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1. INTRODUCTION

The results obtained under the support of this grant are divided into four categories

corresponding to sections 2-5. The main thrust of the proposed and funded research has been

the modeling and control of intelligent flexible structures. Two previous reports (Appendix

I and II) delineate the efforts and results of the funded research during the first two years

of support. The present document focuses on the results of the last year of support. In

addition to results obtained while focusing on the objectives at hand (see section 7), general

results were obtained which are not directly related to the proposed objectives. These results

are related to the discovery of a nonlinear modal control method presented in section 3, a

deterministic methodology for treating the control of uncertainty in structures presented in

section 4, and the control of critical speeds in rotating machines as discussed in section 5.

Section 6 reviews some preliminary results in tle control of thermoelastic systems.

In addition to the summary presentation of results, this report concludes with a discus-

sion of the original objectives, in section 9 and whether or not these have been met (they

have), and a list of publications under AFOSR support in section 9. Section 10 lists the grad-

uate students supported under the 3 years of this grant and section 10 discusses coupling

activities and technology transfer effectuated while under AFOSR support. The appendix

contains the first two annual technical reports for this award to provide completeness.

3 2. SUMMARY OF SMART STRUCTURE RESULTS

A substantial amount of research effort has been put forth in the area of smart structures

and intelligent material systems over the last decade, often without regard for application.

The work reported here examined a common example of a smart structure, i.e., the infamous

cantilevered beam in bending with either a surface mounted or embedded piezoceramic ac-

tuators and sensors, and the application of this configuration to control unwanted vibration

in a variety of configurations common to satellites. In particular, results for three applica-

tions point out natural, and perhaps unique, solutions to the vibration suppression problem,

I 1

I _ _ _ _ _ _



I
provided by a smart structures approach. The first of these three examples consists of the

slewing motion of a flexible beam through its bending direction around a rigid hub driven

by a motor. Such motions are common in space and robotics applications. The addition

of a piezoceramic based dosed loop system is shown to significantly impact the power and

performance of the slewing configuration.

The second application examines the vibration suppression of slewing frames similar to

those used as solar panels on satellites. Such frames are rich in coupled bending and tor-

sion and known to vibrate excessively while slewing. The torsional motion is not able to be

suppressed by use of the rigid body actuator (motor) as is conventional. Here piezoceramics

mounted directly on the frame are shown to render the torsional motion controllable pro-

viding an order of magnitude improvement in system performance. Thus, a smart structure

approach is shown to provide a solution to a difficult vibration suppression problem not solv-

able by conventional sensors and actuators. Both theoretical prediction and experimental

verification is provided. Power consumption is shown to be minimal, and in fact, less in

some cases.

The third applicaticn examines the vibration suppression of a ribbed antenna similar to

those used on satellites (e.g. TDRSS). Such structures exhibit repeated and nearly repeated

natural frequencies. Hence, controllability becomes an issue and again a smart structures

approach provides a low cost natural solution to a practical vibration problem. Again both

experimental and theoretical results were obtained.

The results obtained under the support of this grant are summarized in several journal

papers and proceeding articles by the author's graduate students (Leo and Inman, 1994, Leo

and Inman, 1993a, b, 1992a, b, Garcia and Inman, 1990, Dosch et al., 1993a, b, 1992, Inman

and Garcia, 1992, Garcia et al. 1991). These results indicate a clear, logical use of smart

structures to solve vibration suppression problems in situations where conventional sensors

and actuators are not applicable. From a control theory point of view, the use of smart

structures is beneficial because it allows the control designer to approach full state feedback

2
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in the design of a given system without resorting to state estimation. In addition, the use of

I smart structures allows placement of sensors and actuators at almost any location allowing a

1 maximum use of the concept of controllability and observability. From a mechanical design

point of view, use of smart structures offers an order of magnitude reduction in settling times

1 for a small expenditure of power.

The specific results delineated in the Appendix B as well as in the refereed papers are:

e a smart structure approach allows sensors and actuators to be placed throughout a

j structure or machine, allowing one to approach full state feedback.

I e because sensors and actuators can be placed almost anywhere within a structure or

machine, they can be placed at points of maximum controllability and observability,

rendering very low power consumption in active control.

1 in cases where rigid body motion is controlled along with flexible motion, the use of

smart structures can actually reduce total power consumption for equivalent perfor-

mance. Alternatively, the smart structure approach can be use to provide increased

performance.

e in cases where repeated modal frequencies require multiple actuator/sensors for con-

trollability, smart structures provide a natural solution.

I complex modeling issues can be avoided by using positive position feedback (PPF)

control as robustness depends only upon measurements of the open loop eigenvalues.

* the better the model, the more sophisticated the control law can be and the better

the performance.

Power Consumption While not yet published, it is dear from the results of experiments that

using smart structures involves a very small increase in total power consumption. In some

cases, the total power actually decreases (Garcia and Inman 1990). The power consumption

3



in slewing solar panel experiments indicate that an increase in power of 0.3 watts (i.e.,

from 121.53 to 121.83 watts) results in a substantial increase in performance. In particular,

if the damping ratios of the dosed loop motor control are compared to the closed loop

motor control with smart structures attached (Leo and Inman) a dramatic improvement in

performance is observed. In particular, the use of rotational rigid body actuators exhibit low

controllability in torsion whereas the addition of piezoceramic actuators provide a drastic

increase in performance under combined rigid/smart structure control. The damping ratio

for the smart structural control system

"* increases by a factor of 15 in the Ist torsional mode

"* increases by a factor of 23 in the 2nd torsional mode

"* increases by a factor of 6 in the 1st plate mode

and 1.5 times in the second bending mode. This represents a large improvement in perfor-

mance for a very small increase in power during a 300 slew maneuver.

Additional Results The main results in this section are reported in appendix B. In addition,

several journal papers have been accepted and are included in appendix C along with copies

of the appropriate conference papers.

3. RESULTS IN NONLINEAR MODAL CONTROL

Although not part of the original objective, the personnel funded by this support and

also funded by ARO (DJI) determined a new method of providing closed loop control for

weakly nonlinear systems which does not require any linearization.

This work extended the work of Shaw and Pierre (1992) on nonlinear normal modes to

include the case of forced response. This allows the nonlinear normal mode method to be

applied to the feedback control problem providing a new method of controlling nonlinear

systems. The proposed method uses the transformation proposed by Shaw and Pierre for
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homogeneous systems written in state space form. The coordinate transformation for the

forcing vector is defined in the state space and related to the physical coordinate system. The

results is a pseudo modal decoupling transformation of a nonlinear inhomogeneous system.

Although interesting in its own statement, this transformation also provides a nonlinear

modal control scheme. This result is applied to a known coupled two degree of freedom

oscillator with a cubic stiffness term. The results illustrate the design of a nonlinear modal

control law.

The concept that nonlinear modes with nonlinear modal equations exist for some set

of nonlinear systems has been accepted intuitively by many for quite some time. It wasn't

until 1964 when Rosenberg presented the first paper on nonsimilar normal modes that it

became possible to solve even the simplest nonsimilar normal mode system. Many per-

turbation methods have been developed to approximate the deviation of a nonlinear mode

from a corresponding linear mode. However, only the Shaw and Pierre method utilizes the

definition of nonsimilar nonlinear modes as invariant manifolds. This method allows the

straight forward computation of nonsimilar nonlinear normal modes and their corresponding

mode shapes. Although algebraically tedious, this method lends itself to programming using

algebraic manipulation packages such as Mathernatica® and MACSYMA(.

O.a

0.6

-0.41

0 10 30 30 40 ND 90 100

Figure 1. The displacement time response of one mass of a 2 degree of freedom oscillator with
cubic nonlinear using nonlinear feedback modal control. The open loop system is undamped.
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4. RESULTS ON THE CONTROL OF UNCERTAIN SYSTEMS

Convex optimization techniques have been developed to design feedback control laws

for structures with uncertain transient inputs. The uncertain disturbances are modeled

deterministically as convex sets of functions. Three types of models have been considered; one

which bounds the total energy of the disturbance, another which bounds the instantaneous

energy, and a third that limits the maximum and minimum values of the input. Each

of these models provide an alternative to the usual statistical description (i.e. expected

value). Expressions for the maximum response are derived for each model. The optimal

feedback control law is found via the solution of an infinite dimensional optimization by

an affine parameterization of all stabilizing controllers. The parameterization maintains

convexity and converges to the unique solution as the number of terms in the approximation

is increased. The techniques have been illustrated on a simple model of an unconstrained

flexible structure.

As an application of the usefulness of this method, it has been used to design collocated

control laws for the small-scale model of a flexible antenna used in section 2. The objective

of the active control is to minimize the response of a single rib to a disturbance occurring at a

remote location on the structure. Two separate designs are examined. The first is standard

Linear Quadratic Gaussian (LQG) control, whereby the H2 norm of the transfer matrix is

minimized via the solution of two Riccati equations. Unfortunately, this type of design does

not exploit the favorable attributes of sensor/actuator collocation, resulting in control laws

that are not robust to model uncertainty and structural variations. An optimization approach

to H2 optimal design is presented that bounds the phase of the control law, thereby increasing

its robustness. The optimization is shown to be convex, providing important guarantees on

solution accuracy and convergence. Control laws designed with both procedures have been

experimentally implemented on the antenna testbed. The results illustrate the advantages

of designing H2 optimal controllers that are bounded in phase.

Experimental implementation of H2 optimal controllers designed via constrained convex



optimization illustrated the robustness achieved by bounding the phase of the compensator.

In comparison with standard Linear Quadratic Gaussian (LQG) designs, they remained

stable in the presence of structural variations and model uncertainty. The loss of performance

that resulted from constraining the optimization could be compared to a trade-off curve

that represented all achievable LQG solutions. In this way, convex optimization proved to

be effective method of studying the trade-offs associated with constraining the phase of the

controller.

Although the results of the initial effort are encouraging, many questions arose regarding

the convex optimization approach to control design. For example, the optimal solutions were

found to be sensitive to the choice of functions used in the Q parameterization. Furthermore,

the optimization seemed to exhibit convergence properties when the constraint on the control

effort became large. Checking the phase constraint at discrete points (even for a fine grid)

introduced errors into the control design. Finally, the pole-zero cancellation procedure used

in this paper was a rather ad hoc method of order reduction, the reasons why more advanced

methods were ineffective needs to be investigated. Future work involves studying these topics

and also generalizing the phase constraints to control systems with more than one sensor

and actuator. The details of these results are reported in Leo and Inman (1994, a,b), which

appear in Appendix C.

5. CONTROL OF CRITICAL SPEEDS

A method has been researched for suppressing the resonances that occur as a rotating

machine is spun-up from rest to its operating speed. This proposed method invokes "stiffness

scheduling" so that the resonant frequency of the system is shifted during spin-up so as to

be distant from the excitation frequency. A strategy for modulating the stiffness through

the use of shape memory alloy has been derived.

Most common applications of "smart materials" actuators involves obliging them to

undergo some generalized displacement in response to a specified stimulus. A slightly dif-
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ferent approach is used in an application in which a modulus rather than a displacement is

manipulated.

The results, using a very simple model a rotatory machine, clearly indicate that stiffness

scheduling can reduce critical speed amplitude during run up. In particular, it is shown in

Parker, Segalman and Inman (1993) that the critical speed amplitude is reduced by 1/3 of

its open loop value by the use of shape memory alloys and the stiffness scheduling control

law. This work was supported by DOE (Parker, Segalman) and Inman's time was paid in

part by ARO, in part by AFOSR under this grant.

6. CONTROL OF THERMOELASTIC SYSTEMS

Thermally induced vibrations remain largely uncontrolled while their presence can signif-

icantly afect the stability of structures. Thermal effects are important in space applications

and in other structures required to operate in environments where large temperature gra-

dients are common. In the satellite industry, thermally induced vibrations are a recurring

problem which affect the stability and the proper operation of satellites. The vibrations are

typically caused by the rapid heating of satellite appendages during normal orbital flight.

At the day-night and night-day orbital transitions, sudden heating produces temperature

gradients which result in time dependent thermal moments. These thermally induced mo-

ments can cause significant undesirable vibrations in the satellite. Numerous satellites have

been lost as a result of this problem and, therefore, it is important to find a method to

satisfactorily suppress these vibrations and to minimize their effect on the operation of the

spacecraft. The purpose of this work was to investigate thermally induced transverse vibra-

tions in flexible satellite appendages with the expectation that the results will be useful to

the satellite industry.

Consider, for example, a typical solar array found on most satellites. The solar array

is made up of two booms, a rigid bar and a solar blanket. The two booms are usually

cantilevered to a rotating shaft at one end and to the rigid bar at the other end. The

8



solar blanket is a membrane stretched between the rigid bar and the rotating shaft. The

thermal disturbances generated in this structure result from the temperature gradients in

the two booms. The magnitudes of the thermal disturbances from the solar blanket and

the rigid bar are insignificant when compared to those generated in the booms. For this

reason, the dynamics of the boom were investigated. Each boom can be approximated

as a simply supported beam in transverse vibration. Assuming that the Euler-Bernoulli

beam assumptions hold, linear equations of motion were o~ained which include a time

dependent thermal moment term. The thermal effects appear as a disturbance (a time

varying thermal moment) in the equations of motion and they also appear in the boundary

conditions. Knowirg the temperature distribution in the beam and the material parameters,

the thermal moment can be calculated. In solving for the temperature distribution, a classical

heat transfer approach was taken, where the motion of the structure does not to affect the

temperature distribution. That is, an uncoupled thermal structural analysis was performed

where the beam was assumed rigid for the purpose of calculating the temperature distribution

and neither the incidence of the heat flux nor the actual structural deformations affected the

solution.

It was determined that a distributed control force would be most suitable to suppress the

thermally induced vibrations. Therefore, a piezoelectric sensor/actuator pair was added to

the model and two different control methods were applied. In the first case, an LQR controller

was used to suppress the vibrations. The results for the controlled case showed a significant

improvement in time response over the uncontrolled case. In the uncontrolled case, the

magnitude of the vibrations remained largely unchanged for times longer than one minute,

since very little damping was included in the model. Adding LQR control to the system,

the vibrations were suppressed in less than one second. This was possible, since the beam

examined was very small (i.e., low inertia). In the second case, positive position feedback

was used to control the vibrations. The results were similar to the LQR case. A significant

amount of damping was added to the model through active control. The results of the study

.... . ..... 9



I
indicate that it is possible to model and control thermally induced vibrations in a simply

supported beam. The results suggest that the problems of thermally induced vibrations

encountered in the satellite industry can be solved using currently available technology.
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8. WERE THE OBJECTIVES MET?

A comparison between the funded objectives and the resulting research illustrates that

I these objectives have been met, precisely. In particular, a theoretical and experimental

investigation of the modeling and control of smart aerospace like structures for vibration

suppression has been performed and the issues have been identified (see section 2). The

only issue not specifically completed is a rigorous comparison of smart structural control

to passive damping. This was not performed as result of others have dearly indicated the

I advantage of smart materials over passive devices.
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I

Modeling and Control of Intelligent Flexible Structures
- Slewing Frames

1. Introduction
In recent years, there has been a large amount of research on slewing strucum against a

fixed base. These structures present challenging control problems since the action of
slewing induces residual vibrations. These vibrations can degrade performance when strict
pointing and rackuing requirements are to be maintained.

Until now, most of the work has concentrated on the slewing of flexible beams. For the
most part, these structures exhibit only bending motion when excited (1-3]. Recently,

research performed by Sakawa and Luo (41 studied the control of a flexible beam with an
eccentric tip mass. This tip mass induced torsional vibrations when slewed, adding a new

dimension to the control problem. They presented motor control schemes designed to
simultaneously slew the structure and suppress vibrations.

The effort described here also examines the problem of slewing a structure that exhibits

bending and torsional vibrations. The structure studied is not a flexible beam, though, but

a frame that models the dynamics of a solar array. The torsional motion induced when

slewed is relatively uncontrollable using colocated motor control. Smart structure
technology will be applied in an attempt to suppress this motion. Namely, a piezoceramic

strut placed in the frame will render these modes controllable. A number of different

control laws will be experimentally verified.

I 2. Slewing Frame Testbed
A slewing frame was constructed to provide an experimental estbed for control. The frame

consisted of thin-walled circular aluminum tubing (Figure 1). Slewing actuation was
provided by an Electro-Craft 670 dc motor. Angular rate and position sensors could be

used for analog motor control.
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Figure 1. Slewing Frame Testbed.

An active strut was designed and inserted into the slewing frame. It consisted of a flat
aluminum bar layered with four piezoceramics on each side. Each ceramic was a Model G-

1195 from Piezo Electric Products with dimensions 2.5" x 0.75" x 0.01". The strut was

configured so that it could be used as a sensor, an actuator, or as a colocated
sensor/actuator pair. Figure 2 is a drawing of the active strut. The output from the active

strut is proportional to the strain induced in the member. Conversely, the active strut

produced a bending moment proportional to the command input.

I A number of computers were available for control and data acquisition. A Comdyna GP-

6 analog computer was used for position control of the frame and various signal operations
j (summation, subtraction, etc.). Control laws for the active strut were implemented on an

Optima 3 digital controller sampling at 1500 Hz. Finally, data acquisition and frequency

I analysis was performed using a Tektronix 2630 Fourier Analyzer.

The objective of the experiments was to slew the frame in a reasonable amount of time

while minimizing unwanted vibrations. Due to the configuration of the structure, bending
and torsional vibrations were induced when a maneuver was performed. The rest of this

Spaper will deal with the modeling and control aspects of this problem.

I
I
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I



wPezoceramic

Aluminurn Strut

All piezoceramics electrically I inch
coupled to one another (not shown)

Figure 2 Piezoceramic Active Strut.

3. Modeling and Analytical Results
A linear model of the slewing frame was developed so that a number of control laws could

be tested analytically. In physical coordinates, this model takes the form [3]

IbT Is + 0 0 0 0 -V (1)

where M and K are the mass and stiffness matrices of the structure, respectively, Is is the

rigid body inertia about the slewing axis, and Ib is part of the interaction between the rigid

body and flexible motion. The physical coordinates of the structure are denoted q, and the
rigid body rotation is symbolized by 0. f is a matrix of applied forces and the overdot

represents differentiation with respect to time.

To correctly model the interaction between the motor and the structure, pinned-free natural

frequencies and mode shapes were used. The mass and stiffness matrices were built using

finite elements and a modal test was performed to verify analytical results [5]. By
collecting the normalized mode shapes into a matrix Sm, equation (1) was transformed into

modal coordinates by assuming q Sm r and premultiplying by SmT. This yields

[ri0 0;{ } [A :] } smTr (2)
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A is a matrix of the form diag(o2.2..Oj2..-ON2), and Ib = SmT lb. I is an N x N identity

matrix, where N is the number of flexible modes in the model.

The active strut was modeled as a moment generator [6]. For simplicity, it was assumed to
span the entire length of the strut. Although not a rigorous model of the piezoelectric
effect, it did produce satisfactory results.

To study the slewing frame, a 16 mode model was developed using finite elements. The
boundary condition was chosen to be pinned-free, and the natural frequencies and mode
shapes were verified by a modal test. Initially, a simple Proportional-Derivative (PD)

controller of the form

Gpd(s)=-Kv 0- Kp

was used for position control of the frame. The gains were set to values that produced an
adequate step response. Due to the nature of the boundary condition, this controller also
added damping to certain flexible modes. This occurs because the pinned-free condition
allows a large amount of interaction between the structure and the motor. In the model, the
damping in the motor is added to the flexible motion through the applied loads vector f.
Consequently, derivative action on the motor also produces an increase in damping in the
flexible motion. Results of an analytical study where Kp = 2.5 and Kv = 6.5 are given in
Table 1. All modes were initially assumed to be undamped.

This study reveals that a simple PD motor control adds a significant amount of damping to
the bending modes. This is consistent with previous results [7]. Table 1 also shows that
the torsional motion is still relatively undamped.

Table 1. Natural Frequencies and Damping Ratios in the
flexible modes using PD control.

Mode wOd(Hz) % Critical

Torsional 4.37 0.41

Bending 8.87 11.24

Torsional 15.47 0.50
Plate 19.79 0.3
Bending 27.53 5.10
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In an attempt to control the first torsional mode of the slewing frame, an analysis was

performed using the active strut as a sensor and an actuator. Various control laws were

attempted. The two that performed the best were Generalized Structural Filtering (GSF)

and Positive Position Feedback (PPF). Analytical designs were obtained using the model.

They indicated that the damping in the first torsional mode could be increased to 5.7 %

using the GSF method and to 8.5 % using PPF control. Details of the actual designs will

be presented in the following section.

4. Experimental Results

Analytical results indicated that the torsional motion of the frame was difficult to suppress

using colocated motor control. Further studies revealed that by using an active strut, these

torsional vibrations could be rendered controllable. Experimental results support these

conclusions and provide studies in the design of active control systems for flexible

structures.

Three levels of control were implemented on the slewing frame. The first consisted of a

simple PD compensator for the motor. This was necessary in order to position the frame
and suppress the bending vibrations. Next, a non-colocated control law was designed to
adequately damp the dominant torsional motion. Finally, a colocated controller using the

active strut was implemented and the results were compared to the non-colocated case.

Figure 3 is a schematic of the overall control architecture.

Prportkional-Derivative Motor Control

The first control law studied was a simple PD compensator of the form given in equation

(3). The 6 term was the tachometer output, and 0 was the signal from the potentiometer.
The reference command was a step input of I volt. This corresponded to a 30W slewing

maneuver. The active strut was only used as a sensor for these experiments.

A typical response of the frame position is shown in Figure 4. The settling time for the

slew maneuver is about 6 seconds. In addition to controlling the position of the frame, the
PD compensator has the desirable effect of suppressing the bending motion.

Unfortunately, the torsional motion is still relatively undamped, even with quite alot of

derivative action on the motor. Table 2 lists the natural frequencies and damping ratios for

the case of experimental PD control. It shows that the colocated motor control suppresses
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the dominant bending motion but leaves the torsional mode lightly damped. This trend is

similar to the results obtained analytically with the FEM model.

Active
Digital Sowu

Controller Ocut

Filter 2io H4z 

0.8

Analog Computer

Figure 3. Slewing Frame Control Architecture.

Table 2. Natural frequencies and damping ratios for experfimental
PD control.

Mode (Od(Hz) % Critical

Torsional 4.32 0.82
Bending 7.68 9.18

Torsional 14.11 1.26

Plate 20.76 0.94

Bending 26.25 1.32
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Figure 4. Frame Step Response (Kp = 2.5, Kv f 6.5).

Table 2. Natural frequencies and damping ratios for experimental
PD control.

Mode okd(Hz) % Critical

Torsional 4.32 0.82

Bending 7.68 9.18

Torsional 14.11 1.26

Plate 20.76 0.94

Bending 26.25 1.32

During this maneuver, the sensor output of the active strut during a 30" slew is shown in

Figure 5. This illustrates the lightly damped t( :sional mode. The 4.32 Hz vibration does

not settle for over 30 seconds, well after the slewmg maneuver is over.

One problem that became important during the experiments was static friction in the motor

and bearings. This problem is evident in Figure 4. The sudden stop of the slewing

maneuver is due to the fact that the motor cannot overcome the dry friction in the system.

This problem was even more important when control laws were implemented to suppress
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1 the torsional motion of the frame. This will be discussed in the next section on non-

colocated control.I
Non-Colocated Control usinge the Active Strut

To supplement the PD compensator, a non-colocated controller was designed to add

damping to the torsional mode. The design tool was a method called Generalized Strucnural

Filtering (GSF). The GSF method uses non-minimum phase second order filters to

successively stabilize structural poles. The design is done iteratively, using 'classical'

techniques of root locus and Bode plots. For a detailed description of GSF control, see
(8].

For this particular application, the design steps were as follows. Initially, a transfer

function was taken between the motor input and the active strut output. A commercially

available Recursive Least Squares package used the time domain data to obtain a pole-zero

* 6-

I 4_

02-

.-2

'I -4
| 4-

0 10 153 time (sec)

Figure 5. Active strut output for 30" slew maneuver with only PD control.U
model (9]. From this model, root locus and Bode plots could be used to design a

compensator. The objective of the design was to add damping to the torsional motion

without destabilizing higher frequency dynamics. In an attempt to attenuate the high

* 8U __



I frequency content of the control signal, it was filtered at 20 Hz with an Ithaca 24 dB/octave

low-pass filter. A number of designs were attempted, with varying degrees of success.

Each design was tested experimentally by feeding back the active strut output into the dc

motor and performing a slewing maneuver. All but the final compensator caused

instabilities in the flexible motion when experimentally implemented. The final GSF

controller took the form

I (s120+I) (s - 29.5 t j 34.2) (4)
GgsjiS) = .07 (sl40+l) (s + 26.0 t j 30.4)I

Equation (4) is the combination of a simple lead and a non-minimum phase filter. Figure 6

shows the response of the structure during a 30" slewing maneuver with GSF control on.

The torsional motion is adequately damped out, i.e, by the time the slewing is over (- 7 s),

the vibrations have ceased.

Even though this method damps out the torsional motion during a slew maneuver, the

deadband in the motor makes it ineffective for disturbance rejection. If some type of input
was applied to the frame (e.g. thermal shock of a solar panel) when it was not slewing, the

controller could not react until it overcame the static friction in the system. Thus, the static

friction limits the effectiveness of this non-colocated control.

To alleviate this problem, one of two things could be done. Quite simply, the first solution

is to reduce the static friction by using better hardware. The less of a deadband, the more

effective this type of controller will be. But since all real systems have static friction, a
more practical approach would be to put both the sensor and actuator on the flexie

Istructure [10]. If this is done, then the vibration suppression of the torsional motion would

be independent of the slewing actuator. This colocated controller could suppress vibrations

during a slew maneuver as well as reject disturbances. The last experiment deals with this

type of design.I

I

I
I
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I Implementation of this control law increased the damping in the torsional mode from about
0.82% to 3.8% critical, almost a factor of 5 better. The slewing response (Figure 7) is not3 as impressive as the one for the non-colocated control (Figure 6), but it is independent of
the motor. With this type of control, disturbance rejection is achieved since the active strt
serves as the actuator as well as the sensor.

13
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Figure 7. Structal response using PPF control on the active strut. Slewmaneuveris0"

3 This last control experiment illustrates an important point about slewing an active structure.
The advantages are that a number of separate colocated sensor/actuator pairs can be used3 for both vibration suppression and disturbance rejection. This alleviates the problem that
the static friction played when using non-colocated control and allows more flexibility in
designing control laws. This was especially apparent in this case, since the dominant
torsional motion was not well controlled by motor control alone.

6. Objectives
The global objective of the proposed work is to model and experimentally verify the3 slewing of a smart/intelligent beam and a slewing active frame system complete with
actuator dynamics, passive damping mechanisms and smart (piezoactive) system3 components.

3 11
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The approach to be taken in modeling is to combine distributed parameter equations for the
actuating and sensing piezoelectric devices with those of the flexible structure by using
Euler Lagrange Equations. This approach also allows for the natural inclusion of the
slewing actuator's dynamics. To date, only simple proportional control has been illustrated

in the litemure and at various laboratories. The approach here uses segmented actuators
and sensors to produce a multi-input multi-output system so that modem control methods

such as optimal control (minimum time/tracking) can be implemented and tested. They will
be used to determine the design producing the most favorable closed loop response. The
prediction will be experimentally verified.

The approach taken for the slewing frame is finite element based. Both passive constrained
layer damping treatments and piezoactive treatments will be used to replace a frame
element. A piezoactive frame element will be constructed and modeled to produce an active
frame longeron. The active frame element is a unique concept which produces bending

control in the frame which will be combined with the slewing motor control to produce
desired vibrations suppression for improved performance.

7. Status
The significant accomplishment during this reporting period is the theoretical prediction and

experimental verification that torsional modes in slewing two dimensional flexible3 structures require the use of a secondary piezoceramic actuators (smart structure) in order to
reduce jitter and increase the closed loop performance.

I The slewing of a structure that exhibited bending and torsional motion was examined. An
analytical model predicted difficulty ii. suppressing the torsional vibration using a colocated

controller located at the slewing actuator. This was experimentally verified on a testbed that
consisted of a flexible frame slewed by a dc motor. An active strut was built by layering

I piezoceraic material on a flat aluminum bar. This strut was placed in the frame and a
number of control experiments were performed. A non-colocated controller was designed

using Generalized Structural Filtering techniques. This adequately suppressed the torsional
vibrations but did not provide any disturbance rejection due to static friction in the system.
Positive Position Feedback was then implemented using the active strut as a colocated
sensor/actuator. Since this control scheme was independent of the motor, it was not limited
by the static friction. Having two separate colocated controllers, one on the motor and one
on the active strut, provided both vibration suppression during slewing and disturbance
rejection.

1
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Modeling and Control of Intelligent Flexible Structure

- Smart Uses of Intelligent Structures

AFOSR Technical Report

1. Introduction

A great deal of attention has been generated in the past five years regarding the use of

sma/intelligent materials and structures. Much attention has been given to the technical

and scientific details of various materials, material systems and structural configurations.

