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1 FACTUAL DATA

This section contains a listing of publications, graduate students supported in whole or in part under
the grant, and honors/awards received. With respect to publications, our research advances have
been reported in over 30 scholarly articles, including 14 in the leading IEEE and SIAM journals.
Major publications are listed below and the narrative to follow in Section 2 is keyed to this list.
A summary of significant progress made under the auspices of this grant is documented in the
narrative.

1.1 Publications Supported by this AFOSR Grant

[1] Papadopoulos, P.M., A.J. Laub, C.S. Kenney, P. Pandey, G. lanculescu, and J. Ly, "Optimal
Control Study for the Space Station Solar Dynamic Power Module," Proc. 30th IEEE Conf.
on Decision and Control, Brighton, England; December 1991; pp. 2224-2229.

[2] Ghavimi, A., C. Kenney, and A.J. Laub, "Local Convergence Analysis of Conjugate Gradient
Methods for Solving Algebraic Riccati Equations," IEEE Trans. Aut. Conir., 37(1992),
1062-1067.
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England; pp. 1-10; September 1992).
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Structure Interaction Study for the Space Station Solar Dynamic Power Module," Control
Systems Magazine, Vol. 12, pp. 4-13, October 1992.

[9] Pandey, P., C. Kenney, and A.J. Laub, "Solving the Algebraic Riccati Equation on Super-
computers," in Recent Advances in Mathematical Theory of Systems, Control, Networks, and
Signal Processing, Vol. H, H. Kimura and S. Kodama (eds.), MITA Press, Tokyo, 1992, pp.
3-8.

[101 Erickson, M.A., R.S. Smith, and A.J. Laub, "Calculating Finite-Dimensional Approximations
of Infinite-Dimensional Linear Systems," Proc. American Control Conf., Chicago, IL; June
1992; pp. 157-161.

[11] Kenney, C., S. Stubberud, and A.J. Laub, "A Rational Interpolation Method to Compute
Frequency Response," Proc. Fifth Annual NASA/NSF/DOD Workshop on Aerospace Com-
putational Control, Santa Barbara, CA; August 1992; pp. 413-426.

112] Erickson, M.A., A.J. Laub, and R.S. Smith, "Calculating Eigenvalues and Eigenfunctions of
Hyperbolic Systems," Proc. 31st IEEE Conf on Decision and Control, Tucson, Arizona; pp
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[13] Ianculescu, G.D., J. Ly, A.J. Laub, and P.M. Papadopoulos, "Space Station Freedom Solar
Array H, Control," Proc. 31st IEEE Conf. on Decision and Control, Tucson, Arizona; pp.
639-640; December 1992.

[14] Kenney, C.S., A.J. Laub, and S.C. Stubberud, "Frequency Response Computation Via Ratio-
nal Interpolation," IEEE Trans. Aut. Control, 38(1993), 1203-1213 (see also Kenney, C.S., S.
Stubberud, and A.J. Laub, "Frequency Response Computation Via Rational Interpolation,"
Proc. 1992 IEEE Symposium on Computer-Aided Control System Design, Napa, CA; March
1992; pp. 188-195).

[15] Kenney, C., A.J. Laub, and P. Papadopoulos, "A Newton-Squaring Algorithm for Computing
the Negative Invariant Subspace of a Matrix," IEEE Trans. Aut. Control, 38(1993), 1284-
1289.

(16] Pandey, P., and A.J. Laub, "Numerical Issues in Robust Control Design Techniques," in
Control and Dynamic Systems - Advances in Theory and Applications: Vol. 55, Digital
and Numeric Techniques and Their Applications in Control Systems, C.T. Leondes (ed.),
Academic, San Diego, 1993, pp. 25-50.

