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AFIT/DS/ENG/94J-05

Abstract

This dissertation presents a new model for computing the angle dependent performance

measures of an adaptive-optics system. By incorporating diffraction caused by the index-of-

refraction variations of the atmosphere, the phase and amplitude fluctuations of the propagating

wave are computed. New theory is presented, that uses the diffraction-based propagation

model to yield optical transfer function (OTF) expressions that are more accurate as compared

to current theory that neglects diffraction. An evaluation method for calculating the OTF

is presented that utilizes a layered atmospheric model and normalized OTF expressions.

The diffraction model is also used to present the first OTF signal-to-noise ratio (SNR)

expressions that are a function of separation angle between the beacon and the object in

an adaptive-optics system. An evaluation method for the SNR is presented that utilizes

normalized correlation functions which are valid over a wide range of atmospheric conditions

and correction geometries. An analysis of the angle dependency of the point spread function

(PSF) is presented using the derived OTF expression. The diffraction model is then used

to develop a new adaptive-optics wavefront correction algorithm that results in an extended

correctable field-of-view (FOV) as compared to current correction algorithms.

x



A diffraction-based model of

anisoplanatism effects in adaptive optic systems

I. Introduction

1.1 Overview

The heating and cooling of the earth along with the mixing effects of the wind causes

the atmosphere to be non-homogeneous and turbulent The non-homogeneous aspect means

that the atmosphere at one point in space is different from the atmosphere at another point in

space. In particular, temperature fluctuations in the atmosphere cause the index-of-refraction

of the atmosphere to be random in space and time. The study of how turbulence affects

a propagating wavefront is well advanced with one of the most complete references being

written in 1961 by Tatarski (46). As the wavefront from an object, such as a star, travels

through the atmosphere, different parts of the wavefront will travel through different indices

of refraction. This will cause different parts of the wavefront to experience different optical

path lengths (20). The non-uniform optical path- lengths result in bending of the wavefront.

This bending causes different portions of the wavefront to travel in slightly different directions

resulting in optical field perturbations. These optical field perturbations cause a significant

portion of the blur experienced when imaging through the atmosphere and is the limiting factor

in the resolution of an image observed from a large aperture ground based optical imaging

system. However, through recent advances in adaptive-optics, it is now theoretically possible

to view an exo-atmospheric object at resolutions near the diffraction limit of the imaging

system (18).

Wavefront correction through the use of adaptive optics has been widely studied as

a means to overcome turbulence effects (1, 2, 17, 18, 19, 34). Babcock first suggested

'the possibility of compensating astronomical seeing' in 1953 (1), and the relatively recent

1



advances of Welsh and Gardner in the areas of performance analysis and the use of laser guide

stars (54, 55), may have hastened the declassification of military involvement in adaptive-

optics in May 1991. Since that time, research activity has increased and reports concerning

adaptive-optic applications have made their way to the open literature (8, 31, 45). Recent

work at AFIT in the areas of adaptive-optics and image reconstruction include the work of

Johnston in the area of multiconjugate adaptive optics (22) and the work of Pennington in

comparing the performance of the shearing interferometer and the Hartman wavefront sensor

for extended sources and large subaperture spacing (38). Also, Stoudt investigated a technique

for improving the image quality through a post processing algorithm that selected the higher

quality frames for the image reconstruction (44). VonNiederhausem developed an analysis

program for obtaining system transfer functions as a function of number and size of sensor

subapertures, sensor noise, and atmospheric turbulence (51). These system transfer functions

were then used in the image reconstruction technique identified as 'Self-Referenced Speckle

Holography' (53). In addition, Koeffier researched a technique for measuring the strength of

the turbulence and wind velocity as a function of altitude (26).

The theory of adaptive optics states that by measuring the wavefront phase of a reference

beacon such as a star, a laser guide star (13, 54, 55, 56), or a glint off of the object to be imaged,

and then subtracting this phase from the object wavefront, an improvement in image quality

will result Wavefront measurements are made with a wavefront sensor (WFS) such as a

Shack-Hartman sensor (18). These measurements are then couverted into deformable mirror

control commands (52) which are used to drive the actuators of a deformable mirror resulting

in the desired wavefront correction. Theory indicates that perfect correction can be attained

with a perfect wavefront correction system when the object wavefront propagates along the

same path as the beacon. This perfect correction is referred to as diffraction limited correction.

Over the past several years, experiments have been performed using actual adaptive-

optic systems (12, 36, 57). The results have been encouraging but have never quite matched

the theoretical predictions of diffraction limited correction. One of the reasons that the ideal

diffraction limited correction has been unattainable is that a wavefront correction system can
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never be perfect. There will always be errors in the sampling and in the reconstruction of the

wavefront. Much work is being done to minimize these errors, but, as this analysis will show,

for a large aperture optical system in a turbulent atmosphere, the use of adaptive-optics will

never allow the diffraction limit to be achieved. An understanding of the problems involved

is obtained by examining a typical correction geometry.

In the most general case, the object and beacon locations are separated by the object

angle, V. as shown in Figure 1. However, the performance of the adaptive-optics system

is known to degrade as ? increases and useful performance is limited to a small range of

angles about the beacon (11, 12). The degradation in performance results from the turbulence

effects along one optical path being only partially correlated with the turbulence in the other

path. This partial correlation effect is referred to as anisoplanatism (10) and the maximum

angular separation where good correlation is maintained is called the isoplanatic angle (0o). In

addition, the effect of amplitude variations in the received wavefront degrades the performance

of an adaptive-optics system which inherently only corrects for phase effects. Experimental

results indicate that amplitude as well as phase variations are a real concern (5).

Proper accounting of phase and amplitude variations in a received wavefront requires

an analysis based on diffraction. Much of the early work of anisoplanatism justifies dropping

diffraction effects part way through the analysis (10). This analysis approach, commonly

referred to as geometric optics, is widely used (23, 32, 33, 43, 49), and assumes that the

only effect the atmosphere has on a propagating wave is in the form of wavefront phase

aberrations due to integrated optical path differences. McKechnie, for example, breaks the

atmosphere into phase screens which simply add a phase to a propagating wave (32). In

good seeing conditions where the atmospheric profile contains little high altitude, or far-field

turbulence, the use of a geometric optics calculation is convenient and yields accurate results.

However, as conditions deteriorate in the form of a greater amount of high altitude turbulence,

a performance analysis that neglects diffraction becomes less accurate.

The analysis presented here considers an adaptive-optics system which is able to per-

fectly measure the wavefront phase from a reference beacon, and in turn perfectly apply this
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Figure 1. Object and beacon geometry

correction to the object wavefront. The constraint of an ideal adaptive-optics system, allows

the analysis to focus on atmospheric effects, which for any large diameter optics will define

the upper bound of performance. A diffraction calculation based on the work of Lee and

Harp (30), and Tatarski (46) is used to account for both phase and amplitude perturbation

effects of a wavefront in the pupil plane. The diffraction technique consists of expanding

the atmosphere into thin slabs and then resolving the refractivity field within each slab into

Fourier components of varying wave number. Each Fourier component is represented as a

sinusoidally varying grating which diffracts the incident wave. The effect on a wavefront

from each Fourier component in each slab can then be calculated and summed in the aperture

to yield the resulting wavefront. The adaptive-optics system applies a phase correction, and

performance measures are calculated based on the residual wavefront phase and amplitude

perturbations in the pupil. Weak turbulence is assumed, which implies that the diffracted

wave is relatively weak Therefore, the effects of the diffracted wave being diffracted again
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by subsequent slabs is ignored. Since the adaptive-optics system only corrects for phase

perturbations, this diffraction analysis allows a more accurate calculation of the system per-

formance than the current theory that neglects diffraction. The improvement in accuracy is

due to the diffraction analysis accounting for both phase and amplitude effects. This analy-

sis becomes essential for obtaining accurate performance results for adaptive-optic systems

operating in an atmosphere containing high altitude turbulence.

Since an adaptive-optics system uses information measured along one path of th(

atmosphere to correct a wavefront passing through a different path. the analyzed performanc.

measures will be dependent on the angular separation, or 'object angle' between the paths.

One performance measure of an adaptive-optics system is the average optical transfer function

(OTF). The OTF represents an excellent measure since other measures such as resolution, the

point spread function (PSF) and the Strehl ratio can be derived from the OTF The OTF is a

measure of the attenuation of each object spatial frequency. Knowledge of the PSF is useful

since in a shift invariant imaging system, the image intensity is determined by convolving the

PSF with the object intensity. However, since an adaptive-optics imaging system yields an

angle dependent PSF, the system is not shift invariant. The image intensity in a system that

is not shift invariant involves a superposition integral of the shift dependent PSF (in our case

- angular dependent PS1) and the object intensity distribution. The Strehl ratio is a useful

measure in adaptive-optics since it defines how much the peak of the PSF has been reduced

compared to a diffraction limited peak. An equally important measure is the OTF signal-to-

noise ratio (SNR). Knowledge of the SNR is particularly important when image reconstruction

is used in conjunction with adaptive-optics imaging (43). In image reconstruction, the system

OTF can be used in conjunction with the measured image intensity to obtain an estimate of

the actual object intensity. The SNR, which is a measure of the variability or randomness of

the OTF relative to the mean value of the OTF, provides a measure of the quality with which

the spectral components of the OTF can be used to reconstruct the object spectrum.

This research effort is the first to explicitly define a phase and amplitude OTF of

an adaptive-optics system (48) and the first to yield diffraction based OTF SNR results
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that are a function of the angle between the reference beacon and the object (47). Fried

developed expressions for the angle dependent OTF but dismissed diffraction effects (9), and

Roggemann (42, 43) produced OTF SNR results but did not consider the angle dependency.

Additionally, previous analyses utilize the Kolmogorov power spectrum for the atmo-

spheric index of refraction variations. The use of the Kolmogorov power spectrum explicitly

contains the assumption that the 'outer scale', or the largest eddy size of the turbulence, is

infinite, creating a pole in the power spectrum at the index variation wavenumber, t- = 0 (14).

There is no general agreement regarding the size of the outer scale, L,. Conventional mea-

surements put Lo at a value greater than most telescope diameters (5 - 10 meters), while

McKechnie and others believe that the value of L, is much smaller (20 - 40 cm) (6, 33). The

analysis presented here is completely general with respect to the refractive index power spec-

trum, and allows for calculations of the effect of finite inner and outer scales. In Chapter II,

an analysis of the effect of the inner and outer scales on the average OTF is presented. This

research effort produced the first analysis of this type on the inner and outer scale effects (48).

Finally, a diffraction based analysis yields additional information regarding the prop-

agating wavefronts. This information is used to develop a new adaptive-optics wavefront

correction algorithm that increases the correctable field-of-view (FOV) of an adaptive-optics

imaging system.

1.2 Problem statement

Establish a new model for the theory and numerical evaluation of the perfor-
mance measures of an adaptive-optics system that is valid over a wide range of
atmospheric turbulence parameters and is a function of separation angle between
the reference beacon and the object source. The new model is to account for
diffraction effects and provide for an effective evaluation of the average optical
transfer function, the signal-to-noise ratio, and the point spread function.

1.3 Contributions

1. Development of a new diffraction-based model of atmospheric propagation for use in

calculating the angle dependent performance measures of an adaptive-optics system.
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The model incorporates diffraction to track both the amplitude and phase effects. An

evaluation method is presented that results in rapid evaluation of the average OTF

under changing atmospheric conditions (48). The OTF analysis is then extended by

computing the angle dependent PSF through the inverse Fourier Transform of the OTF

2. Development of a method for calculating the angle dependent OTF variance and SNR

of an adaptive-optics system. This method uses the model discussed in Item 1 above

to include both amplitude and phase effects. An evaluation method is presented that

results in the rapid evaluation of the SNR under changing atmospheric conditions as

well as correction geometries (47).

3. Development of a new adaptive-optics wavefront correction algorithm that extends

the correctable FOV of the adaptive-optic system. The new model developed in Item

1 above yields additional information regarding the propagating wavefronts. This

additional information is used to develop the new correction algorithm.

1.4 Outline of Dissertation

The remainder of this dissertation is organized as follows. Chapter II presents the

derivation of the object angle dependent average OTF. This derivation consists of developing

the wave perturbation equations in Section 2.2 and separately deriving the expression for the

amplitude and phase OTFs in Sections 2.3 and 2.4 respectively. Chapter H also presents

simplifications necessary to rapidly evaluate the OTF's under changing atmospheric condi-

tions (48). Chapter MI presents an analysis of the object angle dependent variance and SNR

of the OTF, along with the required simplifications and method of evaluation (47). Chap-

ter IV presents an analysis of the the PSF and the Strehl ratio utilizing the OTF developed

in Chapter KI. Chapter V considers a new wavefront correction algorithm that has the effect

of extending the correctable FOV of the adaptive-optics system. This correction algorithm is

a natural utilization of the wave perturbation equations developed in Section 2.2. Finally, a

summary and conclusions of this research effort are presented in Chapter VL
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ff. The angle dependent optical transfer function (OTF)

2.1 Introduction

The purpose of this chapter is to develop a model that allows for the derivation and

evaluation of an angle dependent average optical transfer function (OTF) for an ideal adaptive-

optics system (48). The model is to be valid over a wide range of atmospheric conditions

and is to incorporate diffraction to properly track phase and amplitude effects of the corrected

wavefront in the pupil plane of the adaptive-optics system. An understanding of the modeling

of atmospheric turbulence as well as the use of phase screens is assumed. A model of

atmospheric turbulence is presented in Appendix A and the concept of phase screens is

discussed in Appendix B. The analysis begins by considering a linear imaging system.

In a linear imaging system, the object intensity may be considered to be composed

of a sum of the object spatial frequencies. The response of a linear system to each spatial

frequency component can be calculated separately. An image is formed by summing each

spatial frequency at the output of the system. The OTF is a measure of the attenuation of each

object spatial frequency as it passes through the system. The linear system of interest in this

research is the atmosphere along with the adaptive-optics imaging system.

The atmosphere imposes optical distortions on a propagating wave due to the index-

of-refraction variations. These variations are random, thereby producing an optical wave

that must be considered a random process. The OTF that models the imaging system will

also be a random process where the quantity of interest is the average value of the OTF. We

distinguish between the phase and amplitude variations of the corrected field in the pupil

plane of the adaptive-optics system by defining Hp as the average OTF due to the residual

phase of the corrected wavefront in the pupil, and H. as the average OTF due to the amplitude

variations of the corrected wavefront in the pupil. Based on the work of Tatarski (46), Fried has

shown that phase and amplitude variations of a wavefront, resulting from propagating through

atmospheric turbulence, may be considered as independent wide sense stationary Gaussian

random variables (9). Therefore, H, and Hp can be calculated separately and multiplied
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together to form the overall OTF due to the atmosphere. The OTF of the optics will not be

addressed in this chapter, but the atmospheric OTF can always be multiplied by the optics

OTF to yield an overall system OTF

We begin by calculating the wavefronts from a beacon and an object that have propagated

through the atmosphere at an angle V as shown in Figure I on page 4. This calculation includes

diffraction which tracks the phase and amplitude variations in the propagating wave. The

adaptive-optics system subtracts the phase of the beacon field from the phase of the object

field. The calculations of Ha and Hp are then based on the correlation of the amplitude and

phase variations of the residual field in the pupil plane. The OTF curves calculated here will

be expressed in terms of the shift variable - located in the aperture of the system. Once the

optics of the system are chosen, the shift variable can be related to spatial frequency V- by
7 = -L, where f is the focal length of the optics and A is the optical wavelength.

The remainder of this chapter is organized as follows. In Section 2.2, expressions are

presented for the amplitude and phase perturbations of a wave that has propagated through

atmospheric turbulence. Much of the actual derivation of these equations is deferred to

Appendix C. The amplitude and phase perturbation equations are then used to derive the

expressions for Ha and Hp in Sections 2.3 and 2.4, respectively. The derived OTF expressions

are kept general with respect to the refractive index power spectrum. These generalized

expressions allow for the analysis of the effect on the OTF due to the scale sizes of the

turbulence as presented in Section 2.5. In Section 2.6, a new method of modeling the

atmospheric turbulence through the use of discrete layers at preselected altitudes is presented.

The method of preselected altitudes is essential in obtaining an OTF that can be scaled to

different atmospheric conditions. Section 2.7 introduces the normalized OTF that is shown

to be scalable over a large range of atmospheric conditions. Numerical results using the

normalized OTF are then presented in Section 2.8. In Section 2.9, a direct comparison is

made between the diffraction method of OTF calculation, as presented in this chapter, and the

geometric optics method of OTF calculation. Finally, Section 2.10 summarizes the chapter.
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22 Phase and amplitude perturbation equations

This section develops the necessary equations to describe the amplitude and phase

variations of a wave that has propagated through the atmosphere at some angle V with respect

to the reference direction (see Figure 1 on page 4). We begin by deriving the wavefront

perturbations resulting from a single Fourier component of the refractivity field in a single

thin slab of the atmosphere located at an altitude 77. We will then integrate over all Fourier

components and all altitudes to obtain the total wavefront perturbations. A single Fourier

component of spatial frequency, -, represents a sinusoidal refractive index variation. This

single frequency component slab located at an altitude q, imposes a phase variation on the

incident wavefront given by A(7, -) cos(W. - + 4o(7, it)), where A(7, 1) and 0o(7, i) are

related to the amplitude and phase of the refractivity field Fourier component as shown in

Appendix B, and X" is a position vector in the plane of the slab. Propagating the perturbed

wavefront to the pupil plane creates a complex wavefront which is fully described by its

amplitude and phase components.

The process of determining the amplitude and phase variations in a propagating wave

is accomplished using the approach of Lee and Harp (30) with the complete derivation given

in Appendix C. The amplitude variation is given by

P.(77 KXV) = A(Qi7)sin(77a)cos(77/- (K. + (o0, ))), (1)

and the phase variation is given by

PP(jK',X,) = -A(,7,it)cos(iia)cos(3- (i. •+ •o(7,•))), (2)

where, a = I /f = R. 4, and k is the wavenumber of the propagating wave. The angle

dependence of the amplitude and phase perturbations is given as 0 in the left hand side of

Eqs. (1) and (2). This is a valid representation since, as shown in Appendix C, the orientation

of d defines the x axis of the system (ie., 0 = 0k). The amplitude and phase perturbations

of Eqs. (1) and (2), contain two differences from those given by Lee and Harp. First, an
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approximation is used in place of Lee and Harp's expression for the wavenumber of the

scattered wave, (r - - k). Using the binomial expansion and the assumption that

K < k, the wavenumber of the scattered wave is given by

vk 2 -P c2 - k=k K2I (3)

where, K = . Second, Lee and Harp only considered on-axis propagation. With on-

axis propagation, all orientations of - will scatter the incident wave at angles with the same

magnitude. The analysis presented here considers off-axis propagation where the orientation

of W with respect to the direction of incident propagation now determines the direction of the

scattered wave. An off-axis propagation analysis produces the j/3 term of Eqs. (1) and (2),

where 7/70 = 77. 'R . The angle dependence of Eqs. (1) and (2) yields the angle dependence of

the performance measures discussed in this dissertation.