Less attention has been given to the control aspecta unique to such systems. The efforts

of the last year of this program have focused on active structures based on piezoelectric

devices used to control vibrations. A unique feature of the configurations considered here as

applications, is that the use of sensors and actuators integrated into structural components

I may provide the only feasible method of suppressing undesirable vibration in such structures.

The effort of the second year of funding reported here has focused on a) on comparing

various control methods on slewing frames, b) on controlled systems with repeated or

Snearly repeated natural frequencies as tiplified by ribbed antenna systems, and c) on using

a nonlinear controller to improve the efficiency of controlling coupled flexible-rigid body

Svibration. The work reported here is largely experimental in that the control laws considered

are those proposed by other researchers in the theoretical community. However, some

modification of these methods is required in order to actually implement them.

I 2. Slewing Frames

I Space frames present a useful model of the solar panel system common to most satellites.

They also present a rich theoretical abstraction of a fairly common practical problem which is

Sbest solved by the use of smart structures. As an example of such a practical problem, recall

the Hubble Space Telescope (HST) experience. Rapid temperature changes induced rather

I serious vibration in the HST's solar panels rendering the telescope disunctional for long

periods of time. The problem was eventually reduced to tolerable levels by implementing

active control using the panels rigid body actuator. However this problem could have easilyI1
I



3 been prevented by implementing a smart structural system in the original design. The basic

difficulty with the current design is that the rigid body actuator associated with rotating the

1 solar army and/or extending the solar array cannot control torsional modes of vibration, or

plate modes, and solar arrays are rich with such vibration. While the work presented here

I is distinct from the HST configuration, the problem is generic to any solar panel on any

3 satellite system

The problem statement is simple: how does one control torsional vibration with a rigid

body actuator? The answer is that you don't. Rather a smart strucures approach is used.

5 The generic laboratory structure considered is given in Figure 1. This device simulates the

dynamics of slewing solar arrays. The modeling, hardware development and initial control

1 evelopment for this structure is given in the previous AFQSR report [1] and is not repeated

here. The modeling is also paraphrased in the appended papers [2,3].

A Slewing Axis

DC Motor and Tachometer
Acrive Member 1

I - i

Active Member 2

Figure 1 The testbed for slewing solar panel dynamics and control

I In the initial study of slewing solar arrays given in [1], the problem of the uncontrollability

3 of the torsional and plate modes was discovered in physical terms from testing. In the

subsequent year the lack of controllability wah iormalized using a number of criteria [4]. The

32
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results ae summarized in Table 1 which lists the controllability index suggested by

Table 1: Relative controllability index for solar panel. The

I larger the index the more controllable the indicated mode is.

Mode Motor Control Only Smart Strut Only

Ist Torsion 0.692 1.374

Ist Bending 14.287 0.571

2nd Torsion 1.029 2.751
Ist Plate 1.262 3.225

2nd Bending 6.513 2.808

i Hamdan and Nayfeh [4]. Note that the torsional modes and the plate modes with the motor

(rigid body actuator) as the only control input have very low relative controllabiity index

indicating that the primary rigid body actuator will not be able to easily control these modes.

The second column of the table indicates that by using an active member as just one of the

elements of the frame, the torsional and plate modes become controllable.

i With the structural control system rendered controllable several control designs were

i �attempted and compared. First a performance comparison was made between collocated

and noncollated controL A second comparison was made between traditional proportional-

1 derivative control and A synthesis/Ho methodology.

The initial study comparing the results of collocated versus noncollocated control involve

Idesigning a controller that provides satisfactory step response (i.e., simultaneously slew the

frame and suppress vibration). Important performance criteria here include miniming the

settling time and overshoot of the frame's hub position as well as suppressing the structural

Uvibration induced during the maneuver.

Here three control laws are compared to determine if collocated or uncollocated control

I configuration should be used. The noncollocated control configuration consists of using the

rigid body actuator as the control input and the smart structure as a sensor only. The

particular control law chosen to implement is the Generalized Structural Filtering (GSF)

I3
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Smethod proposed by Wei [51 coupled with PD control. This control configuration is compared

to a collocated configuration using the smart structure as both a sensor and an actuator.

3The control law implemented in the collocated cue is the Positive Position Feedback (PPF)

method [6,7] coupled with PD control. The results of thene two implementations are given

I .in Figure 2 which also lists the results of using just PD control without a smart structure.

--I

35 4 -2 Al

tO 0 WW!0W

0 5 10 0 10 2
dm (sec) rme (sec)

(a) (b)

3 Figure 2 Comparison of collocated versus noncollocated hardware configurations

The figure shows dearly the following results

3 PD control alone does not suppress vibration

1 using the smart structure as a sensor only to produce noncollocated PD control using

GSF suppresses vibration, but does so at the expense of large overshoot and no stability

Irobustness with respect to model error

e collocated control using PD and PPF give low overshoot, controls torsional vibration

and is robust with respect to model error

3 Details of this result can be found in Leo and Inman [8].

Now consider a comparison between two collocated, control laws: #-synthesis [9-10] and

IPD controL Since it is the industry standard to model using finite elements (FEM) a finite

element model of the test structure is used here as well. The basic problem with FEM's is

that they geerally contain some error when compared with physical experiments. Hence,

I 4
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the control lavw used must be robust with respect to model error, if they are to be applied to

real and/or expeimental devices as is the cae her. Two pointing control law. are examined.

3 * proportional derivative control

* & compensation design with ,-synthesis combined wtih PPF

Basically, the PD controller is simple to design, and certainly a favorite of practicing

3 engineers, but lacks robustness. The is synthesis approach when combined with PPF

produces a high performance closed loop response with good stability robustness to

parameter uncertainties.

Pointing control and vibration suppression in a slewing frame structure was achieved by

designing two independent control laws. Vibration suppression of the first torsional mode

3 was attained by using a piezoceramic active member in a collocated feedback loop. The

Positive Position Feedback control law was robust against model error and increased the

damping in the target mode by a factor of ten. This is because the closed loop stability of

a PPF control law depends only on knowledge of the structure's frequencies and structural

m frequencies are the physical quantity which has the most accurate measure from tests. Two

m separate pointing controllers were examined: a simple Proportional-Derivative compensator

and a more sophisticated design using /-synthesis techniques. Structural singular value

Splots illustrated that the PD compensator was sensitive to the high frequency dynamics of

the frame. When experimentally implemented, this control law destabilized the system as

m predicted by the robust stability analysis. After changing the position and velocity gains,

n the system remained stable but produced unsatisfactory results (16% steady state error or

55% overshoot). The pointing controller designed with p-synthesis techniques resulted in a

3 superior step response. During a 20* slewing maneuver, this design produced a step respon

with 7% overshoot, 2 second settling time, and less than 2% steady state error. With the

m supplementary PPF control loop closed, the structural vibrations were suppreused 4 seconds

after the hub position came to rest. Without the supplementary control, the frame vibrated

for over 30 seonds after the end of the slewing maneuver.

5!.1
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I The major contribution here i that the experimental implementation of a smart

structural control system mum a robust control formulation, and that smart structures

need to be used in controlling a certain clan of device, with dynamics simil to those found

in solar array. common to satellites.I
3. Modeling and Control of Systems with Nearly Repeated Modes

Control of systems with repeated or nearly modes is a relatively common problem

addressed in the large flexible spacecraft discipline. Here, however a hardware solution

3 is proposed to this problem using the capability of smart structures. Modern control theory

calls for one actuator for each repeated mode. Here this is made possible by integrating

3 piezoceramic devices throughout the structure, using them as sensors and actuators and

developing an appropriate control and modeling scheme.

To explain this approach, an experimental model of an 8-ribbed antenna, common to

3 satellites is used. Figure 3 shows a. schematic of the experimental test bed. Such antenna

3 Ftxebie rb

I f

I"
100 M.; x I

Figure 3 An experimental smart antenna illustrating (at left) the bowed ribs and

(at right) the location and size of the integrated sensors and actuators

I exhibit substantial repeated natural frequencies. Such structures, because of their unique

curvature, are difficult to model using standard finite element methods. Rather a lumped

model as pictured in Figure 4 is used. This model uses spring stifners for the antenna's

"|1 6

I



3 Figure 4 An 8 degree of freedom lumped mas model of the ribbed antenna in

the previous figure. The hub at the center i assumed rigid.I
connections, torsional springs for hub connection and models the ribs themslves as lumped

masses. This model displays most of the important dynamics of the experimental appazatus.

Figure 5 illustrates a comparison between the analytical model obtained from Figure 4 and

""

i t " •

a .aw

SFigure 5 Mtperinenta (solid fine) and theoretical transfer function (dotted line)

manepitude plots for the antenna.

Sthe exeimental. magnitude plot of the structure. The agreement is very good in magntude

I but poor in high frequency phase- The details mre praeated in [11]. Two difierent control

schmmwere use for mp• t; active vibration spreso for this system They area 3i 7
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Positive Position Feedback (PPF) and the Active Vibration Absorber (AVA) method. Each

method tales advantage of the structure of second order system to claim closed loop stability

in the face of high gain. The work here shows that these two methodo re related, as PPF

it a oubaet of AVA and that AVA a:tually suffers from high gain instability when applied

to systems with unmadeled high frequency dynamics such as a ribbed antenna. This is

illuste clearly in Figure 6. Each of these methods have been modified to take advantage

PPF CoerROav A VA CeaOMOV

,! _!L. d. "t
5 S )qm 4, .' -- a)

x x

I
Congener) -0'd =6d) 9'b

Figr 6 Comp of PPF and AVA for the single degree of fredom case

I ~of displacement feedbac'k. Note the high gain instability for AVA.

I of recent resutsa in stability of second order systems by using symmetrizability conditions

i [12] and new definite tests [13]. As detailed in [14], two second order contollers have been

developed and cxparimentally implemented on the satenns trothed. Theoretical stability

I
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bounds were also derived, with PPF control being conditionally eabe and AVA control

being unconditionally stable. An important diference between the two type. of control was

that a PPF filter rolls off at higher frequencies while the AVA controller maintains a constant

gain. The roll off characteristic of PPF is an advantage since it mak. it les sensitive to

U unmodeled dynamics. In real system, that stability of the AVA control in determined by

the high frequency response of the structure, which is often not known with any accuracy.

Both types of control were successfully implemented on the smart autenna. The

performance of PPF and AVA were compared on a SISO design using one active rib. Each

design consisted of only one second-order controller since numerical simulations indicated

U that there was no significant advantage in using multiple filters. Both typeo of control were

able to increase the damping in the target modes. PPF control produced better results

since it was not limited by unmodeled dynamics. Unfortunately, the 51O controller did not

adequately address the problem of repeated natural frequencies. A MIMO controller was

implemented using PPF control on ribs 1 and 2. Not only did not the MIMO controller

I improve tha overall performance, it was able to add damping to a repeated mode at 9.7 Hz.

I 4. Experimental Use of Nonlinear Controllers

A comparison between linear control and nonlinear control of a distributed parameter

system (experimental) consisting of a slewing flexible beam was performed. The experimental

I research sought to daterm the advantage of nonlinear control over linear control for a linear

distributed parameter system.

The strongest argument for using nonlinear control is that it can significantly improve the

performance over linear control schemes. This can be shown in simulations, where the step

response rise time, settling time and overshoot are significantly smaller than the response

I when linear control is used. Lewis [151 showed the response of a second order system can

be improved by constructing a variable damping. He used position time velocity feedback

to eliminate overshoot and improve the settling time of a positional servomechanism More

I



recently, Caatelaao and Lee (161 proposed using the same type of feedback to improve the

response of a slwing beam syitem. They considered a nonlinear feedback, where state

positions and state velociites we multiplied. A heuristic method was proposed to tune

the nonlinear feedback gains and the resulting performance was better than the performance

--3- provided by an optimal linear controller. They provided simulation results for a slewing beam

to verify the method. Others, such as Kuo and Wang (17], have proposed using nonlinear

-- controllers to improve the robustness of a more complicated two link maniuplator.

Initially, the purpose of this work was to experimentally verify the simulation results

found by Caatelazo and Lee. However, to insur global stability, their proposed feedback

3 required a simple modification. Also, implementing full state feedback is difficult and

as a result, proportional plus derivative feedback control, which lends itself well to

U experimentation, was chosen for this purpose. Angular position and angular velocity are

3~ easily measured on the experimental apparatus. The nonlinear feedback consisted of the

angular position times the angular velocity and the objective was to show that the system

3 using nonlinear feedback provided better results than the system using the best available

linear feedback.

Table 2 Total Energy Input to the Motor for the Simulated 30*

I Slewing Manuever using the lentified Plant Model

Linear 17.4J
Nonlinear 12.1J

% reduction 30.6%

CQmparing this result to the theoretical model simulations shows a significant difference.

The maximum power for the theoretical model simulations was approximately 245 W and

U for the pole Po model simulations, the peak power input was 95 W. For both models, the

motor current wu the first constraint to be exceeded. That is, at some instant of time

for both models, the motor current exceeded its maximum allowed value. Therefore, the

10



difterence in the power plots ies in the simulated armature voltages. Along with thin, the

energy consumption found in the theoretical model simulations was more than two times

that of the pole sero model simulations. These observations emphasize that the difference

between the two models lies in the mode shapes, which can be explained as follows. First,

the armature voltage is a function of the controller gains and the controller gains were much

larger for the theoretical model simulations. The magnitude of the terms in the theoretical

model feedback matrices were small (they are functions of the mode shapes), therefore, large

gains were required to produce adequate results. Large gains translate to large voltages

in the motor. This explains the sizable difference in the energy results. Also, much more

damping was present in the pole zero model, while the damping matrix of the theoretical

model (which is a function of the mode shapes) was small. Larger derivative feedback gains,

which are not necessary for the pole zero model simulations, are required for the theoretical

model to make up for this inadequacy. Perhaps including internal (material) damping in the

theoretical model or increasing the term corresponding to the bearing friction in the model

would produce closer results for the two models. For the simulations using the theoretical

model, increasing the feedback gains increases the motor voltage, resulting in larger energy

consumption results. These observations imply that the main difference in the models is

found in the asumed mode shapes and the lack of an internal damping model for the beam.

The simulation results using the pole zero model were the most promising results obtained

up to this point. These simulations used a model obtained from data of the experimental

system and therefore, they provide the most optimistic result that the simulated observations

can be implemented on a real system.

Simulations are valuable in examining the dynamics of systems. In this work, simulating

various forms of feedback and using different plant models provided valuable information

about the system before any experiments were attempted. A PD controller was constructed

for the slewing beam and an experiment was performed. Then, the nonlinear feedback was

added to the controller and another experiment was performed.

* 11



It is important to note that this study was initially conducted to verify, through

experimentation, that the proposed nonlinear feedback control could be used to improve the

response of slwing beam systems. A natural extension of this investigation was to determine

the cost of the improvement in performance. There may be other control strategies which

provide similar responses while using even les energy. The purpose now is to show that it

is possible to reduce the energy requirements of this system with no lou in performance.

We have found through simulations and, as will be seen, through experimentation that even

U when there is no visual improvement in the performance as measured with respect to settling

time or rise time or overshoot, there is a significant improvement in the energy required when

the proposed nonlinear control is used in addition to the linear control.

The controllers were implemented in the same manner as in the simulations. The beam

I tip acceleration was measured and used as an indicator of the closed loop performance.

Angular position at the slewing axis was measured with a potentionmeter and angular

velocity was measured with a tachometer mounted at the motor and input to an analog

computer, where the PD and PD plus nonlinear controllers were constructed. An EAI 2000

analog computer manufactured by Electronic Associates, Inc. was used. The output signal

I from the analog computer was amplified and input to the motor. A block diagram of the

Sclosed loop system is given in Figure 7. The controller gains were adjusted until the fastest

settling time was obtained. The time responses are shown below for the PD controlled

slewing beam. The beam is given an angular displacement of 300 and slewed to 00. The

beam tip acceleration versus time is shown in Figure 8. The instantaneous power versus

time curve was obtained by multiplying the time histories of the motor voltage and current

together.

-- The proportional gain determined in the experiments was the same as the proportional

gain in the pole zero model simulations. The derivative gain was smaller in the experiments

than in the simulations, since the settling time increased and the amplifier saturated when

higher gains were used.

* 12
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Figure 7 Closed loop PD plus nonlinear feedback control system.
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Figure 8 Beam tip acceleration versus time.

These experimental responses are comparable to the simulated responses. In general,

the experimental result shows les damping than the simzlation. The overshoot is larger and

the settling time is also larger than the simulation predicted. As mentioned earlier, it was

believed that the damping in the pole zero model was larger than the actual system. These

results confrm this belief. The settling times of the angular position at the slewing axis and

13



I

I of the beam tip are approximately 2 seconds each. Integrating under the power curve, the

total energy input to the motor for the PD controlled system was 16.3J.

Next, nonlinear feedback was added to the PD controller established above. The

i nonlinear feedback in the absolute value of the angular position multiplied by the angular

velocity and the nonlinear feedback gain. The result is subtracted from the PD feedback

signal to obtain the nonlinear control systemn

The settling times of the angular position and tip acceleration are seen to be

approximately 2 seconds. Integrating under the power curve, the total energy input to

the motor for the nonlinear feedback system was 13.7J.

The nonlinear feedback gain was set at a small value since larger nonlinear gains saturated

the amplifier. For the PD case only, setting the proportional and derivative feedback gains

lower produced time responses with larger overshoot and longer settling times. As a result of

the lower PD gains, the nonlinear feedback gain could be set to larger values and significant

improvements in overshoot and settling time were obtained, confirming the observations

discussed earlier. Thus, it was verified that the proposed nonlinear feedback control could be

used to improve the closed loop performance of the linear system. The plots are not included

here since the objective of this work was to find the best experimental PD controller, then

add as much nonlinear feedback as possible (before saturating the amplifier) and compare

the energy requirements of each system.

Consider the experimental time responses. The angular position and beam tip

acceleration settled in 2 seconds for both the linear and nonlinear control systems

implemented. There was a small decrease in overshoot in the angular position for the

nonlinear feedback result, but this is not readily apparent in the figures shown. In general, the

angular position shows an underdamped response for both the linear and nonlinear feedback

results. Now, consider the time responses of the beam tip acceleration. The nonlinear

feedback result shows & small decrease in magnitude of the peak accelerations. This is the

14



I
iame result noticed in the simulations performed.

Finally, the power plots that the system using nonlinear feedback required less energy

i than the system using the linear feedback alone. The peak magnitude of the instantaneous

power input to the system decreased by approximately 10%. Integrating under the

I instantaneous power versus time curves gives the total energy input to the motor during

the control maneuver. The results are shown in Table 3. A 15.6 % decrease in energy

resulted for the system using nonlinear control than for the system using linear control,

I while the performance was virtually the same for both control methods. Therefore, it is

possible to add nonlinear feedback of the form proposed here to a linearly controlled system

i and save energy, while obtaining the same performance la every other respect.

Table 3 Total Energy Input to the Motor for the

Experimental 300 Slewing Maneuver

Linear 16.3J

Nonlinear 13.7J

% reduction 15.6%

Figures 9-12 illustrate the effectiveness of the nonlinear controller.
20-

100-

p I I I

0.0 0.5 10 1.5 2.0

- Figure 9 Instantaneous power versus time

Initially, the purpose of this work was to experimentally verify that a specific nonlinear

feedback control could be used to improve the performance of a closed loop system using

I 15
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I Figure 10 Angular position at the slewing axis versus time (nonlinear feedback).
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Figure 11 Beam tip acceleration versus time (nonlinear feedback).

linear control. A slewing beam syfstm was chosen to implement the nonlinear control.

Before experimenting with the system, simulations were run to fnd an acceptable controller

to implement.

Two diffeent controllers were studied, an LQR and a PD controller. Simulation results

showed that large inceasa in performance (settling time and overshoot) for the nonlinear

system were not obtained within the system constraints. Usually, the motor current reached

its upper limit first. However, it was noticed that the control effort reuqired by the system

using nonlinear control was les than that required by the system using the linear control.
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I Figure 12 Instantaneous power versus time (nonlinear feedback).

The objective of this work then changed to experimentally verify that this type of nonlinear

control used less energy than the linear control when all other measures of performance were

virtually unchanged.

The PD result was verified experimentally. The best performance for the linear control

was an underdamped response. Adding the nonlinear fiedback showed no significant

improvement in performance. However, when the control efforts were compared, the

nonlinearly controlled system required much less energy than the system using linear

control. The conclusion reached was that the nonlinear feedback control proposed here

can significantly save energy, even when no other change in performance is perceived.
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I
6. Review of Objectives and Status

The objectives of the proposed work for the second year of funding have been met. In

particular it was proposed to develop and experimentally verify and implement vibration

suppression control in coupled rigid flexible systems and systems with repeated modes.

I This has been accomplished. It remains during the third year to publish these results in

journals and to finish implementing the nonlinear "smart'controller, as well as developing

the associated theory.
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I Abstract A number of different control laws will be•y vedfle
Many sat•elis require the use of slewing solar panels.
A laboratory model of a slowing fiame is presented bare 2L Slewiag Frame Testbed
as an article for testing control laws for such solar
arrays. A slewing frame presents a challenging control A slewing frame was constructed to provide ani problem because die primary action of slewing induces experintal tohesbd for contol. Ie frame consisted of
torsional vibration which is relatively uncontrollable thin-waLled circular aluminum tubing (Figure 1).
with respect to the slowing actuator. An experimental Slewing acuation was provided bym Electro-Craft 670
investigation of controlling this structure for combined dc motor. Angular rane and pamidn sensors could beI slewing and vibration suppression is presented. The used for analog motor control.
frame is modeled using mite element methods verified
by experimental modal analysis. Analytical results
indicate that the torsional motion can be suppressed by
including an active strut in the feedback loop. Non-
colocated and colocated control laws ae implemented
using the active strut as a sensr and an actuator. The
relative effectiveness of each design in suppressing the
torsional motion is discussed.

1. Introduction

I In recn yeam them has been a large amounmt of research
on slowing structures. These sructures present I
challenging control problems since the action of
slewing induces residual vibrations. These vibrations
can degrade performance when strict pointing and Figue 1 Sing H Tabed
tracking requirements are to be maintained.

Until now, most of the wark has concentrated on the An active stut was designed and inmed into the
slewing of flexible beams. For the most parm, these slowing frame. It consisted of a flat aluminum bar
strwturs exhibit only be"dg motion wbaexciied (I- layered with four poezocemmics om each =d& Each3.Rcently.esehib on b ybfg mOb" hl cand Lao (41 .ceramic was a Model G-1195 hAm Plezo Electric* 3]. Recently. mesech perfoaned by Sahuwau d Lao (4] Products with dimensions 2.5' x 0.75' x 0.01'. The

studied the control of a flexibe beam with an eccentric P u w dimensO rT
up mas This tip mass induced torsional vibatios sut was configured so tat it couli be used a a se i ,
when slewed. adding a mew dimension to contuol an actuator, or as a coklcatu R a..Ix/a "uo Pair.

* problem. They presented motor control schemes Fm 2is a drawing of the active sm MW output
firom the active strut is & ml the strain induced* designed to smultaeosy slew the sucture a in the member. Conversely, doshco stum prduced asup s i s. bendin moment proporio to d commmd input.

This wok will also examine the p•blem of slewing a A w of compur: we he 0 orm- an
sctre that exhibits bend*n and tsional vibations, d= acqdsidon. A Camdyna GP-6 not computer
The -mucLn- studied is not a detible brn, though. but was used for position comol of the m ua various

S a frame that models the dynanics of a solr arry.The msiga operations (summada., subractio. etc.).
torsional motion induced when ulewed is relatively Contrl laws for the active smut wer impkmenad on
uncontrollable using colocmd matr control. Smart an Optima 3 digital comller smpiing at 1500 Hz.
sucture technoloig will be applied in an attempl to Finally, dam acquion and hequmcy analysis was

suppress this motion. Namely, a piaceramic srutp
placed in the fme using a Tekzwlaix 2630 Ftuhos Amalyz.

I
I



IA is a matix of tbe form diag(ol2... i2 _WN 2 ), and

Ib . SmT Ib. I is an N x N identity matix, where N
is the number of flexible modes in the model.

_The actve stuzt was modeled as a moment generator [6].3For simplicity, it was assumed to span the entire length
of the suu. Although not a rigorous model of the

Off piezoecfi .effe it did prvduce sminacmy resnils.

To study the slewing frame, a 16 mode model was
Figure 2: Piezoceramic Active Strut developed using finite elements. The boundary

condition was chosen to be pinned-free. and the natural

S The objective of the experiments was to slew the frame frequencies and mode shapes were verified by a modal
in a reasonable amount of time while minimizing test. Initially, a simple Proportional-Derivative (PD)
unwanted vibrations. Due to the configuration of the controller of the form
structure. bending and torsional vibrations were inducedS when a maneuver was performed. The rest of this paper Gpd (s) = - Kv 0- Kp 8 (3)
will deal with the modeling and control aspects of this
problem. was used for position control of the frame. The gains

were set to values that produced an adequate step
3. Modeling and Analytical Results response. Due to the nature of the boundary condition,

this controller also added damping to certain flexible
A linear model of the slewing frame was developed so modes. This occurs because the pinned-fiee conditionS that a number of control laws could be tested allows a large amount of interaction between the
analytically. In physical coordinates, this model took strucatu and the motor. In die model, the damping in
dhe form [3] the motor is added to the flexible motion through the

H ~ 1~ r )applied loads vector f. Consequently, derivative action
[[M I b 1 q [] q 0 on the motor also produce an increase.i damping in

IIbT Is + [ 0 0 = the flexible motion. Results of an analytical study
where Kp = 2.5 and Y., - 6.5 are given in Table 1. All
m) odes were initially assumed to be undamped.

where M and K am the mass and siffns matrices of
the muuce, respectively, Is is the rigid body inertia Table 1: NanI lF-w-imanX
about the slewing axis, and Ib is part of the interaction Damping Rais in the flexible modes using

S between the rigid body and flexible motion. The PD motor controL
physical coordinates of the stuctme ame denoted q, and
the rigid body rotation is symbolized by 0. f is a
matrix of applied forces and the overdot repre ts Mode s o (Hz) 4 C cal
differentiation with respect to time. Torsional 4.37 0.41

To courectly model the interaction between the motor Torsional 15.47 0.50
l and the structure. pinned-free natual frequencies and Plate 19.79 0.531 mode shapes were used. The mass and s matricesBending 27.53 5.10

were built usig finite elements and a modal test was
performed to verify analytical results (5]. By collectin This study reveals tat a simple PD motor conrol addsI the normalized mode shapes into a matrix Sm. equatfio a significant amount of damping to the beading modes.
(1) was transformed into modal coordiates by 9ning This is consistent with prmvious results 7]. Table 1
q = Sm r and pmemultiplying by SET. This yields also shows that the torsional motion is still relatively

] E*1 + [A 0 * r ir T) In an attempt to control the firt torsional mode of the
ZI ii 0. it= 5 f slewing frame, an analysis was performed using the

rT JI active strut as a sensor dan acueor. Various control
lawswereattepted. Thetwoddotperforedthe best

(2) were Generalized Stuctural FiMing (GSF) and Padve
Position Feedback (PPF). Auailytcal designs were
obtained using the model. They indicated that the
damping in the fir torsional mode could be inacsed to
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I 5.7 S using dhe GSP method and to L5 % -b PWF daping raios fo the case at expuioma PD CcinaL
contrl. Detailso atdo actual designs will be pruessed It shos that dom colocmed inotor - -al u Iu e doe
II the knlowing muon.m dominantbad~ m but Inaes t domursonl made

4. ~ ighty damped. This tsend is similar to the ramiw
4. lxperasenal Rsult obppaw malyticsly with the FEM model.

I Analytical resulte indimd dthaie~ torsional motion of
the frame was difficul t o suppress using colocated
mom~ control. Further stuies revealed dtha by usig an
active strut, these tomainal vibrtwons could be ronderadI controllable. Experimental results support these
conclusions and providle stuiles in the design of active
control systems far flexible strucaesI Thme levels of control were implemented am the
slewing frame. The first consisted of a simple PD
compensator for the motor. Thbis was necessary in orderIto position the frame and suppress the bending
vibrations. Next. a non-colocated control law was____________
designed to adequately damp the dominant torsional 0S

motion. Finaly, a colocated controller using dhe active
strut was implemented and die results wer compaired to Fgure 4: Frame Step Response (p25 V 65I the nam-colocated case. Figure 3 is a schematic of the P-2,K 6)
overall control mhiecan Table I. Natural flequencies andI damping ratios

1____1-_____ for experimental PD control.

