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A general mixed H2/H optimal control design with multiple H_ constraints is

developed and applied to two systems, one SISO and the other MIMO. The SISO design

model is normal acceleration command following for the F-16. This design constitutes the

validation for the numerical method, for which boundaries between the H2 design and the

H. constraints are shown. The MIMO design consists of a longitudinal aircraft plant

(short period and phugoid modes) with stable weights on the H2 and IL, transfer

functions, and is linear-time-invariant. The controller order is reduced to that of the plant

augmented with the H2 weights only. The technique al", singular, proper (not

necessarily strictly proper) H. constraints. The analytical nature of the solution and a

numerical approach for finding suboptimal controllers which are as close as desired to

optimal is developed. The numerical method is based on the Davidon-Fletcher-Powell

algoeithm and uses analytical derivatives and central differences for the first order

necessary conditions. The method is applied to a MIMO aircraft longitudinal control

design to simultaneously achieve Nominal Performance at the output and Robust Stability

at both the input and output of the plant.
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I. IntroduciWon

Recently, there has been a great deal of interest in formulating a mixed H2/H.. control

methodology which can handle bounded spectrum and bounded energy inputs

simultaneously. Early approaches included solving the problem for one input/one output,

one input/two outputs and two inputs/two outputs ([BH891; [KDGB90]; [DZB891;

[YBC90]; [MG881; [MG90]; [KR91]). The general formulation of the mixeu iem

with two exogenous inputs and two controlled outputs was first approached for h. state

feedback in [KR91]. Ridgely, Valavani, Dahleh and Stein [RVDS92] developed a solution

for the general mixed HALI.. problem with output feedback which results in a controller

order equal to or greater than the order of the underlying system augmented the H2

weighting and the H. weighting. Also, the assumption is made that the underlying H.

problem is regular and has no feedforward term. Walker and Ridgely [WR94a]

reformulated the general mixed H)/H. problem with the strictly proper and regularity

assumptions relaxed to allow singular, proper H- constraints. Furthermore, Walker and

Ridgely showed strong theoretical results for controllers selected to have orders equal to

or greater than the order of the underlying H2 problem.

Multiple objective optimal control, as formulated by the above, allows the designer to

determine the tradeoff between noise rejection ( H2) and some unstructured perturbation

(H..), which embodies desired performance and margins at either the input or output of

the plant (or some combination). However, the unstructured perturbation approach to

the H.. problem is generally conservative. A better approach is to exploit the structure of

the perturbations [DWS82], but the single H. constraint in the mixed H2/H. setup is

unable to do this. Doyle [Doy82] introduced structured singular value (g.) synthesis to

design controllers which are less conservative. While this approach handles structured

1-1



uncertainties, the current ji-synthesis method generally results in a large controller order.

It is desired to develop a control synthesis method which can reduce the controller order

below that of pt-synthesis. One approach to this problem is to consider each perturbation

as an individual HB. constraint and solve the problem using mixed H2/H. synthesis with

multiple H. constraints. An advantage of this technique is that it allows the controller

order to be reduced to the order of the H-2 problem. Further, by employing mixed

optimization, one can design a controller which minimizes the effect of white noise inputs

as well as bounded energy inputs.

This thesis will first develop the H2/H. problem with a single H,. constraint. Second,

the UAL problem is extended to allow multiple H-. constraints. The nature of the

solution will be compared with gI-synthesis. A SISO example will represent the validation

of this new technique and a MIMO example will address control design requirements

(Robust Stability and Nominal Performance).

1-2



I. Background

This chapter is intended to lay the foundation for the specific compensator designs that

will follow. Figure 2-1 shows the closed loop transfer function T, and it is desired to

minimize an appropriate norm on T due to varying assumptions about the exogenous input

signal and the exogenous output signaL For instance, if the exogenous signal is not

known exactly but is known to lie in a set (p=2 ,eo), then a reasonable measure for

performance is one which looks at the worst possible output. In particular, assume that

the set of exogenous inputs is given by
(w = 1P I Ijwj, !5 1); p = 2900

The 2-norm is the energy, and the c-norm is the maximum magnitude of the signal. A

good measure of performance is given by

SJ4Zlq

P

K

T
FIgure 2-1 Closed Loop system T
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which is the norm of the worst possible output as the exogenous signal ranges over the

allowable set. The controller design problem is given by

inf (suDITW.) = i'l1 -

This performance objective is known as the minimax objective. The controller is designed

to guard against all exogenous signals in the allowable set [DD93]. Table 2-1 shows the

l.-induced norm for different exogenous inputs and outputs.

Table 2-1 Induced norns
input 11 w1 2  1Iwl II.

output,[ Iz) I2  IIT 1 . **

II z 11. II T 112  II T(t) 1H,

** not induced norm exits

For more information on signal theory, refer to [DD93] and other references. When

uncertainties are in the system, the minimization of II T ip [p=l,-o (the system 2-norm is

not good for uncertainty management)] is conservative, especially when the uncertainty

model is highly structured. In this case, g-analysis is a better tool for analyzing the

robustness of the system. Next, we examine the H2, H., and li-synthesis design

procedures. Minimization of IT(t)J1 , known as 1, optimization, will not be covered in this

thesis.

2.1 H2 Optimizaton

H-2 optimization, which parallels the popular LQG problem in the optimal output

feedback case, is based on minimizing the 2-norm of a transfer function matrix from white

noise inputs to controlled outputs [DGKF89]. The white noise input is assumed to be

zero-mean, unit intensity, and possess a Gaussian distribution. Figure 2-2 shows the basic

E62 design diagram where:

2-2



7 

.

E 

I l

FIgure 2.2 H2 Design Diagram

z is the controlled output (exogenous output)

w is a white Gaussian noise with unity intensity (exogenous input)

u is the controller input to the plant

y is the measured plant output

P includes the design weights and the plant

K is the controller

The H2 design objective is to find an admissible (stabilizing) K(s) that minimizes the

energy of the controlled output (z), which is equivalent to minimizing the two-norm of

TIW
Kinflz142 ind NTMI 2
uhnliuse 2Kadhinuie

The optimal II Tx, II is represented by ao, with the corresponding K(s)=K(s)2,. K(s)2,, is

unique and full order (the order of the nominal plant plus the order of the H 2 weights). In

state space, the plant P is described by:

x = Ax + Bww + Buu

z = Czx + Dzw + DMu
y = C yx + Dy, w + Dyu

The following assumptions are now made:

(i) Dw =0

2-3



(HIi Do~ = 0

(iii) (A, B.) stabilizable and ( C_, A) detectable

(iv) DTD full rank; DrJDT'ý full rank

(v) ] has full column rank for all (o

(vi) [A- l has full row rank forall

where assumption (i) is a requirement for the two-norm of the transfer function to be

finite. The condition on D, simplifies the problem, but it is not a requirement. For a

stabilizing compensator to exist, (iii) must be satisfied. Condition (iv) is required to avoid

singula control problems. Finally, conditions (v) and (vi) guarantee the existence of

stabilizing solutions to the algebraic Riccati equation (AREs) that are involved in the

solution of the H2 problem. For a complete description of the H2 solution, see [DGKF89].

2.2U Onimia

The objective of H. optimization is to minimize the energy of a controlled output to a

deterministic input signal that has bounded, but unknown, energy. In the H. problem the

controlled output is e, and the exogenous input is d, therefore, the H. problem is

Kadmiunbe iiu.c 2  K ed inf ..T

where

The optimal controller K(s)..,, yields 11 Td II, = 1, and a family of suboptimal controllers

such that 11 Ted II. <,y can be defined, where 7 > y. Figure 2-3 shows the block diagram

for the H. design. In this case, the state space matrices for P are:

2-4



x = Ax + Bdd + Bu

e = Cex + Dad + D,,u

y = Cyx + Dydd + Dyu

de

Figure 2.3 H. Design Block Diagram

The following assumptions on the state space matrices are made:

(i) D, =0

(ii) (A, B, ) stabilizable and (Cy, A) detectable

(iii) DT.D. full rank; DDTyd full rank

(iv) [A joI has full column rank for all o)

(v) [A - 1 ]has full row rank for all ow

Condition (i) is not required, but simplifies the problem. For stabilizing solutions to exist,

condition (ii) must be satisfied. In order to avoid singular problems, condition (iii) is

required. Conditions (iv) and (v) along with (ii) guarantee that the two Hamiltonian

matrices in the corresponding H-2 problem belong to dom(Ric). Notice that there is not a

2-5



restriction on Dd, because it does not make the closed loop infinity-norm infinite. For

more information of the complete solution, refer to [DGKF89].

2.3 Structured Sinolar Value

This section presents a short synopsis of Packard and Doyle [PD93]. The system is

linear time invariant with complex perturbations. For more information refer to [PD931.

Consider M e C-m. In the definition of gt(M) there is an underlying structure A on which

everything in the sequel depends. This structure may be defined differently for each

problem depending on the uncertainty and performance objectives of the problem. This

structure depends on the type of each block, the number of blocks, and their dimensions.

These blocks can be repeated scalar blocks and/or full blocks, where S and F denote the

number of repeated scalar blocks and the number of full blocks, respectively (scalar S:

r N,...,r1;ful block F: m1,...,mF). Therefore, A is defined as

A = [diag[8 1 JI,...,8sJ,,A j,...,A,]: 8• eC,

As+i e C''t'WJ, 1:< i:_< S, I < j < F)

s P
and • r, + 7, mj = n gives consistency among all dimensions. The norm bounded

i-l j.1

subsets of A are defined as

BA = {A e A:G(A) < 1)

For M e CM, gLA(Mo is defined

1

minf6(A): A e A, det(I - MA) =0)

unless no Ae A makes I - MA singular, in which case g,,(M)-). Clearly, irA(M) depends

on the block structure as well as the matrix M. In general, g,4(M) can't be calculated
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exactly, and its value is placed between lower and upper bounds for certain type of A

block structures (scalar blocks or complex uncertainty blocks; see [PD931). Two special

cases of g.A(M) are:

"* if A=181:8 C-; (S=1, F=0, r, =n)

then ILa(M)=p(M), (the spectral radius of M)

"* ifA=CM ;(S=0, F=1, 1 =n)

then gt,(M)=O(M)

For all but the two special cases above, gX is bounded by

p(M)5 < S(M)! < (M)

These bounds by themselves may provide little information on the value of j, because the

gap between p and 0 can be arbitrarily large. These bounds are refined with

transfonmations on M that do not affect h±,(M), but do affect p and 6. To do this, define

two subsets of Cm

Q={QEA: Q*Q=I,}

D = [diag(D1 ,...,Ds,ds+.I,,..., ds+F.I, J:D Ei Cr'f',Dj > 0, dS+j E R, ds+j > 0]

Notice that for any Ae A, Qe Q, and DE D

Q" eQ, QAeA, AQeA,

DA = AD

Theorem 3.8 from [PD931 says: For all Qe Q and De D

A,, (MQ) = ga (QM) = I.I4(M) = jJ• (DMDI)

Therefore, the bounds can be tightened to

M9M) Xn p(AM)=gj(M)•jn--f (DMD-),X p(QM):

2-7



2.3.1 Structured Singular Value in Control Systems

The structured singular value is a framework based on the small gain theorem, in which

the robustness of a system can be quantified [ABSB92]. p.-based methods have been

useful for analyzing the performance and robustness properties of linear feedback syste.ns,

where the closed loop system and weighting functions are contained in the M(s) matrix,

and all uncertainty blocks are put into a block diagonal A(s) matrix. M(s) and A(s) are

stabie transfer functions; they are arranged as shown in Figure 2-4. This figure is meant to

represent the loop equations e = Md, d= Ae. Assuming a fixed s=jco, as long as I - MA is

nonsingular, the only solutions e, d to the loop equations are e = d = 0. However, if

I - MA is singular, there are infinitely many solutions to the equations, and the norms Ilell

and IldlO of solutions can be arbitrarily large; therefore, this constant matrix feedback

system is "unstable". Likewise, the term "stable" will describe the situation where the only

solutions are identically zero. In this context, Iga(M) provides a measure of the smallest

structured A that causes instability of the constant matrix feedback loop. The norm of this

destabilizing A is exactly 1/ta(M) [PD93]. This interpretation can then be repeated for all

frequencies.

0 d

M ,

Figure 2-4 M-A feedback connection
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2.3.2 Structured Singular Value Analysis

The robustness of a closed loop system can be analyzed by forming the block diagram

as shown in Figure 2-5, where d. and e,, are the inputs and outputs related with

uncertainty block A2. The inputs and outputs related to the performance specification are

given by d and e.

e d
•e.M d&

Figure 2-S Robust Performance Diagram

The transfer functions between inputs and outputs are:

[ M1,,] - M12rd,
:[M2 , M22 d]

dA = A2e,

This set of equations is called well posed if for any vector d there exist unique vectors e,

e, and dA satisfying the loop equations. This implies that the inverse of I- M22A2 exists;

otherwise, there is either no solution to the loop equations or there are an infinite number

of solutions. When the inverse exists

e = LI(M, A2)d

L,(M,A2):= M11 + M1 2A2(I - M 22 A 2 )"!M21
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Figure 2-6 Nominal and Robust Performance specifications Diagram

where L(MA2) is called a lower linear fractional transformation. In order to analyze the

performance specifications, a fictitious block is created between the input d and the output

e. Figure 2-6 shows the new structure. The set of all allowable blocks is defined as

Bi = (Ai r A: O-(Aj) <_ I})

In this formulation the matrix Mll= L1(M,O) may be thought of as the nominal map and

A2e B2 viewed as a norm bounded perturbation from an allowable perturbation class, A2.

