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High Technology Corporation
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and

Yousef H. Zurigat1

Mechanical Engineering Department
University of Jordan

Amman, Jordan

ABSTRACT

The effect of a pressure gradient on the first mode of instability of compressible subsonic and

supersonic boundary layers is investigated using linear stability theory. Formulations are presented

for nonsimilar boundary-layer mean flow and linear quasi-parallel stability problems that account

for variable fluid properties. A pressure gradient is studied that generates potential-flow Mach

number distributions at the edge of the boundary layer of the form M, = cxt , where c is a constant

and x is the dimensionless streamwise distance. Variations are calculated for the maximum growth

rates of three-dimensional first-mode waves with different edge Mach numbers and different levels of

both adverse and favorable pressure gradients. A favorable pressure gradient is shown to have a

stabilizing effect on first-mode waves. However, at high edge Mach numbers, a favorable pressure

gradient becomes less effective in stabilizing first-mode waves. The frequencies and streamwise and

spanwise wave numbers that correspond to the maximum growth rates of first-mode waves decrease

as the pressure gradient becomes more favorable at all Mach numbers when the Reynolds number

R = 1500 and at M, > 2 when R = 600. Setting the Prandtl number to unity significantly increases

the maximum growth rates of first- and second-mode waves at high Mach numbers compared with

setting it to the realistic value of 0.72.

1 This research was supported by the National Aeronautics and Space Administration under NASA Contract No.
NASI- 19480 while the second author was in residence at the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681. The first author's research was
supported by NASA Langley Research Center, Hampton, VA, under contract NAS1-19299.
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1. INTRODUCTION

Previous experimental and theoretical studies have shown that an adverse pressure gradient

destabilizes a laminar boundary layer, whereas a favorable pressure gradient stabilizes it. These

effects should be understood and their variations quantified with the large parameter space.

Furthermore, the relations between a pressure gradient, stability, and transition make quantifying

the effect of a pressure gradient on the stability of boundary layers significant for predicting and

controlling transition. In this work, we study the effects of favorable and adverse pressure gradients

on the stability of compressible subsonic and supersonic two-dimensional (2-D) boundary layers. The

emphasis is on evaluating these effects on first-mode instability.

The effect of a pressure gradient on the stability of three-dimensional (3-D) flows is different

from its effect on 2-D flows. The presence of a pressure gradient with a body sweep is a necessary

condition to induce crossflow and, therefore, crossflow instability that contributes to the transition to

turbulence. Although modern airplane designs use swept wings that induce 3-D flows, the effect of

the pressure gradient on the stability of 2-D flows remains important. For example, near the wing

box, little crossflow is present and the flow is mostly 2-D. In addition, the flow at the fuselages and

nacelles at low angles of attack is axisymmetric with little crossflow.

Theoretical studies of the effect of a pressure gradient on the stability of 2-D incompressible

flows have considered both self-similar (Falkner-Skan) and nonsimilar boundary layers. These

studies showed that favorable pressure gradients are stabilizing and adverse pressure gradients are

destabilizing, which has been confirmed by numerous experimental investigations. The higher

modes of instability' in high Mach number, compressible flows makes the stability of these flows

more complicated than that of low-speed flows.

A favorable pressure gradient in compressible boundary layers is associated with compression

and, therefore, with an increase in the Mach number at the edge M, of the boundary layer.

Furthermore, a favorable pressure gradient is also associated with a convex body. However an

adverse pressure gradient is associated with expansion, a decrease in M, and a concave body. The

concavity might enhance the growth of G~rtler vortices and, consequently, their possible interaction

with the T-S waves.

For compressible flow, only a few published studies examine the effect of a pressure gradient on

laminar boundary-layer stability. The most recent studies have concentrated on the second-mode

instability of boundary layers with a pressure gradient. Malik2 showed that a favorable pressure

gradient stabilizes the second-mode waves by reducing the peak amplification rate and decreasing

the band of frequencies that are amplified while the band shifts to higher values. Some of Malik's

results were derived from viscous stability analysis of compressible self-similar boundary layers with

favorable pressure gradients. As Malik indicated,2 self-similar solutions in compressible boundary

layers with a pressure gradient are not known to exist unless the Prandtl number Pr is set equal to
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unity. If Pr is set equal to unity in air boundary layers, the stability characteristics of the flow might

change significantly in comparison with setting Pr equal to the realistic value of 0.72. This issue is

discussed further in section IV. Malik's stability results with self-similar boundary layers were

computed at M. = 4.5 and a Reynolds number R = 1500. Malik also performed calculations for a

nonsimilar boundary layer that developed on the wall of a hypersonic nozzle with a suction slot

ahead of the throat. For that case, the flow accelerates from M, = 0.34 at the lip of the suction slot to

M, = 6 toward the exit of the nozzle. Malik performed a stability analysis at two nozzle stations

corresponding to M. = 4.57 and R = 3165 and to M, = 5.45 and R = 3648. In both cases, a favorable

pressure gradient was found to reduce the maximum growth rate of second-mode waves and shift the

band of unstable frequencies toward higher values.