The idealized adaptive-optics system subtracts the measured phase of the beacon from

the phase of the object. The residual phase of the adaptive-optics system for this single slab,

designated APp(i1 , W, X., V), is the difference between PP,, K-, -, V) and Pp W, 1, 0):

APp 7, T, ,i9) = -A(i 1 , 1) cos(Ira) cos(770 - (K-. + Oo'q, ( %.)))
+A(77, g Cos7tos s~- K X l K)) (4)

The total residual phase is found by integrating over all altitudes il and all frequencies ,ý.

APP( 09) = -JJ dd£(A(ri, )cos(Wo) cos(r70 - (W. ±" + 0.o(1, _)))

-A(77, 9) cos(77a) cos(K- - + 00(r/, I))). (5)

This analysis is simplified by use of complex phasor notation where the amplitude and residual

phase variations can be written as

P"(9, t) = -1 {JJd,7d9A(7?7, }'() sin(TIa)ejT} (6)
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and,

APP(, t9) = 1{ dt/d/C•A (7, 1)0e-( cos(ta)(1 - e (7)

where. A(q, X) = A(i7, K)e-j3o(q'R) and 1R is an operator that takes the real portion of a

complex quantity. The R operator is now dropped and work continues with the complex

phasor representations P. (Z, d) and APp(Z, V) given by

.PV) = Jf dirdKA(q, -)e-J(' sin(7a)e7, (8)

and,

A PP ) = JJ diqdKA(r7, K)e-J(') cos(i7a)(1 - e (9)

23 Amplitude OTF (Ha)

The derivation of Ha treats amplitude effects rather than log-amplitude effects as given

in other research (9, 14). The log-amplitude can be a useful quantity and is used by many

researchers in the study of atmospheric propagation (4, 9, 7, 28). By assuming Gaussian

statistics and small amplitude variations, the log-amplitude leads to the wave structure function

as discussed in (14). However, the assumption of small amplitude variations becomes less

valid as high altitude turbulence strength increases. Since the analysis of the amplitude OTF

will not rely on the wave structure function, the final result of this section, Eq. (18), will be

used as a more general amplitude OTF expression which is valid under stronger turbulence

conditions than a log-amplitude result

The derivation of Ha begins by representing the amplitude variations of the wavefront

in the pupil plane as a wide-sense stationary amplitude transmittance function given by

to(•, ) = to + P(., t9), (10)

12



where in general, to is some real and nonnegative bias lying between zero and unity. Here,

we assume to = 1. The average OTF of this transmittance function is then given by (14)

Ha( -)= + rLa(f)Ha(: -- 1 + ra(O) '(1

where P- is a shift vector in the pupil plane and r.( -) = (Pae(,0)ePa ( + ;,o)). The

amplitude correlation function is related to the complex phasor representation of the amplitude

perturbations given in Eq. (8) by

L'~3)=1 11P (/ ) = 21-7(Fafl) = 17Z(Pa( ,0)" P X(-•,T (12)

2= 2

The notation () represents the ensemble average. Here we use the property that the correlation

of the complex representation is twice the value of the real valued correlation (14). Substituting

Eq. (8) into Eq. (12) gives

La )= JJJJ d•di ld?2dK2 (A(i7, r1 )A*(7T2 , K 2 ))e

x sin(,qha) sin(772a~ej(n-n) (13)

The relations given in Appendix B and Appendix D are now used for propagation through

long distances of atmospheric turbulence to yield

(A(77,, R1)A-(T2, K =2)) = 87rk 2 (1 -- 2 -K2)$(KI(, /1), (14)

where, 0 (-, v7) is the three dimensional refractive index power spectrum with K 2 = K2 + P2,

and b is the Dirac delta function. The 6(772 - 171) part of Eq. (14) is a derived relation and

should not be considered as a statement of independence of turbulent layers. Substituting

Eq. (14) into Eq. (13) gives

= 81rk2 J di7dR$(R', q7) sin 2 (I7a)e-j(R-•). (15)
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Note that Eq. (15) is not a function of either 3 or 0. Taking half the real portion of Eq. (15),

the final form of the amplitude correlation function is given by

r,(-) = 41r k f2 dild (C, 71) sin 2 (tla) cos(K• -- ). (16)

Substituting Eq. (16) into Eq. (11) yields an expression for the average amplitude OTF,

H.(/7) = I + 44rk 2ff d7d•4(-, 7) sin"2(a) cos(K. ;3*) (17)a~p ) = 1 + 4rk2ff d77dI4(K, rj) sin 2(r7a)

and, substituting in the expression for a, where a 2 I!, we are left with

1 + 47r k2ff d77d(K,1) sin 2  2k KR P)
Ha(-) =AN 

(18)
1 + 4,rk2ff d7dK(K, 7) sin2 (qZ)

Equation (18) represents the final result of this section. An example of an amplitude OTF

is shown in Figure 2. This figure is simply an evaluation of Eq. (18) where an optical

wavelength of 0.5 microns and a Hufnagel-Valley turbulence profile with a 54 mph upper

altitude wind (21) has been assumed. This turbulence profile is labeled HV-54 in Figure 5. In

this calculation, the Von Karman power spectrum is used, as discussed in Appendix A, with

the inner scale, Lm, set at 1 millimeter and the outer scale, L., set at 5 meters. The use of

turbulence profiles is discussed in more detail in Section 2.6 and an analysis of the inner and

outer scale effects is presented in Section 2.5. Here, it is important only to note the initial

sharp roll off and then the constant value attained by the transfer function. This is consistent

with the amplitude transmittance functions given by Goodman (14) and will be characteristic

of all amplitude OTFs.

2.4 Residual phase OTF (Hp)

The analysis of the average phase OTh (Hp), begins much the same as the last section.

Here the result for the total residual phase given by Eq (5), and the corresponding complex

phasor representation given by Eq. (8), is used to define a phase only transmittance func-
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Figure 2. Amplitude OTF calculated for a wavelength of 0.5 microns, a Hufnagel-Valley
turbulence profile with a 54 mph upper altitude wind (21), and a Von Karman
power spectrum with Lm = 1mm and L, = 5m.

tion (14). The residual phase is considered as a single phase screen with a transmittance of

tp(•, 0) = exp(j APp(•, t9)). The OTF of the phase screen is then calculated using (14)

Hp Vx(j 19)t;GF -Ap( , 0))

(exp(jAP(•, t9)) exp(-jApp(x ,)))

(exp(j(App(-, t0)- AP(- 1A' , 0))))(
1 (19)
1

Assuming that the residual phase obeys Gaussian statistics gives,

Hp(-, V) = exp {-•(APvGF, 0) - iPp(x, -, P ))2)}. (20)
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Expanding the square within the expected value, and using the assumption that the residual

phase is wide-sense stationary, the following expression for the residual phase OTF is obtained:

Hp(', V) = exp {FP(P, t9) - Fv( )(21)

As with the amplitude correlation function, the complex phasor representation of the phase

correlation function is defined as

Fp( W,V) = (A P(,V)APP*(P- , t9)). (22)

Substituting Eq. (9) into Eq. (22) gives

rP(,3, V) = JJJJ d71dW1d712dK2(A(7j 1 , ti)A*(72 , 92))e-(' '-f•2"-))

x cos(i •a)(1 - e"j#77 ) COS(r12a)(1 - e-'in2). (23)

Using the same independence relation given by Eq. (14), yields

rp( - ) = 81k 2 did (., )- S2 o(77)(1 - -jo)(1 -

= 8irk2 Jf dirdg(#, 77) cos2(r/a)I1 - eJon 12e-jg';. (24)

For the final form of the correlation function, half the real part of rp( , V) is considered,

= 47rk2if dldX(, ( )cos(-. -) cos2 (ira)(2 - 2 cos(10/)), (25)r-• 0 , )ulsi

and, substituting in the expressions for a and 3, where c, = - 93 = ", results in

rp(-, ) -= 87rk2 , (,oo)cos2( l)cos(Z• -f)[1 - cos(77. O)]drldK. (26)
2k
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Substituting Eq. (26) into Eq. (21), yields the final expression for Hp:

Hp( -, V) = exp -8irk 2 (j , q) cos( -•--)[f - cos(K, p-)][1 - cos(q'. 1)]dridiJ.

(27)

This is the OTF due to the residual phase of an ideal adaptive-optics system where the beacon

and the object are separated by an angle tý. Note that this OTF is not circularly symmetric

about the zero frequency. An example of a phase OTF is shown in Figure 3. Although the

OTF equations allow for complete two dimensional calculations, the results of Figure 3 are

calculated for -along the axis parallel to V which defines the x axis of the system. This figure

is an evaluation of Eq. (27) with an optical wavelength of 0.5 microns and a Hufnagel-Valley

turbulence profile with a 54 mph wind (21) as discussed in Section 2.6. The object angle, 0,

equals 2.4 grad, which is equal to the isoplanatic angle as defined by Fried (10). Once again,

the Von Karman power spectrum with the inner scale, L,,,, set at I millimeter and the outer

scale, L,, set at 5 meters is used. The effect of inner and outer scale on Hp is discussed in

section 2.5. Here, note the characteristic shape of a phase OTF. The initial sharp roll off is

followed by a much more gradually decreasing value of the OT.

2.5 Effect of inner and outer turbulence scale sizes on the OTF

The purpose of this section is to quantify the significance of the turbulence scale sizes

on the OTF As previously stated, this analysis refrains from taking a stand on the value of

the turbulence scale sizes of the atmosphere, but rather presents a method of calculating the

effect. Up to this point, a specific form for the turbulence power spectrum 0(-) has not

been assumed. The power spectrum can be written as a constant times a normalized power

spectrum, o Details of the constant are discussed in Section 2.6. Most current research

utilizes the Kolmogorov power spectrum where 0.(i) = I/[ 1113. The Kolmogorov power

spectrum yields analytic results to many problems. Also, this form is known to match well with

actual measured data over the region of the inertial subrange which is the range between the

inner and outer scale values of I I-. What sometimes becomes lost with use of the Kolmogorov

spectrum is the implication that the inner scale equals zero and the outer scale is infinity. A

17



0.9

0.8

0.7

0.6

0.5

0.41
0 0.2 0.4 0.6 0.8 1

p(m)

Figure 3. A phase OTF calculated for a wavelength of 0.5 microns, a separation angle
of 2.4 prad, a Hufnagel-Valley turbulence profile with a 54 mph high altitude
wind (21), and a Von Karman refractive index power spectrum with L. = 1mm
and L. = 5m.

non-zero inner scale and a finite outer scale is incorporated into the calculations by using a

modification to the Kolmogorov spectrum known as the Von Karman power spectrum given

by

I = (1 + 4o2() (28)

where L. and L, represent the inner and outer turbulence scale sizes respectively. To

determine the effect of the parameter L., the OTF value is evaluated for various values of

L, at a single spatial frequency. As noted before, this spatial frequency is related to the shift

parameter -by ' = iAf. Figure 4 shows the effect of the outer scale size on the phase and

amplitude OTFs for a typical Hufnagel-Valley atmosphere (21) evaluated at Ip1 = 1 m and

oriented parallel to V. From Figure 4, it is seen that the effect on the phase OTF caused by

differences in outer scale dimension are significant enough to warrant concern about the proper

selection of L,. In a similar manner, the effect of the inner scale on the OTF was studied. The
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inner scale was found to cause insignificant changes in the oTF over all conceivable scale

sizes. The remainder of this work utilizes scale sizes of L = 5 m and Lm = 1 mm.

0.9
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0.8

0.75

0.7

0.65

0.6 Hp (1.0)

0.551
1 2 3 4 5 6 9 10
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Figure 4. H.(1.0) and Hp(1.0) versus L. This figure gives a measure of outer scale
significance on the calculated OTF values. The OTFs are evaluated for p = I
meter, 0 = 2prad, and a Hufnagel-Valley atmosphere (21) with a 54 mph upper
atmosphere wind.

2.6 Discrete atmospheric layers at preselected altitudes

Although Eqs. (18) and (27) are useful, they are time consuming to compute and do

not lend a great deal of insight to the parameter dependences. The purpose of this section

is to begin simplifying the OTF expressions by creating a layered atmosphere approximation

to the continuous atosphere. The result of this process will serve two purposes. First, by

simplifying the OTF with respect to the atmospheric turbulence profile, an OTF is obtained

that can be scaled with changing atmospheric parameters rather than completely recalculated.

Second, notice that the integration within the OTFs of Eqs. (18) and (27) are over the altitude

parameter i?, and the two dimensional frequency vector K. By creating a layered atmospheric

model, the integration over -q can be replaced with a summation over the layers. Layering
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the atmosphere can reduce the computation time by over 90% and still yield results that are

within 1% of that obtained using a continuous atmosphere.

The subject of layering the atmosphere begins by considering the turbulence power

spectrum, O(R, qi). The power spectrum contains information regarding the frequency dis-

tribution of the index of refraction variations and the distribution of turbulence strength as a

function of altitude. These two functional dependencies are commonly broken up as a turbu-

lence strength profile represented by C,2(t) and a normalized power spectral density $o(•)

as (46)

(,) = 0.033C2 (i1),o(K). (29)

Several C,2(il) turbulence profiles are shown in Figure 5 where C.(q) is given in units

of meters- 213 . The goal is to determine a discrete model representation of C2(77), where

properly weighted turbulent layers are placed at specified altitudes.

Creating discrete turbulence layers is a standard function approximation problem where

the function to be approximated is the C2(q/) turbulence profile. The only issue is deciding

when a good approximation has been obtained. For the diffraction calculations presented in

this research, higher order moments of the layered model of the atmospheric turbulence must

match the higher order moments of the continuous turbulence profile. For example, the first

moment, called the center of mass, could be matched by either placing a single layer at exactly

the center of mass of the continuous C2 (17) profile, or by properly weighted layers somewhere

on either side of the known center of mass. Higher order moments can be similarly matched.

Two general techniques exist for accomplishing this type of approximation. The first, which

utilizes Gaussian Quadrature (39), specifies both the location and the strength of the layers

and for n layers will match 2n moments (the integrated value, or zeroth moment, plus the first

2n - 1 moments). For the case where a C2(7) turbulence profile is known, and a layered

equivalent atmosphere is desired, this is the best method available. This method was used to

model many turbulence profiles, and it was found that by using only two discrete layers, OTFs

were obtained that were within 1% of the OTFs calculated using a continuous C2 (qi) profile.
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Figure 5. CU(Yl) Profiles: Model SLC-N represents a fit to the ARPA Maui Optical Station
(AMOS) night data (15, 35), and SLC-D represents a fit to the AMOS night data
with the addition of an altered boundary layer to simulate daytime conditions (15,
35). Model Greenwood is Greenwood's 'good seeing' model (15), awd TRW is
a TRW high turbulence model for the Capistrano Test Site (CTS) environment
HV-21 and HV-54 represent the Hufagel-Valley model calculated with a 21 and
54.mph upper atmospheric wind, respectively (21).
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One problem with using the Gaussian Quadrature method is that for a new C2 turbulence

profile, the algorithm must be reaccomplished to determine new layer strengths and altitudes.

In order to obtain the full 2n matched moments, Gaussian Quadrature requires the extra degree

of freedom of determining the altitude of the layers. This process is accurate but it does not

allow the transfer function to be scaled for different atmospheric conditions. To accomplish

the goal of a scalable transfer function, the altitudes of the turbulent layers must be fixed

and then weights separately determined that will properly approximate the desired continuous

C2(17) turbulence profile. This is accomplished by picking the altitudes and then solving the

matrix equation

1 1 ..- 1 1
W2

Ili 12 77n w

771 ~72 71n - M2  ,(30)

n •-1 ,W-n- ,•1m-
171 172 ... 1nM -

where i7i represents the altitude of the ith layer, Wi is the weight (or percent of the integrated

C2 turbulence profile) for the ith layer, and m, is the normalized ith moment of the trbulece

profile. This method allows us to specify the altitudes of the layers, but n layers only match the

first n moments (the integrated value, or zeroth moment, plus the first n - 1 moments). There

are also constraints placed on the altitudes so as to ensure positive weights, but a discussion

of these constraints are beyond the scope of this research. Here, it is sufficient to state that the

choice of altitudes is flexible but not completely arbitrary. Using this method, it was found

that the proper placing and weighting of four turbulent layers (altitudes of 200 m, 2 km, 10

km, and 18 kim) could model most standard turbulence models and also yield OTFs that were

within 1% of the OTFs calculated using a continuous atmosphere. The calculated weights for

several different models are shown in Table 1 with the corresponding profiles being given in

Figure 5.
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Table 1. Weights for a 4-layered atmospheric modeL Layer I is placed at 200 meters, layer 2
at 2km, layer 3 at 10kmn, and layer 4 at 18k. Wi representsthe weight of layer i as
a percentage of the integrated turbulence, C2 Model SLC-N represents a fit to dhe
AMOS night data (15,35), and SLC-D represents a fit to the AMOS night data with
the addition of an altered boundary layer to simulate daytime conditions (15, 35).
Model Greenwood is Greenwood's 'good seeing' model (15), and TRW is a TRW
high turbulence model for the CTS environment. HV-21 and HV-54 represent the
Hufnagel-Valley model calculated with a 21 and 54 mph upper atmospheric wind,
respectively (21).