The matrices M12, M21, and M1 and the formula L(M,.) reflect prior knowledge on how

the unknown perturbation (A2) affects the nominal map, M, . In this case L(M,.) is related

to L1 MA2) as defined earlier. This type of uncertainty, called linear fractional, is natural

for many control problems, and encompasses many other special cases considered by

researchers in robust control and matrix perturbation theory. The constant matrix problem

to solve is: determine whether the LFT is well posed for all A2 in B2 and, if so, determine

how 'large" L1(MA2) can get for A2e B2. Define a new structure A as

A:=JAl AlAlt A2E2A21IL0 A&2 J 1 '2
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Now there are three structures with respect to which Jt can be computed. They are as

follows: gl(.) is with respect to A,, IL2(.) is with respect to A2, and gA(.) is with respect

to A. In view of this, lt1(M,,), pL(M 22), and gA (M) are all defined. Theorem 4.2 from

[PD93] says: The linear fractional transformation LX(M,A2) is well posed for all A2e B2 if

and only if g2(M2)< 1. As the perturbation A2 deviates from zero, the matrix LX(M,A2)

deviates from M11. The range of values that gt(L(M,A2)) takes on is intimately related to

I1a (M), as follows:

9t2(M22)< 1
,(M) < 14* nEnXm,1(4(MA 2 )) < 1

This relationship is known as the Main Loop Theorem [PD93].

2.3.3 Structured Sin1gular Value Svinthesis

The pt-synthesis problem is described by the attempt to find a controller K(s) that

minimizes an upper bound on the structured singular value,

inf inm supo[DM(K)D" ]

where M(K) is the closed loop transfer function. One way to solve this problem is called

D-K iteration; it calls for alternately minimizing sup a(DM(K)D') for either K or D

while holding the other constant. First the controller synthesis problem is solved using H.

design on the nominal design model (nominal plant plus weighting functions); i.e, DaI.

gt-analysis is then performed on the closed loop transfer function M(K), producing values

of the D scaling matrices at each frequency. The resulting frequency response data is fit

with an invertable, stable, minimum phase transfer function which becomes part of the

nominal synthesis structure. With D fixed, the controller synthesis problem is again solved

by performing an H-. design on the augmented system. The D-K iterations are continued
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until a satisfactory controller is found or a minimum is reached. The resulting controller

order is the order of the design plant and weighting matrices, as well as the order of the D-

scale transfer function fits [ABSB92]. MatLabTM provides a 1±-toolbox that will be used in

this thesis which performs this D-K iteration.

2.4 Nominal Performance .Robust Stability and Robust

Performance tests

This section presents the tests for Nominal Performance (NP), Robust Stability (RS),

and Robust Performance (RP) for the system of Figure 2-6. Depending on the type of

perturbation (structured or unstructured), the infinity norm test is conservative and

g-analysis is required as shown in Table 2-2.

Table 2-2 Test for NP, RS9 and RP From [Doy85]

Perturbation Stability Test Performance Test

A=O No C+ poles IIMnIII.< 1 (NP)

a(A) < 111 M2211.- < 1 (RS) At( M ):5 1 (RP)

Are BA 1±(Mid:) I (RS) A_( M )1 (RP)

Table 2-2 summarizes the objectives of H., optimization and p- synthesis. Notice that

this table does not mention any test using the two norm, and the objective in this table is

only to minimize II. II. or tt(.). This means that performance based on white Gaussian

noise inputs is not accounted for. This is the true objective of the mixed 112/H. control

design problem: to address the tests for 11. II_ and provide a low II. 1 2, as will be seen in

the next chapters.
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25 Guaranteed MIMO Gain and Phase Margins Using T and S

One way to measure the robustness of a system is to calculate the Vector Gain Margin

(VOM) and Vector Phase Margin (VPM) at the input and output of the plant (MIMO).

The VGM and VPM tell us how much the system can tolerate a change in gain and phase

before it goes unstable. The VGM and VPM using the complementary sensitivity function

is measured by

1
G(T(fto))

where T can be at the input if we are looking at the input margins or at the output of the

plant if we are looking at the output margins. Whichever point we are looking at, the

general formulas are

VGMT =[-rn,I + rJ ] where r?. = inf r(co)
deel

and

VPM T [-O,+ 0] where 0 = 2 sin r .(i.)

The VGM and VPM using the sensitivity function are defined through

1

6(s(0))

where S can be at the input if we are looking at the input margins or at the output of the

plant ff we are looking at the output margins. Whichever point we are looking at, the

general frnfulas are

VGMs_ =[1,l where pj. =infr(c0)
Ll+-PIl- P= eel

2-13



and

VPMs=[-O,+9]wheree=2sin-'(e~EL

Since VGMT, VGMs, VPMT, and VPMs are all important, this thesis will compute all of

them in order to evaluate the level of robustness at the input and output of the plant. For

more details see [Dai9O].
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M. Mixed H2 ,/f Optimization with a Single H.

Conlsraint

This section presents the mixed HAL optimization developed by [Rid91]. Mixed

f4/L optimization is a nonconsevative tool that trades between H2 and H.. objectives.

The goal of the mixed problem is to find a stabilizing compensator K(s) that achieves

Km . IT., L subject to I' TeIL.1. <

X abIfizmmg

where T. and Td can be defined to be independent of each other. Figure 3-1 shows the

block diagran.
de

w z

u Y

"T K

Rpgre 3-1 Mixed HAIH. Design Diagrm

1sthte space matrices are:

x - Ax + Bdd + Bw + B~u

e = C~x + D~dd + D.w + D~u

z = Czx + Dadid + D2.w + DMu
y = C yx + Dydd + D,,w + Dyu
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3.1 Nagai nuisr E., Constrakint

The following assumptions are made on the state space matrices:

(i) Dd=0 ; (ii) D.=0 ;(iii) D, =0

(iv) (A, B) stabilizable and ( C,, A) detectable

(v) DTD.fr full rank; DDT, fill rnk

(vi) DT3 D. full rank; D.DT• full rank

(vii) CA jo)I has full column rank for all (o

[A -joI B has full row rank for allo

[Ox) A] has full column rank for all cO

(x) [A has full row rank for all w

These conditions are the union of the H2 assumptions and the H-.. assumptions, except that

the controller, K(s), for the mixed problem must be strictly proper in order to guarantee a

finite two-norm for T. The state space matrices for K(s) are:

xc = ACXC + By

u=CCxC ;Dc=0

and the closed-loop matrices are:

x = Ax + Bdd + Bw

e = C.x + Dd + D,,w
z = Cx + Ddd + DO.w
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Dzw= 0 and Dd = 0

Td and T., can be written as

T.=C.(sl-A)-'Bd ; T.f=C,(s-A)-'B.

The following definitions will be made:

y F- id IT. L
K . . V211

K2,0 a the unique K(s) that makes II T,, 112 =

a 11 Td 1,. when K(s) = K2

Km a a K(s) that solves the mixed H2JL problem for some I

, a1 Td t1. when K(s)= Kw

a a 1 T. 16 when K(s) K.

Theorem 4.1.1 from [Rid9l] says:

Theore 31: Let (A, B,, CQ) be given and assume there exists a Q.. =Q.j -0 satisfying
AQ,. + Q.A T +,-2Q ,cTCQ. + BdBT =0 (**)

The following are equivalent:

i) (A,Bd) is stabilizable

ii)A isstable

Moreover, if i) - ii) hold, the following are true:

iii) the transfer function Td satisfies

iv) the two norm of the transfer function T,,, is given by

T. = tr[CzQ2Cz] = tr[Q2 CzTCz]

where Q2 = Q2 -Ž 0 is the solution to the Lyapunov equation

AQ 2 + Q2AT + BBT =0
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v) all real symmetric solutions to (**) are positive semidefinite

vi) there exists a unique minimal solution to (**) in the class of real symmetric solutions

vii) Q, is the minimal solution to (**) iff

Re[X, (A + y- 2Q..CC,)] 0 Vi

vfii) f TA . <y iff A + y-2Q..CTC is stable, where Q. is the minimal solution to

(**)

Proof: See Theorem 4.1.1, [Rid9l].

Using Theorem 3.1, the mixed problem can be restated as:

Frnd a strictly proper controller K(s) that minimizes the index

J(AC,BC,C.) = tr(Q2CTC,)

where Q2 is the real, symmetric, positive semidefinite solution to

AQ 2 +Q2A T+ B'B' =0

and such that

AQ,, + Q.AT + -2 Q.Tc .,. --+ BdBT- 0

has a real symmetric positive semidefinite solution. To solve this minimization problem

with two equality constraints, a Lagrange multiplier approach is used:

L = tr[Q2CTC,] + tr{[AQ 2 + Q2AT + BBT ]X)

+ tr{fAQ.. + Q.A T + -2Q .CTCCQ.. + BdBdT]y)

where X and Y are the Lagrange multiplier matrices. The necessary conditions for a

minimum are given by [Rid91]. Conclusions from these conditions are:

(i) N( mixed solution exists for 7< Y

(ii) The mixed solution comes from seven first order necessary conditions, which are

highly coupled and nonlinear.

(iii) For Y• y < 'y, neutrally stabilizing ARE solutions are required, and *=y.
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(iv) For K 2 'y, K1is the unique mixed solution.

3.2 Singular H._ Constraint

This section presents the mixed Hft. optimization problem with a singular H_

constraint, developed by [WR94a].

3.2.1 General Formulation

Here, mixed HfiH optimization will be extended to handle a (possibly non-strictly

proper) singular H.. constraint. Assume the plant P contains the H2 and the H._ designs.

The individual H-2 and H. designs can be represented as two independent systems

A B 1 BA -
]= I 1 DsDjc to =IC, [dD (3-D)

CY2 DyW Dyu_ Cy. Dyd DyU_

where

BP, BP,"

Ile objective for the mixed case is to find a stabilizing compensator K(s) that achieves

W•in"Of T- 112, Subject to [IT-1L : T (3-2)

where

Td =C.(sl-A)-1 Bd +D. ; T, =C.(sJ-A)-Bw+D,, (3-3)

are the closed loop transfer functions from w to z and d to e, respectively. The following

assumptions are made in the state space matrices:
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(i) D. = 0 ; (ii) Dy. = 0

(iii) (A 2 ,B,)stabilizable and (Cy,, A 2 ) detectable

(iv) (A.,Bo.) stabilizable and (Cy ,A.) detectable

(v) DTmD. full rank ; DYWDTYW full rank

(vi) A2C B D2 has full column rank for all co

(vii) [A 2 - o By. has full row rank for all o)

Notice that Dw is not restricted to zero and no assumptions are made as to the ranks of

D.. and D,,d; this means that a singular H. design can be allowed. For the mixed problem,

K(s) must be strictly proper in order to guarantee a finite two-norm for Tw. The state

space matrices for K(s) are:

X, = ACXC + B u
(3-4)

u=CCx, ;D =0

and the closed-loop matrices are:

X2 = AA; + B.w (3-5)
Z = C7,x

X, = A.x.. + Bdd (3-6)

e =C.x. + Ded

where

[ A 2  A.C0  A . Bu-C (-7
A2 ACB C ,, AC J' 

C=B0 Cy. A J(
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B, B=] Bd];B ]yd (3-8)

C, = [C, DC,; C, = [C. DCC] (3-9)

Dd= =D~d (3-10)

Using the definitions from Section 3.1, the mixed H2JH. problem is now to find a

controller K(s) such that:

i. A2 and A. are stable

ii. TK L <Tfor -'>y

iii. 1i T. 16 is minimized.

Now Theorem 3.1 can be restated as follows:

hIeorem3.2: Let (Ac, Bc, CQ be given and assume there exists a solution

Q. J= >_0 satisfying

A.Q.( + C + BD)R (.C + BdD )T + BdBT = 0 (3-11)

where R = (y21 _ DiDT)> 0. Then, the following are equivalent:

i) (A.,Bd) isstabilizable

ii) A. is stable.

Moreover, if i) - ii) hold, the following are true:

ii) h'ITL <

iv) the two norm of the transfer function T,. is given by

T1, - tr[CQ 2Cc] = tr[Q2CC,]

where Q2 = Q• >0 is the solution to the Lyapunov equation

A2Q2 + Q2Aj + B.B =o

v) all real symmetric solutions to (3-11) are positive semidefinite

vi) there exists a unique minimal solution to (3-11) in the class of real symmetric
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solutions

vii) Q. is the minimal solution to (3-11) iff

Re[Xj(A.. + BDTR-'C, + Q..CR-'Cj]o 0

viii) IT.11L <y if (A. + BdD.R'C, + Q.CIRI'Co) is stable, where Q_ is the

minimal solution to (3-11)

Proof: See Theorem 3 [WR94a].