The effect of an adverse pressure gradient on second-mode instability in flow past a flare cone

configuration at a free-stream Mach number M. = 8 was studied by Malik et al.3 The flare cone

configurations were designed to produce almost constant streamwise pressure gradients. The mean

flow was computed with both parabolized Navier-Stokes and boundary-layer methods and the

resulting profiles were analyzed with linear stability theory. The amplification rate of the second-

mode disturbances was found to increase with the adverse pressure gradient.

Zurigat et al.4 showed that second-mode waves are stabilized by favorable pressure gradients

and become destabilized by adverse pressure gradients. These results agree with those of Malik.2

The peak amplification rate for favorable pressure gradients was found to shift toward a higher

frequency, which also agrees with the conclusions of Maik2 at M, = 4.5, 4.57, and 5.45. However, for

flow at M, = 6.5, the study of Zurigat et al.4 showed that the peak amplification rate shifts toward a

lower frequency when a favorable pressure gradient is applied.

Vignau 5 (as reported in Arnal et al.6) analyzed the effect of adverse pressure gradients for an

M, that varies linearly with x. He considered flows with M, = 5, 5.8, and 7. Vignau found that

adverse pressure gradients destabilize second-mode waves and that highly adverse pressure gradi-

ents destabilize the usually stable third-mode waves (in zero pressure-gradient flow at finite

Reynolds numbers). The experimental study of Kimmel7 for flow past a fore cone over a flared or an

ogive aft body showed that at M, = 8, favorable pressure gradients delayed transition and adverse

pressure gradients promoted transition. At M. = 8 the instability was dominated by second-mode

waves.

In a zero pressure-gradient, adiabatic compressible boundary layer, when X.. exceeds a certain

value, the 2-D first- and second-mode waves merge while they are amplified. Zurigat et al.4 found

that both favorable and adverse pressure gradients have very little effect on the growth rates in the

merging region. This result indicates that at high Mach numbers, a very strong favorable pressure

gradient is necessary to divide the single unstable region in the growth-rate frequency domain into

two separate regions.
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The study of Vignau6 reported that first-mode waves are stabilized by adverse pressure gradi-

ents. This result is discussed in section IV. Zurigat et al.4 considered the effect of pressure gradient

on 2-D and 3-D first-mode waves at a single spanwise wave number and at the single value of M. =

2. The flow and disturbance conditions considered by Zurigat et al. do not correspond to the most

amplified waves. The present study considers the effect of pressure gradient on first-mode waves

under the most amplified conditions. We point out here that, although the most unstable second-

mode waves are 2-D, the most unstable first-mode waves in supersonic boundary layers are 3-D.1

IL FORMULATION

We consider the Navier-Stokes equations describing a 3-D, unsteady, compressible perfect gas

flowing over a surface. We choose a body-oriented orthogonal coordinate system with the axes x* y*,

and z* such that x* is measured from the attachment line along the surface, y* is measured from the

surface in the normal direction, and z* extends in the spanwise direction such that the coordinate

system is right handed. We assume that no body forces exist and that no heat is auded (from within

the flow or from radiation). The dimensional Navier-Stokes equations describing this flow are the

continuity, momentum, energy, and state equations

tl +' v (pV= (1

P + (2)

• Dh "

p - - = - - + I '! + • (3 )
IV Dt ,

• p*R*T* (4)

where

r= + 2--e (5a)

=P A7(e.) 2 + 2ju *e*4el (5b)

2 (50)

•, - d - -d
+ +--+j-,-+k-,- (5d)
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=Su +- V +kw (5e)

In the above equations, r. is the stress tensor, e• the rate of strain tensor, 00 is the dissipation

function, and 6, is the Kronecker delta. Furthermore, the indices in the index notation have the

values 1, 2, and 3 and v = u , =V us =wa, x =x, = x=y, and x= z. In equation (3)

DIMD, is the material derivation given (for any quantity s) by

Ds +V (6)
-t =7+

and in the index notation

a, (7)

for any quantity s*. In the above equations, p* is the density, t* is time, V* is the velocity vector

with its components u*, v*, and w* in the x, ya, and z* directions, respectively. The pressure is

p., the enthalpy is h, the thermal conductivity is ,r*, the absolute temperature is T%, the dynamic

viscosity is •°, the second coefficient of viscosity is A7, and the universal gas constant is R. The

unit vectors i, J, and k are in the x , y*, and z directions, respectively.

For a perfect gas,

h- = f C,•dT" (8)

We render the Navier-Stokes equations nondimensional by defining

t = , (9b)

P I (9d)
Pr

p=-. (9e)
Prur

(A p)-=-,-- (9f)
'Ur
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IC (9g)
K r

C P (9h)

T=T.0(9

where L7 is a reference length and the subscript r denotes a reference quantity. Using and

expanding equations (8H-9i) in equations (1H-4), we get

a+ P + d +PU + a+PU (12)

WL 0&Y &V 0 ~~r&&~

j~+ j +ujiw~ Cop) + [(;L + 2#)} (13)+!L+1 it

+j (a + I (14)

& P ýp. (15)

where+± W± !h a

at a 0ý e.I_ýRdl ax)



*2=(A+2 ( & +2 ()]+2A 01

+40U2 2 (2 (~2 2 av)]+4 ' a ±L(6

Re ULr (17a)
'Ur

U.2
( )M,2 M• (17b)

Pr ;, = (17c)K,.

and

- *= • (17d)

U,*

We can identify Re,, M1, and Pr, based on the reference quantities. In equation (17b), y =Cp/C. is

the ratio of specific heats, which is assumed to be constant.

