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Abstract

A general mixed Hy/H_, optimal control design with multiple H, constraints is
developed and applied to two systems, one SISO and the other MIMO. The SISO design
model is normal acceleration command following for the F-16. This design constitutes the

validation for the numerical method, for which boundaries between the H, design and the
H,, constraints are shown. The MIMO design consists of a longitudinal aircraft plant

(short period and phugoid modes) with stable weights on the H, and H, transfer
functions, and is linear-time-invariant. The controller order is reduced to that of the plant
augmented with the H, weights only. The technique ali,w- singular, proper (not
necessarily strictly proper) H_, constraints. The analytical nature of the solution and a
numerical approach for finding suboptimal controllers which are as close as desired to
optimal is developed. The numerical method is based on the Davidon-Fletcher-Powell
algorithm and uses analytical derivatives and central differences for the first order
necessary conditions. The method is applied to a MIMO aircraft longitudinal control
design to simultaneously achieve Nominal Performance at the output and Robust Stability
at both the input and output of the plant.
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L Introduction

Recently, there has been a great deal of interest in formulating a mixed H,/H,, control

methodology which can handle bounded spectrum and bounded energy inputs
simultaneously. Early approaches included solving the problem for one input/one output,
one inputftwo outputs and two inputs/two outputs ({(BH89]; [KDGB90); [DZB89);
[YBC90]; (MGS88]; (MG90]; [KR91]). The general formulation of the mixed ‘em
with two exogenous inputs and two controlled outputs was first approached for fu.. state
feedback in [KR91]. Ridgely, Valavani, Dahleh and Stein [RVDS92] developed a solution
for the general mixed H,/H,, problem with output feedback which results in a controller
order equal to or greater than the order of the underlying system augmented the H,
weighting and the H,, weighting. Also, the assumption is made that the underlying H_
problem is regular and has no feedforward term. Walker and Ridgely [WR9%4a)
reformulated the general mixed H,/H,, problem with the strictly proper and regularity
assumptions relaxed to allow singular, proper H_ constraints. Furthermore, Walker and
Ridgely showed strong theoretical results for controllers selected to have orders equal to
or greater than the order of the underlying H, problem.

Multiple objective optimal control, as formulated by the above, allows the designer to
determine the tradeoff between noise rejection ( H, ) and some unstructured perturbation
( H.. ), which embodies desired performance and margins at either the input or output of
the plant (or some combination). However, the unstructured perturbation approach to
the H_ problem is generally conservative. A better approach is to exploit the structure of
the perturbations [DWS82], but the single H_ constraint in the mixed Hy/H, setup is
unable to do this. Doyle [Doy82] introduced structured singular value (i) synthesis to
design controllers which are less conservative. While this approach handles structured

1-1




uncertainties, the current j1-synthesis method generally results in a large controller order.
It is desired to develop a control synthesis method which can reduce the controller order
below that of p-synthesis. One approach to this problem is to consider each perturbation
as an individual H_ constraint and solve the problem using mixed H,/H,, synthesis with
muitiple H_ constraints. An advantage of this technique is that it allows the controller
order to be reduced to the order of the H, problem. Further, by employing mixed
optimization, one can design a controller which minimizes the effect of white noise inputs

as well as bounded energy inputs.

This thesis will first develop the H,/H,, problem with a single H_ constraint. Second,
the Hy/H_ problem is extended to allow multiple H_ constraints. The nature of the
solution will be compared with p-synthesis. A SISO example will represent the validation
of this new technique and a MIMO example will address control design requirements
(Robust Stability and Nominal Performance).
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1L, Background

This chapter is intended to lay the foundation for the specific compensator designs that
will follow. Figure 2-1 shows the closed loop transfer function T, and it is desired to
minimize an appropriate norm on T due to varying assumptions about the exogenous input
signal and the exogenous output signal. For instance, if the exogenous signal is not
known exactly but is known to lie in a set (p=2,e0), then a reasonable measure for
performance is one which looks at the worst possible output. In particular, assume that
the set of exogenous inputs is given by

wel, I|wl,<1}; p=2,
The 2-norm is the energy, and the co-norm is the maximum magnitude of the signal. A
good measure of performance is given by

Figure 2-1 Closed Loop system T




which is the norm of the worst possible output as the exogenous signal ranges over the
allowable set. The controller design problem is given by

K infl. . (ﬁlBlTwﬂq) K i“fl i Iﬂln—mu
This performance objective is known as the minimax objective. The controller is designed

to guard against all exogenous signals in the allowable set [DD93]. Table 2-1 shows the

1 4-induced norm for different exogenous inputs and outputs.

Table 2-1 Induced norms
input twi, Twil,
output
nzi, ntTn, ok
Nzh, nTi, T I,

** not induced norm exits
For more information on signal theory, refer to [DD93] and other references. When
uncertainties are in the system, the minimization of Il T Il, [p=1,co (the system 2-norm is
not good for uncertainty management)] is conservative, especially when the uncertainty
model is highly structured. In this case, p-analysis is a better tool for analyzing the
robustness of the system. Next, we examine the H,, H_, and p-synthesis design
procedures. Minimization of [T(t)},, known as /; optimization, will not be covered in this

thesis.

H, optimization, which parallels the popular LQG problem in the optimal output
feedback case, is based on minimizing the 2-norm of a transfer function matrix from white
noise inputs to controlled outputs [DGKF89]. The white noise input is assumed to be

zero-mean, unit intensity, and possess a Gaussian distribution. Figure 2-2 shows the basic

H, design diagram where :

22




w SD 3 z
u Yy
Figure 2-2 H, Design Diagram

z is the controlled output (exogenous output)

wis a white Gaussian noise with unity intensity (exogenous input)

u is the controller input to the plant

y is the measured plant output

P includes the design weights and the plant

K is the controller
The H, design objective is to find an admissible (stabilizing) K(s) that minimizes the
energy of the controlled output (z), which is equivalent to minimizing the two-norm of
T

xﬂf-aenzuz = x}ng.wlrr"nz

The optimal || T, II; is represented by o, with the corresponding K(s)=K(s)ypp. K(5)20p is
unique and full order (the order of the nominal plant plus the order of the H, weights). In
state space, the plant P is described by:

Ax + B,w + B
Cix + D,w + Dju
Cx + D,,w + Dgu

X

z
y

The following assumptions are now made:
@ D, =0




(i) D,=0
(iii) (A, B,) stabilizable and ( G, A) detectable
(iv) DT,D,, full rank ; D, DT | full rank

A - joI B.
) has full column rank for all ®
C D=

e

‘A -jol Bw
Cy Dyw

where assumption (i) is a requirement for the two-norm of the transfer function to be

(vi)

]hasfullrowrankforall(n

finite. The condition on D, simplifies the problem, but it is not a requirement. For a
stabilizing compensator to exist, (iii) must be satisfied. Condition (iv) is required to avoid
singular control problems. Finally, conditions (v) and (vi) guarantee the existence of
stabilizing solutions to the algebraic Riccati equation (AREs) that are involved in the
solution of the H, problem. For a complete description of the H, solution, see [DGKF89).

The objective of H_, optimization is to minimize the energy of a controlled output to a
deterministic input signal that has bounded, but unknown, energy. In the H_ problem the

controlled output is e, and the exogenous input is d; therefore, the H_ problem is
inf  suplef, =

inf ., 1Tl
K admissible  Id,s1 K admissible d

where

ITaGo). = sup ofT,(jo)]
The optimal controller K(s),.o, yields Il T il = Y.and a family of suboptimal controllers
such that Il T, Il. <y can be defined, where ¥ > Y. Figure 2-3 shows the block diagram

for the H_, design. In this case, the state space matrices for P are:

24




x = Ax + Bd + Bu
e = Cx + Dyd + Dju
= Cx + Dyd + Dju
d e
u \
Figure 2-3 H_ Design Block Diagram

The following assumptions on the state space matrices are made:
(i) Dy=0
(i) (A,B,) stabilizable and (C,, A) detectable
@(iii) DT,D, fullrank; D ;DT full rank

[A - J(DI Bu]
@iv) has full column rank for all ®

Condition (i) is not required, but simplifies the problem. For stabilizing solutions to exist,
condition (ii) must be satisfied. In order to avoid singular problems, condition (iii) is
required. Conditions (iv) and (v) along with (ii) guarantee that the two Hamiltonian
matrices in the corresponding H, problem belong to dom(Ric). Notice that there is not a




restriction on D, because it does not make the closed loop infinity-nomn infinite. For

more information of the complete solution, refer to [DGKF89].

2.3 Structured Singular Value

This section presents a short synopsis of Packard and Doyle [PD93]. The system is
linear time invariant with complex perturbations. For more information refer to [PD93].
Consider M € C®™, In the definition of (M) there is an underlying structure A on which
everything in the sequel depends. This structure may be defined differently for each
problem depending on the uncertainty and performance objectives of the problem. This
structure depends on the type of each block, the number of blocks, and their dimensions.
These blocks can be repeated scalar blocks and/or full blocks, where S and F denote the

number of repeated scalar blocks and the number of full blocks, respectively (scalar S:
Iys...oT,; full block F: my,...,mg). Therefore, A is defined as

A ={diag[3,1, ,...,8], ,Ag,;5-..,A, ) §; €C,

As,; €C™™,1<i<S,1< j<F)

s F
and Zr;- + Zm ; = 1 gives consistency among all dimensions. The norm bounded
il jml

subsets of A are defined as
B,= {AeA:6(A) <1}
For M e Cm=, p,(M) is defined

1
min{o(A): A € A, det(I- MA) =0}
unless no Ae A makes I - MA singular, in which case ,(M)=0. Clearly, (M) depends

Hy,(M):=

on the block structure as well as the matrix M. In general, p,(M) can't be calculated

26




exactly, and its value is placed between lower and upper bounds for certain type of A
block structures (scalar blocks or complex uncertainty blocks; see [PD93]). Two special
cases of {1,(M) are:
o if A={0I:0eC); (S=1,F=0,r,=n)

then p,(M)=p(M), (the spectral radius of M)
o fA=C™;(S=0,F=1,m =n)

then p,(M)=0(M)
For all but the two special cases above, i is bounded by

p(M) <p, (M) < o(M)

These bounds by themselves may provide little information on the value of y, because the
gap between p and G can be arbitrarily large. These bounds are refined with
transformations on M that do not affect p1,(M), but do affect p and G. To do this, define

two subsets of Co
Q={QeA: Q'Q=1,}
D= [diag{Dl,...,Ds,ds,,jImi soeesls,pl,, kD; €C¥.D; >0, ds,; €R, d,; > 0]
Notice that for any Ac A, Qe Q, and DeD
Q' eQ, QA€A, AQeA,
G(Qa)=06(aQ)=0(a),
DA=AD
Theorem 3.8 from [PD93] says: For all Qe Q and De D
Ha(MQ) =, (QM) =p, (M) =,(DMD™)
Therefore, the bounds can be tightened to

max Q)< max p(aM) =, (M) < inf 6(DMD™)
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2.3.1 St | 1 Si lar Value in Control Syst

The structured singular value is a framework based on the small gain theorem, in which
the robustness of a system can be quantified [ABSB92]. u-based methods have been
useful for analyzing the performance and robustness properties of linear feedback syste.ns,
where the closed loop system and weighting functions are contained in the M(s) matrix,
and all uncertainty blocks are put into a block diagonal A(s) matrix. M(s) and A(s) are
stabie transfer functions; they are arranged as shown in Figure 2-4. This figure is meant to
represent the loop equations e = Md, d= Ae. Assuming a fixed s=jw, as long as I - MA is
nonsingular, the only solutions e, d to the loop equations are ¢ = d = 0. However, if
I - MA is singular, there are infinitely many solutions to the equations, and the norms llell
and lidll of solutions can be arbitrarily large; therefore, this constant matrix feedback
system is "unstable". Likewise, the term "stable” will describe the situation where the only

solutions are identically zero. In this context, p,(M) provides a measure of the smiallest

structured A that causes instability of the constant matrix feedback loop. The norm of this
destabilizing A is exactly 1/u,(M) [PD93]. This interpretation can then be repeated for all

frequencies.

Figure 2-4 M-A feedback connection




The robustness of a closed loop system can be analyzed by forming the block diagram

as shown in Figure 2-5, where d, and e, are the inputs and outputs related with

uncertainty block A,. The inputs and outputs related to the performance specification are

given by d and e.

Figure 2-5 Robust Performance Diagram

The transfer functions between inputs and outputs are:

e ! M, M,ld
[eA] - [le Mzz][da]
d,=Ase,
This set of equations is called well posed if for any vector d there exist unique vectors ¢,,
¢, and d, satisfying the loop equations. This implies that the inverse of I- M,,A, exists;

otherwise, there is either no solution to the loop equations or there are an infinite number

of solutions. When the inverse exists

e=L(M,A,)d
L(M,A,):=M;; + M,A,(I-MpA, )! M,

29




Figure 2-6 Nominal and Robust Performance specifications Diagram
where L(M,A,) is called a lower linear fractional transformation. In order to analyze the
performance specifications, a fictitious block is created between the input d and the output
e. Figure 2-6 shows the new structure. The set of all allowable blocks is defined as

B,={a,€A: o(A)<1}

In this formulation the matrix M, ,~ L{M,0) may be thought of as the nominal map and
A B, viewed as a norm bounded perturbation from an allowable perturbation class, A,.
The matrices M;,, M,;, and M,, and the formula L(M,-) reflect prior knowledge on how
the unknown perturbation (A,) affects the nominal map, M, ;. In this case L(M,) is related
to L{M,A,) as defined earlier. This type of uncertainty, called linear fractional, is natural
for many control problems, and encompasses many other special cases considered by
researchers in robust control and matrix perturbation theory. The constant matrix problem
to solve is: determine whether the LFT is well posed for all A, in B, and, if so, determine
how "large” L (M,A,) can get for A,e B,. Define a new structure A as

A= {[21 Aoz]: Al € Ap Az EA2}
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Now there are three structures with respect to which p can be computed. They are as
follows: u,(.) is with respect to A,, J,(.) is with respect to A,, and p,(.) is with respect
to A. In view of this, p,(M,,), 1,(Mp,), and p, (M) are all defined. Theorem 4.2 from
[PD93] says: The linear fractional transformation L(M,A,) is well posed for all A€ B, if
and only if W,(M,y)< 1. As the perturbation A, deviates from zero, the matrix L{M,A,)
deviates from M,;. The range of values that yu,(L,(M,A,)) takes on is intimately related to

i, (M), as follows:

H,(My)<1
HaD<1S \maxp, (L, M.4,) <1

This relationship is known as the Main Loop Theorem [PD93].