Usiag Theorem 3.2, the mixed case can be restated as:

Find a strictly proper controller K(s) that minimizes the index
J( A,,B., C,) = Ir(Q2CTC• ) (3-12)

where Q2 is the real, symmetric, positive semidefinite solution to

AQ 2 +Q 2A T + B'BT =0 (3-13)

and such that

A.Q. +Q.A + (Q.CQT + BdDT)RN(Q.CT + BdD) T + BdBT =0 (3-14)

(with R>0) has a real symmetric positive semidefinite solution. The Lagrangian for this

problem becomes

L = tr[Q2CC2 ]+ tr{[A2Q2 + Q2A• + BBT]X}

+trf[A.Q+. + + (Q.C + BdD•d)R"(Q.C4 + BdD)T + BdBdT]y)

(3-15)

where X and Y are symmetric Lagrange multiplier matrices. The resulting first order

necessary conditions have not been solved analytically but do provide some insight into

the nature of the solution. In particular, the condition

- (A. + BdDTR-'C + Q.CTR'C) TY
oQ.. (3-16)

+ Y(A. + BdD2R1 C, + Q.CTR-RC,) =0
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implies that either Y = 0 or (A,. + BdDfdR"C, +Q.CTR'C,) is neutrally stable. The

former condition means the solution is off the boundary of the H_ constraint, and the latter

solution implies the solution lies on the boundary of the H_ constraint and Q_ is the

neutrally stabilizing solution of the Riccati equation. The necessary conditions for a

minimum are given by [WR94a]. However, it is easy to show that

(i) No mixed solution exists for 'y <y

(ii) For 7 < y < y, neutrally stabilizing ARE solutions are required, and *T

(iii) For y t?-- , = Kt

3.2.2 Numerical Solution

Walker and Ridgely [WR94a] developed a numerical method for synthesizing a family

of general mixed H2/H-. controllers which can handle a proper, singular H_ constraint. In

the single constraint mixed problem, for y < y < T, the solution to the mixed problem

must lie on the boundary of the constraint. Further, for y < y < T, ax* is a monotonically

decreasing function of y. Finally, for y <,y, no solution exists. This is shown graphically

in Figure 3-2. The numerical method for solving the mixed problem was motivated by

Figure 3-2. Since the optimal H2 controller is relatively easy to calculate and it provides a

point on the desired curve, it was selected as the initial controller. The optimal H2/ H-

curve is generated by starting at the optimal I-I2 controller and stepping along the ct versus

y curve by reducing y from y to Y by increments.
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I T II
zw 2

c - - - -,1- '

IIT II
ed a

Figure 3-2 H2/ H. Boundary plot

Applying the results from the previous section, it is seen that the optimal mixed H2/ H.

controller for a fixed 7 will have the property that II Td II_ = 7. This suggested a penalty

function approach to the problem. Consider the following performance index

jy = 1iTWI2 + X(IT'aL -_,)2 (3-17)

where 2 is a penalty on the error between the desired y and the infinity-norm of the

transfer function Td. Define the vector X as
7-[ aT, T . b T cT c .T

.. I a b. b T c-"" (3-18)

where a,, bc and Cc are the columns of A•, B, and C=, respectively. The first order

necessary conditions for . to be a minimum are

af Y 0 for i=1,...,(nxn+nxp+nxm) (3-19)
ax,

2 + 
yll2,(3-20)
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where Xj are the elements of X [gR94a]. The first term on the right hand side of (3-20)

can be solved analytically using the results of the previous section. The second term,

however, represents complex matrix relations and is evaluated analytically using the

sensitivity of the H,. norm developed by [GL93]. Assuming the maximum singular value

of Td has a single peak for we 9t÷, then the derivative of the infinity-norm can be written

as

=xe/u=/1  e -- . , (3-21)

where u, and v, are the singular vectors associated with Td, co is the frequency where the

maximum singular value reaches its peak value, X. is the nominal X vector, and 9te

denotes the real part. The derivative of the transfer function can be determined from

dT.d ((o°)x = ±(C t(Oj-A.)'Bd+ Dd (3-22)
dx dx,, Ix

The second term on the right hand side of equation 3-20 can now be written as

)2 J, [1-'# (3-23)

axi &x.
A DFP approach similar to the algorithm described in [RMV92] is used to minimize the

performance index. The basic algorithm is as follows:

1. Compute the optimal H2controller and set up the initial X vector

2. Compute 'yand set y

3. Decrementy

4. Perform DFP search over X vector space for minimum J.

5. Store resulting controller and repeat from step 3.
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Initially, the algorithm can be run with loose tolerances on the DFP search to define the

desired a versus y curve, then the convergence tolerances can be tightened and a

particular point can be refined to desired accuracy. In addition, this algorithm can be

applied from any initial condition, not just the optimal H2 controller, by substituting the

appropriate initial X vector and y. Finally, the X vector was defined with a fully populated

state space form; by using canonical forms, the number of variables can be reduced.

However, there are drawbacks to using some canonical forms such as the controllability

canonical form due to numerical instability. The modal canonical form has been used

successfully to reduce the parameter space. The numerical solution for the mixed problem

with a singular H. constraint can be extended to allow multiple H. constraints as will be

shown in the next chapter.

3-12



IV. Mixed HA/I. Optimization Problem with Multiple
H. Constraints

Two major goals in a control design are to design controllers which yield Nominal

Performance (NP) and Robust Stability (RS). These can be represented as

II WIS I.. < 1 for Nominal Performance (NP) (tracking)

II W2T 1.. < 1 for Robust Stability (RS)

(Multiplicative perturbation (1+ AW2)G; II A II.< 1)

Using this perturbation model and the NP condition, [DFT92] defines the Robust

Performance (RP) condition for a SISO system as

II W 2T I11< 1 and I W is
111 -lW2r1

which is also given by

11I WISI + I W2TI II. < I

This formulation is often solved with a mixed-sensitivity approach, which penalizes both

Sensitivity (S) and Complementary Sensitivity M1, as

TdLW2TJ

This mixed sensitivity cost function is required to satisfy

IIT II. < 1/ -2
in order to have RP. In the author's opinion, this method is conservative, because the

designer has no control over the trade-off between RS and NP. This chapter presents a

nonconservative method. Recall the conditions for NP and RS at the start of this chapter.

Both H. conditions are solved independently using mixed H2/H.. optimization with

multiple H-. constraints. For a MIMO system, the objective is to achieve RS to certain
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perturbations and NP at possibly a different location in the loop. Therefore, this new

technique will permit the exploration of these different objectives independently.

4.1 Development of Multinle Constraints

This section presents the mixed IH^/H. optimization problem with multiple H.

constraints. Mixed HALH. optimization is a nonconsevative tool that trades between H2

optimization and multiple H. constraints. Consider the system in Figure 4-1, where d•,

i=l,...,n, are of bounded energy ( 11 di 112 <1) and w is of bounded spectrum. The transfer

function P is the underlying plant with all weights associated with the problem absorbed.

It is assumed, in general, that there is no relationship between e1, i=l,...,n, and z or dk and

w. The input w is unit intensity zero-mean, white-Gaussian noise and the inputs d, are of

bounded energy. In general, the state space of P is formed by wrapping the weights from

an H2 problem from w to z and the weights of the H. problems from d, to e, around the

basic system resulting in the augmented plant

n P OD

W Z

U y

FIgure 4-1 Mixed H^. with Multiple H. Constraints Design Diagram
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A bd, ... Bd.. B. B,

P+ (4-1)
C*. ADa, D.. .. Db,., Dm.
C, A.+ ... Ad.. Dw Du

LC, Dyd, ... Dy,• Dyw Dy, j

"The plant P contains the H2 design and the H. designs. The individual H2 and H..

problems can be represented as different systems, where

A 2 BC BD U1 [A. Bd BU 1
P 2  CHP = CD D., D%, i=l,...,n. (4-2)

C Y2 DW D. D, Dy ,

where

B2 [B• [BB•

The objective for the mixed problem is to find a stabilizing compensator K(s) that achieves

Kn Im8T- 2, 'Subject to V-T .l" < 'yi l i-1...,n., (4-3)

where

T•, =C,(sI-A 2Y'B, + D3,
(4-4)

Td, = C, (sI- A.4'Y1 Bd, + Dd,(

are the closed loop transfer functions from w to z and di to ei, respectively.
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The following assumptions are made in the state space matrices:
(i) D.-- 0 ;(ii) D,•-=0

(Oii) (A2, B,) stabilizable and (Cy,, A2 ) detectable

(iv) (A. ,B.. ) stabilizable and (Cy.,,A._) deectable for all i

(v) DTD. full rank; DyDT full rank

['2J-fOI B; ]
(v Iii-)! [A (J has full column rank for all (o

O L[ c,) D] has full row rank for all w

Notice that the D., are not restricted to zero and no assumptions are made as to the

ranks of D,,3 and D yd. This means that singular H.. constraints can be allowed. The

controller K(s), for the mixed problem, must be strictly proper in order to guarantee a

finite two-norm for T... The state space matrices for K(s) are:

xic = Ax + Bly (4-5)

u=CCx ;D,=O

and the closed-loop marices are:

X2 =A2x +B~w
Z -- CAX

(4-6)

X..i = A.xi + Bddi

ei =Cx.i + D,di

4.4
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where E A2 ] BAU.C B Cl
ABC Ac.- BcCC., Ac (47)

B,, BW Dd = B©d. 1 (4-8)

C, =[C, D=Cc]; Cl, =[C, D,,oC] (4-9)

DWI = D.d, (4-10)

The following new dfinitions are made:

m ,= ITL wen K(s)= K,2

r = I',,..,I.
Kum a a solution to the H2/H.. problem for some set r

Y1 whlen K(s) = Kj

a'=IT.L when K(s) K.

"The mixed 2HA. problem is now zo find a contnller K(s) such that:

i. A2 and A. me stable for all i

ii. V 1 ST, 1 for som gven set of yiy

Mii. 1i T. 16is miný .

Now Theorem 3.2 can be extended to multiple H. constraints as follows:

Theorem 4J.: Let (Ac, Bc, C•) be given and assume there exists a solution

Q.- -2:0 satisfing

A=Q.- + •.•. + (Q..CT + Bd D•, )P"(Q1 C. + BdD, ,)T -BdBd -0 (4-11)
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..............

for all i, where . = (y?'I - Ded D.) > 0. Then, for each i the following are equivalent:

i) (A.,,Bd) is stabiizable

ii) A. is stable.

Moreover, if i) - ii) hold, the following are true:

iii) [Vr0 ,L ey for ani

iv) the two norm of the transfer function T., is given by2 TT J=rc zc.
TW tr[CAQCTI = tr[Q2CzC~

where Q2 = Q - 0 is the solution to the Lyapunov equation

A202 + Q24+ B.B = 0

v) all real symmetric solutions to (4-11) are positive semidefinite for all i

vi) there exists a unique minimal solution to (4-11) in the class of real symmetric

solutions for each i

vii) Q.4 are the minimal solutions to (4-11) iff

Re[j Aj+ BdD~aR X1C. + Q• CT' O ) 50for all j
viii) NTe L < � iff (A+4 + BdD R' + Q@.4CeT¶i.'Ce,) is stable, where Q..4 are

the minimal solutions to (4-11) for all i

Proof: See Theorem 1, [UWR94].

Using Theorem 4.1, the mixed case can be restated as:

Find a strictly proper controller K(s) that minimizes the index

J(A,,B,,Cc) = tr(Q2CTC,2 ) (4-12)

where Q2 is the real, symmetric, positive semidefinite solution to

AQ 2 +Q 2AT +BBT =0 (4-13)

and such that

A..IQ..I + Q + ( + B + d )T +BdB =0 (4-14)
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has a real symmetric positive semidefinite solution for all i. To solve this minimization

problem with many equality constraints, a Lagrange multiplier approach is used. The

Lagrang n is

L = tr[Q2C.c +n[ 2Q2 + Q2A+BW ]X

+Xtr([A.,iQ., +-Q..A, +(Q C +B" Dt )R'j(Q'C -BdD )T (- BdtBdJ+ ]Yy
i=1

(4-15)

where X and Yi are symmetric Lagrange multiplier matrices. The resulting first order

necessary conditions have not been solved analytically but do provide some insight into

the nature of the solution. In particular, the condition

aL + -IC + T -+ C )Ty
OV--' =(A. + BdD i , + .i.,) i (4-16)

+Y(A.4 + B, D.,'CC, +Q-4 C,, Ce)=0

implies that either Yj =0 or (A., + BdD_.T.RAjCC + Q.,C/ ."'C.,) is neutrally stable.

The former condition means the solution is off the boundary of the corresponding H.

constraint, and the latter solution implies the solution lies on the boundary of the

corresponding H. constraint and Q,., is the neutrally stabilizing solution for that H. Riccati

equation. From this, it is not hard to show that:

(i) no solution to the mixed problem exists if 'y < (. for any i
--1

(ii) the solution to the mixed problem is the H2 optimal compensator, K2,, if Yi > 7i

for all i

(iii) if neither (i) nor (H), the solution to the mixed problem is on at least one of the H_

constraint boundaries, and a neutrally stabilizing ARE solution is required.
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Condition (iii), which holds for any "non-trivial" mixed problem, poses severe numerical

problems, as addressed in the next section.

4.2 Multinle L- Constraints: Numerical Methods

Two approaches have been developed to compute controllers which solve the mixed
HAL problem for multiple constraints. The first method, called the Grid Method,

computes the set of controllers which satisfy the H_. constraints in the region of interest.

This is accomplished by holding all but one constraint constant and varying the remaining

constraint. The second method, called the Direct Method, attempts to simultaneously

reduce all H. constraints. For the remainder of the discussion it will be assumed that there

are only two H. constraints. The results can be extended as necessary to handle larger

constraint sets. The methods are based on the performance index

X 7)2 + X2QIr 72 ) (4-24)

where 7 are penalties on the error between the desired 'y and the infinity-norm of the

respecti'-. transfer function. Note that this requires m= H. constraint to be achieved

with equality, which is not necessarily the optimal solution. In order to avoid this, the

constraints should actually be treated as inequality constraints, which requires a

constrained optimization method. This has been accomplished using Sequential Quadratic

Pogrmmig; see [Wal94]. In this thesis, the constraints will be treated as equality

constraints, however. Since a large portion of the "active" region will be mapped out, this

poses only a small restriction. Furthermore, as it has been shown that the optimal order

problem has all IH. constraints satisfied at equality [WR94c], the controllers found here are

the closest fixed order controllers in a two-norm sense to the optimal (free order)

controllers. The resulting numerical optimization is basically that of Section 3.2.2, except

with additional similar H.. terms.
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4.2.1 Grid Method

The grid method consists of solving a series of mixed problems by holding one H.

constraint constant and reducing the second. Once the optimal curve has been

determined, the first constraint is decremented and the process is repeated. The initial

conditions for the method are determined by solving the two single constraint mixed

H2/H. problems to define the region of interest. The process results in a grid defined by at

versus 71 versus Y2. The resulting grid is shown in Figure 4-2.

IIT11T2

- - - - - - - - - - - -

Figure 4-2 Grid Method
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4.2.2 Direct Method

The introduction to this chapter suggested this method. Since the design objectives are

limited to a specific region, one approach to synthesizing a controller would be to reduce

both H constraints to the desired level without computing the entire grid mentioned in the

previous approach. The direct method does this by concurrently reducing the constraints.

The process used in this approach is to begin at the optimal H2 controller and

simultaneously reduce Ty and Y2 until the controller is found which meets both objectives.

