be necessary for this work. For a complete discussion of this topic, the

reader is referred to [32, 33, 34, 35, 36, 37].

Let X be a vector space, ZI, Z 2 E X, and a E (0, 1), then a convex combination

of zx and zxis azx+(1-a)z2. A set C C Xis said to be a convex set if for

every zW, xM E C then all convex combinations of zl and z 2 are also contained in C.

Defining a functional f : C --+ R, f is said to be a convex functional if

f[aMi + (1 - a)021 !5 af(xi) + (1 - a)f(X2) (2.91)

for all XI, X2 E C and all a e (0, 1). Furthermore, f is said to be a strictly convex

functional if strict inequality holds in (2.91), whenever zx 4 02.
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Suppose f(x), g9(z),...,g,,(z) are functionals defined on some subset C of a

vector space X. We are interested in the following program:

Minimize f(x) subject to

' g1(z) < 0 for all i (2.92)

where z E C C X

The functional f(z) is called the objective, and the functional inequalities gi(x) :_ 0

are called the constraints. A vector z E C is said to be an admissible point for P if

it satisfies all the constraints in 7P. The set A of all admissible points is called the

admissible region for P. If A is not empty, the P is said to be consistent, and if there

exists an x E A such that gi(x) < 0 for all i, then P is said to be superconsistent. If

7P is a consistent program and there exists an x* E A such that f(z*) _• f(m) for all

z E A, then x* is a solution for 7P. Furthermore, if P is superconsistent, then the

admissible region has an interior point. This is a necessary assumption for the main

theorem of this section.

If the objective f(z), the constraints gi(z), and the underlying set C are all

convex, then 7P is called a convex program. In this case the admissible set A will

always be convex. The Lagrangian C of the convex program P is defined as

£(x, A):= f(z) + . Ai(o) (2.93)
i=1

where x C, A:= [,..., ]T E m, and Ai >0 for all i.

The following theorem is the central result of convex programming.

Theorem 2.6.1 (Kuhn-Tucker Theorem (Saddle Point Form)) Suppose ?

givien in (2.92) is a superconsistent convex program. Then x* E C is a solution of ?

if and only if there exists a A* E R- such that:

i. > 0 for all j
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ii. (z*,A) • 4C(z*,A*) _• £(x,A*)

for all z E C and all A E Rm such that Aj >_ 0 for all j

iii. )jg(z(*) = 0 for all j

Proof: See (37], Theorem 5.2.13. a

The above theorem is just one form of the famous group of related theorems called

Kuhn-Tucker (KT) Theorems. For the convex analysis in this work, the saddle

point form will be sufficient. For additional forms of the KT Theorem, see, for

instance, [34, 36, 37]. The results of Theorem 2.6.1 are referred to as the Kuhn-

Tucker conditions, or just the KT conditions.

The next theorem deals with the uniqueness of the solution to a convex pro-

gram.

Theorem 2.6.2 Suppose P is the convez program given in (2.92) and z* E C sat-

isfies the Kuhn-Tucker conditions. If (z) is strictly convex, then x* is unique.

Proof: See [35], Corollary to Theorem 9.4.1.

2.7 Duality in Minimum Norm Problems

The final section of this chapter will discuss a dual approach for solving mini-

mum norm problems. An excellent source for this subject is [36].

Let X be a vector space. A functional f : X -4 R is a linear functional if

f(azI + Pz2) = af(z2) + ,f(X22) (2.94)

for all XI,X2 E X and for all a,,O E R. Further, f is a bounded linear functional if

there is some M E R such that

If(x)I <_ MII0II (2.95)
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for all z E X. The infimum over all such M is called the norm of f denoted IIfI. The

space of all bounded linear functionals on X is called the dual of X and is denoted

X*. Given X* E X*, then

I := sup Iz*(x)l (2.96)
1IM111I

The spaces under consideration in this work will be H2 and L2, which are Hilbert

spaces, and as such have special properties which will simplify the dual problem.

Let X be a Hilbert space. Then the following theorem provides a representation of

bounded linear functionals on X.

Theorem 2.7.1 Riesz-Frechet: Assume X is a Hilbert space. If f is a bounded

linear functional on X, then there ezists a unique vector y E X such that

f(z) - (z,y) (2.97)

for all z E X. Furthermore,

hf fI - IIvll (2.98)

and every y E X determines a unique bounded linear functional in this way.

Proof: See [36], Theorem 5.3.2. M

Thus, linear functionals on a Hilbert space can be represented uniquely by a vector

in the space. For the remainder of this work it will be assumed that [.]* is the vector

which represents the actual dual; while this is an abuse of notation, it will simplify

the discussion.

Another key concept in duality theory is alignment. A vector z* E X* is said

to be aligned with a vector z E X if

(z, -- II*II lIII (2.99)
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Finally, let X be a normed vector space. Then the support functional of a convex

set K C X is defined on X*as

h(z*) :=sup (z, *) (2.100)
NEK

The next theorem provides the main results from duality theory for the minimum

norm problem.

Theorem 2.7.2 Minimum Norm Duality: Assume X is a real normed vector

space. Let d > 0 denote the distance from a point zl E X and some convex set

K C X having support functional h, then

d = inf 1z - miI- max [(ziz*) - h(z*))] (2.101)
aEK 112*11<1

where the maximum on the right is achieved by some z* E X*. If the infimum on

the left is achieved by some mo E K, then - z is aligned with zo - mi.

Proof: See [36], Theorem 5.13.1.

Therefore, the infimal problem in the primal space can be transformed into a maximal

problem in the dual space. While this may not always provide a complete solution

to the problem, when combined with the alignment condition, optimal solutions can

often be found.

2.8 Summary

This chapter introduced state space representations of linear, time-invariant

trr.sfer functions. Further, we introduced the concept of internal stability. Next, the

operator spaces H2, H., and Li and their associated norms were introduced. A brief

review of Lyapunov equations and H2 type algebraic Riccati equations was presented.

A more detailed review of the conditions required for the existence and uniqueness of

solutions to H.. type algebraic Riccati equations was presented. This was followed
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by an introduction to the basic concepts of convex programming including the Kuhn-

Tucker Theorem. Finally, duality concepts were used to convert an infimal distance

problem into a maximal problem in the dual space.
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III. Review of H2, H,, and 1

As was discussed in Chapter I, this dissertation will deal with H2 , H'., and J&

optimization. This chapter will present an introduction to a state space approach for

finding fixed-order controllers which achieve the design goals of the above optimal

control problems. First, the important concept of the Youla parametrization of all

stabilizing controllers will be introduced.

3.1 Parametrization of All Stabilizing Controllers

Consider the feedback system given in Figure 3.1 where K E K, the set of

all stabilizing controllers. K is not a convex set; thus, the tools of convex analysis

can not be applied directly. However, a parametrization of all stabilizing controllers

over a convex set has been developed from the work of Youla, et at [38]. A compiete

discussion of the parametrization can be found in [17, 39]. This will only be an

introduction into the key ideas needed for this work. First we need to introduce the

idea of a coprime factorization of a transfer function.

3.1.1 Coprime Factorization•. Two function matrices F(s), G(s) E H..

are right-coprime if they have an equal number of columns and there exist function

w Pz

U y

K

Figure 3.1. Feedback system
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matrices X, Y E H. such that

[x Y]] =XF+YG=I (3.1)G

Further, F and G are lefi-coprime if they have an equal number of rows and there

exist function matrices X, Y E H.. such that

F G =FX+GY=I (3.2)

Let G be a proper transfer function matrix. Then writing G = NM-' where N and M

are right-coprime is called a right-coprime factorization of G. Similarly, the factoriza-

tion G = R-I R where R and if are left-coprime is called a left-coprime factorization

of G. Finally, for each proper matrix G, there exist N, M, 9, ft, X, Y, f, k E H.

such that

G = NM- 1 = M-1N (3.3)

and

i- f MY 13

(3.3) and (3.4) constitute a doubly-coprime factorization of G.

3.1.2 Parametrization. The following presents a method of parametrizing

all stabilizing controllers over all Q E H..

Theorem 3.1.1 Assume G is a proper transfer function matrix with a doubly-

coprime factorization given by (3.3) and (3.-4). Then the set of all controllers K
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which stabilize G is parametrized by

K = (Y - MQ)(X - NQ)-' (3.5)

= (f - Q•N)-( - QM) (3.6)

where Q E H(,.

Proof: See [17], Theorem 4.4.1.

Recall that P in Figure 3.1 can be partitioned as

P = P.p P.P* (3.7)

[PW Pyf .

Also, recall from Theorem 2.2.2 that a controller K stabilizes P if and only if it

stabilizes P.,. Thus, we get the following theorem which parametrizes all internally

stable closed-loop transfer functions T...

Theorem 3.1.2 Let N, M, N, M, X, Y, X, Y E Hoc, be a doubly-coprime factoriza-

tion of Py., K be defined as in Theorem 3.1.1, and define

T, = P.. + P•UMYPyw (3.8)

T2 = P..,M (3.9)

T3 = P•p (3.10)

Then T 1, T2, T3 E H,, and

T.= TI - T2QT3  (3.11)

Proof: See [171, Theorem 4.5.1.
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3.2 H 2 Optimization

H2 optimization is a generalization of the standard linear quadratic Gaussian

(LQG) problem. Returning to the feedback problem in Figure 3.1, P can be parti-

t i o n e d P = P . .P . ( 3 .1 2 )

PV. P MIilpu

such that
z = P..W + P.,u (3.13)

The exogenous input w is zero-mean white Gaussian noise with unit intensity.

The objective of H2 optimization is to design a controller K which is stabilizing

and minimizes the energy, or two-norm, of the output z. This can written as

a = inf Ilz112 (3.14)
K(s)Stabilizsinq

= inf IITw 11I2  (3.15)

= inf IIP. + PK(I - PvK)-'P,,,,I 2  (3.16)
K(S.)Stabdihing

A state space realization of (3.12) is given by

S= Az + Btw + Bt,u

z = Cx + Draw + D..u (3.17)
y = Cyxz + Dyw + Dyu

The following assumptions are made:

i. D,, = 0

ii. Dy=0

iii. (A, Bu) is stabilizable and (C., A) is detectable
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iv. DTD., = I and D,,DT = I

[. A, has full column rank for all w

C,.J D. I
vi. B] has full row rank for allw

Condition i is required to ensure the closed-loop transfer function has a finite two-

norm. Condition ii is assumed for ease of development but can be removed completely

through loop shifting techniques [40]. Condition iii is necessary for the existence of

stabilizing solutions. Condition iv is a regularity condition which insures that there

is a direct penalty on all controls and no perfect measurements. This condition

can be relaxed to a rank condition through scaling [41]. Finally, conditions v and

vi are required to ensure the existence of stabilizing solutions to the two AREs in

the following solution. This condition is equivalent to requiring the Hamiltonians

associated with AREs be in dom(Ric).

The controller which minimizes (3.14) is unique and will be denoted K2,,

with a corresponding minimum two-norm a. It is desired to parametrize sub-optimal

controllers for the purpose of trading off H2 performance for H1, performance. All

stabilizing controllers can be parametrized by a family of lower fractional transfor-

mations (LFT) of a transfer function J and a constrained freedom parameter Q E H2

as shown in Figure 3.2. One particular form of J is given by

r. . Aj K1 K1 ,]

J(s) = Ju Ju = -K, 0 1 (3.18)J"• J1.ga I
[Jvvtn~ Kd 1 0J

where (3.19)

Aj = A-KfCy--BKc (3.20)

c= BX 2 + DCZ (3.21)
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U Y

Figure 3.2. H'2 system with parametrized controller

K = Y2CT + B,,,DT (3.22)

Ka -- -C (3.23)

KII = B. (3.24)

and X2 and Y2 are the real, unique, symmetric positive semidefinite solutions to the

AREs

(A-B.DLC.)TX2 + X2A- B.DT.C.) -X2B,,BjX2 + 6r. = 0 (3.25)

where
( DI.DL)C. (3.26)

and

(A-B. DT.C.) Y2 + Y2 (A -B T y ~ j 0 (.7
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where

= - DTDV) (3.28)

The family of controllers which produce 1T..,j12  a c can now be parametrized

by

K(s) = F1 [J(.), Q(s)] (3.29)

where Q can be chosen to be any Q E 112 such that

IIQ-1 2a - _a (3.30)

The optimal H2 controller is attained through the above parametrization when Q is

chosen to be identically equal to zero, and the resulting optimal controller is

K 20" A=K (3.31)

3.3 H.. Optimization

H.. optimization was originated in the seminal paper by Zames [42]. The

original problem was posed in an operator-theoretic framework as a model matching

problem which can be reduced to a Nehari problem [17]. A state space solution,

based on a two ARE approach originally developed by Doyle, et al [11], will be

presented here.

Figure 3.3 represents the H.. feedback system, where d is a bounded energy

exogenous input with I[dII.. < 1, and the controlled output is e. In general, the

symbols w and z will be used for H2 inputs and outputs, and d and e will be used

for H.. inputs and outputs.
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U KyK

Figure 3.3. Ho, feedback system

The plant P can be partitioned

Pd P= 1 (3.32)

Pyd Py,

such that
e = P dd + Pu ()

y = Pydd + P,,u

The H,. optimization problem is to design a stabilizing controller K which minimizes

the maximum energy of the output e, given a bounded energy input, or

inf sup jIejj2 inf jjTedIoo (3.34)
Kdtabilizing ild<l2_1 KatabiLizing

inf IIPed+ P.,,K(I- PyuK)-1 Pydllao (3.35)
Kstabilizing

A state space realization of (3.32) is given by

S= Ax + Bdd + B~u

e = Ce2 + Dodd + Deu (3.36)

y = Cvx + Dydd + Dyuu

The following assumptions are made:
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i. Dej = 0

ii. Dw=0

iii. (A, B.) is stabilizable and (Cy, A) is detectable

iv.DrD.,, = I and DydD T ==I

v. A has full column rank for all w
CQ Du,,

vi. Bd has full row rank for all w
C, DDd]

Conditions i and ii are not required for a solution to exist, but reduce the com-

plexity of the solution. Condition iii is necessary for the existence of stabilizing

controllers. Condition iv is a regularity condition which is equivalent to requiring a

direct penalty on all controls and no perfect measurements. The condition can be

relaxed to a full rank requirement through scaling [41]. Finally, conditions v and

vi in combination with iii guarantee the two Hamiltonian matrices corresponding to

the following solution are in dom(Ric).

The infimum of the norm in (3.34) over the set of stabilizing controllers is

denoted - and, in general, the controller which achieves the infimum is not unique.

Furthermore, -f is found through an iterative method based on the solution to two

AREs and a coupling condition. This method is based on the parametrization of all

sub-optimal controllers where

IlTedila < I (3.37)

for some -y > -y This approach excludes the infimum, but allows it to be approached

to any desired tolerance. The family of all admissible controllers which satisfy (3.37)

is given by the LFT (Figure 3.4)

K(s) = F1 [J(s), Q(a)] (3.38)
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K Q

Figure 3.4. H,,. system with parametrized controfler

The parametrization is defined by

JAS) =J J =-K, 0 1 (3.39)
JW J." Ka 1 0

where

Ajr = A- KfCy -B,,K + --YC.CT(C.-_ D.,K.) (3.40)

K. =IBX ... )I__y -

Kc= BXo Dc)(-7•.oX.o)- (3.41)

Kf Y. CYoo + BdDvd (3.42)

K. -(I-2D•BTX. + CV)(I -2yX.) (3.43)

Ktt= 7-2Yo.CTD., + B,, (3.44)
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The matrices X., and Y. are the solutions of the AREs

(A - BXD.C.)TX.o + X. (A - BuD.Ce)

+X.(7-2 BdBT - BIB3)X.0 + 6T6. -0 (3.45)

where

(I - DD,)C (3.46)

and

(A - BdD C•)Ydo + YO.(A - BdDyCy) T

+Y~,(7- 2 CrC. - C~C 1 )Y** + bdb!T = 0 (3.47)

where

Bd = Bd(I - DydDy) (3.48)

Finally, Q can be chosen to be any Q E H. such that

IlQII. < (3.49)

The above parametrization of a controller K is valid if and only if the following

three conditions hold:

i. Hx E dom(Ric) with X. = Ric(Hx) _> 0

ii. Hy E do7n(Ric) with Y = Ric(Hy) > 0

fi. p(y.X.o) < _y2

where [x A - BUDT C. -y 2 BdBdT - BIABT
= eCe T I (3.50)

-(1 A - B1DC
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[Y A• BdDYC -7_ (3.51)
Hy = -BdBIa -(A- JdDC()T

are the Hamiltonians associated with (3.45) and (3.47), respectively.

To find a controller which results in a closed-loop infinity-norm arbitrarily

close to y/, select an initial value of -f and check the above three conditions. If any

condition fails, increase -y and repeat the process. If all three conditions are met,

reduce -y and repeat the process. In this manner, the controller which minimizes the

infinity-norm can be found to any desired accuracy (within numerical constraints).

A more refined method of determining -y based on the convexity of the AREs over

the set of admissible -y has been developed by Li and the reader is referred to [43]

for details.

3.4 The Complex Structured Singular Value

The final topic to be discussed in this chapter is the structured singular value

j. This section will introduce p and how to find an upper bound on p through H..

optimization techniques. Chapter VII will discuss the application of p-synthesis to

optimal control problems to guarantee robust stability and robust performance. For

a tutorial on the complex structured singular value, see [2].

3.4.1 Structured Singular Value. The structured singular value is a matrix

function based on the underlying structure of a set of block diagonal matrices

A := {diag[61,1,,..., ISIsI A 1 ,..., AF] I 6i E C, Aj E C'-j' " } (3.52)

where 6jI,, is the ith scalar block of order ri and Ai is the jth full block of order mj.

For simplicity of development, it will be assumed that A is square, but the theory
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applies as well for non-square perturbations. The dimension n of A E & is given by

S F

n = Eri + I mj (3.53)
i=1 j=2

The set of all block diagonal matrices which also have an infinity-norm bounded by

"I-' is defined by

BA:= {IA E A (A)-} (3.54)

The structured singular value of a real matrix M defined over the set of perturbations

A is
1

():min{(A) I A E A,det(I - MA) = 0} (355)

unless there is no A E A which makes I - MA singular, in which case it&(M) := 0.

From the definition of u,&(M), it can be seen that the maximum singular

value of M is always an upper bou4 nd; however, this bound can be conservative.

One method of reducing the conservativeness of the upper bound is to consider a

transformation which does not affect the value of #,A(M) but does affect the value

of F(M). First define a set of scaling transfer functions D which has the same block

diagonal structure as the perturbations A. These transfer functions are given by

D := {[Dl,...,Ds,diImi,..dF-1i.vnpiImp I

DiECriX?',Dj=D*>0,diER,dj>0} (3.56)

Now, an improved upper bound is given by the following:

Theorem 3.4.1 Assume M E Cn1xR, A is defined by (3.52), and D is defined by

(3.56). Then

ISA(M) < inf W(DMD-1) (3.57)
DED

Proof: See [441, Theorem 2.3.3.
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Figure 3.5. M-A system

Therefore, we can reduce the calculation of an upper bound on p to computing the

maximum singular value of a matrix.

Consider the system in Figure 3.5 where M and A can be partitioned as

M M 11 M 12  (3.58)
M21 M22

AEA= { A 0 ] A1EAA 2AEA 2 } (3.59)

The main result from p analysis follows.

Theorem s 1.2 (Main Loop Theorem) The following are equivalent:

i. PA(M) <

ii. (a) PA,(M22) < I, and

(b) max PA1 [FI(M, A2)] < -YA2 EBA2

Proof: See [2], Corollary 4.7. E

The importance of this theorem is that a single test on the transfer function M

allows us to infer information about the response to each perturbation block. Let
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p&A2(M22) < 7 be a desired measure of performance and pi,(M) < -y be a require-

ment for stability. Then from the Main Loop Theorem, p4 (M) < -y implies our

performance condition is satisfied and the system is robustly stable. Furthermore,

by exchanging A1 and A2 in the theorem, 1A(M) < y implies our system has robust

performance for all perturbations. Thus far we have only considered the case where

M is a constant matrix. The next section will expand these concepts to include

matrices which vary over frequency.

3.4.2 Frequency Domain p-synthesis. Suppose G(s) is a MIMO transfer

function with nd inputs and ne outputs. Assume A C C'dxn- has the block structure

given in (3.52). Define the set of all dynamic perturbations which have the desired

diagonal structure as

M(A) := {A(s) E iHo I A(so) E A for all so E U} (3.60)

where C+ is the extended dosed right-half complex plane.

Now, the complex structured singular value of a dynamic transfer matrix G(s)

over the structured perturbations A(s) E M(A) is defined by

IIG(s)JJA = sup/#A [G(jw)] (3.61)
wEt

Notice that we use the norm symbol for the structured singular value of a dynamic

matrix, but in fact, it is not a true norm since it does not satisfy the triangle

inequality. However, we will use this notation for convenience.

Define the set D of scaling transfer functions which have the same block di-

agonal structure as A, where each individual block has the property Di = D! > 0.

Then, an upper bound on the structured singular value of a transfer matrix is given

3-15



by

IIG(a)IIA < sup inf e(DMD-1 ) (3.62)CO-31er DED

inf JIDMD-1jjl (3.63)DED

Thus, for the purpose of control synthesis, (3.63) converts the i problem into an Hoo

problem combined with the selection o(the scaling matrix D. The closed-loop transfer

function M is determined by some open-loop plant P and a feedback controller K.

The H. problem can be solved for any given scaling D by solving a standard H..

optimization problem. Through an iterative process of closing the loop with an H..

optimal controller K and determining an optimal scaling D, the infimum in the above

problem can be approached. This method is known as D-K iteration. The method

is not guaranteed to converge to the optimal scaling D, but in practice provides an

acceptable method of approximating the optimal scaling. This limitation is a current

subject of research. The D-K iteration method results in a controller order equal to

the plant order plus twice the order of the scaling transfer functions. Furthermore,

since it-synthesis is based on designing an H.. controller, it can result in a non-strictly

proper controller.