The p-synthesis problem is described by the attempt to find a controller K(s) that
minimizes an upper bound on the structured singular value,

¢ ‘Elfm l’;lzg sgp&[DM(K)D"]
where M(K) is the closed loop transfer function. One way to solve this problem is called
DK iteration; it calls for alternately minimizing sup 6(DM(K)D™) for cither K or D
while holding the other constant. First the controller synthesis problem is solved using H_
design on the nominal design model (nominal plant plus weighting functions); i.e, D=l.
W-analysis is then performed on the closed loop transfer function M(K), producing values
of the D scaling matrices at each frequency. The resulting frequency response data is fit

with an invertable, stable, minimum phase transfer function which becomes part of the

nominal synthesis structure. With D fixed, the controller synthesis problem is again solved
by performing an H_, design on the augmented system. The D-K iterations are continued
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until a satisfactory controller is found or a minimum is reached. The resulting controller
order is the order of the design plant and weighting matrices, as well as the order of the D-
scale transfer function fits [ABSB92]. MatLab"" provides a ji-toolbox that will be used in
this thesis which performs this D-K iteration.

2.4 Nominal Perf Robust Stability and Robust
Performance tests

This section presents the tests for Nominal Performance (NP), Robust Stability (RS),
and Robust Performance (RP) for the system of Figure 2-6. Depending on the type of
perturbation (structured or unstructured), the infinity norm test is conservative and
p-analysis is required as shown in Table 2-2.

Table 2-2 Test for NP, RS, and RP From [Doy85]

Perturbation Stability Test Performance Test

A=) No C, poles IMyll.<1 (NP)
o(A)<1 Ml <1 (RS) HM)<1 (RP)
Ac BA WMy, <1 (RS) KM)<1 (RP)

Table 2-2 summarizes the objectives of H,, optimization and p- synthesis. Notice that

this table does not mention any test using the two norm, and the objective in this table is
only to minimize Il . ll_ or u(.). This means that performance based on white Gaussian

noise inputs is not accounted for. This is the true objective of the mixed Hy/H,, control

design problem: to address the tests for |l . il and provide a low Ii. ll,, as will be seen in

the next chapters.
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One way to measure the robustness of a system is to calculate the Vector Gain Margin
(VGM) and Vector Phase Margin (VPM) at the input and output of the plant (MIMO).
The VGM and VPM tell us how much the system can tolerate a change in gain and phase
before it goes unstable. The VGM and VPM using the complementary sensitivity function
is measured by

1
o(T(jw))

where T can be at the input if we are looking at the input margins or at the output of the

r(m)=

plant if we are looking at the output margins. Whichever point we are looking at, the
general formulas are
VGM =[1-r 147, ] where 1, = inf r(®)
®E
and
VPM; =[~0,+6] where 6 = 2sin"(L'“2"=-)
The VGM and VPM using the sensitivity function are defined through

1
o(S( j))
where S can be at the input if we are looking at the input margins or at the output of the

p(®)=

plant if we are looking at the output margins. Whichever point we are looking at, the
general furinulas are

1 1
1+ Poin 1— P

VGMg =[ ] where p... = ini; r(m)
[ ]
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VPM; =[-6,+8)] where 8 = 2sin "(—p';-i‘-)

Since VGM;, VGMg, VPM; , and VPM; are all important, this thesis will compute all of
them in order to evaluate the level of robustness at the input and output of the plant. For
more details see [Dai90].
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This section presents the mixed H,/H,, optimization developed by [Rid91]. Mixed
H,/H,, optimization is a nonconsevative tool that trades between H, and H_ objectives.
The goal of the mixed problem is to find a stabilizing compensator K(s) that achieves

. inf HTNIL , subjectto I T, <y

where T,,, and T, can be defined to be independent of each other. Figure 3-1 shows the

block diagram.
e
w z
u y
Figure 3-1 Mixed H,/H_ Design Diagram
The state space matrices are:
x = Ax + Bd + Bw + Bu
e = Cx + Dd + D,w + D_u
z = Cx + Dd + D,w + D,u
y = Cx + Dd + D,w + Dju
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.1 Nonsingular H... Constraint
The following assumptions are made on the state space matrices:
() Dy=0; (i) D,=0 ;(iii)D,=0
(iv) (A, B,) stabilizable and (C,, A) detectable
(vy D',D, fullrank; D,DT, full rank
(vi) D7D, full rank ; D,, DT, , full rank

(A - jol B.

M1 6 Da

] has full column rank for all ®

(viid)

Cy D , w

A - joI B
(ix) C‘: Dm‘j has full column rank for all ®

) (A - joI Bdwhasfull rank for all
X ow or @
G Dy

he -l

These conditions are the union of the H, assumptions and the H_, assumptions, except that

the controller, K(s), for the mixed problem must be strictly proper in order to guarantee a
finite two-norm for T,,. The state space matrices for K(s) are:

Xe=AX +B.y
u=Cx, ;D.,=0

and the closed-loop matrices are:
= Ax + Bd + Bw

e = ch + Ddd + D”W
= Cx + Dd + D_w
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D, =0and Dy=0
T and T, can be written as
T, =C,(sl - A)"Bd ; T, =C/(sl-A)"'B,
The following definitions will be made:
1=, inf".. rrdu..

inf [T,

Ky = the unique K(s) that makes i T, I, = o,

Y = I Tyl when K(s) =K,

Kz =2 K(s) that solves the mixed H,/H_, problem for some y

Y =UTgl.whenK(s)=K_,

o =NT, I whenK(s) =K,
Theorem 4.1.1 from [Rid91] says:
Theorem 3.1 : Let (A, B,, C,) be given and assume there exists a Q_ = QF >0 satisfying

AQ_ +0 A" + 'y‘zQ_CeTCeQ__ +B,B] =0 (**)
The following are equivalent:
i) (A,B,) is stabilizable

a,

ii) A is stable
Moreover, if i) - ii) hold, the following are true:
ii) the transfer function T, satisfies
I Tl sv
iv) the two norm of the transfer function T,,, is given by
| T | =t1C.0,CT1=ulQ,CTC,]
where O, =07 20 is the solution to the Lyapunov equation
AQ,+Q,A"+B BT =0
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v) all real symmetric solutions to (**) are positive semidefinite
vi) there exists a unique minimal solution to (**) in the class of real symmetric solutions
vii) O, is the minimal solution to (**) iff
Re[A,(A+Y7Q.CIC)I<0 Vi
viii) | T, | <¥ iff A+YyQ_C[C, is stable, where Q,, is the minimal solution to

**
Proof: See Theorem 4.1.1, [Rid91].
Using Theorem 3.1, the mixed problem can be restated as:
Find a strictly proper controller K(s) that minimizes the index
J(A..B,,C)=tr(Q,C/C,)
where Q, is the real, symmetric, positive semidefinite solution to
AQ, + Q,AT+B_BT =0
and such that
AQ_+0 AT +y?Q CICQ_+B;Bf =0
has a real symmetric positive semidefinite solution. To solve this minimization problem
with two equality constraints, a Lagrange multiplier approach is used:

L=u[Q,C]C,)+tr{[AQ, + Q,A” + B,BI1X)
+tr{[AQ. +0.AT +77°Q.C[CQ. + B,B; JY}
where X and Y are the Lagrange multiplier matrices. The necessary conditions for a
minimum are given by [Rid91]. Conclusions from these conditions are:

(1) Nc¢ mixed solution exists for y <Y

(ii) The mixed solution comes from seven first order necessary conditions, which are
highly coupled and nonlinear.

(1ii) For Y<¥< v, neutrally stabilizing ARE solutions are required, and y* = 7.
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(iv) For Y 2 ¥, K, is the unique mixed solution.

This section presents the mixed H,/H,_ optimization problem with a singular H_
constraint, developed by [WR94a].

3.2.1 General Formulation

Here, mixed H,/H_, optimization will be extended to handle a (possibly non-strictly
proper) singular H_, constraint. Assume the plant P contains the H, and the H_, designs.
The individual H, and H_ designs can be represented as two independent systems

A,|B, B, A.|B, B,
P2 = z Dzw Dm Pc- = Ce Ded Deu (3-1)
Cy, Dyw Dyu Cy- Dyd Dyu

where

B =[ Bplm ‘B = BP"N
“ | By, sesign - By gesign

¢, = [Cpl-n Chyie] 3 C. = [Com  Cr i
The objective for the mixed case is to find a stabilizing compensator K(s) that achieves
... [T.. |, . subject to [T, <¥ (3-2)
where
T,=C(sI-A)'B,+D, ; T,=CJ(sI-A)'B,+D, (3-3)
are the closed loop transfer functions from w to z and d to e, respectively. The following

assumptions are made in the state space matrices:




@) Dn=0 ;()D,=0
(iii) (A,,Bu’)stabilizable and (C,’,Az) detectable
(iv) (A_,B, ) stabilizable and (C, ,A_) detectable

(v) DT,,D,, full rank ; D, DT full rank

_[A,-jol B,
m{ C D

] has full column rank for all ®

z -

_JA,-jol B,
(vii) C D

] has full row rank for all ®
Ys yw

Notice that D4 is not restricted to zero and no assumptions are made as to the ranks of
D,, and D,; this means that a singular H_ design can be allowed. For the mixed problem,

K(s) must be strictly proper in order to guarantee a finite two-norm for T,,. The state

space matrices for K(s) are:
xe=AX_ +B.u
(3-9)
u=Cx, ;D.,=0
and the closed-loop matrices are:
x2 = Ax, + B,w 3-5)
z =Cx
x-.=Ax_+Bd (3-6)
e =Cx_+D,d
where
A [ A, BuCc] A [ A, B, Cc] 37
= * ; = N (3-
BC, A, BC, A
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I P
““|BD,.|° "*7|BD, G8
c.=[Cc, D,C]: (., =[C, D.C] (3-9)
D,=D, (3-10)

Using the definitions from Section 3.1, the mixed H,/H_ problem is now to find a

controller K(s) such that:
i. A; and A_ are stable

ii. [T, syfor y2y

iii. i T, I, is minimized.
Now Theorem 3.1 can be restated as follows:
Theorem 3.2: Let (A, B, C) be given and assume there exists a solution
Q. =07 20 satisfying

AQ.+Q.AT+(Q.C] +BD)RQ.C; +BDy) +B,Bj =0 (311)

where R =(y2I — DD ) > 0. Then, the following are equivalent:

i) (A.,B,) is stabilizable

ii) A, is stable.
Moreover, if i) - ii) hold, the following are true:

i) [T <y

iv) the two norm of the transfer function T,,, is given by

| T.. | =tiC,0,cT1=tiQ,C]C,)
where @, =0, 2 0 is the solution to the Lyapunov equation
AQ, + QzA;r + B‘,B: =0
v) all real symmetric solutions to (3-11) are positive semidefinite
vi) there exists a unique minimal solution to (3-11) in the class of real symmetric
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solutions
vii) Q.. is the minimal solution to (3-11) iff

Re[x J(A.+B,DIR'C,+0.CIR'C)]<0
viil) [T, < iff (A + B,DLR'C, +Q_CTR'C,) is stable, where 0_ s the

minimal solution to (3-11)
Proof: See Theorem 3 [WR94a).
Us.ag Theorem 3.2, the mixed case can be restated as:

Find a strictly proper controller K(s) that minimizes the index

J(A,,B,,C.)=tr(Q,C/C,) (3-12)
where Q, is the real, symmetric, positive semidefinite solution to
AQ,+Q,A" +B_BT =0 (3-13)

and such that
AQ +0 Al +(QCT+B,DIR(Q.CT+B D) +BB =0 (3-14)

(with R>0) has a real symmetric positive semidefinite solution. The Lagrangian for this
problem becomes

L=#]Q,C]C,]+r{(A,Q, + Q,A] + B BIIX)
+Hr{AQ. +Q. A +(Q.C. +B,DL)R'(Q.C. +B,D,)" + B,B/1Y)
3-15)
where X and Y are symmetric Lagrange multiplier matrices. The resulting first order
necessary conditions have not been solved analytically but do provide some insight into

the nature of the solution. In particular, the condition

OL _(A.+BDIR'C,+Q.CIR'C)'Y
aQ.. (3-16)

+Y(A.+B,DIR'C,+Q.CIR'C,)=0
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implies that either Y =0 or (A_ + B,,D:, R"Ce + Q,,,,C;r R“Ce) is neutrally stable. The
former condition means the solution is off the boundary of the H_ constraint, and the laver

solution implies the solution lies on the boundary of the H,_ constraint and Q_ is the

neutrally stabilizing solution of the Riccati equation. The necessary conditions for a
minimum are given by [WR94a]. However, it is easy to show that

(i) No mixed solution exists for Yy <Y
(ii) For Y<Y< ’?, neutrally stabilizing ARE solutions are required, and ¥* = y.