This results in a controller of fixed order which meets both the H_ constraints and has the

mallest two-norm for the H2 transfer function. Figure 4-3 shows this method. Notice

that by proper selection of the step size of the H. constraints, the designer can select a

desired direction. Also note the "hooks" at the end of each curve. These are the result of

11 T II
zw 2

II TeI .o (•,,,,Ten

Figure 4-3 Direct Method
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S 2D curve b

2D curve a

2D curve c

11 T 1 -- - -- - - -- - -- - -

cdl m %c'i

Figure 4-4 Direct Method 3D curve and 2D projections

the trade off between the H-. constraints encountered as 7, approaches y.. Figure 4-3
-- i

shows that the resulting curve is a 3D curve (IIT-I 112 VS' IITd. 11 VS' lITd.1 -) Therefore,

for any 3D curve there are three projections. These 2D curves are the tITM 11 vs. llT~,ldL
curve, the IIT L vs. jiT, . curve, and the oIT, I1 vs. , 1curve. This is shown in

Figure 4-4, and the curves are denoted as curve a, b and c, respectively.

4-3 Easble Solutions
Assume for this section that numerical problems in computing a solution do not exist.

There are boundaries in the mixed problem where feasible solutions do not exist. These

boundaries are:

(i) No controller results in ox<z 0

(ii) No mixed solution exists for yi <. for either i=l or 2
-1i
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(iii) For certain values of ji, no mixed solution exists which simultaneously satisfies all
-norms constraints, even though 'yi > y , Vi

--I

First, define three planes:

Plane (ao: the plane defined by letting a-= xot for all y, i=1,2. All a's above this plane

represent a suboptimal solution to the H12 problem, and solutions below this plane are not

feasible.

Plane ' : the plane defined by letting 71= -y ' for all a, 12. All 11 above this plane are

suboptimal solutions to the corresponding H., design, and solutions below this plane are

not feasible.

Plane '1 2: direct analogy of plane_"

Figure 4-5 shows these planes.

~I~

VT 112ed1

IIT6 dl, Direction of feasible solutions

Figure 4-5 HA/.., feasible planes
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Mixed HIJL design is a tool that trades among the H2 design and the different H..

designs. The trade-offs taken two at a time are examined next.

4.3.1 Trade off between H2 design and the H ign

[Rid9l] showed that a is a monotonically decreasing function of y for a single

constraint mixed problem. Therefore, a* is now a monotonically decreasing function of 7,.

If the optimal ot versus yj curve is computed, then unfeasible solutions lie below this curve,

and any solution above this curve is feasible but suboptimal. Graphically, this is shown in

Figure 4-6. The numerical method computes a suboptimal curve that is close to the

optimal curve. This is due to the requirement of finding a mixed solution numerically.

Feasible Solutions

11 T II
zw 2

a"

Not Feasible Solutions

a
0

TIITdill

Figure 4-6 Trade-off among H2/H.. 1 (feasible solutions)
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4.3.2 Trade off between H * desins J6i1.2

First consider that the mixed problem has only NTC(,L as a constraint (a single

constraint problem). In this case the mixed problem is just a mixed HA.L design. For

each point on H curve, IITd 1 can be computed. Next, consider that the mixed

problem has only ITd, L as a constraint (a single constraint problem). In this case, the

mixed problem is just a mixed H/.. 2 design. For each point on H2/L 2 curve, IITT, IL

can be computed. The resulting curves from the two different designs are shown in Figure

4-7. Define, the H2JHL curve as the optimal curve for mixed H2/HL. design, and the

H2/HA. 2 curve as the optimal curve for the mixed H2/H. 2 design. These two curves define

the boundary between the region of sub-optimal solutions and the region of "optimal"

solutions as shown in Figure 4-7. From a control point of view, we are interested in the

11 Telle suboptimalW21"'CD
lIT I40y" I

optimal

region

-2

not feasible

T, 7111 Ted 1" 0

Figure 4-7 Design region in the T.. L/ IlTd. -plane
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region on or below the optimal mixed HAH design curves; that is, the region of optimal

solutions. The region above these curves is not of interest, as shown in [WR94c]. Here,

the optimal solution "snaps back" to the optimal single constraint curve, and thus is

suboptimal.

Consider now that the mixed problem has both H., designs as constraints. In this case,

the mixed problem is a mixed H2/H./-/H., 2 design. There exists a boundary close to the 'y
--a

values where, below this boundary, no feasible solutions exist. This is shown graphically

in Figure 4-7. This boundary is difficult to find analytically or numerically. This was the

region iii) alluded to at the beginning of section 4.3.

Joining the planes and boundaries, a region of feasible solutions can be drawn, as

shown in Figure 4-8. Regions of suboptimal solutions are also plotted. Figure 4-9 shows

a surface for the mixed HJH,.1/H,.2 design. On this surface we are interested in the solid

checkered region that coffesponds to the optimal region, especially at the "knee" where

the Y's are close to the optimal values. Sub-optimal regions (shaded checkered) are also

shown in Figure 4-9. These are not optimal mixed solutions, since their values of yi are

greater than those for the optimal curves corresponding to the mixed Hf design and

the mixed HJH 2 design, respectively. However, these suboptimal regions help to

visually clarify the problem.

The next chapter will present a SISO example as an introduction to this new synthesis

method. It will show the boundaries that were discussed in this chapter.
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Figure 4.9 H2/.M. Surface of Optinal and SubOOMdua aolutiOu
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V. Numerical Validation through a SISO example

5.1 Problem Set-Up

This chapter illustrates mixed H2/IL design with single and multiple H,. constraints.

The numerical method is that developed by [WR94a], which permits generalization of the

H.. constraint, (i.e, D.D. and / or DDd not required to be full rank and D,, * 0

allowed). For this SISO example, the objective is to show some of the boundaries and

methods discussed in the last two chapters. An acceleration command following design

for the F-16 is desired. The F-16 plant consists of a short period approximation (, cq), a

time delay (8) [first order Padd approximation], and a first order actuator servo. The state

space matrices are:

-20 0 0 0
-0.188 -1.491 0.996 0

As = -19.04 9.753 -0.096 0 (5-1)

L-4.367 35.264 -0.334 -40]

B, = 0 ]; = [4.367 -35.264 0.334 80]; D =[0] (5-2)
0

The poles and zeros of the plant are:

poles X=[ -40.0000; -4.3535; 1.9025; -20.00001

zers = [ -1.2564 +11.9340i; -1.2564 -11.9340i; 40.0000]
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Three designs are produced: an H2 desigr . R mixed HA/L. design with a single constraint,

and a mixed HA/L. design with multiple IHL constraints.

5.2 H-2 Dgan

The H2 design is set up as a basic LQG problem, as shown in Figure 5-1. In the H2

design, two exogenous inputs w, and w2 enter thc- plant; they are zero-mean white

Gaussian noise with unit intensity. It is desired to minimize the energy or two norm of the

controlled outputs zi and z%. The weights related with wI ,w2 , z, and z2 are:

Win disurban weigb: The wind disturbance constitutes an exogenous input (w1). It

passes through a coloring filter Wd and a distribution matrix IF, where

r 0

Wd(S)= 0.0187 =-1.491
s + 6.7 9.753

35.265

Measrement noise UThe measurement noise is represented by an exogenous input (w2).

w2 is added to the feedback signal. The weight for w2 is:

W. = 0.025

Control Usage: The weight for control usage z1 is the scalar

W,= 1.0

Normal acceleration output weight: It represents the weight on the normal acceleration

(Ný) this weight is chosen to be the scalar

W,= 1.0
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Therefore, the system P2 is

P2 . .D (5-3)

and the corresponding state space matrices are

Li A'I'Cdlxgd + L11 01w2]g

[:;] 0 0 CI! + L + [W J] (5-4)
Z2Oi 0Xd] + [ 0 Wn[']+(Ou

fXd]

1w

F-16 A

Flgure S-1 H2 Block diagram (F-16)
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The basic conditions that are checked here include D = 0, D, = 0, D D' full wk,
Y7W 7W

and DTDW full rank; these are met by the design with a non-zero W. and W,. Therefore,

the design diagram is properly set up. Table 5-1 shows the results.

Table 5-1I, Results

= 0.2530
VGM (dB) VPM (d!

S 1-5.8609,28.7686] ±57.6035

T [-6.4183, 3.6504] ±30.2811

Although the objective was to design a pure regulator, from Table 5-1 we see that the H2

controller provides good margins. The VGM and VPM are based on the magnitude plots

of sensitivity and complementary sensitivity as explained in Chapter 2, Section 2.5. Figure

5-2 shows the magnitude plot of sensitivity and complementary sensitivity.

-I

sv
(MO) _2(-

-44

Frequency (rad/sec)

Figure 5-2 Magnitude of Sensitivity and Complementary Sensitivity (dB)
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The magnituide of the sensitivity shows that the H2 controller attenuates the wind

disturbance. Ite magnitude of complementary sensitivity represents the measurement

noise feedthrough to the plant output, the inverse of the allowable multiplicative

uncertainty, and the closed-loop tracking transfer function. Evidently this design does not

provide good tracking since the gain is above 0 dB at low frequencies and rolls off too

early.

5.3 Mixed H21H, Desimi with a Single H. Constraint

Two mixed HALK designs with single H.. constraints are solved. The first design

MA~LI..) represents a sensitivity constraint (T.. =W5S), and the second (HA/H..)

represents a comnplementary sensitivity constraint (Td =W1T). Two objectives are set up:

the first objective is to compute the infinity norm of Td 2 with the controller obtained

from the mixed HiJ^.. design, and the second objective is to compute the infinity norm

of Td, with the controller obtained from the mixed H2J,AL 2 desgn.

5.3.1 Senitivity Constraint Design (H2/H..1 )

The block diagramn for the sensitivity constraint design is shown in Figure 5-3.

d e

Figure 5-3 Mixed HAH, 1 Block Diagram (Sensitivity Constraint)
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The transfer hfnction between the exogenous output el and the exogenous input d, is

Ted, and is given by

Twl = WS (5-5)

The weight for sensitivity is a low pass filter W, given by

100
;s+0.1

The objective for the mixed H2/H. design is

, IITZ,,112 subject to IT..,I. y,, (5-6)

The system P., is

AI., Bdt BU]

C, DC/ (5-7)

SDye, D,

with the state space matrices given by

A-,=c's 0 Bd.=[BIT Bg[Ba]

C,= [0 Cs]; Ded =[Ds]; DO,, = [D,] (5-8)

cY = [Cs 0]; DA =[0]; Dy =[0]

TTSince W, is a strictly proper transfer function, D, = 0, and therefore DTDCIU and

DDd, are not full rank matrices. Thus, we have a mixed H)/H. optimization problem

with a singular H.. constraint. The performance index for the numerical solution is

J1, = liT.Il + xY(T4 , 1L.- Ti)2 (5-9)
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Starting from the optimal H2 controller and stepping along the a vs. y, curve by reducing

from 'y, to 'y by increments produces Figure 5-4.

5.3.2 Co n e enar Sensitivity Constraint (t2/H.2)

Td, is the transfer function between the exogenous output e2 and the exogenous input

d 2 as shown in Figure 5-5. Here

TId' = WtT (5-10)

with the weight for complementary sensitivity denoted by WI, and given by

S 1000*(s + 0.01)

(s + 1000)
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t

U

Figure 5-5 Mixed H2 /H 2. Block Diagram (Complementary Sensitivity Constraint)

The objective for the 1 2/H2. 2 design is

K i 11T.- 112 subject to IITed 1. - 7 2  (5-11)

The system P_2 is

[A-2 Bd2 B''J1

P-2= /C De2d2 D U (5-12)
C Y-2 Dyd, DyU

where the state space matrices are given by

A.2= [ J Bd. [ g- [Bg]

Ce = [0 Ct]; Dd = [0]; D. ,= [a] (5-13)

C.,, = [Cg 0]; Dd = [0]; D, = [0]
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Note that D D T is zero, which implies we have a mixed H2/H.. optimization problem

with a singular BL. constraint The performance index for the numerical solution is

J¾ =% II%, 1 + 2 (TI•dT - Y2) (5-14)

Starting from the optimal H2 controller and stepping along the a vs. 12 curve by reducing

from Y2 to y2 by increments produces Figure 5-6. The "ripples" are due to numerical

inaccrCies, and due to the monotonic property, could be "smoothed".

5.3.3 Boundaries on the mixed H7/&l surface

Using the controllers K(s) from the H2A/H.. design, the infinity norm of Td 2can be

computed, which represents the Complementary Sensitivity constraint. Figure 5-7 shows

the trade off between Td. (weighted Complementary Sensitivity constraint) and T4d'

(weighted Sensitivity constraint). Figure 5-7 shows that although liT-, IL is b
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Figure 57 II. I "L vs lT.,A. curve (H2/., design)

minimized, there isn't a big change in hTý 11. until llTd, IL reaches the knee in the aX vs. 7

curve. Now with the controllers K(s) from the H2/H..2 design, the infinity norm of Td is

computed, which represents the Sensitivity constraint. Figure 5-8 shows the trade off

between Tw, (weighted Complementary Sensitivity constraint) and Tw, (weighted

Sensitivity constraint). Figure 5-8 shows a slightly different type of behavior than Figure

5-7; in Figure 5-8 the trade-off in IT.d,. occurs almost immediately. A graphical

interpretation showing the relationship between the two norm and the infinity norms is

shown in Figure 5-9. The two 3D curves (solid lines) are the curve for the H2/H.,1

design and the curve for the H2/Hy.2 design. The dotted lines represent the projection of

the 3D curve for the H2/.., design on the IITd, 1L VS IITdl1 . IIT- 112 VS' IIT, II., and

IIT-L vs. IIT.I. planes and the dashed lines represent the projection of the 3D curve

for the Ht/HA. 2 design on the same set of planes.
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Figure 5.8 IITed 11v. VS'To, 11- Curve (H2/H..2 design)

IIT l
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Figure 5-9 3D IITUUN2 vs. IITd.41VS V d. 11T4 curve for

H2 IH.., design and 12/H.2 design
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These two 3D curves represent the boundaries of the mixed H2/H..1 and H2/H. 2 design as

mentioned in Chapter 4, Section 4-3. Unfortunately, the mixed H)/. with a single H.

constraint problem does not permit both H, constraints to be made small at the same time,

unless they are wrapped in one transfer function. The next section presents the multiple

H,. constraint results.