A. Mean Flow

We consider 2-D steady flow over a body extending infinitely in the spanwise direction. The

body can be curved; therefore, it could exhibit a pressure gradient. However, the flow is

perpendicular to the body at the attachment line (no sweep, spanwise velocity w = 0); therefore, the

flow is 2-D. It follows that

-=0, w=0 (18)

Our interest here is in boundary-layer flows. To derive the boundary-layer equations for the flow we

are considering, we let

y= Y •(19a)

V = (19b)
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Furthermore, we take the reference quantities as those at the free stream - and replace the

subscript r with a@. Substituting equations (18)-(19b) into equations (10)-(15) and assuming

Re, = Re. is large, we obtain, to the leading order,

S~(20)

(Pu- +v-.-•U) = 0 (20)

of/u + (21)

+•=o (22)o9

PC I r )M!u± + 2~ + a. {rO) (23)

and

p=pRT (24)

The boundary conditions at the wall are

u=0 at 3=0 (25)

S..... at Y=O (26)

and

aT
-w0

or at y =O (27)

T=Tw =T-[

Equation (25) is the no-slip condition. In equation (26), v. is the suction (v, < 0) or blowing (v. > 0)

velocity at the wall and for an impermeable wall U = * = 0. The first condition in equation (27) is for

an adiabatic surface, whereas the second is for some specified distribution of the wall absolute

temperature T.. At a large 5F we have

U•U. as 5F-+.. (28)

T T, as 3-->o. (29)
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where u. and T. are the nondimensional streamwise velocity and temperature at the edge of the

boundary layer, respectively. They are made nondimensional with respect to U" and T-. and, thus,

ua- =. (30a)

T. -T- (30b)

It follows frum expression (22) that

p = p(x) (31)

If equation (24) is applied the edge of the boundary layer, then we get

P. = PAT. (32)

At the same x,p = pe; therefore,

pT = P.T. (33)

To transform the boundary-layer equations using the Levy-Lees variables, we let
I

(x)= I p.A.u dx (34a)
0

uY
( )= • JPd3C (34b)

F=- u(34c)
U.

TQ T (34d)

V=P. ,u + n4,F] (34e)

AD g due (340u. d4

and

0 = pp (34g)
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With equations (33) and (34), we can show that equations (20)-(24) transform into

24F + Vj + F =O (35)

To reach equation (36), we used the relation

dp = _P ou t du. (38)
dxi dx

which follows from applying equation (21) at the edge of the boundary layer.

The boundary conditions in expressions (25)-(29) transform into

F=0 at q=0 (39)

V= P;-• -v at =0 (40)
PePeUe U.

Q'=0
or at i =O (41)

Te

F-+I, Q-+1 as qi-+- (42)

The variations of the fluid properties with temperature are given in appendix A. The potential flow

quantities and their relation to the free-stream quantities are given in appendix B.

For a constant Cp and a constant Pr, Cp,. = Cp= 1 and, therefore, equations (35)-(37) reduce to

the familiar form

24F4 +V, +F = 0 (43)

24FFC + vF. - (OF.). + Po(F2 _-Q) =O (44)

2-FQg +(VQ • - -(-- 1)M.( b2, -o (45)

The boundary conditions corresponding to those given by equations (39)-(42) do not change with a

constant C, and Pr.
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To study the effect of pressure gradients on the stability of compressible boundary layers, we

could select a certain body with a surface that exhibits a pressure gradient, solve the mean-flow

problem over the surface, and study the stability of the resulting profiles. The second option is to

specify some streamwise variation of the potential flow velocity u, or the potential flow M.. In the

study of Zurigat et al.4 as well as in this work, the pressure gradient is assumed to correspond to a

boundary-layer edge Mach number distribution of the form

Me = cxn

where c is a constant and x is the dimensionless streamwise distance.

B. Stability

We consider the linear quasi-parallel stability of the mean flow described in the previous section

III.A in relation to 3-D unsteady disturbances. Stability studies that account for the nonparallel

effects8-- 4 in compressible flow over a flat plate showed that these effects can be significant within

certain ranges of the parameter space. The effect of nonparallelism on the stability of 2-D

compressible flow with a pressure gradient is unknown; therefore, the results presented in this work

using the quasi-parallel assumption should be interpreted accordingly. Furthermore, the effect of

the body curvature on the stability of 2-D high-speed flows is unknown. Preliminary calculations

performed by Malik (private communications, 1993) indicate that this effect can be significant for

certain parameters. However, this effect is not accounted for in the present study. The stability

analysis accounts for variable fluid properties; such a formulation with these properties was

introduced earlier,' 5,9.' 4 and we present it here for completeness. To perform the analysis, we scale

the Navier-Stokes equations and make them nondimensional by defining

Iyz=(x"Y""')
(X1,yZ)= (46a)

t = t1*U (46b)
8:

S= -' (46c)

Ue

p= P (46d)
p.
P,

P= p (46e)
p.u;
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(,A ' = ) (460)

1C= - (46g)

S= C; (46h)CP*.

and

T.* T = D(46i)

where

8 = rvlx,-- (47)

We use equations (46a)-(46i) in equations (1)-(4) and assume each dependent quantity as a

superposition of a mean quantity and a disturbance quantity; thus, we let

(u,v,,W) = (U,,O V, o) + (a,F,,,) (48a)

P = Pm + (48b)

P = Pm +p (48c)

T = Tm + (48d)

(., o) = (.A,,) +( (i,&,) (48e)

r = '. + £ (48f)

and

Cp =Cp.. +C6P (48g)

If we use equations (48a)-(48g) in the scaled nondimensional Navier-Stokes equations, subtract the

basic state, linearize and impose the quasi-parallel assumption, then we obtain the following

disturbance equations (after suppressing the tilde for convenience):
_p du u +p &) dPm w

-" dp• + pP - (49)
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[& ~+ +du., r dn fa u ao+

a+[Lti + ±)+,.--d-- + P. •t -(50)

ay )R~~9 a&) dy &iPM (±+ u. _)= _I '. ±(au + ++duo~

+ P. r+'• +-/-j±+"±•t E •Jf' (51)

P. a a,+U. tv Rl+ -PMa (a&+ au

+~1Pm+wJJ+ii~(52)

and

(aT dT dT,. y,_)M 2 [±+pm+I*
PmCp + U" -z-+-j-V l

1 r d2T d(dT dTm'l d2Tl
K - + -. + - -/ - (53)

where

The disturbance equation of state is

p = T + p (55)
P. Tm Pm

where

r = 2 + (56a)
Pm

M- A. (56b)lPm

Ru= (56c)
ve
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and

Cp2-CP.m (56d)

Because y and ir are functions of temperature only, we have

.U=dU'm (57a)

ic = 'r- T(57b)
dTm

We seek solutions for equations (49H-55) in the form

[U,v, p, T, w = [C1(Y)'C3(Y),C4(Y)' 5(Y),C 7 (Y)j exrit(Jadx + k- at)] (58)

If we substitute equation (58) into equations (49)-(55), we obtain

DC3 + ig DMC + i(au. - (yeM.2 4 - C) +iPC7 =0, (59)

i(au.~ - (,)l+ C3Dum + iaT.C4 - L1 +p.(ra2 + 132y _c -* a (m + 1)C7 + i(m + 1)*4LDC3

+DpDI+ i".g,,4' +.uPmD 2
Ci + D(P' Dum )ý5 + p Du,. 0 (0

i~u.- w3+ TmDý4 - &-im+ 1),Dj+ imaDTin4,ýi - (a2 + P P4

+rDTm.p4DC3 + im130Tm144 7 + jiY44,Du ..5 + rginD%~ + i(m + 1)I3PmDC71 ,(1

pm.(a +rp)~ + DTmJ4 DC + pD ~I0 (62)

and

W~p(auim - w)5+ DTmCPC3 - i(y, 1)M,2Tm(cAu - g

(y. _ 1)M.2Tn, (2Dumpm(D~i + iX4s) +M i(Dum )2
C5

R

Tmr +~ (a2 1 2)5 + 2 icR A,D CD 5 + KC,,J 2 Tm ' + (D T m) 1C = 0 , (63)

where the prime indicates differentiation with respect to Tm and D = d / dy.
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Equations (59)-(63) can be cast into the following set of eight coupled first-order ordinary differ-

ential equations:

DC. -±fC=0,n=12..,,(64)

rn-i

where C2 = DC•, C, = DC•, and C8 = DC7 and the nonzero coefficients &, are defined in appendix

C. The boundary conditions are

C=C =C5 =C7 =o at y=O (66)

and

C• is bounded as y- (66)

The corresponding equations for constant C. and Pr are obtained by setting

C, =C ,= =1

and

Ye = y = constant

in the coefficients in appendix C. The resulting equations are found in many references (e.g., Zurigat

et al.4)

mI. METHODS OF SOLLUION

The nonsimilar boundary-layer mean-flow equations with pressure gradient are solved with an

initial zero pressure-gradient region of length x0 to avoid the singularity at x = 0. At x = Zo (< 1), the

flow starts to undergo compression or expansion at a rate determined by the choice of n in the

equation M. = cx". Positive values of n produce favorable pressure gradients; negative values of n

produce adverse pressure gradients. This compression or expansion terminates at x = 1; M. reaches

a desired value Md that is set a priori. The free-stream Mach number is chosen such that M. = Md

when (z = 1). Stability calculations are carried out at x = 1, which allows a comparison to be made

between favorable and adverse pressure gradient results at the same edge Mach number and

stability Reynolds number.