Amosphen j I Layer 2 Layer_ _ Laya4 e-10-121L

_ ,M __ ___c_ W, Ir,- (cm) W, [ro (cm) W, I o, (c,) =- '3 ,
SLC-N .4965 15.68 .4623 16.36 .0299 84.61 .0113 151.7 0.6879 10.3
SLC-D .7397 6.063 .2513 11-59 .0048 124.6 .0042 135.0 2.220 5.06

Gewood .8615 8.420 .0980 31.03 .0394 53.60 .0011 4588 1.078 7.7
TRW .9254 1.718 .0466 11.33 .0262 16.01 .0017 82.60 13.57 1.8

HV-21 .8902 5.361 .0443 32.44 .0591 27.29 .0064 103.6 2.233 5.0
HV-54 .6877 5.258 .0204 43.40 .2554 9.526 .0365 30.61 2.953 4.2

The discrete layers allow the integral over q in Eq. (27) to be replaced with a summation

over the layers. This leaves a phase OTF expression of

Hp (,9) = exp -87'O.O33k 2  C.C(7 1,) Jo( ) 2k

x [1 - cos(g.- p-][1 - cos(77iK- -)]dK-

= exp 87rO.O33kC{ •() Cos(

x [1-cos(Z--p'][1 - cos(17i/. ot)]di}, (31)

where C2(/im) represents the turbulence strength of the ith layer located at altitude 77j, and m

is the number of turbulent layer. C2(77i) can be replaced by a percentage of the integrated

turbulenceWC0:

= = WC., (32)

where the integration is over the path from the source to the aperture plane. In the case of a

source outside the atmosphere and an aperture on the ground, the integration is over the entire
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vertical CQ profile. This allows the phase OTF to be expressed as

H(• -VIexp- 81O.033k2W C• J$o(i)cos2(!i-)f= 2k "

× [1-cos('.O")][1-cos(i,.). (33)

Following a similar analysis, the amplitude OTF, H., can be written as

H.(-) = 1 + 4irO.O33k 2C2EZf Wif ,(.sin(K. p")dx1 + 4-rO.O33k 2C( , W2f $t(£)sin2 (r1,ck)d(

2.7 Simplified OTF calculations

Equations (33) and (34) represent the complete phase and amplitude OTFs for a layered

atmosphere. However, they still require recalculation if the integrated turbulence or the

distribution of turbulence changes. In this section, Eqs. (33) and (34) are simplified by

incorporating Fried's coherence parameter (9), ro, and introducing the concept of a scalable

transfer function. This will allow OTFs to be quickly computed under changing atmospheric

conditions.

Fried's coherence parameter is commonly used to describe the 'seeing' conditions of

the atmosphere. It is known that the OTF of the atmosphere is roughly equivalent to the OTF

resulting from an aperture with diameter r,, where r, is calculated from the relation

A•2 3/5

r0 - 0.185 -= 3/5 (35)

By incorporating Eq. (35) into Eq. (33), the 'seeing' condition is directly incorporated into the

OTF:
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H,,( ~ M i) iep 2 30.0(O 185)' 5/3 JWoi co(Lr-

x [1 - cos(I. pll1 - cos(2k. )

- jexp{ - 1.967J ro(.co 2k~~

x [1 - cos(i. -P')][1 - cos(,qiK. -9)IJdI}

- flpj(pog,01) (36)

i=1 2

where,

ft,,,(-3, V9)= exp {1.967J-,, )Cos) 2k - IC~ -I

(37)

and, the parameter roi is defined as Fried's coherence parameter for layer i, where ri513 -

Wir:5/ 3 . In Eq. (37), the term fHI, can be thought of as the phase OTF for layer i calculated

for an roi of 1 meter. Therefore, by calculating H,, a single time, we have a general phase

OTF that can now be scaled to the actual turbulence profile through Eq. (36). The strength of

the ith turbulence layer can be adjusted by varying ro,,. The overall value of r. for all of the

layers is related to the individual r,,'S by (16)

ro5/ 3 -"5r5/3" (38)

i=1

The complete phase OTF is then found by scaling and multiplying the OTFs, fI,,, for each

layer. Results obtained with this method are presented in Section 2.8.

No analogy to the siniplifications obtained for the phase OTF exist for the amplitude

OTh This is due to the form of the amplitude OTF in Eq. (34). However, a similar analysis
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1 + ) -~U~(39)

with, f•i(/) representing a normalied amplitude correlation function for layer i and given

by

S= 16wr .033(0.185) / 0.J (z) sin 2(ip-a) cos( d.

- 0.983J 4%(1) sini a) cos(• pl . (40)

Amplitude OTF results are also presented in Section 2.8.

2.8 Numerical results

The purpose of this section is to provide representative results and to demonstrate the

utility of the OTF equations derived in Section 2.7. In Sections 2.3 and 2.4, the amplitude and

phase OTFs were derived for a continuous atmospheric CQ profile. These OTF equations were

derived using diffraction to account for both phase and amplitude variations in the corrected

wavefront. The OTF equations accurately model the performance of the adaptive-optics

system. However, the three dimensional integration is very time consuming. In Section 2.6, it

was shown that by modeling the continuous atmosphere with discrete layers, one dimension

of the OTF integration could be removed. Finally, Section 2.7, demonstrated how to create

a set of normalized phase OTFs, H,,, and normalized amplitude correlation functions, fPi,

that can be used to compute the overall OTF of the system through the use of the scaling

parameters roi. The benefit of using Hp, and r', is that once these functions are calculated,

the OTFs resulting from a wide range of atmospheric conditions can be calculated through the

very simple scaling operations of Eq. (36) and Eq. (39).

This section demonstrates the ease of computing the OTFs by first generating a family

of the curves for Ht and ai. A family of fH,, curves is shown in Figure 6. These curves

are created for an optical wavelength of 0.5 microns and an object angle, V, of 2.4 jrad

26



for a 4 layered atmosphere with the inner scale set at Lm = I "milimeter and the outer

scale set at L, = 5 meters. bhe object angle of 2.4 prad is chosen to be equal to the

isoplanatic angle as defined by Fried (10) for a Hufnagel-Valley atmosphere with a 54 mph

upper atmosphere wind (21). This angle is chosen to allow the direct comparison with a

geometric optics calculation discussed in Section 2.9. The curves in Figure 6 are computed

such that when used in conjunction with Eq. (36) to obtain the complete phase OTF, ri in

Eq. (36) is evaluated in units of centimeters. Once the Ali curves are created, the phase OTF

for a wide range of atmospheric conditions can be computed by raising ft 1, to the r•i/3 power,

and then multiplying the four OTFs together. This becomes a fast and convenient method for

determining how a change in atmospheric conditions effects the phase OT.
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Figure 6. •pi (p) for turbulent layer located at A) 200 m, B) 2 km, C) 10 km, and D) 18 km.
These OTFs are calculated for A = 0.5pm, V = 2.4prad, and r01 = 1 cm.
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For example, we want to calculate the phase OTF for a Hufnagel-Valley atmosphere

with a 54 mph upper atmosphere wind and a 09 of 2.4 prad. We simply use the HP, curves

plotted in Figure 6 and the values of roi given for HV-54 in Table I and evaluate the equation

4 I

HP(p) = flft (p) .'3

i=1

= (HPI (p)) 5.258-5 /3 (1p2 (p))43.40- 513 _ (H,, 3 (p))9.126- 5 /3 .(kp4(P)) 3.61-5/3 .

(41)

This calculation produces a curve that matches the OTF curve found in Figure 3 which required

many computational hours to calculate using a continuous atmospheric C2 turbulence profile.

In a similr manner, a family of curves can be created for calculating the amplitude

OTF utilizing Eq. (39). Unfortunately, the amplitude OTF can't be scaled with the same ease

as the phase OTF. However, by creating a family of curves for fLi(p), a simple method of

calculating the overall amplitude OTF is obtained. Also, the process is somewhat simplified

since the amplitude OTF is independent of V. By evaluating Eq. (39) at a wavelength of 0.5

microns, the family of curves given in Figure 7 is obtained. Note that f ij(p) has a positive

value at p = 0, and then quickly decays to zero. Knowledge of the general shape of Fai(p)

and the amplitude OTF can be used to considerably simplify the numerical integration. It is

known that Ha (0) = 1.0 and then falls off to a relatively constant value as shown in Figure 2

on page 15. Greater amounts of turbulence will not significantly change the cutoff point, but

rather will change the constant value to which H0 (p) decays. A comparison of Figures 7

and 2 shows that when the constant value of H0 is attained, f,,j(p) z 0. Therefore, a good

approximation of the constant value is found using

1
H.a(p) (42)z=+ i1 r573 IF'i (0)"

The constant value attained by the amplitude OTF, designated Ha(c), for a Hufnagel-

Valley atmosphere with a 54 mph upper atmosphere wind is determined using the plotted
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Figure 7. The normalized correlation function, f'j(p), for turbulent layer located at A)
200 m, B) 2 km, C) 10 km, and D) 18 km. These functions are calculated for
A = 0.5rm.
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values for fL,(0) and the values of ri given for HV-54 in Table I and evaluating Eq. (42):

1
H.(c) = + M= 0.8082. (43)

Again, this value compares very well with the constant value attained by H. (p) in Figure 2.

By using a small amount of memory to store the data points contained in Hp,(p) and

the values of f',i(0), complete OTFs can be calculated using a programmable calculator or

plotted using a lap-top computer. The utility of this method is in rapid computations under

changing atmospheric conditions.

2.9 Comparison between the diffraction and geometric optics OTF

In this section, two useful comparisons are made between the diffraction method and the

geometric optics method of calculating the OTF of an adaptive-optics system. First, a direct

comparison is made of the OTFs for a given atmosphere. In this comparison, the additional

phase and amplitude information obtained through the diffraction method is highlighted.

Second, the high frequency limit of the OTFs as a function of object angle, t9, is examined. It

is common to define the isoplanatic angle as the angle, 0, where the OTF high frequency limit

has fallen to l/e of the V = 0 value (10). In this comparison it is shown that the diffraction

method of calculation predicts a more optimistic isoplanatic angle.

In his discussion of atmospheric turbulence, Goodman (14) defines the 'near field'

region where geometric optics is valid as the region where 77 < -«12. This is the equivalent of

stating that cos2 (11) 1 in the phase OTF expression of Eq. (27) and that sin 2( ) ( 0

in the amplitude OTF expression of Eq. (18). With the cos2 term of Eq. (27) set equal to one,

and assuming a strict Kolmogorov power spectrum where O(i, 71) oc K-3 , the integrations

over K can be solved analytically. As shown in Appendix E, the substitution of cos2(1 ) - 1

in the phase OTF expression of Eq. (27) yields the same OTF solution given by Fried using

the geometric optics analysis (10). Also note that setting sin2(? ) = 0 in Eq. (18) results in

H, (p) = 1 which is consistent with a geometric optics calculation.
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One of the advantages to using a diffraction method to calculate the system OTF is

that it allows for the separation of phase and amplitude effects. This is important because the

adaptive-optics system is only correcting for phase effects. Figure 8 shows a direct comparison

between the diffraction method of computing the OTF and the geometric optics method. In this

figure, the 4 layered turbulence model, as discussed in the previous section, has been used with

an optical wavelength of A = 0.5 microns, a Hufnagel-Valley turbulence profile with a 54 mph

upper altitude wind (21), an object angle of 0 = 2.4prad, and a Von Karman refractive index

power spectrum with Lm = lmm and L. = 5m. The geometric optics OTF was calculated

using the same turbulence model and the same Von Karmon power spectrum but with the

approximation of cos2 ( 1;2) = 1. The diffraction method gives a better understanding of the

atmospheric correction problem and helps quantify the level of improvement possible in the

OTF. For example, from Figure 8 it is seen that, for this atmosphere, no matter how good the

phase correction is, there will always be about a 20% attenuation due to the amplitude effects.

0.9
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0.8

0.7

0.6

0.5

0.4 1,•) o

0 0.2 0.4 0.6 0.8
p (M)

Figure 8. Comparison between diffraction theory and geometric optics theory. The diffrac-
tion OTFs are calculated with a 4 layered atmosphere at 200m, 2kmn, 10km, and
18km, A = 0.5pm, a Hufnagel-Valley turbulence profile with a 54 mph upper
altitude wind (21), V = 2.4prad, and a Von Karman refractive index power spec-
trum with L, = 1mm and Lo = 5m. The geometric optics OTF is calculated with
the same atmospheric conditions but using the geometric optics approximation.
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In adaptive-optics, the size of the isoplanatic angle or isoplanatic patch of the atmo-

sphere is of interest This is commonly thought of as an area of the atmosphere that has

high correlation in the index of refraction. Therefore, a ray of light propagating at any angle

through this portion of the atmosphere will receive approximately the same wavefront distor-

tions. However, no two paths through the atmosphere will induce identical distortions. The

isoplanatic angle is therefor the angle over which the difference in the distortions are 'not

too large'. Fried established a method of quantifying this measure by defining the isoplanatic

angle as the angle, V, where the OTF high frequency limit has fallen to e` of the V = 0

value (10). This definition can be interpreted two different ways. First, since for the idealized

system modeled here, geometric optics always calculates an OTF value of 1.0 at 0 = 0, the

isoplanatic angle can be considered to be the angle at which the high frequency limit of the

overall OTF has fallen to a value of e-'. Second, recall that the adaptive-optics system is

concerned only with the phase correctability. In this case, only the phase portion of the OTF

is considered, and the isoplanatic angle is defined as the angle at which the high frequency

limit of Hp has fallen to a value of e- 1 . Figure 9 shows a comparison between the OTF

high frequency limit using diffraction theory and the OTF high frequency limit using geo-

metric optic theory for the same atmospheric conditions discussed above. We see that where

geometric optics predicts an isoplanatic angle of 2.4prad for this atmosphere, the diffraction

theory indicates a greater value regardless of how the isoplanatic angle is defined. When the

isoplanatic angle definition is taken to be the angle at which the high frequency limit of the

overall OTF has fallen to a value of e- 1, the isoplanatic angle equals 3. lprad. When the

definition is taken to be the angle at which the high frequency limit of Hp has fallen to a value

of e -, the isoplanatic angle equals 3.65prad. It is easy to show that any atmosphere will yield

a greater isoplanatic angle when a diffraction calculation is performed than when a geometric

optics analysis is used.
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Figure 9. Comparison of the OTF high frequency limit (p = oo) between diffraction theory
and geometic optic theory as a function of separation angle, V. The dffracton
OTFs are calculated with a 4 layered atmosphere at 200m, 2km, 10km, and 18km,
A = 0.5pm, a Hufnagel-Valley turbulence profile with a 54 mph upper altitude
wind (21), and a Von Karman refractive index power spectrum with L. = 1mm
and Lo = 5m. The geometric optics OTF is calculated with the same atmospheric
conditions but using the geometric optics approximation (a) represents the iso-
planatic angle calculated for geometric optics. (b) and (c) represent the isoplanatic
angle computed with two different definitions for the diffraction method.
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2.10 Summary and Conclusions

In this chapter a model is developed that allows for the derivation and evaluation of

an angle dependent average OTF for an ideal adaptive-optics system. An express=o is

derived for a wavefront propagating through a turbulent atmosphere at an arbitrary angle.

0. The derived expression includes diffraction effects to properly account for phase and

amplitude perturbations in the propagating wave. Expressions are then derived for the phase

and amplitude correlation functions, r. (p- and Lp'(, o), and the average amplitude and

phase OTFs, (Ha(p-)) and (Hp(-,1 0)). These expressions are used in the evaluation of the

SNR in Chapter MW the analysis of the PSF in Chapter IV, and the development of a new

wavefront correction algorithm in Chapter V. All of the above expressions are generalized

with respect to the refractive index power spectrum, 0 (71, Z). This generalization allows an

analysis of performance effects as a function of the turbulent scale sizes. A useful method of

computing (H.(p")) and (Hp(-, 0)) is also presented in this chapter. A layered atmosphere is

created that results in an expression that can be scaled to arbitrary turbulent conditions. An

actual OTF is then determined through a scaling term of r-i5/3, where roi represents Fried's

coherence parameter related to the ith layer (9, 16). This scaling method of evaluation allows

rapid evaluation of the effect of changing atmospheric conditions. The advantage of using a

diffractiop theory is demonstrated in a comparison with geometric optics. It is shown that the

diffraction method separates phase and amplitude effects and allows for determining the effect

of various C2(i7) profiles. When the C.2(j) profile contains far-field turbulence, amplitude

effects become significant and this method becomes essential for accurate calculations.
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Ill. The angle dependent OTF signal-to-noise ratio (SNR)

3.1 Introduction

In this chapter. the work of Chapter II is extended by calculating the object angle

dependent variance of the OTF The variance is then used in conjunction with the average

OTF to obtain a signal-to-noise ratio (SNR) performance measure (47). The SNR performance

measure is particularly important when image reconstruction is used in conjunction with

adaptive-optics imaging (43). In image reconstruction, knowledge of the system OTF can

be used along with the measured image intesity to obtain an estimate of the actual object

intensity.

To fully understand the motivation for computing the SNR, consider the linear, locally

space-invariant, system model for incoherent adaptive-optics imaging. Let i(•, t9) represent

the measured image intensity, where • designates a point in the image and 0 is the angle

between the reference source and the object. The image i(Z, 0) can be related to the object

being imaged, o(•), by

i (, V) = o(i) * h(X, 0), (44)

where h(i, V) is the instantaneous, object angle dependent, point spread function (PSF) of

the system and the notation * designates 2-dimensional convolution. Note that the object is

considered to be the same object at any angle and is therefore not a function of 6. The problem

of imaging an extended field-of-view with regard to the angle dependent PSF is examined in

Chapter IV.

The relationship between the image and the object can be equivalently stated in the

frequency domain as

I(A,9) = ()H( ), (45)

where V- is the spatial frequency variable and the capital letters I, O, and H are the Fourier

transforms of i, o, and h, respectively. H(O7, 0) is the instantaneous OTF of the imaging

system. In a deterministic system (ie., a system in which the OTF is perfectly known),
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the object spectrum O(iV), can be recovered out to the cutoff frequency of the system by

multiplying the measured spectrum 1(z7, 0) by the inverse of H(iT, 0):

O(i) = 1(9,O)H-'(g,1). (46)

However, imaging through the atmosphere produces an instantaneous OTF that is random.

This randomness will be manifested as noise in the image measurement and wiln always tend to

degrade the quality of the reconstructed image. The SNR, which is a measure of the variability

or randomness of the OTF relative to it's mean value, provides a measure of the quality with

which the spectral components of H(i7, V) can be used to reconstruct the object spectrum in

Eq. (46).

In Chapter U. it was shown how to compute the average OTE However, the average

OTF gives no indication as to how a single realization of the OTF can vary from the mean

value. The SNR is used to quantify the fluctuations in the OTF and is defined as

SNR{H(z7, 9)} = I(H(7, A))I (47)
VVar{H(i, t)}

where Var{ H(T, t9)} is the variance of H(u7, 0).

This chapter presents the first analysis to yield OTF SNR results that are a function

of the angle between the reference beacon and the object The analysis considers an ideal

adaptive-optics system which is able to perfectly measure a wavefront phase from a reference

beacon, and in turn perfectly apply this correction to the object wavefront. The diffraction

based analysis of the average OTF and the corresponding correlation functions presented in

Chapter 1I are fully utilized in this analysis.

The remainder of this chapter is organized as follows. Section 3.2 presents an analysis

of the object angle dependent variance and SNR of the OTh. In Section 3.3, simplifications

of the numerical computation process are presented. These simplifications allow solutions to
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otherwise computationally prohibitive probkm. Section 3.4 contains numerical results for a

typical atmosphere. Finally, concluions are presented in Section 3.5.

32 Derivation of variance and SNR expressions

In this section, an expression is derived for the variance of the OTF of an adaptive-optics

system. The variance is designated Var{ H(, t9)}, where H(1 0) represents the instantaneous

system OTF. Once an expression for the variance is obtained, the SNR is calculated using

Eq. (47).