(i) For Y 2 ¥, Ky, =Ky

Walker and Ridgely [WR94a)] developed a numerical method for synthesizing a family
of general mixed Hy/H,, controllers which can handle a proper, singular H_ constraint. In

the single constraint mixed problem, for Y <7y <7, the solution to the mixed problem

must lie on the boundary of the constraint. Further, for Y <Y <Y, & is a monotonically
decreasing function of y. Finally, for Y <Y, no solution exists. This is shown graphically

in Figure 3-2. The numerical method for solving the mixed problem was motivated by

Figure 3-2. Since the optimal H, controller is relatively easy to calculate and it provides a
point on the desired curve, it was selected as the initial controller. The optimal H,/ H_,

curve is generated by starting at the optimal H, controller and stepping along the o versus

¥ curve by reducing y from '? to Y by increments.




< g

i Tedllm

Figure 3-2 H,/H_Boundary plot

Applying the results from the previous section, it is seen that the optimal mixed Hy/H,,
controller for a fixed y will have the property that Il T4 Il =+. This suggested a penalty
function approach to the problem. Consider the following performance index

2 2
7y =+ MiTal. -v) @17
where A is a penalty on the error between the desired Y and the infinity-norm of the
transfer function T,;. Define the vector X as
T
X=[afl acT_ b; ... b:_ ¢l ... cf_] (3-18)
where @, , b, and ¢, are the columns of A, B, and C,, respectively. The first order

necessary conditions for J, to be a minimum are

—X =0 for i=1,...,(nxn+nxp+nxm) (3-19)
ox;
- 3||Tm||; + aMﬂT,, IL -7 (3-20)
ox. ax,
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where x; are the elements of X [WR94a]. The first term on the right hand side of (3-20)
can be solved analytically using the results of the previous section. The second term,

however, represents complex matrix relations and is evaluated analytically using the
sensitivity of the H_ norm developed by [GL93]. Assuming the maximum singular value

of T,, has a single peak for e R+, then the derivative of the infinity-norm can be written
as
drl,(®
a" al. —9([ ( ( °)) vl] (3-21)
J dx Xnom
where u; and v, are the singular vectors associated with Ty, @, is the frequency where the

maximum singular value reaches its peak value, X . is the nominal X vector, and Re
denotes the real part. The derivative of the transfer function can be determined from

s () =7dd;(c,(jm—A-)"Bd +D,,)| (3-22)

cix Xnom Xnom

The second term on the right hand side of equation 3-20 can now be written as

POLA] g L o

J

A DFP approach similar to the algorithm described in [RMV92] is used to minimize the
performance index. The basic algorithm is as follows:

1. Compute the optimal H, controller and set up the initial X vector

Compute Y and set Y =Y

Decrement Y

Perform DFP search over X vector space for minimum J,

LA I o

Store resulting controller and repeat from step 3.
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Initially, the algorithm can be run with loose tolerances on the DFP search to define the
desired o versus 7y curve, then the convergence tolerances can be tightened and a
particular point can be refined to desired accuracy. In addition, this algorithm can be
applied from any initial condition, not just the optimal H, controller, by substituting the
appropriate initial X vector and y. Finally, the X vector was defined with a fully populated
state space form; by using canonical forms, the number of variables can be reduced.
However, there are drawbacks to using some canonical forms such as the controllability
canonical form due to numerical instability. The modal canonical form has been used
successfully to reduce the parameter space. The numerical solution for the mixed problem
with a singular H, constraint can be extended to allow multiple H  constraints as will be

shown in the next chapter.
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H.. Constraints

Two major goals in a control design are to design controllers which yield Nominal

Performance (NP) and Robust Stability (RS). These can be represented as
IW,Sli,<1 for Nominal Performance (NP) (tracking)

Il W,Til_ <1 for Robust Stability (RS)
(Multiplicative perturbation (1+ AW,)G; Il A ll < 1)
Using this perturbation model and the NP condition, [DFT92] defines the Robust

Performance (RP) condition for a SISO system as

IW,TI_<1 and WiS
1 -|W:T|

I IW,St+IW,THI_ <1

<1

which is also given by

This formulation is often solved with a mixed-sensitivity approach, which penalizes both
Sensitivity (S) and Complementary Sensitivity (T), as

T, = WS
“*~IW,T

This mixed sensitivity cost function is required to satisfy

ITal. <1/42
in order to have RP. In the author's opinion, this method is conservative, because the
designer has no control over the trade-off between RS and NP. This chapter presents a
nonconservative method. Recall the conditions for NP and RS at the start of this chapter.
Both H_ conditions are solved independently using mixed H,/H, optimization with
multiple H_ constraints. For a MIMO system, the objective is to achieve RS to certain




r———-———_——t

perturbations and NP at possibly a different location in the loop. Therefore, this new
technique will permit the exploration of these different objectives independently.

.1 Devel  of Multiole Constraint

This section presents the mixed H,/H_ optimization problem with multiple H_

constraints. Mixed Hy/H_ optimization is a nonconsevative tool that trades between H,
optimization and multiple H_, constraints. Consider the system in Figure 4-1, where d,,
i=1,...,n_, are of bounded energy ( Il d; I, <1) and w is of bounded spectrum. The transfer
function P is the underlying plant with all weights associated with the problem absorbed.
It is assumed, in general, that there is no relationship between ¢, i=1,...,n_, and z or d; and
w. The input w is unit intensity zero-mean, white-Gaussian noise and the inputs d, are of
bounded energy. In general, the state space of P is formed by wrapping the weights from
an H, problem from w to z and the weights of the H,_, problems from d, to e; around the

basic system resulting in the augmented plant

dl e
d, “,,
ww z

Figure 4-1 Mixed H,/H_ with Multiple H_ Constraints Design Diagram
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Bd, .o B&i Bw B.
Ce, De,d, aee De,d._ De,w De,u
P= _Z ~: . } . ~! ~: @4-1)
Ce._ De,_d, soe De._d._ De..w De._n
éz bﬂl ees Dd_ bm bzn
L Cy | Dw, .. Duy_ Dy Dn )

The plant P contains the H, design and the H_ designs. The individual H, and H_;

problems can be represented as different systems, where

A, | B, B, A.|B, B,
P, = C'] D. D.| P, =|C, Dy D,l|i=l.n. @2
Cy, Dyw Dyu CY., DY"‘ DY\'

where

B B
Bu, =[ Plant ] ;Bu_. :[ Plat ]
Bﬂzdﬂitn Bﬂqdﬁiﬂ

€, =[Com Ciaw] 3 €y, =[Com Cit,tn]
The objective for the mixed problem is to find a stabilizing compensator K(s) that achieves
< inf ﬂ'l‘,,,,ﬂz , subject to ||‘l“,,,‘|._s~yi ; i=l...,n 4-3)
where

T, =C,(sI-A,)'B,+D_,

1 (4-4)
Td‘ = Cc| (SI - Aq) Bd' + Ddl

are the closed loop transfer functions from w to z and d; to ¢;, respectively.
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The following assumptions are made in the state space matrices:

() D,=0 ;(i)D,=0
(iii) (A,,B,,) swmbilizable and (C, ,A,) detectable

(iv) (A.i,B,_‘) stabilizable and (C,_‘ »A_;) detectable for all i

(v) DT,D,, full rank ; D, DT, full rank

(A, -jol B,
C D

(viil) ] has full column rank for all ®

A, - jol B,
C D

Y2 yw

(ix) ] has full row rank for all ®

Notice that the D,, are not restricted to zero and no assumptions are made as to the

ranks of D,, and D, . This means that singular H_, constraints can be allowed. The

controller K(s), for the mixed problem, must be strictly proper in order to guarantec a

finite two-norm for T,,.. The state space matrices for K(s) are:

ic-':Acx + ch
u=Cx ;D =0

and the closed-loop matrices are:

X2 = Ax, +Bw
z =Cx,

X =A%, +B,d,

@-5)
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where

g =| B ] 8, =| D
*“[Bp.]* “7|BD, *-8)
¢,=[c, b,c]: ¢ =[c, D.C] 4-9)
D, =D,, (4-10)
The following new definitions are made:
.= KE&ITWL
¥,= T]. wea K@) = K,
r={y,..7.}

K., = a solution to the HyH_, problem for some set I'

vi =|T. | whea K(8)= K,

o =[T, } when K(s)= K,

The mixed Hy/H_, problem is now to find a controller K(s) such that:
i. A; and A_;are stable for all i
ii.I’l",,,‘LS'yi for some given set of ‘{i>‘xi

id. Il T,,, I, is minimized.
Now Theorem 3.2 can be extended to multiple H,, constraints as follows:

Iheorem 4.1: Let (A, B, C.) be given and assume there exists a solution
Q.; = 0% 20 satisfying

AQ. +Q A%+ (Q,iC}: +B, D}, )R (Q,ic;f +B, Dy )" + Bd‘B: =0 (411
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for all i, where R, = (Y} - D, D:,‘ )> 0. Then, for each i the following are equivalent:

) (A.,B, ) is subilizable
ii) A, is stable.

Moreover, if i) - ii) hold, the following are true:

i) T, | <v; forani
iv) the two norm of the transfer function T, is given by
2
| T |} =2lC.0,C]1=11Q,CC,]
where Q, = Q7 20 is the solution to the Lyapunov equation
AQ, + QzA;r + BwB: =0

v) all real symmetric solutions to (4-11) are positive semidefinite for all i
vi) there exists a unique minimal solution to (4-11) in the class of real symmetric

solutions for each i
vii) Q,,, are the minimal solutions to (4-11) iff

Re[A,(A, + B, DL, R'C, +Q.CTR'C, )| <Ofor al

it [T, | <, iff (A +B, DL R'C, +Q_CIR;'C, ) is stable, where Q. are

the minimal solutions to (4-11) for all i
Proof: See Theorem 1, [UWR94].
Using Theorem 4.1, the mixed case can be restated as:
Find a strictly proper controller K(s) that minimizes the index

J(A_,B,,C)=tu(Q,C'C,) (4-12)
where Q, is the real, symmetric, positive semidefinite solution to
AQ,+Q,A" +B_BI =0 (4-13)

and such that
AQ..+Q.A% +(Q.CI +B,D; )R (Q.C, +B,D.) +B,B =0 (4-19)
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has a real symmetric positive semidefinite solution for all i. To solve this minimization
problem with many equality constraints, a Lagrange multiplier approach is used. The
Lagrangian is

L=0{[Q,C]C,]+ (4,0, + QA +B,B]1X)

+ 340, + QA% +(Q.CT + B, DL)RMQ.CT +B,Dy, )" + B, Bl IE)

i=l
(4-15)
where X and Y, are symmetric Lagrange multiplier matrices. The resulting first order
necessary conditions have not been solved analytically but do provide some insight into
the nature of the solution. In particular, the condition
dL

——=(A,+B,DLR'C, +QCIR'C,)'Y,
aQ-i 1 % ' 4-16)

+Y,(A,+B,D; R'C_+QCR'C,)=0

implies that either ¥, =0 or (A, + B, D3 R'C, +Q._.CIR'C, ) is neutrally stable.
The former condition means the solution is off the boundary of the corresponding H,,

constraint, and the latter solution implies the solution lies on the boundary of the
corresponding H_ constraint and @, is the neutrally stabilizing solution for that H_, Riccati

equation. From this, it is not hard to show that:
(i) no solution to the mixed problem exists if Y, <7y foranyi
-1
(ii) the solution to the mixed problem is the H, optimal compensator, K, if ¥; = ¥

foralli
(iii) if neither (i) nor (ii), the solution to the mixed problem is on at least one of the H_

constraint boundaries, and a neutrally stabilizing ARE solution is required.
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Condition (iii), which holds for any "non-trivial" mixed problem, poses severe numerical
problems, as addressed in the next section.

Two approaches have been developed to compute controllers which solve the mixed
Hy/H_ problem for multiple constraints. The first method, called the Grid Method,

computes the set of controllers which satisfy the H_ constraints in the region of interest.

This is accomplished by holding all but one constraint constant and varying the remaining

constraint. The second method, called the Direct Method, attempts to simultaneously
reduce all H_ constraints. For the remainder of the discussion it will be assumed that there

are only two H,, constraints. The results can be extended as necessary to handle larger
constraint sets. The methods are based on the performance index

Jy = "Tm I; +4, (Irred,lL - 71)2 + A'2("Tea, "_ - Yz)z (4-24)

where A, are penalties on the error between the desired ¥; and the infinity-norm of the
respective transfer function. Note that this requires gvery H_ constraint to be achieved
with equality, which is not necessarily the optimal solution. In order to avoid this, the
constraints should actually be treated as inequality constraints, which requires a
constrained optimization method. This has been accomplished using Sequential Quadratic
Programming; see [Wal94). In this thesis, the constraints will be treated as equality
constraints, however. Since a large portion of the "active” region will be mapped out, this
poses only a small restriction. Furthermore, as it has been shown that the optimal order
problem has all H_ constraints satisfied at equality [WR94c], the controllers found here are
the closest fixed order controllers in a two-norm sense to the optimal (free order)

controllers. The resulting numerical optimization is basically that of Section 3.2.2, except
with additional similar H_ terms.
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4.2.1 Grid Method

The grid method consists of solving a series of mixed problems by holding one H_
constraint constant and reducing the second. Once the optimal curve has been
determined, the first constraint is decremented and the process is repeated. The initial

conditions for the method are determined by solving the two single constraint mixed
H,/H_, problems to define the region of interest. The process results in a grid defined by o

versus ¥, versus ¥,. The resulting grid is shown in Figure 4-2.