[17] Stubberud, S.C., A.J. Laub, and C.S. Kenney, "Computation of Frequency Response of De-
scriptor Systems by Rational Interpolation," in Control and Dynamic Systems - Advances in
Theory and Applications: Vol. 56, Digital and Numeric Techniques and Their Applications

in Control Systems, C.T. Leondes (ed.), Academic, San Diego, 1993, pp. 267-301.

(181 Holthaus, M., C.S. Kenney, and A.J. Laub, "Numerical Methods for Studying Parameter
Dependence of Solutions to Schr6dinger's Equation," in Differential Equations, Dynamical
Systems, and Control Science (A Festschrift in Honor of Lawrence Marius)," (K.D. Elworthy,
W.N. Everitt, and E.B. Lee, eds.), Lecture Notes in Pure and Applied Mathematics, Marcel
Dekker, New York, 1993, pp. 101-114.

[19] Papadopoulos, P.M., C.S. Kenney, and A.J. Laub, "Least-Squares Solution of rn-Conditioned
Lyapunov Equations," Proc. American Control Conf., San Francisco, California; June 1993;
pp. 1588-1592.

[201 Hench, J.J., and A.J. Laub, "On the Numerical Solution of the Discrete-Time Periodic Riccati
Equation," Proc. 11th Int'l. Symp. on Math. Theory of Networks and Systems (MTNS);
Regensburg, Germany; August 1993.

[21] Pandey, P., and A.J. Laub, "A Note on Invariant Subspaces of Hamiltonian Matrices," Proc.
32nd IEEE Conf. on Decision and Control, San Antonio, Texas; December 1993; pp. 3150-
3155.

[22] Kenney, C.S., and A.J. Laub, "A Statistical Approach to Condition Estimation," Proc. 32nd
IEEE Conf. on Decision and Control, San Antonio, Texas; December 1993; pp. 3156-3161.

[23] Kenney, C., and A.J. Laub, "Small-Sample Statistical Condition Estimates for General Matrix
Functions," SIAM J. Sci. Comp., 15(1994), 36-61.

[24] Paiel, R.V., A.J. Laub, and P.M. Van Dooren, "Introduction and Survey," Part 1 of Numerical
Linear Algebra Techniques for Systems and Control, R.V. Patel, A.J. Laub, and P.M. Van
Dooren (eds.), IEEE Press, Piscataway, New Jersey, .J994, pp. 1-35.

[25] Hench, J.J., C.S. Kenney, and A.J. Laub, "Methods for the Numerical Integration of Hamil-
tonian Systems," to appear in Circuits, Systems, and Signal Processing, 1994.

[26] Hench, J.J., and A.J. Laub, "Numerical Solution of the Discrete-Time Periodic Riccati Equa-
tion," to appear in IEEE Trans. Aut. Control, June 1994.
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[27] Gudmundsoon, T., and A.J. Laub, "Approximate Solution of Large Sparse Lyapunov Equa-
tions," to appear in IEEE Trans. Aut. Control, May 1994 (see also Gudmundsson, T., and
A.J. Laub, "Computing the Hankel Singular Values of Large, Sparse Linear Systems," Prec.
American Control Conf., Chicago, IL; June 1992; pp. 664-6M5).

[281 Kenney, C.S., and A.J. Laub, "A Hyperbolic Tangent Identity and the Geometry of Padi
Sign Function Iterations," to appear in Numerical Algorithm., 1994.

[29] Erickson, M.A., R.S. Smith, and A.J. Laub, "Finite-Dimensional Approximation and Error
Bounds for Spectral Systems with Partially Known Eigenstructure," to appear in IEEE Trans.
Aut. Control, 1994 (see also Proc. 1993 CDC, pp. 1848-1853).

[30] Ghavimi, A.R., and A.J. Laub, "An Implicit Deflation Method for m-Conditioned Sylvester
and Lyapunov Equations," to appear in Int. J. Control, 1994.

[311 Erickson, M.A., K.S. Smith, and A.J. Laub, "Power Methods for Calculating Eigenvalues and
Eigenfunctions of Spectral Operators on Hilbert Spaces," to appear in Int. J. Control, 1994.