Rather than computing Var{ H(A, 9) } directly, the second moment of the OTF is estab-

lished, and the variance is computed using

Var{H(1 t9)} = (IH(- ,q)I2) - d

- (IH( ,O)12) -_2 (4H

where, Ho(p") is the OTF of the optics, and (H. (p)) and (Hp(', 0)) are the average amplitude

and phase OTFs, respectively. The average phase and amplitude OTFs have been computed

in Chapter IL However, the second moment of the OTF, (IH(-, 0)12), still needs to be

calculated. A combined phase and amplitude transmission screen, t(Z' 0), is used to represent

the residual phase and amplitude perturbations of the corrected wavefront in the pupil of the

adaptive-optics system. The transmission screen is given by

t(gV) = t.(i)tp(gV) = (1 + a(i)) exp{jO(9',0)), (49)

where a(') represents the amplitude perturbations and O( 9, t9) represents the angle dependent

residual phase in the pupil of the adaptive-optic system. The second moment of the OTF can
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now be written as (14)

(jH(, 0)12 - ~ d21P()trf(PI)21t(50)

where P(i) is the real valued pupil function with a value of I when F is inside the aperture

and 0 for X outside the aperture. The variable a(X') in Eq. (49), is the zero mean, Gaussian,

random variable representation of the amplitude perturbations of the field in the pupil. The

variable O(X', 0) in Eq. (49), is the zero mean, Gaussian, random variable representation of

the phase difference between the wavefronts of the reference beacon and the object Note that

the phase difference is dependent on the object angle, 0.

Next, the expected value of the fraction in Eq. (50), is assumed to be approximately equal

to the expected value of the numerator divided by the expected value of the denominator (14).

The integrations over the pupil function in Eq. (50) are represented in simplified form by

IfP(,.4) did!' =JJdidi'P(i)P(• - P-)P(Y')P(I' - -). (51)

Substituting Eq. (49) into Eq. (50) and using the assumption of independence between a(i)

and O(1{, 0) gives

(IH(G 0)12) -

JJ d.dF((1 + a(i))(1 + a(g - p-))(1 + a(F))(1 + a(!' - (52)
xd(•• (52)

J (( + a(i))2(1 + a(;?))2 )

We now compute the three expected values in Eq. (52). Note that the third order moment

of jointly Gaussian, zero mean random variables, U, is equal to zero and that the fourth order
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moment is given by (40)

(U1U2U3U4 ) = (U1U2)(U3U4) + (UvU3)(U2U4) + (U1U4)(U2U3). (53)

It can then be shown using Eq. (53) that the fourth order amplitude expectation in the

numerator of Eq. (52) is given by

((1 + a(X))(1 + a(. - p-))(1 + a(Y'))(1 + a(i' - p =))

(1 + r(P-)2 + (1 + rL(Ai))2 + (1 + r.(A- + p-))(1 + r.(Ax- - ) - 2, (54)

where Az- = .- -' and the correlation function, ra(p), is defined as

ra( - 0)= (a(x)a(,!')). (55)

In a similar manner, the fourth order amplitude expectation in the denominator of Eq. (52) is

computed to be

((1 + a(i)) 2 (l + a('))2) = (1 + r[(0))2 + 4Fr(Ai) + 2F'(L•). (56)

Next, the fourth order moment is computed for of the exponential term in the numerator of

Eq. (52). Since O(q,, V) is a zero mean, Gaussian random variable, the fourth order moment

can be written as

-exp{ - X, X P P- [((.,0 - 0(.- _, -3))29 + (0(11, 0) _ (y' - d))2

- 2(0(1 V) - 0(ý - t9 )) (0(1, 0) - O'- -, 6))) (57
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Expanding the first two squared term in the exponent of Eq. (57) yields

(((, o)- •(- •,t))2) = 2rl(o, 0) - 2rp(, o), (58)

where the phase correlation. rp(,, 0), is defined as

r -( - !1,0) = (M(F, 0)4(•', 0)). (59)

The last term in the exponent of Eq. (57) can be expanded and written in terms of phase

correlations in a straight forward manner. Equation (57) is now only a function of second

order phase correlation functions and is given by

S= exp{2rp(-, 0) - 2rp(o, q) + 2rp(AL, o)
- rl(A 9 + , ) - rp(A i tq)}' (60)

where, Ax- is the separation between correlation points (ie., Al = X- ?). Equa-

tions (54), (56), and (60) are now combined to yield an expression for (1H(, 0)12). For

convenience, the result is broken into numerator (Num) and denominator (Den) expressions:

Num(IH(-, 0)12) = (1 + r.(, ))2 exp{2F,( - V) - 2Up(o, 0)}
×ddr.(1 + r,(A1)) 2 + (1+ rL(Al+ P))(1 + r.(A -- )) -- 2

+ (1 + + (-))2)

x exp{fr 2(A, 0) - rp(A9+ -,o) - rL(A•- g,0)},
(61)

and,

~~ 4ro(_A• + 2r•(Al)'•Den(IH(-, d0)12 ) = (1 + r.(o))2 dOd (1 + 4 (.1+Pa(O) (62)
PliP1 (1 + r.(0))2 /

where the terms not dependent on S or e' have been factored outside the integration. Notice

that when Eqs. (61) and (62) are combined as numerator and denominator, there are terms

outside the integrals that correspond to (H.(p) 2 and (Hp(A, 0))2 as shown in Eqs. (11)
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and (21). Also note that the integration in Eq. (62) can be evaluated independent of - and tq.

This independence is useful for the numerical analysis in Section 3.4.

Equations (61) and (62), are now combined and substituted into Eq. (48), to yield a final

expression for the OTF variance as

Var{H(• i9)} = (H.(p"))(HP(/ Oi)(T(, - H2(P")),(63)

where T (,- 0) is defined by

T(A, 0) = JJ{ (l (+ra(Ag)) 2 +(1+r (Af+,V))(+ra(A2-•)-'/ (_)didi'l (1 + or()

x exP{2rp(A.Z V) - rp(A + ', t9) - FP(Ax- , t9)}}

JJP( d' (1 +
(64)

It is now a simple matter to substitute Eq. (63) into Eq. (47) to obtain the desired object angle

dependent SNR:
SNR{H(, t)} = ((65)

V/T(;, V) - H.2(p

Note that the SNR is a function of the phase and amplitude correlation functions, rp

and ra. The amplitude correlation, rF, was derived in Chapter II with the result

ro(P/) = 4 j ifj d/dWIb (I, 1/) sin 2 (2k cos(2K. ) (66)

A typical amplitude correlation function is shown in Figure 10. The correlation function in

Figure 10 is calculated for A = 0.5 microns using a Hufnagel-Valley turbulence profile with a

54 mph upper atmospheric wind (21), and a Von Karman index of refraction power spectrum

with inner scale set at 1 millimeter and the outer scale set at 5 meters.
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Figure 10. Amplitude correlation function, r' (p), plotted versus p. This plot was calculated
for A = 0.5 microns using a Hufnagel-Valley turbulence profile with a 54 mph
upper atmospheric wind. This turbulence profile has a Fried coherence cell size
of ro = 5 cm and an isoplanatic angle of 0o = 2.4 prad.

The phase correlation, FP, was also derived in Chapter II with the result:

ppV)= 87rk2JJ•(•,??)cos2 ( cos(- P-)[1 - cos(i/W t9)]dqd/. (67)

A typical phase correlation function is shown in Figure 11. The correlation function in

Figure 11 is calculated for A = 0.5 microns using a Hufnagel-Valley turbulence profile with a

54 mph upper atmospheric wind (21). The object angle V is set equal to the isoplanatic angle,

00, as defined by Fried (10).

33 Simplifications for evaluation of the SNR

In this section, simplifications are presented that are required to numerically evaluate

the SNR expression given in Eq. (65), and specifically the evaluation of T(' V) in Eq. (64).

In the numerator of T(, V), the integration over X' and F is a four dimensional integration

over an overlapping region of shifted pupil functions. Since the evaluation of the correlation

functions, Fr(pJ and r(,i, t,), involve three dimensional integrations, as shown in Eqs. (66)
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Figure 11. Phase correlation function, FpI(p, 0), plotted versus p. This plot was calculated
for A = 0.5 microns and V = 0o using a Hufnagel-Valley turbulence profile with
a 54 mph upper atmospheric wind. This turbulence profile has a Fried coherence
cell size of ro = 5 cm and an isoplanatic angle of 00 = 2.4 prad.

and (67), the complete evaluation of T(, t9) requires a seven dimensional integration. Even

with present day computational power, seven dimension numerical integration is extremely

intensive for all but very simply functions. In addition, the integrands of Eqs. (66) and (67)

are oscillatory and require relatively fine subdivisions to obtain convergence. It therefore

becomes computationally prohibitive to numerically integrate the function in its derived form.

The simplification process will be presented in two steps. First, a normalized version of

the correlation function will be derived. This will allow for scaling under changing atmospheric

conditions. Next an approximating function will be determined for the normalized correlation

functions. This process will allow for scaling under changing atmospheric conditions as well

as changing geometrical conditions (i.e., changing values of the object angle, V).

3.3.1 The normalized correlation function for layered turbulence. The first simplifi-

cation involves using a layered atmosphere as discussed in Section 2.6. By properly modeling

the ,rtmospheric turbulence with relatively few discrete layers, the integration over the altitude
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variable, q7, in Eqs. (66) and (67) can be replaced with a summation over the number of layers.

This is a significant simplification, but the evaluation of Eq. (64) still requires six dimensions

of integration.

The next simplification is achieved by realizing that the correlation functions, Fr and

Fp in Eq. (64), are simply functions of the shift vectors -, AY, A- + -, and A- - P3. Since

the correlation functions are themselves integrations, they tend to be relatively smooth as a

function of their argument. The smoothness of the correlation functions is shown in the plots

of Fr,(p-) and Fp(P,- V) in Figures 10 and 11. Due to the smooth nature of the correlation

functions, they can be represented over their complete argument range by a relatively sparse

grid of precomputed values. The precomputed grid greatly reduces computation times and

the smooth nature of the correlation functions allows simple bilinear interpolation between

grid points to yield accurate approximations. The phase correlation function is found to be

symmetric about the x and y components of the shift variable, -i and the amplitude correlation

function is circularly symmetric. These two symmetries reduce the number of grid points

needed to completely characterize r. (pJ and Frp(,: ). The evaluation of T(pJ then involves

four dimensional integration over an integrand that is precomputed on a grid of points. The

integration in the numerator of Eq. (64) must be recomputed for each /, but the denominator

is independent of /- and is only computed once.

Although this method of precomputing the correlation functions was necessary to obtain

SNR results, creating the grid of points is still computationally intensive. Also, a disadvantage

of precomputing the correlation functions is that the results are only valid for a single scenario,

defined by the object angle, V, and the particular atmospheric C2(i1 ) profile. The quantity

C2(7) is the altitude dependent structure constant of the refractive index fluctuations and is a

measure of the strength and distribution of the turbulence. It would be useful to have a method

of quickly computing the SNR that is not limited to a single scenario but is robust in both the

choice of object angle, V, and atmospheric C2(•7) profile.

The first step in developing a robust analysis method is to model the atmosphere with a

set of preselected turbulent layers. Section 2.6 demonstrated that four discrete layers placed at
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200m, 2km, l0km, and 18km, is adequate for modeling a wide range of atmospheric profiles.

Using a 4 layered atmospheric turbulence model, a normalized index of refraction power

spectrum given by, -o(-) = "I;" and an analysis method similar to the development of0.033Cn '

Eqs. (36) and (39) in Chapter II, the correlation functions given in Eqs. (66) and (67) can be

rewritten as

1.967Z-•. f cos I2(
=p 7)) 1.96 )1 rO\) cos(. - ')[1 - cos(thic -0)]dV

1- ~ ( ~ (68)

and,

ro -=O09835 Zi_, !75/f @(I)°Ksin2( [rnIK"I)d

r,,p) 2k

= Zi fi(p), (69)
i=1 r0 i

where the parameter roi is defined as Fried's coherence parameter (9) for layer i located at

altitude qi and is a measure of the turbulence strength at that altitude. Values of r,, for the

4 layer atmospheric model of several common atmospheric profiles are found in Table 1 on

page 23.

3.3.2 Approximating the normalized correlation function. In Eqs. (68) and (69), the

terms G', and Fai represent the normalized correlations for layer i which are then scaled for

the particular turbulence distribution through roi. This scaling allows a new SNR to be quickly

recomputed when atmospheric conditions change (i.e., a changing turbulence distribution).

However, the desired robustness with respect to the object angle has not yet been attained.

Due to the 0 dependence of the phase correlation function, fpi (-,0) must be recomputed for

every new object angle, 0. The robustness in object angle is accomplished by first computing

F,,(-, 0) over a grid of points for several values of 0. The grid points are then used to obtain

a single analytic function that approximates fpi (-, 0) over the range of 0's. Note that this
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approximation for fp,(- 0) will be a three dimensional function in 0 . p. and Op. where p

and O0 represent the magnitude and angle of the shift, -. The amplitude correlation function is

independent of 0 and circularly symmetric, consequently it is a much easier process to obtain

a one dimensional fit in p that approximates the amplitude correlation data. For rp1,(A, 0), the

form of the approximating function found to yield accurate results is a rational polynomial

given by
f O ) P-1 +fi,(0) + f2i(Op, 0)p + f3i(Op, 0)p2 (70)

, 1 + 4,(op, 1)p+ f,(Op, o)p2 + f6,(Op, 1)p3'

where,

fli(V) = ali + a 209 + a3i, 2 + a 4i, 3 + a 5it 4 ,

f2i(Op, V) = a6i + a7 iO + (a8s + ag9 )O0,

f3i (Op, V) = alo, + aiiii) + (a1 2, + a1iI90)Op,

f4 i(Op,,0) = al4i + aisiV + (a1 6, + al 7itd)O0,

fsi 0) = ali + a19i -+ (a 20 i + a 21i)?9p,

f6i(Op, V) = a 2 2 i + a23i0 + (a 24 i ± a 2 5 id)Op, (71)

and, ani are the coefficients that must be found to best approximate L'i(p, O, 0). The values

of the coefficients are found using a non-linear least squares fitting routine that is slightly

modified from the standard algorithm given in (39) for the inclusion of multiple dimensions.

The coefficient values for each of the four layers are presented in Table 2 for a refractive index

power spectrum that has been normalized to an r. of I cm. It is determined that for accurate

SNR results, it is best to limit the range of 0's in the approximating function. The coefficients

in Table 2 are accurate for a range of object angles between 2 and 14 prads and p out to 2

meters. Accurate SNR results can be obtained over a much larger range of 0 by creating a

piecewise set of approximating functions out to the desired 0.
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Table 2. Coefficients for the phase correlation approiimating functim, Fp,(p, 09, 0) for a 4
layered atmosphere. Layer I is placed at 200 reters, layer 2 at 2 km, layer 3 at
10 km, and layer 4 at 18 km. The units of p, O9, and 0, are mets, radians, and
micro-radians, respectively. Using these units, r 1, in Eq. (68) is given in units of
centimeters.

Coefficient Layer I Layer 2 Layer 3 Ayer 4
a, 0.67219E-02 0.40004E-01 0.45689B+01 -0.24508E-01
a2  -0.49126E-02 -0.71964E-01 -0.32579EB01 0.23486E+01
a3  0.42528E-02 0.20869E+00 0.34852E+01 0.72594E401
a4  -0.69582E-04 -0.45049E-02 -0.14006E+00 -0.36121EB00
a5  -0.14925E-05 -0.30750E-04 0.74663E-03 0.45284E-02
a6  0.85394E-03 0.10410B+02 -0.96750E+01 0.20650E+03
a7 0.24471E-01 -0.57929EB01 -0.33821E+01 -0.15031E+03
a8  -0.43777E+00 -0.12087E+02 -0.19866E,+03 -0.23592E+03
a9  0.30305E+00 0.79010E+01 0.15233E+03 0.16623E+03
aio 0.57525E+00 -0.21106E-01 0.32366E+03 -0.16138E+02
all -0.43740E+00 -0.11245E+00 -0.20472E+03 0.16954E-B02
a 12  -0.27234E040 0.27593E+01 -0.18859E+03 0.54170E+02
a 13  0.20937E+00 -0.13095E+01 0.11012E+03 -0.39813E+02
a14  0.18175E+03 0.54659E+02 0.14392E.402 0.63275E+01
als -0.41943E+01 -0.21243E+01 -0.10887EB01 -0.68352E+00
a 16  -0.30247E+02 -0.12206E+02 0.77047E+01 0.15286E_01
a17  -0.36634E+00 0.43943E+00 -0.45722E-01 0.14112E+00
a 18  0.63805E+02 -0.81229E+01 0.13558E+03 0.35214E+02
a19  -0.87324E+01 0.31468E+01 -0.4915,iE+01 -0.93767E-O0
a20  0.35184E,+03 0.48318E402 -0.11003E+02 -0.76625E+01
a21  -0.13716E+02 -0.32610E+01 -0.26197E+00 0.12417EB-0
a22  0.14140B+04 0.14184B+03 0.15687E+03 0.25237E-t01
a23  -0.66265E402 -0.10011E+02 -0.76935E+01 -0.38129E+00
a24  -0.48690E+03 -0.35202E+02 -0.14124E+02 0.40961E+01
a25  0.23843E+02 0.33274E+01 0.10753E+01 -0.11481EO0
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Table 3. Coefficients for the amplitude correlation approximating function, •i'(p) for a 4
layered atmosphere. Layer l is placed at 200 meters, layer 2 at 2 km. layer 3 at
10 km, and layer 4 at 18 km. With the shift parameter, p, in units of meters, r•,
is given in units of centimeters. Coefficients are valid for all shift values and all
object angles.

Coefficient Layer 1 Layer 2 Layer 3 Layer 4
b, 0.15000E-01 0.5000E-01 0.1000E400 0.1800E+00
b2 0.28791E+00 0.19884E+01 0.75052E+01 0.12246E+02
b3 -0.97345E+02 -0.30112E+02 -0.15856E+02 -0.72605E-eOl
b4 -0.53476E+02 -0.11641E+03 -0.19928E+03 -0.23363E+03
b5 0.10012E+05 0.11210E+04 0.32861E+03 0.13730E+00
b6 0.22359E+04 0.15350E+04 0.12089E+04 0.97764E+03
b7 0.12556E+03 -0.37670E+04 -0.16727E+04 0.10287E+04

For the amplitude correlation function, Fei, the same rational polynomial form worked

well for the approximating function. The form used is given by

f(p) ((P) u(p ) b2i+b3p+ p2 (72)F~i() •- u~p - up - li)1 + b.5ip + b6,ip2 + b~ip3' 72

where u(p) is the unit step function with a value of one when the argument is greater than

zero. The purpose of the combination of step functions is to limit the required range of the

fitting function. It is determined that the value of the amplitude correlation function beyond

p = b1i is approximately zero. The values of the seven coefficients for each of the four layers

are given in Table 3 for a refractive index power spectrum normalized to an roi of I cm. The

coefficients in Table 3 are accurate for all values of the shift parameter, p.