5.4 Mixed H2/H. Optimization with Multiple H Contraints

Now, the mixed problem is a mixed I-2/H.I/H..2 design, and the objective is to find a

stabilizing controller K(s) that achieves

K if IITI 1 subject to T (5-15)

Again, recall that both inequality constraints will be treated as equality constraints. Thus,

the performance index for the numerical method is

J = pIT 112 + X1(QITI1. -L I) + X2Q(T.d. _Y2) (5-16)

Two approaches are used: the first one will be the grid method and the second one the

direct method, as mentioned in Chapter 4.

5.4.1 Grid Method

The results of applying the direct method (explained in Chapter 4, Section 4.2.1) are

shown in Figures 5-10 and 5-11. Figure 5-10 shows the IITd, 11 VS. IIT, I- curves. The

lower dotted curve represents the boundaries for both H.I constraints. Also, notice that

when smaller values of infinity norms are reached , the trade-off between the infinity norm

of the constraints starts to have the effect discussed in Chapter 4, Section 4.3. Figure 5-11
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shows the 3D surface. This surface has an almost flat bottom; therefore, the increase in

the two norm starts when the knee of the individual curves is reached.

mH2 v&. HidI,,- - - (a.,• ,j•)

25
10 •"

IT I - - - - - -

0 '.5-i'".j.

------------------------------- L ----------

O0 200 400 G00 800 1000 1200

10 10 0 0
25 s 00 inf norm Ted1

Inf-pnor To&2

Fi Fre 0-11 3D plot Grid Method ,1T.,jz vs. I 1. .
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5.41 m Die method
The direct method, explained in Chapter 4, Section 4.2.2, minimizes both H-I

constraints at the same time. By proper selection of the steps A71 and Ay2 , where

A'yi = Yij - 'yij* (for i= 1,... ,n.. and j=1,..., number of steps), the designer can guide

the direction of minimintion to the desired infinity norms 1ITd., L and ITd1IL. Figure

5-12 shows IN.a IL vs. INT, IL for four different directions. The starting controller was

Kz, for three of them and a K. (taken from the grid method) for the last one.

25

20

5- ]

0 100 70r0 3W0 4400 500 OW0 700 goo 900 1000

I Tod" -

Fire 5-12 vs. V-Direct Method
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Rpre 5-13 3D plot Direct Method

irr,.6v& r Kc . s Vo

Notice that this numerical method permits the user to start at any point; this means the

-uine can start with any stabiling controller. Figure 5-13 shows the different curves in

3D. Finally, Figure 5-14 and 5-15 show the final results of both the grid and the direct

methods combined.
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5.5 Conclusions for the Multiple H Constraints SISO case

This new optimization technique permits minimization of the two norm of one transfer

function subject to multiple H. constraints. It controls the trade off between the different

H1. constraints and the H2 performance.

Suppose a SISO plant has a multiplicative perturbation and a performance requirement

on sensitivity; a controller K(s) provides Robust Performance for that plant if and only if

11 I WISI + I W2TI IL. < 1 (SISO)

In the mixed H2/ HB. optimization problem with multiple HI. constraints, the two H.

constraints are adjusted; therefore, it does not have frequency specific information.

However, if we define the following requirements:

I WIS I1.= < 1 and occurs at any co=os (Nominal Performance)

and

If W2T I. = tr < and occurs at any to : (Robust Stability)

where

is :I 5-sand y T :

then two cases for Robust Performance could exist:

Cas 1.- The Robust Performance test is passed iff

N+ Ar<l

This means that the worst case for a Robust Performance test is that II WIS II. and

II W2T I. occur at the same frequency (oi - to).

Case 2.- If

the Robust Performance test must be applied. This means that it is necessary to check

frequency infomnation.
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These two cases relax the requirement for the mixed sensitivity cost function

(I1 T"., 1. < l/i), where

IT.JI. Wl

because now the designer has control over the different infinity norms. A graphical

interpretation is shown in Figure 5-16.

Nonmna PafwamM
1711 ID

Case2 0+0>1
S T

Tes for Rolbus Pawmance
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FIgure S-16 Application of the mixed problem with multiple H.. constraints
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VL THE HIMAT PROBLEM: A MIMO EXAMPLE

For a MIMO example, the HIMAT problem from the ji-Tools Manual [Mat] was

selected. The HIMAT vehicle is a scaled-down, remotely piloted vehicle (RPV). The

design example will consider longitudinal dynamics only. For more information about this

problem refer to the gt-Tools Manual [BDGPS91] and [SLH81]. The HIMAT problem

will be designed for single and multiple H. constraints.

6.1 Problem Set Un

The states variables of the plant (HIMAT) are:

V forward speed

a - angle of attack (not to be confused with a from the H-2 design)

q rate of pitch

0 pitch angle

Control inputs (u):

8e - elevon command

c- canard command

The variables to be measured:

a and 0
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The state space matrices are:

"-0.0226 -36.6 -18.90 -32.1] 0 0

0 -1.90 0.983 0 -0.414 0As = Bg0.0123 -11.7 -2.63 0 .77.80 22.40
0g 0 5 -.06 0 0 =

0 0 0 57.3000] [0 0]

Short period roots = -2.2321 ± 3.3779i ; Phugoid roots = -0.0442 ± 0.2093i

6.2 H2 Design requirement

The objective of the H2 design is to develop a regulator that limits the white noise

feedthrough to the angle of attack and pitch angle plant outputs (yg) and the control

usage (u). Figure 6-1 shows the H2 regulator design plant with the weights W, and W, on

the control usage and states, respectively. Energy from the white noise inputs, w, and w2,

will be minimized with respect to the chosen outputs, z, and z2, by the compensator

design.

6.2.1 We'_mht Selection

Wind disturbance weiht: The wind disturbance constitutes an exogenous input (wi).

It passes through IF as an angle of attack perturbation

*F=[-36.6 -1.90 -11.70 0]T
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FIgure 6-1 H2 Regulator Diagram (HIMAT)

Measurement iane: The measurement noise is represented by an exogenous input (w2).

w2 is added to the feedback signal. The weight for w2 is:

W,= 0. 1*1(2)

ControL Usag•: The weight for control usage W, is chosen as the identity matrix

ig•.ollMg : This is the weighted angle of attack and pitch angle; here, this weight is

chosen to be the identity matrix

W,= '(2)

The state space for the H-2 design plant is

P2= Cz D.w D. (6-1)
C Y2 Dyw Dyn
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and the state space matrices are

i[ ] = [ A. ][x,] + [ %F + [ B, u]

[] [W,+ + (6-2)

[y]I = [ CS ][X8] + [0 Wl]Wi] + [O1][u

Notice that the " 0 "represents a zero matrix with the corresponding dimension's in the

different state space matrices. The basic conditions that are checked here include DZ, = 0,

D, = 0, D'D. and DD, full rank; these are met by the design with a non-zero Wn

and W,.

6.2.2 H-7 Results

Table 6-1 shows the results.

Table 6-1 H2 Results (HIMAT)

VGM input (dB) VPMi (deg) VGM output (dB) VPMo (deg)

T [-0.1198, 0.1181] ±0.7847 [-11.7255, 4.8147] ±43.4773
S [-0.1181, 0.1198] ±0.7847 [-5.1530, 14.4199] ±47.7754

Although the objective was only to design a pure regulator, from Table 6-1 we see that the

H2 controller provides robustness at the output of the plant, but poor margins at the input
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of the plant. The VGM and VPM are based on the magnitude plots of sensitivity and

complementary sensitivity. Figure 6-2 shows the maximum singular values of the

complementary sensitivity at the input (Ti ) and output (T.) of the plant. This represents

the measurement noise feedthrough to the plant input/output and the inverse of the

allowable multiplicative uncertainty at the input/output of the plant.

40

30.
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Figure 6-2 Maximum Singular Values of Complementary Sensitivity
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Figure 6-3 Maximum Singular Values of Sensitivity
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Therefore, K. provides a good level of robustness at the output of the plant, but the

system is susceptible to a multiplicative uncertainty at the input of the plant. Figure 6-3

shows the singular values of input sensitivity (S,) and output sensitivity (So). Notice from

Figure 6-3 that the input sensitivity is minimized for good wind disturbance rejection, as

seen in the low gain in Si. The problem with this design is poor performance at the output

of the plant, as seen by S,. K2 therefore produces a system that is weak to a

multiplicative perturbation at the input of the plant and has bad tracking properties, as

shown in Figure 6-4.

The H. designs to be addressed are: recover the margins at the input of the plant

through a weighted input complementary sensitivity, and recover tracking performance

through weighted output sensitivity. These must be done while keeping the robustness at

the output of the plant.

0.8-• • 
. .. .

0.7 I

•0.6

o.s Alpha

-. oThe.T

0.4,

0.20.31

0 0 .5 0 1 .5e 2 2!S 3 3'.5 1
"nine (bc)

Figure 6-4 Time Responses due to a step a, and 0,

6-6



6.3 Mixed H71J .' problem: & Design to a multiplicative

uncertainty at the innut of the plant

Now a multiplicative uncertainty block at the input of the plant is assumed. The

multiplicative uncertainty represents:

1. Uncertainty in the canard and the elevon actuators

2. Uncertainty in the force and moments generated on the aircraft, due to specific

deflection of the canard and elevon

3. Uncertainty in the linear and angular accelerations produced by the

aerodynamically generated forces and moments

4. Others forms of uncertainty that are less well understood. [BDGPS9 1]

Figure 6-5 shows the block diagram. The dotted block represents the true plant. The

transfer function A(s) is assumed to be stable, unknown, and with an infinity norm less

than one ( II A(s) II. < 1). The objective for this design is to meet Robust Stability at the

input of the plant.

dl

HIA

U

Figure 6-5 Block Diagram of multiplicative uncertainty at the plant input
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Robust Stability at the input of the plant is met if
11 AWLTe, (S) "-. < 1

by the small gain theorem. Thus, if we satisfy
11 Ted, 1.. < lIAI A(s) 11..

we have Robust Stability at the input of the plant, or since i1 A(s) 11. < 1,

11 T.6, If. < 1 (6-3)

where T., is the weighted closed-loop transfer function from d, to e,. Now we have

Ted = WW(s) Ti(s) (6-4)

W•(s), called the uncertainty weight, represents a stable transfer function of the form

Wd(S) = Wd(S)*I2)

50*(s + 100) (6-5)
(s + 10000)

The weighting function is used to normalize the size of the unknown perturbation A. At

any frequency o), the value of lw•jow)l can be interpreted as the percentage of uncertainty

in the model at that frequency. The particular uncertainty weight chosen for this problem

indicates that at low frequencies, there is potentially a 50% modeling error, and at a

firquency of 173 rad/sec, the uncertainty in the model is up to 100% [BDGPS9 1]. Figure

6-6 shows the Bode magnitude plot of wd(s). The H. design plant is

"[A Bd, B,_
= C, D.,d, D. (6-6)

[c- Dy, DY J
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Figure 6-6 Magnitude of Multiplicative Uncertainty Weighting Function (dB)

and the state space matrices are

[Ag 0 Txg ] [Ba dJ+ Bg U

IXg* II i I I [ 11I

(eJ] = (0 Cdl{xg"] + ([0]d] + ED.Iu] (6-7)

[y] [Ca o][<X] +[Old,] + [OIu]

Sine D•D d, is not fiull rank, this is a singular BL. design. The setup for the nmixed

1 2/t.LI problem is: Find a stabilizing compensator that achieves

i . IT.I. subject to I-. -<i' 5y, (6-8)
Kuaabffizing •Y 68
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The performance index in the numerical method is

IT.-112 + _,g)2 (6-9)

Two controller orders are presented. The first one is a fourth order controller;, it

represents the order of the H2 design. The second one is a sixth order controller and

represents the order of the full information H2/H. plant. Therefore, the 6th order K2op

was found by wrapping the weights of the H2 design and the weights of the H. design into

one system. The starting controller is K2 (4th or 6th order). Table 6-2 shows the

results.

Table 6-2 Input Complementary Sensitivity Design Ir•.,16 and II WdTtIL

ý 4th order Controller ]6th order Controller I
11I Tzw 112 11 VV'.elTi 11- 11 Tzw 112 11 WdelTi 11-

4.6970 37.0491 4.6970 37.0491
4.6970 34.1981 4.6970 34.1981
6.3685 2.1831 6.5190 2.0029
6.4369 1.8485 6.3395 1.4366
6.5611 1.4709 6.3674 1.2844
6.7332 1.0585 6.6457 0.8946
6.9970 0.6413 6.8571 0.7113

* 7.0968 0.5497 * 7.0705 0.5151
** 7.7440 0.5099 ** 7.6167 0.5095

Notice from Table 6-2 that Robust Stability is met for both controllers, but there is a

degradation in the H2 performance. Figure 6-7 shows the a vs. 71 curve for the 4th order

controller, which is virtually identical to that of the 6th order controller. The vector gain

and phase margins at the input and output of the plant are shown in Table 6-3 for the last

two controllers in both cases. As expected, the system is very robust at the input of the

plant; also ncice. that good margins at the output were preserved.
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Figure 6-7 II T 16 vs. 11 Wd T, IL (4th order controller)

Table 6-3 Input Complementary Sensitivity Design VGMj, and VPMNo

K, controller (4th order)

VGM, (dB) VPM, (deg) VGM. (dB) VPM. (de)
"* S [-5.3269, 16.2768] ± 50.0787 [-4.5991, 10.4018] ± 40.8564
"* T [-20.3299, 5.59211 ± 53.7266 [-11.5388, 4.78661 ±43.1300
**S [-5.4318, 17.6493] ± 51.5019 [-4.0590, 7.8659] ± 34.6569
**T [40.8853, 6.0000] ±:60.0000 [-8.7230, 4.2634] ± 36.9444

K., controller (6th order)

VGM, (dB) VPMj (deg VGM. (dB) VPM. (deg)
"* S [-5.3644, 16.7411] ± 50.5846 [-4.6992, 10.9871] ±142.0618
"* T [-30.0620, 5.8832] ±57.9334 [-13.2685, 5.0228] ±146.0922
**S [-5.3386, 16.4192] ± 50.2367 [-4.1372, 8.1814] ± 35.5235
**'j [-34.6236, 5.9396] ± 58.7752 [-8.3343, 4.1738] ± 35.9332
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6.4 Mixed H-2 roblem: LL Design for Nominal Performance

The H2 design showed that the system does not perform tracking at all. Therefore,

good performance will be characterized in terms of the H_ norm of the output sensitivity.