Equations (43)-(45) and the boundary conditions in equations (39)-(42) are solved with a finite-

difference method and a Newton-Raphson linearization. The discretization and solution procedure

follow those described by Blottner.16 The special case of self-similar boundary layers is obtained by

dropping the leading terms in equations (43)-(45). This self-similar solution is then used to start its

nonsimilar counterpart. The dependence of the value of the pressure gradient parameter Po on the

length of the initial zero pressure-gradient region xo is very weak. For example, at M.. = 4.5 and

14



n = -0.2, a change of xo from 0.2 to 0.05 increases the value of Po by only 0.3 percent. However, a

switch from a zero pressure gradient to a nonzero pressure gradient flow region corresponds to a

sudden change in the geometry of the surface and could introduce an upstream effect on the mean

flow; the parabolic nonsimilar boundary-layer theory does not account for this effect.

The stability problem is solved by a second-order-accurate finite-difference scheme with deferred

correction17 coupled with a Newton-Raphson iteration on the eigenvalue. More details of the method

are given by Asfar et al.'

IV. RESULTS

A. Mean Flow

Variations of M. with the streamwise distance are shown in Figure 1 for several values of n. As

was discussed in the previous section, the length of the initial region in which the pressure gradient

is assumed to be zero has a very small effect on the mean flow calculations at x = 1. The streamwise

velocity and the temperature profiles at x = 1 with the same parameters shown in Figure 1 are

shown in Figures 2(a) and 2(b), respectively. Figure 2(a) clearly shows that a favorable pressure

gradient changes the streamwise velocity profile by making it fuller, which stabilizes the flow.

The zero pressure-gradient compressible flow has a single generalized inflection point inside the

boundary layer; a favorable pressure gradient creates another generalized inflection point near the

wall (Fig. 3). The generalized inflection point is defined as the point where D(pmDu&) = 0 with

D = d / o9, u. is the streamwise mean-flow velocity component, and p. is the mean-flow density.

The significance of a generalized inflection point at y = y, inside the boundary layer, where y. > y.

at which u.(yo)= 1- M. 1, is that it makes the boundary layer unstable to inviscid disturbances.

The generalized inflection point can be thought of as the compressible analog of the inflection point

in incompressible flows, which is responsible for making the flow inviscidly unstable. As the

favorable pressure gradient level increases, the two generalized inflection points move closer until

they meet and disappear (Fig. 3). Figure 3 clearly demonstrates that the minimum favorable

pressure gradient level needed to eliminate the generalized inflection points increases as M,

increases.

B. Stability

The quantities R, F, and B will be used to present the stability results. The Reynolds number R

is given by equation (56c). The frequency f* is the dimensional frequency of the disturbance in

cycles per second (hertz), and it remains constant for the same physical wave. The dimensional

circular frequency co* is given by

(* = 2mf* (67)
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and the nondimensional circular frequency co is defined as

0) =(a18F / U, (68)

where 8, is defined in equation (47). The frequency parameter F is defined as

F=co/R (69)

and equations (67)-(69) and equation (56c) show that

F 2mf•v: (70)

The dimensional spanwise wave number is P", which remains constant for the same physical wave.

The nondimensional spanwise wave number / is defined as

= (71)

We also define a nondimensional spanwise wave number parameter B as

P = 1000P/ R (72)

Equations (71), (72), and (56c) lead to

u* (73)
U.

Furthermore, Re. is defined as

* .*

Re. = -- T

or

Re.=u u* ",6

or

Re. = R 2  
(74)

We start by presenting stability results that demonstrate the importance of the first mode in the
transition process. To this end, the predicted transition location in compressible flow over a flat
plate was calculated from the empirical e9 method. A wave with a fixed dimensional frequency and a
fixed dimensional spanwise wave number was followed as it propagated downstream. The Reynolds
number where the N factor reached 9 ((Re.)N 59) was determined. The dimensional frequency and
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spanwise wave number were varied to compute the lowest (Re.)N... Variation of the predicted

transition Reynolds number with the free-stream Mach number when transition is due to first- or

second-mode waves is shown in Figure 4. The figure clearly shows that the e9 method predicts that

transition is due to first-mode waves up to M_. = 6 to 6.5. Results similar to those shown in Figure 4

for flow past a cone with zero and small pressure gradients were computed and presented by

Lysenko.19 The computations were performed by solution of the Dunn-Lin 2° stability equations and

the results show that the predicted transition is due to first-mode waves up to M - 7.