OW : 04OW Mode (a-(Z % Critical
Torsional 4.32 0.82
Boi 7.68 9.18

r Toruiorm 14.11 12
I Plasm 2D.76 0.94

S 26.25 1 132 1

During this maneuver, the sensor output of the actve
stut during a 300 slew is shown in FigureS5. This
llitUzs the lightly danped torskona mode. The 4.32

An*#-W-Hz vibration does vot settle for over 30 seconds, wellI Fvgu 3: Slewing FAm Conriol Ardehmorwe after the slewing meuvwer is

* The first control law studied was a simple PD

comrpensator of die form given in equuion (3). The6
term wasdi the ucmera output, and 0 was the signal

* from the potentiomueter. The reference command wa a
*srepinpuof IvolL This correspondedw a 3(rslowing

matneue. The actve inuc was only used as a sensor
for these experiments.

A typical response of the frame position is shown in
Figure 4. The sealing time for the slew eaatme is
absout 6 seconds. In addition to controlling the positions u
of the fume, the PD compeusmo hu the desirable, w . ciea ~ o a e
effect of suppressing the bending motion. Fge5 ~ ewcotu t3 e
iUmfaortm-ely, die torsional mo1tions still relatively maneuver with only PD control.I undamped, even with quite slot of darivativ action on
the motor. Table 2 lists the namual hequeacies and



One problem dt became important during thectperment wa stati fricu-d in, the moto and

bearings. This problem is eviden in Figure 4. The
sodden stp o the slowing minarm is due to the fact
that the moor cmt ome the dy friction in the
system. This problo woam ' momu important whin
Control laws * 4 TOnu to suppego the torsiona
mouckat do thme a. This will be discussed in the nms
section an now- c010123d control.
NO.ion-C "•tol tiin the Active Setni

To supplement the PD compensator. a non-colocated
controller was d~esigned to add damping to tie torsional 1mode. The design tool was a method called Generalized
Suactumral Filtering (GSF). The GSF method uses non- Figur 6- S uctu using GSF control
minimum phase second order filters to sccessvely during a 30" slew.
stabilize structural poles. The design is done iteratively,
using 'classical' techniques of root locus and Bode plots. To alleviat this problem, one of two things could be
For a detailed decipt.a of GSF control• see (8]. done. Quite simply, the fim solution is to reduce the

For this aplctotdsgstpstasic fricton by =sing be= hardware. The less of a
, ds t€eadbnd, the more effective this : of controller will

follows. nitially, a transfer fiunion was takn btween be. But since all real systems have static friticon, a
the motor input and the SCZVC Strut OuEPUL A moe prmcticai qpoeci would be to put both the sens
commercially available Recursive Least Squres pckage and actuator on dhe flexible sucmre [10]. If this is
used the time domain data to obtain a pole-zero model done, then the vibration suppression of the torsional
(9]. From this model mot locus and Bode plomt could motion would be independent of the slewing actuator.
be used to design a compensator. The objective of the Thi colocated controller could suppress vibradons

I design was to add damping to the torsional motion during a slew maneuver as well as reject db.irbances.
without destabilizing hge frequency dynamics- Ii an The last experiment deals with dis typs of design.
attempt to atnuate tde high frequency content of the
control signal, it was filtered at 20 Hz with an Ithaca 24 Control using the Active Strut as a Colocated Sensor
dB/octave low-pass filter. A number of designs were AGM=
atempted. with varying degrees of succes ach design
was tested experimentally by feeding back the active The final Control Strategy Was to Use the active Stu S a

strut output into the dc motor and perorming a slewing colocated sensor/actator. The design method was
maneuver. All but hie final compensator caused Positive Position Feedback (PPF). It is a type of
instabilities T the flexble motion when experimenotaly second order filtering which has good robusmess and

implmentd. Me fnal S cntrolertookthe ormstability properties [11).

IG =j) a .07 9 j The objective is the same as before, suppress the
(W140+1) (s + 26.0 t j 30.4) (4) torsional motion without destabilizing higher modes.

For the colocated case, sability boundaries are much
Equation (4) is the combination of a simple lead and a bett- defined since the phase of die m-ansfer function lies
non-minimum phase filter. Figure 6 shows the between 0 and -180" over most of die frequency range.
response of the stuctue during a 30 slewing maneuver Use of PPF control allowed for a much easier design

I with GSF control on. The torsional motion is process. Only two iterations were necessary to obtain a
adequately damped out, i.e, by the time dte slewing is satisfactry result, as opposed to the five or n-eded for
over (- 7 s). the vibr•aons have ceased. GSF control.

I Even though this method damps out dhe torsional
motion during a slew maneuver. the deadband in the GS)O.72 + 2 2f of s + o12
motor makes it ineffective for disturbance rejection. If
some type of input was applied to the frame (e.g.
thermal shock of a solar panel) when it was not Of33.14radh Ca0.15

slewing, the controller could not react muil it overcame
the static friction in the system. Thus, the static Implementation of this connlod law inc%.u.d2 the
friction limit e f damping in the tosional mode from about n,.2% to
controL 3.8% critical, almost a factor of 5 better. The slowing

espouse (Figure 7) is not as impresive as the oe for

I
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the non-colocated control (Figure 6). bag it is
indqpadent of the motor. With this typo of control. Acknowledposont
disturbance reecion a achieved noce the active smt
-arm as the acmuo a wenl as the scow. This wark is supported under AF)SR gruantmmber 91-

3- 0181 under the &Pq~iott of r. Spce Wu.
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ABSTRACT

A testbed consisting of a flexible frame slewed by a dc motor is modeled for active

vibration suppression. This presents a challenging control problem since the primary

action of slewing induces both bending and torsional vibrations in the structure. Inserted

into the frame are two active members that can be used as self-sensing actuators in

I feedback control loops. First, a model for the slewing frame is developed using Lagrange's

equations and finite element approximations. The interactions between the structure and

the slewing actuator are then derived from the equations for a dc motor. Similar

expressions are obtained for the forces applied to the structure by the active elements. A

detailed model of the self-sensing actuator is provided which includes the terms due to

I actuator and sensor dynamics. A theoretical study is then conducted to obtain control laws

that simultaneously slew the frame and suppress the residual vibrations. Simulation results

indicate that the dc motor is effective in slewing the frame and suppressing the bending

motion but not the torsional motion. Hence, the torsional vibrations are suppressed using

the active members in colocated feedback loops.
I

I
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1. Introduction

The slewing of flexible structures is a challenging control problem due to the coupling

between the rigid body and elastic motion. The primary action of rotating the flexible body

induces vibrations that cause a considerable degradation in system performance. This

problem is important in the space structures community due to the high flexibility and strict

I performance requirements of future space missions.

I Much of the research performed in this area has concentrated on implementing active

control laws to simultaneously slew the structure and suppress vibrations. Early work

performed by Juang, Horta, and Robertshaw (1986) examined the active control of a large

slewing beam. They developed a model for the structure and used a dc motor as the

actuator in a feedback loop. Vibration suppression was obtained by mounting a strain gage

-- onto the beam and using it as a non-colocated sensor. A similar approach was taken by

Garcia (1989), except that only angular rate and position signals were used for feedback

control. Simple Proportional-Derivative control laws were able to suppress the vibrations

of a slewing beam due to the large interaction between the motor and the structure. A

Lyapunov based control strategy was developed by Junkins, Rahman, and Bang (1990) for

the reorientation of a rigid hub with four flexible appendages. An improvement in

performance was achieved by shaping the input to the slewing actuator. Another

I Lyapunov based method was introduced by Fujii, Ohtsuka, and Udou (1991).

Experimental results were presented indicating that vibration suppression could be

improved by using a method they called Mission Function Control.

I In all of the previously mentioned work, the slewing actuator was used to

simultaneously rotate the structure and suppress vibrations. This strategy was effective, in

part because the structure being slewed was a simple beam. If the structune exhibited more

complex dynamic behavior, the slewing actuator might not be able to suppress all of the

I
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flexible modes. It would be desirable, and in some cases even necessary, to have separma

sensors and actuators available for feedback controL

Recent advances in smart structure technology provide a means for integrating

actuators and sensors into a slewing structure. This is accomplished by replacing passive

members of the structure by active elements. The active members contain piezoceramic

material, thereby enabling them to be used as sensors and actuators for control. Recently,

Dosch, Inman, and Garcia (1992) demonstrated the concept of using a single piece of

piezoceramic to simultaneously sense the vibrations and apply a moment to a cantilever

beam. This is important in the control of flexible strucr=s since the resultng sensor and

actuator are perfectly colocated with one another. With regards to the slewing problem,

Garcia and Inman (1990) showed that integrating a piezoceramic sensor/actuator into a

slewing beam can improve performance and reduce the peak power of the motor.

U This paper examines the modeling and control of a slewing structure that contains

integrated actuators and sensors. The structure is not a beam, but a frame that models the

complex dynamics of a flexible appendage such as a solar array. Two of the passive frame

-- members have been replaced with active elements: aluminum bars with piezoceramic

material bonded to the surface. Characteristics of the piezoceramics allow these active

elements to be used as colocated sensor/actuators. The active members are an integral part

of the control system since the torsional motion of the frame is not suppressed by the

slewing actuator.

The paper is organized in the following manner. First, a model for the frame is

developed using Lagrange's equations and finite element approximations. The interaction

between the structur and the motor is obtained by considering the equations for a dc

-- motor. A model of the active members is developed which includes the dynamics

I 2
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associated with a self-sensing actuator. Finally, control system design for the slewing

I frame is studied using the model and the actual parameters of the testbed.

I MODELING OF A SLEWING STRUCTURE USING FINITE ELEMENTS

The model for the slewing frame is derived from Lagrange's equations and finite

element approximations. The advantages of using the finite element approach is that it can

I easily handle the complex geometry of the frame. The governing equations for the

complete structure are obtained by first considering a single element slewing about an axis,

as shown in Figure 1.

I The motion of this element consists of a rigid body rotation, 0 (t), and an elastic

deformation, U^(.,t). A torsional rotation about the 1 axis also exists, and is denoted

0(1,t). The two ends of the beam are called the nodes of the element. Node i is a fixed

distance r, from the origin of the inertial coordinate system, XYZ. The rigid body is

constrained to lie in a plane, xz, which is rotating with respect to the Z axis with an angular

I velocity 6(t).

Another set of coordinates, the ^^2 frame, is attached to the rigid body of the slewing

element. The origin of 292 is chosen to be Node i and 2 is the centroidal axis of the rigid

body. Since the element is constrained to be in the xz plane, the y and y axes are parallel.

Thus, the orientation of the element with respect to the rotating xyz frame can be described

by a single angle y.

I The arbitrary deformation, z2(1,t), and torsion about the 2 axis, ^(i,t), can be

expanded into the following form:

I), j (1)
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where 4(r) is a 12 x I vector of independent generalized coordinates. The matrix IF. (2)

is a 3 x 12 maix of basis functions, and IF(2) is a I x 12 vector basis functions [Cook

and Malkus (1989)]. The set of generalized coordinates are chosen to be the three

translations and three rotations at each node of the element. This choice assumes that the

I rotations are small, i.e., they can be added as vectors.

U The Lagrangian of this slewing element is obtained and Lagrange's Equations are used

to derive the governing equations (Leo (1992)]. They take the following form:

M b J{ t K 4())} + [Q]0}~ ,~ . (2)

where M and k are the 12 x 12 mass and stiffness matrices of the finite element,
respectively. The strucur-al inertia of the element about its slewing axis is denoted I,, and

Ib is a 12 x 1 vector that couples the elastic deformation to the rigid body rotation. The

non-conservative forces due to the motor and the piezoelectrics are denoted Q^. and Q,,

I respectively. The assumptions made during the derivation are that the element can be

modeled as an Euler-Bernoulli beam, that the cross-section is symmetric, and that the

geometric and material properties are independent of I. The expressions for each of the

3 terms in equation (2) is placed in the Appendix of this work.

The governing equations of the slewing frame are assembled from equation (2) by

substituting

{4(t)J= CBq()t)j C L=[C. 0 B=[B. 0' (3)

6~~ (r)' 0 1 1I
into the expression and pre-multiplying by BTCT. The matrix C. is the transformation

3 between the element coordinates and the global frame of reference. The operator B.

transforms the element coordinates into the corresponding global degrees of freedom. It
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has the dimension 12 x Nf, where Nif is the number of degrees of freedom in the

I complete model. The final set of equations has the form

3, M . lfii@)1 o O~fq(r)W1"

I -I 8-
= Ib B.iC.IMC.•

i-i iaI

W N

I ill ullQ.- Bj Q,"W QP -- B:,rr,.,

The number of elements in the slewing model is denoted N,. The assembly of the

governing equations is more computationally efficient if the direct assembly approach is

used (Cook and MalkUs (1989)].

i 2. Modeling the Motor/ Structure Interaction

Modeling the interaction between the motor and the structure has always received

I considerable attention in the slewing literature (Juang, et al, (1986), Garcia and Inman

3 (1991)]. The derivation presented here is similar to the previous work is most respects,

except that earlier research concen-ae on obtaining expressions for distributed pmte=

3 systems, not finite element models.

3 First, consider the model for a DC motor shown in Figure 2. The motor is connected

through a set of gears to the slewing structure. The armature voltage and current are

denoted e.() and i.(t), respectively. The pertinent motor parameters are the inductance, L.

the resistance, R., the torque constant, K, and the back-EMF Kb. The motor has an inertia

I.4 and a viscous friction coefficient B,. A set of gears with ratio N21N, are placed between

the motor shaft and the structure. The rotation of the structure is denoted 0,(t). The

I
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expression for the torque produced on the smucur can be derived from krchoffs laws

I and summaon of torques [Kuo (1987)]:

3 r =N8K~ijt) - IasN12i(t) - BvN82ia(t) (5)

3 where the arnature curent is related to the command voltage by

L. & + R~i.(t) = -KbN,,(t) + e.(t) (6)

For convenience, the gear ratio N2/N' is denoted N,.

I The next step is to choose a boundary constraint for the finite element model For the

slewing frame, the boundary constraint is chosen to be pinned-free. Thus, the rotational

3 degrees of freedom of the shaft that lies along the slewing axis are unconstrained. These

are the 8,(r) rotations, using the notation of the previous section. Assuming that the torque

U acts at the i0 node of the structure, the total rotation at that node can be written as:

3 9,(t = O,0(t)+ (

3 A diagram of this concept for a single element is shown below in Figure 1. The total

rotation at the root is a combination of the rigid body rotation and the rotation due to the

3 flexibility. The non-conservative virmtal work due to the motor torque, 8W.., is

I W1. = ,eo,(t) = ra.,(t)+ io(r) (8)

3 Equation (7) can be rewritten as a vector multiplied by the generalized coordinates of

the system

i 9,(t) = Oe(t)+e+e( = F.' (t)ý (9)1,0r(t)'l

where the I x NW vector Fr has a one in the i& column and a one in the last colmm.

I
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Thi virtual wrk can now be wrie asf

6 _F."0(t))

wher•e _ = from equation (4).

With the expression for the virtual work, the equations of motion can be rewritten as:l~~ [,• + 1r•'. °]fq(,).
L 1, o(t) +o o(t) =FF +Q+ (Q,)

Equation (9) is substituted into the DC motor equations to yield

'r = NKýi (t) - "'Fr. 5. B,_,(t)J (12)
l(t( t)R0(() (12)

+ft V 0(t)J+eo(t)

These expressions are substituted into equation (11) and, after some manipulation, they

I can be written as

I
i s,72K101f q(t) = - ., .. t)>+ ,Q{[~ITI )+4NG4{3( )}+B,,N2G.{*()} K{

' 0(t 0 0 0(t)

I (13)

L. Aýý +Rdi. (t) = -KNr,F I ) + e.(t)dt 0(t)

where G. is the gain matrix associated with the motor. h has the form
r[G., ' G_2]

G..= F.Fr.="'--- G., is orderN,.x N (14)S LG :G, IFU
I 7
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I
One final step needs to be performed to obtain the open loop model of the slewing

I frame. Since the boundary constraints are chosen to be pinned-free, there exists a zero

frequency mode in the mass and stiffness matrices. This mode is already accounted for by

the rigid body coordinate, 0(t). To eliminate this redundant mode, equation (13) is

transformed from physical coordinates into modal coordinates. This transformation is

calculated by solving the following free vibration problem [Inman (1989)]

[ {M + NI.G., 4(t) + Kq(t) = 0 (15)

and normalizing the mode shapes such that

SF f. M+ N,21.G., IS. =X1(6l~MN1n~n~.I(16)
STKS* = Q= diag~cofl

where S. is a matrix of the elastic modes of the frame. It is not square since the zero

frequency mode has been eliminated. The squares of the remaining non-zero natural

frequencies, denoted W2, are the diagonal elements of the rnan-ix fl Equation (13) can be

ransformed into modal coordinates by substituting the toilowing transformation

L(*J = S. 0j{;(t}= T{r(} (17)

into the equation and pre-multiplying by Tr. The result is

I(1 ( (b + NSrC I.G.2) (t)+ + ,TBNVF +D)Ib +N1N.G.J2)S. 1"" +tN 8{}

fo ORlr(t)J= T TF.KNi. (t) + TrQ,.

(18)

-(t) + R(S (t) = -KbNFTT ý(I )

I
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A damping matrix, Dp,, is added to tf system to account for dte inherent damping in the

Is t It is a diagonal marix of the form

* = [&as(2Co)J :0 (19)

I where r. e the modal damping ratios.

I 3. Modeling of the Self-Sensing Active Members

3 One of the major issues of this study is the ability of smart structure technology to

improve the performance of the slewing frame. As mentioned in section 2, two members

of the frame have piezoceramic material bonded to the surface, thereby enabling them to be

used sensors or actuators. To model these active members, expressions for voltage output

and applied moment of the piezoceramics must be developed.

I The actuator equation is derived for a pair of piezoceramics bonded to a flat beam, as

3 shown in Figure 3. Assuming that the beam is in pure bending, the expression for the

moment applied by the piezoceramics is [Dosch, et al, (1992)]:

I M(I,t) = K.v.(C)[h(2 - h() - - 2,)] (20)

I where ^ and 2 are the location of the ends of the piezoceramic pair. The heaviside step

function defines the region of thi- .- n covered by the piezoceramics. The applied voltage

is denoted v. (t) and the actuator astant, K,, is expressed in terms of the geometric and

materia properties of the beam and camic

K. = bd31Y,(to + Q,) (21)

i The thickness of the piezoceramic and the strut are denoted t., and t,, respectively. The

width of the strut is labeled b, and Y, is Young's modulus. The dielectric constant of the

ceramic is denoted d51.

9



The cpssion for the virmal work poduced. by the pair of psmc c is [Fanson1 (1987)]:

I =8a (22)

I where L is the length of the beami.

Substituting for z(2,t) as defined in equation (1), the previous expression can be

rewritten as

The superscript i indicates that the expression is for the #4 piezoceramic pair, and the prime

notation signifies differentiation with respect to 2. Integration of the preceding equation

yields

6Wý = .Y tp~y xY() (24)

The virtual work done by all four piezocerani pairs is

6WP.= K. (ty T 4 '()4t (25)

Equation (25) assumes that all of the piezoceramics have the same actuator constant and

applied voltage. The expression can be transformed into global coordinates by substituting

* 84(t) = C.B•3q(t) (26)

into the equation. This leads to

4
W, = K. .(t){I,(!)-'IF,(A)jCB.8q(. ) (27)

I The non-conservatve work term associated with the active strut can now be written as

S•10



3 Q,. lic n .,(k )- W,(A,)fv)

= F,.K v.(t)

A similar expression is derved for the voltage output of dte actve member, v,(O). The

ii
Iv,. (t) = Kr(29)

where

UK = db,. Volt/ad
FC.

the trm y, is the distance from the neutral axis of the strut to the middle of the ceramic and

3 c; is the constant strain capacitance of the material

3 Performing an analysis similar to the one for the actuator equation results in the

following expression for the piezoceramic voltage of the active strut
vp v,(t) =K.[Bqt

U = XV,~()iI

= KF q{t) (30)

4. Dynamics of the Self-Sening Actuator

I The idea of using a single piezoceramic to simultaneously sense and actuate was

I previously presented by Dosch, Inman, and Garcia (1992). The importance of this concept

is that the actuator and sensor are perfecdy colocated. Sensor/ actuator colocation is very

i att-active when designing active control schemes for flexible swuctues since it is inherintly

* 11
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U
mor stable than non-colocated control Self-sensing wtuation is a by the use

of a bridge circuit connected to the piezocermic active member. Use of this circuit

3 introduc dynamics into the feedback loop that can have an effect on the open and closed

properties of the sysem.

The circuit studied in this work was originally presented by Dosch, et al (1992) as a

means of simultaneously sensing strain and applying a force. Other versions of this circuit

are able to sense strain rate, but for this work, only the strain sensor is examined (Figure

4). The sensor voltage is the difference between v, (t) and v2(), which are the voltages at the

two terminals shown in Figure 4. In the Laplace domain, the sensor voltage is

)Sj RCCs VO 1+ R(C • y.(s) (31)

3 Likewise, the voltage applied to the piezoceramic is the difference between v.(t) and

V, (t):

.(S)-V(S) - RCs .V(S)+ RCs V(S)
1+ R(C' + 1 " + R(C;, +T)$ s )

I ++Rcs V8 (s)- RC;s v,(S)I I+R(C,'+G q1+ R(C,'+ C2 '

m The result of equation (31) can be substituted into the previous expression. After

Smanipulation, the actuator voltage can be written

. (S)= 1+RC4s VC(s)-Va(s) (33)
1+R(C3+C.s

A block diagram between the control voltage, vXt), and the self-sensing output v*(t), can be

3 obtained from the results of the previous two sections (Figure 5). In Figure 5, the

following notation is used:

* 12
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I
F-I I + RC~j

* ( ,) E+(c RcS c,)s,€)=1 + R(Ce +c,)•

F.3s)-R- ('1C- +32S a + ,R'-C

E 1 + R(c; +c,),[l+R(cq +C4 ,]

The block diagram of the self-sensing actuator illustrates the dynamics associated with

using the circuit in a feedback loop. The actuator voltage across the piezoceamics is a

combination of the input voltage and a feedback proportional to the sensor signal.

Similarly, the output of the circuit is a combination of the piezocemmic voltage and an

input feedthrough term. Nominally, the circuit parameters are chosen such that C = C•

and C2 = C.. In this situation, the feedthrough term is identically zero and the sensor output

is simply a high-passed filtered version of the piezoceramic voltage. The corner frequency

of the high-pass filter depends on the constant strain capacitance of the strut and the choice

of C2. The actuator dynamics have the form of a lag filter, thus attenuating the high

frequency content of the control signal. Even in the nominal case, the sensor output

I feedback term is still present in the open loop dynamics.

Of course, the circuit parameters are not always tuned perfectly to one another. In the

original work by Dosch, et al (1992), this situation is referred to as a 'mistuned' self-

sensing actuator. Not tuning the parameters correctly can have a significant effect on the

I transfer function between the control voltage and the sensor output (Anderson, Hagood,

and Goodcliffe (1992)]. Studying the problems associated with misuning the circuit is a

direction for future research. A simple consequence of capacitor mismatch is illustrated in

the simulations later on in Section 7 of this paper.

I
•i 13

'I



I
5. The Slewing Frame Testbed

A ft= slewed by adc motor is presented as a testbed for experiments in the control

I of slewing flexible structures. Due to its configuration, the action of rotating the frame

3 about an axis causes both bending and torsional vibrations. The frame consists of

individual elements of thin-walled circular aluminum tubing. Each member is 0.635 cm in

diameter and has a wall thickness of 0.124 cm. The elements are joined at octagonal nodes

that are also made of aluminum. Each member is pinned and bolted into the node to

Seliminate looseness in the joints. The frame is mounted onto the larger steel shaft by

bolting two of the nodes into aluminum clamps.

The slewing actuator is an Electro-Craft 670 dc motor. The shaft of the motor is

coupled to a steel shaft with a diameter of 0.635 cm, which in turn is connected to another

steel shaft of diameter 1.270 cm. The smaller shaft can easily be removed so that gears can

be placed between the motor and the structure. A tachometer housed inside the motor

measures angular rate, and a potentiometer attached to the bottom of the larger steel shaft

produces a signal proportional to angular position. The whole slewing rig is attached to a

I large concrete block that serves as ground. Figure 6 is a diagram of the slewing frame

*- testbed.

Two of the passive elements of the frame have been replaced by active elements. The

active members are flat aluminum bars that have four strips of piezoceramic material

bonded to each side (see Figure 3). The piezoceramics are model G-l 195 from Piezo

Electric Products and have dimensions 6.350 cm x 1.905 cm x 0.025 cm. Each ceramic is

Sglued to the member with Duro Depend H adhesive. All of the piezoceramics are

electrically coupled to one another to create one sensor/ actuator. On both active members,

i the aluminum beam is used as a ground for the underside of all the ceramics.

I
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U
iaThe p rs for both the dc motor and die actve members are listed in Table 1.

Table 1: Puameters for the slwmg acwazr and active members.

md~ 190 e- 12 m/Volt K, 0.11298 (N-m)lAmp

b 0.0254 m K6, 0.11298 V/rad/sec
y, 2.86 e-3 m I. 3.53e-4 kg-m2

C$ 0.275 e-6 F L. 0.002 H

3.175 e-3 m R. 0.63 OhmsI, 2.54 e-4 m Y, 6.3 el0 N/m2

6. Open Loop Modling Results

To validate the open loop model, analytical results are compared to experimentally

obtained frequency response functions. Magnitude plots of the slewing frame are

determined by inputting a random signal of bandwidth 20 Hz into the motor and

measuring the tachometer output and sensor voltage of active member 2. A Tektronix

2630 Fourier Analyzer performs the data acquisition and frequency analysis.

-- Results of the open loop tests and the corresponding analytical transfer functions are

shown in Figure 7. For the analytical results, the first 20 modes of the FEM model are

used and a proportional damping ratio of 0.001 is assumed. In the case of the tachometer

output, the model is very accurate over the frequency range considered. The damping

exhibited in the mode at approximately 7.1 Hz is due to the dry friction in the motor and

bearings. This phenomenon only occurs in the region around the zero position of the

1 frame. During a maneuver, this mode is lightly damped since the motor is free from the

dry friction. The model of the transfer function between the motor and active member 2

shows adequate fidelity over approximately the first 10 Hz. Subsequent error is attributed

to the sensitivity of the expression for the sensor voltage (equation 30) to the position of the

four actuators along the active member. Also, the model for the sensor voltage of the

piezoelectrics is only an approximation, since it assumes that the piezoelectrics are in pure

115I
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bending and neglects effects such as the bonding layer. In spite of this, the model

aintains the correct pole-zero pattern over the 0 to 20 Hz frequency range. Comparing

the analytical to the experimental transfer functions illustrates that any control law must

account for the uncertainties that exist in the model

The transfer function between the motor and the tachometer reveals that the first

torsional mode at 4 Hz is not very prominent. This has ramifications in the control system

design, since this indicates a pole-zero cancellation at that frequency. Pole-zero cancellation

I does not occur between the motor and the active member, though, leading to a large peak

on the magnitude plot at 4 Hz (see Figure 7b). These features can be related to the

controllability and observability measures of the motor, tachometer, and active member

[Inman and Leo (1992)]. Their effect on the control of the slewing frame is presented in

the next section.I
7. Control Simulations

U The objective of this study is to develop control schemes for the slewing frame. The

primary action of the frame is a rotation about its slewing axis, which, due to the flexibility

and low inherent damping of the structure, induces vibrations that do not decay for a

considerable amount of time. Using the model developed in this paper, control laws are

designed that simultaneously slew the franm and suppress the vibrations. The control

I- simulations are divided into two sections. The first simulation involves designing a

controller that provides satisfactory step response. Important performance criteria include

minimizing the settling time and overshoot of the frame's hub position, as well as the

structural vibrations induced during the maneuver. A second section involves control

design for a tracking maneuver. Here, it is important to keep the ento between the input

I command and the hub position within a prescribed tolerance while simultaneously

suppressing the residual vibrations.

I 16



I
Control Design for a Step Input

First consider the case of designing a controller to obtain satisfactory step response of

I the frame's hub position. The input command to the motor is constant at 0.742 volts,

which corresponds to a 15" slewing maneuver. Three designs are studied. The first is a

simple Proportional-Derivative controller using the slewing actuator and angular rate and

position feedback. The second control law has a non-colocated control loop using active

member 2 in addition to the PD compensator. The final control scheme involves two

I separate colocated controllers, one loop closed around the motor and the other loop closed

around active member 2. All designs are performed using the nominal model shown in

the previous section. Robustness is checked by closing the control loops around models

that have slightly higher and lower natural frequencies [see Table 2]. While not an

exhaustive search, this check is an indicator to how well the controllers can tolerate

I uncertainty. As pointed out in the previous section, errors in the model do exist and must

be accounted for in the control design.

Table 2: First three nanrial frequencies (in Hz) for the nominal model, the open loop experiment,
and the perturbed models used for stability analysis during the simulations.I

Nominal Exp. Model 1 Model 2
1st torsional 4.21 3.97 4.33 4.09
1st bending 7.17 7.12 7.33 7.00
2nd torsional 13.90 14.24 14.30 13.53

I Proportional-Derivative Control

I The procedure for designing this type of controller is rather straightforward, since both

angular rate and position measurements are available. The form for the control law is

= - 8(t)] - K,6(t) (34)

where 6(t) and 6(r) are the outputs of the potentiometer and tachometer, respectively. The

reference voltage, 6,,, is set to 0.742 volts, a command for a 15" slew. After iterating on
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the controller gains, values of K, = 2.5 and K, - 40 produce a satisfactory step response

without exceeding the voltage limits on the motor (see Figure 8). The overshoot of the hub

position is less than 5 % and the settling time is approximately 4 seconds.