Computation of is for dynamic systems is currently accomplished by computing

the D scaling over a large range of frequencies, then finding a D(s) which matches

the resulting point by point scaling. The order of D(s) is chosen to give the best

match, but a trade-off must be made since the order of the resulting H.4 controller

which minimizes the upper bound in (3.63) is equal to the order of the original plant

plus twice the order of D(s) (in general, minus one at optimal). Recently, Safonov

and Chiang have proposed a new approach to it-synthesis which avoids the curve

fitting problems; see [45) for details.
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3.5 Summary

We began this chapter by introducing the Youla parametrization of all stabi-

lizing controllers. This allowed us to parametrize a non-convex set of controllers over

a convex set. Next the solution to a regular H2 problem was developed. The set of

controllers which result in a ciosed-loop transfer function with a two-norm less than

some a priori value was shown to be an LFT of a particular matrix and a convex

set in H2. Similarly, the set of controllers which satisfy an H•, constraint on the

dosed-loop transfer function was shown to be an LFT of a fixed matrix and a convex

set in H,.. The fixed matrix is based on the solution of two AREs which are cou-

pled. Finally, p-synthesis was introduced for fixed and frequency varying matrices.

A method of computing an upper bound based on an H., problem, known as D-K

iteration, was introduced. In the next chapter we will begin to explore the optimal

H2 /H. problem.
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IV. The Optimal H2/Ho, Controller

The mixed H2 /H** problem consists of an H2 objective function with an H,.

constraint. The H2 problem is formed by selecting the outputs for which we wish to
minimize the energy due to a set of white Gaussian noise inputs. Weighting transfer

functions are often augmented at the output to emphasize certain frequency ranges

of the response and to deemphasize other frequency ranges. Additionally, weighting

transfer functions can be augmented at the input to provide a colored noise. The H,.

problem is set up by selecting a second set of outputs for which we wish minimize

the energy of due to bounded energy inputs. Again, weighting transfer functions can

be augmented at the input and output to control the frequency response. Stable

weighting transfer functions will be used to avoid the addition of unstable modes to

the problem. For further information on methods of applying H 2 and H.. optimal

control, the reader is referred to [19, 391.

This chapter will pose the general mixed problem in an operator-theoretical

framework and characterize the optimal controller using convex analysis. While a

complete analytical solution is not presented, the formulation of the problem in this

framework provides considerable insight into the nature of the solution and limits of

performance. The chapter will first set up the mixed optimal control problem as a

convex program using the Youla parametrization. Using this setup, the uniqueness

of the optimal solution for the mixed problem with one H.. constraint will be shown.

Furthermore, a dual approach will be used to characterize the order of the optimal

controller for a special case of the H,. constraint.

4.1 Parametrization of the H2/H,. Controller

Consider the general control system shown in Figure 4.1, where w is a unit

intensity white Gaussian noise input, d is a bounded energy input, and z and e

are controlled (possibly fictitious) outputs. It is assumed that there is no a priori
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U y

K
Figure 4.1. General mixed H 2/H,, optimization problem

relationship between w and d or z and e. The measured output is y and the control

law is u = K(a)y.

The mixed H2 /H. problem is to design a controller K(s) such that the transfer

function from w to z has minimum energy subject to maintaining the maximum gain

of the transfer function from e to d below some predetermined value -f. The former

problem is an H 2 optimization problem and the constraint is an H,, optimization

problem. The full plant P(a) is formed from some underlying plant G(s) augmented

with stable weighting transfer functions on the inputs d and w and the outputs e

and z. The general form of the system is

e Ped P. P, d

Z = d P. . P., w (4.1)

y Pyd Py, PY1  u

This system can be reduced to two separate problems: the H 2 problem, which is to

find an internally stabilizing controller K(s) that minimizes IIT.,.I 2, where

T. = P. + P.,K (I - Py.K)- 1 P,, (4.2)
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and the H. problem, which is to find an internally stabilizing controller K(s) that

satisfies IIT•dII• < y for some y, where

T.d = P.d + PK (I - PK)-f' Py (4.3)

To simplify the discussion, the following definitions are made:

inf i.OTdIIoo (4.4)
"KadmiaeibLe

a := inf IIT.,II 2  (4.5)-- Kadmissble

K2 , := the unique K(s) that makes IIT, 112 - (4.6)

SIITedlj. w hen K (9)= K 2.,, (4.7)

KmXi := a solution to the H2 /H.o problem for some -y > -_ (4.8)

" "I* : ITedIl when K(s) = K,.. (4.9)

a* IIT.II2 when K(s) Km. (4.10)

where the admissible set of controllers is the set of all stabilizing controllers. Fur-

thermore, we will assume the following:

i. T., has a finite two-norm which implies P,. is strictly proper

I. z cannot be decoupled from w which implies a > 0

ii. P.u# 0 and P. # 0

iv. P., and P. have full rank for all w E R

The assumption i ensures T.. is in H2. Assumption ii eliminates the uninteresting

case where a controller can completely decouple the output from the input. Assump-

tion iii ensures that the IIT,,2 IIz is a function of the controller K. Finally, assumption
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iv is a regularity condition on the Hf2 problem. It ensures all controls have some

direct penalty and there are no perfect measurements.

To characterize the stabilizability of the individual problems, define

P2P..P. (4.11)
[PYWPYtS

Pc P.= d P. (4.12)
Pud Py.

Lemma 4.1.1 Assume Pvu is stabilizable and P2, P., and P are formed by aug-

m. ting the plant G(s) with stable weighting transfer functions at the inputs d and

w and outputs e and z. Then the following are equivalent:

i. K stabilizes P.

ii. K stabilizes P2

iii. K stabilizes P,,

iv. K stabilizes P

Proof: Since no unstable modes are introduced by augmenting stable transfer

functions at the input and output, P.. stabilizable implies that P2 , P,, and P are

stabilizable. Thus, from Theorem 2.2.2, i implies ii, iii, and iv. Conversely, ii, iii,

and iv each imply i. 0

The mixed H 2 /Hoo problem can be stated as: find a stabilizing controller K(s)

which minimizes the two-norm of T. and satisfies the constraint that the infinity-

norm of Ted is less than or equal to some fixed -/. This is a mathematical programming

problem with a convex objective function and constraint, but the set of all admissible

controllers is not convex. Thus, convex programming cannot be directly applied to

solve the problem. However, through the use of the Youla parametrization of all

stabilizing controllers, this problem can be transformed into a convex programming
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problem. We begin by defining the doubly-coprime factorization of P.,

P,. = NM- = (4.13)

and

[R k1 I > = (4.14)

Thus, the set of all K which stabilize Py is parametrized over Q E H,, by

K = (X + MQ)(Y + NQ)-1 (4.15)

= (Y + Q.N)-Y(X + QM) (4.16)

Letting K 0 := K(Q = 0) = XY = -1 and defining

j = K° -k-'1] (4.17)

Y- = -1 y-1N

it can be seen that all stabilizing K are formed by a lower fractional transformation

of J and Q, F!(J, Q), as shown in Figure 4.2. Notice that the term common to both

Tz,, and Ted is

K(I - P =K)-1 = -(X + MQ)M (4.18)

Therefore, we can rewrite equation (4.2) as

T = P., - P,,XMIP,, - PZ,,MQMPy, (4.19)

-- T 22 -T 2 QT32  (4.20)

where

T2 = P-- - P-tXM PYW (4.21)
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Figure 4.2. Q-parametrization

T22 = -P,,,M (4.22)

T32 = -kPv. (4.23)

Similarly, we can rewrite (4.3) as

Ted = Ped - P.,Xk•Pyd- P,•,MQ.kPyd (4.24)

= T1. + T2.QT3. (4.25)

where

TI. = Pd - P.,Xif/Pyd (4.26)

T2. = -P.M (4.27)

T3. = kf/Pyd (4.28)
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It is possible to choose the doubly-coprime factorization such that K0 is K 20,., thus

T,,(Q = 0) = T12 ==: lIT 1 ,112 = a (4.29)

Note that it is not necessary to pick this particular K0 , it is just convenient for this

development. Additionally, for the two-norm of T,. to remain bounded, Q must be

restricted to Q E H 2.

Finally, the doubly-coprime factorization of P, must be found from an n2

order realization of P., where n 2 is the minimal order of P2-in particular, from

[A2 Bw BU2 ]
P2= [C. DW D.. (4.30)

C D D

or

Pv = Cy2(sI - A 2)-lB,2 + DW (4.31)

Now, our problem can be restated as the convex program: Find a Q E H2

which satisfies
fa= inf 1IT 12 +T22 Q Th 112

l,,iu subject to (4.32)

lIT 1. + T2.QT, 11 . !5

4.2 Uniqueness of the Optimal (Order-Free) H2 /1Ht Controller

To characterize the optimal controller, we will need the following lemma.

Lemma 4.2.1 If Tu, E H2 , then IIT.,(Q)1I 2 is a strictly convex real functional of Q

on H 2 .

Proof: Let Q1, Q2 E H2 and let a E (0, 1). Then

lIT 12 + T22 [aQ1 + (1 - a)Q 2] T32 112
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=- flaTi2 +,T 2,QIT 3•2 +(1-,a)T1 2 + (1 - )TC22 Q2T3 112 (4.33)

- I l[T12 + T22Q1 T32] + (1 - ,0)[T 1 + T2,QT3 ,111 2  (4.34)

< alIT1, + T22Q1 T3 ,1J2 + (1 - a))jT 1, + T2,Q 2T32 1j2  (4.35)

where equality holds only if the vectors in (4.35) are colinear [46]. However, this

implies

T12 + T22QIT2 = /9(T 12 + T22Q2T32) (4.36)

=€ T22QIT32 = (3 - 1))T12 +-/3T2,Q 2T32 (4.37)

=• Q1 = (P - 1)T;2T 12T1 +/3Q2 (4.38)

but T,'T1 ,T•1 • 112 [39], which implies Q, / H2 which violates the assumption;

thus, a contradiction. Therefore, the two-norm is a strictly convex functional. .

Armed with the above information we can now show that the optimal mixed

controller is unique.

Theorem 4.2.1 Let - > -y be given. Then the controller which satisfies the convez

program (4.32) is unique. Furthermore, the following hold:

i. if y Ž_ 1, the resulting controller is the optimal 112 controller

ii. If - < -f - ;, 1* = -f at the optimal (i. e., the solution will satisfy the H..

constraint with equality).

Proof: The problem is a convex program with an active convex constraint. From

Lemma 4.2.1, the two-norm is a strictly convex functional over Q, therefore from

Theorem 2.6.2, there is a unique Q E H2 which is the optimal solution to the convex

program.
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IIT,6II2

_a

I

IITIIL

Figure 4.3. Admissible region, -f _>;y

i. Define the Lagrangian

£ = IIT.II2 + A(IIT.JdI - -Y) (4.39)

and assume the solution is not on the constraint boundary, but falls somewhere

in admissible region shown as the shaded area in Figure 4.3 (i.e., "7* <y -). Then,

from Theorem 2.6.1, A = 0 and (4.39) reduces to

L = IIT.II2  (4.40)

The unique controller which satisfies the conditions in Theorem 2.6.1 is K 2,,

which is in the admissible region; thus, it is the solution.

ii. Let y < -_ and assume * <7 . Again, using Theorem 2.6.1, this implies

A = 0 and the Lagrangian (4.39) reduces to (4.40). As before, K2,, is the

o.dy controller which satisfies the KT conditions. However, as can be seen in

Figure 4.4, K 2., is not in the admissible region (shaded area); thus, Theorem

2.6.1 implies 7y* = .
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IIT ~II 2

Figure 4.4. Admissible region, -f -5y

4.3 Dual Approach to H 2/H.

The previous section showed the uniqueness of the optimal H2 /H.. controller

based on a Lagrange multiplier approach. This section will examine the solution to

the mixed problem using a minimum norm approach. All of the previous assumptions

on the system hold. In addition, for this section only, the system is assumed to be

a SISO mixed optimal control problem. This assumption is made to simplify the

notation and can be removed. Again, our problem is: Find a controller K(s) which

satisfies the following:

i. K(s) is internally stabilizing

ii. 11T.112 is minimized

iii. JITII ,. -< y where -Y E

To investigate the solution to the above problem define a less restrictive prob-

lem: Find a controller K(s) which satisfies the following:

i. K(s) is internally stabilizing

ii. 1IT.I12 is minimized

iii. JJQJJ. :5 -Y where -4 E(
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This problem will be solved using minimum norm duality. Furthermore, the problem

is related to the mixed norm problem and gives some insight into techniques which

might be applied to find a solution to the general problem. To date, however, the

full mixed problem has not been solved through this approach.

To begin, the problem is simplified by combining terms in (4.20) to get

T. = TI2 + T2•Q (4.41)

where T12 and T232 = T22 T32 are determined from the Youla parametrization of the

controller. We can now rewrite the problem as: Find Q E Hc. such that

a = inf 1IT12 + T2 QI12 (4.42)
IIQIIa.<o

Using an inne,-' 'iter factorization [171 we will transform the problem to a minimum

distance from a point (function) in L 2 and convex set in H 2. Let T23 2 = T2s2,T 232o,

where T232 is a unitary inner function and T232, is a stable and minimum phase outer

function. Then,

1IT 1 2 + T23a -Q112  I ITiij T12 + T232oQI12  (4.43)

= IR - X112  (4.44)

where R:= T-j.T, S=- =T2°32. and X SQ. Furthermore, IIT,112 is finite only

if X E H2 which implies Q E H2 .

Thus, our problem is to find the minimum distance between a point, R, and

a convex set in L2, where the convex set is defined by the continuous mapping S of

an infinity-norm ball in H2 . Our problem is now to find Q E H2 which achieves

a= inf hR - X112  (4.45)
XEK
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where the set K is defined as

K = {SQ E H2 1 Q E H2 , IIQII• -<} 7 (4.46)

From Theorem 2.7.2 we get

a = max [(R,X*) - h(X*)] (4.47)
IIX*'I 3<i

where X* E L*, which is the dual of L2, (-,-) denotes an inner product, and h(X*)

is the support functional for the set K defined by

h(X*) = sup (X, X*) (4.48)
XEK

The first step in solving the minimum distance problem is to determine the

support functional h(X*) of the set K. Since L2 is a Hilbert space, L2 - L* and

functionals can be defined from Theorem 2.7.1 as inner products. With some abuse

of notation, the support functional can be written as

h(X*) sup(X,X*)= sup 1 +f X*(jw)X*(jw)dw (4.49)XEK XEK21

< sup IIQl + IS*(jw)X*(jw)ldw (4.50)-- XEK 2r f0

+ IS*(jw)X*(jw)dw. 
(4.51)

Thus, (4.51) is an upper bound on the supremum. To determine if it is actually the

desired supremum, we will develop a sequence and see if it approaches the upper

bound as its index approaches infinity. Let

{(XX*)} = {(X, IX*)} (4.52)
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where X,, = SQn and

7 J •og(S--X*) if w E [-n,n]
0= { otherwise (453)

Then

(X,, X*) - 2 jQ•(jw)S*(jw)X*(jw)dw (4.54)

= 12 - agn[S*(jw)X*(jw)1S*(jw)X*(jw)dw (4.55)

7 L IS*(jw)X*(jw)ldw (4.56)

which approaches (4.51) as n approaches infinity. Thus, h(X*) is defined by (4.51).

With this definition the problem becomes

C1 maxl [(R, X-) - ~- L IS()Xiw)Idw] (4.57)

< max f~o (IR(-i,,)I - 3'lS(-j,,)I) IX*(.iw)Id,,, (4.59)
f1. ] s(wx(

= max, (IR(-jw)I - 3yIS(-jw)I) IX*(jw,)I] (4.60)IIX*112! 2r_ol

where E., is defined as

E= {(w E R I IR(-jw),I > -f IS(-jw)I} (4.61)
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Notice, (4.60) will be maximized when X* is colinear with (IR(-jw)I - 'I S(-jw)1);

therefore, X* has the form

0 if wEEf

c [yR(-jw)- 7S(-jw)lJ if R(-ja) > y IS(-jw)1 (4.62)

-c[IR(-j,,)l- -ylS(-jw)l if -R(-jw) > 'vlS(-iw)l

where c := IIIR(-jw)l - vrlS(-jw)1,12' to make IIX*112 = 1. Thus, we get

a - 1 27r c(IR(-jw)l - 7IS(-jw)1)2  (4.63)

_J., [JR(-jw)I - 7 lS(-jw))J] (4.64)

{2w JB, [(IR(-jw).I - -fIS(-j) ,))* (IR(-j.,w)I - -yIS(-jw)I)]12

Equation (4.64) gives a method of determining the optimal L.wo-norm of a

mixed control problem for a given y. However, it does not provide a direct method

for determining the optimal controller. If the infimum in (4.42) is achieved for some

Qo E H2, we can use the alignment condition in Theorem 2.7.2 to determine the

unique Q0. In this case,

((R - Xo), Xi*) = ihR - X0112 lXll (4.65)

where X 0 = SQo. However, from the definition of X*, it can been seen that the

alignment condition will force Q0 to be a piecewise continuous function. This im-

plies that the controller which minimizes the two-norm of T,, and satisfies the Ho,

constraint will be piecewise continuous and not an RH 2 function. However, it will

be the limit of a sequence of RH2 functions since H2 is the closure of RH 2 .

The above derivation is based on the assumptions T1. = 0 and T2.T 3 . = I.

Relaxing these conditions, we return to the original SISO mixed H 2/H,, problem.
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This can be written as: find the Q E H2 which achieves

S= inf lIT 12 + T23,Q11 2  (4.66)
liTic +T23•a QIjM<_a

As before, use an inner-outer factorization to get T23, = T232,T 23 2, and T23, =
Ts. T23,... Define R "= Ti-T1 ,, S := -T 2 3,o, U := T Tic, and V := -T 2:,o.

Then (4.65) becomes

a = inf JR - SQ112  (4.67)liU+VQ1l. <-Y

Once again, this is a minimum distance problem between a function and a convex

set in L 2. An equivalent problem in L2 is

a= inf JR - X12  (4.68)
XEK

where

K:= {SQ e H 2 I Qe 112, JJU + VQI,•y < 7} (4.69)

Applying Theorem 2.7.2, the problem is transformed to

a = max [(R,X*) - h(X*)] (4.70)
Iix*112 1<

The problem now is to find the support functional h(X*). This is still an open

problem. It would appear that this would be a simple extension of the previous

development since the infinity-norm constraint is an affine function of Q. However,

since the constraint is an infinity-norm ball in L 2, the definition of the support

functional results in a complex inner product. Further investigation into the problem

is necessary to complete the theoretical approach for designing the optimal controller

for a mixed problem.
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4.4 Summary

In this chapter the mixed H2 /H. optimal control problem was set up and

parametrized over a convex set Q E H2 . Using this parametrization we were able

to show that the optimal controller for a given -/ is unique. The optimal solution

was shown to be K2.,, if - - 7y. Furthermore, the optimal solution must satisfy the

H. constraint with equality if -_ < y . Finally, for the SISO mixed problem,

the special case T1. = 0 and T2zT3. = I was investigated using a dual minimum

norm approach. It was shown that the optimal controller in this case is piecewise

continuous and cannot be represented by a rational function.

One must remember that the optimal controller discussed thus far is based

on a free controller order; if the order is fixed to some arbitrary value, the mixed

solution may not necessarily be able to achieve the same two-norm as the optimal

order controller. However, for applications, a fixed-order controller of low order is

desirable. The next chapter will develop the necessary conditions for an optimal

fized-order controller for the mixed H 2 /H,, optimization problem.
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V. Fixed-Order H2/Ho. Optimal Control

The previous chapter characterized the optimal (order-free) controller for the

mixed H2 /H.. optimization problem. While the controller order has not been de-

termined analytically, numerical results suggest the optimal order is larger than the

order of the full system including all the H 2 and Ho weights. Wells and Ridgely 147]

have conjectured the optimal controller order is infinite. This conjecture is based

partly on the evolution of the loop shape of the closed-loop system as the order is

increased. For control applications, infinite order controllers are impractical. In fact,

it is desirable for the controller order to be as low as possible. However, a trade-off is

usually necessary between the controller order and system performance and robust-

ness. This chapter will develop the necessary conditions for an optimal fixed-order

mixed controller.

Ridgely, et al [10], developed a fixed-order solution for the general mixed

H 2 /H,. problem with output feedback. However, their development is based on

a controller order equal to the order of the underlying system augmented with both

the H 2 weightings and the H,, weightings. Maintaining the lowest possible con-

troller order is an important consideration in control synthesis. Therefore, the first

objective of this development is to allow the controller order to be reduced to as low

as that of the system augmented with only the H2 weights. This objective has the

additional advantage of allowing complicated (i.e., increased order) H,, weightings

to be introduced into the problem without increasing the controller order directly.

The increased freedom in selecting H,, constraint weightinti allows a more desirable

final loop shape to be used in the model matching problem. However, there is still

a penalty to be paid in computation time for increased order constraints, as will be

seen in the next chapter. Furthermore, the H2 order solution may not be capable of

achieving the desired model match, but there is still a trade-off available as the order
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is increased from that of the H2 problem to that of the system augmented with both

the H2 weightings and the H. weightings.

Another assumption in [101 is that the constraint forms a regular H,, problem.

In the original formulation of the H.. problem, Zames [421 desired to minimize the

sensitivity of a closed-loop system. However, this results in a singular H.. optimiza-

tion problem (one in which the control usage is not directly penalized and/or perfect

measurements are allowed). In general, this problem can be treated sub-optimally by

placing limits on the controls and/or by adding disturbances into the measurements.

In the recent literature, this problem has received much attention. Copeland and

Safonov (481 take a generalized system approach in which this problem is solved by

perturbing the singular problem to a neighboring regular H.. problem. They showed

that the perturbed solution converged to the solution of the singular problem as the

perturbation approached zero. Stoorvogel [49] developed conditions which must ex-

ist for the singular H.. control problem with measurement feedback to be solvable,

and his solution is equivalent to the above work. Finally, Juang, et a[ (501, use the

structural algorithm [51J to transform the singular H, problem into a regular one.