[32] Ghavimi, A.R., and A.J. Laub, "Computation of Approximate Null Vectors of Sylvester and
Lyapunov Operators," to appear in IEEE Trans. Aut. Control, 1995.

[33] Gudmundsson, T., C. Kenney, and A.J. Laub, "Small-Sample Statistical Estimates for Matrix
Norms," to appear in SIAM J. Matr. Anal. AppI., 1995.

[34] Erickson, M.A., and A.J. Laub, "An Algorithmic Test for Checking Stability of Feedback
Spectral Systems," to appear in Automatica, 1995.

[35] Ghavimi, A.R., and A.J. Laub, "Backward Error, Sensitivity, and Refinement of Computed
Solutions of Algebraic Riccati Equations," to" appear in Numerical Linear Algebra with Ap-
plications, 1995.

1.2 Graduate Students Supported by this AFOSR Grant

The following six Ph.D. students have been supported in whole or in part by this AFOSR grant:

1. Stephen C. Stubberud (September 1992)
Fast and Reliable Approximation Methods for Matrix Problems in Control

2. John J. Hench (September 1992)
Numerical Methods for Periodic Linear Systems

3. Thorkell T. Gudmundsson (September 1992)
Implicit Matrix Approximations in Control Theory

4. Philip M. Papadopoulo. (June 1993)
Numerical Algorithms for Large-Scale and Ill-Conditioned Matrix Equations in Control

5. All R. Ghavimi (June 1993)
Iterative Methods for Large-Scale and Nearly Singular Matrix Equations in Control Theory

6. Mark A. Erickson (expected, June 1994)
Computational Methods for Infinite-Dimensional Control Systems

Note that 5 of the above 6 students are U.S. citizens. Gudmundsson is a citizen of Iceland. In
addition to the above, two other Ph.D. students also work in the P.l.'s research group: Thomas
A. Bryan (October 1992), Analysis and Sensitivity of Direction-Finding Algorithms and Michael
Reese (Ph.D. expected, June 1996). Both are U.S. citizens.
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1.3 External Honors, Awards, etc.

The following external recognition has been accorded the P.I. during the course of this grant:

1. In 1991, the P.I. was the (elected) President of the IEEE Control Systems Society. In the
course of this service, he authored many editorials and "President's Messages" relating to
the field of control. These appear in IEEE Trans. Aut. Contr., 36(1991), p. 2 and in IEEE
Control Systems Magazine, 1991: January (p. 107), February (p. 50), April (p. 79), June (pp.
48-49), August (p. 3), October (p. 36), December (p. 9).

2. In December 1991, the P.I. was presented with a Distinguished Member Award by the IEEE
Control Systems Society, one of about 40 so recognized in this 11,000-member professional
society.

3. In December 1993, the P.I. received the Control Systems Technology Award from the IEEE
Control Systems Society "for pioneering efforts and continuously advancing the state of the
art in Computer-Aided Control System Design." This is a major career research award.

2 NARRATIVE

Our research has the following basic goals:

"* Create new algorithms for important generic numerical problems arising in control engineering
(and other engineering and scientific fields), especially those involving large-scale and ill-
conditioned matrix equations.

"* Facilitate the development of next-generation (parallel and vector) algorithms and codes for
computer-aided control system design.

"* Raise the level of computational capability and understanding in the academic, industrial,
and governmental communities [24].

The primary objective of this particular grant has been the study of algorithms for solving
ill-conditioned matrix equations arising in control, filtering, and system theory. Much of our work
has concentrated on matrix Riccati and Lyapunov equations which are absolutely fundamental to
the field. Substantial progress has been made in other areas as well and we give the highlights of
some of the more exciting contributions below.