The importance of examining this control design lies in its inability to suppress the

torsional motion of the frame. This results in substantial residual vibrations after the end of

the slewing maneuver, as illustrated by the output of active member 2 in Figure 8. This

problem is due to the pole-zero cancellation that occurs in the transfer function between the

motor and the tachometer/potentiometer outputs (the potentiometer output is essentially the

integral of the transfer function shown in Figure 7). As listed in Table 3, the PD

compensator successively adds damping to the first bending mode, but leaves the torsional

modes lighdy damped. The ability to suppress the bending motion of the frame is due to

the large interaction between the motor and the stucture, as evidenced in the open loop

magnitude plots (Figure 7).

Proportional-Derivative Compensation with Supplemenary Non-Colocared Control

A natural extension of simple PD control is to use an active member as a non-colocated

sensor for a supplementary feedback loop. The function of the supplementary control is to

suppress the torsional motion of the frame while the PD compensator provides a

satisfactory step response. Using the active member in this manner leads to the design of a

control law for a non-colocated sensor and actuator. Similar actuator/ sensor arrangements

have been used in the past (Juang, er al, (1986), for example], but with different design

strategies and on structures that did not exhibit torsional vibrations.

SControl law development is performed using a method called Generalized Structural

Filtering (GSF). A detailed treatment of the GSF method is presented in Wie and Byun

(1989). In its basic form, Generalized Structural Filtering is a classical control approach to

active vibration suppression in that frequency domain and root locus techniques are used to

1 1
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I
find a suitable compensator. The design for the slewing frame is accomplished in the

I following manner. First, the model is used to find the wansfer function between the motor

input and the output of active member 2, with the PD control loop closed. Closing the first

loop is important since it greatly effects the dynamics of the structure. The first stage of the

design involves introducing a fourth order Butterworth Lowpass Filter into the forward

loop with a corner fmquency of 20 Hz. This attenuates the high frequency content of the

I signal but causes substantial phase lag in the target region, 0 to 20 Hz. Following the

procedure outlined in Wie and Byun (1989), a lead filter is then placed in the compensaor

to recover phase around the frequency of the first torsional mode (4 Hz). Finally,

parameters of a non-minimnm phase second order filter are chosen to actively damp the

first torsional mode. The final form for the control law is

e() 2.5 - 0(t) - v,,(t)] - 406(t) (35)

I where v,f(t) is the output of the GSF compensator. In the Laplace domain, it takes the

form

. (S S15.8t j42.1 I(0 V, 2 (S) (36)

48.+ 116 ±16 j48.1 + 14:±: j37.5 4+I V~,(s) =(48.1± jll6 +lx Sl2~ +(1 4± S l(+

A root locus plot for the GSF desiga is shown in Figure 9a. From the roots locus, a gain

of 0.025 is chosen since it increases the damping in the first torsional mode. An important

feature of the root locus is that the damping in the first bending mode is being decreased as

a result of the supplementary control loop. This is an unattractive feature of this method.

I The tine responses of the slewing frame with supplementary control are shown in Figure

8. The rigid body response has slightly greater overshoot due to the added control effort in

the motor. The motor voltages with and without supplementary control are similar,

although a higher frequency component is added to the input due to the GSF cmpensator
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I
(Figure 8b). The marked difference with this control scheme is the suppression of the

residual vibrations in the frame. With the supplementary control, the structiual vibrations

are negligible at the end of the slewing maneuver, which contrasts sharply with the case

when there is only PD compensation (Figure 8c). The addition of the non-colocated GSF

controller enables the suppression of the first torsional mode of the frame.

The robustness of tiis control strategy is checked by closing the loop around the

perturbed models shown in Table 2. For both cases, an instability in the first torsional

5 mode results. This is illustrated in Figure 8d, where it shows that the frame is still

vibrating almost forty seconds after the slewing maneuver is over. This vibration is due to

the mode at 4 Hz being marginally stable. Checking the robustness in this manner

indicates that the non-colocated control design is sensitive to the uncertainties that are

bound to exist in the model. Attempts at redesigning the control law in light of these

I results could be made, but a more practical approach to achieving performance and

robustness specifications is detailed in the next section.

Proportional-Derivarive Compensation with Supplementary Colocared Control

The final design for satisfactory step response uses active member 2 as both a sensor

and an actuator to provide vibration suppression. As in the previous case, a PD

compensator is used to slew the frame, with the colocated control loop acting as

supplementary feedback. The control law chosen for the active member is Positive

Position Feedback. Much like the GSF method, Positive Position Feedback (PPF)

consists of second order filters tuned to suppress specific structural modes. For a detailed

treatment of the design procedure, the reader is refered to Fanson and Caughey (1987).

PPF control is chosen since it is easy to design and is robust with respect to unmodeled

i dynamics [Goh and Caughey (1985)]. It has also been experimentally implemented in

I



previous work (Fanson and Caughey (1987), Dosch, er al, (1992)]. In the Laplace

domain, the form of the PPF controller is

2vS) = 4 22oS (37)

ll The parameters for the filter design are found using root locus techniques (see Figure 9b).

5 The design procedure for PPF control is more straightforward than for the GSF method

and requires much less iteration. In this case, the first torsional mode is targeted for

5 suppression. An important feature of the control law is that the spillover into the high

frequency modes of the system is almost negligible due to the controller roll-off. This

contrasts with the GSF design, which decreases the damping in the first bending mode.

After performing the analysis, the. following control law is obtained

e,()= 2.4[0,. - 0(t)] - 406(t)I ,2(S,) 2 65(29)2 +(92Vp,2(S) (38)
+s + 2(0.08)(29)s +(29)2

I
The first part of equation (38) is simply the PD compensator designed in the previous

section, the second part is the PPF controller using active member 2 as a colocated sensor/

actuator. A simulated slewing maneuver is shown in Figure 10. The hub position

response and motor voltage are essentially the same with and without PPF control. This is

Sto be expected since the feedback loop is independent of the motor. With the

supplementary control loop, the structu~ral vibrations in the frame are suppressed by the

time the slewing maneuver is over (Figure 10c). The damping out of the torsion is not as

fast as with the GSF controller, but this is due to the fact that the motor is a much more

I powerful actuator. During the design, the achievable damping was limited by the peak

value of the active memoir control effort, which is approximately 100 volts (Figure 10d).
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Two robustness tests are performed on this control scheme. The first check is to close

the feedback loops around the perturbed models listed in Table 2. For both cases, the

3 system remains stable. This represents a major advantage over the non-colocated control,

which results in an unstable system in the presence of model error. A second robustness

Scheck is performed by intentionally 'mistuning' the self-sensing actuator capacitor values by

±5%, ±10%, and ±"2-0%. Again the system maintains stability, but performance is

adversely affected. The damping achieved by the PPF design is sensitive to the mistning

of the self-sensing actuator circuit The settling time of the stuctural vibrations is increased

from 4 seconds to slightly over 10 seconds if the capacitor values are off by ±10 % (Figure

lOc). This mistuning also increases the control effort of the active member (Figure lOd).

Sensitivity to capacitor mismatch could represent an obstacle to implementation of the

circuit in future experiments.

Table 3: Comparison of the results for the three separate simulations.

Control Law PD PD + GSF PD + PPF

1st torsional 0.2 8.2 4.8
1st bending 6.1 4.8 6.1

2nd torsional 0.4 0.5 0.4
Rigid Body Response

settling time (seconds) 4 seconds 4 seconds 4 seconds
overshoot (degrees) 0.7 1.1 0.4

Stability Robustnessl Yes No yes2

1 Defined as being stable with the pertbe models listed in Table 2.
2 Capacitor mismatch causes loss of damping in torsional mode, but not instability.

Discussion of the Simudauion Results

These simulations indicate the inability of a motor control law to suppress the torsional

motion of the slewing frame. This is a result of a pole-zero cancellation that occurs

I between the motor input and the angular rate and position sensors. Physically, this means

that the interaction between the input torque and the torsional modes is small. These

modes can be suppressed, though, by integrating actuators and sensors into the structure.
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I
In one control law, the active member is used solely as a sensor in a non-colocated

feedback loop. This achieves the desired vibration suppression, but is difficult to design

5 and does not maintain stability in the presence of model error. Another approach is to use

the active member in a colocated feedback loop, taking advantage of the piezoelectrics

5 ability to actuate. This leads to a rather simple design that has negligible spillover into the

higher modes. It is also more robust with respect to model uncertainty. Its only drawback

is a sensitivity to capacitor mismatch in the self-sensing circuit. This 'mistuning' does not

5 lead to instability, but only a decrease in damping of the torsional mode. The results of

these simulations are consistent with initial experiments on the slewing frame (Leo and

I Inman (1992)].

Control Design for a Tracking Maneuver

The concept of using two independent control laws to achieve performance is now

extended to a more complicated slewing maneuver. Instead of a simple step input, the

U command into the slewing actuator now consists of a series of three 5" ramp maneuvers

followed by a smooth return to the zero position (Figure 11). It is assumed that the hub

position is at an initial angle of -5". It is desired to keep the error between the hub position

and the command as small as possible throughout the maneuver, and always less than O.5

after the first ramp input

The control law is a combination of PID compensation using the dc motor as the

actuator and a PPF filter using active member 2 as a colocated sensor/ actuator. For

convenience and to show the flexibility of the control law design, the parameters for the

I PPF filter are chosen to be the same as found in the previous section. Integral

i ompensation is added to the motor controller to limit the tracking error. After iterating on

the gain values, the following control is used in the simulation:

I
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e.') = q 84,- 8 t)] -756(t)- 10f q(t) ( 9V,()=2 65(29)2 TV39)S

s + 2(0.08X29)s + (29) )

The position gain is higher than for the step input case to speed up the system response.

Adding the integral control action improves the tracking ability of the system, and the

I derivative component reduces overshoot. Increasing K, too much, though, can slow the

system down and degrade performance. The PPF filter parameters have not been changed

S from the step input design. The ability of the hub position to track the reference input is

I shown in Figure 11. Except for the initial slew, the hub error is kept to less than 0.5"

throughout the maneuver (Figure 12a). Because of the initial condition on the hub position,

I the structure is excited at the outset of the slew. Without the colocated control loop,

structural vibrations occur and do not decay until after 50 seconds. As expected, the

I torsional vibrations are suppressed by the PPF control loop and the active member output

is much smoother (Figure 12c). Combining the PID compensator with a colocated control

law has produces satisfactory tracking and reduces the structural vibrations considerably.

I 8. Conclusions and Future Work

Integrating active members into complicated slewing structures is an effective means of

suppressing vibrations during and after maneuvers. This is the result of a modeling and

simulation study of a slewing frame, The distinctive feature of the slewing frame is that

3 there exists torsional modes that cannot be controlled using feedback loops consisting of

the slewing actuator and angular rate and position sensors. Vibration suppression can be

achieved by using active members as sensors in non-colocated feedback loops, but this

yields a difficult design that is sensitive to model error. A superior approach is to use the

I active members in colocated feedback loops with robust control laws such as Positive

Position Feedback. When used in conjunction with a simple Proportional-Derivative

I24
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3 compensawr, this design produces satisfactory slewing maneuvers and simultaneously

suppresses the stuctural vibrations.

I Future work on this topic includes experimentally implementng active control schemes

3 and studying the effects of actuator and sen dynamics. The problem of controlling the

slewing frame is well suited to the study of M]MO control systems. How the closed loop

3 performance is affected by the dynamics of the motor and self-sensing actuators is

currently being investigated.

I
U
I
I
I
I
I
I
I
I
I
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I
3 Appendix

The equations of motion for the slewing element shown in Figure I are given by equation

(2). They are expressed in element coordinates and form the basis for the model assembly

described in Section 2. The element mass and stiffness mattices are

1 "40 0 0 0 0 0 70 0 0 0 0 0

156 0 0 0 22L. 0 54 0 0 0 -13L,

156 0 -22L. 0 0 0 54 0 3L. 1
1 o o o o 701" 0 0

A. A.
4L. 0 0 0 -13L. 0 -3LV 0

4Le 0 13L4 0 0 0 -3L,•i=pAA. 140U,=P.LM4 0 0 0 0
420 156 0 0 0 -22L,

I 0 156 0 22L, 0

A 4e, 0

----------------- ------------------------------Ix- 1 A~ ZI 811 8 X2 Y2  Z2 02 ey2 19,2J

I
The last line of the above matrix indicates the element coordinate the node refers to. Any

lumped masses at the nodes are added to the diagonal elements of the mass matrix. A

mass at node i is added to the (1,1), (2,2), and (3,3) elements, a mass at node j is added to

the (7,7), (8,8) and (9,9) elements.

II
whereII
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L.
12-J . 0 0 0 0 i

12 M, 0 06J

I 0 0

4E1

I-EA. 0 0 0 0 0

0 V. 0 0 0 I.4

0 0 -jEl 0 -FJ 0
GI0 o 0 0 0IE 

-0 2J 0

0 6FE1 0 0 2E1L

* 4.L 0 0 0 0 0

.L 0 0 0 6E.L

V.~ t 0

GJ 0 0

4E1
syy -n 0

The rigid body inetia. about the slewing axis is:

I !.= PAL.L[r.,+i r~cosL*. +,,L~cosey] +mte. +mr + Lcmsy)
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I
The inumaio vecor for the slewing element is:

0

i..~(3A" (L.cs,+ 10,.)
0

0
3(7L.cosy+10r.)

0*0
-L(3L.cOS7 + 5r.)

The following notation is used for the appendix:I
p density of the element
A, cross-sectional area of the elementI L. element length
I, polar moment of inertia of the cross-section
4!, moments of inertia
GJ torsional stiffness of the cross-section
m,, m. lumped masses at nodes i and j, respectely
r. distance from z axis to node i

angle between x and I axes.

I
I
I
I
I
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Figure Capdons

3 Figure L (a) A flexible element slewing about an axis. The dotted line represents the rigid

body and the solid line is the elastic deformation. (b) A single element slewing about an

I axis. The total rotation at the root is a combination of rigid body and elastic motion.

3Figure 2: Model of a dc motor connected through gears to a slewing structure.

Figure 3: (a) Piezoceramic pair bonded to a flat beam. (b) Piezoceramic active member.

Figure 4: Self-sensing actuator as presented by Dosch, Inman, and Garcia (1992).

Figure 5: Block diagram of the self-sensing actuator with the inclusion of the circuit

dynamics.

I Figure 6: Slewing frame testbed showing the location of the active members, angular rate

and position sensors, and the dc motor.

Figure 7: Open loop magnitude plots of the slewing frame from 0 to 20 Hz. The

experimental response (dotted) exhibits damping in the 7.1 Hz mode due to dry friction in

the motor. (a) Tachometer/ Motor input. (b) Sensor output of active member 2/ Motor

input.

Figure 8: Simulated step responses for the slewing framne with PD control (dotted) and

PD with supplementary GSF feedback (solid). (a) Hub position. (b) Motor control

voltage. (c) Output of active member 1. (d) Output of member 2 showing instability due

to model error.

Figure 9: Root locus plots for the GSF design (a) and the PPF design (b). The PPF

controller does not exhibit the spillover into the higher modes that occurs in the GSF

Scompensation.
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I
Figure 10: Simulated time responses for PD control with supplementary PPF feedback.

(a) Hub position. (b) Motor control voltage. (c) Sensor output of active member 1. (d)

3 Active member 2 control voltage. The capacitor mismatch in the self-sensing circuit

causes a loss of damping in the torsional mode (dotted line in (c) and (d)).

Figure 11: Input command (dotted) and hub position (solid) for the tracking maneuver.

U Figure 12: Simulated time responses for a tracking maneuver without supplementary

3 feedback (solid) and with supplementary feedback (dotted). (a) Hub position error. (b)

Motor control voltage. (c) Sensor output of active member 1. (d) Active member 2

control effort.
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Abstract suppression to a degree of accuracy or performa.nc: which is
This paper. discusses modal analysis of structures with not easily achieved with a passive stuctucre. 1in :he intual
repeated eigenvalues and eige.¶ve-ors. Equations are s:;,4S of design a Finite Element Model (FEN11 's acecuate.
derived for systems with and wit-hout drnivtng point T*:C FEM allows the eng-ineer to address su.-i issues as
infomacon. Ini the case where cirving point reiues am octimal actuator and sensor placement, size ind -aowe-Uavailai:e. an e;;envalue of milctq can or v be ic.;.re'.ents of the actuiators. and 3pen andi z:isea' loop
identuifed using q inputs. The derivacon -I s venfied on a perormance comparisons. Ty~pically the EM will

model ialoperformed using the Sigensystem Reaiization z.ve a ge.nemi ~e of the structr:wes mode shaces far :east at
Alcror'.tk: (EMA). M4odal parameters are identified !ow frequenciesi. The FEM will less accurately' recT--c: input
accurately using ERA but the resulting model contains e=ors / output tranisfer function parameters such as the zeros and tmc
in the pnase of the input/ output transfer funtcrons. Nlodal phas versus Twuqiincy response. In addition stanr.-d FE.M
tests and mec Modal Assurance C.ntena are used to distinguish mend makeiC no predicdons of the damping in --ie system.
between -eecared and distinct modes of a stnart antenna. Theneed~or n acurae moel s dicussd i reltion-10 design a stable high authority controller the =oce! must

probem o acve vbraion upuessin. ccutrateLY relect the dynamics of suct~ure. Thie LMcan be
probem o acte viratin supresion.;=-roved by incorporating exeimna test data -node;INomnenclature undatung) o r an identified model can be denved based

e:nelv on experiental tests. The lU=e approach -.s aken in
W mass matri dhis paper using two methods. The first method is 2 model is
C viscous damping matrix based on modal analysis techniques and the second is

K sti~hes marixidentified using the Eigensystem Realization Algorithm
Y displacement vector (R).Ur~ OA

f input vector. in eq.(3)
IF cransformnaaon matrix in eq. (4) The purpose of modal analysis is to obtain the structure's
k diagonal matrix of eigenvaiues modal parameters: the cigenvalues (damping and natural

rc, e igenvector frequency) and the eigeiivectoi5 (mode shapes). The modal
0 matrix of mode shapes (columnts) parameters can be used to construct a modal model A model

(or ril mode shape based on modal analysis has two advantages over other
*u' Ai mode shape~s jib modalI partiipation faco model identification techniques. The modal model retains a
A, exoerimental residue, jib ouq j* inu. d md simple physical correpondence between the identified model

A modal smar space state matrix and the structure which is lost in many state space based
B mod-%Isate spc inumti identification methods. Another advantage is that an initial
Co modalI state space observation marxassumption of the of the structure's dynamics allows the
D modal state space direct transmission matrix modal parameters to be identified from a relatively small

S Laplace variable -ira number experimental transfer function measurements. In
T u'ansformatioa matri modal analysis it is assumed that the strucmres dynamics are
0 zeo matrix re-presented by:

or nUmspose My(1) K00 complex conjugate

L Pl4TRODUCTIOIN where M, C and K are symmetric and positive se~ideftnte
matrices. y is vector of displacements and u is a vecto ofIAn accurate model of an active structwur is fundamental to inputs. It is also assumed that the structure is time invariant.

the understanding of the problem of control structure temode are distinct, and a driving point transfer function
interaction. An active, or smart structure. contains a numb~er (clocatedi sensor and actuator) is available. There ame
Of integrated sensors and accuazo that allow the stuwet methods available to be used on structures which do not

Pelffm rceu~nPoitin. uhtig. lacnen. o viraton onfor uoteeasugm pda tions: Ewaions (21 d~ eiscseth
perfrm reclonpoinng sihtig. lacmen. o viratonronform of thsen moalssump fiatons awns (2discursystemsth

M.Cand K matrices. In this paper the issues of model
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I idendficion wbf there ame .'re=td e•gmoalues and when xA+ Bu

the a driving point ta.nsfer f•nction is not available art Y -C.% Du

addressed. where:

in modal analysis of a passive strucore. structural inputs are
obaned •m a h- or a shaker. and structural outputs Ar B= -
are obtained by arUacing acc-clerometers or strai gauges. 0J L J :.3 (5)

An acUve structure has actuators and sensors as an integral
part of the stuure. Here the excitanon points needed for and D is the direct tansmission matx. me objec.ve of the
modal analysis am the actuators of the 3acve s5mcta.• and modal modeling is to identify the A. B, C0 and D matrxes n
Ssuuctural outputs are the built in sensors. In an active equation (8). The columns Of Co (also the rows of B) are the
strucure such as the smart artenna which uses piezoeiclmic mode shapes and a designated c, whe--e r can 2ake values
matrls for both the sensors and :he actuators (this st•-c-ure from I to 2n (n is the number of DOF retained in the model).
is discussed later in the paper;. any given piezoelect•ic sensor The columns of B (and the rows of CO) are the modal
and actuator element can be used as an acnuat or as a sensor par-ctpanon vectors and are designated bf where i can take
during modal analysm values from I to m (m 'S the number of r--easurement

locations. Note that in the idenried model te tmbeo- of
It is weUl known that when te etgenvalues are dis€nc: and coiumns of 8 is not necessarily equal to Zn but "ia :--sred
the s-ucture is of the form 1-ven ny equanon (i) then die depend on the number of experimental mneasurement
modal parameters can be identifed from a single column of locations. The it element of the $m row of ( is desxýgrare.i
the reCePance ma=x. This is eq.uivalent to saying :hat the Ar and is called the modal parmcipanon fac:or. TalLing :he
modal Paramet.ers can be obtinezed .rom e~xpenmenim :m-nsfer Laplace Transform of (7) and subsa-,nag (8) resu• Un •an
functions between a single incut and m sensor out uts. When input/output relationship involving the cep. ce =i,.x a:

the eigenvalues am not distinc: or when a coilocared :ansfer
function is not available then in order to identify the Y(S)=C.(sl-A)-4BU(s) DU(s) (9)
stracture, multiple inputs ae required. Each of these cases is
discussed in the following sec-ons. Y(s) = (s)L'(s) (10)

Modeling When Eigenvalues Are Distinct

Equaton () can be put into 2 sy= tcstate space -orma: 0-- ------- D (11)1 L 0 :,(s$-,k* '0'.

Gq -Hq=f (2) It follows from equation (10) that the -anser. funcion

between the ith output and the im input is:

q -[7], °"-i I-! ,,[] 3 +Y QL, H aJ - 0 ,-(S) *A ,

There exists a transformation matix IF orthogonal with The numerators of (12) may have both real and ;imainaa-i

respect to G which will diagona.Li the system in (-2,: parts and in the normal mode assumption (proportional
damping) the numerators will be purely imaginary. The

~~'' '~ L A*] input is measured to be:

SA =-dig(.,). A' = diag0;L) (4) Y,(s) A 'A

The transformation matix 'I is partitioned in the fonlowing U,(S= -.. ,- +Xý (
* mankner.

"The modal partcipation factors ow are idetified by equating

apin A~ (5) the residues of the experimental transfer function (which =r
LOA,, ,, Jthe numerators of equation (13)) to the residues of the

assumed model's transfer function (which are the numertors

Where the columns of 0 are the mode shape vectors of the of equation (121). Only a single column of the receptance
system given in (1) and the rows of 40 are the modal matrix (s) needs to be measured to provide sufficient
participation vectos. equations to determine all m-n modal participation factors

*Oir. This is equivalent to saying that only a single input is
Substitutng the transformation q = 'x into equation (2) needed in obtaining the required transfer fundons. Equatig
results in the diagonal equation: the numerators of equation (12) with the numerators of

equation (13) and using the input j-= results in:

[A*=[].r *,*k=,A* i=ltom rulton (14)

Equation (6) can be cast in the familiar state space
formulatio:
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which descrbes wa equanoas and m- unknowns. Them is 2 system with disane: eigevalues a and C and repeued
closed form soluion to the equaions duscibed by (14). Th"e
equation involving the driving poinjizo is solved and Opr Ci3

is found. The modl pId=CpSo scmr * is then the i a RA + oB
"seed" for solving the miing equao.3A single input 10 is the mij euirmn to identiy th ra b4t d- d3 d.
strucux ony if j the sactune is or0 o ipnug b b. 1 TI, d f, f (f)the mod-' patiiatio g s Amoda p t2 1 e.,

tecot bam= =o (4]. If te srcueis not conzollablefrom $then more than a single inu will be required to An orthogonal snul ,s mmsftv aChoen
ideo the n mtif O ( to bec

The elementu of the modal sume space model's (equasioas (7) r1 0 0 01
and (8)) 8 and C mamces ate detrmined by equanon (14). T =00 Coss -sine 0O
The A mamix is simply a diagonal ma=n of the dendfled 0 sine cosO 0 1 (19)
Iigenval-ues. The elements of :he D matix d we de4 =0mi 0 0 tj
by setting the residual ter- in equanon (13) equal to the
residuai term in equation (I:',: di= - ki. For many t Applying the =nsformation o t = Trq to equation (18) ;t is
only the diagorad tenm s Will oe non-eri. Each diagonal found that TT a I . TAT = A and&
term relan to a collocated trnsfer functon which may have
an equal tumber of poles and =-.os in the mAe=T. TcB

Driving Point NoA Aailablee~J.e. 2 m e. fm
When die driving point is not available equation (14) will csffe n-.ln* M-
reduce to (m-l).-n equamons and m-a unknowns-: "*!i mu: =$*I M51 3 Maen m-IM 09)

O,*.=,Ai, iol to im 1 = r tl no (15)
A tNote that the first and fourth rows of j are :he same 3s the

A onsfer fincuon firom an addiconal i t j•, and a Single fir and fourth rows of S. These ae the low associated widh
output i mW yield an addioonor• a equations: the distnct m•ode. Note also that any single el---mt of :he

0.= Aa i• i* -f r=l- n (16) repeated mode shapes can be artinuly se: to zero by
judim.ous choice of the uansformaton T. For instance zhe

Equaton (15) together with equaton (16) yield mn equations elee•nt in the second row dt coilum of will be equal to
and mr: unknowns. zero if 9 is chosen such that 0 -n (e,/f, ). We willEigenvalues Reputed When the Eigeovectors Linearly this prpet to obtain an extra equation in solving flort:e

3Independent participation factors.

Hemrwesho haues waHer we examine the nunsfer funidon from a stuctue with

multiplicity of 2 then a miniu of 2 inputs are required to repeated modes. Assume the firt p modes am repeared with
identify the moda paripion tem #i,. a multiplicity of 2 and the remaining modes are distdnct. The

o-ansfer functon betwe inputj and output i is then:

It is important to keep in mind that when e eigenvalues
distinct the rows of the 8 mamx (the mode shapes) wte 2.s i ______

uniquely determined from experimental data. When the U,() W s+,
eigenvalues are repeated. there are an infite number of
mode shape solutions associated with the repeated +" + d4
eigenvalue. and uch of thew solutions is twisted to another + + +
solution by an othogonal similarity fwad oa. Thus fortO S + t S +A:,

the system given by equations (7) and (S) there exists an The subscript preceding; $, (either a I at a Z) is used toorthogonal similarity uafotmad T such tt differentiate between modes associated with a repeated

eigenvalue r. Equating the mumerawr trms in equaton (:0)
x=Trq Tt ATaA -mT"B (17) with the numerator terms in the experimental ttnsfer

Note that the A matrix (the maruix of eipnvalues) is

imffe==d by the transformntion while certan rows of the B •$and,,,ing $I nt,,oreslm tste (21)
rows of 0 which at associated with ditic eigenvahm am

Onafected by the uansiraTion ant u not itd which yieads 2smp unknowns and m-p equanous. An
with reied eip' ay be t This result is additiona p(m-l) equations can be obtained by using 1
ben shown by a simple example. Gre is the fo~owing second petjs:

|,*,,*,+ie 2 ,rS ',A. i intom. iep r'=Imp (p2)

I
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which together with equanclo (21.) yield 2mp.-p equations. any one SISO a max.'urnu of 5 modes ar iderntfed 2 of
Anotd p equatons am obtained by artbitrly w which are distinct and 3 of which ar repe=e

1*111*-=1* at. at$,, s* ("-3) Modal .odel

A verd-Icatzon oi the modal analysis echnique is pe".'ar-e•ed
Equations (21). (2) and (23) yield the 2 m-p equations using the benchmark system as a refrL-ence. Using the
ncessary to solve for the elements 4i" using ex tal residuals .rom the simulated :ra a cuwuons. "he modaL
-insfer functions. Note that in ordr to obtain a determmed par--c:paton vectors am corre-cty I!denuiled using =..a-ofs
set of equations it is necessar w uwe 2 inpum The procedure •1)-(22). In solving the equations no assumptions are made
descibed by equations (21). (22) and (23) can be extended o about which modes are distinct and which =odes are
show that when an eigenvalue is repeated with a multplicity repeated. In the solution. the 2 modes shaves assoc:''md with
of q, then a mnimum of q input locations are n r m a repeated mode form a lineary independent pxr. rhe 2
obtain a determined set of equacons 7rovided that the ystem solved mode shames assocatecd •ith a distinct =ode are a
is contolable from the chosen q inputs. If the system is not non-z-ero modeshave. which is the correct mooesname. arc a
controilable from the chosen q inputs then additionaL input modeshace consisting of a vector of ze.os. wn:c- :n%
locatons or locaton will be needed wo identfy the srucrur_ discame n te model.