1T,

" %gg_{{lllll_{ﬂ'l_l!g
YA TFFLLLT -y
Q’g'fi',zé,‘zg"z' X

llllllll"ll‘i

(@7,

=]

.
.
.
.
’
T ’
© ’
,
*
.

Figure 4-2 Grid Method




4.2.2 Direct Method

The introduction to this chapter suggested this method. Since the design objectives are
limited to a specific region, one approach to synthesizing a controller would be to reduce
both H_ constraints to the desired level without computing the entire grid mentioned in the
previous approach. The direct method does this by concurrently reducing the constraints.
The process used in this approach is to begin at the optimal H, controller and
simultaneously reduce Y, and ¥, until the controller is found which meets both objectives.
This results in a controller of fixed order which meets both the H_ constraints and has the

smallest two-norm for the H, transfer function. Figure 4-3 shows this method. Notice
that by proper selection of the step size of the H_ constraints, the designer can select a

desired direction. Also note the "hooks” at the end of each curve. These are the result of

NT i
zw 2

Figure 4-3 Direct Method
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Figure 4-4 Direct Method 3D curve and 2D projections
the trade off between the H_ constraints encountered as 7y; approaches 7Y . Figure 4-3

shows that the resulting curve is a 3D curve ("Tm "2 vs. IIT“’n".. Vs. "sz IL ). Therefore,
for any 3D curve there are three projections. These 2D curves are the “Tzw “2 Vs. “le |L

curve, the "Tm "2 vs. "sz"“ curve, and the "sz |L Vs. "le IL curve. This is shown in

Figure 4-4, and the curves are denoted as curve a, b and c, respectively.

Assume for this section that numerical problems in computing a solution do not exist.
There are boundaries in the mixed problem where feasible solutions do not exist. These
boundaries are:

(i) No controller results in o<or,

(ii) No mixed solution exists for Y; <?Y for either i=1 or 2
-1
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Mixed Hy/H,, design is a tool that trades among the H, design and the different H_,

designs. The trade-offs taken two at a time are examined next.

4.3.1 Trade off between H, design and the H..; design

{Rid91] showed that o’ is a monotonically decreasing function of y for a single
constraint mixed problem. Therefore, * is now a monotonically decreasing function of 7.
If the optimal & versus ¥, curve is computed, then unfeasible solutions lie below this curve,
and any solution above this curve is feasible but suboptimal. Graphically, this is shown in
Figure 4-6. The numerical method computes a suboptimal curve that is close to the
optimal curve. This is due to the requirement of finding a mixed solution numerically.

Feasible Solutions

Figure 4-6 Trade-off among H,/H_; (feasible solutions)
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First consider that the mixed problem has only ||le||_ as a constraint (a single
constraint problem). In this case the mixed problem is just a mixed Hy/H,_,, design. For

each point on HyH_, curve, "sz" can be computed. Next, consider that the mixed
problem has only "de II as a constraint (a single constraint problem). In this case, the

mixed problem is just a mixed Hy/H_, design. For each point on H,/H_, curve, "le "_

can be computed. The resulting curves from the two different designs are shown in Figure
4-7. Define, the HyH,_, curve as the optimal curve for mixed Hy/H,,, design, and the

Hy/H,, curve as the optimal curve for the mixed Hy/H,, design. These two curves define
the boundary between the region of sub-optimal solutions and the region of "optimal”

solutions as shown in Figure 4-7. From a control point of view, we are interested in the

f 1 1T, N

Figure 4-7 Design region in the "le "_ /"Td,l__ plane
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region on or below the optimal mixed Hy/H,; design curves; that is, the region of optimal
solutions. The region above these curves is not of interest, as shown in [WR94c]. Here,
the optimal solution "snaps back" to the optimal single constraint curve, and thus is
suboptimal.

Consider now that the mixed problem has both H_; designs as constraints. In this case,
the mixed problem is a mixed Hy/H..,/H,,, design. There exists a boundary close to the Y

values where, below this boundary, no feasible solutions exist. This is shown graphically
in Figure 4-7. This boundary is difficult to find analytically or numerically. This was the
region iii) alluded to at the beginning of section 4.3.

Joining the planes and boundaries, a region of feasible solutions can be drawn, as
shown in Figure 4-8. Regions of suboptimal solutions are also plotted. Figure 4-9 shows
a surface for the mixed H/H_,,/H,, design. On this surface we are interested in the solid
checkered region that corresponds to the optimal region, especially at the "knee" where
the ¥'s are close to the optimal values. Sub-optimal regions (shaded checkered) are also

shown in Figure 4-9. These are not optimal mixed solutions, since their values of ¥, are
greater than those for the optimal curves corresponding to the mixed Hy/H_; design and

the mixed H,/H_, design, respectively. However, these suboptimal regions help to

visually clarify the problem.

The next chapter will present a SISO example as an introduction to this new synthesis
method. It will show the boundaries that were discussed in this chapter.
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Figure 4-8 H,/H_, Projection of feasible solution
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2.1__Problem Set-Up

This chapter illustrates mixed Hy/H_, design with single and multiple H_ constraints.

The numerical method is that developed by [WR94a}, which permits generalization of the
H_, constraint, (e, D,,D,, and /or D,D; not required to be full rank and D, # 0
allowed). For this SISO example, the objective is to show some of the boundaries and
methods discussed in the last two chapters. An acceleration command following design
for the F-16 is desired. The F-16 plant consists of a short period approximation {c, q), a
time delay (J) [first order Padé approximation], and a first order actuator servo. The state

space matrices are:
r -20 0 0 0
A= -0.188 -1.491 0.996 0 5.1
“|-19.04 9.753 -0.096 © e
| —4.367 35.264 -0.334 —40
20"
0
B, = 0 , C‘ =[4.367 -35.264 0.334 80] ; D, =[0] (5-2)
-OJ
The poles and zeros of the plant are:

poles A=[ -40.0000; -4.3535; 1.9025; -20.0000]
zeros = [ -1.2564 +11.9340i; -1.2564 -11.9340i; 40.0000]
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Three designs are produced: an H, desigr. » mixed H,/H_, design with a single constraint,
and a mixed Hy/H_, design with multiple H_, constraints.

2.2 H Design

The H, design is set up as a basic LQG problem, as shown in Figure 5-1. In the H,
design, two exogenous inputs w, and w, enter thc plant; they are zero-mean white
Gaussian noise with unit intensity. It is desired to minimize the energy or two norm of the
controlled outputs z, and z,. The weights related with w, ,w, , z, and z, are:
Wind disturbance weight: The wind disturbance constitutes an exogenous input (w;). It
passes through a coloring filter W, and a distribution matrix ‘¥, where

- 0
0.0187 | _ -1.491
s+ 6.7 ~1 9.753
35.265

wd (s)=

Measurement nois¢: The measurement noise is represented by an exogenous input (w,).
w, is added to the feedback signal. The weight for w, is:
W, =0.025

Control Usage: The weight for control usage z, is the scalar

W, =10
Nomnal acceleration output weight: It represents the weight on the normal acceleration
(N,); this weight is chosen to be the scalar

W,=1.0




Therefore, the system P, is

A2 l Bw Bu,
2 = Cz D ™ D
C, |D

Y2

(5-3)

o

yw

and the corresponding state space matrices are

Figure 5-1 H, Block diagram (F-16)




The basic conditions that are checked here include D, =0, D, =0, D, Dy, full rank,
and D] D_ full rank; these are met by the design with a non-zero W, and W,. Therefore,

the design diagram is properly set up. Table 5-1 shows the results.
Table 5-1 H, Results

a, = 0.2530
VGM (dB) VPM (deg) |

[-5.8609, 28.7686) 157.6035
T [-6.4183, 3.6504] 130.2811

Although the objective was to design a pure regulator, from Table 5-1 we see that the H,
controller provides good margins. The VGM and VPM are based on the magnitude plots
of sensitivity and complementary sensitivity as explained in Chapter 2, Section 2.5. Figure
5-2 shows the magnitude plot of sensitivity and complementary sensitivity.

80—t e
103 102 107 1° 10 1 10
Frequency (rad/sec)

Figure 5-2 Magnitude of Sensitivity and Complementary Sensitivity (dB)
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The magnitude of the sensitivity shows that the H, controller attenuates the wind
disturbance. The magnitude of complementary sensitivity represents the measurement
noise feedthrough to the plant output, the inverse of the allowable multiplicative
uncertainty, and the closed-loop tracking transfer function. Evidently this design does not
provide good tracking since the gain is above 0 dB at low frequencies and rolls off too
carly.

Two mixed HyH,, designs with single H_ constraints are solved. The first design
(HyH,,) represents a sensitivity constraint (T, =W.S), and the second (HyH.))
represents a complementary sensitivity constraint (sz =W,T). Two objectives are set up:
the first objective is to compute the infinity norm of T, with the controller obtained
from the mixed H,/H,,, design, and the second objective is to compute the infinity norm
of T, with the controller obtained from the mixed H,/H.,, design.

itivi i ign. (Hz/He.p)

The block diagram for the sensitivity constraint design is shown in Figure 5-3.

e
1
d
o F-16 plant
1 : y
u

Figure 5-3 Mixed H,/H_, Block Diagram (Sensitivity Constraint)




The transfer function between the exogenous output €, and the exogenous input d, is
T, > and is given by

le =W.S (5'5)

The weight for sensitivity is a low pass filter W,, given by

100
s + 0.1

W,(s)=
The objective for the mixed HyH_, design is
nf T, |, subjecto |T,, | <7, (5-6)

The system P, is

A,|B, B
P,=|C.|D,
C, |D

Yar

-7

d €

yd, DY“

with the state space matrices given by

oy Sl e
c,=[0 ¢} D, =[DJ D,,=[D] (5-8)
C, =[C:. 0o} D, =[0; D,=[0]

Since W, is a strictly proper transfer function, D, = 0, and therefore DZ‘uDe“l and

D, D;,r,il are not full rank matrices. Thus, we have a mixed H,/H,, optimization problem

with a singular H_ constraint. The performance index for the numerical solution is

I, = "Tw ": + l1(5'1;.1, IL - 71)2 (5-9)
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Figure 5-4 "T, "2 vs. "le IL curve

Starting from the optimal H, controller and stepping along the a vs. , curve by reducing

from ¥, to Y, by increments produces Figure 5-4.

5.3.2 Complementary Sensitivity Constraint (H,/H..»)

Ted, is the transfer function between the exogenous output e, and the exogenous input

d, as shown in Figure 5-5. Here
Ted: =W.T (5-10)

with the weight for complementary sensitivity denoted by W,, and given by

1000*(s + 0.01)

W) === 1000)




W
t
—I—ig——J F-16 plant
u

Figure 5-5 Mixed H,/H_, Block Diagram (Complementary Sensitivity Constraint)

The objective for the Hy/H,, , design is

K,&fm "Tzw "2 subject to "Ted, IL <Y, (5-11)
The system P_, is
A, | B, B,
P.=|C, |D.4 D., (5-12)
CY.: Dydz Dyu

where the state space matrices are given by

Ag O Bg BS
Am2 = : B 4 = s Bu =

0 A 0 = | B
c.=[0 ¢} D, =[0} D,,=[D] (5-13)
C,.=[C 0} D, =[0} D,=[0]
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Figure 5-6 uT,, "2 vs. "Ted,".. curve

Note that D),,,z D;d, is zero, which implies we have a mixed H,/H,, optimization problem

with a singular H_ constraint. The performance index for the numerical solution is
2 2
1, =Tl + XZ(“T«!, ".. - 72) (5-14)
Starting from the optimal H, controller and stepping along the o vs. 7y, curve by reducing
from Y, to Y, by increments produces Figure 5-6. The "ripples” are due to numerical
inaccuracies, and due to the monotonic property, could be "smoothed”.
Using the controllers K(s) from the Hy/H,,, design, the infinity norm of sz can be

computed, which represents the Complementary Sensitivity constraint. Figure 5-7 shows
the trade off between T, (weighted Complementary Sensitivity constraint) and Ty,

(weighted Sensitivity constraint). Figure 5-7 shows that although ||le " is being




sd-\\ G7) |
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Figure 5-7 "sz "_ vs. “T.a, lL curve (H,/H,_, design)
minimized, there isn't a big change in “sz | unit [T | reaches the knee in the o vs. v,
curve. Now with the controllers K(s) from the H,/H,,, design, the infinity norm of Td| is

computed, which represents the Sensitivity constraint. Figure 5-8 shows the trade off
between Td’ (weighted Complementary Sensitivity constraint) and Ted, (weighted

Sensitivity constraint). Figure 5-8 shows a slightly different type of behavior than Figure
5-7; in Figure 5-8 the trade-off in "T,,’ " occurs almost immediately. A graphical

interpretation showing the relationship between the two norm and the infinity norms is
shown in Figure 5-9. The two 3D curves (solid lines) are the curve for the Hy/H,,

design and the curve for the H,/H_; design. The dotted lines represent the projection of

the 3D curve for the HyH,,; design on the "szIL vs. "le IL, "Tm"2 vs. "le IL, and

“T,, IL vs. "T,,’IL planes and the dashed lines represent the projection of the 3D curve

for the Hy/H_; design on the same set of planes.
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These two 3D curves represent the boundaries of the mixed Hy/H,,, and HyH_, design as
mentioned in Chapter 4, Section 4-3. Unfortunately, the mixed H,/H_, with a single H_
constraint problem does not permit both H_, constraints to be made small at the same time,

unless they are wrapped in one transfer function. The next section presents the multiple
H_, constraint results.