The end result is approximating functions given by fLi (p, Op, 0 ) and f"i (p) in Eqs. (70)

and (72) that completely represent the phase and amplitude correlation functions of each of

the four layers. These functions are valid over a wide range of object angle, 0, independent of

the atmospheric C,(77) pt ,ile and yield extremely accurate SNR results. The approximating

functions developed here for the purpose of evaluating the SNR of an adaptive-optics system

can also be used to yield accurate calculations of (Hp(pt)) and (H.(pl). Chapter II

demonstrated how to combine and scale OTFs for individual layers for rapid evaluation of
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the overall average OTF under changing atmospheric conditioms. The use of f (p, 0,, 0)

and f•i(p), along with ro,, allow (Hp(-, 0)) and (H(,(p")) to be calculated through Eqs. (11)

and (21). These OTFs can be rapidly evaluated under changing atmospheric conditions as

well as the choice of object angle, 0.

3.4 Numerical results

In this section numerical results are presented for the OTF variance and SNR as defined

in Section 3.2 by Eqs. (63) and (65) respectively. The theory developed in Sections 3.2 and 3.3

allow for calculations of the variance and SNR over a wide range of atmospheric conditions.

However, in this section, results are calculated using a Hufnagel-Valley turbulence profile

with a 54 mph upper almospheric wind, ro = 5 cm, and 0, = 2.4 prad (21). The expressions

in Eqs. (63) and (65) allow calculations for any orientation of /, however, for the results

presented here, the orientation of -is fixed to be along the x-axis of the pupil (i.e. 0,, = 0).

Recall that V is also assumed to be directed along the z-axis. Subsequent results will also

consider -3directed along the y-axis of the pupil (i.e. 0p = !).

Figures 12 and 13 plot the variance of the system OTF as a function of z, where D is

the diameter of the imaging system aperture. The variance plotted in Figure 12 is for D = 1

meter and in Figure 13 for D = 2 meters. Each figure plots the variance for object angles,

0, of 1, 2, and 3 times the isoplanatic angle, 00. Note the general decrease in variance with

increasing 0. By examining Eqs. (63) and (64), it is clear that the decrease is mainly due

to the reduction in the phase OTF, (Hp(-, V)). Also notice that the variance decreases with

increasing aperture diameter. As the aperture diameter increases, the OTF is formed by the

correlation of points that are separated by proportionately larger distances. The value of the

OTF can be thought of as calculated through a type of averaging over all correlation values.

As the separation between correlation points increases, the correlation value will decrease and

tend toward zero with very little variance between individual realizations. Therefore, as the

aperture diameter increases, the result of the 'averaging' over all the correlation contributions
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will be a decrease in the overall variance. Again, by examining Eqs. (63) and (64). it can be

shown that the variance approaches zero as the aperture diameter approaches infinity.

The corresponding SNR calculations are plotted in Figures 14 and 15. Once again, the

SNRs are plotted as a function of L for aperture diameters D = I and 2 meters and for object

angles, 0 = 1,2, and 3 0 . In addition, Figure 14 shows a comparison between calculating the

SNR using the method of precomputing the correlation function for each particular 1, and the

method utilizing the approximating functions as discussed in Section 3.3. The two methods

produce nearly identical SNR results.

One use of the SNR is found by defining the effective cutoff frequency of an adaptive-

optics imaging system. The effective cutoff frequency, p,, can be defined as the highest spatial

frequency for which SNR(p) is greater than or equal to one:

Pc = p such that SNR(p) = 1.0. (73)

The effective cutoff frequency can be thought of as the highest spatial frequency where the

OTF is known with a minimum acceptable degree of certainty. To illustrate p. for the results

presented in Figures 14 and 15, a horizontal line is drawn at the level where SNR{ H} = 1.

Vertical lines indicate pc for the particular values of 0. Notice that at t = 00, pc is near the

diffraction limit for the particular aperture. This is consistent with Fried's definition of the

isoplanatic angle where the wavefront phase of the object is expected to be well correlated

with the wavefront phase of the beacon and therefore relatively correctable (10).

Note that the SNR significantly decreases as t increases. This decrease is due to the

dominant effect of the average OTF in the SNR calculation for a given aperture diameter.

Recall that the SNR is the ratio of the average OTF to the square root of the variance. The

average OTF decreases with increasing V much faster than the decrease in the variance. These

two figures also show that for the cases of 0 equal to I and 2 0,, an aperture diameter of 2

meters yields a significantly increased SNR over an aperture diameter of 1 meter. For the

O = 20 , case, the SNR = 1 frequency cutoff increases from 34 % to 55 % of the diffraction
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limit as D increases from 1 to 2 meters. At V = 20,, the variance decreases faster than

(Hp(, t)) in going from D = 1 to 2 meters. However, note that at V = 30 0 .the SNR = I

cutoff frequency decreases in going from D = 1 to 2 meters. At V = 30., (Hp(-, 0)) is

dominating the SNR calculation. This type of evaluation is important in system design issues.

Figure 16 is a plot of E as a function of 0/6o. This plot inc•lides the SNR = 1 cutoff

frequencies of Figures 14 and 15, and extends the cutoff frequency results out to 0 = 60o.

Note that beyond 1 = 30,, the SNR = 1 cutoff frequency levels off at a value below 10 %

of the diffraction limiiL

Figure 17 shows the relation between the SNR as calculated for values of -along the

x-axis and the SNR with -along the y-axis. The SNRs are plotted as a function of Z for

an aperture diameter of 2 meters and for object angles, 0, of 1, 2, and 30 . In each case the

SNR has increased in moving from the shift axis parallel to V, to the shift axis perpendicular

to V. The increased SNR along the perpendicular axis is expected since the phase correlation

as well as the average phase OTF is larger along the perpendicular axis.
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Figure 12. Variance of H(-, 0) versus - for A = 0.5 microns using a Hufnagel-Valley
turbulence profile with a 54 mph upper atmospheric wind, ro = 5 cm, and D = 1
meter. Individual plots are for 0 = 1, 2, and 300.
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Figure 13. Variance of H(,t 0) versus f for A = 0.5 microns using a Hufnagel-Valley
turbulence profile with a 54 mph upper atmospheric wind, ro 5 cm, and D =2
meters. Individual plots are for t= 1, 2, and 30,.
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Figure 14. OTF SNR versus Y for A = 0.5 microns using a Hufnagel-Valley turbulence
profile with a 54 mph upper atmospheric wind, ro = 5 cm, and D = I meter.
Individual plots are for 0 = 1, 2, and 30,. Note that double lines at each value
of 0 indicate relative accuracy of calculation method as stated in Section 3.4.
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Figure 15. OTF SNR versus -L for A = 0.5 microns using a Hufnagel-Valley turbulence
profile with a 54 mph upper atmospheric wind, ro = 5 cm, and D 2 meters.
Individual plots are for 0 = 1, 2, and 300.
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Figure 16. Normalized cutoff frequency, 2, vs. t. Data is calculated for A = 0.5 microns
using a Hufnagel-Valley turbulence profile with a 54 mph upper atmospheric
wind and r. = 5 cm.
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Figure 17. 0Th SNR versus -Lfor A = 0.5 microns using a Hufnagel-Valley turbulence
profile with a 54 mph upper atmospheric wind, r,, = 5 cm, and D = 2 meters.
Individual plots are for V9 = 1, 2, and 30,. This figure compares the SNR
calculated with 'along the x-axis to the SNR calculated with -along the y-axis.

3-5 Summary and Conclusions

An analysis of the object angle dependent OTF signal-to-noise ratio, SNR(-, 0), of an

adaptive-optics system is presented in this chapter. This analysis allows for diffraction in

the propagating wavefronts which accounts for both residual phase and amplitude effects. It

is found that the SNR can be written in terms of second order correlations of the residual

phase and amplitude in the system pupil given by lXp (- 0) and r.(p), respectively. The

SNR analysis results in seven dimensional integrations. Simplifications are presented that

utilize a layered atmospheric model and normalized approximation functions of F,(A, 0) and

r, (p). The approximating functions are robust in the choice of V, and can be scaled through

Fried's coherence parameter related to the ith layer, roj. The layered atmospheric model and

normalized approximating functions allow for relatively quick calculations under a wide range

of atmospheric conditions and correction geometries. Numerical results are presented that

demonstrate the utility of an SNR analysis as applied to an adaptive-optics imaging system.
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IV The angle dependent point spread function (PSF) and Strehl ratio

4.1 Introduction

This chapter presents an analysis of the angle dependent point spread function (PSF)

and Strehl ratio. Knowledge of the PSF is useful in a conventional linear, shift invariant
imaging system, because the image intensity is determined by convolving the PSF with the

object intensity. However, since an adaptive-optics imaging system yields an angle dependent

PSF, the system is not shift invariant. The image intensity of a non-shift invariant system is

a superposition integral of the shift dapendent PSF with the object intensity. In the somewhat

simpler case of astronomical imaging where the image may be many stars in a wide field-of-

view star field, each star may be considered a separate point source. Assuming that each star is

separated from surrounding stars such that the corresponding PSFs do not overlap one another,

the image of each star is simply the point source convolved with the PSF corresponding to the

star's angular location. The angle dependent PSF results in each star within a star field having

a slightly different spread or blur. The Strehl ratio is also a useful measure in adaptive-optics

since it defines how much the peak of the PSF has been reduced compared to the peak of a

diffraction limited PSF.

The organization of this chapter is as follows. A discussion of the analysis procedure

for the PSF and Strehl ratio is presented in Section 4.2 followed by the results of the analysis

for a particular atmospheric turbulence profile in Section 4.3. Finally, Section 4.4 summarizes

this chapter and discusses the significance of the results.

4.2 Analysis

In general, the PSF is defined as the inverse Fourier Transform of the OTF. In Chapter IL

the angle dependent OTF was derived. Therefore, the angle dependent PSF can be defined

here as the inverse Fourier Transform of the angle dependent OTE No attempt is made in this

analysis to define an analytical expression for the angie dependent PSF. Rather, for a particular

atmospheric turbulence profile, the OTF expression of Chapter H is used to create discrete
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values of the angle dependent OTF which are then inverse Fourier transformed using standard

Fast Fourier Transform (FFT) techniques. The resulting PSF is then examined with regard

to the angular dependence. Since the OTF is not circularly symmetric, the PSF analyzed

here will not be circularly symmetric. To explore the non-symmetric property of the PSF,

1-D slices of the 2-D PSF are plotted along the axis parallel to the object angle separation

direction, J, as well as along the perpendicular axis. The angular dependence of the spread of

the PSF is shown by plotting the Full-Width-Half-Max (FWHM) as a function of the object

angle, 79. As the name implies FWHM is a measure of how wide a function is when the value

of the function has reached half of the maximum value.

The Strehl ratio is defined as the ratio of the peak of the PSF compared to the peak of

a diffraction limited PSE The Strehl ratio yields a single number that indicates the general

performance of the adaptive-optics system. Also, when the Strehl ratio is plotted against

object angle, V, it is easily seen how performance degrades with increasing V.

4.3 Results

The atmospheric profile used in this analysis is the same Hufnagel-Valley atmospheric

profile with a 54 mph upper atmospheric wind (HV-54) used in previous chapters. Individual

points of the atmospheric OTF were computed using the method discussed in Chapter II

and multiplied by the diffraction limited OTF for a particular aperture to obtain an array of

individual points for the overall system OTF. The resulting array of OTF values is inverse

Fourier transformed using standard FFT techniques to obtain a 2-D array of PSF values.

Figure 18 is a plot of the PSF for the axes parallel and perpendicular to V for a 1 meter

aperture. Figure 18 includes the diffraction limited PSF and the angle dependent PSF for

object angles ranging from V = 1 to 600. Recall that 0, is the isoplanatic angle for the given

atmospheric turbulence profile. The isoplanatic angle for the HV-54, C,2 profile is 2.4prad.

The difference between the PSFs in Figure 18 for the parallel and perpendicular directions

is difficult to see for the smaller ranges of V. However, for the larger values of V, a definite

widening of the PSF can be seen along the parallel axis. The widening along the parallel axis
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will cause the image of off-axis stars to contain an oval shape with the major axis aligned

parallel to V. Figure 19 plots the PSF for an aperture of D = 2 meters. A comparison of

Figures 18 and 19 indicates that the PSF peak for the 2 meter aperture falls off faster, as a

function of the object angle, than for the I meter aperture case. For example, at 0 = 400, the

PSF peak for the 1 meter aperture case is 0.027 and the PSF peak for the 2 meter case is 0.011.

Recall that at V = 0, the PSF is only limited by the amplitude OTF attenuation. As a result,

the PSF peak for the 2 meter aperture, at V = 0, will be much larger than the PSF peak for the

1 meter aperture. However, as V increases, the coherence length of the atmospheric turbulence

begins to dominate the PSF result. The dominance of the atmosphere will tend to drive the

PSF peak for the 1 and 2 meter cases to the same values. The end result, after normalizing

to the diffraction limited peak, is the faster fall off of the PSF peak for the 2 meter aperture

case. Figure 20 is a plot of the Strehl ratio versus -. This plot again demonstrates the faster

fall off of the PSF peak for the 2 meter aperture case as a function of increasing 19. Note that

even at an object angle of V = 0, the Strehl ratio is down to 0.8 which reflects the attenuation

in the amplitude OT. Figure 21 plots the FWHM of the PSF, which has been normalized to

the diffraction limited PSF, versus -2. The FWHM is the full width of the PSF as evaluated

at the point equal to half the PSFs maximum value. The FWHM value has been normalized

such that the diffraction limited FWHM equals one. Figure 21 clearly shows the difference

in the spread of the PSF for the axis parallel to J compared to the axis perpendicular to V

for both the 1 and 2 meter case. This figure indicates that the PSF has a wider spread in the

direction parallel to W. It is also seen that the spread of the PSF increases at a faster rate for

the 2 meter case than for the I meter case. Again, the increasing spread is an indication that

at larger separation angles, atmospheric turbulence dominates the system performance.

4.4 Summary and Conclusions

An analysis of the angle dependent PSF and Strehl ratio for a particular atmospheric

turbulence profile is presented in this chapter. The work presented in this chapter represents

the first time an analysis of an angle dependent PSF that accounts for both amplitude and
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phase effects in an adaptive-optics system has been presented. The results demonstrate the

performance of the adaptive-optics system with respect to object angle out to a separation of

V = 600. It is seen that the spread of the PSF is wider along the axis parallel to V ban along the

axis perpendicular to V. The non-symmetric spreading of the PSF results in a non-symmetric

image of an off axis point source.
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Figure 18. The system PSF plotted against a normalized spatial shift in the image plane for
a 1 meter aperture and A = 0.5 microns. using a Hufnagel-Valley turbulence
profile with a 54 mph upper atmospheric wind and r,, = 5 cm. When fi = 1, the

spaia siftiseqal o .2AD where f, is the focal length of the optics. Individual
plots are for the diffraction limited PSF as well as for 09 = 0 to 30, in the upper
plots and for d = 3 to 60,, in the lower plots. This figure compares the PSF
calculated with ' parallel to V to the PSF calculated with -perpendicular to 09.
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Figure 19. The system PSF plotted against a normalized spatial shift in the image plane for
a 2 meter aperture and A = 0.5 microns, using a Hufnagel-Valley turbulence
profile with a 54 mph upper atmospheric wind and ro = 5 cm. When A = 1, the
spatial shift is equal to 1.22Afi where f! is the focal length of the optics. Individual
plots are for the diffraction limited PSF as well as for V = 0 to 30, in the upper
plots and for V = 3 to 60 o in the lower plots. This figure compares the PSF
calculated with ' parallel to V to the PSF calculated with -perpendicular to V.
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angle for A = 0.5 mictns using a Hufnagel-Valley turbulence profile with a 54
mph upper atmospheric wind and ro = 5 cm. Individual plots are results for 1
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Figure 21. FWHM of the PSF, normalized to the diffraction limited PSF, as plotted against
'- which represents multiples of the isoplanatic angle. The PSF is calclated

with A = 0.5 microns using a Huf•agel-Valley turbulence profile with a 54 mph
upper atmospheric wind and r, = 5 cm. This figure compares the FWHM of the
PSF calculated with -parallel and perpendicular to t9 for both the I and 2 meter
aperture case.
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V Improved performance through a new wavefront correction algorithm

5.1 Introduction

The purpose of this chapter is to develop a new wavefront correction algorithm for

adaptive-optics systems that extends the correctable field-of-view (FOV). The FOV is defined

as the maximum angle where good correction is attainable. Therefore, the FOV is defined by

the isoplanatic angle as discussed in Chapter IL The extension of the POV is accomplished

using information obtained through the diffraction-based propagation model developed in

Chapter HI.

Current correction algorithms involve measuring the reference wavefront phase in the

pupil and then reconstructing the negative of the measured phase. The reconstructed phase is

then applied as a correction to an object wavefront In such a correction algorithm, the same

correction will be applied regardless of the object angle, 0. The d,,elopment in Chapter II

indicates that information is known regarding the difference between the phase of the reference

wavefront and the phase of the object wavefront. This information can be used to formulate a

better method of applying a wavefront correction. The quality of the new correction algorithm

will be judged by the resulting phase OTF of the adaptive-optics system. Recall, from

Chapter I, that the amplitude OTF will not be affected by the phase correction. The incease

in the FOV will be determined by the size of the resulting isoplanatic angle as defined in

Chapter I.