Solving equations (21). (2) and (232) will also reveal whe her ERA .ode.
a mode is repented or disunc. If it found from the solution of
(Zl).t2) and (23') that the Ah mode shape is a vector of ze•os. After ve._fy•ng the =odaL analysis method on the . --'•
iLe. li, = 0. then this mode is distinc: and the assumption of system, the Eigensystem Realization Algorithm -- AS Ls
a repeated mode is incourect. used :o obtain a Z input 3 output suatespace mod-e. Tie

objective is to determine woether ERA can acc-rate-v
Driving PoinrtNor AvOilable idenrify the modal parameters of a system which e-z'Ibtts
When the driving point is not avaijabie. then the inputj=f3 close-y spaced and nearly repeated eigenvaiues. The
will provide (m-l)p equations: advantage of ER_-% over the modal analysis methtod :s t-ha :t

uses •he time data directly to form the model. I: is not
. . .tom ia=5 r-i top (Z'.) necessary to perform any type of identification to obtmin ,e

SISO tr-ansfer functions.
An additional (m-2)p equations are obtained from a second
input location jy-: Whether identifying the beachmark system or the actual

swuct.ure. the method of acquinng the ERA mace- is as

, , f i-tM, J[05 i-07 rzop(:., follows. The system is excited by a random sipai input inmto

The remaining necessary equations can be obtained by the firt actuator and the desired sensor measure-ents

measuring three transfer functions from a third inputi=& obtained. This process continues for all of the necessary
acuator/ sensor relationships. After &ll of the tests are

= i-I to 3. i compiete. an FFT algorithm uses the time dam to calculate
the impulse response of the system. The results are input
into an E,.RA program which forms the uaze-space =ode.; of

i T i s 5 rl top (.6) the system. The algorithms used for this procedure areS ~ava~iable in the SOCI Toolbox (S].

Equations (24). (25) and (26) together with equation (23)

describe 2m-p equations and 2m-p unknowns. In term-s of the natural frequencies and damping ratios. ERA
is able to accurately identify all but one of the parameters.

3. ISSUES LN IDENTIICATION AND CONTROL From the singular values of the Hankel matix. the orde of
the stam-space model is chosen to be 16. as it should be.

The Benchmark System Except for the fact that ERA did not identify the 3.3397 Hz
mode, the identified aatuL frequency and damping ractos

The benchmark system is used for comparison of show good agreement with the actual values [Table 11. Of
identification schemes on a known reference (Figure 1). course, it must be remembered that the time dam for this
Each of the eight rigid spokes is connected by a pin joint and analysis is noise-fre, a charcteristic that won't be present in
a torsional spring to the rigid hub. Each of the spokes is an experiment.
connected at the end opposite to the pin to its neighboring

spoke by a linear spring (a small angle assumption is made Table 1. Ac.ial and ERA identfled namralfrequencaes and
for rotation about the pin). The torsional springs represent damping ranosfor d/e benchmark system.
the stiffness of the antenna rib and the linear springs Actual Identfied
represent the coupling between the ribs. When the coupling ca (Hz) ; (%) to (Hz) ý (%)
is small the ribs act independently, when the coupling is high 1.5804 1.0070 1.5800 12006
repeated or nearly repeated modes are found. Each of the 1.9935 0.7984 1.9443 0.5381
torsional springs is given a slightly different value to 1.9973 0.7968 1.9965 0.8072
represent the manufacturing tolerane of the rib stiffness. 2.7501 0.5787 2.0085 0.8102
Simulad transfer functions are meastzed between the inputs 2.7504 0.5787 2.7391 0.5312
at spokes 1 and 2 and the outputs at spokes 1. 2 and 3. From 3.3375 0.4769 2.7400 0.5522

3.3397 0.4766 3.3366 0.5700

3.5539 0.478 3.5544 0.3630

I
• 1 1421

I



Although ERA identified most of the natural frequencies and The results of the MAC tests for the -No se..arae data set
damping ratios correctly, the resulting transfer functions are listed in Table 3. For the first two modes the
contain error in both the -,agnitude and the phase. Figure 2 elgenvectors that are excited from input I are defintelv
compares the actual SISO tansfer funcMon between sensor I orthogonal to those that result from an W=-tZanon at 'ut 4
and actuator I and the one obtained from the identified Conversely, the fifth mode is the same irngauwless of the
model The magnitude matches over most of :he frequency location of the input. therefore the corraponcung igenvalue
range. but a largp error exists in the phase. If the identified is distinct. For the remaining two modes. :he results am W
model is the basis for a contol system design. this error in as clear. By examining the mode shapes -tat result &am the
the phase is a major conc•n. A vibration suppression two separate excitations, it is demTnanetd Lhat mode : is
scheme based on the identified model would be distinct and the third mode is repeated. This conclusion is
fundamentally different than one designed from the actual supported by the results of the Modal Ass=-,nce rest.
transfer functions.

Table 3. T;h .WAC comparison for the two :e•araat Modal
The Smart Antenna :ests. The Aigher the value, the larger :m correi.non

The structure under examination is an eight ribbed smartbeeen Me modes from Me two iput.

antenna, as shown in Figure 3. At the clamped end of 5 of Inpu2
the .`bs. a single pnece of pieaocer=amc is bonded :o each side I 3 5
of the beam. Each pi•zoc---',c has dimensions 0.0152 x 6.4 L 0.02

x. 13 = and is separated into -wo eiec.-cally isoiared strips. 2•. 0.16o
the Larger am is used for ac-tiation,he smaller area is for t 0.
sensing (Piezo Prduc matanal G11. Contol laws are 4
implemented using an Op-, 3 digitai controller and damt

acquisition is performed on a Tektronix 1620 Fourier The difference btrween repeated and dis•.c: =odes --- be
Analyzer. The sensor for the modal "ests is an optical probe illustrated by examining the mode shapes zat .- sult -.oim the
from P.hitec. two separate inputs. Figure 4a is the --Uih mode ihave

resulting from an input at rib 1. and Figure -.b is the same
To idenify which natural .'.-reuenices of the am:enna are mode exc:ted by an input at rib 2. To -',e deg-,e of
rereated. two separate modai :esus ure :erorine" For the experimental accuracv. :he shave of the =ac" .s inde-eendent
first modal analysis, the ;iezoce:am-c on rib 1 is used as an of the location of the input, which- means that the
exc:tadon source. and the dis-,iacezent at the dD of each rib corresponding eigenvalue is distinct. Th.s is zonsistent with
is measured with the optical -robe. The -atural -rcquencies. the MAC value being 0.94 for these cwo =odes (Table 31.
damping ratios, and residues arn then calculated using the The next pan of Figure " contains the moc.es :r-at result "m

an excitation at the second atural frequencv. From Figures
STAR Modal Analysis package (Table 21. A second modal 4c and 4d, it's clear that the mode shaoes ta.-.ge de-.eding
test is zerformed in the same -anner. exceot that :.he a•cuator on the location of the input This ind.icates that the

located on rib 2 provides the -•xctanon. corresponding eigenvalue is repeated. wdich again is
consistent with the MAC result.

Table 2. Natural frequenc.e;s (in H:. of tre five modal
peaks. as calcuattedfrom the .-Ao inputs. The procedures for identifying the smart an.--na with modal

Mode Input I Input 2 analysis or ERA are similar but theme is one imnornant
S9.66 9.71 difference. Both ar based on random inpu/ random output
2 10.41 10.4" time domain responses between all of the necessary actuator
3 11.61 11.63 and sensor locations. For the modal analysis approach. the
4 1 :._fS 12..58 number of measurements is affected by the availability of
5 17.-3 17.25 driving point residues. Once the individual input/ oumtut

responses are obtained, the transfer funcdonss are identified
The results of the individual tests are used to determine using a Recursive Least Squares propam. The transfer
which of the antenna's eigenvalues ate repeated and which functions are expanded into the pole-zero form of equation
are distinct From any one S1SO tansfer function, only five (13) and the identification of the antenna is completed by the
modal peaks an well defined. Thus. each test yields modal approach derived in section 1. If ERA is used. no SISO
parameters for five modes. Since there am eight ribs in the identification is necessary. Once the time dam between all of
antenna, there are eight eigenvalues with associated the inputs and outputs is acquired. the irpulse responses are
eigenvectors in the first modal cluster. Since only five modal obtained by use of an inverse FFT. The btA algorithm can
peaks are visible on any one SISO transfer function. two of then be used to find the state.space modeL Although atfirst
the modes are distinct and three are remeated. To find the it seems cumbersome to identify SISO transfer functions in
repeated modes, the eigenvectors that correspond to the same order to do the modal analysis. this might tara out to be an
modal peaks from the two separate transfer functions are advantage because the individual transfer functions are
compared in terms of the Modal Assurance Criterion (MAC) forced to be accurate before the identification is performed.
[2]. If the MAC is very close to zero, this indicates that the
eigenvectors are linearly independent and the corresponding Although a full experimental identification and control of the
eigenvalue is repeated. If the MAC is close to one, then the smart antenna has not been performed, preliminary results
two eigenvectors differ only by a scalar. and the eigenvalue illustrate the importance of obtaining an accurate MIMO
could be distdict. This second test is not definitive since an model. Previous studies show that simple SISO models can
eigenvalue could have a MAC value of one and still be be used in conjunction with collocated control laws to obtain

repeated. an increase in structural damping (6]. Urnfortunately, the
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incregse ia damping wciived is limited due to the e(istce [3) nman, DJ.. ,-Modal Analysis For Ausmsy ric Systemsclosely sp••d and repeated modes. La die future. i is Proceedings of the Is: Internmizo"w. Modal Analysisl to e both clocated ind non-collocated control Confiere.c,' pp. 705-70.1 1982
laws go obmin a larger inavase in the closed loop damping.
For diese types of con.oi schemes. it is very ilmport to (4] Hughes. P.C.. Skelton, R.E. "ControllabiJity and
have an a m As discussed in section 2. it might Observability of Linear MaM-x-Secohd.Order Systems.be diffcul to Achieve te e6acysat v using a time JouWnal of APplied Mechanics., Vo.47, pp. 415-420.1980.domain technuque such as ERA. The next step in our
modeling study is 0 appy te modal analysis approach [5] Juan;, I.-N.. Hora, L.G. Phum. M.. "Svstemdeveloped in sectio I to an experimental identificanon of ObserverlCon•,oler ldena ,azfon Toolbox. Users Gwde."
die smart a NASA Langley Research Center, Hampton, VA. Dec.. '991.I A CONCLUSIONS (6"] Dosch. zJ., Lea. Di.. Inman. DJ.. "Comparison ofAmoal" Vibraton Control Schemes For a Smart Ancte.-.aj ist

A~~ moa a sis technique that idenailes M20 modeL$ of Confrea'nce on Decision and Consul Dec,. 1992.
structures that contain repeated or nearly repeated
eigenvalues was presented. The memod is an extension ofS ithe well established procedure that applies if the eigenvalues
of the system ar distnct. For a system containing repeated
cigenvaLues with multipLictr q. it :s necessary to have q
inputs for the modal tests. Equamons -e.e denved for :be
systems what the driving point residues are available as well3 as for systems with no driving point ,=formatnon.

Comparisons were made between "he modal analysis
approach and the Eigensystem Reaiizaon Algortthm. The
modal analysis technique is based on the availability of SISO
transfer functions of the necessary input/ output relauonships.
Accurate SISO models are easily obtained with time domain
identficanon techniques such as Recursive Least Squares.
These transfer functions are expanded and the resulting
residues form the basis for the modal analysis. In cona=st. Figure 1. Benchmlark system for comparin eng ic..-.,ERA uses the rime domain data direcd.ly and re:urns the methods. The eight degree of freedom lumped pari.eter
modal parame-e-s as well as state-space model. A study ,ystem displays much of the dynwanc response charac:e.-4..-C.
conducted on a simnpie model. indicated that ERA ident.fied found in theflezble antenna.the natural frequencies and dainving ratios well. but haddifficulty matching both the magnitude and phase of the
actuator/ sensor utansfer func-ons.
Preliminary experlmental results on identificanon and conrol 1,.

of a smart antenna were also presented. Two modal tests
were performed and the rerpeated modes of the sructure w•e,

* identified using the Modal Assurance Cniterion. The 4importance of understanding die nature of the repeated modes ra-,I
was discussed in relation to designing active vibration .I..
schemies for the smart antenna.
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Figuwe 2. Comparison be."ween an acnuai (doized) and ERA
(solid) idenafied :ra mscru n for die enchmark system.
The model agrees well in :e.•ms of the magnitude, but the
phase contains signufican: error.

m (d)

Figum 4. A coapouon of th made shaes of :he antenna
fromMO~sepwautInputs The ift mode is &armc:. since neshape is independent of the inw lcazion ta and b). For :he

i second mode. te shApe is dqeme nt on the !ocation of :-e
input (c and d), h•rbe it is a repemtd mode.

I Figwv 3. The smart antenn ts scire. Location and
design of the piezoceramics are shaow

I
I

U (a)

(b)
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COMPARISON OF VIBRATION CONTROL SCHEMES
FOR A SMART ANTEINNA

eleff-ey I. Dosc," Donald I. Leot Daniel J. Taman
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qaio..Y ' 14.60 Vwvrgma Polyntecuc c tasnnaa ad Unverriry
l cksburl. VA 2401

ST of the flexible antenna teszbed is provided with a discs=son of
ABSTRACT Lhe algorithm used to design dhe contollers. Results of

experimental implementaton is then presented for the different
STwo active vibration control scremes. Posiuve ?,osition contnol schemes. The final secton summanzs the inmporant

Feedback (PPF) and Acuve VibraCon Absorber kAVAi. are conclusiOns and provides diecon for 5stwe research.
eperimnentally implemented with an eight nbbed smart
atenna. Mounted on jive of the c-ight ribs are zodocated 2. SECOND ORDER CONTROLL.ERS
piezocrcamic sensor/ actuator pairs c-=rtung a muiaz-input
multi-ourput conrol structre. A SISO pole zero mocei of one In this secuon a gene-al mathematical tamework is inroducd
oj the antenna ribs is identued. The design parameters cr the from which the stability of PPF and AVA am compared- The
AVA and PPF controlers are numencaily opumnzed from dynamics of a flexible stucture coupled to a second order
sznulaions of the SISO model. The design parameters fcund conroiler can be expressed as.
ii te SISO mulations are then implemented in the MLMO
muc.=e. Theomedcal stabiLity bourds for collocated and non- st ure,
collocated control for both the PPF and AVA contrci schemes IA..A~qA S'Bu (1)
arealso presented. y, -= HSq. y. -= HSq, y. = H.S,4 (Z)

* ~1. INTRODUCTION

controller

Vibraton suppression of a flexible antenna is compiicamd by I4. -.. A A&@ .*A r (3)
existence of closely spaced modes and repeated natural y. = H.q.. y. = H.q. y. -f, (4)
fequencies. A further difficulty is that the configuration of where:
suc stuctures makes the use of standard actators such as 3(n x n) matrix of eigenvecwrs
proof masse and torque wheels infeasible. These problems A,(nxn)p onaldunping mti a oCw
can be overcome by applying smart sructure technology
combined with control laws that exploit the benefits of sensor/ r x r)coneoile damping mamx dia(2Cjci)
acmator collocann. Distuibuted sen and actuator such as A, (n x n) srucure stiffness; marxdixag(a 2)
piezoceramic material are well suited to this problem. (1]. A,(rxr) conroller stffness matrix diag(acj 2)
They can be readily integrated into the stucture without q(n x I) mstce modal coordinate
..prficaly increasing the weight or compromising sicrtural
Icegpity. Another important fea er of the smart strcuture q*(rxl) coutollercodinate

approach is that the sensor and actuator can be virtually H (mxr), H.(mxr), H,.(mxr) co aolier output marix
collocated with one another. In this sitaon. control laws H (s. xn), H.(s. xn), H,(s, x n) suctreouputmamx
such as positve Positon Feedback (PPP) (21 and Active B(n x m) stucture input manix
Vibration Absorbers (AVA) [3] can be implemented in a Y. (S x)y.(x.x),y,(s, xl) system output
sraighforward manne. Design of these contollers can be
accomplished with only crude models of input/ output .(rx x) contoleeioutect
relatonship& They ane also inherently robust with respect to (' X l)€OUel input vector
anceri or =modelled dynamics. These atibutes are very u(m x 1) system input vector
imporum for this problem. since obtaining an accurat model nustnr u'e degrees of freedom, mrnumber of actuators.
ofa ftexb mut isdifficult. rnimber of control filters, s• z, sd a number of acceleration.

velocity amd displacement sensors
The intent of this pqape is to compare vibration suppremson
schemes on a fehible antemm tha contains piezoceaznmic The maties A. and Arwe postve a and
acsum and sns. ThMie co o as stdied are PPF and A. ae ch•m to be posdve su m The inpt mamx B
AVA. Important covsdan is gven to the fact that the is defined by the ocadon of the acmma on the 11,ucun and
expeime tml bed exhbibs the problem of closely spaced the mecnt manices H. H,. and Hd we defned by the

aUd repated aa queneias. Te paper is organized in the t of t he accearon. velocity d di•pWement ors.
owia mumr. F'u. the ftarnewok for the PPF and AVA In geng. the lotion Of the acM will aot be the tme as

cantol is oudined and tfe two mchniques are compared. the mWead=m of ft s3ens (am coglamed Control). The
Tkeoreical stabilty cOntions am also derived in trns of the fleible systm ad ca=Uler ae copled by,
deign vwabks awd smiural panamaw. Next. a descrip•nm



W

(. (7-G,7,)÷.,GJ.T-.(Y -.Gj.) (5) and subsiuting equation (13) into the PPF closed loop
= . + B,. + , .Y. (6) sufess tDav ix. equation (11). IsJu n the symmemc mamx.

whe r 6e S, 5 =, d.. e h U a ionuputr p inm a ti e ad K . -
G. 0,. 0G,= dre nnsmission matces directly coupling
the sUMiMs's semom to the acmate. Combining equaons
(1)-(6) results in die strucnc plus conaoiler Closed loop A symmetimc matrix W is posiave •eMidae±te i
system,

(,) •D1 w.- wtZO n. (,isapseudouivemse,
IK 4 , D ,4 . X~ q . - 0 7) r W . W .]

where: Whd Were 7= ... " rw)

q. [q .- s''-.s -Sa]H- S ,I t follows frm the above them and ,.-m equations (Il',.-

(13). that the matrices in equation (10) are postuveD ='\'5BG S' -$'.3H.] semiteimte when
L -B.H.$ .A.

I " .\, -~~S'azz.:., z 0. (

-B.H.; A. t) Controller deign for AVA and PPF involves choosin;
L controller parametes A,. and ,%. andc input maces 3,,.

The closed loop system. ecuation (7), is stable when the 3.. 8 and output gain mantices H1., H., H. for be's
matrices W. D, and X, are syrmem ndosainv ideiiii. performance. In the AVA coattoller the ý.irect W'ansmission

I Byeti alp sn yr n d• po sitve:e mati~x is fixed by eq uation (9). To enur s' bility of th AVA
By iposng he ainand ymmtryconcmns: nd PPF controller, the symmevy c~ons-,=--t equations (10)

G. HMý, . G,- H." B. (9) must be imposed. Tne PPF controler .-nu~st n addition iLso
G, H B.G. H%•B, G =H,.\'B,,to meet the inequality constraint (16) to ensure stability. It .-nust

and (S tab ")r -A R hS iwa. Y. or d (10) be emph ized giv t e n •v '~ ty bun s n• ot me e
the effects of unmodl~led ses and acmator dynamics whic.h
are always present. Also the symmetry constraint equation

the macrcas M, D, and •'e must be symmetrc positive (10) involves eigenvec:or inafmation which• in a strucre is
semidefmini and thus closed loo stable [3]. luang (31 Calls ofte.n not accurately measured. rhus leadin to additional loss
controller of this form AVA and ame characterzed by infinte of control taisnsmes in this am-coilocated case.
gain magn when constr-a.int equations (9) and (10) are
applied. Colloc=ted Conw'ol

Here it its shown that with collocatd feedback it is nct
PPF is simila to. AVA exet that in PPF only position necesar to impose the symmetry consa=int equation (10).
mea~surements are fed back an dw is no dr . .mbIo Thus the collocated contr'oller %rill be mmt robust wo a poor

= Gr. Combining equ~ations W-0) and setn Od, G,- C,, model. It is shown here using displacement feedback as an
H=, H,, Hm, and H,, eahe=w• tou a z=r matrix rauls In the example •tha the closed Iomp equadois for both AVA and PPF
dlosed Iomp PPF equation: are symmetrnzable (a transtformation to dynamically snimiar

system exists) when collocated feedback is used. If •Lhe
M,•I, + q,4. * X',q, -0 1t) actutoran displacement senso am collctdte

,wh=, q, 'b" q]''J. (SB'-P , Hs., C
.[A, 0 Azzs _S,. *1 (12 where m is a sala. Combining equadow (1)-(6) and (17) andI D,=. A. .. using only displacement measuements (H, H., H,. and H;,

{ i: "ame zeta) results in the combined structmz and controller
With W PPF an ineqtlity comia is placed on the contMller equations for collocated displacement feedback:

,•. lplin for subili. Han= we wiU sbow diat this consuaizi is a
fu,..i of dir e swetuirltm ifns matrx. Limpoing the 14 +A.4 +A jI aprH., - o:PrG, PI (18)

i i: SYMMAe•y oo tntint qaci (10) on the displacement1. A..÷A..= °q(9
14. + A-. +.

F (.. ... to ..... d olelecat ofeedmoadeae sen isoa ac t duica

I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ol cwithie ofs thsfa V n r hrceie yifnt oumssocinateis ncoloczdatatored utn cnase.

peeit mits show that with coinoc avd fedacs ith islock



Applying the post e s.midefnte test ven by• (15). equanon
b_1 (1) Wi be pomsive semz 2Mne it

[b, I A, -CZ.H.TAO a0.X .-xM) = ,.bu (M)

Lbp • Equaton (25) can be simplified somewbhat by arbirarnly ri-ng
b . each elemen in the controller input p -matrx to be equal
b • to the square of the corresponding contmiL filter natural

frekency, for eample (5 filters and 3 npms):

"The terms in the i* column vector b, a Ib bb., r ['o., 0 o0

•dog • • ccamwltbm he L-, t --a . There wil be m' such .3

caumn vectors (m is the number of =(uatxr). The ,t)noer oi 8,(vxm)= 0 (J)., "
wuma in the vector bi will be equai toh e number oi control 1 0 (j).1. i
&t associated with the i'% ac•mtor. Similary the -,nm|oller 0 0 o )!
.owput gU maLrix will be in block diagonal torm: LS i'j

.h- S Substiumung a matrix of the form of (26) into (7-4 results -a the
;H(mxr)=1  h inequality canstraint on che utput pgin maznix:

L *.ILA, -aprH -to"b.h.i [ . ... ,- ; I•'-e>_0(.

where the i0 row vector hi is associated with the i= actuator. where.

With collocated feedback and inpun/ output matrces ui the
above mentioned block diagonal form. there is a

asfomnnaon matrix T that will symmetrze equatons (7) and H (mxm)
(8). This n-ansformaton is given by: "..

q, - Tv. (22)

and the symbol 1: h, indicates a sum of the elements in the
where, vector h1 given in equation (21).

b b.L bb bb.Th AVA and PPF control designs (with displacement
r:. 4= ._ ... _L _... L ... (23 •feedback) am compared on a snge depee of freedom (SDOF)

8 4g • A k, h. )undamped system [fipre 11. As can be seen from the root
"locus, the addidon of the woe on the real axis give the AVA

Because the system has been shown to be symmetizable. the controll iut infinite gain margin. The asymptotc behavior of
symme•ry consr:ins given in equation (10) do not need to be the rot locam in die multiple degme of htedom (MDF) as
imposed to ensure stability in the collocazed case. For the would be simila to SDOF cue due to die interlacing of the
AVA contmiler. as long as dirc transmission equations (9)- poles and zeros in coilocamed feedback. Observing the
(10) we sarisfW the closed lop system will have iifinite gain controller magnude verus frequency response it can be seen
marg that the AVA controller does notrlol off at higher requencies.

Thus in a real system the AVAgpin is limited by the higher
For collocaind PPF conuoL an inequal y constraint on the gain frequency dynamics. This is an impomnz difference between
is still required to ensure stability. Substituting the the AVA and PPF controllm. The P" control gain is limited
auda•• ion eqam (22) and (23) ino the closed loop PPF by the stiffn of the struc•uire (equation (27)) while in the

equaton (16) trnnsfoms the stiffness matrix (12) to the AVA controller the pin is limited by higher frequency
symmeic Matr dynamic, whkb ame often ,m _odeiled in the control design.

rA L vo 3. CuR O^=TTh ON*g K, t vD (24)
*6 ... The "sd for the AVA ad'P&F conuofllems is a smart

" ""flexible antenna structum (Figure 21. Multi-?nput-Multi-
where, Output (•rM. O) control cap1bility'is provided by the five

A- co" .ca"n d piezoelecic smmnsao actuaor pairs which are

V . V'Iara.,..(S' H tB,).,•IHS P banded to dve of•theeghtaum m udbs. MWteepaonof•the inclusion of piFezelocc eledmes, the MU atMe is
simil, M(butsal* in =scale) to d .- swt antenm a which is

1617



PPF COAUOMW A VA Conwaul

X•,*UU a S.-., j .- elka!10%. ,^X

Cloaed J.ep? HMo diapm -v I -

Commiter .upst ulde s(db)
w~frequnecy . 2  ~

Root lWA

tWhep,:A.-u (al. Aqm$.-A, A 0. ,. :r~. S73==H,=8a,= 1. Mis;'.'. OWdfa AVAG 1 .p

Figure 1: Comparimn oPPF AVA for the sngle degree of freedom cose displacemu feedback.

complete NIMO identification. A constained opumi,,uon

par: of the CSI Evolutionary Model located at NASA Langley routine is used to design the controller parameters Hj.\,• and

[4]. Each collocated sens/ actuator is manufactred from a AD.. The opimizaton minimizes the cost function:
singe sheet of pietoelecmc mariol (.0152 x 6.4 x 2.3 cm.
Piezoelectric Productsmaterial GI195). Toe electrodesurface fJly +wjQr(29)
of die piezocemmic is separated into two elecwicaiy isolated

an s1 CF'pu 21. Onu elecuode m nawes a the actawr and
the second amea seu-em n a seinsor. The control laws are' where y() is the anenna response to a unit impulse and a(t) is

implemented digiaily with a ampling tate of 1000 z. using a the contol effort. Values for dte weight w ame ajusted to

Systolic Sysuems' OPda 3 SI contoller and response data achieve the best made off between minimizing the impulse
is collected using a Tekuonix 2630 Fourier Analyzer response and minimiing the conto effoit.
Crektix Inc.. Campbell CA).

In the conutol design each acteator is capable of having

An open loop SISO pole zero model is identifed using a multiple filters associated with it. i.e., in the matrices
recursive laice strctur (e.3) idena , cation propam which A.(P x r) and A..(rx r), r is not ecesaily one. Using the

is t of do the Teku siftwUU pckage. In fts, SLSO mode PPF control, the op=unu a pefomed on the SISO model
bodi[t the disutence input and s ou tu an e at rIb I. The both using one comlfilter and auing two control films. It is
model incedes frequemcies 'om 0 w 20 Hz and a cer of found that no -siiniftcant reduction in the cost function is
five closely speod modes is identfied between 9.6 and 17 Hz. obtained using multiple filters. This can be attributed to the
Not inclded in this modeudie a m qem nI fueuencies, fac iet the five mod= we closely spaced ad the mod does
the second cluster of modes between 30 and 40 Hz and not include higher frequency modeL TUefam only a singfle
s=bsequem higiw modt..'Ir e. U cluste wcayepds t ech flte per asmusr is uwed in the finl d•ip. Table I I=s the
individu rb vibat in in &S mode and the s d cutmer. optimized perameurs for the AVA ad PWf controller and the
core aponb to aech rib vibnaug it s3 second mode. Th optmizudon weight w.
repeated mtuwa ftnquieu can only be ideWtfd with a



FlexbIe rib

2 .