5.4 Mixed Ho/EL Optimization with Multiple FL. Constraint

Now, the mixed problem is a mixed H,/H_,/H_, design, and the objective is to find a
stabilizing controller K(s) that achieves

o IT.. [, subject to llll”rr:{: zz; (5-15)

Again, recall that both inequality constraints will be treated as equality constraints. Thus,
the performance index for the numerical method is

e -v) +a(r) -n) e

Two approaches are used: the first one will be the grid method and the second one the
direct method, as mentioned in Chapter 4.

5.4.1 Grid Method
The results of applying the direct method (explained in Chapter 4, Section 4.2.1) are
shown in Figures 5-10 and 5-11. Figure 5-10 shows the [T,, | _ vs. |T,, | curves. Tne

lower dotted curve represents the boundaries for both H,, constraints. Also, notice that

when smaller values of infinity norms are reached , the trade-off between the infinity norm

of the constraints starts to have the effect discussed in Chapter 4, Section 4.3. Figure 5-11
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shows the 3D surface. This surface has an almost flat bottom; therefore, the increase in

the two norm starts when the knee of the individual curves is reached.

"2 vs. Hinf]

1 @, % )

H2 vs. Hinf2 1

1200

inf_nom Tad1

inf_norm Ted2

Figure 5-11 3D plot Grid Method [T, vs. [T,, | vs. [T, |.
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3.4.2 Direct method
The direct method, explained in Chapter 4, Section 4.2.2, minimizes both H_

constraints at the same time. By proper selection of the steps Ay, and Ay, , where
Ay, =Y, —Y,, (fori= 1,... ,n and j=1,..., number of steps), the designer can guide

the direction of minimization to the desired infinity norms “le L and 'T,,"L. Figure

5-12 shows “T,,z"_ Vs. IIT,,, IL for four different directions. The starting controller was

Koo« fOr three of them and a K, (taken from the grid method) for the last one.

21[

20

T .

15

o i i M " A " "
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'Td! -

Figure 5-12|T,, | vs. [T, ] Direct Methoa
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inf_nom Ted2

Figure 5-13 3D plot Direct Method
Il V- ﬂTw‘".. vs. Fw.ﬂ-

Notice that this numerical method permits the user to start at any point; this means the
routine can start with any stabilizing controller. Figure 5-13 shows the different curves in
3D. Finally, Figure 5-14 and 5-15 show the final results of both the grid and the direct
methods combined.
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This new optimization technique permits minimization of the two norm of one transfer
function subject to multiple H_, constraints. It controls the trade off between the different

H,, constraints and the H, performance.

Suppose a SISO plant has a multiplicative perturbation and a performance requirernent

on sensitivity; a controller K(s) provides Robust Performance for that plant if and only if
I ITW,SI+1W,Tiii_ <1 (SISO)

In the mixed Hy/ H,, optimization problem with multiple H_, constraints , the two H_
constraints are adjusted; therefore, it does not have frequency specific information.
However, if we define the following requirements:

NW,SHl.= Bs <1 and occurs at any @ =g (Nominal Performance)

and
N W,T I = B; <1 and occurs at any ® = w; (Robust Stability)
where

< <
Y <Psand ¥ <B

then two cases for Robust Performance could exist:
Case 1.- The Robust Performance test is passed iff
Bs+ Br<1
This means that the worst case for a Robust Performance test is that | W,S Il and
I W,T Hi, occur at the same frequency (@ = wy).
Case 2.- If
Bs+ Br>1
the Robust Performance test must be applied. This means that it is necessary to check
frequency information.
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These two cases relax the requirement for the mixed sensitivity cost function

(I Ty I < 1/4/2), where
WS
DI ot |

because now the designer has control over the different infinity norms. A graphical
interpretation is shown in Figure 5-16.

Nominal Performance
I\Vz’l‘l o
]
Case |
Robust Performance , *
’ 1 IWSH

Figure 5-16 Application of the mixed problem with multiple H_ constraints
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VI. THE HIMAT PROBLEM: A MIMO EXAMPLE

For a MIMO example, the HIMAT problem from the p-Tools Manual [Mat] was
selected. The HIMAT vehicle is a scaled-down, remotely piloted vehicle (RPV). The
design example will consider longitudinal dynamics only. For more information about this
problem refer to the pu-Tools Manual [BDGPS91] and [SLH81]. The HIMAT problem
will be designed for single and multiple H,, constraints.

6.1 Probiem Set Up

The states variables of the plant (HIMAT) are:
v - forward speed
o - angle of attack (not to be confused with o from the H, design)
q - rate of pitch
0 - pitch angle
Control inputs (u):
8¢ - elevon command
d¢ - canard command
The variables to be measured:

o and O

6-1




The state space matrices are:

[-0.0226 -36.6 -18.90 -32.1 [0 0
A = 0 -1.90 0983 0 B o 0414 0
*“10.0123 -11.7 -2.63 0 *71-77.80 22.40

| 0 0 1.0 0 | | 0 0 |

0 573000 0 0 00
C = =
’ [o 0 0 57.3000] D [o 0]

Short period roots = -2.2321 + 3.3779i ; Phugoid roots = -0.0442 + 0.2093i

The objective of the H, design is to develop a regulator that limits the white noise
feedthrough to the angle of attack and pitch angle plant outputs (yg) and the control
usage (u). Figure 6-1 shows the H, regulator design plant with the weights W_and W, on
the control usage and states, respectively. Energy from the white noise inputs, w, and w,,
will be minimized with respect to the chosen outputs, z, and z,, by the compensator
design.

6.2.1 Weight Selecti
Wind disturbance weight: The wind disturbance constitutes an exogenous input (w;,).
It passes through ¥ as an angle of attack perturbation
¥ =[-36.6 -190 -1.70 O]
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Figure 6-1 H, Regulator Diagram (HIMAT)

Measurement i.vise: The measurement noise is represented by an exogenous input (w,).
w, is added to the feedback signal. The weight for w, is:
W, = 0.1%],,

Contro] Usage: The weight for control usage W, is chosen as the identity matrix

We=1g
Weighted output: This is the weighted angle of attack and pitch angle; here, this weight is
chosen to be the identity matrix

W.=lg
The state space for the H, design plant is

A, |B, B,
P,=|C, | D, D, (6-1)
CY: DYW DY“
6-3




and the state space matrices are

W=l ATe] + (¥ o][w‘ + [BJu]

FZ - [w?cg]["‘] * [3 g][:i + [v(‘,"][u] (62)

1= G n) + [0 Wn][w‘] ¢ [0]u]

w,

Notice that the " 0 " represents a zero matrix with the corresponding dimensions in the
different state space matrices. The basic conditions that are checked here include D, = 0,
D, =0, D! D, and Dwa:w full rank; these are met by the design with a non-zero W,
and W

6.2.2 H> Results

Table 6-1 shows the results.

Table 6-1 H, Results (HIMAT)

I Trww ll2
4.6970
VGM input (dB) VPMi (deg) | VGM output (dB) VPMo (deg)
T [-0.1198, 0.1181]} 10.7847 [-11.7255, 4.8147] 1434773
S [-0.1181, 0.1198] 10.7847 [-5.1530, 14.4199] +47.7754

Although the objective was only to design a pure regulator, from Table 6-1 we see that the

H, controller provides robustness at the output of the plant, but poor margins at the input




of the plant. The VGM and VPM are based on the magnitude plots of sensitivity and
complementary sensitivity. Figure 6-2 shows the maximum singular values of the
complementary sensitivity at the input (T, ) and output (T,) of the plant. This represents
the measurement noise feedthrough to the plant input/output and the inverse of the

allowable multiplicative uncertainty at the input/output of the plant.
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Figure 6-2 Maximum Singular Values of Complementary Sensitivity
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Therefore, K,,,, provides a good level of robustness at the output of the plant, but the
system is susceptible to a multiplicative uncertainty at the input of the plant. Figure 6-3
shows the singular values of input sensitivity (S;) and output sensitivity (S,). Notice from
Figure 6-3 that the input sensitivity is minimized for good wind disturbance rejection, as
seen in the low gain in S, The problem with this design is poor performance at the output
of the plant, as seen by S,. K,,, therefore produces a system that is weak to a
multiplicative perturbation at the input of the plant and has bad tracking properties, as
shown in Figure 6-4.

The H,, designs to be addressed are: recover the margins at the input of the plant
through a weighted input complementary sensitivity, and recover tracking performance
through weighted output sensitivity. These must be done while keeping the robustness at
the output of the plant.
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Figure 6-4 Time Responses due to a step o and 0,




taintv at the i ¢ of the plant
Now a multiplicative uncertainty block at the input of the plant is assumed. The
multiplicative uncertainty represents:
1. Uncertainty in the canard and the elevon actuators
2. Uncertainty in the force and moments generated on the aircraft, due to specific
deflection of the canard and elevon
3. Uncertainty in the linear and angular accelerations produced by the
aerodynamically generated forces and moments
4. Others forms of uncertainty that are less well understood. [BDGPS91]
Figure 6-5 shows the block diagram. The dotted block represents the true plant. The

transfer function A(s) is assumed to be stable, unknown, and with an infinity norm less
than one ( Il A(s) Il < 1). The objective for this design is to meet Robust Stability at the

input of the plant.
o1
d1
Wou
YO—3  HmaT
____________________________ ,
u

Figure 6-5 Block Diagram of multiplicative uncertainty at the plant input
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Robust Stability at the input of the plant is met if
[ A(S)Tal, s)ll.<1

by the small gain theorem. Thus, if we satisfy
I Ty, W< IMA@) Il
we have Robust Stability at the input of the plant, or since Il A(s) li_ < 1,
T, <1 (6-3)
where le is the weighted closed-loop transfer function from d, to e,. Now we have
Td‘ = Wyy(s) Ty(s) (6-4)
W, (8), called the uncertainty weight, represents a stable transfer function of the form
Waa(8) = Wy (8)*1 5

50*(s + 100)
(s + 10000)

The weighting function is used to normalize the size of the unknown perturbation A. At

Wy (s)= (6-5)

any frequency @, the value of Iwy,(jw)! can be interpreted as the percentage of uncertainty
in the model at that frequency. The particular uncertainty weight chosen for this problem
indicates that at low frequencies, there is potentially a 50% modeling error, and at a

frequency of 173 rad/sec, the uncertainty in the model is up to 100% [BDGPS91]. Figure
6-6 shows the Bode magnitude plot of w,,(s). The H_ design plant is

A"l | de B“-l
P, =|C, [D,, D., (6-6)
Cy..l Dyd, D yu
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Figure 6-6 Magnitude of Multiplicative Uncertainty Weighting Function (dB)
and the state space matrices are
. Ag 0 Xg Bg B8
X3
= + d +
[ L] (e + 2

] =[0 cﬂ{ | +r01a] + el &0

b] =[G 0][’::.J +[01d] + [0Tul

Since D, Dy, is not full rank, this is a singular H_, design. The setup for the mixed

H,/H,,, problem is: Find a stabilizing compensator that achieves

. ':I&Ifm “Tﬂ,,!l2 subject to qux“.. <Y. (6-8)
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The performance index in the numerical method is

2 2
], =Iru||2+x,(] ,,Iu_ —y,) (69)
Two controller orders are presented. The first one is a fourth order controller; it

represents the order of the H, design. The second one is a sixth order controller and
represents the order of the full information Hy/H_ plant. Therefore, the 6th order Koo

was found by wrapping the weights of the H, design and the weights of the H_ design into

one system. The starting controller is K,,, (4th or 6th order). Table 6-2 shows the

results.

Table 6-2 Input Complementary Sensitivity Design |[T,|l, and || W Tl

4th order Controller 6th order Controller
| Tow ll2 | ¥ saiTi Il | Tow ll2 | Wger T lleo
4.6970 37.0491 4.6970 37.0491
4.6970 34.1981 4.6970 34.1981
6.3685 2.1831 6.5190 2.0029
6.4369 1.8485 6.3395 1.4366
6.5611 1.4709 6.3674 1.2844
6.7332 1.0585 6.6457 0.8946
6.9970 0.6413 6.8571 0.7113
*  7.0968 0.5497 * 7.0705 0.5151
» 77440 0.5099 * 76167 0.5095

Notice from Table 6-2 that Robust Stability is met for both controllers, but there is a
degradation in the H, performance. Figure 6-7 shows the o vs. ¥, curve for the 4th order
controller, which is virtually identical to that of the 6th order controller. The vector gain
and phase margins at the input and output of the plant are shown in Table 6-3 for the last
two controllers in both cases. As expected, the system is very robust at the input of the

plant; also ncrice that good margins at the output were preserved.
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Table 6-3 Input Complementary Sensitivity Design VGM,, and VPM,

K., izeq coOntroller (4th order)
VGM, (dB) VPM, ( VGM, (dB) VPM, (deg)
*S | [-5.3269, 16.2768] | +50.0787 | [-4.5991, 10.4018] | +40.8564
*T | [-20.3299, 5.5921] | +53.7266 | [-11.5388, 4.7866] | +43.1300
**S | [-5.4318, 17.6493] | +51.5019 | [-4.0590, 7.8659] | *34.6569
**T | [-40.8853, 6.0000] | +60.0000 | [-8.7230, 4.2634] | +36.9444
K ixea cOntroller (6th order)
VGM, (dB) VPM, (deg) VGM, (dB) VPM, (deg)
*S | [-5.3644, 16.7411] +50.5846 | [-4.6992, 10.9871] | +42.0618
*T | [-30.0620, 5.8832] +57.9334 | [-13.2685, 5.0228] | +46.0922
**§ | [-5.3386, 164192] | 1502367 | [4.1372, 8.1814] | +35.5235
**T | [-34.6236, 5.9396} +58.7752 | [-8.3343, 4.1738] | 1359332
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The H, design showed that the system does not perform tracking at all. Therefore,
good performance will be characterized in terms of the H_ norm of the output sensitivity.
The output sensitivity will be a weighted sensitivity function as shown in Figure 6-8. The
exogenous input and output of the plant are denoted as d, and e,, respectively. The
weighted sensitivity is our Nominal Performance requirement. The weight for sensitivity
represents an output perturbation. The transfer function e,/d, is

eyfd, = WS, ; Wi(s) = w(s)*I,
S*(s + 3)
(s + 0.03)
As in the uncertainty modeling, the weighting function W, is used to normalize

w,(s)= (6-10)

specifications; in this case, to define performance by whether a particular norm is less
than 1. Nominal Performance is assured when

[l <1
or

[w,s,|. <1 6-11)

d2 AN 62
wp

.= l,

Figure 6-8 H_, design for Nominal Performance
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and since w,, is a SISO transfer function, the maximum singular value plot of the output

1
sensitivity transfer function must lie below the plot of H at every frequency. That is, if
w
P

fw.a + GK)"IL <1, then at all frequencies, |(/ + GK)' (jo)|_ <[t/ w,(jw). The

inverse of the weight w, is shown in Figure 6-9. This sensitivity weight indicates that, at
low frequencies, the closed-loop system should reject output disturbances by a factor of
50-1 [BDGPS91]. The closed-loop system should perform better than the open-loop for
frequencies up to 1.73 (rad/sec), and for higher frequencies, the closed-loop performance
should degrade gracefully, always lying underneath the inverse of the weight w, as shown
in Figure 6-9 [BDGPS91].