To study the effects of favorable and adverse pressure gradients on the first mode of instability

in compressible boundary layers, we considered flows with a pressure gradient parameter n = 0.1, 0,

and -0.1 and a potential flow M, that ranges from 0 to the hypersonic value of 7.4. The variation of

the maximum growth rate of first-mode waves with M. was computed for all three values of n. The

results are shown in Figure 5(a). The growth rates were maximized over both the frequency and the

spanwise wave number. The step in F was chosen to be 0.1x 10-6, and the step in the spanwise

wave number 9 was chosen to be 0.001. The stabilizing effect of a favorable pressure gradient on the

first mode of instability and at all values M, is very clear in Figure 5(a). The effectiveness of a

favorable pressure gradient in reducing the maximum growth rates of first-mode waves diminishes

at high supersonic and hypersonic Mach numbers, which is also evident in Figure 5(a). Note in

Figure 5(a) that for zero and adverse pressure gradients, compressibility reduces the maximum

growth rate; for the favorable pressure gradient case of n = 0.1, compressibility increases the

maximum growth rate. The increase in the maximum growth rate when n = 0.1 results from the

ineffective pressure gradient at high values of M,. A decrease in the effective pressure gradient

when the value of the critical Reynolds number changes as the Mach number increases was

demonstrated in the asymptotic calculations of Shapiro21 for 2-D disturbances at M, = 1.5 to 3. Also

shown in figure 5(a) is the variation of the maximum growth rate of second-mode waves at the same

R and for the same values of n.

The streamwise wave numbers, frequencies, and spanwise wave numbers that correspond to the

maximum growth rates in Figure 5(a) are shown in Figures 5(b) through 5(d), respectively. By

increasing M, the most amplified spanwise wave number remains at zero (2-D wave) to nearly sonic

values, where it increases sharply, reaches a peak, then starts to decrease slowly (Fig. 5(d)). Then it

encounters another sharp increase, reaches a second peak, and is followed by a second range of slow

decrease. As the pressure gradient becomes more favorable, both peaks shift toward higher values of

M,. Figures 5(b) and 5(c) show that the most amplified frequencies and streamwise wave numbers

of first-mode waves decrease as the pressure gradient becomes more favorable. The most amplified

spanwise wave numbers decrease for all values of M, as the pressure gradient becomes more

favorable.
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Results similar to those shown in Figure 5 but at R = 600 are shown in Figure 6. The values of

n are -0.12, -0.06, 0, and 0.06. The general features in Figure 6 at R = 600 are similar to those in

Figure 5 at R = 1500. However, the most amplified frequencies and streamwise wave numbers in

figure 6 decrease as the pressure gradient becomes more favorable at M. > 2, whereas in figure 5

they decrease at all values of M,, although the decrease in Figure 5 is small at low values of M,.

This performance of the streamwise wave numbers and the frequencies that correspond to the

maximum growth rates of first-mode waves at R = 600 are similar to those of second-mode waves

(Figs. 5(b) and 5(c)). This result indicates that if we compute and plot the variation of the maximum

growth rate (over all spanwise wave numbers) versus the frequency at fixed M, and at R = 600, then

at low values of Me the peak amplification is expected to decrease and shift toward higher values of

F as the pressure gradient becomes more favorable. However, at high values of M., the peak

amplification is expected to decrease and shift toward lower values of F as the pressure gradient

becomes more favorable.

The decrease in the effective favorable pressure gradient on stabilizing the first- and second-

mode disturbances at high Mach numbers is disturbing in regard to the natural laminar flow of high-

speed flow. This ineffectiveness suggests that other methods should be explored to delay transition

and to improve the efficiency of high-speed aerodynamic surfaces.

In the results presented thus far, first-mode waves were found to become destabilized by

adverse pressure gradients. These results seem to disagree with the results of Vignau5 (as reported

in Arnal et al.6). The results of Vignau show that the critical Reynolds number of first-mode waves

increases with adverse pressure gradients. This f'nding also seems to disagree with the results of

the asymptotic calculations of Shapiro21 for two-dimensional first-mode disturbances. The

calculations of Shapiro22 showed clearly that the critical Reynolds number decreases with an adverse

pressure gradient for M, = 1.5 to 3. However, the details of the work of Vignau5 are not available in

English. Furthermore, the reference length scale in the work of Vignau is the displacement

thickness and not 8, (given by equation (47)). We believe that what seems to be a disagreement

among the results of Vignau, the present results, and the results of Shapiro is more likely due to the

use of different reference length scales in the two sets of results.

Zurigat et al.4 showed that the variation of the maximum growth rate of 2-D second-mode waves

(for the considered flow with M, = cx") with n is almost linear. This linear performance was found to

break down close to separation. To determine if the linearity persists in the case of first-mode waves,

the maximum growth rate of first-mode waves (over ali frequencies and spanwise wave numbers)

was computed as a function of n for M, = 0, 2, 4, and 6 at R = 1500. The results are shown in Figure

7, and the variation is clearly almost linear. However, the linearity breaks down close to separation

(not shown in the figure), and the maximum growth rate increases significantly. Such linearity can

be utilized to compute the maximum growth rate for any n based on the values at two different
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values of n and can also be used in the context of an envelope method to correlate transition. The

circles in Figure 7 indicate results of calculations in which the length of the initial zero pressure-

gradient region is xO = 0.1, whereas for the rest of the results, xo = 0.2. Thus, a change in xO from

0.2 to 0.1 has virtually no effect on the value of the maximum growth rate.