However, all the above techniques result in a controller which is not guaranteed to be

proper, and in general, will be improper for the optimal H,, controller. Therefore,

the second objective of this chapter is to solve the mixed H2/Ho, problem as formu-

lated by [10] with the regularity assumption on the H.. constraint relaxed. In the

mixed H2 /H.. problem, the objective function (the H 2 problem) always results in

a strictly proper controller. Thus, appending singular H,, constraints will not lead

to improper controllers. It should be noted that this problem has been addressed in

the literature by Juang, et al [501, but their solution only provides an overbound to

the two-norm.

Finally, to simplify the development, Ridgely, et al [10], assumed there was no

feedforward term in the H., constraint. However, this assumption restricts the H,,

constraint weightings to strictly proper transfer functions. To accomplish this, the
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weights must be rolled off at high frequency. However, consider a model matching

problem for the complementary sensitivity. There is no physical reason to roll off

the high frequency weight. In fact, it is desirable to maintain a reasonable weight at

high frequency to ensure unmodeled high frequency modes are not ignored. Thus,

the feedforward assumption is an unnecessary restriction which limits the options

of the designer. Therefore, the final objective of this chapter is to reformulate the

mixed problem with the feedforward assumption on the HO. problem in [10] relaxed.

This will allow proper Ho. weights.

5.1 State Space Formulation

Consider the system in Figure 5.1, where d and w are exogenous inputs and

e and z are the controlled outputs. The measured output is y and u is the control,

where the control law is u = Ky. It is assumed, in general, that there is no re-

lationship between e and z or d and w. The input w is unit intensity zero mean,

white-Gaussian noise and the input d is of bounded energy. The transfer function P

is formed by augmenting stable weighting transfer functions from an H2 problem (w

to z) and an H.. problem (d to e) around the original system G(s), resulting in the

state space form
A - d
A b.id , b.,tu

P C D. D. D. (5.1)

C. Da D.

where (*) are the matrices associated with the system augmented by the H2 and H..

weights. The order of the individual H2 and H.. problems will usually be less than

that of P. The state space equations of the individual H2 and Ho problems can be

written as
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d e
w P z

U y
K

Figure 5.1. General mixed H21H.. optimization problem

2= A202 + B,,w + B.2 u

z CX 2 + Dzww + Dzuu (5.2)

Y = CwZ2 -,- D.w + Du

ic = Aoom. + Bdd + Bu.ou

e = C zm + Ddd + Du (5.3)

y = Cy..Zoo + Ddd + Dpu

where z2 is the state vector for the underlying H 2 problem and zX is the state

vector for the underlying H,, problem.

The mixed H2 /Ho, problem is: Find a controller K(s) which satisfies

in'f;, JIT.112 subject to JjT., alloo <-
Kotabilizing TI 2 abedt ldlo•7

where

T, = C.(aI - A2)-1 Bw + D. (5.4)
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T.d = C.(:I - Ao)-'Bd + Ad (55)

are the closed-loop transfer functions from w to z and e to d, respectively. The

various matrices in (5.4) and (5.5) will be defined shortly.

To solve this problem, the following assumptions are made:

i. D., 0=O

ii. Dv 0=O

iii. (A,, B.2 ) stabilizable, (C., A,) detectable

iv. D.D=. full rank, D,,,D.T full rank

v. A 2 - has full column rank for all wC. D=,,I

vi. A2 - wI B,] has full row rank for all w

Assumptions i-vi are made for the reasons given in Section 3.2 for an H2 problem.

Since the H2 problem is a regular problem, it will guarantee a proper stabilizing

controller will result; therefore, the H. assumptions from Section 3.3 are relaxed.

In particular, Dd is not restricted to zero and no assumptions are made as to the

ranks of Du and Dvd. Furthermore, no restriction is placed on jw-axis zeros of the

associated Hamiltonians. Therefore, singular and non-strictly proper H. constraints

are allowed in this development.

The controller in Figure 5.1 is given by

ic= Acoc + Bcy

u = C,.zc + Dy (5.6)
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Combining (5.2) with (5.6) produces the closed-loop state space equations for T..,

i% (A+ BD.C1W)z2 +Bu 2C.c+ (B1 ,+ B. 2 D,ýD4)w

= = B.C.z -+ A~x + BRD~w (5.7)

z- (C. + D,,DrCy2 )z + D. x + DDD.w

Notice that DUDCD,. must be identically zero for the two-norm of Tz. to be finite;

therefore, assumption iv implies D= = 0. Thus, we can assume without loss of

generality that the controller K is strictly proper. It should be noted that the set of

admissible fixed-order controllers may not achieve the same minimum value of the

infinity-norm of Ted as the set of all stabilizing controllers. Therefore, y may not be

the same as in the optimal order case.

Closing the loop of our system we get

i2 = A 2X2 + B.w

z = C .x2 (5.8)

i = Ax. + Bdd

e = CX ± + Addd

where

X2 = 0 (5.9)

x= [= (5.10)

A. = B .2 
(•5

B-,,1  Aý
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A.,A B B.. oC (5.12)

BrCv. A,

B. 
.-

Ba = BDd] (5.14)

C.= [C. DZsCC](15

Ce = C. D.C 0 ] (5.16)

S= D(5.17)

5.2 The Lagrangian and Necessary Conditions

The mixed H 2/H., problem is now to determine a K(s) such that:

i. A 2 and A. are stable

i. IITdll-o -< for some given 7 >-

iii. 1IT.112 is minimi-ed.

The following theorem will be necessary for the development of this problem.

Theorem 5.2.1 Let (Ac, Be, CC) be given and assume there ezists a = QT > 0

satisfying

A.Q. + Q.4A + (Q.C. + Bd•.d)R-'(Q.CT + BdVaI)T + BdBT = 0 (5.18)

where R = (721 - V. dV) > 0. Then the following are equivalent:

i. (A., Bd) is stabilizable
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ii. A,. is stable

iii. A 2 is stable.

Moreover, if the above hold then the following are true:

iV,. iITedio <•I

v. the two-norm of the transfer function T~w is given by

IIT=..II2 = tr[C.Q2CTJ = tr[Q2C!C.]

where Q2 = QT > 0 is the solution to the Lyapunov equation

A 2 Q2 +Q 2-4 + B.BT

vi. all real symmetric solutions Q.. of (5.18) are positive semidefinite

vii. there exists a unique minimal solution Q.. to (5.18) in the class of real sym-

metric solutions

viii. Q. is the minimal solution of (5.18) iff

Re[Aý(A., + BdDVR-1 C. + QooCTR-1 Ce)] < 0 for all i

i- ,IIT.I < (<) - i.f e [P,(A.( + BdV.TR-'C. + QoCTR-'C.)] < (5) 0 where

Q.. is the minimal solution to (5.18).

Proof: i => ii: From the dual of Theorem 2.5.7, (A.o,Bd) stabilizable implies

A.. is stable. ii =* i: A,. stable implies (A., Bd) stabilizable. ii 4* iii: Implication

comes directly from Lemma 4.1.1 and the definition of internally stability. With A

stable, iv comes directly from Theorem 2.5.11. v is directly from the discussion of

two-norms in Section 2.3.1. vi is from the dual of Theorem 2.5.6. vii and viii come

from the dual of Theorem 2.5.5. Finally, ix follows from the duals of Theorems 2.5.5,

2.5.8, 2.5.9, and 2.5.10.
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The key result of this theorem is that, given a controller which is closed-loop

stable for the H2 problem, we can determine the minimum level of the H,, constraint

by determining the minimum value of y for which a positive semidefinite solution to

(5.18) exists.

Using Theorem 5.2.1 the mixed problem can be restated as: Determine the

K(s) which minimizes

J(A., B., C.) = tr[Q2 CTC.] (5.19)

where Q2 is the real, symmetric, positive semidefinite solution to

A2Q2 + Q24 + B.WB = 0 (5.20)

and such that

A.Q. + QOO.A + (Q.oC+ + BdVd)R-i(QoCT+ Bd )T + BdB•' = 0 (5.21)

has a real, symmetric, positive semidefinite solution. To solve this minimization

problem with two equality constraints, a Lagrange multiplier approach is used. The

Lagrangian is

£ = t,[Q2Cf'Cz] + t,{[A2Q2 + Q2AT2 + B.BIUBX}

+ tr{[A.oQ., + QOOAF + (QOOCr + BdTVd)R-'(Q.CT + B d) T

+ BdBdY} (5.22)

where X and Y are symmetric Lagrange multiplier matrices. This approach is similar

to the one used by Ridgely, et al [10], but it incorporates the feedforward (D.d) term.

Furthermore, Theorem 5.2.1 allows the case where the H.o constraint is singular.
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The first order necessary conditions for the minimum of this Lagrangian are

=XI'Q1 2 + X 2Q2 + YI2Q + Y2Qb = 0 (5.23)

=B Xj'Q1 C,, + X 2 Q'1C.' + XV2+ X 2 By.2 + YITQGCL

± Y2~G~ ~ +Y 2B~b + (y12Q. + y2QT)C.M

+(ylTQb + Y2Qb)CTDCM = (5.24)

19CC ,1 X 1 Ql2 + BTX 12Q2 + RT12Q 12 + R2C,:Q 2 + BTY 1 Qb,

+ BLYl 2Qb + R.TQ.YIQ..b + R.TQGY 1ZQb + R.TQ~bYITQ~b

±R~bQ~by2Qb + R&CCQbYQC + R4C.QbylTQ.Ib

+ aCQyl 2Qb + RbC.Qby 2Qb

+ P1(Y1Q.6 + Y12Qb) + P2(ylTQ~b + Y2Qb) = 0 (5.25)

=ý- A2Q 2 +Q2AF +BX =O0 (5.26)

8C = AIM+ XA2+ CTC.=O0 (5.27)

TY= A.Q. + QOOA~ + (QOOCT + Bd~r)R-NQ.CT BdV) T

+ BdBdT = 0 (5.28)

8C = (A.o + Bdl).TR 1'Ce + Q.CTRl'C.)Ty

+ Y(A. + BdVrRK1 Ce + Q0 CTR 1'C.) = 0 (5.29)
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where

M = R-D,~d(5.30)

P1 = D.TR-1 DedBd (5.31)

P2 = De.MB (5.32)

Q2[=QlQ12] (5.33)

x=[VI X] (5.34)

QMO =- T Q (5.35)

[ = YI ] (5.36)

B., B,. = [B- j[BI DT BY]

-, VB: V2BI] (5.37)

Bd(V.TdR-1 D) + I)Bd - B~d~ (DVTdR 1 Ved + I) rBdT DTB.]

V. B V b B f ~ (5.38)
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R, R12Cc (5.39)C! R12 CTR2C.

CTR 1 Ce CT [ ] R-1 [ C Deulc

= R . (5.40)CIT CT bC

These equations have not been solved analytically but do provide some insight

into the nature of the solution. In particular, (5.29) implies that either Y = 0 or

(A. + BdVTdR-'C. + Q.CTR-l'C) is neutrally stable. The former condition means

the solution is off the boundary of the H1. constraint (where the boundary is defined

by the constraint being satisfied with equality), and the latter condition implies the

solution lies on the boundary of the H,. constraint and Q.. is the neutrally stabilizing

solution for the H.,l Riccati equation (5.21). This relation will be used to develop

the solution to the problem.

5.3 Ht2 Order or Greater Order Solution

The order of the controller is now fixed to an order greater than or equal to the

order of the underlying H2 problem, n2, and the mixed H2/H0 0 problem is solved.

Since the controller order is greater than or equal to n2 , the unique optimal solution

K2, is admissible and the H1. constraint achieves an infinity-norm of y with this

controller. Thus, for the mixed H2/1H00 problem with y Ž! I the optimal controller is

simply the H2 optimal controller. Similarly, no controller of any order exists which

can reduce - below the level of the optimal H,0 controller, -y; therefore, for the

mixed 11/H 00 problem, no solution exists for y < 7-. Finally, the two-norm of the
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H2 problem associated with the optimal H.. controller is, in general, infinite. Thus,

the only region remaining is 7y <7 y <.

Returning to the last of the first order necessary conditions (5.29), the solution

to the problem must either lie on the boundary, -'* = f, or it must be off the

boundary, -/ < -y < y. The latter condition results in Y = 0 and the Lagrangian

(5.22) reduces to

C = tr[Q2CTCxI + tr{[A 2Q2 + Q24 + B.BLIX} (5.41)

which is the Lagrangian associated with the 12 optimization problem. These facts

lead to the following theorem.

Theorem 5.3.1 Assume n, Ž_ n2 . Then the following hold:

i. If 7 < 7-, no solution to the mized H12/1H. problem ezists

ii. If 7_ < 7• -7, Kmiw is such that 7* = 7

iii. If- > K 2 ,, is the solution to the mized H2/Ho problem.

Proof:

i. Assume -j < 7. Then there is no controller which can satisfy the H1, constraint.

ii. Assume -y < 7 -< y and 7* < -. This implies Y = 0 and the Lagrangian (5.22)

reduces to (5.41). From Lemma 1 in [10], the only controller which satisfies the

first order necessary conditions for a minimum of (5.41) is the unique K20,,.

However, this solution lies outside the admissible region; thus, a contradiction.

Therefore, 7* = 7-

iii. Assume - -! and 7* < 7. Again, this implies Y = 0 and the optimal solution

is K 2,,, which is admissible. If 7 = 7, the Lagrangian reduces to (5.41) and

K 20, , is the optimal solution.
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Figure 5.2. Typical mixed H2 /H. a versus y curve
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For a controller with order greater than or equal to the order of the//2 problem,

the solution to the mixed H2/Ho. problem with -f < -t < I lies on the boundary

of the H.. constraint, y* = .y. Moreover, for -y < T - 7, Theorem 5.3.1 implies

there are no extrema except those on the boundary of the Hoo constraint. Thus in

this region, a* is a monotonically decreasing function of -j as shown in Figure 5.2.

Finally, the solution to the Riccati equation (5.21) must be the neutrally stabilizing

solution. The following theorem states this connection formally.

Theorem 5.3.2 Assume A is stable and R = (Of91- D dDT) > 0. If there exists

a Q. > 0 satisfyjing

fitQ. + QOOTA + (QooCT + BdTVed)R-'(QoCT + BdETVd )T + BdBdT = 0 (5.42)

then the following are equivalent:

i. IIY lIoo = -

ii. (Ao. + BdV JdR-'C. + Q.cTR-'Ce) is neutrally stable

Furthermore, in this case Q.. is unique.
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Proof: This is directly from Theorems 2.5.9, 2.5.10, and 2.5.11 and Theorem 5 in

[101.

5.4 Summary

This chapter developed the first order necessary conditions for a fixed-order

mixed controller. The assumptions made in previous work were relaxed to allow

singular Hoo constraints and those with a feedforward term. Further, the order of

the controller can be reduced to as low as the H2 order. Finally, the necessary

conditions were used to show that the controller must satisfy the Ho constraint

with equality whenever the constraint is active (and feasible). Currently, there is

no way of applying these conditions directly to find analytic solutions to the mixed

H 2 /H.. problem. In the next chapter a numerical approach, based on the results in

this chapter, will be developed for the mixed problem.
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VI. Numerical Approach

The previous two chapters characterized the optimal (order-free) solution and

determined the necessary conditions for a fixed-order solution. However, the de-

velopment thus far has not provided a technique for synthesizing controllers. This

chapter will develop numerical approaches to the mixed problem which will approach

an optimal fixed-order solution. The resulting controller is usually super-optimal, a

controller which does not satisfy the constraint but is as close as numerically possible

to the desired solution. Sub-optimal solutions, those which satisfy the constraint,

but are not optimal, can also be found in many cases.

Ridgely, et al [9], developed a numerical method for synthesizing solutions

to the general mixed H2 /H.. optimization problem. The technique is based on a

homotopy method. A connection between the H., central controller (the controller

found by the method in Section 3.3 with Q=O) and the mixed controller is used to

develop a new performance index

j4 = (1 - &)JIT 11 2 + I& tr[QooCjCe] (6.1)

where p E (0,1]. As is is varied from one to zero, the resulting controller approaches

the desired mixed controller. For IL = 1, the optimal controller is the central Ho,

controller. Using this as an initial condition, p is decreased and a new controller

is found which minimizes J,, using a Davidon-Fletcher-Powell (DFP) method [371.

This process is continued until the two-norm is converged.

There are several drawbacks to Ridgely's numerical solution to the H2 /Ho•

control problem. First, this method requires a considerable amount of computation

time due to a DFP search being accomplished for each increment of the homotopy

parameter is. Furthermore, each run produces only a single controller for a fixed -f

on the curve shown in Figure 5.2. The computation time required to find one point
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on the curve is on the order of one week. Thus, the first objective of this chapter is

to develop a numerical approach which reduces the computation time.

Another limitation of Ridgely's approach is it assumes the controller order

is equal to or greater than the plant augmented with the H 2 and HC, weights. In

addition, the method assumes the H.. constraint is strictly proper. As was discussed

in the previous chapter, there are several reason why these assumptions need to be

relaxed. Therefore, the next two objectives are to reduce the order of the controller

to as low as the H12 problem and to incorporate a feedforward term in the Ho,,

constraint.

Finally, the greatest limitation of Ridgely's method is it is based on the central

controller. Therefore, it does not allow singular Ho constraints, since the central

controller may not be strictly proper (or even proper) if the underlying H.. constraint

is singular, this poses a serious problem if the Ho, constraint is singular. As we saw in

the last chapter, this places a limitation on the designer if only regular H.. constraints

are allowed. Therefore, the last objective of this chapter will be to develop a method

which allows singular He. constraints.

Two numerical methods will be developed in this chapter-one will treat the

H.. constraint as an equality constraint and the other will treat it as an inequality

constraint. Furthermore, methods of computing the gradients for the objectives and

constraints will be discussed. Finally, an F-16 longitudinal control design problem

will be used to demonstrate the numerical approach.

6.1 Numerical Method

An alternative method for solving this problem was motivated by Figure 5.2.

Since the optimal H 2 controller is relatively easy to calculate and it provides a point

on the desired curve, it was selected as the initial controller for the new method.

The problem now is to start from the optimal H2 controller and step along the a

versus -, curve by progressively reducing 'y from I to -y by some increment. This is
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a new approach to the mixed problem which has resulted in a significant reduction

in computation time. The primary reduction is due to the fact that each iteration

of the method results in a new point on the a versus -y curve. The reduction in

computation time will be discussed further at the end of this chapter.

6.1.1 Equality Constraint Approach. Applying the results from the previ-

ous section, it is seen that the optimal mixed H2 /H.. controller for a fixed Y will

have the property that ITedll.. = -. This suggests an equality constraint approach.

To enforce the equality constraint, the square of the error between the constraint

and its desired value are adjoined to the objective function. While this does not

guarantee the constraint is satisfied, it will result in a method which attempts to

minimize the objective function while concurrently reducing the error in the H..

constraint. This approach results in the following pe'ik, .nance index

J -IIT~• + A(IlITeI0 _-)2 (6.2)

where A is a penalty on the error between the desired - and the infinity-norm of the

transfer function. Define the vector Z as

al a... *. (6.3)

where aej, bc, and cci are the columns of Ac, Bc and Cc, respectively. The first order

necessary conditions for J, to be a minimum are

_112 a [- (l l[IIT'II )•0)2
0zi +z Ozi

- allTll + 2A(I ITsdlO -a ) a8llTdlloa =-0 (6.4)

for i = 1,..., n. and n. = nc x n. + n+ x p + n, x m, where zi are the elements of Z.
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A DFP algorithm [37] is used to minimize the performance index. The one

dimensional search in the algorithm uses a parabola fit to reduce the number of

function evaluations required to converge to the minimum. The DFP iterations

are continued until a predetermined maximum number of iterations (normally, 20)

is reached or IVJTHVJ.I is below some preset tolerance, where VW, is gradient

vector and H is the DFP curvature matrix. Further, if no convergence is found by

the one dimensional search, the DFP routine is exited, the step in -1 is ased, and

the search is continued. This allows a relatively large step size for -f used. As

- approaches -y, the step size is decreased so as to keep -Y > -f. The basic algorithm

is as follows:

i. Compute the optimal H2 controller and set up the initial Z vector

ii. Compute y and set -=

iii. Decrement -y

iv. Perform DFP search over the Z vector space for minimum J,

v. Store resulting controller and repeat from step iii.

To avoid unstable closed-loop systems, J, is set to a value of 1020 if the closed-

loop A 2 matrix has any unstable eigenvalues. This results in an "artificial wall"

which insures the algorithm only searches in the direction of stabilizing controllers.

Initially, the algorithm can be run with loose tolerances on the DFP search to

define the desired a versus -y curve, then the convergence tolerances can be tightened

and a particular point can be refined to desired accuracy. In addition, this new algo-

rithm can be applied from any initial condition, not just the optimal H2 controller,

by substituting the appropriate initial Z vector and -.

6.1.2 Inequality Constraint Approach. Unfortunately, there are several

numerical drawbacks to equality constraint approaches for numerical optimization.

However, these can be overcome using an inequality constraint approach. Consider
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the program

numn f(Z)
Katabilizing

P subject to (6.5)

g(Z) < 0

where f(Z) = [IT..(Z)11I and g(Z) = IIT.4(Z)[[o - -1. One approach to minimize

this performance index is called sequential quadratic programming (SQP) [52]. This

technique converts the nonlinear program into a quadratic subproblem with a linear

constraint. The objective function is expanded in a Taylor Series around a nominal

Z vector. The constant term is dropped and the expansion is truncated at the

quadratic term. The constraint is expanded in a Taylor Series and truncated after

the linear term. The resulting subproblem is

rain crHkd+ Vf(Z)T d
d~-2

subject to (6.6)

Vg(Z)T• + g(Zk) <_ 0

where Zg, is the value of the Z vector at the kth iteration, HIk is a positive definite

approximation of the Hessian matrix and n, is the length of the Z vector. This

subproblem can be solved using available quadratic programming algorithms [37,

52, 53] and results in search direction di for the kth iteration. The Z vector is then

updated by

Zk+I = Zk + ahdk (6.7)

where aA is determined from a one dimensional search. The Hessian matrix can be

updated in several ways, but a common method is the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method [37] as follows

qsqj• _t H~H
= Hk +A.Hk+, = H k + q• qK'HAk (6.8)
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where k := Zh+I - Z1 and

q (+:= Vf(z.+,)+ AVg(Zh+) - Vf(Zh)AVg(Zk) (6.9)

where A is an estimate of the Lagrange multiplier. The same algorithm proposed in

the previous section can be used, substituting the SQP minimization for the DFP

minimization in step iv.