10

10 3 10 2 10 1 10° 10! 10 2
Frequency (rad/sec)

Figure 6-9 Inverse of Performance Weighting Function, w,
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The H_, design plant is P_,, given by

A. | B, B,
P-, = Ce2 De,d, Dezu (6-12)
Cy., Dydz Dw

and the state space matrices are

-l L] (ke <[5

] =[Da off| +DIe] +[0k] e

bl <[ o] +rra) + [om

Since DT D, , is not full rank, this is a singular H_ design. The mixed H,/H_ problem is

eu e,
now the solution to a regular H, problem subject to a singular H,, design. The setup for
the mixed H/H_, problem is: Find a stabilizing compensator that achieves

K.EfmmuT"’"l subject to "sz |L <v, . 616
The performance index in the numerical method is

5, =) -v.) (6-15)

Two controller orders are presented, 4th and 6th order. The starting controller is K,,,
(4th or 6th order). These are the same as generated in the previous section. Table 6-4

shows the results.
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Table 6-4 Output Sensitivity Design |IT,|l,and || W,S,|l.

4th order Controller 6th order Controller

| Tulh NW, S, Il | Tl W, S, .
4.697 52.1574 4697 52.1574
4.6994 44.1814 4.6999 402441
4.7007 36.186 4.701 36.1963
4.7027 28.2262 4.7012 28.1995
4.7062 20.2295 4.7063 202322
4.7129 12.2376 47134 121711
4.7498 4.2903 5.1424 5.3273
5.1901 1.0049 5.1647 1.4016
5.2453 0.9647 5.2568 12114
* 5.2584 0.9467 * 5.3035 1.1291
** 56429 0.8311

Notice from Table 6-4 that Nominal Performance is met for both controller orders. The
degradation in the H, performance is not too large. Figure 6-10 shows the o vs. ¥, curve.
The vector gain and phase margins at the input and output of the plant are shown in Table
6-5 for the last controllers in both cases. As expected, the system is not robust at the
input of the plant. Also, notice that the margins at the output were reduced. This
represents the trade off between performance and robustness.

E o
Elsz © K(Gth)
]
-

30 40
ini_norm Wex(e)So(s)
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Table 6-5 Output Sensitivity Design VGM, , and VPM,
K. controller (4th order)

VGM, (dB) VPM, (deg) _ VGM, dB) VPM, (deg) |

*S [-0.9002, 1.0044] +6.2597 [-3.6380, 6.3789] +30.1522

*T [-1.0015, 0.8979] 1 6.2430 [-5.5480, 3.3584] | +27.3035

K, controller (6th order)

VGM, (dB) VPM, (deg) VGM, (dB) VPM, (deg) |

*S [-0.9438, 1.0590] + 6.5802 [-3.7318, 6.6827] | +31.1321

*T [-1.0560, 0.9415] 1 6.5629 [-5.7776, 3.4393] | +28.1164

**S [ .9341, 1.0468] + 6.5089 [-4.1272, 8.1405] | +35.4130

T [-1.0437, 0.9316] 1 6.4904 [-7.4109, 3.9398] | +33.3542

Figures 6-11 and 6-12 show the time responses due to a step angle of attack command
and a step pitch angle command (noise included in simulation) respectively, for the H,
design and the mixed Hy/H,, designs. Notice that the H, design does not provide
performance at all, which is more evident in the pitch angle. The mixed controller shows
an improvement in the tracking performance, and the degradation in the noise rejection is
not considerable. The 6th order controller did not significantly improve the infinity norm

of the robustness and performance objectives nor the two norm of T,,; therefore, a fourth
order controller seems to be the best solution of the twn for this mixed Hy/H_, design

problem.
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Figure 6-12 Time Response due to a step pitch angle command
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Input Complementary Sensitivit

This section will examine the trade off between weighted output sensitivity (T,,) and
weighted input complementary sensitivity (T,;,). Since the H, design was shown to have
good margins at the output of the plant, let's examine the weighted output complementary
sensitivity. In other words, the objective is to observe how the robustness at the output of
the plant is affected by T,, and T,,. The weight for the output complementary sensitivity
is chosen to be the same as the weight for input complementary sensitivity, but in this case
it is assumed to be a fictitious uncertainty block at the output of the plant
[G+WyA £ iins)).  This means that the true plant is represented by an input
multiplicative perturbation [(I+W,,A)G] and the performance objective is weignted
output sensitivity. The block diagram for output complementary sensitivity is shown in
Figure 6-13.

Wdel

Figure 6-13 Weighted Output Complementary Sensitivity
Block Diagram
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Thus,
Td' =W,oT, o (6-16)

Figure 6-14 shows how the minimization of weighted input complementary sensitivity
(Mixed Hy/H_, ) affects the infinity norm of weighted output sensitivity (Mixed Hy/H_; )
and how the minimization of weighted output sensitivity affects the infinity norm of
weighted input complementary sensitivity. The curve H/H_, shows that the minimization
of weighted output sensitivity drives the infinity norm of weighted input complementary
sensitivity to smaller values. The curve Hy/H,, shows that the minimization of the
weighted input complementary sensitivity starts to minimize the infinity norm of weighted

output sensitivity also, but when IWMTlIL reaches small values, it causes an increase in

“WPSOL. Figure 6-15 shows how the minimization of weighted input complementary

sensitivity does not affect the weighted output complementary sensitivity. This means that
this design does not affect the robustness at the output. The values of the infinity norms
for the different transfer functions are in Appendix A, Sectio:.5 A.1 and A.2.

] 10 20 30 40 S0 60

WS,
Figure 6-14 [W, T,|_ vs. [W,S,|_ for H,/H_, design and H,/H_, design (K 4th)
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Figure 6-15 [W,, T, | vs. |W,,T;|_ for H,/H_, design (K dth)
Figure 6-16 shows how the minimization of weighted output sensitivity affects the
weighted output complementary sensitivity. Notice how the robustness at the output of
the plant starts to decrease as the system gets more performance. The conclusion is that
when the weighted output sensitivity is reduced, it drives the weighted complementary

sensitivity to higher values.

20 5 4
infinity norm of Wp(s}8o(s)

Figure 6-16 [W, T, vs. |W,S,|_ for H/H_, design (K 4th)
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Perf { Robust Stabilitv (Weishted Input

The setup for this mixed Hy/H_ problem is: Find an stabilizing compensator that

achieves
. . |wdelTi|L <Y,
2. [T[, subject to {;IWP s <v, 6-17)
where both constraints will be treated as equality constraints. The performance index for
the numerical method is

I, =L+ A (W) - 1) + lz(]W,,So - 1) (6-18)

The state space matrices are equation (6-2) for the H, part, equation (6-7) for the
weighted input complementary sensitivity, and equation (6-13) for the weighted output

when

sensitivity. This design will map the boundary between [W,, T;]_ and [W,S,

both infinity norms are close to the optimal values, respectively. This will be done by
minimizing both constraints using the direct method in different directions as shown in
Figure 6-17. Two cases are defined. Case 1 tries to reduce as much as possible the
infinity norm of the weighted output sensitivity while holding the infinity norm of the
weighted input complementary sensitivity less than one. In other words, the first case tries
to get the best level of performance that meets the robustness requirement. Case 2 tries to
reduce both infinity norms as much as possible, which means that it is desired to get the
best performance and the best robustness. The infinity norm of the weighted output
complementary sensitivity will also be calculated in order to observe the trade off between
this design and the robustness at the output of the plant.
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Again the starting controller is the optimal H, controller, which is the order of the H,
part only (fourth order); then the controller order is increased to 6th (explained before)
and 8th order (computed by wrapping P,, P_,, and P_, into one system, P). Therefore,
fourth, sixth, and eight order mixed controllers will be generated. The method used in the
numerical technique is the direct method. Table 6-6 shows part of the results (see

nw ﬂT'II ®

Iw s

1

Figure 6-17 Objectives of the mixed problem with two H_ constraints

Appendix A, Section A.3 for more).
Table 6-6 Mixed H,/H_ with two H_ Constraints: |[T_l,, || We,Till., and || W.S, |l
| Tl | WeaT; . WS, . I WeuT, Il
| Ko 4.6970 37.0491 52.1574 0.6853
Fourth order controller

Case 1 5.6883 0.9938 0.9234 1.0159

Case 2 6.1322 0.8172 09110 09971
Sixth order controller

Case 1 57311 0.9978 0.9574 0.9826

Case 2 6.0274 0.8519 0.9579 0.9828
Eight order controller

Case 1 59228 0.9220 0.6845 0.7560

e 5.8145 0.7438 0.7644 0.7030

Case 2 5.6926 0.6109 0.7270 0.6707
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WS,

Figure 6-18 Direct Method versus Single H_, constraint designs (HIMAT )

Notice that the 6th order controller achieves similar results to the 4th order, and the
robustness at the output of the plant is maintained for both. The big aifference is the 8th
order controller, which achieves smaller infinity norms than the 4th and 6th order
controller, and also keeps the level of robustness at the output (the ** 8th order controller
will be explained in Section 6.7). Figure 6-18 shows how the direct method with multiple
constraints goes directly to the minimum values of the H_ constraints. This figure is
similar for the 4th, 6th and 8th order controllers using the direct method. Notice that from

a control point of view, we are not interested in values of the H_ constraints above one,

since they do not meet out requirements. The following figures will show the area of
interest (below one) for the H_ constraints. Figure 6-19 shows the trade off between
W, T, and WpSo using a 4th order controller. The constraint boundary between weighted
input complementary sensitivity and weighted output sensitivity is defined. This boundary
shows that Case 2 is better than Case 1, since it obtains better values of performance and
robustness. The 6th order controller shows similar results to the 4th order controller.
Figure 6-20 shows the trade off between W, ,T; and WpSo using an 8th order controller.
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Notice that this order of controller improves the values of the infinity norms, and the non-
feasible region is also "smaller”. Appendix A, Section A.3 shows the complete table of

results.

05 08 07 08 09 1 11 12 13 14 15

"W S,
Figure 6-19 Trx}de off between weighted T, and S, (4th order controller)
oss}|
<-case 1
*I' Boundary between
o.nsT weighted Ti and
0.8}
"WTH,
L1 0.75I-__ )
0.7 h .
T ~
oe)
0.6
ose
I U P
05 055 06 06 07 075 08 08 09 08985 1
W S i,
’ o

Figure 6-20 Trade off between weighted T, and S, (8th order controller)
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Frequency (rad/sec) (10*x;x={-3,3])

Figure 6-21 W (s) T,(s) Maximum Singular values (K, 8th order)

The maximum singular values of Wg,(s)T;(s) are shown in Figure 6-21. The y axis
represents some of the different 8th order controllers; it starts at K,,,,, which corresponds
to y = 1, and moves into the mixed controllers (from y = 2 through y = 13). Notice how
the maximum singular values are minimized until Robust Stability is met. Figure 6-22
shows the maximum singular values of W (s)S,(s). The same axis orientation is kept.
This new technique drives both infinity constraints to the required level of Nominal
Performance and Robust Stability, with the two norm also being minimized. It is
important to mention again that both H_, designs are singular problems. Table 6-7 shows
the VGM and VPM for each controller using the final controller. Notice that each
controller tries 1o recover the VGM and VPM at the input of the plant. Now the trade off
between input and output margins is more evident, since a weighted output sensitivity

output is the driver for margins at the output of the plant.
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Froquency (radisec) (10*x:x={-3,3)
Figure 6-22 Wy(s)S (s) Maximum Singular values (K, 8th order)

113 K20plmu> Kmix

Table 6-7 Mixed H,/H_, with two H_ Constraints VGM and VPM

K_. controller (4th order)

VGM, (dB) VPM, (deg) VGM, (dB) VPM, (deg) |
S1 {-3.9103, 7.3025] +33.0344 | [-3.7631, 6.7876] | +31.4629
Ti [-6.3912, 3.6419] +30.1926 [-6.4753, 3.6682] + 30.4666
S2 [-4.3418, 9.0814) +37.8401 [-3.8033, 6.9242] +31.8883
T2 [-8.7051, 4.2594] +36.8988 [-6.4633, 3.6645] +30.4278
K i _controller (6th order)
S1 [-3.6202, 6.3225] +29.9668 [-3.6540, 6.4297] +30.3183
Tl [-6.2052, 3.5825] +29.5776 [-7.2142, 3.8858] +32.7709
S2 [-4.1892, 8.3994] +36.1056 [-3.6533, 6.4275] +30.3112
T2 [-8.1393, 4.1269] + 35.4095 [-7.1817, 3.8768] +32.6735
controller (8th order)
S1 [-3.6560, 6.4359] +30.3386 | [4.7985, 11.6176] | +43.2774
T1 [-6.8178, 3.7721} +31.5575 [-9.8992, 4.5066] +39.7588
S** [-4.5405, 10.0795]) +40.1593 [-4.4862, 9.7928] +39.5186
T** [-8.7010, 4.2584] +36.8883 | [-7.3548, 3.9246] | +33.1891
S2 [-4.7691, 11.4256] +429160 | [-4.7003, 10.9939] | +42.0753
T2 [-14.9428, 5.2062)] +48.4723 | [-12.1456, 4.8756] | +44.2334

(1= case 1, 2= case 2)
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This table suggests the use of a higher order controller in order to avoid a degradation of

margins at the output of the plant. The next section will compare the (**) eight order
mixed controller with the controller obtained using L -synthesis, as well as an H_, optimal

controller.