The output sensitivity will be a weighted sensitivity function as shown in Figure 6-8. The

exogenous input and output of the plant are denoted as d2 and e2, respectively. The

weighted sensitivity is our Nominal Performance requirement. The weight for sensitivity

represents an output perturbation. The transfer function e2/id is

el d 2 = WpSo ; Wp(s) = Wp(S)*I(2)

.5*(s + 3) (6-10)
P(S)=' (s + 0.03)

As in the uncertainty modeling, the weighting function Wp is used to normalize

specifications; in this case, to define performance by whether a particular norm is less

than 1. Nominal Performance is assured when

or

llw,sl<1(-1

d2 ,••e2

u y

Figure 6-8 H. design for Nominal Performance
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and since wP is a SISO transfer function, the maximum singular value plot of the output

sensitivity transfer function must lie below the plot of [±j at every frequency. That is, i

Iwp(I +GK)'IL < 1, then at all frequencies, 11(' + GK)1 (j0o).. <I1 / wp(jfoj. The

inverse of the weight wp is shown in Figure 6-9. This sensitivity weight indicates that, at

low frequencies, the closed-loop system should reject output disturbances by a factor of

50-1 [BDGPS91]. The closed-loop system should perform better than the open-loop for

frequencies up to 1.73 (rad/sec), and for higher frequencies, the closed-loop performance

should degrade gracefully, always lying underneath the inverse of the weight wP as shown

in Figure 6-9 [BDGPS91].

dB
-10

-20

-30

40 I 1 IIIIIII l ll ll I I Il ll11 I I lllllll I I III

10-3 10-2 10-1 100 101 102

Frequency (rad/sec)

Figure 6-9 Inverse of Performance Weighting Function, wp

6-13



The H. design plant is P. 2, given by

A-2 B 4  B~ 1.
P. ., De2d. D.., (6-12)

C y-2 DA DY1

and the state space matrices are

[g 0 xJ ] + [Jd 2  +xp] [BPj Ap ~xpjL I' + 0

[e2] =[DpC Cp + [DpId 2] + [0 Iu] (6-13)

[y] [ C 0Igx + [IId2] + [0IuJ

Since D. TD 0 is not full rank, this is a singular H. design. The mixed H2/H.. problem is

now the solution to a regular H-2 problem subject to a singular H. design. The setup for

the mixed H,/H. 2 problem is: Find a stabilizing compensator that achieves

if IT-~112 subject to IIT•.II._:5Y2 (6-14)
K stabilizing 2(14

The performance index in the numerical method is

j,. = IIT'W 112 + X(l.I .d -'Y2)2 (6-15)

Two controller orders are presented, 4th and 6th order. The starting controller is

(4th or 6th ordei). These are the same as generated in the previous section. Table 6-4

shows the results.
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Table 6-4 Output Sensitivity Design IT.16 and 11 WLSIL

"4th order Controller 6th order Controller
11 Tw 16 11 WP so 11. 11 TwJ 16 1 WP s, IL.

4.697 52.1574 4.697 52.1574
4.6994 44.1814 4.6999 40.2441
4.7007 36.186 4.701 36.1963
4.7027 28.2262 4.7012 28.1995
4.7062 20.2295 4.7063 20.2322
4.7129 12.2376 4.7134 12.1711
4.7498 4.2903 5.1424 5.3273
5.1901 1.0049 5.1647 1A016
5.2453 0.9647 5.2568 1.2114

5.2584 0.9467 * 5.3035 1.1291
1•1 * * 5.6429 0.8311

Notice from Table 6-4 that Nominal Performance is met for both controller orders. The

degradation in the H-2 performance is not too large. Figure 6-10 shows the a vs. y2 curve.

The vector gain and phase margins at the input and output of the plant are shown in Table

6-5 for the last controllers in both cases. As expected, the system is not robust at the

input of the plant. Also, notice that the margins at the output were reduced. This

represents the trade off between performance and robustness.

5.0

IA

X K(4"h

o K(6U"
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Table 6-5 Output Sensitivity Design VGM, and VPM4o

K,,,, controller (4th order)

* S [-0.9002, 1.0044] ± 6.2597 [-3.6380, 6.3789] ± 3 0.1!52 2
* T [-1.0015, 0.8979] ± 6.2430 [-5.5480, 3.35841 ±27.3035

Km controller (6th order)

VGM, (dl) VPM, (deg) VGM. (dB) VPM. (deg)
"* S [-0.9438, 1.05901 ± 6.5802 [-3.7318, 6.6827] ± 31.1321
"* T [-1.0560, 0.9415] ±:6.5629 [-5.7776, 3.4393] ± 28.1164
**S [ 3.9341, 1.0468] ±6.5089 [-4.1272, 8.1405] ±35.4130
**T [-1.0437, 0.9316] ± 6.4904 [-7.4109, 3.9398] ± 33.3542

Figures 6-11 and 6-12 show the time responses due to a step angle of attack command

and a step pitch angle command (noise included in simulation) respectively, for the H-2

design and the mixed H2JHA. 2 designs. Notice that the H2 design does not provide

performance at all, which is more evident in the pitch angle. The mixed controller shows

an improvement in the tracking performance, and the degradation in the noise rejection is

not considerable. The 6th order controller did not significantly improve the infinity norm

of the robustness and performance objectives nor the two norm of T.,; therefore, a fourth

order controller seems to be the best solution of the two for this mixed H2/H.. 2 design

problem.
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Figure 6-11 Time Response due to a step angle of attack command
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Figure 6-12 Time Response due to a step pitch angle command

(*controller from Table 6-4)
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6.5 Trade off between Weighted Outnut Sensitivity and Weighted

Inut C=mlmentarv Sengifiyit

This section will examine the trade off between weighted output sensitivity (Ta) and

weighted input complementary sensitivity (Tdl). Since the I2 design was shown to have

good margins at the output of the plant, let's examine the weighted output complementary

sensitivity. In other words, the objective is to observe how the robusmess at the output of

the plant is affected by TdI and Ta. The weight for the output complementary sensitivity

is chosen to be the same as the weight for input complementary sensitivity, but in this case

it is assumed to be a fictitious uncertainty block at the output of the plant

[G(I + W1 Af ,)]. This means that the true plant is represented by an input

multiplicative perturbation [(I + WdA)G] and the performance objective is weignted

output sensitivity. The block diagram for output complementary sensitivity is shown in

Figure 6-13.

03 d3:
eiad

U

Figure 6-13 Weighted Output Complementary Sensitivity

Block Diagram
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Thus,

T = W&(.)T.(s) (6-16)

Figure 6-14 shows how the minimization of weighted input complementary sensitivity

(Mixed HAL, ) affects the infinity norm of weighted output sensitivity (Mixed /H.^2 )

and how the minimization of weighted output sensitivity affects the infinity norm of

weighted input complementary sensitivity. The curve HA/.. 2 shows that the minimizaton

of weighted output sensitivity drives the infinity norm of weighted input complementary

sensitivity to smaller values. The curve f1^1 shows that the minimization of the

weighted input complementary sensitivity starts to minimize the infinity norm of weighted

output sensitivity also, but when IIWd ll. reaches small values, it causes an increase in

IWP SI. Figure 6-1s shows how the minimization of weighted input complementary

sensitivity does not affect the weighted output complementary sensitivity. This means that

this design does not affect the robustness at the output. The values of the infinity norms

for the different transfer functions are in Appendix A, Sectio, . A. 1 and A.2.

25

I W 'T ' I,,, 2a- H AU So 21

15€

0O 1'0 20 30 40 50 so

Figure 6-14 IWI. vs. WSl for HW/H. 1 design and H 2/H,.2 design (K 4th)
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Figure 6-16 shows how the minimization of weighted output sensitivity affects the

weighted output complementary sensitivity. Notice how the robustness at the output of

the plant starts to decrease as the system gets more performance. The conclusion is that

when the weighted output sensitivity is reduced, it drives the weighted complementary

sensitivity to higher values.
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Fiure 616 IWTL vs. IWSoH. for HA., design (K 4th)
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6.6 Multiple & Constraints :H_ Design for Nominal

Performance and Robust Stabilit gWighted Inut
Comnlmentar Sensitiviyl_ and Weiehted Outnlut Sensitivity).

The setup for this mixed HAL problem is: Find an stabilizing compensator that

achieves

inf IITZ.II2 subject to IWJsil.I - (17
tm o pS,11_ 2(6-17)

where both constraints will be treated as equality constraints. The performance index for

the numerical method is

'r = IIT 12 + XIW TI. - + x(IWpS -72  (6-18)

The state space matrices are equation (6-2) for the H2 part, equation (6-7) for the

weighted input complementary sensitivity, and equation (6-13) for the weighted output

sensitivity This design will map the boundary between IIwJTill. and DWPSoll. when

both infinity norms are close to the optimal values, respectively. This will be done by

minimizmg both constraints using the direct method in different directions as shown in

Figure 6-17. Two cases are defined. Case I tries to reduce as much as possible the

infinity norm of the weighted output sensitivity while holding the infinity norm of the

weighted input complementary sensitivity less than one. In other words, the first case tries

to get the best level of performance that meets the robustness requirement. Case 2 tries to

reduce both infinity norms as much as possible, which means that it is desired to get the

best performance and the best robustness. The infinity norm of the weighted output

complementary sensitivity will also be calculated in order to observe the trade off between

this design and the robustness at the output of the plant.
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rigure 6.17 Objectives of the miuxed problem with two H,. constraints

Again the starting controller is the optimal H2 controller, which is the order of the H2

part only (fourth order); then the controller order is increased to 6th (explained before)

and 8th order (computed by wrapping P2. P.1., and P..2 into one system, P). Therefore,

fourth, sixth, and eight order mixed controllers will be generated. The method used in the

numerical technique is the direc method. Table 6-6 shows part of the results (see

Appendix A, Section A.3 for more).

Table 6- Mixed H2/H. with two HI. Constraints: 11T.,16, 11 WwTIL, and 11 WPS, IL
___11___ I Tw 16 11 WddT, IL 11 WpSo IL 11 WddT* IL
K,4.6970 37.0491 52.1574 0.6853

__________ ~Fourth order controller _____Icase 1 5.6883 ( 0.9938 0.9234 1.0159
Case 2 6.1322 0.8172 J 0.9110 J 0.9971

_________ _________Sixth order controller______Icase 1 5.7311 0.9978 0.9574 J 0.9826
Case 2 6.0274 + 0.85 19 j 0.9579 J 092

_________ _________Eight order controller______

case 1 5.9228 0.9220 0.6845 0.7560
_______ 5.8 145 0.743ý8 0.7644 0.7030

Caw_____2 5.6926 0.6109 0.7270 0.670Y7
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Figure 6-18 Direct Method versus Single H. constraint designs (HIMAT)

Notice that the 6th order controller achieves similar results to the 4th order, and the

robustness at the output of the plant is maintained for both. The big cifference is the 8th

order controller, which achieves smaller infinity norms than the 4th and 6th order

controller, and also keeps the level of robustness at the output (the ** 8th order controller

will be explained in Section 6.7). Figure 6-18 shows how the direct method with multiple

constraints goes directly to the minimum values of the H. constraints. This figure is

similar for the 4th, 6th and 8th order controllers using the direct method. Notice that flom

a control point of view, we are not interested in values of the H-. constraints above one,

since they do not meet out requirements. The following figures will show the area of

interest (below one) for the H. constraints. Figure 6-19 shows the trade off between

WddTi and WpSo using a 4th order controller. The constraint boundary between weighted

input complementary sensitivity and weighted output sensitivity is defined. This boundary

shows that Case 2 is better than Case 1, since it obtains better values of performance and

robustness. The 6th order controller shows similar results to the 4th order controller.

Figure 6-20 shows the trade off between Wd.,Ti and WpSo using an 8th order controller.
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Notice that this order of controller improves the values of the infinity norms, and the non-

feasible region is also "smaller". Appendix A, Section A.3 shows the complete table of

results.
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Figure 6-19 Trade off between weighted T, and S. (4th order controller)
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Figure 6-20 Trade off between weighted T, and S. (8th order controller)
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Figure 6-21 Wd(s) T1(s) Maximum Singular values (K., 8th order)

The maximum singular values of W,,(s)T1 (s) are shown in Figure 6-21. The y axis

represents some of the different 8th order controllers; it starts at K2 which corresponds

to y = 1, and moves into the mixed controllers (from y = 2 through y = 13). Notice how

the maximum singular values are minimized until Robust Stability is met. Figure 6-22

shows the maximum singular values of Wp(s)So(s). The same axis orientation is kept.