4W: I

i1 4

Figure 2. Schematc of :he exermental smnart anunna.
Figure 3: Eemenal open (dotted) and cmlosed Loop (soiid)

The opumirnnon of the control ;aramnets is based on the nb 1 tranferfuncvionsfor SISO PPF on the marw antenna
51O transfer funcuon. When the MIMO control is
unpiemented experimentally, control parameters found from A second SISO controller of the AVA vype is implemented
die nb I opumization are used on all of the controlled ribs. using collocated control on rib 1. For his design, a high
Thus the matrices H& and B., Aand AIt are diagonal frequency instbiti at r30 H~zoccswhen e
mamces respecively of the form diag(k, h, .... di 1(b, b. J.. gain is set to the optimal value. The primary reason for the
diag(o.•: o ... ) and diag(2• '.2 • ... ) where I,. b,. oz ins•bailicy is that the digital implementaton of the controller
Zr=w,. are the control parrmeters from SISO rib I causes a phase Ios aut higher fequertc:es. Since the
opanu~non, rmagnitude of the AVA tilter does not roll-off. it is sensnve to

unmodeiled dynamics. The system is stabilized by seing the

Table : Optimized conzrol param.eterr based on rib I 35O 9= to aSPWtximateyI had the optimal vauc.
mnodj (An. =o.= i, =. 2- w•. and w a weight).

PPoAVA s. The damping ratios for the c!osed-loop systems are obtained by
P curv'e fiuing the frequency responses using the STAR Modal

I , 7 0 -2  118.9 Analysis package (Stctun Neimement, Systems. Milipitus.
, i 0.56 0.499 CA). Except for the mode as 17 Hz. the *PF controller

2, l j • inc-eas the damping more m the AVA flter. In the lowest
two modes, the PPF controller increes the damping almost

4. CLOSED LOOP TEST RESULTS twice as much. This result is due to the fact that the pain for
the AVA design is not set to its optmal value because of the
300 H2 insxabi~y. Thus. the constant pin magnitude at high

Thee different actve control schemes are implemented on the ftequencie imits the performance of uhe AVA conrwoller.
nurt antenna to compare their peafrmance. All of ft control
strategies have the same objecive: to increase damping in the able 2: Claud loop malfrequencm and damint ratios
modes contained in the 9 to 18 H fredncy range. Me first fr . ad crol.re
design involves a single Positive Position Feedback filte for bSSo AVA and PPF corests. o naree and sensor areboth at r Ib. Ooe.'i looo resmt are showi, For cormoarison.
sensing and actuating on rib 1. The second design also uses
collocated control on rib 1, but the compensawr is an Active L - VA PPF

Vibraton Absorber. Rudaiy, a multi-uiput-multi-OutPut PPF- C() ( _ _ 0

corlis implemented aon rbs and . 961 0.49 9.61 0.61 9.67 13.
10.32 0.37 10.31 0.84 10.32 1. 4

Single-Input-Single-Output Control Z1.6 01 11.1 0.5 11.5 0.7f
Using the parameters obtained ftm the optmizaton algorithm 12.5 0.13 12.53 t0.33 12.-55 0.44
[fhown in Table I. a single PPF controller is implemented on 16.97 0.51 17.00 0.84 1702 0.73the onocatd enad acma pai~r loa on rb I. Open and
dosed loop nagmttide plots are shown below in Figu 3. This Multlpl.-Jput.Muldpl-OutpSt
single convoller increses the damping in all of the modes, The SISO results indicae dita an increa in damping is
iustrnted by the rounded peaks of the closed loop magnimde obtned using collocated PPF a AVA controL Unfonrtimaly.

rpone. controlling one rib of the antm does nm adeuately addr=ss
the problem of having repeated u=2l frequecies with
lineadly indp n eigenvec:os Ths difcuky is distrad
by closing dt PPF control loop anod rib I and obtaining a
transfe functi berween ribt I aid 2 (RIp 41. Altdog it
is not evide from the coilocmad 6 1 ltonc thre Ire

I "'



two closely spaced modes in the region of 9.68 1Hz One of tie framework for these second order commlollen *a
modes is well damped and the other is sut lig y damped. ad th umilannes an differn:e of the two Z

discussed. Thwreucal stability bound were also dared. mt
The problem of controlling these repeated natral frequencies PPF control being c~nditiiD0 y stable and AVA cnut be:.
is addressed by implementing a Mulu[-nput-Multi-Output unconditionally stable. An important difference beren.
(MIMO) contmoler. Since PPF does not suffer fr=m the high two types of control was that a PFl filter oils off at hsj.e
frequency instability problem of AVA. it forms the basis for frequencies while the AVA conumiler maintains a Consw
the two-input.two-output design. The PPF controller designed gain. The rol off chfwxri,,ic of PPF is an advantage snr
for rib 1 is implemented using collocated feedback on both ribs makes it less sensitive to unmodeLled dynamics. In r:
I and 2. A closed loop rsfer ft ion between ribs I and 2 sysms the stability of the AVA antroln is determned by
is also shown in Figure 4. Not only do all the modes show an high frequency response of the strucuge. which is often & r
increase in damping, both modes at 9.69 Hz are attenuated. known with any accuray.
Curvefn•ang values are consisenit with this result. With only a
stigle contol loop closed, one of the modes au 9.69 Hz has Both types of control were sccetssfully implemented on .•

only light damping. Emplemernng the CMDO design increases smart antenna. The performance of PPF and AVA we.
* damping in hus mode from 0.8 % Eo 1.11 76 ',able 31. compared on a SISO design using one active rib. Ech des,

consisted of only one second-order controller snce nume.-.

Table 3: C~osed loop nazurai frequeic~es and damping rados simulations indicated that than was no signficans advaniaq-!
I, for SISO and MIMO PPF. Dits:urance ,oc.a=:e at rib I and usmg multiple filtenm Booh types of control were able

sensor is at rib2. increase the damping in the target modes. PPF canc-
SISO PPF I ,L7M40 PPF I produced be=er results an it was wt limited by unmodai

~ 27~ ~ _____dynamics. Unfortunately. the SISO controller did !,,
" 968I 0.28 ]9. t 1 adequately address the problem of repeated natur969.68 .06 ! 9.7• 1.11 frequencies. A MLMO contoller was implemented using ?!9.l9 1 1.16 1 9.75 1.-4 controlonribs 1andt2. NotonlydidnottheMlMOcon-cnt:

11.5J9 0.84 11.58 1 4 imp:rove the overall performnc it was able to add damping
12. " 06.99 a repeated mode at 9.7 Hz.S17 03 0.76 16.99 10.92)
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I ABSTRACT

A procedure based on convex optimization is used to design collocated control laws for a small-scale
model of a flexible antenna. The objective of the active control is to minimize the response of a single rib
to a disturbance occurring at a remote location on the structure. Two separate designs are examined. The
first is standard Linear Quadratic Gaussian (LQG) control, whereby the H2 norm of the transfer matrix is
minimized via the solution of two Riccati equations. Unfortunately, this type of design does not exploit
the favorable attributes of sensor/ actuator collocation, resulting in control laws that are not robust to
model uncertainty and structural variations. An optimization approach to H 2 optimal design is presented
that bounds the phase of the control law, thereby increasing its robustness. The optimization is shown to
be convex, providing important guarantees on solution accuracy and convergence. Control laws designed
with both procedures are experimentally implemented on the antenna testbed. The results illustrate the
advantages of designing H2 optimal controllers that are bounded in phase.

INTRODUCTION

Active control of structures such as flexible ribbed antennae is complicated by the high modal density that

results from mode localization. Mode localization is a function of the coupling between the individual
ribs of the antenna and is very sensitive to structural imperfections and variations [Levine-West and
Salama (1993)]. This phenomenon creates clusters of closely spaced and repeated modes, making the
design of active control systems a more complicated process [Garcia, Dosch, and Inman (1992); Dosch,
Leo, and Inman (1992)]. Since the mode shapes and natural frequencies of the antenna are sensitive to
small structural changes, control law robustness is a priority. Increasing the robustness of the control law
motivates the use of sensors and actuators that are collocated with one another, thereby assuring that all
modes are in phase between the control input and the sensor output. This attribute of collocated control is
exploited by designing Single-Input-Single-Output (SISO) control laws that are bounded in phase.
Bounding the phase of the control law insures robustness to certain structural uncertainties such as
inaccurate characterization of the structural damping.

I Unfortunately, many optimal control techniques do not take advantage of the phase properties that exist
when sensors and actuators are collocated with one another. One common design method is Linear
Quadratic Gaussian (LQG) control, which minimizes the H2 norm of the outputs due to white noise
disturbances [Maciejowski (1989)]. The performance objective specified by LQG control is relevant to
many control problems, since minimizing the H2 norm is equivalent to minimizing the Root Mean Square
response to a white noise disturbance in all inputs [Boyd and Barratt (1991)]. In general, though. LQG
control can exhibit arbitrarily poor stability margins (Doyle (1978)]. Even for the case of collocated
sensors and actuators, LQG synthesis can produce controllers that are sensitive to variations in the natural
frequencies and damping ratios of the structure [Friedman and Bernstein (1993)].

The approach taken in this paper is to frame the LQG problem as a constrained convex optimization. The
constraint on the optimization forces the phase of the SISO control law to lie within certain regions of the
complex plane, essentially bounding the phase of the compensator's transfer function. When used in
conjunction with collocated sensors and actuators, the control law exhibits increased stability robustness.
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The constraint is applied to a convex optimization that minimizes the H2 norm of the closed-loop transfer
matrix. The optimal feedback control law is obtained via the solution of a finite dimensional optimization.
Since the cost function and constraints of the optimization are convex, the global minimum can be found
to any desired degree of accuracy if a feasible solution exists. Techniques for solving such optimal control
problems are outlined in a recent monograph by Boyd and Barratt (1991).

CONSTRAINED LINEAR QUADRATIC GAUSSIAN SYNTESIS

PROBLEM DESCRIPTION

Consider the block diagram of a dynamic system illustrated by Figure 1. The system is assumed to be
linear and time invariant, with a set of exogenous inputs, w(t), and a set of control inputs, u(t). The
regulated outputs are denoted :(t) and the sensor outputs are denoted y(t). All inputs and outputs are
multivariable, with dimensions nw, n,, n., and ny, respectively.

I W J

P(s)
i U Y

Figure 1: Block diagram of a multivariable system, illustrating the feedback connection.

The open loop system is described in the Laplace domain by a set of four transfer matrices, Pm.(s), P-,(s),
P,,,(s), and Py,..(s), where s is the Laplace variable. The subscripts denote the input/ output pair of the
transfer matrix. The set of equations for the open loop dynamics are

Z(s) = P' (s) W(s) + P• (s)U(s)

Y(s) = P.. (s)W(s) + P, ()U(s)

I Z(s), Y(s), W(s), and U(s) are the Laplace transforms of z(t), y(t), w(t), and u(t), respectively. By

substituting the feedback connection

U(s) = K(s)Y(s) (2)

into equation (1), the expression for the closed-loop transfer matrix between z(t) and w(t) is found to be

I + ý,+ ( _ ',]-. . (3).

I The Laplace notation has been dropped for convenience. The expression in brackets is denoted H. and
represents an n, x n. complex matrix. The standard LQG problem is to minimize the H2 norm of the
closed loop transfer matrix by searching over all K that stabilize H. This problem can be solved by the
solution of a Kalman filter problem and a linear quadratic regulator [Maciejowski (1989)]. Our objective
is to constrain the controller to have a phase bounded by -180" and 0O while simultaneously minimizing the
H2 norm of certain closed loop transfer matrices.

To understand the motivation for constraining the phase of K, examine the second order equations of
motion for a flexible structure. Under the assumption of modal damping, the equations of motion can
always be decoupled into

fri(t) + i-(t) + Ar(t) = Ou(t), (4)

where r(t) is the vector of modal coordinates, I is an appropriately sized identity matrix, and 4 is a vector
of modal participation factors. The matrix A is a diagonal with entries 2Cmi, where Ci is the ith modal

I
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damping ratio and oi is the Ith natural frequency. The matrix A is also diagonal, with entries W2. All
modal damping ratios and natural frequencies are assumed to be greater than zero, therefore no rigid body
or marginally stable modes exist. In this paper, we assume that only a single actuator and sensor are
available for feedback control, i.e. ny = n.- 1. If collocated displacement sensors are used for feedback
control, the output equation is

y(t) _ *rr(t) (5)

By combining equations (4) and (5), the transfer function Py,(s) is

" () =I 2(6)I P s)i•.1 s2+2;,a•,s+wj'

where n,. is the number of modal coordinates, r(t), and Oi is the ith entry of 0. Equation (6) can be
separated into real and imaginary parts by substituting s =jjw into the expression for P,.(s). This results in

( 2)i2 L +) (2;~, w)2W

Pw2) U(2) oil (7)

The important feature of equation (7) is that the imaginary part of P,.(jco) is always negative for positive
w . This bounds the phase of the transfer function to be between -180' and 0'. Assume for a moment that
the phase of the controller is also bounded between -180" and 0. An application of the Nyquist stability
criterion reveals that an encirclement of the (1,0) point in the complex plane (remember, we have
assumed positive feedback) is only possible at the point w = 0. At zero frequency, the gain of
P,,(jo)K(jc) is

Py.(jO)K(jO) = K(jO)I •. (8)

Equation (8) must be less than one for stability, and the inverse of its value represents the gain margin of

the system.

A CONVEX OPTIMIZATION APPROACH TO H2 MINIMIZATION

We now turn to the problem of forming the H2 control problem as a convex optimization. As mentioned
before, the standard LQG solution is found by solving two Riccati equations. In order to constrain the
phase of K, we will need to find convex functionals that represent the H2 norm of the closed loop transfer
matrix. To do so, we first examine the expression for H. Referring to equation (3),

H--Pý, +PmK(I-Pj- K)-' Py. (9)

After intro•,zcing the expression

Q Q=K(I-P,.K)-' (10)

into equation (9), the closed loop transfer matrix is written as

H = Pz. + Pz.(2Pj. ( I

Since the system is open loop stable, placing any stable matrix Q into equation (11) will result in a stable
closed-loop. This is the Q (or Youla) parameterization of all stabilizing controllers [Maciejowski (1989)].
Introducing equation (10) into the expression for H transforms the H2 minimization problem into one of

I
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finding a stable Q that minimizes the 2-norm of the closed-loop transfer matrix. As stated, this is an
infinite dimensional optimization problem, since theoretically we must search over every stable Q to find
the minimizer. To transform this into a finite dimensional optimization, the approximation

Q= x (12)

is substituted into equation (11). Once this is done, the expression for the 2-norm of the •nsfer matrix
can be written as (see pg. 271 of Boyd and Barratt (1991)]

I . (xrax + brx +C)i, (13)

where A is a symmetric rositive definite matrix, c is a real scalar constant greater than or equal to zero,

and x = {x1,x 2 ..... , x}) . Equation (13) is quadratic in the design vector x, therefore it is convex. By
introducing the series approximation to Q into the optimization, we have transformed the problem from a
search over an infinite number of stable transfer matrices to one over a finite number of real variables. A
more detailed treatment of this section is found in Boyd and Barran (1991).

BOUNDING THE PHASE OF K(jm): A CONVEX CONSTRAINT

I The previous section established that the H2 norm of the closed-loop transfer matrix is expressed as a
quadratic function of a finite number of real variables. This section will use the same parameterization of
all stabilizing controllers to define another convex function that bounds the phase of the controller, K.
Solving equation (10) for K yields

K=- Q (14)
1 + OY

The matrix notation has been dropped to emphasize that this analysis is only valid for control systems with
one sensor and actuator (n. = n. = 1). Let us introduce the following notation for the real and imaginary
parts of Q and Py.,

Q(jai) = RQ(OW) + jQ(O) )5)

Py. (jo)) = R (w) + jip(w)"(

I Separating equation (14) into real and imaginary parts yields

K RC +(R•4"102)Rp,] + jf IQ-_(R.4.+ 10)Io, (16)

where the o) notation has been dropped. Introducing equation (12) into equation (16), the real and
imaginary parts of Q are written in vector notation as

ar

IQ = XII'a!IQixIai- (17)

Rg = xj)?o =R0z

.!rU
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Upon examining equation (16). it is clear that since the denominator is simply a sum of squared terms, the
sign of the real and imaginary parts of K is determined by the numerator. Substituting the previous

into the numerator of equation (16) produces a quadratic expression in x.

3.~x + Rp~JFZx + j(Ilx IxTEa) (8ROR + lJ :0

Equation (18) reveals that bounding the sig of the real and imaginary parts of the controller is expressed
as a quadratic constraint of the design variables x. For collocated displacement feedback, we want to
bound the phase of K to lie between O" and -180" for all positive aw, which is equivalent to

I lax- lpxrx5Ex 0 for all o) > 0. (19)

EXPERIMENTAL TESTBED

FLEXIBLE ANTENNA MODEL

The convex optimization procedure is used to design active control laws for a small-scale model of a
flexible ribbed antenna. The antenna is modeled after a similar structure that existed on the Phase 0
Evolutionary Model housed at NASA Langley Research Center [Belvin, et at (1990)].

I Flexible rib

a m Perturbed structure created

by placing masses on
ribs 2,4,6. and8.

5 4

39.4 inches 2.52 inches

Figure 2: A schematic of the flexible antenna model illustrating the rib numbering scheme and the placement
iof the acnuators and sensors.

The antenna model consists of eight beam-like ribs that are attached to a plastic hub [Figure 2]. The outer
edges of the ribs are connected by metal wire which has been tensioned to give the antenna a parabolic
shape. Five of the eight ribs have piezoceramic material (Piezoelectric Products material G1195] bonded
near the clamped ends. Each ceramic is divided into two electrically isolated areas, the larger area is
used an actuator and the smaller area is used as a collocated sensor. The sensor signal from each

piezoceramic is conditioned by passing it through an analog low pass filter with an input impedance of 10
M11 and a cornea frequency of 10,000 Hz. Due to the high input impedance, tbe output signal of the filter
is a voltage proportional to the strain in the piezoceramic at frequencies greater than approximately 3 Hz.
Strain is analogous to displacement in terms of its frequency response properties. The voltage into
actuator ceramics is amplified by a Hewlett-Packard amplifier with a range of ± 50 volts.

I
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The rest of the test equipment is as follows. Data acquisition is performed using a Tektronix 2630 FourierI Analyzer. A Kistler accelerometer is placed on rib 2 to measure vibrations. The digital control hardware
consists of dSpece digital signal processing chips. The optimization routines used in the control design is
written in Pro-Madab on a Sun workstation.

CONTROLLER DESIGN

CONTROL OBJECTIVES

The objective of the active control is to reduce the vibrations of rib 2 to a disturbance occurring at a
remote location on the antenna. The disturbance is provided by exciting the antenna with the actuator
located n rib 1. Vibrations of rib 2 ar measured with an accelerometer located at approximately half the
length of the rib. The control system consists of the piezoceramic sensor/ actuator pair on rib 2.

M O MODELING OF THE FLEXIBLE ANTENNA

The first step in the control design is to obtain a model for the flexible antenna. In this paper, a modal
approach is used, whereby the Multi-Input-Multi-Output (MIMO) is synthesized from a set of SISO transfer
functions. The procedure is described in detail in Dosch, Leo, and Inman (1993). A brief overview is
presented here.

First, SISO transfer functions are experimentally determined over the frequency range 5 Hz to 25 Hz. This
frequency band is chosen because it contains the first eight flexible modes of the structure. This group of
modes represents the motion of the antenna caused by each beam vibrating in its first mode. A second
cluster of modes exists between 35 Hz and 45 Hz, but these are ignored in the modeling analysis and
control design. For this paper, three SISO transfer functions are needed to produce a model for control
design: input PZT rib 2/ output PZT rib 2, input PZT rib 2/ output PZT rib 1, and input PZT rib 2/ output
accelerometer rib 2. These three transfer functions are modeled separately by curve fitting the individual
transfer functions. This assures that the SISO models are accurate over the desired frequency range. Nexta
the individual transfer functions are separated into poles and residues and combined into a MIMO model.
The final model is of the form

Rf +Ai + Ar =- ., + O.u

Z2 =Or+(0.085)u (20)

where

0. -=[10.1 2.5 3.8 2.8 4.2 6.4 6.4 7.9]

Ow, =[-1l.1 1.0 -2.6 13.6 0.2 Li -2.8 2.6]1

IZ =[-L2 -0.4 -1.4 -0.8 -0.6 -1.7 -14 -l.7]'xl 30- (21)

A-dig[O.34 0.32 0.45 0.28 0.14 0.40 0.37 0.24]

A=diag[L25 0.62 0.55 0.50 0.48 0.44 0.37 0.35]X×04

The direct transmission terms in equation (20) are necessary since certain transfer functions have the
"same number of poles and zeros in the frequency range 5 - 25 Hz. The assumption of proportionalI-- damping does introduce some error into the model, but greatly simplifies the modeling procedure. A
model for the displacement of rib 2 is obtained by dividing the experimentally obtained transfer functionby s2 and placing it into the modal model shown above.

Equations (20) and (21) represent the model of the nominal structure. The control laws derived in the next
section are also tested on a perturbed model of the antenna. The perturbed configuration is obtained by
placing 15 gram masses on ribs 2, 4, 6, and 8. This has the effect of lowering the natural frequencies.

I!
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Changing the modal parameters and testing the control laws is a measure of the robustness of the design.
A discussion of control law robustness is provided in the section on experimental results.

LINEAR QUADRATIC GAUSSIAN SYNTHESIS

m A first set of control laws is designed using LQG synthesis. Using a previously published procedure, a
trade-off curve for the control law is obtained (Boyd and Barratt (1991)]. The trade-off curve represents a
comparison between the performance achieved versus control effort required. To find the trade-off curve,
the control problem is placed into standard plant form, as illustrated by Figure 3.Ic

actuator
I output

rib)I
disturbance

W1 Nominal W'P 0 z2

mn rib 2 accelerometerM o d el 0 W 'rre p o snoise r~os

Scontrol control
actuators sensors
u No Y

Figure 3: Standard plant for the LQG control design.

SThe weight Wp is included in the open loop to eliminate the direct transmission term and make the plant
strictly proper. This is done to eliminate numerical error that occurs during the solution of the optimal
control problem. The weight is chosen to be

WIP = 2 (1000020 X)2 (2
m= +(2*0.10.1000.2*xr)s÷(1000.2.x)" (22)

The inclusion of Wp into the model does not affect the response in the frequency range 5 - 25 Hz. With
the addition of the weights into the open loop, the model used for the control design is augmented to
20 states.

The trade-off curve represents a comparison of two functionals of the closed-loop transfer matrix. The
performance measure is

=(JH2,I +IH.,If)5. (23)

and the measure of control effort is

I,., -(m.m 2). (24)

IH
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H4 denotes the closed loop transfer function between z. and wj. The trade-off curve is obained by solving
the optimal feedback control problem

ui.(.,*~ .. A~~)i(25)

for A, a (0,1). For each value of A,, an LQG problem is solved via the two Riccai solution to obtain
values of #p, and #,*# By varying AI between 0 and 1. the whole design space is searched. The
resulting trade-off curve is shown in Figure 4. The performance measures are normalized versus the open
loop value of 298. 94 urm.

* 0.9

* ,1
0Js \, iasible regio

0.4

O.3

10.2- nfasble region
-f1

Fi•,e 4: Trade-off curve for Linear Quadrai Caussian control

Figure 4 yields information regarding the achievable performance with LQG control. The trade-off curve is
the boundary between feasible and infeasible solutions. All points 'above' the curve are achievable by
some controller K, and none of the points 'below' the curve are achievable by any linear control law. For
example, one cannot produce an 80% reduction in O (as compared to the open loop) without increasing
*cg to at least 4.5. These guarantees on the optimal solution result from the fact that equation (25) is a
convex optimization with respect to A,.

Three LQG optimal controllers are chosen from the trade-off curve for implementation on the flexible
antenna. Each represents an increasing level of performance and control effort. The first, Ki, is designed
for low performance and low control effort. The second, K.., is a controller that decreases the
performanc'- objective but uses more control effort. The final compensator, Kb9 exhibits the best expected
performance without unduly increasing the control effort. The increase in performance obtained by
implementing controllers which use more control effort is not worthwhile, as indicated by the trade-off
curve for the LQG design. Table 1 lists the values of 4..,f and *#,g for each of these control laws.

Tabk 1: Nomalized performance measures, control effort and size of die six optimal controlers.

nnber of constr number of
LOG di . sta$Wes H2  #..f of *f s$Wes
K5 , 0.156 5385 20 K 0.412 2.573 10
4,p 0.533 1.643 20 Kop 0.487 2.051 14
KI. 0.708 0.812 18 Kb- 0.595 1.346 15

I
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I CONSTRAINED H2 MINMIATION

The constrained optimization approach to H2 optimal design is also used to obtain control laws for the
flexible antenna. To begin the procedure, we must first choose a set of Q functions for the approximation
described by equation (12). For comparison, four sets of functions are chosen. This allows us to study the
convergence properties of the optimal solution. The four sets of parameterizations are

I30 +1000 ' 200set l: XIQW,+p÷•x • set3",x: _

i-2 i=2 s ts+2
I3 0 30 x ( 200

set 2: xXQI's. o 10 set24: x,,. (26)ts+100 JV+ +0
i-2 i=2

I where

QKP K, Q•p Kh " (27)
1 Yarn I Yuhp

Choosing the first Q function to correspond to one of the LQG optimal controllers improves the
convergence properties of the solution. By choosing the functions in this manner, the controller that
corresponds to the point x = [1 0 0 ... 01 is either Kn,1 or Khp, depending on parameterization. Increasing
the number of basis functions beyond 30 results in only a negligible decrease in the cost function.

Once a set of Q functions is chosen, the following optimization is performed for each parameterization,

min om f( x)=(xTAP,,/x+bp,0 ,xT+cp,,f)2

s.t. fc,(x)=(,rAcffx+b.c x+cc,f )2 < a (28)I maX[IT (wi)x - Ip(a,,)xTE(wi~x] 5 -. 01.

The optimizations are solved using a constrained ellipsoid algorithm. The termination criterion is chosen
to be 1 x 10-6, which indicates the calculated solution is within 1 x 10-6 of the actual solution.

The constraint on the phase, equation (18), is discretized with a 1000 frequency points between w = 10
and 1000 rad/s. In this sense, equation (18) can be thought of as a family of constraints, in which the
maximum must be less than or equal to a constant. Since the maximum of a family of convex constraints
is also convex, this method of determining the phase does not introduce any local minima into the design

space. Discretizing the constraint in this manner does introduce numerical error into the optimization. For
this reason, the constraint is forced to be less than -0.1, as opposed to zero. If this is not done, then the
resulting optimal controller tends to violate the phase constraint at points not included in the
discretization. Another option is to increase the number of frequency points (say to 2000), but this slows
down the optimization considerably.

Another problem occurs for an optimization with such a large number of Q functions. Theoretically, Aj,,f
and AC,, should always be positive definite symmetric matrices, but numerical error in the solution of the
Lyapunov equations causes them to have very small negative eigenvalues (on the order of -1 x 10-13).
These errors then cause problems during the solution of equation (28). To eliminate this problem, a small
diagonal matrix is added to Ap,,f and Atf to change the lowest eigenvalue to a quantity just greater than

zero (on the order of I x 10.13). The optimization is then solved with the new matrices.

As in the case of LQG synthesis, three controllers with varying performance levels are designed. They are
designated K*lp, K*'., and K*hp. The amount of performance increase is controlled by varying a in
equation (28). Increasing a allows for greater control effort, which in turn lets the optimization reduce the

I!
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performance objective. The values of op, and 0,hf for the three controllers are listed in Table 1. They
are also plotted in Figure 4 with the LQG trade-off curve. As expected. the controllers designed with the
phase constraint lie 'above' the trade-off curve. They also exhibit worse performance than an LQG
controller that uses the same amount of control effort. This again is to be expected, since the optimizationthat bounds the phase includes constraints that are not present in standard LQG synthesis.

Comparing the convergence properties of the different Q parameterizations reveals that set I consistently
produces the lowest performance functions for a given control effort constraint (i.e. a given a). The fact
that the optimization results are a function of the parameterization is not surprising, but the variation in
results is unexpected. Sets I and 3 outperform sets 2 and 4 in all of the studies, with set I producing
slightly lower cost functions at the optimum. Also unexpected is the fact that setting a > 2.6 produced no
change in the optimal solution. One would think that the optimal solution would lie on the control effort
constraint, but this does not occur. The reason for this could be convergence difficulties in the
optimization procedure.

After solving the constrained optimization, the corresponding optimal controller is obtained from the
expression

30

K"= 5=' (29)
K30 (29

1+ l xf , QiPu

where xi are the elements of the solution to equation (28). On the average, these control laws contain 70
to 75 states. Balanced reduction [Glover (1984)] is attempted, but does not yield significant order
reductions without considerably distorting the frequency response of the controller. A more straightforward
pole-zero cancellation produces better results. The ith pole is canceled with the f•h zero if

I IP•-A < 0.01 (30)
pi

Setting the tolerance much higher than 0.01 changes the frequency response of the optimal controller
considerably by canceling out pole zero combinations that are not too 'close' to one another. After
canceling out pole and zeros that satisfy equation (30), the controllers are reduced to between 10 and 15i states [Table 1].