This section presents a comparison between the y controller obtained from running
the HIMAT demo in MATLAB, the H_, optimal controller for the mixed sensitivity

problem, and the mixed H,/H_, controller. In this section, the value of the upper bound on

}‘I.((-S(DMD"l )) will simply be called p for convenience. A fictitious block A, is created

to include the performance requirement, as shown in Figure 6-23.

j o

Figure 6-23 Block diagram for Robust Performance
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Although the mixed problem does not directly address Robust Performance, the trade off
among the infinity norms of the diagonal and cross terms of M will shape the maximum
singular values of M, and therefore could affect p. This is shown when a p analysis is
done for twenty-six 8th order mixed controllers from Section 6.6 (these 26 controllers are
only a subset of all 8th mixed controllers; see Appendix A, Section A.3), as shown in
Figure 6-24. IMIl, is defined as the upper bound on {(M). The x axis corresponds the
different controllers, starting with K,,, and moving along the mixed controllers as the
infinity norms are minimized. Notice that the upper bound of Y is minimized. Now,
looking at the three 8th order mixed controllers from Table 6-6, we see that the case 1 and

case 2 controllers have a IIMIl, value around 1.7, while the controller (**) has IIMll, =

1.3404, as shown in Figure 6-25. This shows that different combinations of infinity norms
of the cross and diagonal terms will result in a differing values of IIMll,. This is the reason

for using the D scaling (see Chapter 2), since it shapes the maximum singular values of M
in order to reduce IIMIl,. The mixed problem improves IIMil,, but it does not directly

address Robust Performance, since it does not exploit the frequency information.

Consider the controller (**) as the best controller in terms of Robust Performance. Figure
6-26 shows the p bounds for the p-synthesis design, H_ optimal control, and the (**)

mixed controller. The mixed controller reduces liMil,, more than the H,, optimal controlier

does, because it directly addresses Robust Stability and Nominal Performance.
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Figure 6-25 u(M) of the 8th order Mixed controllers from Table 6-6
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Figure 6-26 u(M) of the p-synthesis, H_, ,,,, and mixed H,/H_Controller

control design

Although the mixed H,/H_controller does not pass the test for Robust Performance, the
order of this controller is much smaller than the K(s) obtained from p-synthesis. Also,

noise rejection is better with the mixed controller than the other two.

Table 6-8
summarizes the results, including a 4th order mixed controller as well.
Table 6-8 . Analysis for the HIMAT example
Robust Nominal Robust I T lly order of
Stability Performance | Performance controller
p-synthesis pass pass 0.9803 18.51034 20
Mixed Hy/H,, pass pass 1.3404 5.81450 8
* H,, optimal pass pass 1.6230 oo 7
controller
Mixed HyH pass pass 54040 6.1320 4

* the optimal H,, controller is for mixed sensitivity and complementary sensitivity
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Figures 6-27 and 6-28 show the magnitude of the weighted sensitivity function and
weighted complementary sensitivity function for the different control designs, respectively.
Notice how the infinity norm for both functions are improved for the mixed problem
compared to the H_ problem. Figures 6-29 and 6-30 represent the magnitude plot versus

frequency for the actual (unweighted) sensitivity and complementary sensitivity functions.
Figure 6-29 shows that the mixed H,/H,_, controller tries to decrease the magnitude of the
sensitivity function at low frequencies, compared to the i controller. This is probably due

to the fact that the mixed controller is trying to reject the low frequency wind disturbance
which p does not account for. In Figure 6-30, the mixed H,/H_, rolls off faster than y

does, and peaks earlier than H_, .

M 1w0* 10’ 10° 10' 10 10
Frequency (rad/sec)

Figure 6-27 Magnitude of W (s)S,(s) for y-Synthesis, H__, and the Mixed H,/H_,
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Figure 6-28 Magnitude of W,,(s)T (s) for j1-Synthesis, H,, and Mixed H,/H_

Figure 6-29 Magnitude of Sensitivity Function for p-Synthesis, H_,
and Mixed H,/H_
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Figure 6-30 Magnitude of Complementary Sensitivity for jt-Synthesis,
H.,, and Mixed Hy/H_

The time responses for a step angle of attack and pitch angle are shown in Figures 6-31
and 6-32. Notice how the wind disturbance and noises affect the p-synthesis controller
and the H,, controller. The mixed Hy/H,, controller has good noise rejection and good
tracking as well. The mixed controller fails the robust performance test with its upper
bound of 1.3404; however; this means that in order to pass this test, the robustness and
nominal performance requirements must be relaxed by only a factor of 1/1.3404,
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Figure 6-31 Time response for a step angle of attack command
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Figure 6-32 Time response for a step pitch angle command
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The objective of this design is to minimize three H_ constraints. The first and second
constraints are the previous Robust Stability and Nominal Performance requirements.
These H,, constraints were examined individually and simultaneously in the previous
sections. Now a weighted output complementary sensitivity constraint is introduced, as a
third H,_, constraint. The desire is to drive its infinity norm to less than one. The
exogenous input is d, and the exogenous output is e, for this new H_, constraint, as shown
in Figure 6-33. The dotted block represents our true plant. The transfer function A(s) is

a fictitious unstructured block and is assumed to be stable, unknown, and such that its
infinity norm is less than one (Il A(s) If_ < 1). The objective for this design is to meet

Il Togy l.<1; Robust Stability at input
I Tgll.<1; Nominal Performance at output (6-19)
I T3 . < 1; Robust Stability at output

. o3 d3 d2

- 02

X W

| wael P
HIMAT | =

Figure 6-33 Mixed H,/H_, design with three H_ constraints Block Diagram
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The state space for the H,,, design plant is

A ‘ B, B,
P =|C, | D, D, (6-20)
Cv., D, D,
where the state space matrices are

RSN MERORNT
] =[ DG, Cu][x:] +[0fd,] +[0Tu] ©20

y] =[ G o][;:] + [1{d,] + [0 Ju]

D;r‘“D,,,l is not full rank; therefore, this is a singular H_ problem. The setup for this
mixed Hy/H,_, problem is: Find a stabilizing compensator that achieves

“wdelTin.. <Y,
nf [T, |, subjectto {jW, S| <v, 622)
uwdelToﬂ. <Y,

Again, the three H,, constraints will be treated as equality constraints. Thus, the
performance index for the numerical method is
2
J. = 'Tzw '; + xl(‘wdalTin.. - 71)2 + xz(uwpsou,, - 72) + }‘3 (“wdelTo“.. - 73)2
(6-23)

The state space matrices are equation (6-2) for the H, part, equation (6-7) for weighted
input complementary sensitivity, equation (6-13) for the weighted output sensitivity
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output and equation (6-21) for weighted output complementary sensitivity for the H_
parts.

Again, the starting controller is the optimal H, controller. The design is performed to
obtain fourth, sixth, and eight order controllers. The method used in the numerical
technique is the direct method. Table 6-9 shows part of the resuits (see Appendix A,
Section A.4 for full results). Comparing Table 6-9 with Table 6-6 (two H_, constraints),

we can see that there is no improvement for the 4th and 6th order controllers. It seems
that the third constraint is not dominant, and the trade off among the H,, constraints is
only related to the weighted input complementary sensitivity and weighted output
sensitivity. The 8th order controller does show some improvement in performance, while

keeping a good level of robustness at the input and output of the plant. Notice that if an
H_, controller is found for an unmixed problem, the order would be 10. A tenth order

mixed controller was not computed due to time constraints.

Table 6-9 Mixed H,/H_, with three H_ Constraints: [T, I, | W Tjll..,
| WS, I, and || W T, IL.

T llx | WaaT, I | WS, Il | WeaT, Il
Controller

| 46970 | 37.0491 521574 | 06853 |
Fourth order controller

[ 65415 | 07584 | 09283 | 09975 |
Sixth order controller

| 65775 | 08029 | 09416 | 09894 |
Eight order controller

[ 52653 | 09189 | 0685 [ 05956 |

Table 6-10 shows the VGM and VPM at the input and output of the plant. The time
responses for a step angle of attack (ct) and pitch angle (8) command are shown in Figures
6-34 and 6-35 for the controllers from Table 6-9. Notice that the 4th and 6th order
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controllers have a considerable overshoot. Although the settling time is almost the same
for all three, the 8th order controller has a better response.

Table 6-10 Mixed H,/H_, with three H_ Constraints: VGM and VPM
controller (4th order)

VGM, (dB) VPM, (deg) VGM, (dB) VPM, (deg) _
S [-4.2084, 8.4821] | +36.3227 | [-3.7627, 6.7862] | +31.4586
T | [-99643, 4.5189] | £39.9042 | [-6.3492, 3.6287] | 30.0548

controller (6th order)

S [-4.2646, 8.7285]) +36.9585 [-3.7126, 6.6194] +30.9307

T [-8.8461, 4.2907] + 37.2559 [-6.4819, 3.6703] +30.4881
controller (8th order)

S [-3.7919, 6.8851] +31.7673 [-4.9276, 12.5242] | +44.8856

T [-6.8231, 3.7736] +31.5740 | [-16.1158, 5.3134] | +49.8972

1.4 T Y — —r

0.2¢ .

[v] A A A Iy

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (sec)

o

Figure 6-34 Time response, & command
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Figure 6-35 Time response, 0 command

6.9 Summary

If the selection of the best controller has to be made, the question by itself is too
complex, since many factors have to be considered. Table 6-11 summarizes the most
important factors to consider in the selection of the controller. Consider the following
factors (x in Table 6-11 if passed):

1. Satisfy Robust Stability (RS) at the input and output of the plant, and satisfy
Nominal Performance (NP).

Satisfy RS and NP with high noise rejection
Satisfy Robust Performance < 1

Relax the Robust Performance < 1/1.3404
Relax the Robust Performance < 1/5.4020
Low overshoot

A G S o
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7. Low order controller that satisfies RS and NP

Table 6-11 (HIMAT) Selection of Controllers

Factor |1 2 |3 14 5 6 7
Controller
Mixed 4th (two H_ Const.) X p'e X
Mixed 8th (two H_, Const.) X X X X
Mixed 4th (three H_, Const.) x b X
Mixed 8th (three H_ Const.) x | x X X
H,, (8th) X X
i (20th) X X X X

These are only a few factors to be considered. The selection will depend on how well we

know the plant, and what factors are more important than others. The order of the
controller is very important when it has to be implemented; therefore, the mixed Hy/H,,

control problem with multiple H_ constraints will have great importance in low order

controller design.




The main objective of this thesis was to investigate the mixed H,/H,_ with multiple H_
constraints control problem. A SISO and a MIMO problem were solved. Successful

strategies for obtaining measures of performance and robustness were presented in most

designs.

The initial chapter gave a limited synthesis history that represented the motivation for
the use of multiple H_, constraints in the mixed problem. Chapter II discussed the three

base methodologies (H,, H_, and p-synthesis), and a review of the related design
examples. Chapter IIl discussed the mixed H,/H,_ problem with a non-singular H,_
constraint and with a single singular H_ constraint. Also, the new numerical method was
explained. Chapter IV developed the mixed H,/H,, problem with multiple H_ constraints,

and discussed how the new numerical method can be used to solve this problem.

Chapter V presented the F-16 short period approximation (plus first order servo and
Padé approximation) SISO example. The SISO example represented an introduction to
this new design technique. First, an H, design was accomplished, and then two mixed
problems with one H_, constraint were solved. The H_, constraints were weighted input
sensitivity and weighted input complementary sensitivity. The trade off between both H_,
constraints was observed. Finally, the mixed Hy/H_, with multiple H_, constraints problem

was solved. Two methods were applied: the grid method and the direct method. A
surface was created using the grid method, and it showed possible boundaries between H_,




constraints when they are close to optimal values. The direct method was shown to be a

better method, since it permitted selection of the direction of minimization,

Chapter VI presented the HIMAT problem (MIMO). Using the HIMAT problem, the

following were solved:

An H, design.
Two mixed HyH_, designs, each with one H,, constraint. The H_, constraints

addressed Robust Stability and Nominal Performance independently.
A mixed H,/H,, design with two H_, constraints. The constraints addressed

Robust Stability and Nominal Performance, but now the trade off between them

was manipulated.
An H_ -synthesis and i-synthesis (using D-K iteration), for the augmented system

(the two H_, constraints wrapped in one block) were solved.
Finally, a three H,, constraint problem was solved. The constraints addressed

Robust Stability at the input and output of the plant, and Nominal Performance.