1. Large-Scale and Ill-Conditioned Matrix Equations: We have made substantial progress in
pursuing various iterative algorithms for solving large-scale and ill-conditioned computing problems
in control. For example, because of our previous and continuing research, the matrix sign method
has now become a standard tool for solving large-scale and ill-conditioned matrix Riccati equations,
as arise, for example, in H. control and distributed parameter control systems [91. An extensive
survey of matrix-sign-function properties, algorithms, and applications has been published in one
of the leading British applied mathematics journals [7]. Our new algorithms have proven especially
amenable to implementation on both parallel and vector computers, and Riccati equations of order,
say, 100 can be solved reliably in less than a second! Moreover, our research is helping establish the
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algorithmic foundation for some of the next generation of computer-aided control design software.
We have applied our new algorithms successfully to some "real-world" large-scale problems. In [1]
and [81 a discussion is given of the numerical solution of Riccati equations of order 556 (involving
Hamiltonian matrices of order 1112) in joint work with Rockwell's Rocketdyne Division. The
problem derives from a model associated with Space Station Freedom in which 278 modes are
included [131.

We are continuing a rather substantial research effort on the matrix sign function and its
applications, including additional improvements to the basic Newton iteration such as "inverse-
free" methods [15] and better understanding of the use of scaling factors to accelerate convergence
[4]. Other numerical research, crucial to successful implementation as software, is devoted to
issues of conditioning, numerical stability, iterative improvement, and deeper understanding of the
geometry of convergence including global convergence. The latter has been greatly simplified by
the discovery of a beautiful new unifying theory based on a formula involving hyperbolic tangents
[28].

In addition to matrix sign iterations, we have made significant progress in studying other iter-
ative algorithms for solving large-scale and ill-conditioned computing problems in control. Among
these are conjugate gradient methods for Riccati and other general matrix equations [2], least-
squares solution methods for nearly singular Lyapunov and Sylvester equations [19], implicit and
explicit deflation methods via inverse iteration for certain nearly singular matrix equations [30], and
new methods for the computation of approximate null vectors of Sylvester and Lyapunov operators
[32]. We have also developed an efficient algorithm for estimating the dominant eigenvalues and
corresponding eigenvectors of the solution to a Lyapunov equation without first solving the equa-
tion explicitly [27]. Such an approach is necessary when coefficient matrices are large but sparse.
An immediate application of this method is to balanced-truncation order reduction of linear sys-
tems. Curiously, exisiting methods for balancing are not actually applicable to large sparse systems.

2. Matrix Interpolation for Frequency Response and Related Problems: The P.I.'s 1981
Hessenberg algorithm is one of the most efficient and reliable algorithms for computing a frequency
response matrix from state-space data (including so-called descriptor models). We have recently de-
veloped a novel algorithm, based on rational interpolation of matrix-valued functions, for enhancing
the Hessenberg method [11], [141, [17]. A rather clever use of a certain resolvent identity avoids the
potential inaccuracies inherent in the subtraction of nearly equal values in the calculation of finite
differences. When coupled with a pole/zero cancellation method, the resulting interpolation algo-
rithm is accurate and efficient. Somewhat serendipitously, the error in this procedure has the form
of a modified frequency response matrix, which means that the interpolation algorithm can be used
to approximate both the response matrix and the error. Commercial software houses are anxious
to implement this algorithm in MATLAD and XMATD to support their next-generation algorith-
mic capability. Other applications of this interpolation method include the evaluation of matrix
exponentials and a parameter dependence study of solutions to the periodically time-dependent
Schr6dinger equation as approximated by a finite system of ordinary differential equations [18].
We have been able to demonstrate a dramatic decrease in computation time for an example of the
latter used in modeling an electron confined to a quantum well.