Another advantage of the SQP approach is it allows infeasible solutions. This

allows the optimization routine to approach the solution from both the feasible and

infeasible region. This has the advantage of not forcing the routine to bias its search

direction to ensure it remains in the feasible region. If the SQP converges with a

stability constraint violation, the point will have to reattempted with a smaller step

in -y. In general, this was not found to be a problem. For the problem at hand, this

means we can allow controllers which result in unstable dosed-loop systems. This is

done by adding a second constraint

h(Z) = maxJ{e[k,(A2 )]} (6.10)

This constraint is added into the program (6.5). Since the closed-loop system can be

unstable, a stable/antistable projection of the H2 transfer function must be used to

compute the two-norm (see Section 2.3.1). A central difference method can be used

to compute the gradient of the Lagrangian corresponding to the stability constraint.

Analytical gradients for the stability constraint were not considered, but may be

possible.

6.1.3 Computing Gradients of the Two-Norm. The gradient of the square

of the two-norm can be computed using the results of the previous chapter. Recall

ITl2 = tr [Q2CrjC.] (6.11)
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where Q2 is the real, positive semidefinite solution to the Lyapunov equation

A2Q2 + Q2.4 + B WB• =0 (6.12)

Forming a Lagrangian,

£ = tr [Q2CTC-] + tr [(A2Q2 + Q2A2T + BWB!)Xj (6.13)

the resulting gradients are

0£_
-- XjTQ 12 + X2 Q2  (6.14)

0£
= XjQC, + X2QTC• x;V 12  (6.15)

- B•, X IQ 12 + B TX 1,Q 2 R T12Q 12 + R 2C .Q 2 (6.16)OC.

M, = AX +X.AZ+C C,, =0 (6.17)
YQ 2

= Q2 + Q2A2 + B,.! = 0 (6.18)

where the various matrices are defined as they were in the previous chapter. The

method for actually computing the gradient VIITwI( at some Zk is as follows:

i. Solve (6.17) for X and (6.18) for Q2

ii. Compute Of , -L'C-, and A;g from (6.14), (6.15), and (6.16), respectively

iii. Compute the gradient by

Oz(110 A nco &B e I-

DZ L\AB 1 ace aJ,/ c.
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6.1.4 Computing Gradients of the Infinity-Norm. The gradient of the

infinity-norm represents complex matrix relations and is not easy to evaluate ana-

lytically. There are two different approaches which have been taken in this work.

The first method uses a modified central difference method. An improved approach

to computing the infinity-norm of a closed-loop system is also developed for use with

the central differences. The second uses the sensitivity of the maximum singular

value of a matrix developed in [541.

6.1.4.1 Central Differences. The basic central difference formula is

OIIT.d(Z)II. _ IITdt(Z + 6Z,)II,. - IITC(Z - 6Z4)1I. (6.20)
azi 26zi

where

Zi = [ ... 0 6;, 0-...0] (6.21)

If the closed-loop ..4 matrix of the perturbed system has any unstable eigenvalues,

the infinity-norm is set to a value of 1020. This results in an "artificial wall" which

insures the algorithm only searches in the direction of stabilizing controllers. Fur-

thermore, to avoid computing a false partial derivative due to the artificial wall, a

one-sided difference is ised at those points. If the resulting slope reduces J., in the

direction of the artificial wall, the derivative is set to zero; otherwise, the one-sided

difference is used.

As was pointed out by Ridgely [9], the computation of the infinity-norm of a

transfer function using the Hamiltonian method is not numerically stable enough

for accurate numerical partial derivatives. This is due to the numerical ill condi-

tioning of the Hamiltonian. However, Galinet [55] suggests using the generalized

eigenproblem to improve the numerical robustness of the infinity-norm computation.

This can be accomplished by finding an associated matrix pencil which has a similar

eigenstructure to the original problem. Since the generalized eigenproblem does not

6-8



require an inversion of the Hamiltonian, it is numerically better conditioned. In

[55] Gahinet develops such a generalized eigenproblem by defining the generalized

Hamiltonian

A 0 0 B

0 -AT CT 0•/ = (6.22)
C 0 -yI D (.2

0 -BT DT -/1

S= 1](6.23)
0 0" +P

where A E Rnx,, B E Wxn,, and C E Rx,. The generalized spectrum of the

pencil W" - Al coincides with the spectrum of the Hamiltonian plus m + p infinite

eigenvalues associated with the singular part of 1. The QZ algorithm [561 can be

used to find the generalized spectrum. To implement the generalized eigenproblem

algorithm, the lower bound on - is set to zero. An upper bound 7 = y.M,, is

selected and the QZ algorithm is used to compute the generalized spectrum. If the

real part of any eigenvalue is within epsilon of the jw-axis, then -,,.' is increased

and the routine is repeated. Once an upper and lower bound on the infinity-norm

are found, a bisection method [571 is used to refine the value. Since the eigenvalues

of the generalized eigenproblem are symmetric about the origin, they will always

approach the jw-axis in pairs and separate along the jw-axis in opposite directions

as 7 is decreased. To improve the accuracy of the bisection method, two tests on

7 are used to determine the jw-axis intercept: is the real part of the eigenvalue

within some epsilon of the jw-axis, and is the difference in the imaginary part of

the twr: eigenvalues within epsilon? Figure 6.1 graphically presents the region of the

jw-aids intercept. Since the eigenvalues of the pencil 7W - AT are symmetric about
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Figure 6.1. jw-axis intercept

the real axis, one must account for all the eigenvalues on the imaginary axis. This

was incorporated into the algorithm by computing the difference between all pairs of

eigenvalues on the imaginary axis and then ensuring the sum of the results is less than

some epsilon. This results in a more numerically robust method for determining the

axis intercept. By incorporating both the generalized eigenproblem approach and

the combined real and imaginary test, the overall robustness of the infinity-norm

computation has been improved enough to provide sufficiently accurate numerical

derivatives for a DFP algorithm to be used.

6.1.4.2• Singular Value Sensitimity. A second approach for computing

the gradient value of the infinity-norm is based on the sensitivity of the singular value

of a matrix developed by Giesy and Lim [541. Assuming the maximum singular value

of Ted evaluated at Z has a single peak for w E R+, the derivative of the infinity-norm

can be written as

OIIT~~dll [UH / dTed(WO0) (.4
a Re u1 ~ dz1 IZ6 vi1 (6.24)
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where ul and v, are the singular vectors associated with the maximum singular value

of TW, wo is the frequency where the the maximum singular value reaches its peak

value, and Z,,.. is the nominal Z vector. The derivative of the transfer function can

be determined from

dT.j(wo) -d (C.(Jwo- A..)-' Bd + Add (6.25)
dzi z. dz Z.

The advantage of this approach is that it eliminates the bisection search re-

quired in the central difference approach. This can result in a significant savings in

computation time as the size of the Z vector grows for complicated problems. In

addition, the accuracy of the gradient is better than that of the central difference

approach. This is due to the fact that we are not taking differences of small numbers

which often results in bad information due to truncation and roundoff errors. Fur-

thermore, since there is no requirement to search for the - which causes the real part

of the eigenvalues of the Hamiltonian to go to zero, the sensitivity method is better

posed numerically. Finally, the gradient of the infinity-norm of the H. constraint

is often a piecewise continuous function of the controller (Z vector). This is due

to the norm definition; it is the peak magnitude of the function. As the controller

is perturbed, the frequency where the peak magnitude occurs can change and the

gradient associated with the peak at the new frequency is usually not the same as

the gradient at the previous peak. Thus, a central differences approach can result

in an incorrect gradient. The sensitivity method does not have this problem since it

only provides information on the unperturbed transfer function.

The sensitivity method does have some disadvantages. The first and most often

encountered problem is when the maximum singular value reaches its maximum at

multiple frequencies. As discussed above, this results in a point where the gradient

is discontinuous. Thus, the infinity-norm is a continuous, but not smooth, function

of Z. Another limitation of the sensitivity method is it depends on determining
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the peak of the maximum singular value over frequency. This is accomplished by

selecting a finite frequency range and computing the maximum singular value. While

a priori knowledge of the behavior of Td can be used to determine the proper

range of frequencies, there is no guarantee that the range will remain fixed as the

optimization routine iterates. Therefore, when using this method, a check must

be made to ensure the maximum actually occurs in the selected range. Finally,

the peak value of the singular value is determined by searching over a finite set of

frequencies. This set must be fine enough to ensure an accurate peak is determined.

If the selected grid is too coarse, the computed maximum singular value can be in

error. One method to overcome this drawback is to take a two-step approach. First

find the maximum singular value with a coarse grid, then refine the grid and find

the maximum again. This method was not included in the original code used in this

work, but has subsequently been incorporated.

Both of these methods have been implemented for SISO and MIMO problems.

To date, the sensitivity method has been found to provide better results than the

central difference method, due to the reduced computation time required and the

improved numerical accuracy. All the examples in this work used the SQP approach.

6.1.5 Initial Conditions and Controller Realizations. The two algorithms

described above use the optimal H 2 controller as an initial condition for starting

the routines. This controller was chosen due to its ease of computation; however,

the algorithms can be applied from any initial controller, not just the optimal H 2

controller, by substituting the appropriate initial Z vector and y. In general, both

methods can result in either sub-optimal or super-optimal solutions, depending on

the particular choice of -f. However, as the minimum infinity-norm is approached,

both routines generally result in super-optimal solutions only. This is due to the

limitation of the numerical accuracies in the gradients described above. If it is

imperative that a sub-optimal solution be found, the value of - can be reduced

below the desired level and the method applied.
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Finally, the Z vector was defined with a fully populated state space form; by

using canonical forms, the number of variables can be reduced. However, there are

drawbacks to using some canonical forms such as the controllability canonical form

due to numerical instability which can result. The modal canonical form is more

numerically stable [58, 59] and has been used successfully to reduce the parameter

space. However, the drawback to this form is it only allows eigenvdlues with partial

multiplicities of one. This has not been a problem for the controllers used in this

work, but should be a consideration for any future implementations, especially for

controllers with a large order where repeated eigenvalues are more likely to occur.

One approach to handle partial multiplicities greater than one is to put the controller

into a modified Jordan Canonical form [601. While this adds a second super-diagonal

of the A. matrix to the Z vector, and thus increases the size of the parameter space,

it does account for all possible controllers. Incorporation of this form should be

accomplished in follow-on research.

6.2 Numerical Ezample: SISO F-16 Longitudinal Controller

An F-16 longitudinal controller design is used to demonstrate the numerical

method. The system consists of a short period approximation of a continuous, linear,

time-invariant normal acceleration command system. The plant is augmented with

a first order pre-filter at the input to model the servo dynamics. The filter is a

simplified model of an hydraulic actuator and captures the lag inherent in such a

system. Additionally, a first order post-filter is augmented at the output of the plant

to model the control delay. This delay accounts for the measurement hold in the

accelerometer.

The plant states are the angle of attack (a) and the pitch rate (q). The input

is the stabilator deflection (6.) and the output is normal acceleration (n,.). The

plant is given in Appendix A. The objective is to design a controller which provides

good noise rejection, state regulation, and minimizes control usage while concurrently
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providing acceptable tracking of a normal acceleration step input as well as achieving

acceptable vector gain and phase margins.

This problem is solved using the mixed H 2 /H, method. The H2 portion will

minimize the effect of the wind disturbances, measurement noise, and provide state

regulation and limit control power. The Ho portion will be used to incorporate

tracking performance and margins.

6.2.1 H2 Problem. The H2 problem is: Find the internally stabilizing

controller which minimizes the response of the normal acceleration and weighted

control due to the wind disturbance and measurement noise. The weight on the

control is added to ensure the control usage is limited to a realistic range. However,

since only the energy of the control usage is penalized, unrealistic peak deflection

and control rates can result from tle H2 problem. To ensure that the controller

as designed will work, a truth model of the system which includes magnitude and

rate limiters must be used to analyze the closed-loop system. However, the primary

purpose of this example is to demonstrate the mixed H2 /H. control design method,

and a complete analysis of the resulting controller will not be performed.

This problem is the standard LQG problem. A block diagram of the H 2 prob-

lem is given in Figure 6.2, where the control weight is p = 10.0 and the state

weighting matrix H is identical to the system C matrix (i.e., we are regulating the

normal acceleration rather than the states). The wind disturbance is modeled as a

white-Gaussian noise (WGN) with a strength of 5.0 x 10- rad2-sec which enters the

system as a pitch rate perturbation resulting in

0.996

-0.96
r= (6.26)

0

0
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Z2  W zi w2

p r H Wm

Figure 6.2. F-16 12 block diagram

While feeding in the process noise as a pitch rate disturbance is not physically

the best approach, it done here simply to provide an example LQG controller with

poor tracking and margins. The next example in this chapter will address the more

realistic problem with the process noise modeled as an angle of attack perturbation.

The measurement noise is modeled as WGN of strength 1.6 x 10-' g'-sec and

w,= 1. The resulting H2 matrices are

-1.491 0.996 -0.188 0

9.753 -0.96 -19.04 0A 2 =- (6.27)

0 0 -20.0 0

35.264 -0.334 -4.366 -40.0

0.02271 0 0

B. -0.021466 0 Aft 0 (6.28)
0 0 20.0

0 0 0

6-15



C. -35.264 0.334 4.366 80. (6.29)
0 0 0 0°I0

c= - -35.264 0.334 4.366 80.0 ] (630)

Dr j D [ 1 0 .0  D = 0 0.004 Dy,= 0] (6.31)D ~0 0 I0.

The resulting LQG design does a reasonable job of regulating the normal ac-

celeration following an initial 5V angle of attack perturbation as shown in Figure 6.3.

Also, response to low and high frequency disturbances is minimal. As previously

stated, this LQG problem was deliberately set up with poor step tracking. As a re-

sult, the system does not track a normal acceleration unit step command, as shown

in Figure 6.4. The control usage for the initial perturbation and the unit step are

given in Figures 6.5 and 6.6, respectively. The regulator does not demand too much

control for these tasks, but Figure 6.6 shows an increasing ramp-up in control which

may lead to unacceptable control demands. Figure 6.7 presents the desired loop

shape at low frequency for good tracking and disturbance rejection and at high fre-

quency for sensor noise and unmodeled dynamics rejection. The H2 open-loop GK

avoids the high frequency barrier, but does not clear the low frequency barrier. We

will use the mixed approach to modify the controller to clear this barrier.

Finally, the vector margins are examined to determine how robustly stable

the system is with the optimal H2 controller. These margins represent the largest

independent variation in either the gain or phase for which the system remains stable.

For a SISO system, the gain margin is the union of the complementary sensitivity gain

margin and the sensitivity gain margin. However, for MIMO systems, this is not the

case; thus, in general, both forms of the gain margins should be presented. For more

information on the vector margins, see [61]. For this problem, [-4.0 6.0]dB gain

margin and a phase margin of greater than 300 are desired. With the H2 controller,

the complementary sensitivity and sensitivity gain margins are [-0.473 0.448] dB
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Figure 6.3. F-16, H2 controller, response to initial 5V angle of attack perturbation

and [-0.473 0.500] dB, respectively. The phase margin is :1.210. These vector

margins are unacceptable. The H-. portion of the mixed problem will be used to

improve these margins.

6.2.2 H-. Probem. The H-. problem is a closed-loop model matching

problem, as given in Figure 6.8. A performance and stability bound on the open-

loop transfer function, GK, is defined; then the desired closed-loop sensitivity is

derived as
1

S(B) 1 + G~a)K(a) (6.32)

Figure 6.7 gives the desired bounds and the desired open-loop GK shape. The low

frequency bound is chosen to give good noise rejection and step tracking. The high

frequency bound is set to attenuate system response to high frequency sensor noise

and unmodeled dynamics. For a good discussion on how to pick these bounds, see

[191 or [611. The desired open-loop GK shape has a crossover frequency of 1 rad/sec.

This was selected as a first cut to a desired loop-shape; however, the dosed-loop

bandwidth is affected by the open-loop crossover. The closed-loop bandwidth can be
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6-19



II

B C

Figure 6.8. F-16 H. block diagram

increased by increasing the desired open-loop crossover. To completely understand

the sensitivity of the resulting closed-loop bandwidth to the open-loop crossover,

several open-loop shapes should be chosen and the control problem should be re-

peated for these designs. Since this example is only a demonstration of the mixed

H,/H, method, only one loop shape will be used.

The H. problem is set up to minimize the weighted sensitivity (WoS), where

the weight is the inverse of the desired sensitivity, given by

a+l1.0
a + 0.0001 (633)

The resulting H. matrices axe

-1.491 0.996 -0.188 0 0

9.753 -0.96 -19.04 0 0

Al 0 0 -20.0 0 0 (6.34)

35.264 -0.334 -4.366 -40.0 0

-35.264 0.334 4.366 80.0 -0.0001
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0 0

0 0

Bd = 0 B.= 20.0 (6.35)

0 0

1.0 0

C = [-35.264 0.334 4.366 80.0 1.0] (6.36)

.= [-35.264 0.334 4.366 80.0 0] (6.37)

Ded=[1.0 D. [0] Dd=[1.0] D, [ (6.38)

It is desirable to determine the minimum - (2) for which the H,. constraint

can be achieved. Since the H.. constraint is a singular H.. problem (D,, = 0;

therefore, there is no direct penalty on the control usage), the optimal -y cannot

be determined using available methods. To overcome this limitation, an almost

singular H.. problem was solved by adding a small perturbation to D.,, making the

problem a regular one. As the perturbation was reduced, the optimal infinity-norm

converged to -f= 1.274. The feedback-loop in the singular problem was closed using

the controller resulting from the perturbed problem. However, the resulting closed-

loop system was unstable. Thus, the perturbed problem was only able to give us an

estimate of y for the singular problem. While this does not allow a direct comparison

of our results to an H. controller, it does provide a known lower bound for our H..

constraint.

6.2.3 Resuts. The initial controller for the numerical mixed solution is

the optimal H2 controller. A fourth order controller is designed to demonstrate

the method for controller order equal to the H 2 order. The SQP method is used

to find the mixed H2 /H. solutions as -y is reduced from ;y to _- The resulting a

versus -y curve is given in Figures 6.9 and 6.10. The points marked on the curve
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Table 6.1. F-16 H2 /Ho Vector Margins

a - Complementary Sensitivity PM (o)
Sensitivity GM (dB)
GM(dB)

4th Order Controllers
0.3116 178375.7400 [-0.473 0.4481 t -0.473 0.5001 3.21
0.3120 109041.6000 [-0.762 0.7011 [-0.762 0.8361 5.26
0.3139 59340.3730 [-1.352 1.170 1 [-1.352 1.602 ] 9.66
0.3147 200.0969 [-0.756 0.696] [-0.756 0.828 1 5.21
0.3158 100.0144 [-0.756 0.696 ] [-0.756 0.828] 5.21
0.3175 50.0256 [-1.160 1.023] [-1.159 1.338 8.19
0.3272 10.0176 [-2.488 1.932] [-2.481 3.486] 19.03
0.3428 5.5869 [-2.277 1.803 1 [-2.260 3.063 1 17.09
0.3493 3.3604 [-3.514 2.4951 [-3.476 5.884] 28.49
0.3567 2.0091 [-5.129 3.203] [-3.937 7.399] 33.32
0.3664 1.7627 [-5.376 3.296 1 [-3.946 7.434 ] 33.42
0.4088 1.4900 [-5.900 3.481] [-4.588 10.3401 40.72

8th Order Controller
0.4500 1.2808 [-6.270 3.604 ] [-5.013 13.186] 45.96

are used to generate the remaining plots in this section. It can be seen that these

curves are not monotonically decreasing; this is due to numerical accuracies. If it is

desired, the curves can be regenerated with increased tolerances on the convergence,

but the additional computation time required will not add to this example and thus

was not accomplished. Table 6.1 gives the resulting two-norms and infinity-norms

of the controllers. Notice that the infinity-norm can be reduced significantly with

little increase in the two-norm. This allows a large increase in both margins and

performance with little loss of noise rejection.

Figures 6.11 and 6.12 show the recovery of the desired sensitivity shape and the

resulting complementary sensitivity as -y is reduced. Notice that the low frequency

sensitivity is reduced as desired for the performance bound while the desired 40 dB

roll-off is maintained. This can also be seen in the evolution of the open-loop GK as
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Figure 6.11. F-16, H 2 /H,., n, = 4, closed-loop sensitivity

- is decreased (Figure %A.17). Further, the open-loop shape clears al the barriers at

the final value of -y.

The performance of the system is determined by its ability to track a unit step

in normal acceleration. The performance improvement with decreasing -y can be

seen in Figure 6.14. Moreover, there is little noticeable increase in noise in this plot

as y is decreased. Thus, substantial performance improvement has been made with
minimal loss of noise rejection. To compare the control usage of the mixed controller,

only the system corresponding to the lowest 7 in Table 6.1 is plotted. Figure 6.15

shows the control usage has increased for the mixed controller. Moreover, the initial

control response is 2.5 times greater than the H2 case. This is due to the larger

system gain at low frequency for the mixed controller. The increased control is part

of the reason the two-norm increases as -y decreases.