Different order mixed controllers were produced, with good results in most of them. A
W analysis was done on the mixed controller, and this was compared with the H_ optimal

controller and the p-synthesis controller. Table 6-11 summarizes some of the major

results.

Conclusions

The conclusions of this thesis are:

i). This new numerical technique permits minimization of the two norm of T, subject
to single or muitiple H,, constraints.

ii). The H_, constraint can be regular or singular.




iii). As the order of the controller was increased, better results were obtained.

iv). The mixed Hy/H_, optimization with multiple singular H_ constraints permits the
designer control over the level of Robust Stability and Nominal Performance, and also to
fix the level of ower H_ constraints. This means that the trade off between design
requirements in terms of H_, constraints can be freely chosen by the designer.

v). The main idea to include other H_, constraints, that are not specified as a Nominal

Performance or Robust Stability requirement, is that the system could meet Robust
Stability, Nominal Performance and even Robust Performance for a certain number of
uncertainty blocks and performance requirements, yet fail when the number of uncertainty
blocks or performance requirements are increased. Therefore, this technique can keep the

level of Robust Stability and Nominal Performance for the original blocks, and can control
the level in terms of H_ magnitude for those that the system does not meet.

Table 7-1 summarizes the improvement of this new nonconservative method,

compared with other control design methods.

Table 7-1 Comparison of different Control Law Designs

H, H, | p(D-K) [ Mixed
HH,,
Handle white Gaussian noise (WGN) X X
Robust Stability, Nominal Performance X X X
Robust Performance X
Trade off between RS and NP freely X
WGN and RS, NP X
Reduced order controller X




Recommendations

i) Improve the numerical method, especially around the knee of the & vs. y curve.
ii) Investigate the "relationship" between the diagonal and cross terms in mixed H,/H,,

with multiple H_ constraints, and how this relationship could affect Robust Performance.

iii) A faster computer is needed in order to obtain a large number of controllers, so that
various trade-offs can be examined quickly and efficiently.

iv) Since the numerical method runs with any order controller, investigate results using
any order stabilizing controller, including order less than the underlying Hy plant (if it
exists).

v) Remove the restriction that the H_ constraints must be satisfied with equality
through the use of constrained optimization. 'This has already be~n done [Wal94], and the
results in this thesis are being reworked using sequential quadratic programming rather
than DFP.
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APPENDIX A,
HIMAT PROBLEM
A1 Weighted I { C I I Sensitivity Constraint
4th order controller
T, Il I W Till, WS, I, W, T N,
4.6970 37.0427 52.1864 0.6856
4.6970 34.1942 51.7626 0.6602
47031 28.1678 51.9762 0.5881
4.8223 222256 44.8161 0.6134
4.8698 19.5766 41.2103 0.5564
5.0489 16.3526 33.9038 0.5556
5.2281 13.4063 23.7194 0.6010
5.4864 7.4497 15.1682 0.6236
6.3685 2.1831 21.3140 0.6466
6.4369 1.8485 22.9333 0.6571
6.5611 1.4709 20.3251 0.6554
6.7332 1.0585 26.1706 0.6613
6.9970 0.6413 34.6669 0.6784
7.7440 0.4956 48.7810 0.7959
7.1843 0.4918 51.2928 0.6487
7.1759 0.4920 51.7376 0.6478
6th order controller
IT,, I, W, Tl WS, I, I Wy T, Il
4.6970 37.0427 52.1864 0.6856
4.6970 34.1941 51.7622 0.6603
4.7064 28.2220 50.7688 0.5726
4.7365 25.3941 48.4703 0.6247
5.0925 16.4510 37.8934 0.5719
5.3813 13.1794 32.9813 0.5940
5.5764 10.7019 24.2157 0.6249
6.3416 4.6897 23.0864 0.6366
6.5190 2.0029 24.0980 0.6154
6.4690 1.8122 24.9896 0.6316
6.4751 1.5727 25.0295 0.6737
6.3395 1.4366 21.4272 0.7059
6.3674 1.2844 25.4598 0.7302
6.4721 1.1122 28.0406 0.7332
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6.6457 0.8946 31.8055 0.7371
6.8571 0.7113 36.4956 0.7552
7.0705 0.5177 45.8587 0.6423
7.2149 0.5548 48.3201 0.7947
7.6167 0.5095 56.5616 0.8143
7.0705 0.5177 45.8587 0.6423
4th order controller
IT,,, I, IWg, T, WS, NW,,T, I,
4.6970 37.0427 52.1864 0.6856
4.6990 25.9277 48.2140 0.5763
4.6994 24.5831 44.2054 0.5439
4.7002 23.8210 40.2266 0.5406
4.7007 22.8746 36.2079 0.5410
47019 22.0211 32.2226 0.5440
47027 21.2916 28.2454 0.5509
4.7042 20.3073 24.2368 0.5628
4.7062 18.7839 20.2418 0.5714
47129 16.0872 12.2381 0.6305
47327 15.2283 8.3599 0.7095
4.7498 10.7949 4.2906 0.9023
5.1901 5.3058 1.0481 1.1369
5.2453 4.9608 1.0108 1.1111
5.2584 4.8214 0.9905 1.0972
5.2617 4.8043 0.9887 1.0960
6th order controller
iIT,, I\, IW T, WS, W, T,
4.6970 37.0427 52.1864 0.6856
4.6984 25.6282 48.2167 0.5744
4.6999 23.7559 40.2441 0.5407
4.7010 22.9563 36.2181 0.5412
47012 21.2190 28.2184 0.5525
4.7063 18.3781 20.2468 0.5713
4.7097 17.1423 16.2076 0.5955
4.7134 15.4557 12.1765 0.6364
5.1647 11.3612 1.4016 1.4939
5.2568 7.0627 1.2114 1.0669
5.3035 4.6762 1.1291 1.0641
5.6429 4.5730 0.8311 0.9451
A2




C ] I Sensitivitv Constraint

4th order controller
T, I, IWe T, UWS I, IWT,I,
4.6970 37.0491 52.1574 0.6853
4.9689 25.9037 37.9268 0.7416
4.9747 17.5703 25.2809 0.5761
50639  9.0661 13.1080 0.6197
5.1136  7.2982 10.1080 0.6549
5.2435 5.6649 7.3953 0.6874
5.3986 1.5091 1.0073 1.0344
5.5195 1.2231 0.9592 1.0137
5.5208 1.2231 0.9365 1.0137
5.5636 1.1034 0.9542 1.0154
5.5827 1.0989 09178 1.0175
5.5834 1.0982 09174 1.0167
5.5884 1.0981 0.9159 1.0139
5.6837 1.0009 0.9229 1.0225
5.6883  0.9938 0.9234 1.0159 ... (Case 1)
6.0137 0.8467 0.9146 1.0036
6.0963 0.8278 0.9099 0.9985
6.1099  0.8234 0.9122 1.0000
6.1161 0.8215 0.9106 0.9983
6.1101 0.8244 0.9102 0.9987
6.1091 0.8244 0.9100 0.9986
6.1322  0.8172 0.9110 09971 ....... (Case 2)
6.2257 0.8039 09154 0.9990
6.8656 0.6933 1.0612 0.9698
69195  0.6916 1.0474 0.9710
6.9908  0.6895 1.0600 0.9732

6th order controller
IfT,, i, IWu T,  UWSI,  HWT,I,
46970  37.0491 52.1574 0.6853
4.7468 34.0391 46.8218 0.7340
47762  29.5118 41.4565 0.6448
48104  26.3026 37.0553 0.6860
4.9899 8.1814 10.7511 0.6518
5.3292 1.5742 1.4497 0.9343
5.7274 1.0706 0.9707 1.0010
5.7311 0.9978 0.9574 0.9826 ........ (Case 1)
5.9607 0.8712 0.9581 0.9832
6.0292 0.8512 0.9596 0.9819
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m
6.0274  0.8519 0.9579 09828 ... (Case 2)
6.0341 0.8161 0.9764 1.0039
63459  0.7776 1.0317 0.9624
69503  0.7459 1.2159 09175
5.7020 1.0383 0.9481 0.9748
5.7287 1.1739 0.9177 0.9909
5.4175 1.6316 0.8939 0.9889
5.3692 1.7694 0.8891 0.9475
5.3261 3.2591 0.8712 0.9776

8th order controller
IT,,, 1, WWeTill,  UWSI.  IWT,I,
46970  37.0491 52.1574 0.6853
47023 32.0126 47.1634 0.6277
47148  27.0366 42.0854 0.6006

5.2319 0.9532 1.8408 1.2752

5.2336 0.9613 1.6649 1.3010

5.2324 09742 1.6543 1.3037

5.7912 0.7939 0.7414 0.8783

5.8145 0.7438 0.7644 0.7030 ... (controller **)
5.7949 0.7872 0.7281 0.8540

6.0145 0.7866 0.6897 0.7882

5.9967 0.7946 0.6878 0.7870

6.0252 0.7931 0.6867 0.7860

5.7059 0.6251 0.7353 0.7195

5.7159 0.6240 0.7326 0.7174

5.6926 0.6109 0.7270 0.6707

5.2319 0.9532 1.8408 1.2752

5.6862 0.6148 0.7374 0.6710

5.6926 0.6109 0.7270 0.6707 ...... (Case 2)
6.0252 0.7931 0.6867 0.7860

6.0276 0.7961 0.6863 0.7857

6.0270 0.7961 0.6862 0.7858

6.0142 0.8078 0.6856 0.7924

5.9267 09214 0.6857 0.7564

5.9228 0.92z% 0.6845 0.7560 ........ (Case 1)
5.9197 0.9218 0.6853 0.7565

5.8233 0.9331 0.6939 0.7206

5.7243 " 0.8906 0.7027 0.7403
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Case 1 and Case 2 for the 4th and 6th order controllers are almost identical, as there is not

a substantial reduction of the infinity norms below one, as will be shown in Figure A-1.

4th order controller
T, I, IWe T,  NWS,  HWT,I,
5.6011 1.0653 0.9586 1.0523
5.5654 1.0937 0.9386 1.0431
5.5627 1.0934 0.9396 1.0430
5.5632 1.0914 0.9378 1.0429
5.7476 0.9423 0.9423 1.0423
6.6207 0.7618 0.9693 0.9683
6.3762 0.7790 0.9464 0.9900
7.9001 0.6586 1.4409 1.0213
6.5600 0.7599 1.0430 0.9423
6.7315 0.7444 0.9824 0.9323
6.4187 0.7662 1.0009 0.9370
5.7426 0.9197 0.9623 1.0059
6.0272 0.8155 0.9606 0.9805
6.4323 0.7484 0.9405 0.9873
6.4323 0.7484 0.9405 0.9873
6.5415 0.7584 0.9283 0.9975
6.4429 0.7592 0.9274 1.0006
6.4165 0.7590 0.9277 0.9999
6th order controller
WT,,, i, IWe T,  WWS I, WWT,I,

4.6970 37.0491 52.1574 0.6853
4.8225 26.8937 37.4109 0.5390
4.8936 11.8365 16.1882 0.6239

5.1569 7.7096 10.9946 0.6614
5.2006 1.8236 2.3868 0.9725
5.2373 1.6559 1.7414 1.0336
5.3071 1.5121 1.4009 1.0226
5.3888 1.3224 1.0848 1.0750
5.4499 1.2454 0.9865 1.0689
5.7320 1.0089 0.9862 1.0345
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5.8071 1.0188 0.9481 1.0278
5.8117 1.0203 0.9470 1.0276
5.8871 1.0433 0.9346 1.0282
5.8901 1.0429 0.9345 1.0279
5.8905 1.0445 0.9342 1.0275
5.9694 0.9521 0.9429 1.0186
6.3540 0.8750 0.9280 1.0122
6.5775 0.8029 0.9416 0.9894
7.3778 0.7032 1.0638 0.9695
8th order controller
I, I, UW Tl WS, IW,T,l,

4.6970 37.0427 52.1864 0.6856
47191 26.9350 40.0723 0.6345
4.8990 19.7854 25.6832 0.6575

5.0856 2.7212 1.8812 1.0661
5.1065 24514 1.5789 1.0288
5.1205 2.3120 1.4950 1.0391
5.3710 0.8648 1.1453 0.7335
5.3482 0.8183 0.9068 0.6471
5.3238 0.7452 0.8444 0.6824 ... (Case 2)
5.2582 0.9260 0.7405 0.5939
5.2653 0.9189 0.6865 0.5956 ........ (Case 1)
5.2890 0.9292 0.6904 0.6086
5.3413 0.9494 0.7701 0.7328
5.3499 0.9399 0.7732 0.7371
5.3634 0.9043 0.8438 0.8897
5.9354 0.9563 0.7650 0.9622
6.1497 0.9541 0.7366 0.9535
6.0447 0.9538 0.7247 0.9533
6.0827 0.9540 0.7145 0.9510
6.0502 0.9542 0.7121 0.9510

The following figures map the boundaries for the fourth and eight order controllers for
two and three H_ constraints. As was shown in Chapter 6, the third H_ constraint (a

weighted output complementary sensitivity) was not dominant, and therefore we can
combine the results of the mixed controlier with two H_ constraints and the controller

with three H,, constraints of the same order. This is shown in Figure A-1 for the 4th order
controller and Figure A-2 for the 8th order controller.
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Figure A-2 Boundary for the eight order controller with two and three H_
constraints
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