This new technique drives both infinity constraints to the required level of Nominal

Performance and Robust Stability, with the two norm also being minimized. It is

important to mention again that both HI. designs are singular problems. Table 6-7 shows

the VGM and VPM for each controller using the final controller. Notice that each

controller tries to recover the VGM and VPM at the input of the plant. Now the trade off

between input and output margins is more evident, since a weighted output sensitivity

output is the driver for margins at the output of the plant.
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Table 6-7 Mixed H 2/H. with two H. Constraints VGM and VPM
K k controller 4th order)

VGMI (dB) VVGM. (dB) VPM. (deg)

S1 [-3.9103, 7.30251 ± 33.0344 [-3.7631, 6.7876] ± 31.4629
Ti [-6.3912, 3.6419] ± 30.1926 [-6.4753, 3.66821 ± 30.4666
S2 [-4.3418, 9.0814] ± 37.8401 [-3.8033, 6.9242] ± 31.8883
T2 [-8.7051, 4.2594] ± 36.8988 [-6.4633, 3.6645] ± 30.4278

controller 6th order)
S1 [-3.6202, 6.3225] ± 29.9668 [-3.6540, 6.4297] 30.3183
T1 [-6.2052, 3.5825] ± 29.5776 [-7.2142, 3.8858] ± 32.7709

$S2 [-4.1892, 8.3994] ± 36.1056 [-3.6533, 6.4275] ± 30.3112
T2 [-8.1393, 4.1269] ± 35.4095 , [-7.1817, 3.8768] ± 32.6735

-.. , controller (8th order)
St [-3.6560, 6.43591 ± 30.3386 [-4.7985, 11.61761 ± 43.2774
TI [-6.8178, 3.7721] ± 31.5575 [-9.8992, 4.5066] ± 39.7588
S** [-4.5405, 10.07951 ± 40.1593 [-4.4862, 9.79281 ± 39.5186
T** [-8.7010, 4.2584] ± 36.8883 [-7.3548, 3.9246] ± 33.1891

S2 [-4.7691, 11.4256] ±42.9160 [-4.7003, 10.9939] ±42.0753
T2 [-14.9428, 5.2062] ±48.4723 [-12.1456, 4.8756] ±44.2334
(1= cawe 1, 2= cae 2)
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This table suggests the use of a higher order controller in order to avoid a degradation of

margins at the output of the plant. The next section will compare the (**) eight order

mixed controller with the controller obtained using g. -synthesis, as well as an H. optimal

controller.

6.7 Mixed H,/H& with Multiple SingUlar H. Constraints

and Robust Performance
g-Synthesis versus Mixed H2/H,- Synthesis

This section presents a comparison between the gX controller obtained from running

the HIMAT demo in MATLAB, the HL optimal controller for the mixed sensitivity

problem, and the mixed H2/H. controller. In this section, the value of the upper bound on

t(a(DMD-')) will simply be called IL for convenience. A fictitious block Ap is created

to include the performance requirement, as shown in Figure 6-23.

Figure 6-23 Block diagram for Robust Performance
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Although the mixed problem does not directly address Robust Performance, the trade off

among the infinity norms of the diagonal and cross terms of M will shape the maximum

singular values of M, and therefore could affect g.. This is shown when a g analysis is

done for twenty-six 8th order mixed controllers from Section 6.6 (these 26 controllers are

only a subset of all 8th mixed controllers; see Appendix A, Section A.3), as shown in

Figure 6-24. IIMII, is defined as the upper bound on g(M). The x axis corresponds the

different controllers, starting with KI and moving along the mixed controllers as the

infinity norms are minimized. Notice that the upper bound of g. is minimized. Now,

looking at the three 8th order mixed controllers from Table 6-6, we see that the case 1 and

case 2 controllers have a IIMII, value around 1.7, while the controller (**) has IIMII, =

1.3404, as shown in Figure 6-25. This shows that different combinations of infinity norms

of the cross and diagonal terms will result in a differing values of IIMII,. This is the reason

for using the D scaling (see Chapter 2), since it shapes the maximum singular values of M

in order to reduce IIMII,. The mixed problem improves IIMII,, but it does not directly

address Robust Performance, since it does not exploit the frequency information.

Consider the controller (**) as the best controller in terms of Robust Performance. Figure

6-26 shows the p bounds for the p-synthesis design, H. optimal control, and the (**)

mixed controller. The mixed controller reduces IIMII, more than the H-. optimal controller

does, because it directly addresses Robust Stability and Nominal Performance.
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Although the mixed HJHcontroller does not pass the test for Robust Performance, the

order of this controller is much smaller than the K(s) obtained from g-synthesis. Also,

noise rejection is better with the mixed controller than the other two. Table 6-8

summarizes the results, including a 4th order mixed controller as well.

Table 6-8 IL Analysis for the HIMAT example

Robust Nouanal Robust 1 T,,, 112 order of
Stability Perfornance Perfornmance controller

p-*dhss .pass pass 0.9803 18.51034 20
Mixed H2^H. pass pass 1.3404 5.81450 8
* H. opdmad pass pass 1.6230 Co 7

conbll__
Mixed H2/H. pass pass 5.4040 6.1320 4

* the opinal 11 controller is for mixed sensitivity and complemenary sensivity
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Figures 6-27 and 6-28 show the magnitude of the weighted sensitivity function and

weighted complementary sensitivity function for the different control designs, respectively.

Notice how the infinity norm for both functions are improved for the mixed problem

compared to the H.. problem. Figures 6-29 and 6-30 represent the magnitude plot versus

frequency for the actual (unweighted) sensitivity and complementary sensitivity functions.

Figure 6-29 shows that the mixed H2/H.. controller tries to decrease the magnitude of the

sensitivity function at low frequencies, compared to the g controller. This is probably due

to the fact that the mixed controller is trying to reject the low frequency wind disturbance

which g. does not account for. In Figure 6-30, the mixed H2/HI rolls off faster than g

does, and peaks earlier than H..

0.9
.... KnMx .-. .

0.7 -.-. KInf

_.m "..... •

0.4 -:l

\ i

"0.3

02 .. '

. .. .. ..... ,. . . . . .* . . . . . . . .* . . . . . .

0. 10 10 10 101 107 10'
Fmquewrcy (rad/nc)

Figure 6-27 Magnitude of Wp(s)So(s) for p..Synthesis, H., and the Mixed H2/H.
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Figure 6-30 Magnitude of Complementary Sensitivity for tL-Synthesis,

H., and Mixed H2/H.

The time responses for a step angle of attack and pitch angle are shown in Figures 6-31

and 6-32. Notice how the wind disturbance and noises affect the g-synthesis controller

and the H.. controller. The mixed HAL controller has good noise rejection and good

tracking as well. The mixed controller fails the robust performance test with its upper

bound of 1.3404; however;, this means that in order to pass this test, the robustness and

nominal performance requirements must be relaxed by only a factor of 1/1.3404.
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6.8 Mixed H2/H_ design with three H constraints

The objective of this design is to minimize three H_ constraints. The first and second

constraints are the previous Robust Stability and Nominal Performance requirements.

These H. constraints were examined individually and simultaneously in the previous

sections. Now a weighted output complementary sensitivity constraint is introduced, as a

third H. constraint. The desire is to drive its infinity norm to less than one. The

exogenous input is d3 and the exogenous output is e3 for this new H,. constraint, as shown

in Figure 6-33. The dotted block represents our true plant. The transfer function A4s) is

a fictitious unstructured block and is assumed to be stable, unknown, and such that its

infinity norm is less than one ( 11 A(s) II. < 1). The objective for this design is to meet

II Ted, II. < 1 ; Robust Stability at input

II T 11.< 1; Nominal Performance at output (6-19)

II TO II. < 1; Robust Stability at output

dl d2 12

Figre 6-33 Mixed H2/H.. design with three H. cons~traints Block Diagram
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The state space for the HI.3 design plant is[A Bd, B,1
P.,= Cc, D,.d D1,. (6-20)

y., Dyd, Dye

where the state space matrices are

xI_ [BA8  0 JXa] LoJd3]+ 1B1u]X, W wC& Am dx,] + [

[e,] = D C [~ X¢' + [01d, + [10 Iu] (6-21)

(y = I Cg + [I]d 3] + [10 Iu

TDD, is not full rank; therefore, this is a singular H. problem. The setup for this

mixed HAL problem is: Find a stabilizing compensator that achieves

{w, IdeTL :Yi
inh jT.fIwI subject to IW4 s.L (6-22)

%W•mTo L e' Y3

Again, the three H.. constraints will be treated as equality constraints. Thus, the

peformance index for the numerical method is

J,, = IT-f2 + )'(I QWWXi. -I T,)'2QxWPSol. -72Y) +)3WW,(HW .Tl. -73)Y

(6-23)

"The state space matrices are equation (6-2) for the H2 part, equation (6-7) for weighted

input compleMentary sensitivity, equation (6-13) for the weighted output sensitivity
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output and equation (6-21) for weighted output complementary sensitivity for the H.

parts.

Again, the starting controller is the optimal H2 controller. The design is performed to

obtain fourth, sixth, and eight order controllers. The method used in the numerical

technique is the direct method. Table 6-9 shows part of the results (see Appendix A,

Section A.4 for full results). Comparing Table 6-9 with Table 6-6 (two H, constraints),

we can see that there is no improvement for the 4th and 6th order controllers. It seems

that the third constraint is not dominant, and the trade off among the H.. constraints is

only related to the weighted input complementary sensitivity and weighted output

sensitivity. The 8th order controller does show some improvement in performance, while

keeping a good level of robustness at the input and output of the plant. Notice that if an

H. controller is found for an unmixed problem, the order would be 10. A tenth order

mixed controller was not computed due to time constraints.

Table 6-9 Mixed H2/H. with three H. Constraints: IrI,II2, II WddT-L,

I1 WSo IL, and II WmTo IL
11 T, 112 II W ,Tt IL II WS. IL 11 W.To IL

K&. Controller
4.6970 37.0491 52.1574 0.6853

Fourth order controller
6.5415 0.7584 0.9283 -0.9975

Sixth order controller
6.5775 0.8029 1 0.9416 0.9894 [

Eight order controller
5.2653 0.9189 0.6865 0.5956

Table 6-10 shows the VGM and VPM at the input and output of the plant. The time

responses for a step angle of attack (a) and pitch angle (0) command are shown in Figures

6-34 and 6-35 for the controllers from Table 6-9. Notice that the 4th and 6th order
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controllers have a considerable overshoot. Although the settling time is almost the sanm

for all three, the 8th order controller has a better response.