The system maintains good regulation with all the mixed controllers as can be

seen in Figure 6.16. This is not surprising since all the controllers result in sufficient

low frequency gain for regulation performance. Again, Figure 6.17 shows that the
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Figure 6.15. F-16, H2/H .o, n. = 4, control usage for a unit step in normal

acceleration
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Figure 6.16. F-16, H2 /Hoo, n, = 4, response to a 50 initial angle of attack
perturbation

system with the lowest -y has a large initial control deflection. This is expected since

the low frequency gain of the system is large.

Referring back to Table 6.1, improvement in the vector gain margin (GM)

and phase margins (PM) as -f is decreased is clear. This is another measure which

can be used in a trade-off analysis to determine the best y for the desired system.

As -i approaches -y (1.274), there is a point where the margins decrease as - is

reduced further. The cause of this fluctuation is clearly seen in the sensitivity and

complementary sensitivity plots (Figures 6.11 and 6.12). As - is decreased from

y, the majority of the recovery is made at low frequency, and the margins and

performance reflect the improvement in the loop shape. As -y approaches -Y, the

margins sometimes decrease as the performance improves. This fluctuation in the

margins is due to the process attempting to match the desired sensitivity. As the

low frequency portion (performance) of the sensitivity is reduced, it forces the high

frequency portion (margins) to increase. The resulting waterbed effect drives the

margins up and down as the infinity-norm of the weighted sensitivity is reduced.
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Figure 6.17. F-16, H2/H., n. = 4, control usage for a 50 initial angle of attack
perturbation

Next, the controller order was doubled to n, = 8 and the SQP algorithm was

used to converge to the lowest -y possible. The last row of Table 6.1 presents the

margins for this controller. The additional degrees of freedom have allowed the

margins to be reduced further than was possible with the fourth order controller

(this may also be due to numerical difficulties, as will be discussed later). The

performance of the controller is shown in Figure 6.18 and 6.19, where the scale has

been chosen to allow a direct comparison to the previous results. Regulation was

not significantly changed (not shown). Notice that the overshoot is comparable to

the best fourth order controller, but the settling time is decreased. The sensitivity

of this system;s given in Figure 6.20.

While the eighth order controller does provide better margins and tracking than

any of the fourth order controllers, this is at the expense of doubling the controller

order. The design engineer must determine which one of these factors will influence

his decision the most. However ,or the purpose of this example, the flexibility of

trading off controller order, noise rejection, tracking performance, and vector margins

using the mixed H 2 /Ho approach has been clearly demonstrated.
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Figure 6.18. F-16, H 2 /H., n = 8 and n 4, response to a unit step in normal
acceleration
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Figure 6.19. F-16, H2/H.., n. = 8, control usage for a unit step in normal
acceleration
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Figure 6.20. F-16, H2 /H,, n,, = 8, closed-loop sensitivity

6.2.4 Modified H2 Problem. As discussed in Section 6.2.1, the wind noise

model used in the previous problem was not realistic. An improved model is given

here where the wind disturbance enters the plant as an angle of attack perturbation.

To accomplish this we must modify r' by using

-1.491

9.753
r 95 (6.39)

0

0

This results in B. becoming

-0.0333 0

0.2181 0 (6.40)
0 0

S0 0

The remainder of the problem is the same as above.
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The problem was solved by determining the optimal H2 controller and then

applying the SQP approach to iteratively decrease -f to as low a value as the numerical

approach would achieve. Only the results for the optimal H 2 controller and the mixed

controller with the lowest infinity-norm (y = 1.45) will be discussed.

For this example, there was significantly more low frequency noise present in

the H 2 design; therefore, the resulting open-loop GK transfer function had more low

frequency gain as seen in Figure 6.21. This result can also be seen in Figure 6.22

which shows the low frequency sensitivity is below 0 dB. However, Figure 6.23 reveals

that is there not enough gain to achieve the desired tracking performance. The

[-9.5 8.9]dB vector gain margin and 38.80 vector phase margin which result with

the optimal H2 controller are acceptable. Finally, q = 0.84 and I = 4981.0.

After completing the mixed design, the final controller, with -y" = 1.45 and

a* = 0.91, was selected for comparison to the H2 controller. As can be seen in Fig-

ures 6.21 and 6.22 the mixed controller meets the desired loop-shape and it matches

the desired sensitivity much better than the H 2 controller. Furthermore, the tracking

performance shown in Figure 6.23 is significantly improved. This improvement in

performance has come at the expense of a reduction of the vector gain margin. The

mixed controller results in a [-5.8 10.3]dB gain margin and 40.70 phase margin.

The reduction in the lower gain margin is acceptable considering the improvement

in performance.

Comparing this example to the previous one, it can be seen that the addition

of a larger process noise in the H 2 design resulted in better low frequency perfor-

mance and margins. The previous example showed that these objectives can also

be achieved by incorporating a weighted sensitivity H.. constraint to the H2 prob-

lem. Therefore, it may be possible to use the H2 portion of the mixed problem

to determine the high frequency properties of the resulting system (something H.,

optimization has problems with). While the low frequency process noise in the H2

problem cannot be reduced to zero, it can be artificially lowered below its expected
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Figure 6.23. F-16, H2 /H,, n. = 4, response to a unit step in normal acceleration,
improved process noise

level. In this manner, mixed H 2 /H. optimization can be used to design a controller

which achieves desired objectives at both low and high frequency.

6.2.5 Convergence. To conclude this example, a discussion of the conver-

gence of the numerical search algorithm is needed. Using Ridgely's method [9] on a

Sun System SPARC 2, converging one point on the mixed curve took approximately

one week of computation time. The DFP approach developed here can converge

a controller in approximately one hour. Finally, the SQP method can converge a

controller in a matter of minutes. All of these computation times increase as -f

approaches y, as will be discussed below. While the SQP and DFP methods have

a significant computation time advantage over previous methods, they are not yet

refined enough for control design applications. The major problem with the methods

arise at the "knee" of the curve, the point where there is a significant trade-off in a

for -y. This knee has usually been found to occur in the neighborhood of -y, as one

should expect. This is due to the two-norm of the system tending to infinity as the

optimal H. controller is approached.
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At the knee of the curve, problems with multiple peaks in the maximum singu-

lar value curve are present. The multiple peaks result in the gradient of the infinity-

norm being piecewise continuous over the optimization parameter space. Thus, for

any given nominal point, the resulting gradient may only be good for a small neigh-

borhood of the point. This results in numerous small steps being taken in order to

converge to a desired -y. In addition, if too large a step is taken, the search may

depart the desired region. These issues are still open and will require further refine-

ment to improve the method to the point where it is ready for everyday application

by control engineers.

Finally, the SQP method was able to converge to controllers with a lower value

of y than the DFP method. This was partly due to the SQP method admitting

unstable closed-loop system during the search. If the artificial wall approach is used,

the DFP and SQP methods had about the same performance as far as reducing

7. However, the SQP method converged to a desired -y with a lower two-norm.

Moreover, the SQP required fewer iterations and function evaluations to achieve

these better results. Therefore, the SQP method was determined to be a better

approach for solving the mixed problem numerically.

6.3 Summarly

This chapter presented two approaches for computing mixed H2 /H.o con-

trollers numerically. The first method converts an equality constraint to a penalty

function and uses the Davidon-Fletcher-Powell optimization method. The second

approach appends the H. constraint as an inequality constraint and uses sequential

quadratic programming to converge to solutions. Both methods have advantages

over the existing method. First, they allow singular H.. constraints. Next, feed-

forward terms in the constraint are allowed. Thirdly, the order of the controller

can be reduced to as low as the H2 order. Finally, both methods have significant

computation advantages over the previous method.
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The SQP method was found to converge to lower values of the H,. constraint

due to the fact it admits infeasible solutions. In particular, it allows controllers

which result in an unstable closed-loop system. Thus, the SQP method imposes

less constraints on the search direction and results in faster convergence to greater

tolerances. The numerical method was demonstrated on an F-16 longitudinal contro!

problem. The example demonstrated the trade-off between controller order, noise

rejection, performance, and margins available to the designer using the mixed H2 /H..

method.
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VII. Mixed H2/pu Optimal Control

The F-16 example in the last chapter demonstrated how mixed H2 /H. opti-

misation can be used to achieve some measure of robust stability. In addition, the

closed-loop system had the desired level of nominal performance. Recently, there

has been a great deal of interest in formulating controllers which have robust perfor-

mance in light of expected system uncertainties (see [21 for references). Further, it is

desired that a system have minimal response to noise perturbations. The robust per-

formance problem has been successfully addressed in the is framework [2], while the

noise rejection problem can be formulated as an H 2 problem. This chapter considers

the joint problem of designing a controller which rejects noise while simultaneously

providing robust performance.

One technique for designing controllers with an upper bound on A is the D-K

iteration developed in Section 3.4.2. This approach is an iterative method which

determines an optimal scaling matrix D and an associated H.. controller K. The

method results in a controller order equal to that of the original plant augmented

with the scaling matrices. One key attribute of this p-synthesis method is it uses H'.

techniques for controller design. The controller order can be reduced using any one

of several available order reduction methods, but we desire to reduce the controller

order in an "optimal" fashion, where optimal is defined by the mixed H2/p problem.

Thus, we desire a mixed H 2 /H.. optimization problem which minimizes the two-

norm of an H 2 transfer function and provides an upper bound on p through an

H1. transfer function. Furthermore, p-synthesis can result in a non-strictly proper

controller which results in an unbounded two-norm for the H 2 transfer function in

the mixed problem. By incorporating the mixed H 2/H1,-synthesis method into the

"K" portion of the D-K iteration process, the order of the controller and bounds on

the two-norm can be addressed.
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Figure 7.1. Perturbed closed-loop system

This chapter will develop the H12 /1 problem. The method is based on a fixed-

order controller, and the order can be reduced to as low as that of the underlying H 2

problem. Next, the robust stability and robust performance problems will be recast

into the mixed framework. The numerical approach from Chapter VI will be modi-

fied to handle this problem, and demonstrated on a SISO F-16 normal acceleration

control design problem and a MIMO HIMAT longitudinal control design problem.

7.1 Mized H 2/4

This section incorporates p-synthesis into the fixed-order mixed H2 /Ho, frame-

work from Chapter V. Consider the closed-loop system Ted with a block diagonal

structured perturbation A shown in Figure 7.1. Recall from Chapter III that the

set of all dynamic perturbations which have the desired diagonal structure is given

by

M(A) := {A(a) E RH, I A(ao) E A for all s o (7.1)

The complex structured singular value of a dynamic transfer matrix T~d(a) over the

structured perturbations A(a) E M(A) is defined by

IITed(8)I1A = sup IA [Td(jw)] (7.2)
7E-
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Figure 7.2. Mixed H2/1P problem

Define the set of scaling transfer functions D which have the same block diagonal

structure as A, where each individual block has the property Di = D• > 0. Then,

an upper bound on the structured siigular value of a transfer matrix is given by

flT,,(-I)jIA s sup inf a(DT.dD-1 ) (7.3)

Sinf IIDTdD-1 II** (7.4)

Thus we can convert a p constraint into an H., constraint.

Let Td be the closed-loop transfer function from d to e in Figure 7.2 with the

PK loop dosed, T. be the H 2 transfer function of interest and A be a bounded

energy structured perturbation. Let D., E D represent a scaling transfer function

which achieves the infimum in (7.4), and define

T•.= DwTdD7' (7.5)
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An upper bound on I can now be determined by finding the infimum of T,. over all

K (i. e., the final step in a D-K iteration). Thus -y is the minimum upper bound

on p; that is, the minimum achievable value of p from D-K iteration, assuming the

controller order is selected to be large enough. Moreover, T,. achieves a minimum

of a with the controller K2 .,,, and there is a corresponding 1 (Ž2 _2) which is the

upper bound on p corresponding to K2 .t. Thus, the problem reduces to a trade-off

between H2 performance and p performance along the - versus a curve given in

Figure 7.3 for 7 < - _ f.

One of the assumptions made in setting up the mixed H:/p problem is that

the scaling transfer function D. is known, which is generally not the case. However,

this transfer function can be approximated using existing p-synthesis methods. The

proposed algorithm for solving the mixed H2/p optimal control problem is as follows:

i. Compute D0 ,g using p-synthesis

ii. Define T.a := Do•gTedD;

iii. Compute K2 ,,, g, and
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iv. Set -y* to the desired value

v. Compute Kmti and a* using H2 /Ho-synthesis

7.2 Robust Controllers Using H2/4

7.2.1 Robust Stability. Consider the perturbed system given in Fig-

ure 7.1, where T~d is the closed-loop system and A is a structured uncertainty

with A E M(A), the set of all stable proper transfer functions which have the

desired structure. Then the following theorem provides a less conservative approach

to robust stability than H.o optimization combined with the Small Gain Theorem

(Theorem 1.1.1).

Theorem 7.2.1 Let -y > 0. The loop shown in Figure 7.1 is well-posed and inter-

nally stable for all A E M(A) with IIAIIt, < - if and only if

JJTedJJA = sup&A [TedLIW)] :5 -Y (7.6)
weEt

Proof: See [44], Theorem 3.6.

Thus, using this theorem and the algorithm from above, we can determine an

upper bound on the largest perturbation under which the system is guaranteed to

be robustly stable. Combining this with the mixed framework, a trade-off can now

be made. Either the level of noise rejection can be determined for a given level of

perturbation, or the maximum perturbation can be determined for a given level of

noise rejection. More likely, the trade-off involves finding some level of noise rejection

which is acceptable given the resulting level of robustness.

7.2.2 Robust Performance. Consider the robust performance problem

given in Figure 7.4, where T.2A is the transfer function for the desired performance

objective, IIT..l.d2 1 5 -y (for example, output sensitivity), with nd, inputs and n.e

outputs. TWd is the closed-loop system and A is a structured uncertainty where
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Figure 7.4. Robust performance closed-loop system

A E M(A), the set of all stable proper transfer functions which have the desired

structure. The transfer function T1 2d2 can be written as an upper fractional trans-

formation of Ted and A, denoted Te2.d = F.(Ted, A). Our performance objective can

be combined into the perturbation by defining an augmented perturbation

AP := IF] AE APA E Cnd2Xne2} (7.7)0 AF

where AF is a fictitious perturbation. Robust performance can now be determined

using the following theorem.

Theorem 7.2.2 Let -y > 0. For all A E A with IIAII. < the loop in Figure 7.4

is well posed, internally stable, and !IT,,4 Ilc* < - iff

(IT.dllAp sup/PAp [Ted(jw)] (7.8)
wER

< sup inf e(DTdD-1 ) -t (7.9)
IWEVDED

Proof: See [44], Theorem 3.7.

Thus, if our desired level of performance is represented by Te2 d2 11 0- _S '7, we can guar-

antee this performance in light of all structured perturbations where IIAp~oc < 1/-7 if
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and only if IyTedIIAP <7. Another interpretation of this theorem is: if IITedII&p -Y7,

then robust performance is guaranteed to a level of DITe2d 11. 7 for all perturbations

such that IIApIIlo < 1/-y. Now, the mixed structure developed in the previous sec-

tion can be used by defining T., := DotTaD; and applying the algorithm. Again,

a trade-off can now be made between the achievable level of robust performance and

H'2 performance.

7.3 Ezamples

7.3.1 SISO F-16 Design. The SISO F-16 longitudinal controller de-

sign problem from the previous chapter is used to demonstrate the above method.

The system consists of a short period approximation of a continuous, linear, time-

invariant normal acceleration command system augmented with a pre-filter for the

servo dynamics and a post-filter to model the control delay. The plant is given in

Appendix A.

7.3.1.1 Problem Setup. This problem is solved using the mixed H2 /p

method, where the H 2 portion minimizes the effect of the wind disturbance and

measurement noise, provides state regulation, and minimizes control power. The p

portion incorporates performance robustness.

The H2 portion of this problem is identical to that in Section 6.2.4. The

p problem is shown in Figure 7.5. The performance objective is to minimize the

weighted output sensitivity in light of an input multiplicative perturbation. The
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sensitivity weight is a low-pass filter selected to improve tracking of a step input

based on the desired open-loop GK from Section 6.2.2. The weight is given by

W. 8+0.0 (7.10)

The input perturbation represents uncertainty in the nominal model including uncer-

tainties in the control actuators, aerodynamics, flight conditions, aircraft geometry,

structural bending, and other unmodeled high frequency dynamics. The weighting

associated with this perturbation is a high-pass filter given by

Wt = 50(8+ 100) (7.11)
8 + 10000

This weight emphasizes the high frequency content of the perturbation set we are

trying to model. For a good discussion on the choice of both sensitivity and comple-

mentary sensitivity weights, the reader is referred to [191.

The closed-loop system Td is now formed as

T [ WtKG(I - KG)-1  WtK(I - KG)- 1 1
[ WoG(I - GK)-1  Wa(I - GK)-1

The scaling Do0 is determined using the hinfsyn,mu, and musnfit routines

from MATLAB TM p-Toolbox [44]. These routines are combined to perform D-K

iterations. First hinfayn is used to determine a nominal closed-loop system. Then,

mu is used to determine the value oi p and the optimal scaling for this controller.

Finally, musynfit is used by the operator to interactively select the order of the

scaling D which best approximates the optimal scaling. The process is repeated

until p is converged to some desired level. The H,, transfer function is then formed

as T,, = D.*TedD;, where Dt is the last D from the above process. The H00

matrices are
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-3849.04 5737.46 17039.10 -161.38 -2110.08

-5737.46 -18685.07 11506.45 -108.98 -1424.93

0 0 -1.49 1.00 -0.19

0 0 9.75 -0.96 -19.04

0 0 0 0 -20.00
0, --
0 0 35.26 -0.334 -4.37

0 0 -35.26 0.334 4.37

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

-38654.94 -483.14 0 -4247.39 2868.25

-26103.56 -326.26 0 -2868.25 1936.92

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 (7.13)
-40.00 0 0 0 0

80.00 -0.0001 0 8.79 -5.94

0 0 -10000.00 0 0

0 0 0 398.35 2869.22

0 0 0 -2869.22 -20621.99
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-8.79 0 0

-5.94 0 0

0 0 0

0 0 0

0 20.00 20.0
B= B.= (7.14)

0 0 0

0.02 0 0

0 0 50.0

8.79 0 0

5.94 0 0

C.= 483.19 -326.29 -1938.38 18.36 240.04
[ 0 0 0 0 0

4397.42 54.96 0 483.19 -326.29 1 (7.15)
0 0 -9900.00 0 0

C. [0 0 -35.26 0.334 4.37 80.00 0 0 8.79 -5.94] (7.16)

D. 1.000 D,,,,= D, 0.02 0 D,=[0] (7.17)
0 0 [0.0

7.3.1.2 Results. The process is initiated by computing the tenth or-

der p-synthesis controller given in the last row and column of Table 7.1. A Schur

model reduction is used to compute reduced order controllers. This method models

the plant as a reduced order plant with an additive perturbation. It attempts to

reduce the infinity-norm of the perturbation and therefore, the modeling error. A
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Table 7.1. F-16 H2/p Optimization Results

H'2/ p p-synthesis
Controller (model reduction)

order a p a p
4 0.895 2.34 unstable
6 0.935 1.98 6.36 1.81
8 0.940 1.77 6.36 1.597

10 0.953 1.71 4.41 1.591

Schur decomposition is used where needed and the resulting method is more numer-

ically robust than the often used balanced order reduction. The reader is referred

to [62] for more information on Schur decomposition, Schur model order reduction,

and balanced order reduction. The tenth order controller is reduced to the eighth

and sixth order p-synthesis controllers given in Table 7.1. A stabilizing fourth or-

der controller could not be found using the available model reduction methods in

MATLABT"M [44]. The tenth, eighth, and sixth order p-synthesis results were used

as initial controllers for the numerical H2 /p optimization, and mixed controllers were

designed. The resulting mixed controllers which gave the best trade-off between H2

and p performance are given in Table 7.1. The optimal H2 controller is used as the

initial controller for the fourth order mixed controller and the resulting best mixed

controller is also given in Table 7.1.

The tenth order p controller has the best level of robust performance, but

it also has a high level of high frequency noise response, as shown in Figure 7.6.

By comparison, the tenth order H 2/p controller has robust performance for slightly

smaller perturbations since the upper bound on p is 8% higher; therefore, the nominal

performance is also decreased as is seen in Figure 7.7. However, the mixed controller

has better high frequency noise response, as is expected, since the two-norm is about

one fourth the size of the two-norm with the p controller. Moreover, Figures 7.8 and

7.9 show that the control usage is considerably reduced with the mixed controller.

Again, this result is expected since the H2 portion of the mixed controller includes a
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penalty on control usage, while p-synthesis does not take this into account. Similar

results can be seen for the eighth and sixth order results shown in Figures 7.10-7.17.

One advantage of the mixed approach in this example is the consistent ability

to find a stabilizing controller at orders as low as the H2 order; in this case fourth

order. Model reduction techniques resulted in non-stabilizing fourth order controllers

for the p-synthesis approach, but the mixed approach is able to compute a stabilizing

fourth order controller. As can be seen in Table 7.1, the upper bound on p for the

fourth order controller is 47% greater than the p-synthesis tenth order controller;

thus, the perturbation size for robust performance is reduced. Nominal performance

is also decreased with the peak overshoot increased from about 0.5 g to 0.7 g, and

the settling time is about the same for both. The high frequency noise rejection is

improved fourfold with the mixed fourth order controller as compared to the tenth

order p-synthesis controller. These results can be seen in Figures 7.18 and 7.19.

The vector margins for the resulting controllers are given in Table 7.2. As can

be seen, the tenth order p-synthesis controller resulted in the best margins. Although

the tenth and eighth order H2/p controllers resulted in decreased margin, it is an

acceptable trade-off for the increased noise rejection. Notice that the sixth order

H2/# controller has better upper gain margin and phase margin than the tenth and

eighth order H 2/p controllers. This is due to the trade-off between performance and

margins which occurs at the knee of the a versus -y curve; as -y is approached, there

is an underlying trade-off which is made to minimize -t. The fourth order H2/p

controller resulted in significantly reduced margins. Therefore, a design decision

must be made between the order and the desired margins.