Next, we considered the transverse distribution of fluctuation amplitude. Computations were

made at M. = 0, 2, and 6 for an adverse, zero, and a favorable pressure gradient. The parameters

correspond to some points in Figure 7. For M. = 0, only the distribution of streamwise velocity

fluctuations is presented, whereas for M. = 2 and 6, the distributions of streamwise velocity and

temperature fluctuations are presented. The results for M. = 0, 2, and 6 are shown in Figures 8-10,

respectively. In Figure 8 and for n = 0, the distribution is standard for 2-D disturbances in

incompressible flow over a flat plate, which is characterized by two peaks wherein the peak close to

the wall is larger than the peak away from the wall. A favorable pressure gradient shifts the lower

peak slightly and the upper peak significantly toward the wall. The adverse pressure gradient with

a magnitude close to inducing separation creates the three-peak structure shown in Figure 8. This

structure is very similar to that noted theoretically,22' and experimentally24 within a separation

bubble caused by a roughness element. The middle peak is believed to be due to shear-layer

instability. Note in Figure 8 that as the pressure gradient becomes less adverse or more favorable,

the disturbance decays faster in the free stream. The distribution of the phase at n = -0.1 (not

shown) exhibits two phase jumps similar to those found theoretically25 and experimentally2' in a

separation bubble caused by a roughness element. For M, = 2, the distributions of the magnitudes

of streamwise velocity and temperature fluctuations are shown in Figures 9(a) and 9(b), respectively.

For both quantities, the distributions of the adverse pressure gradient are characterized by three

peaks, whereas for n = 0 and n = 0.11, only two peaks are evidenced. The temperature fluctuation

distribution in Figure 9(b) at n = -0.15 is similar to that found by Masad and Nayfeh23 for separating

flow over a roughness element at M. = 0.8. For Me = 6, the distributions of the magnitudes of

streamwise velocity and temperature fluctuations are shown in Figures 10(a) and 10(b), respectively.

Note that the shifts in the peaks in Figures 8-10 do not necessarily correspond to the shifts of the

dimensional physical fluctuation. This situation occurs because y in Figures 8-10 is y / 8 and 8• is

given by equation (47), which shows clearly that 8 depends on the value of the pressure gradient

and Mach number. Therefore, the shifts should be interpreted accordingly.

As mentioned in the introduction, self-similar solutions of compressible boundary layers with a

pressure gradient exist only when the Prandtl number is set equal to unity. Furthermore, many

investigators use a Prandtl number of unity because it simplifies the mean-flow problems. When the

Prandtl number is set to unity and a pressure gradient is present, an analytic expression exists for

the temperature profile.2 This same expression holds when the Prandtl number is unity, the wall is

adiabatic, and the pressure gradient is zero.2 Changing the Prandtl number from 0.72 to 1.0 causes
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a relatively small increase in the maximum growth rate at subsonic Mach numbers (Fig. 11);

however, it increases the maximum growth rate significantly at high Mach numbers. The significant

destabilizing effect of setting the Prandtl number to unity at high Mach numbers is true for both

first- and second-mode waves. When the Prandtl number is changed from 0.72 to 1.0, the

frequencies and the streamwise and spanwise wave numbers that correspond to the maximum

growth rates of the first-mode waves increase, particularly at high Mach numbers.

V. CONCLUSIONS

Linear stability theory is used to study the effect of a pressure gradient on the first mode of

instability in compressible subsonic and supersonic boundary layers. Formulations are presented for

the nonsimilar boundary-layer mean flow and stability problems that account for variable fluid

properties. Consideration is given to the effects of both favorable and adverse pressure gradients on

the stability of flows at Mach numbers of 0 to 7.

Although a favorable pressure gradient does have a stabilizing effect on first-mode waves, it

becomes less effective in stabilizing these waves at high-edge Mach numbers. Also, both the

frequencies and the streamwise and spanwise wave numbers that correspond to the maximum

growth rates of first-mode waves decrease as the pressure gradient becomes more favorable at all

Mach numbers when the Reynolds number is 1500 and at Mach numbers that are higher than

approximately 2 when the Reynolds number is 600. Setting the Prandtl number to unity does

increase the maximum growth rates significantly at high Mach numbers.
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Appendix A - Variations of Fluid Properties with Temperature

The variations of u*, i*, ind C* with temperature are given by

' 1.458T *3' x 10-6 for T* >110.4,
T* + 110.4

* = 0.693873x 10 4 T*, for T* •110.4,

* 0.6325T= " x 104 f1+(2 15.4/T*)x for T1 > 80.0,

i* =0.222964 x 10-6 T, for T' < 80,

and

;= 0.0686042(a+ + aT" +a2T*2+ asT*3+

where ao = 3.657, a1 = -1.272 x 10-s, a2 = 2.955 x 10-6, as = -1.365 x 10- 9, all the quantities are

in centimeter-gram-second units, and T* is in degrees Kelvin.
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Appendix B - Potential and Free-Stream Flow Relationships

For steady, 2-D inviscid (potential) flow at the edge of the boundary layer, equations (1O)-(15)

reduce to

d (PU)

- u* p.v)= 0 (BI)

peru,. --- + V, --- = (B2)

_+ __ dPe (B3)

Pe(Cp..U. !~L.+ CP 6 V. =L (V- )ML e + Ve 1 (B4)

pe =pRT (B5)

where

U*TR2 (B6)

U-*I

The reference quantities are based on -c and e.