Table 6-10 Mixed HA/H. with three H. Constraints: VGM and VPM

k. controller 4th order)
VGM, (dB) vM, (" VGM, (dB) VPM (des

S [-4.2084, 8.4821] ± 36.3227 [-3.7627, 6.7862] ± 31.4586
T [-9.9643, 4.5189] ±o39.9042 [-6.3492, 3.6287] ± 30.0548

- ~~~controller (6th order) _____

S [-4.2646, 8.7285] ± 36.9585 [-3.7126, 6.6194] ± 30.9307
T [-8.8461, 4.2907] ± 37.2559 [-6.4819, 3.6703] ± 30.4881

controller 8th order)
S [-3.7919, 6.8851] ± 31.7673 [-4.9276, 12.5242] ±44.8856

T [-6.8231, 3.7736] ±31.5740 [-16.1158, 5.31341 ±49.8972

1.4

a (dew k (M~)

K.. .........

0.6 \ \

0.4.

0.2

0 0 .5 1 1.5 2 2.5 3 3.5 4.

This (ago)

Figpre 6-34 Time response, ot command
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Figure 6-35 Time response, 0 command

6.9 Summary

If the selection of the best controller has to be made, the question by itself is too

complex, since many factors have to be considered. Table 6-11 summarizes the most

inmortant factors to consider in the selection of the controller. Consider the following

factors (x in Table 6-11 if passed):

1. Satisfy Robust Stability (RS) at the input and output of the plant, and satisfy

Nominal Performance (NP).

2. Satisfy RS and NP with high noise rejection

3. Satisfy Robust Performance < 1

4. Relax the Robust Performance < 1/1.3404

5. Relax the Robust Performance < 1/5.4020

6. Low overshoot

6-39



7. Low order controller that satisfies RS and NP

Table 6.11 (iMATH Selection of Controllers

Factor 1 2 3 4 5 6 7

Controller

Mixed 4th (two H,. Const.) x x

Mixed 8th (two H.. Const.) xx x x

Mixed 4th (three H.. Const.) x x x

Mixed 8th (threefH. onst.) x x_ x x

H.. (8th) x x

p (20th) x x x x

These are only a few factors to be considered. The selection will depend on how well we

know the plant, and what factors are more important than others. The order of the

controller is very important when it has to be implemented; therefore, the mixed H2/H.

control problem with multiple H,. constraints will have great importance in low order

controller design.
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VII. Summary, Conclusions and Recommendations

The main objective of this thesis was to investigate the mixed H2/H. with multiple H..

constraints control problem. A SISO and a MIMO problem were solved. Successful

strategies for obtaining measures of performance and robustness were presented in most

designs.

The initial chapter gave a limited synthesis history that represented the motivation for

the use of multiple H-. constraints in the mixed problem. Chapter H discussed the three

base methodologies (H2, HI., and gt-synthesis), and a review of the related design

examples. Chapter HI discussed the mixed H2/H. problem with a non-singular HE.

constraint and with a single singular H,. constraint. Also, the new numerical method was

explained. Chapter IV developed the mixed H2 1,A. problem with multiple H,. constraints,

and discussed how the new numerical method can be used to solve this problem.

Chapter V presented the F-16 short period approximation (plus first order servo and

Padd approximation) SISO example. The SISO example represented an introduction to

this new design technique. First, an H2 design was accomplished, and then two mixed

problems with one H. constraint were solved. The H,. constraints were weighted input

sensitivity and weighted input complementary sensitivity. The trade off between both H,.

constraints was observed. Finally, the mixed ,2/HA. with multiple H,. constraints problem

was solved. Two methods were applied: the grid method and the direct method. A

surface was created using the grid method, and it showed possible boundaries between H.
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constraints when they are close to optimal values. The direct method was shown to be a

better method, since it permitted selection of the direction of minimization.

Chapter VI presented the HIMAT problem (MIMO). Using the HIMAT problem, the

following were solved:

* An H2 design.

* Two mixed H2JHL designs, each with one H_ constraint. The H_ constraints

addressed Robust Stability and Nominal Performance independently.

* A mixed H2/H. design with two HI constraints. The constraints addressed

Robust Stability and Nominal Performance, but now the trade off between them

was manipulated.

e An H_..-synthesis and gt-synthesis (using D-K iteration), for the augmented system

(the two H. constraints wrapped in one block) were solved.

o Finally, a three H. constraint problem was solved. The constraints addressed

Robust Stability at the input and output of the plant, and Nominal Performance.

Different order mixed controllers were produced, with good results in most of them. A

g± analysis was done on the mixed controller, and this was compared with the H. optimal

controller and the gi-synthesis controller. Table 6-11 summarizes some of the major

results.

The conclusions of this thesis are:

i). This new numerical technique permits minimization of the two norm of Tw subject

to single or multiple H-. constraints.

ii). The H. constraint can be regular or singular.
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iii). As the order of the controller was increased, better results were obtained.

iv). The mixed H2!H. optimization with multiple singular H_ constraints permits the

designer control over the level of Robust Stability and Nominal Performance, and also to

fix the level of otiier H. constraints. This means that the trade off between design

requirements in terms of H_. constraints can be freely chosen by the designer.

v). The main idea to include other H_. constraints, that are not specified as a Nominal

Performance or Robust Stability requirement, is that the system could meet Robust

Stability, Nominal Performance and even Robust Performance for a certain number of

uncertainty blocks and performance requirements, yet fail when the number of uncertainty

blocks or performance requirements are increased. Therefore, this technique can keep the

level of Robust Stability and Nominal Performance for the original blocks, and can control

the level in terms of H_ magnitude for those that the system does not meet.

Table 7-1 summarizes the improvement of this new nonconservative method,

compared with other control design methods.

Table 7-1 Comparison of different Control Law Designs

H2  H.. gt(D-K) Mixed
H2/H-.

Handle white Gaussian noise (WGN) x x
Robust Stability, Nominal Performance x x x
Robust Performance x
Trade off between RS and NP freely x
WGN and RS, NP x
Reduced order controller x
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i) Improve the numerical method, especially around the knee of the a vs. 7 curve.

ii) Investigate the "relationship" between the diagonal and cross terms in mixed 1 2/H_

with multiple H.. constraints, and how this relationship could affect Robust Performance.

iii) A faster computer is needed in order to obtain a large number of controllers, so that

various trade-offs can be examined quickly and efficiently.

iv) Since the numerical method runs with any order controller, investigate results using

any order stabilizing controller, including order less than the underlying H2 plant (if it

exists).

v) Remove the restriction that the H,. constraints must be satisfied with equality

through the use of constrained optimization. 'Ihis has already be-n done [Wal94], and the

results in this thesis are being reworked using sequential quadratic programming rather

than DFP.
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APPENDIX A.

HIMAT PROBLEM

A.1 Weighted Input Complementary Sensitivity Constraint

4th order controller
iIT• 1I2 11 W•lTi 11. 11 WpSo 11-. 11 WOTo 110
4.6970 37.0427 52.1864 0.6856
4.6970 34.1942 51.7626 0.6602
4.7031 28.1678 51.9762 0.5881
4.8223 22.2256 44.8161 0.6134
4.8698 19.5766 41.2103 0.5564
5.0489 16.3526 33.9038 0.5556
5.2281 13.4063 23.7194 0.6010
5.4864 7.4497 15.1682 0.6236
6.3685 2.1831 21.3140 0.6466
6.4369 1.8485 22.9333 0.6571
6.5611 1.4709 20.3251 0.6554
6.7332 1.0585 26.1706 0.6613
6.9970 0.6413 34.6669 0.6784
7.7440 0.4956 48.7810 0.7959
7.1843 0.4918 51.2928 0.6487
7.1759 0.4920 51.7376 0.6478

6th order controler

IITM 112 II WaTi11- II. IIWpS I-. 11 WdT II
4.6970 37.0427 52.1864 0.6856
4.6970 34.1941 51.7622 0.6603
4.7064 28.2220 50.7688 0.5726
4.7365 25.3941 48.4703 0.6247
5.0925 16.4510 37.8934 0.5719
5.3813 13.1794 32.9813 0.5940
5.5764 10.7019 24.2157 0.6249
6.3416 4.6897 23.0864 0.6366
6.5190 2.0029 24.0980 0.6154
6.4690 1.8122 24.9896 0.6316
6.4751 1.5727 25.0295 0.6737
6.3395 1.4366 21.4272 0.7059
6.3674 1.2844 25.4598 0.7302
6.4721 1.1122 28.0406 0.7332
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6.6457 0.8946 31.8055 0.7371
6.8571 0.7113 36.4956 0.7552
7.0705 0.5177 45.8587 0.6423
7.2149 0.5548 48.3201 0.7947
7.6167 0.5095 56.5616 0.8143
7.0705 0.5177 45.8587 0.6423

Al Weighted Output Sensitivity Constraint

4th order cnrl
irrT.1 11 I W aTi 11-. 11 WpS, 11. 11 WdaTo I11-

4.6970 37.0427 52.1864 0.6856
4.6990 25.9277 48.2140 0.5763
4.6994 24.5831 44.2054 0.5439
4.7002 23.8210 40.2266 0.5406
4.7007 22.8746 36.2079 0.5410
4.7019 22.0211 32.2226 0.5440
4.7027 21.2916 28.2454 0.5509
4.7042 20.3073 24.2368 0.5628
4.7062 18.7839 20.2418 0.5714
4.7129 16.0872 12.2381 0.6305
4.7327 15.2283 8.3599 0.7095
4.7498 10.7949 4.2906 0.9023
5.1901 5.3058 1.0481 1.1369
5.2453 4.9608 1.0108 1.1111
5.2584 4.8214 0.9905 1.0972
5.2617 4.8043 0.9887 1.0960

6th order controler
IITZW 162 11 WdeTi 11.. 11 WpS, 11 I WdaTo 11-

4.6970 37.0427 52.1864 0.6856
4.6984 25.6282 48.2167 0.5744
4.6999 23.7559 40.2441 0.5407
4.7010 22.9563 36.2181 0.5412
4.7012 21.2190 28.2184 0.5525
4.7063 18.3781 20.2468 0.5713
4.7097 17.1423 16.2076 0.5955
4.7134 15.4557 12.1765 0.6364
5.1647 11.3612 1.4016 1.4939
5.2568 7.0627 1.2114 1.0669
5.3035 4.6762 1.1291 1.0641
5.6429 4.5730 0.8311 0.9451
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A.3 WeiWhted Output Sensitivity and Weighted Input
Comnieentar Sensitivity Congo&&nt

4th order contrle

irrII 2  II WdeTi II.. II WpSo II. II WddTo I.

4.6970 37.0491 52.1574 0.6853
4.9689 25.9037 37.9268 0.7416
4.9747 17.5703 25.2809 0.5761
5.0639 9.0661 13.1080 0.6197
5.1136 7.2982 10.1080 0.6549
5.2435 5.6649 7.3953 0.6874
5.3986 1.5091 1.0073 1.0344
5.5195 1.2231 0.9592 1.0137
5.5208 1.2231 0.9365 1.0137
5.5636 1.1034 0.9542 1.0154
5.5827 1.0989 0.9178 1.0175
5.5834 1.0982 0.9174 1.0167
5.5884 1.0981 0.9159 1.0139
5.6837 1.0009 0.9229 1.0225
5.6883 0.9938 0.9234 1.0159 ........ (Case 1)
6.0137 0.8467 0.9146 1.0036
6.0963 0.8278 0.9099 0.9985
6.1099 0.8234 0.9122 1.0000
6.1161 0.8215 0.9106 0.9983
6.1101 0.8244 0.9102 0.9987
6.1091 0.8244 0.9100 0.9986
6.1322 0.8172 0.9110 0.9971 ........ (Case 2)
6.2257 0.8039 0.9154 0.9990
6.8656 0.6933 1.0612 0.9698
6.9195 0.6916 1.0474 0.9710
6.9908 0.6895 1.0600 0.9732

6th order contmlker
IIT•, 112 11 WdelTi 11- 11 WpSo 11- 11 W ddTo 11
4.6970 37.0491 52.1574 0.6853
4.7468 34.0391 46.8218 0.7340
4.7762 29.5118 41.4565 0.6448
4.8104 26.3026 37.0553 0.6860
4.9899 8.1814 10.7511 0.6518
5.3292 1.5742 1.4497 0.9343
5.7274 1.0706 0.9707 1.0010
5.7311 0.9978 0.9574 0.9826 ........ (Case 1)
5.9607 0.8712 0.9581 0.9832
6.0292 0.8512 0.9596 0.9819
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6.0274 0.8519 0.9579 0.9828 ........ (Case 2)
6.0341 0.8161 0.9764 1.0039
6.3459 0.7776 1.0317 0.9624
6.9503 0.7459 1.2159 0.9175
5.7020 1.0383 0.9481 0.9748
5.7287 1.1739 0.9177 0.9909
5.4175 1.6316 0.8939 0.9889
5.3692 1.7694 0.8891 0.9475
5.3261 3.2591 0.8712 0.9776

8th order cTtle

irr n 2  II W&T 11- 11WpSo 11- II WdT 0 II
4.6970 37.0491 52.1574 0.6853
4.7023 32.0126 47.1634 0.6277
4.7148 27.0366 42.0854 0.6006
5.2319 0.9532 1.8408 1.2752
5.2336 0.9613 1.6649 1.3010
5.2324 0.9742 1.6543 1.3037
5.7912 0.7939 0.7414 0.8783
5.8145 0.7438 0.7644 0.7030 ........ (controller **)
5.7949 0.7872 0.7281 0.8540
6.0145 0.7866 0.6897 0.7882
5.9967 0.7946 0.6878 0.7870
6.0252 0.7931 0.6867 0.7860
5.7059 0.6251 0.7353 0.7195
5.7159 0.6240 0.7326 0.7174
5.6926 0.6109 0.7270 0.6707
5.2319 0.9532 1.8408 1.2752
5.6862 0.6148 0.7374 0.6710
5.6926 0.6109 0.7270 0.6707 ........ (Case 2)
6.0252 0.7931 0.6867 0.7860
6.0276 0.7961 0.6863 0.7857
6.0270 0.7961 0.6862 0.7858
6.0142 0.8078 0.6856 0.7924
5.9267 0.92 14 0.6857 0.7564
5.9228 0.9229 0.6845 0.7560 ........ (Case 1)
5.9197 0.9218 0.6853 0.7565
5.8233 0.9331 0.6939 0.7206
5.7243 0.8906 0.7027 0.7403
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A.4 Weifghted Outnut Sensitivity Weighted Inuput Comnlementarv
enitiiy&. and Weighted Outnut Comnlementaryv Snsitivity

Caw 1 and Case 2 for the 4th and 6th order controllers are almost identical, as there is not

a substantial reduction of the infinity norms below one, as will be shown in Figure A- 1.

4th order controller
irr' 12 II WdaTiII. ii WpSo I. II WdaToI 1
5.6011 1.0653 0.9586 1.0523
5.5654 1.0937 0.9386 1.0431
5.5627 1.0934 0.9396 1.0430
5.5632 1.0914 0.9378 1.0429
5.7476 0.9423 0.9423 1.0423
6.6207 0.7618 0.9693 0.9683
6.3762 0.7790 0.9464 0.9900
7.9001 0.6586 1.4409 1.0213
6.5600 0.7599 1.0430 0.9423
6.7315 0.7444 0.9824 0.9323
6.4187 0.7662 1.0009 0.9370
5.7426 0.9197 0.9623 1.0059
6.0272 0.8155 0.9606 0.9805
6.4323 0.7484 0.9405 0.9873
6.4323 0.7484 0.9405 0.9873
6.5415 0.7584 0.9283 0.9975
6.4429 0.7592 0.9274 1.0006
6.4165 0.7590 0.9277 0.9999

6th order contrle

I1wII2 II Wdd Ti I 11 Wp,1- 11 IWdTo II1
4.6970 37.0491 52.1574 0.6853
4.8225 26.8937 37.4109 0.5390
4.8936 11.8365 16.1882 0.6239
5.1569 7.7096 10.9946 0.6614
5.2006 1.8236 2.3868 0.9725
5.2373 1.6559 1.7414 1.0336
5.3071 1.5121 1.4009 1.0226
5.3888 1.3224 1.0848 1.0750
5.4499 1.2454 0.9865 1.0689
5.7320 1.0089 0.9862 1.0345
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5.8071 1.0188 0.9481 1.0278
5.8117 1.0203 0.9470 1.0276
5.8871 1.0433 0.9346 1.0282
5.8901 1.0429 0.9345 1.0279
5.8905 1.0445 0.9342 1.0275
5.9694 0.9521 0.9429 1.0186
6.3540 0.8750 0.9280 1.0122
6.5775 0.8029 0.9416 0.9894
7.3778 0.7032 1.0638 0.9695

8th order controller

irr'W I2 II WdpTo 11. 11 WpS, 1t, 1 IWdTo II.
4.6970 37.0427 52.1864 0.6856
4.7191 26.9350 40.0723 0.6345
4.8990 19.7854 25.6832 0.6575
5.0856 2.7212 1.8812 1.0661
5.1065 2.4514 1.5789 1.0288
5.1205 2.3120 1.4950 1.0391
5.3710 0.8648 1.1453 0.7335
5.3482 0.8183 0.9068 0.6471
5.3238 0.7452 0.8444 0.6824 ........ (Case 2)
5.2582 0.9260 0.7405 0.5939
5.2653 0.9189 0.6865 0.5956 ........ (Case 1)
5.2890 0.9292 0.6904 0.6086
5.3413 0.9494 0.7701 0.7328
5.3499 0.9399 0.7732 0.7371
5.3634 0.9043 0.8438 0.8897
5.9354 0.9563 0.7650 0.9622
6.1497 0.9541 0.7366 0.9535
6.0447 0.9538 0.7247 0.9533
6.0827 0.9540 0.7145 0.9510
6.0502 0.9542 0.7121 0.9510

The following figures map the boundaries for the fourth and eight order controllers for

two and three H.I constraints. As was shown in Chapter 6, the third H. constraint (a

weighted output complementary sensitivity) was not dominant, and therefore we can

combine the results of the mixed controller with two H. constraints and the controller

with three H.. constraints of the same order. This is shown in Figure A- 1 for the 4th order

controller and Figure A-2 for the 8th order controller.
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Figure A-I Boundary for the fourth order controller with two and three H.

constraints

IN

1.1

Inuor wI

0. 4 . U I

0.7

0.5 0.6 0.7 0.8 0.9 1 1.1

Figure A-2 Boundary for the eight order controiler with two and three H,
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