Fnally, the response of the system to an initial 50 angle of attack perturbation

is given in Figure 7.20. Notice that there is no significant difference in regulation

between the controllers. This indicates that the increased two-norm is due almost

entirely to the increase in response to high frequency noise and increased control

usage, as is seen in the time responses.
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Figure 7.6. F-16, step response, 10th order is controller
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Figure 7.7. F-16, step response, 10th order ff2/P& controller
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Figure 7.8. F-16,control usage for step response, 10th order ps controller
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Figure 7.11. F-16, step response, 8th order p2 j controller
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Figure 7.12. F-16, control usage for step response, 8th order p controller
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Figure 7.13. F-16, control usage for step response, 8th order H 2/p er-ntroller
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Figure 7.14. F-16, step response, 6th order p controller
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Figure 7.15. F-16, step response, 6th order H2 1/L controller
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Figure 7.18. F-16, step response, 4th order H2 /1s controller
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Figure 7.20. F-16, initial 5' angle of attack perturbation response

Based on these results, the designer must make a choice of controller order.

Since performance is not considerably different for all the mixed controllers, the

primary factor in the decision is the trade-off between order and robustness. If the

expected perturbations are known to have an infinity-norm less than 1/2.34, then

the fourth order controller is the best choice. However, if larger perturbations are

expected, the controller order will have to be increased to remain robust.

7.3.2 MIMO HIMAT Design. A longitudinal controller design problem

for the HIMAT, a highly maneuverable, remotely piloted, technology demonstration

vehicle, is used to demonstrate the mixed approach for MIMO problems and to

demonstrate further application of mixed H2 /p. The model is taken from data for

the HIMAT vehicle [441. The model is a four-state, continuous, linear, time-invariant,

description of the short period and phugoid modes. The control inputs are elevon

(5.) and canard (8,) deflections and the measured outputs are angle of attack (a)

and aircraft attitude (0). A block diagram of the system is given in Figure 7.21. The

plant and simulation truth model are given in Appendix B.
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e •- J. e2

Figure 7.21. HIMAT system block diagram

7.3.2.1 H2 Regulator. The "2 portion of the control design is based

on a standard Linear Quadratic Gaussian (LQG) problem. A wind disturbance is

modeled as an angle of attack perturbation by a zero-mean white Gaussian noise of

intensity 5.0 x 10- rad2-sec and

-36.6

-1.90
r = (7.18)

-11.7

0

The measurements are corrupted by zero-mean, white Gaussian noises of strength

1.6 x 10-6 deg2-sec (W,, = I). The controlled outputs for the LQG design are control

usage and state perturbations with unit weightings (p = 10 and H = I).

Thus, the H'2 problem is set up to design a minimum control/state regulator

operating in the face of process and measurement noises. No attempt is made to

force the system to track a step or guarantee vector margins for the closed-loop

system. Robust performance will be achieved through the use of it constraints. The

resulting controller is fourth order, and the minimum two-norm of the closed-loop

system with K2 ., is q = 0.20.
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Figure 7.22. HIMAT, H2 controller-velocity response to initial 50 angle of attack

perturbation

The H2 regulation is shown in Figures 7.22-7.25 for a initial 50 angle of at-

tack perturbation. The H2 controller provides good regulation with minimal noise

response. The control usage in Figure 7.26 shows there is little response to high

frequency noises.

The response of the system to unit step in angle of attack and pitch angle

are given in Figures 7.27-7.32. Notice that the /2 solution is not an acceptable

tracker, but does have acceptable noise rejection, particularly at high frequency.

Furthermore, the control usage is minimal, but not unexpected since there is no

apparent tracking.

7.3.2.2 Robust Performance. The mixed controller objective is to

design a controller such that the closed-loop system has robust performance measured

at the output with an input disturbance perturbation. This problem is solved by

appending the performance objective as a fictitious perturbation and combining it

with i'*.e disturbance into a structured perturbation. The controller is then designed

using the mixed framework.
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Figure 7.23. HIMAT, H 2 controller-angle of attack response to initial 50 angle of
attack perturbation

2

0

2

-10

-12

0 0.5 1 1.5 2 25 3 3'.5 4 4'.5 5

time (icc)

Figure 7.24. HIMAT, H 2 controller-pitch rate response to initial 50 angle of attack
perturbation
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Figure 7.25. HIMAT, H 2 controller-pitch angle response to initial 5' angle of attack
perturbation
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Figure 7.26. HIMAT, H 2 controller-control usage for an initial 5' angle of attack
perturbation
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Figure 7.27. HIMAT, H 2 controller-angle of attack response to angle of attack unit
step input
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Figure 7.28. HIMAT, H2 controller-pitch angle response to angle of attack unit
step input
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Figure 7.29. HIMAT, H2 controller-control usage for angle of attack unit step input
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Figure 7.30. HIMAT, H/2 controffer-angle of attack response to pitch angle unit

step input
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Figure 7.31. HIMAT, H2 controller-pitch angle response to pitch angle unit step
input
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Figure 7.32. HIMAT, 12 controller-control usage for pitch angle unit step input
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The disturbance enters the system at the input to the plant and is modeled as

a high frequency perturbation by appending a high-pass filter at the output el. The

perturbation filter transfer function is

W _I(s)- 50(8 + 100) 12 (7.19)
s+ 10000

The performance objective is to track a step at the output. The fictitious "perfor-

mance perturbation" is modeled by a low-pass filter appended at the output e2. The

performance filter transfer function is

Wp(S) 0.5(a + 3)12 (7.20)
a + 0.03

The system is considered to have robust performance to structured perturba-

tions A E M(A) where IA,11i0 <'Y if

IlT JIIA <1 (7.21)7

where Td is the closed-loop system

[Wd KG(I - KG)-1  WddK(I - KG)-1] (7.22)[ WpG(I - GK)-1  Wp(I - GK)-'

In this particular case, it is desired to have -y _< 1.

The first step in the process is to compute the best p controller. A 20th order

controller is found using the MATLAB TM musynfit function [44] which achieves the

desired level of robust performance. A third order fit is used which results in a sixth

order D transfer function. The resulting controller order is the sum of the four model

states, the two performance weighting states, the two perturbation, and two times

the six states of the scaling matrix D, or 20th order. The response of the system

to unit steps in angle of attack and pitch angle are given in Figures 7.33-7.38. This

7-29



1.2

S0.60.

0.2

0 a5 1 1.5 2.M 3 3.5 4 4.5 5

d- (W)

Figure 7.33. HIMAT, is controller-angle of attack response to angle of attack unit
step input

controller possesses good tracking of both angle of attack and pitch angle inputs.

Further, the control usage is not excessive after an initial large transient. Notice

that the response to high frequency noise is increased over that of the H2 system.

The objective now is to attempt to reduce the order of the controller and im-

prove the high frequency response using the mixed approach. It should be mentioned

that model reduction of the p controller can be used. In this case, a Schur model re-

duction method was attempted for 16th, 12th, 8th, and 4th order controllers, but all

the resulting controllers suffered from large increases in p and thus did not provide

an acceptable level of performance robustness.

7.3.2.3 H2 /p. The mixed optimization problem is set up by defining

T., = D.T~dD-, (7.23)

where D. is determined from the previous it-synthesis. The mixed problem is then

solved using the inequality constraint approach with an SQP algorithm. It is desired
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input
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order a
H2  4 0.20 6808.1
A 20 44.2 0.987

H 2 1/L 4 7.0 1.20
H 2 /14 8 6.9 1.11

to find a low order controller; in this case, the order of the H 2 problem or nc = 4.

This does not imply that lower order controllers don't exist; in fact, this approach

can be applied to design controllers with order less than the H2 order, but there is

no guarantee that -y* = -y for the optimum. or even that a stabilizing controller exists.

Table 7.3 presents a comparison of the H2, p, and mixed H2/p results. Notice

that the fourth order mixed controller provides robust performance to perturbations

that have a norm bound which is 83% of desired. Furthermore, this controller has

a two-norm which is almost an order of magmtude less than the two-norm of the 1

controller, but nearly two orders of magnitude greater than the H2 controller.
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Figure 7 39. HIMAT, H21]p, nI = 4, angle of attack response to angle of attack
unit step input

Figures 7.39-7.44 show the impact of these results. Comparing the step re-

sponses to those of the 20th order 1 controller, it is seen that the fourth order mixed

controller has a slower initial response to a step, but reaches steady state at ap-

proximately the same time as the p controller. Moreover, the high frequency noise

rejection is seen to be about the same-in fact, the mixed controller results in slightly

better noise rejection, but it is not significantly better than the noise rejection when

the A controller is used. Notice that the initial control usage is higher for the mixed

controllers but then it drops off faster as steady state is approached. Finally, the p

controller and the fourth order mixed controller regulate the states equally well to

an initial angle of attack perturbation (not shown).

The last controller computed for this problem is an eighth order mixed con-

troller. As can be seen from Table 7.3, the eighth order mixed controller has a greater

level of robustness than the fourth order, but still does not meet the desired level

of 1.0. The time responses for this controller are comparable to that of the fourth

order and are not shown. This process could be continued with high order controllers

until the desired level of robustness is met. Since robust performance is obtained by
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Figure 7.41. HIMAT, H 2/p, n, = 4, control usage for angle of attack unit step
input
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input
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Figure 7.44. HIMAT, H2//p, ne = 4, control usage for pitch angle unit step input

the 20th order it controller, a mixed controller which guarantees robust performance

with order less than or equal to 20 exists. This example has demonstrated the ca-

pability of the mixed H2 /is method to reduce the controller order. Furthermore, the

reduced order controller retained desirable robustness qualities.

7.4 Summary

is-analysis and synthesis were seen to provide the design engineer with an

improved measure of robust stability. Moreover, p is currently the best way for

designing systems with robust performance. However, p controllers cannot handle

white noise inputs, and generally result in high order controllers. By incorporat-

ing i into the mixed H21/Ho approach, both of these limitations were addressed.

The He. constraint was formed by scaling the transfer function with the D transfer

function from the last D-K iteration step of a p design. Then the mixed method

from the previous chapter was applied. An F-16 and HIMAT longitudinal control

design examples demonstrated the H 2/p optimization. Significant reduction in both

controller order and high frequency noise response were obtained using the mixed
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approach rather than just the / controller. This improvement was at the expense of

some reduction in the robust performance of the system.
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VIII. Multiple H, Constraints

Multiple H., constraints arise in many control problems. Consider the multiple

input/multiple output system in Figure 8.1, where G represents the plant to be

controlled, K is the controller to be designed, W1A1 represents an input perturbation

to the system, and W2A2 represents a fictitious "performance perturbation". The

problem is to design a controller which is robustly stable to perturbations at the

input and has nominal performance at the output. One approach to this problem is

to combine the perturbations into a single A, bringing the weights W1 and W2 into

the system as shown in Figure 8.2.

The resulting H,* problem is to find a controller which reduces the infinity-

norm of the closed-loop transfer function M to a value less than or equal to the

inverse of the infinity-norm of the perturbation A, or

_M<lO ! (8.1)

where

A -[A1 0 (8.2)
0 A2

A common choice of M [39] is

M=[WIT* WS] (8.3)

where T e nd S are the input complementary sensitivity and the output sensitivity,

respectively, and * are picked to make the problem a regular H.. problem. This

approach guarantees the stability and performance requirements are met when the

inequality (8.1) is satisfied. Generally, the resulting controller is very conservative

with regard to the actual perturbations A1 and A2 .
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Figure 8.1. System with uncertainties

A

Figure 8.2. System with uncertainties "pulled out"
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A less conservative choice for M is

M- W1T] (8.4)

While this is less conservative, the problem cannot usually be solved by available

state-space techniques since it results in a singular H, problem.

An even less conservative approach is to separate the perturbations into two

H.. problems

1
IIW•.TiI _< IIAl[ (8.5)

1JIMws1. _ (8.6)

There is no convei..nt way of solving this problem under the current H.. optimal

control theory. However, a controller which meets the desired H, constraints can be

found using mixed H2 /Ho, optimal control. This method has the added advantage of

minimizing the effect of white noise on selected controlled outputs from the system.

Another approach to solving this problem is to use U-synthesis through D-K

iterations. This method has the advantage of not only finding a controller which

provides robust stability and nominal performance, but also provides a measure of

robust performance. The ability of &-synthesis to provide robust performance is due

to its exploitation of frequency infoxmation as well as the block-diagonal structure

of the perturbation. The mixed H2 /H.. optimal control method exploits the block-

diagonal structure of the perturbation, but only contains peak gain information

provided by the infinity-norm and does not have the same frequency information as p-

synthesis. Furthermore, the cross-terms in 8.3 are not considered by the multiple Ho"

cons'-aint approach as they are in &-synthesis. Therefore, the resulting controller will

not guarantee robust performance. The mixed approach does, however, guarantee
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a controller which provides robust stability and nominal performance at controller

orders as low as the H 2 order.

The above example is the simplest case of a multiple constraint problem. How-

ever, the design engineer is often interested in performance and margins at more

than just one point in the system. Using the multiple Ho constraint framework,

robustness to multiplicative perturbations at the input and the output as well as

additive perturbations (and the inverses of all of the above) can be accounted for

simultaneously. Further, any other desired constraint such as control power limits

can be augmented to the problem in this framework. Thus, the mixed H2 /H.o opti-

mal control problem with multiple Hoo constraints is a powerful tool which provides

substantial flexibility in control design and trade-off analysis. The application of

multiple constraint mixed optimization problems which include is will be examined

further in the next chapter.

The objective of the first section of this chapter is to characterize the optimal

(order-free) solution to the mixed H 2 /H.. optimization problem with multiple con-

straints. The conditions for fixed-order controllers will then be presented. Finally,

the numerical methods developed in Chapter VI will be extended to include multiple

constraints and the F-16 longitudinal control problem will be used to demonstrate

the methods.

8.1 Uniqueness of the Optimal Controller

This section will extend the results of Chapter IV to the H2 /Ho, optimal

control problem with multiple H.. constraints. Consider the system in Figure 8.3,

where d,, i = 1,... , n., are of bounded energy and w is zero-mean, white Gaussian

noise.

The transfer function P is the underlying plant G with all weights associated

with the problem absorbed. It is assumed, in general, that there is no relationship

between ei,i = 1,... , and z or dd,i = 1,...,no, and w. As before, the aug-
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Figure 8.3. General mixed H2 /H,. optimization problem

mented plant P is formed by wrapping the weights from an H2 problem from w to

z and the weights of the H.. problems from d, to ei around the basic system. To

simplify the discussion, the following additional definitions are made:

Ka-min flT& T I (8.7)

-IT.II l when K(a)= K2 .. (8.8)

Ki, : a solution to the H2 /H.. problem for some set {'1,... , (8.9)

I =IT.4Ill- when K(s)-- K,,. (8.10)

As in the Chapter IV, this problem can be formulated as a convex program

through a Youla parametrization as shown in Figure 8.4. The convex program is:

find a Q E H2 which satisfies

a = inf IIT._.}},

QEH 2

• = subject to (8.11)

11 Td, 11,. s5 - for i = 1,.. n,n.

This problem is more complicated than the single constraint problem due to

the nature of the regions where solutions can exist. In the single constraint problem
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Figure 8.4. J-Q parametrization of the mixed H21/Ho problem

shown in Figures 4.3 and 4.4, there are only two possibilities; either the controller is

the optimal H2 controller, or it is a controller which satisfies the Hoo constzaint with

equality. However, for the multiple H.. constraint problem, there are more regions

to consider in order to determine the nature of the mixed controller.

Consider the mixed problem with two H, constraints, where 'yi and 7y2 are

specified. Figure 8.5 presents the four possible regions in the H,, constraint plane

where the values of -t1 and y2 can be chosen. Note that the point (7/,,y2) in this plane

indicates the point at which both inequality constraints are satisfied with equality.

We will denote the actual mixed solution by (-y, -y). Region IV is defined as the

region where -yj t> T, and y2 _ T 2 . Region II is defined by 71 < T, and -y greater

than or equal to the value of JIT,h 1IJ. when a K,,.j from the H 2/I1Ted, 11o, curve (that

is, the single constraint mixed controller) is used to form T.4 at a given value of 3'1.

This value of -72 will be denoted j2. Similarly, Region III is defined like Region II

but with 7 1 , 72 and Ted., T.4 changing roles, and 11 is the value of 71 on the optimal

mixed H21/JTd, 1J. curve. Finally, Region I is defined by the values of 71 and 72 less

than those given by the optimal mixed single constraint curves, but greater than
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Figure 8.5. Admissible solution regions

the minimal values achievable for a two-constraint problem. The lower left corner of

Region I does not necessarily reach the intersection of the lines -yi = t and 72 = -22

this is due to existence questions in this region which will be discussed later. In

particular, the point (21,22) is most likely not achievable.

Figure 8.6 shows a three-dimensional plot of the surface formed by plotting

corresponding values of a*, 4y•, and -y/. This is the mixed 1IT.1I2/IT~djjI./llIIYTd 2 11oo

surface. With this surface in mind, we will use some geometric insight to determine

the nature of the solution for each region. Starting with Region IV, one can see from

Figure 8.7 that the optimal H 2 controller is in the admissible region-since this is

the global optimal, it is the solution to the mixed problem in this region. Thus, for

(71, 72) in Region IV, the optimal mixed solution is (-y, -y) = (T1, 72).

In Region II, the admissible region can be seen in Figure 8.8. The minimum

value of a will be achieved on the optimal H2/fITedjjo curve. Thus, (-y;, /;) =

(71,12) in Region II. Similar results will occur for Region III, so (-4,-y) = (11,72)

in Region III.
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H -2 Optimal
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Figure 8.7. Admissible solutions-Region IV

8-8



llTed,11++ H2/IITeIIdl Optimal Curve

72 IV H2 Optimal

•IT III

12 xima Curve

llTed,1lo

Figure 8.8. Admissible solutions-Region II

For Region I, the admissible region is shown in Figure 8.9. The geometric in-

sight from Figure 8.6 is that the solution will fall at the intersection of the constraint

boundaries; i. e., (qy•,7y) = (-y1,72)

The following theorem will confirm this insight. First, define Kmj., (71) as the

unique optimal controller for the mixed H2/IITd, 1J.. problem at a fixed -y7. K,,,i 2 (-y2 )

is defined in a similar fashion.

Theorem 8.1.1 Assume n.o = 2 (i. e., there are 2 d 's and 2 e1 's) and let -yj and

7y be given. If a controller K which solves the convex program (8.11) exists, then it

is unique and K is given by:

i. If 7- !5 ji and 7-2 <- j2 (Region I) then the optimal controller K must satisfy

both H., constraints with equality.

ii. 1172 j 2 and 71 < 77 (Region II) then K = K=, (7')

iii. If 7y > 11 and 72 < 12 (Region III) then K = Ki., (-y2)

iv. If71 >_ y1 and 72 -1 2  (Region IV) then K = K20 ,,
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Figure 8.9. Admissible solutions-Region I

Proof: From Lemma 4.1.1, the two-norm is a strictly convex functional; therefore,

from the corollary to Theorem 9.4.1 [35], any solution to the convex program (8.11)

is unique.

i. Define the Lagrangian

£ = ]ITz..,1 2 + Al ( jiTd, 11.0 - 71) + A2 (lITed 2Iio. - 12) (8.12)

If neither constraint is satisfied with equality, then the Kuhn-Tucker conditions

imply A1 = A2 = 0. The problem reduces to the optimal H-2 control problem

which has the unique solution K20,,. However, referring to Figure 8.9, it can

be seen that this solution is not admissible. Therefore, at least one constraint

must be satisfied with equality. Now, assume 7• = yj and y; $ -,, which

implies A2 = 0. The Lagrangian reduces to

£ = 11T.I112 + A1 (lITedi 11. - 71) (8.13)
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which is the Lagrangian associated with the mixed H2/IITedi jj" optimal control

problem, which was shown in Theorem 4.2.1 to have a unique solution. Again

referring to Figure 8.9, it can be seen that this solution is not in the admissible

region; thus, --- 72. A similar argument can be made for -/y = 72 and -y/ $ "/1.

Thus, the only remaining possibility is (-y*, -) = (-fl,-y2).

ii. Assume neither constraint is satisfied with equality. Again, the only controller

which satisfies the Kuhn-Tucker conditions is K 2 ,,, which is not in the ad-

missible region as shown in Figure 8.8. Thus, at least one constraint must be

satisfied with equality. Assume now that 7 = -- i and -y 2 72 which implies

A2 = 0. The Lagrangian then reduces to (8.13) for which the Kuhn-Tucker

conditions are satisfied by the unique K,,j.,i (7y1), which is in the admissible re-

gion. Since the optimal solution is unique, K,•i.., (-/,) is the optimal controller

for Region II.

iii. The proof is analogous to that of ii.

iv. Assume neither constraint is satisfied by equality. Then (8.12) reduces to the

H2 problem and K2,, is admissible; therefore, it is the optimal solution.

The question of existence of a solution still needs to be addressed. In the single

constraint problem, controllers existed for all -f > 1. For the two-constraint problem

where the constraint intersection falls in Regions II, III, and IV, the existence of a

solution is guaranteed by the definition of the boundaries. However, in Region I,

there is a question of existence of solutions in the neighborhood of the intersection

of _1 and y, as depicted by the dashed curve in Figure 8.5. There is no guarantee

that a solution to the mixed problem will exist which satisfies 7Y, = -_ and 7Y2 = 22'

concurrently. In fact, numerical results have suggested that there is some limit of

performance in this region. Since no analytical approach has been devised thus
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far to determine the existence or non-existence of controllers, numerical studies are

required to determine where controllers can be found.

8.2 Fixed-order Solution.

8.2.1 State Space Formulation. Thus far, the order of the controller has

been free, but for practical design problems it is necessary to fix the controller order.

This section will develop the fixed-order problem and determine characteristics of the

solutions. Unfortunately, with a fixed-order controller, it is no longer possible to use

the Youla parametrization to parametrize the problem over a convex set. However,

conditions can be derived which must be satisfied for an extremal using the first

order necessary conditions of a particular Lagrangian.