3. Advances in Numerical Linear Algebra: As a by-product of our control-related research,
we study and develop many new algorithms of independent interest in the field of numerical linear
algebra. For example, a significant new algorithm has recently been discovered in connection with
the problem of computing the periodic nonnegative definite stabilizing solution of the discrete-time
periodic Riccati equation [201, [261. The algorithm determines a simultaneous triangularization, by
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orthogonal equivalences, of a sequence of matrices associated with a cyclic pencil formulation related
to the Euler-Lagrange equations, and no matrix products need be formed explicitly. Algorithms
for the continuous-time periodic Riccati equation have also been studied [25).

A key question in any serious numerical computing is to ask how near a given problem is to a
problem possessing some sort of undesirable behavior such as singularity or instability. A significant
paper [3] has been published in this area of matrix "nearness" problems. A thorough mathematical
treatment is given in [3] for the problem of determining the nearness to uncontrollability of a
given controllable state-space model. The key tool used in the analysis is a connection between
nearness to unstabilizability and the behavior of the unique symmetric positive definite stabilizing
solution of an associated algebraic Riccati equation. We have also continued to make noteworthy
progress in other aspects of the numerical solution of Riccati equations. For example, in [5] we
have succeeded in deriving and extending the scaling results of Kenney, Laub, and Wette (Sys.
Contr. Lett., 12(1989), 241-150) for the Schur method to the discrete-time case. Both theoretical
and computable bounds are determined and we note that the discrete-time case turned out to be
somewhat nontrivial to handle.

An important numerical result relating to the matrix triples commonly found in so-called matrix
second-order models has been published in [6]. The basic idea is to establish which canonical forms
are obtainable under orthogonal equivalence for the standard matrix triple consisting of a mass
matrix, a stiffness matrix, and a damping matrix. Equivalence under orthogonal transformations
is, of course, crucial for numerical reliability. It is established that an arbitrary damping model can
not be used but that orthogonal reduction of the commonly used modal damping model can be so
reduced.

Another significant advance in numerical linear algebra is a complete new backward error anal-
ysis for Lyapunov, Sylvester, and Riccati equations [351. This theory has immediate application to
sensitivity analysis and accuracy assessment of these key matrix equations in control.

Finally, another key result with a strong numerical linear algebra flavor has been made in the
robust control area. A new procedure has been developed that obviates the need for explicit Riccati
equation solution in the standard two-Riccati-equation state-space approach to the H.. problem.
Instead, our new method works directly and only with bases for invariant subspaces (161, (211.

4. Algorithms for Infinite-Dimensional Systems: Control system analysis and synthesis
problems associated with linear time-invariant infinite-dimensional systems have received much at-
tention in recent years. Some of our recent research focuses on the use of the eigenstructure of
certain operators on infinite-dimensional HUbert spaces to compute answers to cuntrol problems.
In particular, our results can be applied to systems that do not have elgenvalues and eigenvec-
tors available in dosed form, e.g., systems described by pArtial differential equations (PDEs) with
spatially variant parameters, systems with two- or three-dimensional domains with complicated
boundary shapes, and so forth.

Three basic problems are solved for classes of systems that can be formulated as bounded
spectral systems. First, power, inverse power, and orthogonal iteration methods are formulated for
directly calculating eigenvalues and eigenfunctions of classes of spectral operators associated with
the systems of interest [121, [31]. Second, bounds are derived on the error incurred by approximating
canonical parabolic and hyperbolic systems with finite-dimensional modal models [10], [29]. These
bounds require only a finite number of eigenvalues and eigenfunctions, which can be calculated with
the proposed power methods. Next, a computable test is formulated for verifying the stability or
instability of the feedback connection of a class of spectral systems and either state feedback or a
finite-dimensional linear time-invariant controller [34). This test also requires only a finite number
of eigenvalues and eigenfunctions of the spectral system in question.
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Finally, a collection of MATLAD functions has been developed that implements the power meth-
ods, frequency-domain model and bound calculations, and stability tests developed and studied
in our research. The package is designed to be used in conjunction with the p-Tools toolbox to
enable the user to perform modeling, H,. and D-K iteration controller synthesis, stability analysis,
simulation, and animated visualization for systems described by parabolic and hyperbolic PDEs,
possibly with spatially variant parameters. The utility of the collection has been demonstrated on
several detailed examples.