By considering the leading order and by ignoring the viscous-inviscid interaction problem, we

obtain V= =0 even when suction velocity is present. Therefore, equations (B1)-(B5) become

- (pOU.) + p- = 0 (B7)

-&u - 7' (B8)

dPe=o 0(B9)dy

p6Cp,U. u-~-•T = (y - 1)M.-u. -~-Pep,,JMU p (B10)

and

Pe = pXX..Te (B5)

where

X = R-T.- (B6)

U2-
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If equation (B8) in equation (B10) are used, then we obtain

x
SCp,.dT, + (-1I)M! Ue2 + C1f2

0

at x = 0 and u. = u: / U-* = 1, therefore,

x
ICp,.dT, = (Y - I)M-*U.2-u) (1111

f 2
0

for a constant CP, Cp, e = 1, then,

T= 1+L- M!(1-u2) constant Cp (B12)

Equation (B5) shows us that

d =--R.-jpeTe)

dz d

Using equation (B8) in the above equation yields

d (Pe~e) = P.u. du.

dx du

However, equation (B12) shows for constant Cp that

dTe + - 1)Mu- du., constant Cp
dx dx

The above two equations demonstrate that

(Y - 1)M!.(PC dx e aT d eJ d-- constant C,

However, for a constant CPI we have

(r- 1)M.*. = -�U R'T: y- 1
T.*Cp* U.f Y

Then,

Y- 1)T -•, =p. dTe

(r x 25
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Appendix C

Coefficients for equation (64)

The nonzero elements are

A2= f56s = f78 = 1 ,

A21 -=a2 9 RImm

f23 = -ia(m +1)DTm I Tm i&Dp.I mp. + RDum/I/mTm,

A24 = crR /p,U + (M+ 1)yýM.2a&,

A25 = -cx(m +1)& 1/T. D(Iu;tDum)/Ip.

fl= -ia ,

A3= DT. ITm,

AS = i&ITm,

f37 = i,

f = -iZa(rDT,, I T. + 2Dp.LI pm),

42= -4xaiI

4f = Z1fXa 2 ,8 + iiR I yTm + rD2i /Tm IT + rDp, DTm y /mTmJ

fa = _iZry.M.2[aDUm _ WT.I/Tm P p11

f47 i~tmrDITm+~aiij9Dp.-Ip p1pT,

f48 = 4,

f62 = 2(ye-_1)M. 4PrDumPmI/Or.
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fj3RP!rtDT.Cp/TmKm -2icx(Y.-)M.2FreDumpm/rm,

=2 1Ky 2 -p 2.)k )2

fa5 = iR PrCp,(cil.m W))/ITmI. (Y. - 1)M.2 Prý p4(Dum) 1C +CX aP 1CKiD 2Tm 11C (DT.) 1K.,

fGe= 21IýDTm / K.

fas= -i(m + 1)PT./T. - ipDu pp.

f85= -(M + 106 /T. ,

A87 =a 2 p_&RP.

and

fm DIpm/L,u

where

A*ý=dpmIdTm, DF=WFp)y, &=wouW., Z=Rp-rm2r1 r=2+?-E1-, m=A-&.
PUm
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Figure 1. Boundary-layer edge Mach number distributions for different degrees of compression and

expansion that terminate at M. = 4.5, T.. = 120 K, and Pr = 0.72.
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Figure 2. Boundary-layer (a) velocity and (b) temperature distributions for different pressure-
gradient parameters M, = 4.5 at x = 1, T. = 120 K, and Pr = 0.72.
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Figure 3. Transverse variation of location of generalized inflection points with pressure-gradient

parameter at T.. = 120 K and Pr = 0.72.

32



0 -

2-D Second mode \
S40

30 -

S 201

10
10 3-D First mode

0 . . . - .- . . . I . . . . -"

0.0 2.5 5.0 7.5

M

Figure 4. Variation of predicted transition Reynolds number using e9 method with free-stream
Mach number for flow over a flat plate at T. = 150 K and PN = 0.72.

33



First Mode
0.0100

0.0075 -0.1 Second Mode

0.0050 0

0.0025

0.0.1

0.0 2.5 5.0 7.5

M

(a)
Figure 5. (a) Variation of maximum growth rate with edge Mach number for three levels of pressure

gradient at R = 1500, Pr = 0.72, and T. = 120 K; (b) Corresponding streamwise wave numbers;

(c) Corresponding frequencies; and (d) Corresponding spanwise wave-number parameters.
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Figure 6. (a) Variation of maximum growth rate of 3-D first-mode waves with edge Mach number
for several levels of pressure gradient at R = 600, Pr = 0.72, and T.. = 120 K; (b) Corresponding
streamwise wave numbers; (c) Corresponding frequencies; and (d) Corresponding spanwise wave-
number parameters.
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Figure 7. Variation of maximum growth rate of 3-D first-mode waves with pressure-gradient

parameter for several edge Mach numbers at R = 1500, Pr = 0.72, and T. = 120 K.
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