Returning to the system in Figure 8.3, the state space of P is formed by wrap-

ping the stable weights from the H2 problem from w to z and the stable weights

of the H.. problems from d4 to i' around the system G resulting in the augmented

plant

A fBd, . ,

6O, be, d, ... di.oo w, fItu

P =(8.14)

0'... b.,, d, ... d..,, ,, D w b.,,,,

C. bd,, ... &d,. D1 ,,, &w

LCY Dyd, ... Dyds. Ds., D&1. j

where j.] are the matrices associated with the system augmented by the H 2 and H..

weights. The order of the individual 112 and H.o problems will generally be less than

that of P, since P incorporates all the H2 and H.. weighting states. The state space

equations of the H2 and H,,o problems can be written as
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i2 = A2X2 + Buw + B.,u (8.15)

Z = Czz2 + D~ww + Du (8.16)

Y = Cy2 2 + D~w+Dyu (8.17)

i, = Aoxo, + Bd, di + B,,•,• (8.18)

e1 = C,, ooi+ D-d. + Detui (8.19)

y = Cy.,,z + Dycd. + Dyu, (8.20)

where X2 is the state vector for the underlying 12 problem and z~oo are the state

vectors for the underlying Ho. problems.

The mixed H2/Hoo problem is: Find a controller K(s) which satisfies

inf 11IT.112 subject to IIT.4-Iloo _ -yj, i= 1,2,...,n..Kstabilizing

where

T = C.(sI- A 2)-B., + V.. (8.21)

Te = Ce(8I A0 J( -•d + Ded (8.22)

are the closed-loop transfer functions from w to z and d, to ei, respectively. The

various matrices in (8.21) and (8.22) will be defined shortly.

To solve this problem the following assumptions are made:

i. DSn=0

ii. Dyu =0
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iii. (A,, B.2) stabilizable, (C, 2, A,) detectable

iv. D.JDZU full rank, D.DT full rank

v. A2 has full column rank for all w
C. D,, 1

The rationale for these assumptions is the same as given in Section 5.1.

As in the single constraint problem, DUDCDVW must be identically zero for a

finite two-norm of T,, to exist; condition iv then implies D, = 0. Thus, consider the

controller K(s) in state space form

i = Acxc + Bey (8.23)

u = C'M' (8.24)

Closing the loop of our system we get

i2 = A2x2 + B,,w

z = C. x2 (8.25)

k, = A4xj + Bd. (25

ej = Ckx,,, + V.4- d.

where

X2 = X] (8.26)
Z'

•0, = [o] (8.27)
8c
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SA 2  B 2 C: ] (8.28)
Bo,. 2  Ar

A, = . B, (829)

Bey. A,

B1 = BD (8.30)

1d d (8.31)

C. = [Q. D.,C.] (8.32)

C, = [Cj De, Cc] (8.33)

Vu = D.d. (8.34)

8.2.2 The Lagrangian and Necessary Conditions. The mixed H2 /Ho• prob-

lem is now to determine a K(s) such that:

i. A2 and A.., are stable for all i

ii. JjT.4_jo _< -y for some given set of yj> ->

iii. IIT.II2 is minimized.

Extending Theorem 5.2.1 to the multiple H. constraint case, one obtains the

following.

Theorem 8.2.1 Let (A., B0 , C,) be given and assume there exist a set of solutions

T= QT > 0 satisfying

AoQoo,+Qo, AF,+(Q.,C•.T+Bd .)R, '(QoC.,+Bd .) +Bd.Bd =0 (8.35)
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for all i, where RP = (YI - d6 .V.) > 0. Then, for each i, the following are

equivalent:

i. (A.., Bd) is stabilizable

ii. A is stable

iii. Ar2 is stable.

Moreover, if i, ii, and iii hold, then the following are true:

iv. 1ITd.4-1. <o •, for all i

v. the two-norm of the transfer function T, is given by

IIT,4i2 = tr[C.Q2CT ] = tr[Q2 C.z.]

where Q2 = QT > 0 is the solution to the Lyapunov equation

A 2Q + Q2 4 +BB= o

vi. all real symmetric solutions Qo, of (8.35) are positive semidefinite for all i

vii. there enists a unique minimal solution Q•, to (8.35) in the class of real sym-

metric solutions for each i

viii. Q•, are the minimal solutions of (8.35) iff

Re[Aj(A., + BV4R,-•C, + Q,,CZR=,l'Ce,)] :_ o for allj

iz. 1Il-4.1. < (:5) -y, if Re [A•A(A, + Bd, E4R=,'C., + Qo.,Cz ICe,)] <(!)0

for all j, where Q~, are the minimal solutions to (8.35) for each i.

Proof: This is an extension of Theorem 5.2.1 for multiple H.. constraints. 0

Using Theorem 8.2.1, the problem can be restated as: Determine the K(s)

which minimizes

J(A., Bo, C.) = tr[Q2rCTC. (8.36)
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where Q2 is the real, symmetric, positive semidefinite solution to

A2Q2 + Q24 + B•,B = 0 (8.37)

and such that

~ + QOO,A•,+ ± (QOOC•, l()CT,+BE +Bý4 BT =0 (8.38)

has a real, symmetric, positive semidefinite solution Qoi for each i. To solve this

minimization problem with equality constraints, a Lagrange multiplier approach is

used. The Lagrangian is

,C = tr[Q2CTC.] + tO{[A 2 Q2 + Q2, + BwB.I]X}

,=1

+ Bi.B•]Yj} (8.39)

where X and Yj are symmetric Lagrange multiplier matrices. The resulting first

order necessary conditions are

.= 2 Q12 + X2 Q2 + Y2Q,*- + Y2QN, = 0 (8.40)8A.
1f 12 12 T + XIT +T••V
#Br =XT QICT + X 2Qr C, 2V12 + X2BrV2 + (•,-,

Y2Q,-CY+ + y + Y2B V• + (y + Y2QT)C'"M,

(YIQgi, + Y2Qbj)CjD TM,= 0 (8.41)

&C BT1X R TI2Q I2 + R2 C .Q2 + Tace =~ XQ 2  BX 2 2  R~ 1  B~oY 1 ,Q~b

+ B,,YllQb + RQ..Q &yYQA + RQaYI•,Qbi + RQaikY'iTQab,
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+ R.,QG4.y3Qb + R-(.~b~CQyl2 iQbi + RbidC.QIy 2iQb,

+ 4Cr.QT y 1 .Q8 6 , + RbdCvQbYl.QG

+ P11(y1 iQ.1 N, + Y12iQb.) + P2i(YlT.Q,21,, + Y2Q13.) 0 (8.42)

a = A 2 Q 2 +Q 24+B,.BT= 0 (.3

ýQ- Af2 + A2 +CTC,= 0(8.44)

of- + QOOiA.T + (QOOiCZ + Bd. '(~C + ~ )

+ l= 0 (8.45)

BI (A00,i + B d.V)LR 1  C ., + Q 00c .TR1  c ,4 i)y i

+ Yi(Aio + BdEV4.R- C6 , + Qoizk C lRCe) o (8.46)

where

M. R= D.DT (8.47)

=, i .wR-.Dd (8.48)

P2 i D.T,, M BI(8.40)

Q2 Q Q12(8.51)

QT Q2~
818



[ l Y12 1 (8.53)

A.B.T = [B.]B. D.T.B TB.Dv r.,D B

=2B (8.54)

B'(V• -', +RI)B. = [B-D'd. (VR: j + I)[ B1 D;.B.]

__[ Vla VaBT (8.55)

S: [ , I, o:'TB.V0
2 . B.b, B, j

= R12CR ] (8.56)
TCTR2 C4

cýR12 , IZ,,C:Rj.Cei = CZ~5  R.71 [ C., ueaC.]

=.. R C c (8.57)

As in the single constraint case, these necessary conditions have not been solved

analytically but do provide some insight into the nature of the solution. In particular,

(8.46) implies that either Yj = 0 or (A, +Bd, . .R,-tC, + Q ,CTR,"1C,) is neutrally

stable for all i. The former condition means the solution is off the boundary of the

corresponding H.. constraint, and the latter condition implies the solution lies on the
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boundary of the corresponding H,, constraint, and Q, is the neutrally stabilizing

solution for that H.. Riccati equation. This relation will be used to develop the

solution to the problem.

8.2.3 H 2 Order or Greater Solution. The order of the controller, nc, is

assumed to be fixed at an order greater than or equal to that of the underlying

HJ2 problem, n2, and the mixed H2 /Ho problem is solved. Since nc > n2, the

unique optimal controller K 2 ,, is admissible and the associated Ho, problems achieve

infinity-norms of ji with this controller. Thus, for the fixed-order mixed H2 /H..

problem with -i - ;y for all i, the optimal mixed controller is simply the H2 optimal

controller. Similarly, no controller of any order exists which can reduce -ti below the

level of an optimal H.. controller, I.; therefore, for the mixed H 2/H.. problem, no

solution exists if any -i < 2. As was discussed at the end of Section 8.1, a region

where solutions do not exist can exist inside Region I. Currently, this area can only

be determined numerically.

To simplify the discussion, for the remainder of this section it will be assumed

that there are only two active H.. constraints. From the first order necessary con-

ditions, the following theorem can be developed.

Theorem 8.2.2 Assume nc is fixed to a value greater than or equal to n 2 and

ho = 2. Then the following hold:

i. if Žy - ;71 and 72 Ž_ f2, the solution to the mixed H2 /Hoe problem exists and

is K 2.

ii. if 7 1 - or 72 < 12, and a solution to the mixed H2 /He problem exists, it

will satisfy at least one of the Ho, constraints with equality.

Proof:

i. Since the global optimal K2:,, is admissible, it is the solution.

8-20



ii. Assume the solution is off both boundaries (i. e., neither constraint is satisfied

with equality). This implies Y1 = Y2 = 0 and the Lagrangian (8.39) reduces

to

,C = tr[Q2CT'C1] + tr{A 2 Q2 + Q2AT + B.BI (8.58)

From Lemma 1 in [101, the only controller which satisfies the first order nec-

essary conditions for a minimum of (8.58) is the unique K 2 ,,. However, this

solution lies outside the admissible region; thus, a contradiction. Therefore the

optimal solution satisfies at least one of the H,, constraints with equality.

U

Notice, inside Region I, we cannot claim that both constraints will be satisfied

with equality as was true in the single constraint problem. While Theorem 8.2.2 does

not fully characterize the solution to the fixed-order mixed problem with multiple

constraints, it does provide insight into methods of solving the problem. For a

strictly sub-optimal solution, the problem can be split into two problems, one with

an equality constraint on the first constraint and an inequality constraint on the

second, and vice versa. The solution will then be the controller which minimizes the

two-norm of H2 problem, while satisfying both constraints.

However, if super-optimal solutions are acceptable (i. e., solutions which do

not necessarily satisfy one or both of the constraints, but are within some tolerance of

satisfying them), both constraints can be appended to the H2 problem as minimum

distance constraints such as the square of the error from equality. The solution

to this problem will be a fixed-order controller which is minimum distance in a

two-norm sense from the optimal. Since K2 , is always in some neighborhood of

the global optimal (unconstrained order), a solution to the fixed-order problem,

with order greater than or equal to n2 , is guaranteed to exist. The uniqueness

of the solution, however, is not guaranteed. The super-optimal approach has been
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successfully applied to the multiple constraint mixed problem, as reported by Ullauri,

et al (631.

Finally, the constraints can both be appended to the objective as inequality

constraints. While this is easier to implement than a one equality/one inequality

constraint method, it can lead to numerical difficulties if the region of convergence

is highly non-convex. In practice, this has not been found to be a problem.

8.3 Numerical Solution

Two approaches have been developed to compute controllers which solve the

mixed H2 /Ho problem for multiple constraints. The first method, called the Grid

Method, computes the set of controllers which satisfy the H~, constraints in the

region of interest. This is accomplished by holding all but one constraint constant and

varying the remaining constraint. The second method, or Direct Method, attempts to

simultaneously reduce all the H., constraiLts. For the remainder of the discussion

it will be assumed that there are only two H,, constraints. The results can be

extended as necessary to handle larger constraint sets. Both methods are based on

the inequality constraint program

Min 11T.112
Katailizing

subject to (8.59)

JITYd, 11. - 71J :5 0

IITed2  - -t2 <- 0

However, both methods could be modified for equality constraints if desired.

8.3.1 Grid Method. The grid method consists of solving a series of mixed

problems by holding one H.. constraint constant and reducing the second. Once

the optimal curve has been determined, the first constraint is decremented and the

process is repeated. The initial controllers for the method are determined by solving
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the two single constraint mixed H2/H,, problems to define the region of interest.

The process results in a surface defined by a versus Yfl versus 72. An example of

a surface generated using the grid method is given in Figure 8.10. The values of

7fl and -72 corresponding to the optimal 112 solution is denoted in the figure, and

the boundaries extending from the optimal H2 point are the results from the mixed

H2IIITed, 11[. and the H2/IITed2, , optimal control problems.

IITZW112

H2/I~eI" •• • -v" H2/"Td"
/ Optimal Curve

Optimal Curve¢ _A -- D• ------- _..--•.. iel

1Ie 211 • - VNIH2 Optim al

Figure 8.10. Typical surface generated by the grid method

8.3.2 Direct Method. As was discussed in the introduction to this chapter,

design objectives are often stated as H,,. constraints. Since the design objectives are

often limited to one region of the constraint hyperplane, one approach to synthesizing

a controller would be drive all H., constraints concurrently to the desired region

without computing the entire grid described in the previous approach. The direct

method is an iterative approach where all the constraints are decremented from some

initial point and a solution is found. The process continues until all the constraints

are in the desired region.

For the two-constraint problem, the process used in this approach is to begin

at the optimal H2 controller and simultaneously reduce -yI and 72 until a controller is
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found which meets both objectives. This results in a controller of fixed-order which

meets both the H.. constraints and has the smallest two-norm for the H2 transfer

function. An advantage of the direct method is that the initial controller can be cho-

sen as any stabilizing controller with order greater than or equal to n2 . Numerically,

the direct method has been found '.o work better in the neighborhood of • than

the grid method. One reason for this is the direct method approaches the minimum

point from a better conditioned portion of the curve. The grid method attempts

to track the solution along a minimum - curve and is generally less numerically

well conditioned. Once a controller is found via the direct method which satisfies

the design objectives, a reduced size grid approach can be used to determine design

trade-offs in the admissible region.

8.4 SISO F-16 Example

The SISO F-16 longitudinal controller design from Chapter V is used to demon-

strate the multiple H.. constraint method. This example demonstrates the applica-

tion of the grid and direct methods for finding solutions to multiple-constraint mixed

problems. However, it is not intended as an in-depth analysis of a controller design

with all trade-offs explored. A source for such an exploration is [63].

Recall that the problem is to design a normal acceleration tracker which also

has good noise rejection properties and margins. In the previous example, the H2

portion of the mixed control design was used to minimize response to noise, regu-

late the states, and limit control usage. The H., constraint was a sensitivity model

matching problem designed to achieve the performance objective and provide ac-

ceptable vector margins. As was seen in the example, there was a trade-off between

the margins and the performance as the solution approached an acceptable tracker.

To exploit this trade-off, a second H. constraint is appended to improve margins.

Thus, the problem will be an LQG design with a weighted input complementary

constraint to recover margins and weighted output sensitivity constraint to improve
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performance. Since this is a SISO plant, the margins and performance at the input

and output of the plant are the same; however, the methodology which is presented

here can be applied to a MIMO plant to recover acceptable margins and performance

at both ends of the plant. See [63] for a MIMO example of the multiple-constraint

mixed optimization.

8.4.1 Problem Setup. The H2 problem is the same one defined in the F-16

example in Section 6.2.4. The H.. constraints consist of the same transfer functions

used in the H2/p example in Section 7.3.1.1, except the constraints will be treated

individually. Thus, Td. will be the model matching input complementary sensitivity

which is used to provide a measure of robust stability. The second constraint (Td2 ) is

an output sensitivity model matching problem which provides a measure of nominal

performance.

The objective is to concurrently:

i. reduce the value of I1Ted, 11oo below 1 to guarantee robust stability to expected

perturbations

ii. reduce the value of IITa j.o to as low a value as possible for nominal perfor-

mance

iii. minimize IT-.[12 to provide noise rejection, output regulation, and limit :ontrol

usage.

The H 2 and the T.4 matrices are the same as the H 2 and H.. matrices in

the example in the Sections 6.2.4 and 6.2.2, respectively. The weighting on the

complementary sensitivity is selected as a high-pass filter and is given by

S= 50(8+ 100) (8.60)
9 + 10000
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The matrices associated with the complementary sensitivity constraint Ted, are

-1.491 0.996 -0.188 0 0

9.753 -0.960 -19.04 0 0

A001 0 0 -20.0 0 0 (8.61)

35.264 -0.334 -4.367 -40.0 0

-35.264 0.334 4.367 80.0 -10000.0

0 0

0 0

Bd1 = 0 B.., 20.0 (8.62)

0 0

0 0

Ce, [ -1763.2 16.7 218.35 4000.0 -495000.0] (8.63)

C = [ -35.264 0.334 4.367 80.0 0] (8.64)

D•, = [01 D,, = [01 D#, = [1.0] Dy = [0] (8.65)

8.4.2 Results. A controller order of four was selected so the results could

be directly compared to those of the example in Section 6.2. The problem was ap-

proached by first solving the single constraint problems H2/IITd1 I. and H2/IITa, 1o.

The results of these two problems defined the optimal single constraint curves in

Figures 8.11-8.13. Additionally, the problems defined the constraint plane region in

Figure 8.14, where a trade-off could be made between robust stability and nominal

performance. Of particular interest in Figure 8.14 is that there is no real trade-off

until -2 is reduced below 60000. However, for our particular problem, we are inter-

ested in the region close to 11 and •. Thus, a direct approach was used to minimize

both constraints concurrently. The result of this search was a controller that yields
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Figure 8.11. F-16, H 2/Ii2T,*i 1 1. versus -1 curve

71 = 0.861, 72 = 1.78, and a = 0.411. This controller produced the lowest values of

71 possible using the available numerical methods.

Now that the minimum point has been determined, it is desired to find the

trade-off of -y, 72, and a that can be made in the neighborhood of the minimum point.

Thus, a grid method was used. The initial controller was the optimal H2 /IIT. 11.,,

controller corresponding to 72 = 200. This resulted in j2 = 9.37. The grid was

generated by first fixing the value of y2 and reducing the value of 71. The value of 7y

was then decremented and the process was repeated. The values of 71 used were 200,

100, 50, 20, 10, 5, 2, and 1. To complete the grid, the roles of 71 and y 2 were reversed,

and another grid was generated using 72 values of 8, 6, 4, 2, 1, and 0.5. The surface

which resulted is given in Figure 8.15. The shape of the surface is as expected, with

an obvious trade-off between H2 performance and the constraints. Since our first

objective is to obtain robust stability, we can accept any solution which results in

-t < 1. Figure 8.16 is the projection of the mixed surface in the constraint plane.

Any solution in the acceptable region will guarantee robust stability. Therefore, the
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Figure 8.13. F-16, H2/IITa, l.. a versus 72 curve, expanded
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problem reduces to a trade-off analysis between 7y and a. If it is desired, the grid

can be further refined in the acceptable region to determine the best solution.

One interesting result of this particular problem is that the controller with

the best robust stability (a = 0.4 1 1,-yi = 0.86,-- = 1.78) yields a different con-

troller from the best one found in the single constraint problem given in Section 6.2

(a = 0.409,"/1 = 1.02, f2 = 1.49). The time responses for both controllers are given

in Figure 8.17. Notice that we give up some nominal performance in order to increase

stability robustness. If we desire, the 7i (robust stability) constraint could be relaxed

to "fl _• 1.0 and the minimum 7f2 can be determined. In fact, 71 = 1.02 for the single

constraint controller nearly meets our robust stability bound. Thus, for practical

purposes, the y2 = 1.49 controller achieves our desired robustness bounds. Finally,

the vector margins for the multiple constraint controller are [-7.55 7.31]dB gain

margin and 33.80 phase margin. These are lower than the margins resulting from the

single constraint controller which are [-5.9 10.3]dB gain margin and 40.70 phase

margin. Thus, while the multiple constraint controller has the best robustness to the

modeled perturbations, it has less robustness to independent gain and phase varia-
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Figure 8.17. F-16, H 2 /H. and H2/multiple H.. controllers, response to unit nor-
mal acceleration step

tions. Since the single constraint controller achieves our robustness bound, and also

provides better performance and margins, it is a better choice for implementation.

The trade-off in performance to achieve our robust stability bound is not sig-'-

icant for this problem. This is not a surprising result due to the relationship between

the input complementary sensitivity and the output sensitivity for a SISO system.

However, this will not be true for all problems. In particular, a MIMO system can

result in constraints on the input sensitivity and complementary sensitivity as well

as the output sensitivity and complementary sensitivity. In addition, there may be

constraints on additive perturbations and control usage. Thus, a more significant

trade-off is expected, in general, between the different objectives.

8.5 Summary

This chapter extended the H2 /H.. control problem to include multiple H.0

constraints. The optimal solution for this problem was shown to be unique. Further,

a set of relationships were developed between the level of the constraints and which
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constraints must satisfied with equality for an optimal solution. Fixed-order con-

trollers were addressed next, and it was shown that the solution is either K 2o,, or it

must satisfy at least one constraint with equality. Based on this result, two numerical

approaches were developed. A grid method can be used to determine the trade-off

available between the constraints. A direct approach can be used if a particular level

of the constraints is desired. Finally, an F-16 longitudinal control design example

was used to demonstrate both numerical methods. It clearly showed the various

trade-offs available to the designer between robust stability, nominal performance,

and margins.
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IX. Mixed H2/L 1 and H2 /Ho/i/L1 Optimal Control

Thus far, the problem we have examined is a convex program consisting of

an H2 objective function with a finite set of H.. constraints. This problem can be

extended to include any finite set of convex constraints. In particular, this chapter

will develop a methodology to include an L1 constraint. Once again, the uniqueness

of the optimal (order-free) controller will be shown. Further, a numerical approach

based on an equivalent discrete-time system will be suggested. To conclude this

discussion, all the constraints discussed in this dissertation will be combined into a

multiple-constraint mixed problem.