The remainder of this chapter is organized as follows. Section 5.2 develops the new

wavefront correction algorithm. This development identifies the difference between the

reference and object phase, and uses knowledge of the difference to apply a better correction

to the object wavefront. Section 5.3 tests the new correction algorithm by calculating the

OTFs and corresponding isoplanatic angles for two different atmospheric profiles. Finally, a

summary of this chapter is presented in Section 5.4.
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5.2 New wavefront correction derivation

Currently, a wavefront is corrected by subtracting the measured phase of a reference

wavefront from the phase of an object wavefront The subtraction is accomplished in the

pupil of the adaptive-optics system. The phase of the reference and object wavefronts due

to a single spatial frequency component of a single phase screen located at altitude t was

developed in Chapter II and is again presented here:

P,.f(ql, K) = -A( 1 , 9) cos(rja) cos(, -F + 0-o0(71,)), (74)

and,
P C =Xt) = -A( ,1c) cos(T/o) cos(170 - (R) + , (75)

where, a = •I /-, ti, k is the wavenumber of the propagating wave, and t1is the angle

between the object and the reference source as shown in Figure I on page 4. Note that the only

difference between the reference phase and the object phase is the i/3 term contained in the

argument of the cos in Eq. (75). The i/3o term represents additional information regarding the

phase of the wavefronts not used by conventional correction algorithms. If the atmospheric

turbulence was composed of a single phase screen with a single frequency component, its

easy to see that a wavefront correction algorithm would achieve perfect correction if a phase

shift 17,3 is added to P,,e(7, X-,i) be& applying the correction to Pobj (q,,-,)4). Since

the atmospheric turbulence is not c;. -,.•d of a single phase screen, a separate shift would

need to be added to each phase contribution from every phase screen to obtain the perfect

correction. This would require the ability to determine the contribution of every phase screen to

the- measured cumulative phase distortion. Johnston's work with multi-conjugate adaptive-

optics (MCAO) faced a similar challenge (23, 24, 25). However, determining the altitude

related contributions to a measured wavefront is currently a theoretical exercise requiring the

use of an array of laser guide stars. Another alternative is to choose a specific 77, given by

'0, and use q,,# as the shifting parameter for all phase screen altitudes. Note that the tl,,8
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shift parameter is not a function of altitude, but is still a function of spatial frequency

With an 1o,, shift added to the reference phase, the new reference phase, P,/ is written

as

P,,f(1, K, X-) = -A(v7,1)cos(rla)cos(/( 0 o(- ( - )+ (76)

The residual phase of the adaptive optical system is determined by subtracting the phase of

the new reference wavefront from the wavefront phase of the object. This residual phase is

now given by

APn(qii-,O) = -Acos(iOa)cos(iI-(•. •+ (q(#)))

+A cos(?7a)cos(qo/3 - I. -, + 0•e(I)). (77)

Following a similar analysis as given in Chapter IL the resulting phase OTF is found to be

Hp(FV) = exp{ -87rk2JJI(Z,2,)cos2(I'2 - c

x [1 - cos((77 - qo)1" 9)]d??dW}. (78)

To implement this correction algorithm in an actual adaptive-optics system would

require the measured phase to first be decomposed into Fourier components. Each frequency

component of the resulting decomposed wavefront would then be multiplied by exp(j77o/3)

to accomplish the shift and then inverse Fourier transformed. The resulting wavefront would

then be used for correction of the object wavefront.

53 Numerical results

This section presents an analysis of the new correction algorithm through an evaluation

of the phase OTF given in Eq. (78). The evaluation of Eq. (78) uses continuous turbulence

profiles rather than the layered profiles as discussed in Chapter IL A discussion of the reasons

for using a continuous profile is reserved for the end of this section.
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Note that the new phase OTF expression of Eq. (78) matches the conventional phase of

Eq. (27) onpage 17,if welet r/ = 0. Note also, thatifthe amosphere was composed ofasingle

phase screen at altitude Yo, the phase OTF of Eq. (78) would equal 1 (Le., ideal correction).

However, when phase screens are located away from rob a less than ideal correction will

result (i.e. Hp < 1). Therefore, for an initial test, rio is chosen equal to the center of mass

of the turbulence profile. For this test, two continuously distributed turbulence profiles are

considered. Model SLC-N represents a fit to the AMOS night data as shown in Figure 5 on

page 21 and model HV-54 represent the Hufnagel-Valley turbulence profile calculated with

a 54 mph upper atmospheric wind, also shown in Figure 5 on page 21. Model SLC-N has a

center of mass equal to 1534.25 meters and model HV-54 has a center of mass equal to 3408.5

meters.

Figures 22 and 23 show the phase OTFs obtained using a shift parameter of rof3 where

77o is set equal to the center of mass of the respective profiles. The object angles for these

plots are the isoplanatic angles defined by Fried (10) where 0, for model SLC-N is 13prad

and 0, for model HV-54 is 2.4psrad. Figures 22 and 23 show approximately a 11.5 % increase

in the high frequency OTF for model SLC-N and about a 3 % increase for model HV-54.

Note also that for model HV-54, a significant trade-off consideration must be made between

the improvement in the high frequency response and the attenuation in the low frequency

response as shown in Figure 23. The difference in correction improvement attained by the

two turbulence profiles is determined to be related to the shape of the turbulence profile.

By looking at the turbulence profiles in Figure 5 on page 21, a large amount of far-field

turbulence in model HV-54 can be seen. Also, it is noted that relative to the center of mass

at an altitude of 3408.5 meters, there is a large amount of turbulence located a significant

distance away from the center of mass. The greater amount of far-field turbulence results in

a greater attenuation in the amplitude portion of the OTF which is not corrected for by the

adaptive-optics correction algorithm. The distribution of turbulence away from the center

of mass results in a less effective correction when the correction algorithm corrects to the

center of mass (i.e. tI, = center of mass). In contrast, model SLC-N contains less far-field
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turbulence and a greater proportion of turbulence located near the center of mass at 1534.25

meters. These two properties of the SLC-N turbulence profile result in an increase in the

effectiveness of the correction algorithm when using the center of mass of the C2 profile for

the i7o,, shift parameter.

The next step is to determine if the center of mass ic the best choice for use as a shifting

parameter. In Figures 24 and 25 the p = 1 meter value of the phase OTF is plotted as a

function of 7, . These figures show that a slightly better correction is achieved by shifting

downward in altitude from the center of mass.

Figures 22 through 25 give a good qualitative look at the FOV improvement obtained

through the new correction algorithm. A more quantitative analysis of the FOV is presented in

Figures 26 and 27. The FOV of the adaptive-optics system is defined by the isoplanatic angle.

The isoplanatic angle angle is defined by Fried (10) as the angle where the high frequency

limit of the phase OTF has been attenuated to a factor of e-I of its value at 0 = 0. Using

this definition of the FOV, the SLC-N turbulence profile has an FOV of 19.9prad using the

conventional correction algorithm. The FOV using the new correction algorithm with a shift

corresponding to 77, = 1000 meters is 24.33prad or an increase of 22.2% in the FOV. For the

HV-54 turbulence profile, the increase in FOV is more modest at 3.6prad for the conventional

correction algorithm and 3.9jsrad for the new correction algorithm using , = 2000 meters.

Use of the new correction algorithm results in an 8.3% increase in the FOV for model HV-54.

The reasons for the difference in the improvement between the two turbulence profiles are the

same as discussed above for the high frequency OTF improvement

During the correction algorithm analysis, tests were made using several combinations

of finite numbers of phase screens as well as a continuous turbulence profile. Figure 28 shows

the phase OTFs using a shift parameter of %#/ where 7o is set equal to the center of mass

for the atmospheric model SLC-N. The two curves plotted in Figure 28 are a comparison

of the OTF calculated using a 4-layered atmospheric model and the OTF calculated using

a continuous atmospheric profile. Similarly, Figure 29 plots the p = 1 meter value of the

phase OTF as a function of 17,. For 77, = 0 (Le. the conventional correction algorithm),
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Figure 22. Comparison between the phase OTFs for the new correction algorithm and the
conventional correction algorithm. The OTFs are calculated with a A = 0.5jsm,
an AMOS night turbulence profile, 0 = 13.O0rad, and a Von Karman refractive
index power spectrum with Lm = 1mm and Lo = 5m. The amplitude OTF is not
affected with the new correction algorithm but is shown here for reference.

the calculation methods produce a 2% difference in OTF value. However, at the peak of

77, = 1 000meters, the calculation methods produce a 7% difference in OTF value. Results for

the conventional algorithm calculations were also verified in Chapter I. The results of this

analysis are a reminder that a layered atmospheric model is only an approximation. All real

turbulence profiles are continuously distributed with respect to altitude. Many measurements

of atmospheric turbulence have been made (3, 29, 37, 41, 50) and are commonly used to

justify the use of a layered atmosphere for all applications. The measured turbulence data only

indicates that some turbulence profiles may be modeled as discrete layers better than others.

In Chapter II and Chapter IaI it was determined that a layered atmospheric profile was a good

approximation for use in OTF and SNR calculations. However, before these conclusions were

reached, the results using a layered profile were compared to a continuous atmospheric profile.

It is advised that for any new correction algorithm, theory should be developed to account for

the continuous atmospheric profile before simplifications to a layered atmosphere are made.
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Figure 23. Comparison between the phase OTFs for the new correction algorithm and the
conventional correction algorithm. The OTFs are calculated with a A = 0.5pm,
a Hufnagel-Valley turbulence profile with a 54 mph upper altitude wind (21),
V = 2.4prad, and a Von Karman refractive index power spectrum with Lm =
1mm and Lo = 5m. The amplitude OTF is not affected with the new correction
algorithm but is shown here for reference.
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Figure 24. The phase OTF plotted against shift parameter 7o for model SLC-N. The com-
puted value at each altitude represents the phase OTF at p = Im with a
A = 0.5ym, an AMOS night turbulence profile, 'd = 13.Oprad, and a Von
Karman refractive index power spectrum with Lm = lmm and Lo = 5m.
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Figure 25. The phase OTF plotted against shift parameter 77. for model HV-54. The
computed value at each altitude represents the phase OTF at p = Im with a
A = 0.5/sm, a Hufnagel-Valley turbulence profile with a 54 mph upper altitude
wind (21), 79 = 2.4yrad, and a Von Karman refractive index power spectrum
with L,,, = lmm and L, = 5m.
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Figure 26. Isoplanatic angle for atmospheric model SLC-N. The computed value at each
angular separation represents the OTF at p = oom with a A = 0.5/im, an AMOS
night turbulence profile, lo = 1000.0m, and a Von Karman refractive index
power spectrum with Lm = 1mm and L, , 5m.
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Figure 27. Isoplanatic angle for atmospheric model HV-54. The computed value at each an-
gular separation represents the OTF at p = oom with a A = 0.5pam, a Hufnagel-
Valley turbulence profile with a 54 mph upper altitude wind (21), ti, = 2000.0m,
and a Von Karman refractive index power spectrum with L,,, = 1mm and L, =
5m.
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Figure 28. Comparison with layered atmospheric model for new correction algorithm OTF
calculation using atmospheric model SLC-N. The OTFs are calculated with a
A = 0.5pm, an AMOS night turbulence profile, V = 13.Oprad, and a Von
Karman refractive index power spectrum with Lm = 1mm and L, = 5m. The
layered atmospheric calculation uses the 4-layered atmospheric model discussed
in Chapter II
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Figure 29. Comparison with layered atmospheric model for new correction algorithm OTF
calculation plotted against shift parameter 17, for model SLC-N. The computed
value at each altitude represents the phase OTF at p = lm with a A = 0.5pm,
an AMOS night turbulence profile, 0 = 13.0irad, and a Von Karman refractive
index power spectrum with Lm = lmm and Lf = 5m. The layered atmospheric
calculation uses the 4-layered atmospheric model discussed in Chapter H
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5.4 Summary and Conclusions

A new wavefront correction algorithm using the diffraction-based model developed

in Chapter H is developed and presented in this chapter. This new correction algorithm

makes use of additional information regarding the phase of the propagating wavefronts. The

improvement in the correction algorithm is made through a spatial frequency dependent shift

parameter, 7/7., where 77. is thought of as an altitude. The best choice of %o is found to be

an altitude slightly lower than the calculated center of mass of the atmospheric C2 turbulence

profile. By choosing the optimum value of 77,, the correctable FOV increased by 22.2% for the

SCL-N turbulence profile and by 8.3% for the HV-54 profile. The difference in the correctable

FOV increase is determined to be due to the distribution of the C2 profiles. A turbulence

profile with turbulence distributed closer to a single altitude achieves greater benefit with the

new correction algorithm presented in this chapter.

It is also determined through this analysis that care must be taken regarding modeling

a continuous atmospheric turbulence profile with discrete layers. A significant difference in

the correction results is noted between using a continuous atmospheric turbulence profile and

using a layered model 'approximation' of the turbulence profile.
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VI. Conclusions and recommendations

6.1 Introduction

This research effort takes a new approach to the analysis of performance measures of an

adaptive-optics system. In a typical adaptive-optics system, the object and reference beacon

are separated by an object angle. The correction in an adaptive-optics system is accomplished

by subtracting the measured phase of the reference beacon from the phase of the object. The

non-homogeneous nature of atmospheric turbulence results in performance measures that are

a function of the object angle. In this research a diffraction-based propagation model is used

to track both the amplitude and phase variations in a propagating wavefront. The diffraction-

based model allows for proper accounting of the amplitude and phase contributions to the

performance of the adaptive-optics system. Several analysis tools are also developed which

allowed a numerical evaluation of the derived performance expressions.

This chapter presents a summary of the contributions of this research along with the

significance of the contributions. These contributions are unique and are seen to have a signif-

icant impact on the theoretical thinking of the adaptive-optics community. Recommendations

for further research are also given.

6.2 Contributions

Propagation Model: A diffraction-based model for plane-wave propagation at an

arbitrary angle through atmospheric turbulence is developed in Chapter IL This model is

based on the work of Lee and Harp (30) for propagation along the optic axis and extends

their results to account for propagation at an arbitrary angle. Results for propagation at an

arbitrary angle are required in adaptive-optics analysis since wavefront correction is based on

the phase difference between waves propagating at different angles. The diffraction-based

propagation model is essential for calculation of the amplitude and phase variations of a

propagating wave. The conventional geometric optics propagation model neglects diffraction

effects and therefore can not account for the amplitude variations in a propagating wave.
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Neglecting amplitude variations results in an inaccurate prediction of adaptive-optics system

performance.

Amplitude and Phase Optical Transfer Function (OTF) Derivation: An object angle

dependent, average amplitude and phase OTF of an adaptive-optics system is developed and

presented in Chapter H. The overall OTF is a product of the amplitude and phase OTFs.

Computing the amplitude and phase OTFs, requires the previously developed diffraction

based propagation model to characterize the amplitude and phase transmittance functions for

an adaptive-optics system. The transmittance functions are converted to transfer functions

through definitions taken from Goodman (14). The OTF expressions presented in Chapter II

represent the first time that angle dependent amplitude and phase transfer functions have been

developed for an adaptive-optical system. The transfer functions are in the form of a three

dimensional integration over the two dimensions of the turbulence spectrum and the single

dimension of the propagation path.

Layered Turbulence: A moment matching method of modeling atmospheric turbu-

lence through an arbitrary number of turbulent layers located at pre-determined altitudes is

developed and presented in Chapter IL The three dimensional integration for the OTF is

computationally intensive and requires recomputation for every new atmospheric turbulence

profile. The layered turbulence model presented in this dissertation, uses a set of phase

screens located at predetermined altitudes to represent the atmospheric turbulence profile.

This atmospheric model using predetermined altitudes is required to develop a method of

rapidly calculating the OTF under changing atmospheric conditions. The layered turbulence

model using moment matching phase screens at predetermined altitudes as presented in this

dissertation is the first time such a model has been developed.

OTF Evaluation: A method of rapidly evaluating the OTF of an adaptive-optics

system which allows scaling io different atmospheric conditions is developed and presented

in Chapter II. This method requires the development of new theory to represent the OTF by a

series of normalized phase transfer functions and amplitude correlation functions for each of the

layers of the turbulence mcdeeL The normalization is with respect to the strength of turbulence.
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thus allowing scaling to various turbulence conditions. This method of computation is applied

to a typical atmospheric profile to demonstrate the significant contribution of the amplitude

OTF to the performance of an adaptive-optics system. It is also shown that the isoplanatic

angle is larger than predicted by previous theory using a geometric optics calculation. This

indicates that the adaptive-optics system degradation with respect to object angle is less severe

than stated by previous geometric optics calculations.

Signal-to-Noise Ratio SNR Derivation: The object angle dependent SNR of an

adaptive-optics system OTF is developed and presented in Chapter IIl. The average OTF

developed in Chapter II gives no indication as to how a specific realization of the OTF varies

from the average OTF. This information is gained through the OTF SNR. Knowledge of the

SNR is also required whenever image reconstruction is used in conjunction with adaptive-

optics to determine the spatial frequencies available for the reconstruction process. The SNR

derivation in this dissertation represents the first presentation of an angle dependent OTF SNR

for an adaptive-optics system. The resulting SNR is in the form of a seven dimensional

integration.

SNR Evaluation: A method of rapidly evaluating the SNR of an adaptive-optics system

OTF which allows scaling to different atmospheric as well as geometric conditions is developed

and presented in Chapter Ill. The seven dimensional integral result of the SNR derivation, is

actually a four dimensional integral over a function of three dimensional phase and amplitude

correlations. For the evaluation of the SNR, the layered atmospheric model is used to calculate

an array of normalized correlation function values over a wide range of object angles. A least

squares fitting routine is then developed to determine approximating functions to approximate

the three dimensional integration of the correlation functions. The approximating functions

are used to evaluate the SNR for a typical atmospheric turbulence profile. This evaluation

demonstrates the utility of the SNR to adaptive-optics image reconstruction by identifying an

adaptive-optics cutoff frequency. The SNR evaluation in this dissertation represents the first

presentation of an evaluation of the angle dependent OTF SNR for an adaptive-optics system.
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Point Spread Function (PSF) and Strehi Ratio Evaluation: The angle dependent

average PSF and Strehl ratio of an adaptive-optics system is developed and presented in

Chapter IV. The PSF is calculated by first computing an array of OTF values for a particular

atmospheric profile. The OTF values are computed using the average OTF expressions

and the OTF evaluation method developed in Chapter IL The OTF array is then inverse

Fourier transformed using standard FFT techniques. The non-symmetric nature of the PSF

is demonstrated with an observed elongation of the PSF in the direction of the object angle.

TVe Strehl ratio is computed as the ratio of the peak of the PSF to the peak of the diffraction

limited PSF This is the first presentation of an angle dependent PSF that accounts for both

amplitude and phase effects in an adaptive-optics system.

Correction Algorithm: A new adaptive-optics wavefront correction algorithm which

extends the correctable FOV of the adaptive-optics system is developed and presented in

Chapter V. Information regarding the wavefront phase differences between the beacon and

the object is gained through the propag,, von model presented in Chapter IL This additional

information is used to develop the new correction algorithm. An analysis is performed using

two different atmospheric profiles to demonstrate the utility of this new correction algorithm.

It is shown that for an atmospheric profile containing only a small amount of high altitude

turbulence (the SLC-N model of Figure 5, page 21 ), an increase of over 20% in the FOV

is achieved. When the turbulence profile is more distributed (the HV-57 model of Figure 5,

page 21 ), an increase of approximately 8% in the FOV is achieved.

6.3 Recommendations for future research

The first recommendation is for a more extensive analysis using the average OTF

developed in Chapter IL The analysis should determine how atmospheric profiles affect

the level of the amplitude and phase OTh. An attempt should be made to quantify when a

geometric optics calculation method is adequate and when the diffraction-based calculation

method becomes necess& y. This same analysis should be performed on the SNR calculations.