EXPERIMENTAL RESULTS

All of the control laws are implemented on the flexible antenna model to test their performance and
robustness. Each is implemented in real-time on the dSpace digital control hardware sampling at 2000 Hz.
This sampling rate is deemed fast enough so that no digital effects are accounted for in the controller

design.

Closed-loop transfer functions are obtained by inputting white noise into the actuator on rib I and
measuring the output of the accelerometer located at the mid span of rib 2. Closed-loop performance is
measured in terms of the integral

i = (H d W]d~ (31)

where H 2 (jo)) is the experimentally determined transfer function. Equation (31) is similar to an H2 norm,
and it is a convenient measure of the size of the transfer function over the frequency range 5 - 25 Hz. For

an unstable system, x is set to a..

I
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ACTIVE CONTROL OF THE NOMINAL AND PERTURBED STRUCTURES

All six control laws are implemented on the antenna model. Table 2 summarizes the closed-loop results
in terms of the performance measure, equation (31). For the nominal structure, each of the control laws
designed with the constrained optimization are stable in the closed loop. For the control laws designed
with standard LQG synthesis, only the low and medium performance controllers remain stable. The high
performance controller causes an instability at approximately I I Hz.

The robustness of the phase constrained controllers is even more pronounced when comparing performance
on the perturbed antenna. For this case, both the medium and high performance LQG control laws are
unstable in the closed-loop. The frequency of the instability is again 11 Hz. All of the controllers
designed with constrained optimization remain stable. All of the control laws suffer a decrease in
performance, but this is to be expected since the designs are performed with the nominal model.

Table 2: Closed loop active control results on the nominal and perturbed structures.

I Nominal Structure r.o = 197.68 x 10*6

Kc 0, K'," 0.372
K.p 0.521 Kmp 0.456
KID 0.673 K, * 0.536

Perturbed Structure io, = 132.05 x 10-6

c0 K' 0.555
K.p cc Kp* 0.641
K,& 0.803 K,0 " 0.708

DISCUSSION OF THE EXPERIMENTAL RESULTS

The experimental results illustrate the utility of the phase constrained H2 optimization procedure outlined
in this paper. Constraining the optimization produces control laws that are less sensitive to modeling
errors and structural variations. The instabilities caused by the high performance LQG controller indicate
that it is not very robust. In controlling the unperturbed structure, LQG synthesis and constrained
optimization produce similar closed-loop performance. Due to the accuracy of the nominal model used for
control design, the predicted performance and the experimental results agree well. When implementing
the control laws on the mass-loaded antenna, the reduction in the natural frequencies causes the medium
performance LQG design to induce closed-loop instability.

102 01~10 -100' ..
... .,... .. .. .. .. .. .. ...

1,o. j-...... I -.. - -.... .. ........ ...

0 3o 1 15 20 25 0 S0 Is 2D 25Sfrequency (Hz) frequency (Hz)

Figure 5: Magnitude and phase plots of K*,p(j o)P,(joW) (solid), and K,,(j W)P,(joj) (dashed).

Examination of the transfer functions K.p(jw)Pju(jw) an K*,,(jw)Py.(jw) illustrate the advantage of
constraining the phase of the controller (Figure 5]. For the medium performance LQG design, two cross-
overs of -360' occur within the frequency range 5 to 25 Hz. From the Nyquist Stability Criterion, closed-
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loop instability will result if the magnitude at phase cross-over exceeds one. As the structure is perturbed,
the changes in the modal parameters cause the magnitude in this frequency region to exceed one,
resulting in closed-loop instability. The instabilities that occur in experiments are at a frequency near II
Hz. precisely the region where the phase of Kp,(jao)Py.(jw) crosses -360". In contrast, the phase of
K'.j(eoj)Py,(jce) never crosses -360" between 0 and 25 Hz, making the control law insensitive to changes
in the magnitude and phase response.

CONCLUDING REMARKS

Experimental implementation of H2 optimal controllers designed via constrained convex optimization
illustrated the robustness achieved by bounding the phase of the compensator. In comparison with
standard Linear Quadratic Gaussian (LQG) designs, they remained stable in the presence of structural
variations and model uncertainty. The loss of performance that resulted from constraining the optimization
could be compared to a trade-off curve that represented all achievable LQG solutions. In this way, convex
optimization proved to be effective method of studying the trade-offs associated with constraining the
phase of the controller.

Although the results of this paper are encouraging, many questions arose regarding the convex
optimization approach to control design. For example, the optimal solutions were found to be sensitive to
the choice of functions used in the Q parameterization. Furthermore, the optimization seemed to exhibit
convergence properties when the constraint on the control effort became large. Checking the phase
constraint at discrete points (even for a fine grid) introduced errors into the control design. Finally, the
pole-zero cancellation procedure used in this paper was a rather ad hoc method of order reduction, the
reasons why more advanced methods were ineffective needs to be investigated. Future work involves
studying these topics and also generalizing the phase constraints to contro, systems with more than one
sens,)r and actuator.
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LINEAR CONTROLLER DESIGN FOR STRVCTURES
WITH UNCERTAIN TRANSIENT DISTURBANCES

Donald Leo* Daniel Inman-
State University of New York at Buffalo Virginia Polytechnic Institute and State University

Buffalo, IVY 14260 Blacksburg, VA 24061-0219I
Abstract Quadratic Gaussian theory) is concerned with

optimal control when white noise disturbances are
Convex optimization techniques are developed to present in the plant and feedback signal'.
design feedback control laws for structures with Minimizing the H2 norm is equivalent to minimizing
uncertain transient inputs. The uncertain the Root Mean Square (RMS) value of the output.
disturbances are modeled deterministically as H. control minimizes the RMS gain of a system
convex sets of functions. Three types of models are disturbed by signais with finite energy 2 . When the
considered: one which bounds the total energy of the disturbances are persistent, it is more appropriate to
disturbance, another which bounds the instantaneous minimize the L' norm of the impulse response
energy, and a third that limits the maximum and function. This problem was posed by Vidyasagar 3

minimum values of the input. Expressions for the and solved for continuous time control systems by
maximum response are derived for each model. The Dahleh and Pearson4.
optimal feedback control law is found via the
solution of an infinite dimensional optimization, When the disturbances are transient with known
wvhich is reduced to a finite dimensional optimization duration, it would be advantageous to include that
b- an affine parameterization of all stabilizing information in the design specifications.
controllers. The parameterization maintains Unfortunately, H2, H/-, and L' control methods are
convexity and c+)nverges to the unique solution as not particularly suited to deal with information
the numbe; ar terms in the approximation is concerning the duration of the disturbance. Because
increased. The techniques are illustrated on a simple the definition of the 1, 2, and -, norms is an integral
model of an unconstrained flexible structure. from time equals zero to infinity, these measures of

the output might be overly conservative if the
Introucion disturbances are transient. Also, these techniques

are usually applied with frequency design
The objective of many structural control problems is specifications, which do not always correspond to
minimization of the response due to uncertain exact time domain constraints.
transient inputs. In the case of satellite design,
critical scientific instruments must be isolated from The purpose of this paper is to develop techniques for
disturbances caused by other payloads on the optimal disturbance rejection of unknown but
structure; an automotive application might involve bounded transient inputs. The following two
minimization of cabin noise level due to engine assumptions are made: the duration of the inputs is
vibration; finally, reducing peak responses of known, and the disturbances are modeled
structures is imperative in the earthquake deterministically, as sets of functionals. Modeling
engineering community due to safety considerations uncertain inputs deterministically is the subject of
and legal requirements. For all of these examples, the first part of the paper. The approach is motivated
the uncertain nature of the excitation makes by recent applications of convex analysis in applied
obtaining an explicit model for the inputs impossible. mechanics3 , and results relevant to control design are
Oftentimes the disturbances can be bounded over presented here. Obtaining the optimal feedback
their duration, even if the exact nature of the signal controller is an infinite dimensional optimization
is unknown. problem over all feasible transfer matrices 6 . The

optimization is reduced to one over a finite
Several modern control methods have been dimensional subspace through the introduction of an
developed to deal with the problem of uncertain affine parameterization of all stabilizing controllers.
disturbances. H 2 theory (also called Linear

*Research Assistant, Deparment of Mechanical and
Aerospace Engineering, Student Member AIAA**Samu- Herrick Professor, Engineering Science

and Mechanics, Associate Fellow AIAA
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I
The techniques are illustrated on a model of a simple
flexible structure. where v(t) are the outputs of Q(s) and i(t) are the

state estimates.
Problem Definition And

Controller Parameterizanon

The system under consideration is assumed to be
linear, time invariant, and described by the following U(tB (sB A)'t

equations

i(t) = Ax(') + B~,w(t) + B~u(t) s ,C
z(t) = Cx(t) + Dý,u(t) , ()(sA)

y(t) = Cx(t) + Dw,,w(t)

where A e 9 tx" is the state matrix, w(t) e - are +• State Estimated Feedback
exogenous disturbances, u(t) e9 are control-. .............................

forces, z(t)c-91" are regulated outputs, and vQQ) s e(t)

y(t) e 9t"' are sensor outputs. The block diagram for
this system is shown in Figure 1.
t w( s 

z(t) Figure 2: Estimated state feedback controller
wt parameterization.

P(s)
u(t) y(t) The augmented plant is now described by three

transfer matrices, P P,, and P-,. The transfer
I, matrix Pe, is identically zero because the error states

-------- ----------- are uncontrollable from v(t). The closed loop
transfer matrix of the augmented plant is

Figure 1: Block diagram for multivariable plant, H(s) = P. (s) + P~.,(s)Q(s)P,. (s). (3)I illustrating the feedback connection.
systemratin ise des e b. Stability of H(s) is guaranteed if Q(s) is a stable

In the Laplace Domain, the system is described by transfer matrix. The important feature of equation
four transfer matrices, P-W(s). P1 3 (s). P,,(s), and (3) is that it is affine in the free parameter Q(s).
P,,(s), where s is the Laplace variable. The
subscripts denote the input/output pair of the transfer Disturbance Models
matrix. The feedback cornnection isi TThe 

uncertain excitations are modeled
U(s) = K(s)Y(s), (2) deterministically as either a finite set of known

inputs or an ;"finite set of bounded but uncertain
where K(s) is n. x n. transfer matrix of a linear time disturbances. A he first disturbance model assumes
invariant controller. Optimal design of the control that the uncertain excitations exist within a finite set
law is accomplished through the Q (or Youla) of known inputs,
parameterization of all stabilizing controllers'. First,
the system is augmented by estimated state feedback WFI= 1w, (t) .. w(t)) (4)
(Figure 21. The gains K, and L,, are chosen such
that A - B.K. and A - LCy are stable. This could where ni is the number of inputs. The second
be done using Linear Quadratic Gaussian techniques, disturbance model bounds the maximum integral
for example. The estimated state feedback is then energy of the exogenous excitation.
augmented by another n. x n. transfer matrix, Q(s).
The input to Q(s) is the state error, e(t), and the o (W(t) rWT(f tdt <p2) (5)
output is injected into the system such that Ww

u(t) = v(t) - Koi(t), (2)

2I
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It is assumed that the disturbance acts over a known
duration. 0 to T. The scalar bound on the input *! _)

energy is p2. A similar disturbance model is fh(t r)w(r)dr¶ h(k)(t- ?h(k)r(-d x

obtained by bounding the instantaneous energy of the 0 0

Wnp E. = {w(t) : WrTt)W(t) 5 p2(t) (6) Wr('r)w(r)d•"

S(10)IThe bound on the instantaneous energy is p2(r). A (0

final disturbance model bounds the maximum and The maximum output occurs when
minimum values of the input, and is called the
temporal envelope bound model. w(r) - h(k)r (t - 1h --" (T) .w7)c : h = (t - r). (11)

WTEB = (w(t) : fLj)(t): t )(0 fUj(W)} (7) The scalar constraint yT is obtained by invoking the

The jth column of w(t) is denoted w#t) and the upper energy constraint, equation (9).

and lower bounds on wj(t) are fLj(t) and fuj(t),

respectively. y2 fh( h - r)h(k) r)d= pl. (12)

Maximum Responses To 0

UnriInpu Solving for fi yields

Assuming zero initial conditions, the regulated _ _ (_3)

outputs are related to the exogenous disturbances ('3 = ()
through the convolution integral, fhk tTh() t_'~-

z(r) = f'h(t- r)w(?)d?,(8) (t -10'

wL The expression for the maximizing input function of
wthe kt output, Wlk)(t), for the fEc model is

Given a finite set of input disturbances, WFIN, we
denote the maximum response of the kit output to the W(k)(?) = Pth(t(- -) I (14)
P~ disturbance as 9I jkthk T t ~r

where h k)t) is the kIh row of h and t,,,, is the time at and the maximum output to an input monstrained by

which the output attains its maximum. equation (9) is

For the remaining models of uncertainty, derivation
of the maximum response is more involved. First Z(k) (t) = p, h(k) (t (k)r
consider the case of an Integral Energy Bound (MEB) Ifh - r)h (t- d (15)
excitation model (equation (5)). The maximum L0

response of the kth output to any input contained
within the IEB model is found via the Cauchy- Through a simple substitution, equation (15) is

Schwarz Inequality. Referring to equation (8), rewritten

I !(k)(t) = i/{IJh(k)(?)h(k) (?)df (16)

I Next consider the disturbance model that bounds the
instantaneous energy of the input, equation (6).

13
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Following a derivation similar to that for the IEB
model, the maximum response of the kth output is The superscripts * and - indicate if the jmh column of
obtained by using the Cauchy-Schwarz Inequality on h•k)(t) is positive or negative, respectively.
the integrand of equation (8),

Convex Optimization Approach
I "To Controller Design

b( - .(17) Design of the optimal feedback control law is
it expressed as a constrained optimization over all

[wr(r)w(r)dr] 2 feasible transfer matrices h(t).

The maximum occurs when min 0(h)
k)(18) h~O.... ~h•0(24)

w(r) = yLh@k ( r), (18) V h: ,.- m()50

where 0(h) is a cost function to be minimized and
where YL must satisfy V,(h), i = I to M, are design constraints.

2 h(k) (t _ r)h(k)r (t -(19) The advantage of modeling the uncertain excitationsas deterministic functions is that the expressions for
Combining equations (18) and (19) yields the the maximum response are all convex with respect to
Cmbxiniing eqpuatifons (18) acondv(19)myeld th(t). If the cost function and all of the constraints of
maximizing input for the LEB convex model, equation (24) are convex, it is called a convex

(k) controller design. Convex optimizations are by
PL(T)h(t(r) nature easier to solve than general nonlinearI (20) programming problems. If any solution to the

h (k)(t-_ ,)h(k) r(t C) optimization exists (i.e., the constraints are not too
tight) the global minimum can be found to any
desired degree of accuracy. This eliminates the

The maximum output is choice of a stopping criterion and provides important
guarantees on the accuracy of the optimal solution.

•L) (t) =pL(,)[h(k)@t- r)h(k)(t -,) dr. (21) As stated in equation (24), the controller design
fI Pproblem is an infinite dimensional optimization.I This results from the fact that there are an infinite

The final disturbance model to be examined is the number of transfer matrices that must be searched to
Temporal Envelope Bound (TEB) model, which is obtain the optimum. A general method of solving
expressed by equation (7). For the jth input, the these problems is to perform optimizations over
maximum response of the k'h output is a function that larger and larger finite dimensional subsets. For
switches between the maximum and minimum convex controller designs, one method of doing this
values, depending on the sign of the impulse is to introduce a Ritz approximation of the closed
response, loop transfer matrix. One such Ritz approximation is

motivated by the Q parameterization of all
S(I-)f= fuj(r) if hj(t-,)>0 (22) stabilizing controllers (equation (3)),

t~fL,(r) if h(t- r) < O* H() (s) = P,(s) + P,,(sd x1 Qi(s) P,,(s). (25)

Thepj" column of h(kr(t) is denoted hi()(:). TheImaximum repneto uncertain inputs bounded by

equation (22) is The functions Qi(s) are arbitrarily chosen functions
and each xi is a real scalar number. Parameterizing

t .the solution with a Ritz approximation maintains the
() (k)+ - dconvexity of the cost function and constraints.

j-1 10 (23) Substitution of equation (25) into the optimization

Ij* ?reduces it to a search over a finite number of real
+1h~k)-(t - r)f (,)d scalars. A critical feature of approximating the

0 J solution via equation (25) is the convergence

4I
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properties of the optimum. As the number of terms in where,
the series is increased, the solution of the finite
dimensional problem approaches the optimal value M M
of the infinite dimensional problem'. Often times, it C W(t) =p, po . )(r)p( k) (r)dr

is possible to prove that at N -> -, the two solutions
are equivalent. In practice, only a finite number of bk)(t) p, Jop'()-)p(k)t(()d'.

terms is required to get arbitrarily close to the (31)

optimal value. A~k)(k)= , p(k) (r)dr

Finite Dimensional Aporoximations 
A

To The Maximum Response Functions In a similar manner, the LEB disturbance model can
also be expressed as a quadratic expression in x,

The maximum response expressions and the Ritz
series are combined to create finite dimensional _

approximations. Using the inverse Laplace transform y-()(k) = C( )+b(L) (t)x+xTA )(t)X 2 (32)
on the Ritz approximation yields

N where,
h(=) p(k)(t) + ixp(k)(t) (26)

I i=1 cL() = JoPL( r)p(k (t- r)p(t) (t - )dr

where po(t) is the inverse transform of P:w,(s) and

p,,(t) is the inverse transform of Pe(s)Qi(S)P•,(s). bL(t) 0pL(T)Pk)(- T)p(r"(-)dr. (33)
For convenience, the (N) notation has been dropped.
The following analysis is simplified by placing AL (t)=( )p ( T)p- ) r-?)dr
equation (26) in vector notation,

h ( The Ritz approximation is also introduced into the
S(27) TEB disturbance model,

The design variables x, have been placed in the Mw I
vector xe 9N, and Px(t)E4s 9 N" at each timet. Z- i(t)fi (t-r) +xp)(t-r) fuj (T)dr

j=1 '0
For the finite set disturbance model, WFIN, the t
maximum output to the ith disturbance is +f [p()(t- ).)+ xTp()(t-r)]-fg(.)d.

I = R= c (k) (t) + b(k)r (t)x (28) 0 (34)

where, where ( )j denotes the jih column of ( ) and the
superscripts + and - denote when the bracketed

Mc¶f)(k)=J t p•)(t- r)wi(r)dr expression is positive or negative, respectively.

(29) Example: Disturbance Reiection
)=0Pz (t- r)w,(r)dr nAFeil tutr

The optimization techniques developed in this paper
Introducing the Ritz approximation into equation are applied to the model of an unconstrained flexible
(16) reduces it to a quadratic expression in x, structure. The model for the structure consists of two

I rigid body poles and a low frequency flexible mode.
St+A block diagram of the open loop system is shown inI y I)[C(k)f (t)+b~k) (t)X+XTA~k)(t)X]2 (30) Figre 3.

I
I5
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I ;WI

Is2 + 0.002s + I

3 Figure 3: Open loop block diagram of an unconstrained structure with one flexible mode.

The control design is accomplished in two stages. Each point along the curve is the solution of the
First, Linear Quadratic Gaussian Synthesis is used to convex optimization
obtain an optimal estimated state feedback
controller. Next, a series of convex optimizations is 2

performed to minimize outputs to different sets of iin (A•O,.ý +1 2 0,,). (35)
exogenous inputs. The different sets of uncertain
inputs represent varying levels of previous knowledge S.f. . 1
about the disturbance set. The optimizations are where
used to study the performance trade-offs that exist in
the design of the optimal control laws.

Linear Guadraic Gaussian Synthesis *f fiH 2 + 2H221 . (36)

An optimal state estimate feedback controller is c=HI +IH122
designed using Linear Quadratic Gaussian synthesis.
Using optimization techniques developed by Boyd is the 2-norm of the closed loop transfer
and Barratt6 , a curve is obtained that represents the I.H,, ic
trade-off between performance and control effort for function between zi and wj. For each value of A,
LQG control [Figure 4]. between 0 and 1, an LQG controller is obtained

through the solution of two Ricatti equations'. Points

along the curve are LQG solutions for different
Uvalues of K.

I[ The trade-off curve for LQG synthesis reveals

3j. feasible region information about the achievable performance for
3ý 04I2 minimization. The region 'above' the trade-off

S2J - curve represents values of op,, and 0,gf that are
2 z•achievable by some control law K(s). Points 'below'

the curve cannot by achieved by any linear control

I'J infeasible region law. For the example problem, Figure 4 illustrates
that control laws that make 0*•f greater than 5 yield

o, very little decrease in

I2 3 4 5 Optimal Disturbance Rejection

Once an LQG controller is designed, a set of convex

Figure 4: Trade-off curve for LQG control of the optimizations is performed to augment the estimated
flexible structure model state feedback. Three separate optimizations are

!6I



performed, each with a different model of the3 excitation. The performance objectives and constraints for the
three optimizations are

If we introduce the following switching function,
Optimization 1:

I OSt t,

Sw(:,t 2)= -1 ,<:r 2 , (37) mai •I

0 t2 < t S.L 1') < 3.0

then the first two excitation models are defined as, (IH2,[ C+IH2, C)2 < 2.2

Excitauion Model : ( 2H11l+ +IH,2 l+)2 <5.0

w,) W= w10 0 (38).I .{sw(3020)} ,
SOptimization 2:

Excitation Model 2:

SW 1 ,3w(10, 20) LL =1) zI), z,),<+3.0

I~t =(IH2u 2+ +I H2 I2)2 <2.2

{sw(5,20)} (H 1 +H )i <.

W()= {sw(1S5 20)} Optimization 3:

0 mini z~2)(2O)S.t, A )(20) < 3.0

The third model for the excitation is a TEB 3
disturbance model, (IH21 2+,i+IHI2L), <2.2

Excitaion Model 3: (IHn ,,1  +IH12C)2 < 5.0

S-Z:wl(t)< l 0:5tS20
w2 (t) =0 0 :S t S20 The optimization is allowed to trade-off the 2-norm

W(t) (40) of the response and the peak value of the control
wI(t)=0 20<t effort for a decrease in the peak value of Z 2. For the

w2(t) = 0 20 < t LQG controller with #,,f = 5.0, the value of Opf
=1.81. The optimizations allow this value to

The three excitation models represent decreasing increase 2.2, and it also lets the peak value of the
levels of knowledge about the input. For the first control effort increase to 3.0.

model, the input is known. In the second model, the
input is one of three functions, each with a different The optimizations are performed using a constrained
switching time. The third model contains any input ellipsoid algorithm written in MATLAB 7 , The time
bounded by :L1 over 0 to 20 seconds, responses are discretized over the interval 0 to 50

seconds with 2000 points. The Q parameterization is
The performance objective and constraints are chosen to be
defined in terms of 2-norms and maximum response

functions. Constraints on the H2 norm of the closed = (lY (41)loop transfer matrix are chosen based on the trade-off Q.($)- .ks + 1

curve for LQG synthesis. The H2 norm is obtained by
letting t -> - in equation (30) and setting P, = 1. Reasons for choosing such functions are discussed in
Thus, the 2-norm is a quadratic expression in x. Polak and Sacludeans. The optimizations are

1 7I
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initialized at the LQG solution, x , 0, and the optimum is much higher since the assumed model for
termination criterion is set at 0.01. This guarantees the excitation is more conservative.
that the solution is within 0.01 of the optimal value.

The convex optimizations offer insight into the
Discussion Of The Opmirninon Results design trade-offs. In the case of the first two

disturbance models, the constraint on the peak value
All three optimizations are performed with between 2 of the control effort is not necessary. Neither
and 20 Q functions. The convergence histories optimization reaches the constraint value at the
indicate that little change in the optimal solution solution. Also, control laws that are excellent for
occurs after approximately 16 Q functions [Figure 51. one disturbance set might be poor for another. In this

example, the optimal controller for the TEB

disturbance model actually increases the peak
response to the excitations contained within set I
and set 2.

3.3,

optimization 3 For all three optimizations, the constraints on the H,
_____----_ norm of the performance and control effort are

limiting factors in the design. All of the optimal
Z.3 solutions lie on the 2-norm constraints of z and Z2

optimization 2

2• Freauency Domain Characteristics Of The Optimal
Solutions

optimization I It is instructive to examine the frequency response

2 2 4 6 S 1o 12 14 1 is 20 characteristics of the closed loop systems obtained
Number of Qffunctions via convex optimization. Many modern and

classical design procedures involve shaping the
3.5 frequency response to obtain the desired results in

the time domain. In this paper, time domain
information regarding the input is included in the

3 - ......... optimization, eliminating the need to shape the
optimization 3 frequency response.V

Z 2. The closed loop transfer functions for the optimal

"desigas are compared to the LQG solution in Figure
optimization 2 6. Since the optimizations are minimizing the peak

response of z2 to uncertain inputs at w1 , the only
2 zsignificant chanige occurs in H2 1 . The optimal

","optimization I solution is notching the frequency response to
achieve reductions in the peak value of the output.

o 0 2 , 4 6 S 0 2 14 16 1s 20 The remaining closed loop transfer functions change
Number of Q functions very little, only enough to satisfy the constraints.

Figure 5: Convergence histories for the three It is probable that a skilled designer would be able to

optimizations. Top plot istheperformanceobjective, shape the frequency response to satisfy the

bottom plot is the constraint on the peak value of Z"). constraints. One advantage of the convex
optimization approach is that there is no need to

Quantitative results of the three optimizations are translate the time domain constraints into the

listed in Table 1. They illustrate that the achievable frequency domain. The frequency response is

performance is strongly coupled to the size the manipulated automatically, in such a way that

disturbance model. For the first optimization, the optimal performance is achieved while

Sexcitation is known, resulting in a control law that simultaneously satisfying all constraints.

can achieve a significant reduction in the peak value
of z2). Increasing the size of the disturbance model Numerical Limitations
to three functions decreases the amount of
performance reduction the optimization achieves. Convex optimization offers very structured methods
For the final disturbance set, the peak value at the to examine design trade-offs, but relies heavily on

numerical procedures. This strong dependence on

8
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numerical solution introduces some limitations in the with more constraints, the large number of objective
optimal design of control laws. For the low order and constraint evaluations (on the order of 1200 to
example studied in this work, the computation time 1500) might cause difficulties. For this reason, it is
is not excessive. The most demanding optimizations very important to make the objective and constraint
only take approximately 15 minutes on a Sun evaluations as efficient as possible.
SPARCI0 workstation. For higher order problems

Tabl 1: Comparison of convex optimiztion results.

Performance Control Effort

(2) Z212) !3(2) :-r2) (20) 2. 122(') z') z.)(20)

LQG 2.52 2.80 2.28 3.56 1.58 1.86 1.64 2.92i Opt I 1.34 2.01 1.91 4.36 2.12 2.05 2.05 3.67
Opt2 1.38 1.38 1.38 3.85 2.01 2.01 2.16 3.90
Opt 3 2.67 2.68 2.65 2.87 1.61 1.72 1.57 3.00

- 100' 1
I -~

101 10,2I.-

10-L

-1 0 ' ..

104'

10 4 tO"' 10"2 It0 100 10 103 '• 0"- to-' 1o0. IC-" 10 I01 t02

Sco (rad/s) 
o )(rad/s)

10.1

__\

lop) 10' | I0. " lot lot 102 0 10.' 10"1 1041 100 1 10

a) (rad/s) 0) (tad/s)

Figure 6& Closed loop transfer finctions for the LQG solution (dotted), and the solution for optimization 3 (solid).

certain cases, it is straightforward to show that the
A more subtle numerical limitation involves the maximum response monotonically increases with
evaluation of the maximum response functions for time. Therefore, constraining the maximum response
the EEB, LEB, and TEB disturbance models. In at time T automatically constrains the response for t

I 9



< T. There is no such guarantee for , > T, though. 4. Dahleh, M., and Pearson, J.B., "Ll Optimal
For the flexible structure example, bounding the Compensators for Continuous Time Systems," IEEE
maximum response at : = 20 does not guarantee that Transactions on Automatic Control, vol. AC-32, no.
the optimal value is not exceeded at future time. A 10, October 1987, pp. 889-895.

more appropriate objective might be
5. Ben-Haim, Y., and Elishakoff, I.. Convex Models

(2) (42) of Uncertainty in Applied Mechanics, Elsevier,min mrl~r(1))Amsterdam, 1990.

over the time interval 0 to 50 seconds. 6. Boyd, S., and Barratt, C., Linear Controller
Unfortunately, this requires many more Design - Limits of Performance, Prentice Hall,
computations, and would increase the time of the Englewood Cliffs, NJ., 1991.
optimization considerably. Future work on this topic
might involve finding closed-form solutions for the 7. MATLAB User's Guide, The MathWorks, Inc.,
maximum response functions. 1993.

Concluding Remarks 8. Polak, E., and Sacludean, S.E., "On the Design
_ -of Linear Multivariable Feedback Systems via

This paper illustrates one method of including time Constrained Nondifferentiable Optimization in H,_
domain information in feedback control design. By Spaces," IEEE Transactions on Automatic Control.
modeling uncertain excitations deterministically, vol. AC-34., no. 3, March, 1989, pp. 268-276.
optimal control laws are obtained efficiently via
convex optimization. This allows for straightforward
examination of the trade-offs that exist between
achievable performance and the design constraints.