9.1 Mixed H2/L 1 Optimization

Often the control engineer is faced with requirements which can include limits

on control surface deflections, maximum positive and negative accelerations, limits on

angles of rotation, and so forth. In the mixed H2/H.. problem, these limitations have

been included as bounded energy limitations. While this often works adequately, it

does not ensure that the magnitude limit will be met. A better way of incorporating

these requirements is to treat them directly as bounded magnitude limitations. Thus,

if we consider a system with a bounded magnitude input r and desire to place a limit

on the worst case magnitude of the output m, we can define an induced operator

norm on the system as IITnwI; which, for continuous systems, is just the Ll-norm of

the impulse response of the transfer function from r to m. For discrete systems it is

the 4-norm of the pulse response of the transfer function.

There is currently a great deal of interest in developing control synthesis meth-

ods based on the 1-norm (for an in-depth examination of the subject, see [20J). In

this work, we are not interested in trying to solve an 41 control problem; rather, we

are just interested in adding an L, or 1 constraint into the framework. This is not

as straightforward as the H•. constraint since there is no convenient method of com-
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Figure 9.1. General mixed H 2/L1 optimization problem

puting the L2-norm of a frequency domain transfer function. However, we are still

dealing with a normed constraint; therefore, the problem remains convex and the

previous work will hold. The fixed-order approach will be modified to compute the

41-norm of an equivalent discrete transfer function. In general, the problem should

be posed in the discrete domain and both the H2 and 11 problems solved there. One

reason for this approach is that the final implementation will usually be performed

in the discrete domain. Therefore, a controller designed in the continuous domain

will have to be discretized, which will result in a sub-optimal controller. However,

the discrete problem is beyond the scope of this work; this section will only charac-

terize the optimal (order-free) solution for the H2/L1 problem and develop a hybrid

algorithm for including an 4i-norm overbound on the L1 constraint in a frequency

domain H2/L1 problem.

9.1.1 Uniqueness of the Optimal H2/L1 Controller. Consider the general

control system shown in Figure 9.1, where w is a unit intensity white Gaussian

noise input, r is a bounded magnitude input, and z and m are controlled (possibly

fictitious) outputs where it is desired to minimize the energy of z and the magnitude

of m. It is assumed that there is no a priori relationship between w and r or z and

m. The measured output is y and the control law is u = K(s)y.
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The mixed H2 /L1 problem is to design a controller K(s) such that the transfer

function from w to z has minimum energy subject tu maintaining the magnitude gain

of the transfer function from r to m below some predetermined value v. The former

problem is an H2 problem and the constraint is an L1 problem. As in the H2/H,,

problem, the full plant P(9) is formed from some underlying plant G(s) augmented

with stable weighting transfer functions on the inputs r and w and the outputs m

and z. Partitioning P in a similar fashion to the previous work, this system can

reduced to two separate problems: the H12 problem, which is to find an internally

stabilizing controller K(s) which minimizes IIT--II 2 where

T.. = P.. + P 3.K (I - P1IK)-1 Pv (9.1)

and the L, problem, which is to find an internally stabilizing controller K(s) which

satisfies I1T,.,111 < Y for some v where

T., = P,-, + P,,,K (I - PyK)- 1 Py, (9.2)

As before, it is assumed that T. is strictly proper and thus has a finite two-

norm. The mixed H 2/L1 problem can be stated as: find a stabilizing controller

K(s) which minimizes the two-norm of T.. and satisfies the constraint that the one-

norm of T,, is less than or equal to some fixed v. This mathematical programming

problem can be transformed into a convex programming problem through the use of

the Youla parametrization. The convex program is

Jinf IIT1, + T22QT31 12
QEH 2

P' subject to (9.3)

lIT1, + T2,QT3,5 1 1 <- V

where Ti, are defined in a similar method as Ti. in Section 4.2. Define v as the

minimum a' for which a controller exists and u* as the value of v when the loop is
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closed with the optimal (order-free) mixed controller. Also, define P as the value of

v when the loop is closed with K20,,.

Theorem 9.1.1 Let v > v_ be given. The controller which satisfies the convex pro-

gram (9.3) is unique. Furthermore, the following hold:

i. if v >_ , the controller is the optimal H2 controller

ii. If v < V, ,* = Y at the optimal (i. e., the solution will satisfy the L, constraint

with equality).

Proof: The proof follows directly from the proof of Theorem 4.2.1. M

In general, the optimal (order-free) controller will be unique for any convex

constraint. In fact, this result is easily extended to include any finite set of convex

constraints.

9.1.2 Fized-Order Controllers-Numerical Approach. Assume the con-

troller order is fixed at a value greater than or equal to the order of the H 2 order.

The mixed H 2/L1 problem can be solved numerically using an approach similar to

that used in the mixed H 2 /H.. problem. There will be no attempt to characterize

the nature of the fixed-order controller; rather, an algorithm will be developed which

attempts to find a fixed-order controller in a neighborhood of the optimal (order-

free) controller. As before, the region of interest for this problem is V <_V < V since,

if v >_ - the optimal controller is K 2 ,, and if v < R, no solution exists.

Define the program

Ketabilizing

subject to (9.4)

11T,.1ii1 - V < 0

Program (9.4) can be minimized using the SQP routine described in Chapter

VI. The algorithm will be identical to the previous results with the exception of
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the calculation of the constraint and its gradient. As was discussed in Section 2.3.3,

there is no convenient way of computing the L1-norm. However, the 41-norm of an

equivalent discrete system can be computed to any desired accuracy. Further, from

Theorem 2.3.1, by using an Euler approximation system of the continuous system, we

can always insure that the discrete 41-norm will be an upper bound to the continuous

L1 -norm.

To compute the 41-norm, first put the system into an EAS discrete form us-

ing the method described in Section 2.3.3.3. For synthesis, the time step r in the

discretization is fixed based on the bandwidth of the system. Once the equivalent

discrete transfer function is determined, the 4l-norm is determined using the method

given in Section 2.3.3.2. The acceptable level of error in the norm is also used to

determine N, the point where the infinite sum is truncated.

Finally, the gradient of the constraint is determined analytically. The gradient

is

OJ~~T'Eq I o[ ,& A"ABu I + I D.(-9I L IIB1 (9.5)

STA)k (9.6)

where (AR, BE, CE, DE) is the EAS equivalent of realization (A, B, C, D) of T,.,.

This proposed method has not been implemented to date. However, it would

appear to provide a straightforward approach to handling L1 constraints. Further

development along these lines of research are being pursued.

9.2 H2 Optimization with H.., i, and L1 Constraints

To complete this dissertation, we will look at how we can put this all together to

solve an aircraft control problem. The various exogenous inputs to the system include
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Figure 9.2. General mixed H2 /H./p#/Li optimization problem

white noises from wind disturbances and measurement noises. In addition, there

are plant perturbations due to unmodeled dynamics and aerodynamic variations.

The primary design objective is to ensure the system remains stable in light of the

noises and plant perturbations. Furthermore, the performance objectives include

attenuating response to noise and perturbations and providing desired response to

commanded inputs. Moreover, it is desired that this performance remain at an

acceptable level in light of the perturbations described above. Finally, there may

be some catastrophic perturbations, such as the loss of a control surface, which are

not desirable to include in the above objectives. However, some limited subset of

the stability and performance objectives must be met in light of these catastrophic

perturbations.

The above objectives can be recognized as the robust stability and robust

performance problems defined in the introduction to this dissertation. Moreover,

we have now developed the necessary tools to handle a set of these objectives in an

optimal fashion. Consider the block diagram given in Figure 9.2. Following the

standard notation from the previous chapters, w represents the white noise inputs,

d and s are the bounded energy inputs and r represents the bounded magnitude

inputs. The controlled outputs z, e, and v are bounded energy and m is bounded

magnitude. As before, no a priori relationship between w, d, s, or r and z, e, v, or m

is assumed. The problem can now be stated as: Find the controller K which solves
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the program

K stabilizing

subject to

'P JITeddoo•-- (9.7)

IITmrII• V

Through the use of the Youla parametrization from Section 3.1, the problem

can be transformed to the convex program

C'= inf IIT2,+T 22 QT3 II2QEH2

subject to

7' IIT1,. + T2.QT3a•.ll • 7. (9.8)

IIT1, + T2,QTa31. •5<
JIT1, + T2, QT3, 111 !5 V

where Ti are associated with T.5 , T, are associated with Ted, Tip are associated

with T,., and T, are associated with Tm,..

Theorem 9.2.1 Assume the convex program

' = inf lIT 12 +T 22QTa321QEH2

P subject to (9.9)

IT1i, + T2,QT31 IIA, !5 '7

where fi E {oo, 1} and i = 1,..., N, is consistent. Then the Q E H 2 which achieves

the infimum is unique.

Proof: From Lemma 4.1.1, the two-norm is a strictly convex functional, therefore,

from the corollary to Theorem 9.4.1 [35], any solution to the convex program (9.9)

is unique.
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The characterization of where the optimal (order-free) solution will fall rela-

tive to the constraints is complicated for this problem due to the increased number

of constraints. However, the optimal solution must still satisfy the Kuhn-Tucker

conditions.

For fixed-order solutions, both the direct and grid methods from Chapter VIII

can be extended to include the larger set of constraints. As the number of constraints

increases, greater insight into the desired objective bounds will be needed to limit

the region of interest. In addition, the increased number of constraints provide the

designer with more trade-offs. Thus, by incorporating H,,, p, and 41 constraints

into the H2 optimization problem, the designer can now account for a larger set of

stability and performance objectives in an optimal fashion.

9.3 Application of Mized Optimization

While this section cannot provide a complete method for solving all control

design problems using mixed optimization, some thoughts on applications are ap-

propriate. To begin, it is necessary to determine exactly which portion of the mixed

method will be used to handle each design problem faced. It may turn out that a

combined approach can be taken where one problem is addressed by a combination

of the objective and constraints. Since the H2 problem is the objective function it

is the logical starting point for this discussion.

Traditionally, the H2 problem is set up to minimize the influence of both low

and high frequency noise. Additionally, it has been found that tracking can often be

obtained by adding a low frequency noise at the output and minimizing the energy

of the output. While this has some merits, the tracking problem can be directly

approached by using an H. constraint or an L, constraint. Furthermore, we saw

in the F-16 problem that a good output tracker also had good low frequency noise

rejection. Thus, it may be possible to use the H2 portion of the mixed problem

primarily to limit the response of the system to high frequency noise. Of course,
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we assumed that the H2 problem is regular, so some low frequency noise will be

necessary.

The next problem to attack is how to achieve robust stability and perfor-

mance. As we saw, u-synthesis provides a method for achieving the desired robust-

ness. Therefore, the expected perturbations and performances requirements should

be incorporated into a # constraint. However, as has been mentioned earlier, there

may be some perturbations which have a low probability of occurrence, but for which

we desire some minimal level of robustness to. These catastrophic perturbations can

be incorporated into the problem as an H, constraint. Therefore, a trade-off can

be made between our "normal" capability and the ability to handle catastrophic

events. It should be mentioned that the desire is not necessarily to design a con-

troller which provides for every situation, but rather one which provides some level

of stability and performance while the catastrophic event is identified and the control

laws reconfigured.

Finally a discussion of the level of nominal performance achieved throughout

this work is needed. Using H. techniques we have been able to find controllers

which track better and have better margins than the LQG regulator we began with.

However, we have not achieved the level of tracking performance desired in most

applications. In particular, we are often given specifications on the rise time, over-

shoot, and settling time resulting from tracking a unit step input to the system. All

of these are inherently bounded magnitude constraints. Thus, the obvious approach

to incorporating these constraints is to define them as L, transfer functions and ad-

join them to our optimization problem. Therefore, we are able to address a number

of concerns of the designer and, through the mixed H2/H./spfL1 approach, provide

a method of designing controllers by trading off the various objectives.
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X. Conclusions and Recommendations

10.1 Summary

This dissertation has characterized the mixed norm optimization problem for

both order-free and fixed-order controllers. The first problem considered was the

general mixed H2 /H** optimization problem for output feedback. It was shown that

the problem cap be restated as a convex program through application of the Youla

parametrization of all stabilizing controllers. This form was then used to prove that

the optimal ozder-free solution is unique. Furthermore, through a duality approach,

the controller for a special case of the H2/H.* problem was shown be non-rational

or infinite order.

Due to the real world requirement that controller order be reduced to an imple-

mentable level, a fixed-order solution was sought. For the mixed H2 /H* problem, it

was shown that optimal fixed-order solutions exist for orders as low as the H2 prob-

lem. Further, the necessary conditions for an optimal fixed-order controller were

developed for the mixed problem with both a singular and proper (but not necessar-

ily strictly proper) H.. constraint. In addition, the nature of the optimal fixed-order

controller was characterized based on the level of the desired H.. constraint.

A numerical synthesis method was developed based on the results of the fixed-

order solutions. This method is based on the relationship of the optimal two-norm

versus infinity-norm curve. It has the advantage of only requiring a regular H 2

problem, and thus can handle singular H.. constraints, including those that have as-

sociated Hamiltonians with jw-axis zeros. The numerical search was based on either

a Davidon-Fletcher-Powell or a Sequential Quadratic Programming algorithm. Since

the optimal H2 solution is easily computed, it was selected as a convenient initial

controller. Both sub- and super-optimal solutions can be found using the method.
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The gradient of the two-norm objective function was derived from Lagrangian

C = tr - Q2C, C.j + tr [(AQ 2 + Q2AT + BBi)X]( )

The gradient of the H,. constraint was based either on a central difference or

on an analytical gradient of the associated maximum singular value. The sensitivity

method resulted in more accurate gradients and therefore converged to solutions

faster and more accurately. However, it is limited due to the piecewise continuous

nature of the H.. gradient. Both the DFP and SQP methods took significantly

less computation time than existing methods. Finally, the SQP method was able to

converge to controllers with lower values of 7 and required fewer iterations than the

DFP method.

The new numerical method was used to demonstrate the application of the

mixed problem to a SISO F-16 normal acceleration control design problem. It was

found that a significant reduction in the infinity-norm constraint could be made

with little increase in the two-norm. This trade-off allowed the mixed controller to

improve both stability robustness and tracking performance without suffering loss of

noise rejection or excessive control usage.

The mixed problem was also extended to include robust performance through

the addition of a p constraint. This was accomplished by substituting the mixed

approach for the last controller design in a D-K iteration. Using mixed H2/4 opti-

misation, both the robust stability and robust performance problems were developed.

The SISO F-16 normal acceleration control problem and a MIMO HIMAT longitu-

dinal control problem were used to demonstrate the usefulness of the mixed H2/p

problem. In both examples, the order of the controller was reduced significantly

below the order resulting from a p-synthesis design. Furthermore, the F-16 design

demonstrated a significant reduction in high frequency noise response and control

usage when compared to the p controller.
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To extend the class of problems to which mixed optimization can be applied,

multiple H. constraints were incorporated into the H2/H, problem. It was shown

through convex analysis that the optimal (order-free) controller is unique. Further,

the necessary conditions for an optimal fixed-order control controller were developed.

In particular, it was shown that the optimal fixed-order controller must satisfy cer-

tain conditions based on where the intersection of the H.. constraints fall in the

constraint plane. Two numerical approaches, the grid and direct methods, were de-

veloped to find solutions which satisfied design objectives. Again, the SISO F-16

normal acceleration problem was used to demonstrate the methods. The various

regions in the constraint plane were found and the direct method was used to find a

solution which satisfied the design objectives. Moreover, a grid was produced in the

neighborhood of this solution to demonstrate the available trade-offs which could be

made between the two-norm and the constraints.

Next, the mixed problem was extended to include L1 constraints. Again, the

uniqueness of the optimal (order-free) solution was shown. In fact, this result can be

extended to any set of convex constraints appended to the H" problem. A numerical

approach to the H2/L1 problem was proposed. It is based on computing the 1-norm

of an equivalent discrete-time system.

Finally, all of the above results have been combined to form an H2 optimiza-

tion problem with any finite set of H, p, and L, constraints. Such problems arise

often in aerospace applications. One particular example is a robust performance

problem which also has a robust stability objective due to another potential catas-

trophic perturbation. If the catastrophic perturbation is included in the structured

perturbation, it can limit the performance available under "normal" perturbations.

Therefore, it is not desirable to include the catastrophic perturbation into the struc-

tured perturbation for the p robust performance constraint. However, with the

mixed approach, the catastrophic robust stability objective can be appended to the
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problem as an additional H.. constraint. Now a trade-off can be made between

robust performance and "catastrophic" robust stability.

10.8, Recommendations for Fuiture Research

While this dissertation has contributed to the understanding of mixed norm

optimization problems, there still remains a number of questions to be answered.

The first of these is what the optimal order of a mixed controller is, and what the

optimal mixed curve looks like. While the optimal order appears to be infinite, this

has not yet been proven analytically. This problem may possibly be solved through

the operator-theoretic approach developed in this work.

Another question which has not been answered is the uniqueness of the optimal

fixed-order controller. Numerical results to date tend to indicate the controller is

unique. However, due to the lack of convexity of the underlying set, it has not

been shown whether or not the optimal fixed-order solution is unique. Perhaps the

application of nonconvex analysis to this problem will be able to answer the question.

Thirdly, the synthesis method proposed in this work has not been refined to the

point where it is ready for everyday application. In particular, the numerical solution

has problems around the knee of the a versus -1 curve. The largest contributor to this

problem is the nature of the H. constraint. For problems of interest, the gradient of

the H.. constraint is only piecewise continuous; this leads to the gradient being valid

in only a small neighborhood of the nominal solution. Thus, the step size of the one

dimensional search must be reduced, resulting in an increased number of iterations

to converge to a solution. Another problem is the non-uniqueness of a particular

state space realization of the controller transfer function. This has been partially

overcome through the use of the modal canonical form, but this does not allow all

possible controller transfer functions (i. e., it only allows controllers with first order

Jordan blocks). Incorporation of a modified Jordan form [60] should overcome this
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limitation. Refinement of the numerical method is an open problem which should

yield a significant advance in optimal control synthesis.

The fourth open area is the H2/L1 optimization problem. While a continuous

approach to this problem has been proposed, the appropriate approach is in the

discrete domain. In fact, the entire mixed framework should be rederived in the

discrete domain. This has the advantage of producing a controller which can be

directly implemented by a digital computer without adding the complicated and sub-

optimal step of discretizing a continuous controller. This work is currently underway.

Finally, mixed H2 optimization with H.., it, and L1 constraints needs to be

demonstrated on a realistic control design problem. As was suggested, a robust per-

formance problem combined with a catastrophic robust stability objective would be

ideal for this. Further, the ever-present noise rejection and state regulation problem

can be incorporated into the 12 problem. Finally, the L1 constraints can be used to

enforce time domain constraints, such as control deflection and normal acceleration

limits. Through such control design examples, the flexibility and power of the mixed

optimization approach can be further explored and refined.
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Appendix A. SISO F-16 Short Period Model

The F-16 normal acceleration command control system is modeled by a con-

tinuous, time-invariant linear system shown in Figure A.l. The system consists of

a two-state short period approximation of the normal acceleration command system

augmented with a pre-filter for the servo dynamics and a post-filter to model the

control delay. The plant states are the angle of attack (a) and the pitch rate (q).

The input is the stabilator deflection (6.) and the output is normal acceleration (n,).

The plant (W.) is given by

[ 6I [-1.491 0.9961 [ ] [-0.188" ]
q 9.753 -0.96 q -19.04

(A.1)

n,~ [35.264 -0.334] [a 4.367][e

The actuator dynamics (W.) are modeled as a first order relation between the

commanded stabilator deflection (b,8.) and the actual deflection given by

= 20.06, + 20.06... (A.2)

A first order Pads approximation is used for the time delay (Wd) and is given by

d = -40.Od + n. (A.3)

n ,,.•. = 80.Od - n.

where (n.,.,.,) is the output of the system.

A wind disturbance is modeled as an angle of attack perturbation by a zero-

mean white Gaussian noise with a strength of 5.0 x 10-4 rad 2-sec. The measurement

is corrupted by zero-meau, white Gaussian noise of strength 1.6 x 10-s g2-sec. The
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Figure A.1. F-16 model block diagram

strength of the noises were determined by tuning a linear quadratic estimator. The

truth model for the tuning and analysis includes a first order Von Karman wind

model for the low frequency process noise (W.), which entered the plant as an alpha

perturbation (r), and a high-pass filter to model the measurement noise (W.,). These

models are given, respectively, as

x'. = -6.7z. + 0.0187w, (A.4)

= X. (A.5)

z. = -0 mz, + 0.004W2 (A.6)

= 1.0z,,, + 0.004w2  (A.7)
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where w, and W2 are unit strength white-Gaussian noises, zd is the wind state, z.. is

the measurement noise state, 4 is the process noise, and q? is the measurement noise.

r is the first column of the plant A matrix given in (A.l).
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Appendix B. MIMO HIMAT Model

The model is taken from data for the HIMAT vehicle [44J. The model is a

continuous, time-invariant linear system, consisting of the four-state longitudinal

dynamics. The states are forward velocity perturbation (6), angle of attack (a,.),

pitch rate (q), and aircraft attitude (0,.). The control inputs are elevon (6.) and

canard (6,) and the measured outputs are angle of attack (a) and aircraft attitude

(6). The plant is given by

S. -0.0226 -36.6 -18.90 -32.1 4
a.0 -1.90 0.983 0 a,.

0.0123 -11.7 -2.63 0 q

0 0 1.0 0 0,

0 0

-0.414 0 C B]+ (B. 1)

-77.80 22.40 [.
0 0

4

057.30a,

[0 0 0 57.3 q

The design and truth model noise inputs are the same as those given in Ap-

pendix A only with the units on the sensor noise changed to deg -sec. The truth

model is shown in Figure B.1, where A, B, and C are defined in the normal way and

r is the second column of A.
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