More research is necessary to determine some simplifications that could be used for the SNR,
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and under what aunospheric conditions the simplifications would apply. For example, it should

be determined what atmospheric conditions allow the amplitude correlations to be neglected.

It is suspected that simplifications to the SNR such as neglecting the amplitude correlations

would be valid over a wider range of atmospheric conditions than for the average OT.

The atmospheric profiles such as the ones shown in Figure 5, page 21, are averaged

profiles may not be a good representation of actual profiles. These profiles, are standard

throughout the community, but are created using measured data processed through a smoothing

function. Measured profiles may vary significantly from the averaged profile. From the

analysis of Chapter H, it is known that the transformation from turbulence strength to OTF

value is a non-linear operation. Therefor, standard smoothing techniques for the turbulence

profile may be a poor method of obtaining a good representation of the turbulence for the

purpose of adaptive-optics performance analysis. Two suggested solutions to this problem

are proposed. First, determine a better smoothing operation on the turbulence profile data.

This would require determining the nonlinear transformation relation between the turbulence

profile and the performance measures. Thic relationship could then be used to develop a

properly weighted smoothing function for the turbulence data. A second suggestion is to

simply treat the turbulence profile as a random process with a given mean and standard

deviation. The adaptive-optics performance measures could then be evaluated at the mean

value of the turbulence profile as well as at plus and minus one or two standard deviations.

This may yield a clearer picture of the expected adaptive-optics performance.

The new correction algorithm presented in Chapter V appears to have significant promise

in extending the correctable FOV. More work could be done with the correction algorithm in its

present form to determine what atmospheric conditions yield the best increase in the correctable

FOV. It is suspected that results of this analysis would indicate that as a profile becomes more

concentrated in a single layer, performance is increased. Also, as turbulence shifts toward

lower altitudes, an increase in performance should be seen. Finally, the correction algorithm

indicates that perfect correction could be obtained if a received signal could be decomposed

into specific altitude contributions. More research needs to be done in this area. Some hdlp in
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this solution may be obtained through Johnston's (22) work with multi-conjugate adaptive-

optics. It is also possible that different frequencies have a different optimum correction

altitude. Currently, the correction algorithm of Chapter V adds a shift to each frequency

component that is based on a single altitude. Further research in this area could result in

additional improvement in the correctable FOV.
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Appendix A. Atmospheric model

In this appendix, a model of atmospheric turbulence is presented. The important

concepts include the idea of pockets or 'eddies' of turbulence, the dimensions of these eddies,

and how these dimension are incorporated into a refractive index power spectrum.

The atmospheric model begins by considering the power spectrum of the refractive

index variations. The refractive index variations is the cause of atmospheric turbulence. It is

common to think of the refractive index variations as pockets of air or 'eddies', each with a

characteristic refractive index as shown in Figure 30. The power spectrum of the refractive

index turbulence, given by l(i ic,, t,.), may be regarded as a measure of the relative

abundance of eddies with dimensions L, = 2wr/tc, L. = 2r/sic, and L. = 2ir/,K_ where L

is the length of an eddy and x is the wavenumber. The atmospheric model presented in this

appendix and used throughout this dissertation is one with locally isotropic turbulence. This

means that at any point, the distribution of eddy dimensions is the same in all three directions.

Isotropic turbulence results in a power spectrum given by 0(r.) which is a function of a single

wavenumber K with a corresponding eddy size of L = 2r/ic.

The refractive index power spectrum can be thought of as divided into three significant

regions. The boundaries of these regions are defined by the inner and outer scale size of the

turbulence. The scale size L, = 27r / r, is called the outer scale of the turbulence and the scale

size of L. = 27r/m,,, is called the inner scale of the turbulence. T"he region between the outer

scale size and the inner scale size is called the inertial subrange.

The power spectrum of the inertial subrange is determined simply by the physical laws

that govern the breakup of large eddies into smaller ones (Le., the science of turbulent flow).

The power spectrum of eddies larger than the outer scale size, L,,, will be affected by things

like large scale geographic and meteorological conditions. Turbulent eddies smaller than the

inner scale size, Lm, dissipate energy as a result of viscous forces with the result being that the

power spectrum beyond this point falls off very rapidly. The sizes of eddies of most concern

in adaptive optics are those in the inertial subrange which are modeled, through the work of
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Figure 30. A representation of pockets or eddies of turbulence in the atmosphere. Each
pocket can be thought of being composed of a single refractive index. The vari-
ations in the refractive index result in perturbations in a propagating wavefront.

Kolmogorov (27), with a power spectrum defined by

4(x, 77) = 0.033C.07)K-n/3, (79)

where 17 is the altitude and C2(1) is called the structure constant of the refractive index

fluctuations and is a measure of the strength of the fluctuations. The value of the structure

constant depends on local atmospheric conditions and height above the ground. Typical

values near the ground vary from 10- 13 m-2 / 3 for strong turbulence to 10- 17 m- 2/ 3 for weak

turbulence with 10- 15 m-2/3 as an average value. This power spectrum has appropriately been

called the Kolmogorov power spectrum. The Kolmogorov spectrum is very useful, but care

must be taken outside of the inertial subrange. In particular, note the pole in the spectrum at

- 0.

In the analysis presented in this dissertation, it is necessary to integrate the power

spectrum over all values of K. To avoid the singularity at zero a modification of the Kolmogorov
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spectrum called the Von Karman spectrum is used. This spectrum is given by

0 .033C2(i1) (•-)
('07 + 0 2 e)11/6 (80)

where teo and x.. are the outer and inner scale wavenumbers, respectively. Not only is the

Von Karman spectrum of a nicer form for numerical integration, it is also more representative

of actual turbulence. Any refractive index power spectrum should level off as K =* 0 shtce

there can only be a finite amount of air in the earths atmosphere. A normalized spectrum of

E with Ko = 2, and Kc = 2 is plotted in Figure 31. These scale parameters areC=7 5- -n 1 I I

used throughout the body of this work with more details of how the scale parameters effect

system performance given in Section 2.5. Note that the Von Karman spectrum with an outer

scale wavenumber of 0, and an inner scale wavenumber set at infinity, is equivalent to the

Kolmogorov power spectrum.
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Figure 31. The normalized Von Karman refractive index power spectrum, , as plotted
against wavenumber K. This spectrum is plotted for an outer scale size of 5
meters and an inner scale size equal to 1 millimeter.
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Appendix B. Phase screen model

This appendix presents the concept of an atmospheric phase screen necessary to under-

stand the model of atmospheric propagation. The goal is to model a section of the atmosphere

as a thin phase screen such that a wavefront propagating through the phase screen is identical

to a wavefront passing through an actual section of atmosphere. Lee and Harp (30) used the

method of phase screens to calculate the phase and amplitude perturbations of a plane wave

and their results were validated with the wave equation method by Clifford and Strohbehn (4).

As a wave propagates through a section of the atmosphere, it experiences phase delays

related to the index of refraction of that particular section. Since the atmosphere is non-

homogeneous with respect to the index of refraction, different portions of the wave will

experience different phase delays. A section of atmosphere can therefore be modeled as a

phase-only transmittance function or phase screen. Let the transmittance of the phase screen

be represented by
477t, i') = e-j~(•• (81)

where, 77 is the altitude of the phase screen and AqO(r, i) is the phase of the screen at a

location given by i. As a wave passes through this screen, a phase equal to A 0(77, i) will be

added to the wavefront. In order to properly model the phase screen, A0(77, i) must represent

the actual phase changes experienced in propagation through a section of turbulence. Let an

individual spatial frequency component, K,- of AO(77, i-) be given by

AO(7, XF, W) = k dh a(77, i) cos('. - + 0,(77,) (82)

where k defines the wavenumber of the propagating wave, dh is a differential thickness of

the phase screen, a(77, R) and 0,o77, ') are the amplitude and initial phase offset of the spatial

Fourier component of the index of refraction variations having a spatial frequency W. Within

a plane, the index-of-refraction fluctuations are isotropic but with a power spectrum that is,

in general, dependent on the altitude of the screen.
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Let *l(q, 9) be the complex amplitude of the Fourier transform component of the

refractive index variations,a(11, )cos(•,.i+ &o(11, )), where 'P(q,,) =

A relationship between the complex Fourier components, (77, 9), and the refractive index

power spectrum is given by Tatarski (46) as

('P(71, 91)I*(772, 92)) = (91 - -W2)F(tj -12, I-j)d~qdfC2 , (83)

where F(i11 - 772, KI) represents the two dimensional refractive index power spectrum and b

is the Dirac delta function. Notice that Eq. (83) indicates that different frequencies within a

phase screen are independent of each other. This fact is essential in the calculations presented

in the body of this dissertation. It is now convenient to represent the phase screen of Eq. (82)

as

A(R, , K-) = A(q, -)cos(K. Y + 0.(q, -)), (84)

where, A(q1 , 1) = k d b a(q1, X-). The complex phasor representation of the phase screen is

then given by

AOp(77, XF, K-) = A(77, ge'('~g

= A(77, c)ed. (85)

The relation between the phase screen variations and the refractive index power spectrum is

then given by

K)2)) = (2k dhj RIj(11,Oi)2kOh 2 dh *(1Z))

4 26(g(• - 92)F(71 - 712, tcj)dtcldK 2. (86)

This relation will be used for the derivation of the residual amplitude and phase correlation

functions derived in Appendix D.
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Appendix C. Derivation of amplitude and phase perturbation equations

In this appendix, the amplitude and phase perturbation equations are derived for a

wavefront that has propagated through the atmosphere at some arbitrary angle as shown in

Figure 32. In the body of this dissertation, the object angle, 0, is defined as the angle between

the beacon and the object To maintain consistency, the optic axis is defined here as the axis

from the optics to the beacon and the turbulent layer and observation plane are perpendicular

to the propagation direction from the beacon. Any propagating wave can be considered to

be propagating in a direction determined by the propagating wavenumber k, defined by the

individual k, and k, components of k. In our system, the turbulent layers are in the x,y

plane, and the optic axis defines the z axis. For initial ease of calculations, the 'off axis'

wave from the object is designated as a wave having an arbitrary k. wavenumber component.

This arbitrary kx wavenumber component will result in a propagation angle with respect to

the optic axis. The analysis is not restricted by only allowing a k, wavenumber component

since the direction of propagation in the x, y plane will define the x axis of the system. The

first step in the analysis is to determine the measured wavefront obtained from a point source

as propagated through a single frequency component of a phase screen placed at an arbitrary

distance away from the aperture plane of the system. A discussion of a phase screen is given in

Appendix B. The phase screen will be a single frequency sinusoidal grating with an arbitrary

orientation in the x, y plane, with frequency and orientation defined by g, located at an altitude

77, and written as

A00l , R)= A(77 R)cos(. I+ ( (87)

where A( 77, 1) and 0o(n, W) are defined as in Appendix B. In the following analysis we assume

that A(77, #) < 1 which is consistent with the weak turbulence assumption. It is convenient

to represent this phase screen in exponential form as

_ A ) 2 + (88)
2
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r Lines Of Coftflt Ph1ase

Phase Screen

Obsevamion Plane

Figure 32. Scattering of a wave through a phase screen

The incoming wave is written with an x frequency component as

Ur, iskr') - e((kz,+kzz), (89)

where k, and k, are related to the propagation wavenumber k by k = k ± k., and r is the

distance from the object to the phase screen as shown in Figure 32. The dependence on r will

eventually be discarded. However, plane-wave propagation is assumed. Therefore, r must

be sufficiently far away to yield a good plane-wave approximation.

After the wave passes through the phase screen, the transmitted field is given by

Ut(r, X, R) =e-J(kr+kzx)e-A(1'O'. (90)

86



Expanding the e-.'j"4,1') term using a Taylor series, yields

S+(j/-(,A , X, /C))_ UA0,(, ), + (91)
-= 1 - jA(/, ', )+2! 3!

Assuming that Ao(ri, XR) < 2r, as implied by A(rv, I) < 1 the higher order terms in

Eq. (91) can be dropped. Rewriting Eq. (90) gives

Ut (, r, -) = e-(kzr+ksx)(I - jAO(77 X, ,))
- e-(kzT+k'x)[l - jA(/, 1) cos(-. -" + ¢o(rj, #))]

= e-3(kzT+kxx•)[1 - Aj ) e~+ o(92)

2

This equation states that the effect of passing the field U,,e through the phase screen is

that there are now three plane waves - one traveling in the original direction, and two scattered

waves traveling at directions determined by the 1 frequency component of the phase screen.

In order to propagate Ut to the observation plane, at a distance r + q from the object, it is

necessary to determine the z components of the wave numbers of the scattered waves. These

two components are given by

ký' = V'k2 -(k. + C cos 0)2 -(IC sin 0)2, (93)

and,

k' = /k2 - (k, -X cos 0)2 - (K sin 0)2, (94)

where 0 is the angle that 1 makes with the x axis. Ut is now propagated to the observation

plane, resulting in
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.•

Ut(r + 17, •', •) = e-j(kz(r+i)+kzx) - A ,)_+ +,

22
-j rl-~.7kx A(i7, 9) (e-j(( ,+ks+k'n(.+•(,))-2,2

SA(, ) , )(95)
22

Since the variations in the phase and amplitude are of interest, the constant phase term e-jkr

is dropped resulting in

Ut(77,,)= e-)(k•k' - A2, (e-jkk•(.•+(,))

-jk A ji1, Ai it

-j 2 (e- 2 . (96)

Making substitutions to ease the algebraic manipulation, let

Ikz/
a = z17

b = •.•+ 0(,),

z7. = (97)

Equation 97 is substituted into Eq. (96) to yield
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= & =~ _ Av,~ e( 6

-kx -ki _. _jn(--b e j+b)'_.

= 0 -, )+A = -(e 2 (e

Agidrpte osan hsetr e-jksxcj .i. _h A(77, R-)k +ersnsarerpaet

2

&jkxx -jky _ A(,1 , 9) M((!f)-cb) \

e e2 e+ e ))

=eijkzx (eijkz' - jA(7,?Z)e&j(aP) Co. ((a 2 c) _ b)). (98)

Substituting the expressions for a, b, and c from Eq. (97) back into Eq. (98) gives

j~k~z~k~ik) 2-+k"

Ut( rj, •' , g ) = 1~ ~ - jA(rl ce,° * cos •7 ( 2~

=e -j~z~s (1 - jA(v7, k9)ej'7( +k' -k-

Again, drop the constant phase term e-jk,7,. The term e"j-- represents a linear phase term

or the unaberrated wavefront phase. This linear phase term will result in an overall talt to the

wavefront The final expression for the wavefront is written as

U(7 F C = 1 - jA(71, W)e- 2 'k)Cos 2 ) t - X + r~?,K)J)J.
(100)

Before the equations become too lengthy, the variables a and # are introduced, where

a= ((k+k.) -k.) (101)
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and.
k. ( k .1kz (102)

To find the amplitude and phase perturbations, Ut is written in terms of real and

imaginary parts.

Ut (q, F,) X = 1 - jA(rl, 1)e-rPQ cos(17/ 3- (i. 9+ o('i, )W

- 1 - jA(i7, )[cos(r/a) - j sin(r/a)] cos(ir/3 - (i-. + o(, )))

- [1 - A(r/, K) sin(tla) cos(r7/8 - (V 9" + 4Oo(7, 9)))] -
j[A(,, Z) cos(,7,t) cos(,f - (C. s + •(,,)))]. (103)

The amplitude perturbations, P., can now easily be calculated as the magnitude of Ut minus

one (1Ut1 - 1). The magnitude minus one is considered, because propagation began with

a uniform amplitude wave and any perturbations of this unity amplitude is the quantity of

interest The amplitude perturbation equatio is written as:

Pa = INU I-

= [_2(U) + a2(U,)]12

= {[1 - A(i7, W) sin(ira) cos(r/7# - (i. 9 + ,

+[-A(i7, 9) cos(rio) cos(r7# - (- X" + 0o(q, K)))]2}½ -1. (104)

Since the assumption is made that the maximum amplitude of the phase screen is much less

than unity (ie., A(Y7, K) < 1). the higher order term of [-A(q, W) cos(i7a cos(v7/f - (K. 9, +
o(•, g)))]2 is neglected. Therefore,

P8 = {[1 - A(77, -) sin(ria) cos(i#/- - ( + X o(ro, 2)))]2}½ - 1. (105)

By expanding the square term, dropping the higher order term, and using the binomial expan-

sion on the remaining square root, the following final expression for the amplitude perturbation
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is obtained:

P. = -A(Yj, 9) sin(ria) cos(qrBK- ( X' + 0,o(r/, X))). (106)

Now, in calculating the phase perturbations, recall that the initial plane wave is defined

by a uniform phase across the wavefront. All constant phase terms have been dropped in the

final wavefront expression of Eq. (100). Therefore, any remaining phase is considered to be

a phase perturbation. The phase perturbations, Pp, can be represented as

PP = tan-1 [R--U t)]
t A(i;, Z) cos(qa ) cos(ri# -(P. F + o(), ))= tan-' -- (• • c-• 3''-+-• •)J (107)

A Taylor series expansion of tan-'(x) for the case when x2 < 1 is used, where

X3 X 5tan-l(X) = X - 3 + -5 .. (108)

Again, neglecting the higher order terms, the final form of the phase perturbations is written

as

-A(77, 9) cos(r7a) cos(riB - (K. - + 0o(q, 1)))

1 - A(9, it) sin(oa) cos(riB - ( - " + ri,7)))

, -A(r, 9) cos(r/a) cos(rii - (K- -F + , i))). (109)

This final approximation is made using A(77, K) < 1.