5. Small-Sample Statistical Condition Estimation: A major and fundamental new theory
has been developed in the area of statistical estimation of condition [221, [23]. This is the principal
focus of our new AFOSR grant.

Efficient estimation of matrix norms has long been a central problem in condition theory, es-
pecially for situations where the matrix in question is not known explicitly or is too expensive to
compute directly. Generally speaking, the best that one can hope for is that the result of applying
a matrix to a given vector is available. In a more general setting, we may wish to measure the
sensitivity of a function that maps matrices into matrices by estimating the norm of the lineariza-
tion (Fr~chet derivative) of the function about a particular matrix. This can be approximated in
a very useful and efficient way using finite differences. Sometimes, and this is generally true of
so-called power methods for computing large singular values, it is also necessary that the transpose
of a matrix, or its application to a given vector, also be available. This is not always possible in
an efficient way in many important applications, particularly when the domain and co-domain of
a function have different dimensions.

Because of this problem, we have developed an exciting new form of condition estimation,
wherein the transpose requirement is dropped and it is assumed only that matrix-vector products
can be obtained at a reasonable cost. Using a finite-difference approach, this cost is generally no
more than the cost of one extra function evaluation, and for many problems can be less.

Somewhat surprisingly, the statistical theory associated with the norms of matrix-vector prod-
ucts for random vectors can be worked out in great detail and a rather complete analysis derived
that predicts the accuracy of norm estimates for a matrix from just a few matrix-vector products.
The theory is based on the distribution of inner products between a fixed vector v E R" and certain
randomly selected unit vectors z, and many useful analytical results are available. By taking more
than one inner product, say m of them, we obtain an mth-order estimate for the norm of v. That
is, the probability of a bad estimate (off by more than a factor w) is less than a constant divided
by win. Thus, only a few inner products are needed to render the possibility of a bad estimate for
the norm of v extremely small.

This procedure can be extended to estimate the Frobenius norm of a matrix M with just a few
matrix-vector products Mzi, although this case is, in many respects, much more difficult. Some
important first results and a key conjecture have been reported in [33].

Our statistical condition estimation theory is applicable to a wide variety of applications, many
of which .are of interest to control engineers, including sensitivity of the matrix exponential, sen-
sitivity of Lyapunov and Riccati equations, distance to uncontrollability, and so forth. We are
currently investigating many of these problems in our ongoing research.

6. Software Implementations: One of the most important things we can do in our research
is to implement our algorithms as efficient, robust, and widely available software. Experience has
shown that if we don't personally undertake that critical final step, others can't or won't. We have
recently created new Riccati codes to run under MATLAB. Not only are these the most efficient
currently available, but also they handle most "singular" cases, including Riccati equations of
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the type that arie in both continuous-time and discrete-time H,, control. Some of our recent
perturbation results for the Hamniltonian eigenvalue problem will be useful here. The new Rticcati
codes will be very useful in spectral factorization and a wide variety of other applications. They
will also be exploited heavily in a new toolbox project with researchers at INRIA. This toolbox,
called LMI-Lab, is designed to handle linear matrix inequalities, a topic of intense current interest.

Other software projects in which we are currently engaged include more efficient adaptive codes
for frequency response and implementation of our recent results on small-sample statistical condition
estimation for matrix-valued functions and equations. These will be key features of next-generation
algorithmic capability in CACSD.

Finally, in addition to MATLAB-type software implementations, we are also looking at real-time
implementations and implementations of appropriate algorithms on massively parallel machines.

In summary, we continue to be excited about the progress that has been made on a wide
variety of important numerical problems arising in control and system theory. We are extremely
enthusiastic about the prospects and opportunities for further research.
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