Equations (106) and (109) form the final results of this appendix. The remainder of

this appendix determines simplified expressions for a and P which are used in the numerical

analysis. The simplification of a begins by substituting Eqs. (93) and (94) into Eq. (101) and

using a binomial expansion on the square root functions.
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= Ik2 -(k. + KcoSO)2 -- (Psin0)2
2

+~ 2k 2 -(k.,-scK+COSK0o2 -(CSn02 fk2 -k .2
-- 21cCO - Vk2 - k .2

2( K,2 +2kK Cos 0
2 k2 -k2-

IK2 - 2kKcosO 2) (110)+~ ~ ~ I _- k2•

Now use the binomial expansion where,

x X
2  X3

1 2 8 16

S1 - -. (111)
2

This approximation is very good for the case when x < 1. Applying the binomial expansion

to the square roots of Eq. (110), the following approximation is obtained:

1 (K1b 2 +2k, c cos 0

+ 1 1 ( 2- 2k,,c Cos 0) -2)1 T-
2 V2 k.2 k(-k 2 -k 2 )

2 (-k. i)
1(112)
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Finally. for small values of 9 we use the approximation that ký ; k which yields the final

form for a as

() (113)

Notice that in this final approximation, the k, dependency has been lost. Under these con-

ditions, a for the reference beacon wave is equal to the a for the object wave. This adds a

significant simplification to the analysis in the body of this dissertation. Using the same type

of analysis as used for the simplification of a, a simplified expression for 8 is determined as:

= - k'
2

= k2 - (k, + Iccos 0)2 - (xsinO) 2

- lyk2 - (k- - K cos O)2 - (rsinO) 2

21

I -_2(22k__cos 9))

2 1T kk2 (2kx V -6 k

- -.cos. (114)

To this point, the location of the off axis source has been specified through the k. component

of the propagating wave. A more convenient notation is one that directly specifies the angle

relative to the beacon direction. The relation between this angle designated V and the k.

component of the propagating wave is given by

k.
-- =tan ,t9 (1 5)

or,

tan` ( . (116)

93



For small arguments, we use the approximation. tan- (x) • x to yield

k- .
(117)k,

This allows 3 to be written as

8 = te9 cos e. (118)

The vector t is defined to be a vector in the x, y plane with a magnitude equal to the object

angle, V, and an orientation along the x axis. With the vector definition of V. 3 is written as

(119)
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Appendix D. Derivation of amplitude and phase correlation functions

The purpose of this appendix is to derive the correlation function for the residual

phase and amplitude of a wavefront in the pupil of an adaptive-optics system. Much of this

derivation uses theoretical development given by Tatarski for the case of a wave propagating

through turbulence (46). In this derivation, Tatarski's theory is applied to the angle dependent

amplitude variations and the 'corrected' angle dependent phase variations as discussed in

Appendix C.

The amplitude perturbation equation was derived in Appendix C and defined in complex

phasor notation in Chapter HI as

PE(i, t9) = Jf d/diA(rI, - sin(a•)e'd"'. (120)

The correlation function is therefore defined by

FL(15,19) = (P(,)P__(X- ,1))

- (1111 drildi/ 2dKid- 2A(i/1, I)e-j(I ''x) sin(r/laj)ej"O'I
x A*(i72 , K2)e-j('2"( -,) sin(112 a 2)e322). (121)

Note that the only random quantities are A and A*. The expectation is passed through the

integration and Eq. (86) in Appendix B is used to relate the complex representation of the

phase screen variations, A(77, -), to the 2-D refractive index power spectrum, F(i7l - ?12, K).

The result is the correlation function being written as

rF(,ý, q) = 4k2 ffjd?71d? 2dKdF(?71 - 72, K)e-'j'sin(i7la) sin(72a)e(7•'1--•2), (122)

where the integration over dill and dr 2 are from 0 to the upper level of turbulence given by L

and re K'- = 2 +4 2. Next, a change of variables is performed in order to represent the
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2-D power spectrum as a function of only one variable. Let

A71 Th - 712, (123)

and,
2E=- 771 + 712. (124)

Note that the Jacobian for this transformation is 1, and that the following equalities hold:

A71 + 2E' (125)

and,
72 2D7 - A77 (126)
T/2 - 2

The dAi7 dE27 integration is now performed over a region D in the (A77, E•7) plane where D

is a rhombus with vertices of (0, 0), (L, L), (0, L), and (- L, L ). The amplitude correlation

is now written as

FP(i3,0) = 4k2 /d~e-Jf!dAŽ} dEnF(Aq, K)

x sin (a',71 +2MI) sin (a 2 E7" - At!) e113 A'7)' (127)

Use the identity,

)2 sin a - bsin (- )= cos(a) - cos(b), (128)

to show that

sina 7 2 Dsin a 2E77-- 2 77) = 1 -cos(2,•f,).
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Substituting Eq. (129) into Eq. (127) to yield

() 2k 2 A d ~e' J odAi1 dEqtF(Aiq, K)eJ 0(A'")(cos(cA?/)-cos(2a•?T)) (130)

The integrand is even with respect to Ai/, so the integration over the region D is twice the

value of the integration over the right half plane of D. Therefore,

r4(k,0) = 4k2 Jd ;[ dArl d•2iF(A?, r)e"#(Aq(cos(aAil) - cos(2caEqt))PL [L-r i,1
+ d�Lo dAL d•F(A,,K),ed3("')(cos(aAL?) - cos(2aXD?,))] (131)

2 '

It is known that the power spectrum will only have significant values for LA? << 1 (ie.,

F(Ai', K) -+ 0 for iAj» > 1) (46). Therefore, in the region where 0 < cA7 :Z 1, where

F(A77, x) has a significant value, 'A < A < 1 and usinga = 1 and/i = J9, the

following approximations can be used:

cos(aA?7) = COS( 2k 7 1, (132)2k

and,

e joA = ejAn'•O- 1. (133)

The correlation function is now written as

2= d - cos(2aiD1)) dAY7 dEirF(Ai?, K)

+ (1 - cos(2aD7)) dAi7 dZhF(Ai1 , K)]. (134)
2

Note that the dependence on V has been lost through the loss of P3 in the approximation of

Eq. (133). The upper limits on dAL can be taken to oo without significantly changing the

result Now use the relation given by Tatarski that relates the 2-D power spectrum to the 3-D

97



power spectrum, 4D(x) (46):

,00

=dA7F(Av7, P) z'b(x). (135)

The amplitude correlation function is now written as

La(pl) 4k'7r deR(c(2 d~(1 - cos(2aE7))

+ JdE 7(1 - cos(2aEj)))

~ I L
= 4k 27r ]dxe-k0b(0)10 dEv(1 - cos(2aEtf)). (136)

Use the identity,

1 - cos(2a) = 2sin 2(a), (137)

or,

1 - cos(2aE77) = 2 sin2 (asE), (138)

to write Eq. (136) as

r (p-) = 8k'i f2die3-j (c) foL dDr sin 2 (aEr,). (139)

Now use the property that the real valued correlation function is equal to one half the real

portion of the complex valued correlation function, (i.e., Fa(pP) = !Rf{L.(p-)} ). This yields

a final correlation function of

ra(P, = 4k2 jdKcos(C. p"P(K) j0 dD sin 2(aETI)

= 4k 27rJ dr1dcos(Q. - pl(ic)sin2(a,7). (140)

Equation (140) represents the final form of the amplitude correlation function used in the body

of this dissertation. Note that at this point Eq. (140) could be changed to polar coordinates

where dE = re dOd0 and the integration over dO goes from 0 to 7r. The integration over dO
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can then be performed analytically using the relatn

J(o cos(a cos(O))dO = irJo(a), (141)

where Jo is the zeroth order Bessel function of the first kind. The correlation function is now

written as

r (P~) = 4k27rJIIId0dicdtv cos(xpcos(0))f(K)sin 2 (aiq)

= 4k 27r2 Jf dirdic CJo(Cp)f(,C) sin 2(a,7). (142)

This is the exact form of the amplitude correlation function given by Tatarski and also used

by Lee and Harp (30, 46). Note that the amplitude correlation function is not a function of

object angle. Recall that an assumption was made regarding the size of the object angle in

this derivation. However, the condition for the assumption will always be meet in practical

applications.

Next, consider the correlation of the residual phase in the pupil of an adaptive-optics

system. The residual phase perturbation equation was derived in Appendix C and defined in

complex phasor notation in Chapter H as:

= J diid A(71, K)e-(') cos(77a)(1 - (143)

The correlation of the residual phase in then given by

r_ = (PP(_ ,) P_(X-

- (JJlld7/idii 2 dI di'2 A(7i,, 'i)e z)(R1 cos(?ici)(1 - ej'711)

x A*(7 2 , 2- cos(172 a 2 )(1 - (144)
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Again, note that the only random quantities are A and A*. The expectation is passed through

the integration and use Eq. (86) in Appendix B is used to yield

r2p(-, d) = 4k 2 /do-C-j#1';'/dThjdJ72F(Th •,j

P,i I)= k - 172, K)

x cos(711a)cos(7 2c0)(1 - e j'ni)(1 - eC-j#2), (145)

where the integration over dt1i and dT/2 are from 0 to the upper level of turbulence given by

L and r = IC = VK + K.. The same change of variables given by Eqs. (123) and (124) is

now used to yield

Fp(, t9) = 4k 2 Jdee-PJ' dAvid2i;F(A1 , K.)

XCos (oA -2•) Cos (a 2•? T)(-J 2-- a (1 -- e-J2 2- -.

(146)

Use the identity,

- 2 cos( +)Cos(---) - cos(a) + cos(b), (147)

to show that

cos (- ) cos (2D Cos-a AT.) _ (cos(2aE77) + cos(aAtl)). (148)

The residual phase correlation correlation is now written as

p( -j d) = 2k 2 jde'e-J' dA1A di7 F(Ai, K)

x (1 - e'#'2V')(1 - e 2  )(cos(2a~??) + cos(aA77)), (149)

where again the dAvy dD11 integration is over the region D in the (A??, E71) plane. Next,

consider the term

)(1 - e- 2 (150)
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First, let a =#3Drand b =3-. The terns of Eq. (150) can then be simplified as

(1 - ej(a+b))(1 - e-(a-b) -- a - ej(a+b) + ej 2 b

= 1 + ej 2b - ejb(eja + e-ja)

= 1+ ed2b -_ eb(2cos(a)). (151)

Therefore,

)( - .j 2 )(1 - 2 = 1 + eJa - e • (2cos(f/lD)). (15i

Substituting Eq. (152) into Eq. (149) yields

_p(w, q) = 2k 2 JdWe-j9-J0 AdLŽ dEqF(Ar, K)

x (1 + e#Al - ej'1- (2 cos(#E77)))(cos(2aEqi) + cos(cAr/)). (153)

The integration over the region D is again taken to be twice the value of the integration over

the right half plane of D. Therefore,

-.p(-, V) = 4k 2 jdRe-jR o"[ jf• 2•"dTdF(Af 7 ,K)

× (1 + ejo - ej2 (2 cos(flr i)))(cos(2aEji) + cos(aA77))
L fL-E

+ fl, dAJo dDrF(AL7, K)

x (1 + ei'" - ej2 (2cos(#Eq)))(cos(2aEij) + cos(aA77))].(154)

Again, F(Ai7, K) -, 0 for A17 >> 1. Therefore, in the region where 0 _< KAt7 ; 1. the

following approximations are made:

cos(aAq) " cos( I )2 Al
2k

- eos( -r/9 1,

e- = e 1. (155)
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With the above approximations, the correlation function is now written as

4k2I JR[J12 d~jn(2 - 2o(D)(o(ar)+I)OdiFA7 c

+ jL dDi(2 - 2cos(#q))(cos(2aE7) + 1)j-dA,7F(AY, r)]. (156)

The upper limits on dAq can be taken to oc without significantly changing the result. Now use

the relation given by Tatarski that relates the 2-D power spectrum to the 3-D power spectrum.

4(x) (46), as given in flq. (135), to yield

I'(,t9) = 8frk 2 Jd~e-jR4(IC) jdE7(l - cos(#Eq))(cos(2a~q) + 1)

- 87rk2 ifdldte-J'1a (r.)(1 - cos(#3Yj))(cos(2aiq) + 1). (157)

Use the relation

cos(2ac) + 1 = 2 cos2(ar/), (158)

to write the final form of the complex representation of the residual phase correlation function

as

= 161rk2 JfdrjdOe-R'4(IC)(1 - cos(#/q))cos 2(aiQ). (159)

Again, use the property that the real valued correlation function is equal to one half the real

portion of the complex valued correlation function to yield a final correlation function of

r,(, V) = 8rk2 if didfcos(. • p--,)(ic)(1 - cos(#,7)) cos2 (a7,). (160)

This is the form of the residual phase correlation function used in the body of this dissertation.

Note that the residual phase correlation can not be analytically integrated over dO due to the

cos(O,•) = cos(". -,7) = cos(770 cos(O)) term.
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Appendix E. The geometric optics approximation

The purpose of this appendix is to show a direct comparison between the average phase

OTF expression, (Hp (A, t)), derived using the diffraction method given in Chapter H and the

OTF expression given by Fried using the geometric optics approximation (10). The usefulness

of this comparison is in giving confidence that the analysis of the OTF as presented in the

body of this dissertation has been properly performed, and in identifying the portion of the

OTF equation that defines the diffraction effects. This comparison is made by beginning with

the diffraction based OTF and determining what assumptions need be be made to yield the

equation given by Fried.

In developing properties of atmospheric turbulence, Goodman (14) addresses the con-

cept of geometric optics by defining the 'near field' region as the region where t7 « j.

Note that this is a relation between the altitude of turbulence and the wavenumber of the

turbulence for a given propagating wavenumber. If the turbulence is close to the optics, 'near

field' conditions exist. When 1 <« •,we can also say that - < I and the assumption

cos 2(2-) ; 1 is used. The following derivation shows that the 'near field' assumption along

with a specific refractive index power spectrum is the only difference between the diffraction

calculation for (Hp (', 0)) and Fried's geometric optics OTF calculations.

With the assumption of cos2 ( 2k-) Z 1, the phase correlation of Eq. (26) is written as

rp(-,3, 0) = 8irk2 Jf KI~ P)cs~.j - cosOtp,

= 81rk2 [ffJ(-,q)cos(K, fl)dgdiT

- ffJJ( ,?)cos(K , cos(i . t9)dgdii]. (161)

The integration over I- is broken into polar coordinates where d• = c dK dO. The integration

limits are: c - from 0 to oo, 0 - from 0 to r, and 7 - from 0 to L, the altitude of the source.

Next, expand the dot products of Eq. (161) noting that 0 defines the orientation of K,

O0 defines the orientation of - and the orientation of t9 defines the x axis (ie., 0,& = 0).
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Equation (161) is now written as

(p, 0,, t0) = 8(rk 2 [J jj tcf(i, 17) cos(xp cos(O - 0,))dOdKdn

-L j oo rjic,(. .) cos(,pcos(0-0,,))cos(irt/ cos(0))d~dxdi/l162)

The integration over 0 in the first integration term of Eq. (162) is solved using the following

property:

jocos(a cos(O + b))dO = wJo(a) (163)

where, Jo(a) represents the zero order Bessel function of the first kind. Therefore,

jL j f j AA(K, 17) cos(Kp cos(O -_,,))dOdrdI = r j #4(K, r?)Jo(Pcp)drcd?.

(164)

To evaluate the integration over 0 in the second integration term of Eq. (162), first write

the cosine terms cos(Kp cos(0 - 0,)) cos(ipct cos(0)) as

1 1
cos(a cos c) cos(b cos d) = cos(acosc- bcosd) + -cos(acosc+ bcosd), (165)

2 2

where a = Kp, b = qt, c =0 - 0p, and d = 0. Note that d can be written as d =c + c'

where c' = 0p. Now consider the term a cos c + b cos d.

acosc+bcosd = a(e + e-jC) + b(ed + e-d)

= ++ +
= e ic ejc,)+ b e( C'+ e- j(- e_ C')

2' 2

= e-(a + be-c') +£-1(a +be-c'

2 2

-- i ze~c-j -J2+ 2

2 2

= Izl cos(c + argz), (166)
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withd = c+ c' and z = a + beJc'. So,

1
Cos (a cos c) cos (b cos d) = 1-[cos(IzI cos(c + argz)) + cos(Iz'I cos(c + argz'))J, (167)

2

where z' = a - bei'. Therefore, the second integration tem of Eq. (162) can be written as

jL j r Kso(K, 7• ) i)[cos(Izlcos(c+'arg(z)))+cos(Iz'Icos(c+arg(z')))]dOdicdi7 (168)

where,

z = KP+(77)e

z' = KP- (rjxt9)ejeP,

IzI = r./ _ + 2 coso0, + (1)2,

Iz'I = / 2pq cos 0. + (1)2. (169)

The dO integration of Eq. (168) is accomplished using Eq. (163). The result of the integration

over 0 yields:

1 L
lVj joo V 17~i) (JO(sICp2 + 2p77t9cos0,, + (i7tg) 2 )

+ Jo(K I/p2 - 2p,:'cos0p + (?,O)2))drd?,. (170)

Therefore, the phase correlation is written as

rp(p, 0., V) = 87r 2 k2 2L j IO(K, ,7) [Jo(ICp)

2 A (K ~p2 + 2p~lt cos 0e+,7,)2

SJo (1/p2 - 2pqt9 cos0, + (qtq)2)])drdA (171)
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and,

rpoo, 0,,=, 87r2k2 jcI*,cv, q)[J(O) - J(q) -1Jord]

- 87r 2k 2  #4(x, rj)[Jo(O) - Jo(io/0)]dKdv70 fo
S8vr 2k2  j l I(oo )[1 - Jo(K'qI)]drdi7 (172)

Now let S(p, 0o, t) = Lp(o, o., i) - On(p, op, q), and (Ha(p, 0o, tq)) = exp[-S(p, 0o, 0)].

Therefore,

S(p, Op, V) = 87 2k2 fL j, IO•(, 77)[1 - Jo(KI7O) - Jo(Kp)

+ 1JO~rcVp2 + 2pii 9 cos0Op + (1719)2)2

1 Jo(IC/p2 - 2pil0 cos0. + (?/0)2 )]dKd?7 (173)

If the atmospheric refractive index power spectrum is represented by the Kolmogorov spec-

trum, as discussed in Appendix A, the integration over K can be solved analytically. Let the

power spectrum be given by

,(n,17) = 0.033C(?7)K•-U. (174)

Now, Eq. (173) is written as

S(p, Op, V) = k 0331 oCK(i)[ o -(1- Jo(Kp))dK

+ j K-(1 - Jo(,n0))d,%

+~0 fK3(1 - JO(K~p2 + 2pqt9 cos 0,, + (7?ý0)2))d

+1 fo IC-• (1 - Jo(C/p2 - 2pqt9cos 0, + (??0)2))dx] dr, (175)
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where an integration of fo0 x-3dK has been added and subtracted to obtain a desirable form.

Using the following integration relation,

o •c-I(1 - Jo(aK))dK (a2)5/6-r

Jo 25/3r(P-)2

= 1.11833 a1 3 , (176)

the final expression for S(p, 0,, t9) is given by

IoL 277 [I 719 1 (2+ 7Z)2

S(p, 0,p, ) = 2.91K2  Cn(i) p• + 3- '(p + 2pipt cos 0,, +

1(02- 2pq cos Op + (?7?t)2) ]dY7. (177)

By referring to Fried's paper and assuming plane wave propagation, it is seen that the

same results have been obtained through completely different methods of analysis. Note that

the 'near field' condition of q << k that allows the approximation of cos2(!) 2 1 is

the same that will allow the approximation of sin2(7r) 2 0. By referring to Eq. (18) in

Section 2.3, it is seen that this approximation results in the amplitude OTF being equal to one

(i-e., (H. ( )) = 1). The conclusion of the analysis in this appendix is that imposing the 'near

field' condition on the diffraction based OTF calculation, results in the geometric optics based

OTF Also, by assuming a Kolmogorov power spectrum, the same OTF solution is achieved

as the one proposed by Fried.
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