In the presence of uncertain inputs, the achievable
performance is a function of the model chosen to
represent the disturbances. As one would expect,
more conservative input models yield more
"conservative control laws. One method of reducing
the conservativeness of a control law might be to
investigate the allowable inputs and include any
available time domain information in the optimal
feedback design.
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Ralph W. Rietz
Department of Mechanical and Aerospace Engineering

State University of New York, Buffalo
Buffalo. New York

Daniel J. Inman
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University

Blacksburg, Virginia

IM TRACr similar work. providing a method to select the parameters of a

The performance of a single link. very flexible manipulator slewing system through a nondimensional analysis. Finally.
using two different position control systems was studied. A Garcia and Inman (1991) considered the effect of integrated
standard PD feedback control was considered along with PD plus sensing and actuation along a slewing beam to control the
position times velocity feedback. An analytical model of the flexibility of the structure.
plant was identified and computer simulations using the two Why consider nonlinear control? The strongest argument for
controllers were performed. The results clearly showed a using nonlinear control is that it can significantly improve the
decrease in control effort for the system using nonlinear control performance over linear control schemes. This can be shown in
when compared to a similar response for the system using PD simulations, where the step response rise time. settling time and
control. Experimental results on a slewing beam system verified overshoot are significantly smaller than the response when linear
this result. The system using the proposed nonlinear feedback control is used. Lewis (1953) showed the response of a second
control required significantly less energy to complete the same order system can be improved by constructing a variable
maneuver as the system using the standard PD feedback control. damping. He used position times velocity feedback to eliminate
Other measures of performance (e.g. rise time, settling time. overshoot and improve the settling time of a positionalI overshoot) were slightly improved when the nonlinear feedback servomechanism. More recently. Castelazo and Lee (1990)
was added to the controller, proposed using the same type of feedback to improve the

response of a slewing beam system. They considered a nonlinear
feedback. where state positions and state velocities wereI lNTRODUCTION multiplied. A heuristic method was proposed to tune the

Slewing motion, the rotation of a structure or manipulator nonlinear feedback gains and the resulting performance was
about an axis, forms the basis for many robot and satellite better than the performance provided by an optimal linear
maneuvers. The work presented here concerns the single axis controller. They provided simulation results for a slewing beamI slew maneuver of a flexible structure. Numerous researchers to verify the method. Others, such as Kuo and Wang (1990).
have modeled stewing structures and designed linear control have proposed using nonlinear controllers to improve the
schemes for them. The slewing flexible structure is typically robustness of a more complicated two link manipulator.
approximated as a rigid hub connected to a flexible appendage. Initially, the purpose of this work was to experimentally verifyI Cannon and Schmitz (1984) modeled and performed experiments the simulation results found by Castelazo and Lee. However. to
with a single link, very flexible beam. They considered the insure global stability, their proposed feedback required a simple
noncolocated control problem, where the tip position was sensed modification. Also, full state feedback is difficult to implement
and controlled from an actuator located at the other end of the and as a result, proportional plus derivative feedback control.I beam. Similarly, Juang, Horta and Robertshaw (1986) which lends itself well to experimentation, was chosen for this
experimented with a slewing beam and a solar panel. They purpose. Angular position and angular velocity are easily
compared the experimental results with analytical predictions and measured on the experimental apparatus. The nonlinear feedback
found good agreement. Other researchers investigated the consisted of the angular position times the angular velocity andI interaction between the actuator and structure of slewing the objective was to show that the system using nonlinear
structures. Garcia (1989) modeled a slewing beam and feedback provided better results than the system using the best
considered the effect which different gear ratios between the available linear feedback.
motor and the beam had on the system. Sab (1990) performed
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THEORY AND MODELING L
The experimental apparatus consisted of an armature controlled Ib JpA.•:dx

DC motor connected to a very flexible aluminum beam. Figure 1. 0
The slewing equations of motion [Garcia (1989)] can be
developed using Hamilton's principle and performing simple Nsl.
mechanical and circuit analyses of the motor assembly. The
equations of motion are written as

L

M4 + D + Kq Bre, (1) I, f pAx~j&
0

where, using the definition L
M= fpA*,dx +1 (.:(O))fI (x)=[l 0,(x).-. 0

U) 2 0 ' I"(0)

s~M, . 0

SYMM. ~ ~ ~ l, 0 ,=N- ,+K

Also, Oi(x) are the mode shapes of the inertia-free beam. q,(t)
D = are the generalized coordinates. N. is the gear ratio between the

motor and the beam. p is the beam density, A is the beam cross
0 0 sectional area. x is measured along the beam. c, is the equivalent

W 2M, 0 -. 0 viscous damping in the model. Q,,is the motor inertia, and Kg.I K = K,, and R, are motor parameters.

SYMM. 0 A pole zero model of the slewing beam system of Figure 1 wasL1i.W. also identified. A Fourier analyzer manufactured by Tektronix.Inc. (model # 2630) was used to collect data for the experimental
model. The natural frequencies and damping ratos of the pole

Bf s_. )-) zero model are given in Table I below. This model was used in
-- Br(= R (0) the simulations to be presented since it was obtained from test

data of the system used in the experiments.

q=[ q,-. q]* OUTPUT FEEDBACK

Simulations will be presented where the identified pole

and zero model of the slewing beam (Table 1) was used as the system

44



I
TABLE 1 EXPERIMENTAL NATURAL FREQUENCIES beam tip
AND DAMPING RATIOS acceleration

IEt -e- A ifier Slewing Beam Or

I 5.0 1.3 System

2 15.4 1.4 - - - - - -

3 30.8 17 .

4 51.8 1. 
t

5 796 1.1

Iabsolute
plant, Using a potentiometer and a tachometer mounted at the .value
slewing axis and an accelerometer mounted at the beam tip. this
single input multiple output model of the slewing beam system
was identified. In the experimental slewing beam system. only --------------------------------
angular positon and angular velocity at the slewing axis were analog computer
made available to the controller. For this reason, a proportional
plus derivative (PD) controller was studied. A block diagram of FIGURE 2 CLOSED LOOP PD PLUS NONLINEAR
the closed loop system is shown in Figure 2. FEEDBACK CONTROL SYSTEM

The dashed box indicates the operations performed in the
analog computer in the experiments. In Figure 2. the motor

* armature voltage. e.. can be represented as was small, there was no visible effect on the time response of the
beam tip, however, the control effort decreased. In other words.

- -i it was possible to obtain the same time response using less energy
ea i,()w NVikdT - Nji, 1I0rIr when the nonlinear feedback was added to the control system.

•The best simulation results are given below. First, a response
with the fastest settling time which remained within the physical
constraints of the system was obtained using PD control. Then.

There are no gears present in the system. The controller was nonlinear feedback was added to the system until the most
designed to return the system from an initial angular displacement desirable effects were obtained. The angular position at the
of 300 to equilibrium in the shortest time possible. The best slewing axis versus time is shown in Figure 3. The acceleration
response was defined as the response where the tip position of the beam tip versus time is shown in Figure 4. The dotted line
settled in the shortest time without exceeding the constraints of represents the PD control and the solid line is the response of the
the motor and controller. The motor was limited to a maximum PD plus nonlinear control. The addition of the nonlinear
of 30 V and 15 A and the controller saturated at 10 V. feedback eliminated the overshoot and reduced the magnitude of

Setting k, = 0, a simple PD control system is obtained. In the acceleration at the beam tip. The settling time did not change.
however the improvements in the overshoot and accelerationE search of the ideal response. a tradeoff exists where the make the result using the nonlinear feedback control more

magnitudes of the feedback gains are limited by the constraints o f a
the system. Increasing the proportional g~ain beyond a certain favorable.
value caused the motor and controller to saturate. Also. beyond Figure 5 is a plot of the instantaneous power versus rime where

the upper curve is for the linear feedback and the lower curve isi certain values of k, the settling time of the beam tip increased, the result using nonlinear feedback. Integrating, the energy
which was also undesirable. required to execute the control maneuvers was obtained and

The nonlinear feedback consists of the absolute value of the tabulated in Table 2. A significant savings in energy resulted
angular position at the slewing axis times the angular velocity at through the addition of a simple nonlinear feedback to the

* the slewing axis adjusted by a feedback gain. The variable standard PD controller. An improved response was obtained and
(nonlinear) damping proposed here provides very little additional 30.6% less energy was used in the nonlinear feedback case.
damping at the beginning of the control maneuver. As the target The simulations presented above used a model obtained from
position is approached, the damping increases. If the best data of the experimental system and therefore, they provide theI response of the linear feedback system exhibited overshoot, it most optimistic result that the simulated observations can be
could be decreased or eliminated by increasing the nonlinear implemented on a real system.
feedback gain. k,1 . In this case, increasing k. caused the settling
time to decrease initially, then increase as k,1 became large andi hesystem exhibited an overdaniped response. If the system EXPERIMENTAL RESULTS
usinglinear feedback showed a critically damped response. then Simulations provide valuable information concerning theincrusing l incarfe sedbk thowed aitic ampe. I ispse, w hen dynamics of systems before any experiments are performed. Theincreasing k. increased the settling time In this case, when k. experimental results are presented here. First a PD controller

I
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FIGURE 3 ANGULAR POSITION AT THE SLEWING AXIS FIGURE 4 ACCELERATION OF THE BEAM TIP VERSUS
VERSUS TIME TIME

100 - TBLE 2 TOTAL ENERGY INPUT TO THE
oo MOTOR FOR THE SIMULATED 300 SLEWING

MANEUVER USING THE IDENTIFIED PLANT MODEL
80-

Linear 17.4 J
S 60 -

24 |Nonlinear 12.1l
S20 o- % red .uction 30.6 %

"0 - I t | I computer manufactured by Electronic Associates. Inc. was used
to implement the controllers. A block diagram of the closed loop

0.0 0.5 1.0 1.5 2.0 system was given in Figure 2.
Time (seconds) The controller gains were adjusted until the fastest settling time

was obtained. The time responses are shown below for the PD
FIGURE 5 INSTANTANEOUS POWER VERSUS TIME controlled slewing beam. The beam is given an angular

FOR THE LINEAR AND NONLINEAR FEEDBACK CASES displacement of 300 and slewed to 0°. A plot of angular position
USING THE IDENTIFIED PLANT MODEL versus time is shown in Figure 6. the beam tip acceleration versus

time is shown in Figure 7.
These experimental responses are comparable to the simulated

was constructed for the slewing beam and an experiment was responses. In general, the experimental result shows less
performed. Then, the nonlinear feedback was added to the damping than the simulation. The overshoot is larger and the
controller and another experiment was performed. settling time is also larger than the simulation predicted. The

It is important to note that this study was initially conducted to reason for this is that the derivative gain used was smaller than
verify through experimentation that the proposed nonlinear that used in the simulations. A smaller gain was required since
feedback control could be used to improve the time responses of higher gains degraded the performance and caused the amplifier
the slewing beam system. However, within the physical to saturate. The settling times of the angular position at the
constraints of the system, the improvements in the time responses slewing axis and of the beam tip are found in Figures 6 and 7 and
were small. A natural extension of this investigation was to they were approximately 2 seconds each.
determine the cost of the change in performance. This is where The time responses for the system using the nonlinear feedback
more significant results were found. The purpose now is to show are also shown. Angular position at the slewing axis versus time
that it is possible to reduce the energy requirements of this system is plotted in Figure 8. Figure 9 shows a plot of the beam tip
with no loss in performance. We have found through simulations acceleration versus time. Figures 8 and 9 show that the settling
and through experimentation that even when there is no visual times of the angular position and tip acceleration are
improvement in the performance as measured with respect to approximately 2 seconds.
settling time or rise time or overshoot, there is a significant The instantaneous power versus time curves for the system
improvement in energy consumption when the proposed using the linear and nonlinear feedback controllers is given in
nonlinear control is used in addition to the linear control. Figure 10. The upper curve is the result obtained from the PD

The controllers were implemented in the same manner as in the controlled system and the lower curve represents the nonlinear
simulations. The beam tip acceleration was measured and used as feedback case. The instantaneous power versus time curve was
an indicator of the closed loop performance. An EAI 2000 analog obtained by multiplying the time histories of the motor voltage
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H and current together. Integrating under the power curve gives the both the linear and nonlinear control systems implemented.
total energy input to the motor for the control maneuver. For the There was a small decrease in overshoot in the angular position
PD controlled system, the energy input was 16.3 J. The total for the nonlinear feedback result, but this is not readily apparentI energy input to the motor for the nonlinear feedback system was in the figures shown. In general, the angular position plot shows
13.7J. an underdamped response for both the linear and nonlinear

When the PD feedback gains were lowered, an underdamped feedback results. Considering the time responses of the beam tip
response was obtained which remained well below the system acceleration, the nonlinear feedback result shows a small decreaseI constraints. As a result of the lower PD gains, the nonlinear in magnitude of the peak accelerations. This is the same result
feedback gain could be set to larger values and significant noticed in the simulations.
inprovements in overshoot and settling time were obtained. Finally. consider the power plot shown in Figure 10.
T',us it was verified that the proposed nonlinear feedback control From the figure , it appears that the system using nonlinearI could be used to improve the closed loop performance of the feedback required less energy than the system using the linear
iinear system. The plots are not included here since the objective feedback alone. The peak magnitude of the instantaneous power
of this work was to find the best experimental PD controller, then input to the system decreased by approximately 10%. Integrating
add as much nonlinear feedback as possible (before saturating the under the instantaneous power versus time curves gives the total
amplifier) and compare the energy requirements of each system. energy input to the motor during the control maneuver. The

Consider the experimental time responses shown above. The results are shown in Table 3 . A 15.6 % decrease in energy
angular position and beam tip acceleration settled in 2 seconds for resulted for the system using nonlinear control than for the system

I
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TABLE 3 TOTAL ENERGY INPUT TO THE MOTOR FOR
THE EXPERIMENTAL 300 SLEWING MANEUVER

8 0 L Linear 16.3 J

60-
I Nonlinear 13.7 J

'' 40- %reduction 15.6%
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* Abstract

A robust vibration suppression design involving the use of H,. optimal control theory is studied

for a complex flexible structure. The digital control architecture involves non-colocated feedback

3 utilizing active piezoceramic actuators and position sensor data. The modal properties of the multi-

input-multi-output structure are first determined from experimental data in order to obtain an identified

I state-space model. This model forms the basis for the H.. vibration suppression design. Performance

specifications are developed which obtain adequate damping in the structure while maintaining controller

integrity without the destabilization of higher modes. A controller optimized for these Ho. performance

3 specifications is implemented on the actual test structure. Experimental structural perturbations are also

examined in order to determine the robustness of the vibration suppression design. The experimental

I study indicates that the H,, design substantially increases damping in the targeted frequency region and

conforms to predicted analytical simulations.
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U Introduction

Space structures are generally very flexible and have many degrees of freedom in both the bending

3 and torsional modes. The problem of controlling these structures has been investigated vigorously in

the past (see, e.g. [1-3]), by utilizing both active and passive damping control techniques. Previous

I work has demonstrated the potential of using active strut elements to improve the vibrational response

of a structure4 . The application of these active elements to a non-colocated structural control problem

can enhance system performance while tailoring the input/output properties of the structure.

3 The H, control strategy, as compared to classical control techniques, provides new techniques and

perspectives in designing control systems. This is accomplished by shaping the frequency response

I characteristics of a plant according to pre-specified performance specifications in the form of weighting

functions. The H. design process is chosen since: (1) it supplies robust stability to model and sensor

uncertainties; (2) it achieves performance requirements efficiently; (3) it handles both disturbance and

E controller saturation problems easily; and (4) it works not only on simple single-input-single-output

(SISO) systems but also on multi-input-multi-output (MIMO) systems5 . Therefore, frequency response

I criteria can easily be shaped to desired specifications.

In recent years the implementation of robust stabilization and control based on H, control theory

has been investigated for different structures (see, e.g. [6-7]). However, most of these studies are limited

to analytical simulations. A common procedure first involves the generation of a finite element model

for the structure. Colocated rate feedback is often implemented in order to damp certain modes and to

facilitate a reduced order model used in the H. design process. However, experimental implementation

I of colocated velocity feedback can lead to stability problems if a priori precautions of actuator dynamics

are not takens-9 . In particular, the control of low frequency modes could destabilize the intermediate

and higher modes. Also, the closed-loop response characteristics are sensitive to the plant model used

in the H,, design. If significant error exists between the nominal model and the actual system, then

I experimental results could drastically differ from analytical simulations.

I
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Recent experimental verification of applying an H. design for active vibration suppression has

U shown more practical solutions to this control problem. Fanson et a12 have demonstrated that a non-

colocated robust control approach can provide satisfactory performance characteristics in structures with

and without passive damping. However. differences exist between experimental results and theoretical

responses. due to significant error between the nominal (finite element) model and the actual structure.

Stroughton and Voth' 0 have shown that a colocated robust control design for a highly damped structure

could be developed. This design is insensitive to fairly large errors in specific structural modes.

However. the controller is of high order which imposes extensive computational burden. The intent

3 of this paper is to develop a low order H, controller which provides structural damping in a flexible

structure using non-colocated sensors and actuators. Non-colocated control of a flexible structure is

difficult to achieve since low damping and non-minimum phase characteristics are inherent in the system.

I In recent years, several time domain techniques have become useful for structural testing (see,

e.g. [11-13]). In most circumstances, time domain identification algorithms have advantages over

conventional frequency domain algorithms. including: higher testing speed, better resolution of modes

in high modal density bandwidths, and lower cost of instrumentationi 4 . Therefore, time domain

techniques for flexible structure realization and identification are useful in determining state-space

I models, which are required for the H,, control design. In most circumstances, the identification

of SISO models from experimental data can easily be obtained. However, since transmission zeros

impose strict mathematical constraints on system matrices, minimal realizations of MIMO systems are

usually difficult to obtain experimentally. Possible sources of error include: sensor and instrumentation

noise, slight nonlinearities inherent in the structure, and/or background vibration. Therefore, for system

identification of flexible structures, multiple experiments are usually performed in order to improve

mathematical models. However, this requires extensive computational time and effort.

The identification algorithm used in this paper identifies accurate (near minimal) realizations of a

I structure from only ,ne set of experimental data. This algorithm combines an optimal state estimation

I
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I
routine, known as the Minimum Model Error (MME) estimatorL5-' 6 . with the Eigensystem Realization

Algorithm17 (ERA) in order to provide robust features for MIMO identification. In several previous

studies, this algorithm has been successfully applied to numerous applications, including; e.g.. nonlinear

estimation1 8, and robust realizationiidentification of mode shapes in damped structures1 9 -'0 .

The A-synthesis approach~l utilizes robust performance techniques in order to alleviate deviations in

the nominal model. However. this methodology usually results in high order controllers if the nominal

U model has a large number of uncertainties. Also, the choice of uncertainty weights requires some

I level of iteration and intuition in order to achieve the required performance characteristics. The design

procedure in this paper involves the determination of an accurately identified model from experimental

I data, so that the use of uncertainty weighting can be minimized.

Robustness, with respect to parameter and structural changes, is an important aspect to any control

design. The use of multiplicative and additive uncertainty singular value relationships can help determine

I which modes are sensitive to structural variations 5 . Of particular interest is the suppression (damping)

of lower modes without the destabilization of high frequency modes. The aid of accurate model

I representations, using the MME/ERA identification algorithm, can lead to a clearer coherence between

experimental results and theoretical predictions. Therefore, model and structural uncertainties can be

studied in order to test the robustness and sensitivity of the H, controller on the closed-loop system.

3 The organization of this paper proceeds as follows. First, a brief overview of the H. control theory

and design methodology is summarized. Then, the experimental implementation and system hardware

I for the structure are shown. The identified model is then realized into state-space form by using

I the combined MME/ERA identification algorithm. This model is incorporated with H, performance

specifications for vibration suppression and controller frequency-response shaping. Two designs are

I presented. One design stresses active damping in the first two modes of the structure, while the other

design stresses robust stability over a higher system bandwidth. Each of these control designs are

E experimental implemented and results are compared to theoretical computer simulations.
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I
H. OverviewI

This section gives a brief overview of the fundamental theory of H. control design. The H.

norm of a transfer function matrix represents the maximum energy in the output signal from the transfer

function due to any input of unit energy. Therefore, minimizing the H. norm of a transfer function is

I equivalent to minimizing the energy in the output signal due to the inputs5 .

In order to demonstrate the fundamental aspects of H,' control theory, consider a system with

controller F(s) and plant G(s). The sensitivity function (I - FG)-' is defined as the transfer function

U from the output disturbance D(s) to the plant output Y(,). Then, if a stabilizing controller (F) is

chosen such that .(I - FG)-' is minimized, the energy of the plant output due to a disturbance

of bounded energy is minimized. Similarly. the output controller function F(I - FG)-1 is the transfer

function from the reference input R(s) to the controller output U(s). Minimizing F(I - FG)
constrains controller output energy and also maximizes allowable additive plant uncertainty-. Finally.

I the complementary sensitivity function FG( I - FG)- is the transfer function from the reference input

to the plant output. Minimizing FG(I - FG)--': tailors plant output energy to input reference

commands. The H/- design process considers these closed-loop performances to pre-specified weighting

I functions, denoted as -,T'T:(jw), tl(J), and W3(jw). The H,0 optimization problem is to find a

stabilizing controller F(s) that minimizes:

WF(I + FG)-1I .3FG(I - FG) 00

I
Equation (I) also shapes the frequency loop transfer function L(s) = G(s)F(s) by penalizing the

I sensitivity function to reject plant disturbances, and high frequency L(s) by penalizing the comple-

mentary sensitivity to cope with model uncertainties, while maintaining controller output to desired

specifications. The solution of the H0 control problem involves an iteration on the -f term of the

I5
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specified disaurbance weighting function. As - is increased the sensitivity function (S(s)) decreases,

I while the complementary sensitivity function ((I - 5)) approaches the IV;" weighting function.

I HH Design with Active Damping

U The mixed sensitivity approach-2 in Equation (1) shows a clear trade-off between performance and

I robustness of a multi-variable system. However. this methodology does not enable a practical design
approach for active damping, since plant dynamics are usually canceled with compensator dynamics.

I This section expands upon the fundamental H. control formulation in order to provide a means of

incorporating active damping into a structure with inherently low structural damping ratios (well below

0.50% critical).

Consider the block diagram of a MIMO plant in Figure 1. Let the MIMO plant (G(s)) be partitioned

into "disturbance" (Gl(s)) and "plant/actuator" (G2 (s)) transfer. functions, i.e.:I
Y(s) = GI(s) Uja(s) + G2 (s) U2(s) (2)

I
The partitioned transfer functions have ideally the same characteristic polynomial, and differ only in

E numerator dynamics. The inputs in Figure 1 are: U1.(s), any disturbance input into the structure (non-

colocated with the actuator. and Ulb(s), a fictitious input used to simulate the sensor uncertainty. The

"augmented" plant with control compensator is shown in Figure 2.

Figure I Multi-Iaput-Multi-Output Block Diagram

I
Figure 2 Augmented Closed-Loop System
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Thbe open-loop transfer function matrix of the augmented plant is:

Ylb 0 0 It' 2  (3)

I I U? -

II L Y2 J LG, l G2 i .

where u, and y2 are controller output and input, respectively. The sensitivity function between the

disturbance input and the plant output now becomes:

e G,

uia I- FG 2

Therefore. active damping can be accomplished. since pole locations of the closed-loop transfer function

in Equation (4) are shifted by the controller (F) and plant/actuator transfer functions. From Figure 2.

I the characteristics of the weighting function W1 (s) determines the amount of damping and frequency

response dynamics of the closed-loop systems. The complementary sensitivity (sensor uncertainty)

function and controller/limiter function remain unchanged from the previous section. Also, once the

augmented plant in Equation (3) is formed, numerical algorithms for the computation of the optimal

controller can be utilized. This controller solution is determined by the two-Riccati algorithm: 3 using

the Robust Control Toolbox 24 for Matlab.

Experimental Hardware

A clamped frame serves as a testbed for the experimental Ho, control implementation. The structure

consists of 39 elements connected at 18 nodes. AUl but two of the structural members are made from

thin-walled circular aluminum tubing with an outer diameter of 0.25" and a wall thickness of 0.05'.

I Each member is pinned and bolted into the nodes to eliminate looseness in the jo" -ts. The frame

I7
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is configured in a planar fashion so that the only significant deformation occurs perpendicular to the

E structure (see Figure 3).

Figure 3 Flaibk Frme Tubd

I Two of the structural members are flat aluminum bars layered with piezoceramics. Either of these

struts can excite the frame since a voltage applied across the piezoceramics produces a moment on

the frame. The strut on the bottom of the frame has four ceramics glued to it and serves as the

control actuator. The other flat strut is configured with the same number of piezoceramics and acts as a

disturbance source. Each of these active members has a thickness of 0.25 and a width of 1.0625 The

I piezoceramics are Model G-1195 from Piezo Electric Products with dimensions 2.5' x 0.75' x 0.01",

The sensor is a Philtec (model 88NE3) optical displacement sensor placed near node 18 at the

free end of the frame. This sensor is non-colocated with both the control actuator and the disturbance

source. Frequency analysis and data acquisition are performed using a Tektronix 2630 Fourier Analyzer.

Control laws are implemented on an Optima 3 digital controller, sampling at a rate of 500 Hz. This

I sampling rate allows the maximum allowable performance for the H. controller design. Finally, two

-- Hewlett Packard (model 6924A) amplifiers are used to magnify the control and disturbance signals.

Robust System Estimation and Identification

An accurate state-space model of the testbed is required in order to perform an optimal control

I design. In this work, the Eigensystem Realization Algorithm 17 (ERA) is combined with the Minimum

i Model Error 15 (MME) optimal estimator in order to update a finite element (nominal) model to conform

with experimental data. The finite element model provides a fairly accurate representation of the frame at

I the lower modes, as shown in Figures 4 and 5. However, the higher modes are not modeled accurately.

This could cause the destabilization of higher modes when implementing the controller onto the actual

m structure.

Figure 4 ExperimentaL Analytical, and Identified Magnitude Plots (1st input)

m Figure S Experimental Analtlical. and Identified Magnitude Plots (2nd input)
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The ERA method is effective for developing accurate state-space models when noise levels are low

3 in nature. However. difficulties arise when higher noise levels are present in the output measurements.

These effects can make a minimal state-space model of a M.M0 system extremely difficult to obtain,

since transmission zeros also constrain the realization. For the identification of the testbed the ERA is

I able to identify the natural frequencies and damping ratios fairly accurately using an average of three

different time histories. But. a near minimal MIMO realization of the testbed could not be obtained.

I By combining the ERA with the MME estimator, which utilizes the minimal state-space MIMO finite

element model, improved modal identification is achieved with near minimal MIMO realizations.

In this section. the MLME algorithm is briefly reviewed for the case of linear time-variant state-

I space models. A more detailed derivation of the algorithm may be found in Reference 15. The MME

algorithm assumes that the state estimates are given by a nominal (pre-specified) model and an un-

I modeled error vector, shown as:

I •~~.4t , .. ,(t.) (t),- B,,,(t),.,(t).-d(t)

(5)
It = C,(t)k(t) - D,(t) (t)

U where Am(t), Bm(t), Cm(t), Dmn(t) are time-variant nominal state matrices from the finite element

I model, u(t) is a (p x 1) known forcing input, d(t) is an (n x 1) un-modeled (to-be-determined) model

error vector, _i(t) is the (n x 1) state estimate vector, and _(t) is the (q x 1) estimated output. For

the remainder of this paper, the state-space (model) matrices are assumed time-variant, but are shown

without the time argument (t).

I State-observable discrete time-domain measurements are assumed for Equation (5) in the following

3 form:

I '(tk) = gk(_(tk), tk) + V.k (6)
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where (tk) is an (q x 1) measurement vector at time tk, 9k is an accurate model of the measurement

process, v represents measurement noise, and m is the total number of measurement output sets.

The measurement noise process is assumed to be a zero-mean. Gaussian distributed process of kmown

covariance, R.

In the MME, the optimal state estimates are determined on the basis that the measurement-minus-

estimate error covariance matrix must match the measurement-minus-truth error covariance matrix. This

condition is referred to as the "covariance constraint", approximated by:

{ (t tk) tk) - y(t! T} R (7)

Therefore, the estimated measurements are required to fit the actual measurements with approximately

the same error covariance as the actual measurements fit the truth.

A cost functional, consisting of the weighted sum square of the measurement-minus-estimate

residuals plus the weighted sum square of the model correction term, is next minimized:

k=1

_ -d (8)

S Td(U)Wd(') dr

where W is a weight matrix determined by satisfying the covariance constraint. If the measurement

residual covariance is larger than R, then the measurement estimate is not close to the actual system

measurements. Therefore, W should be decreased in order to less penalize the model correction (I(t)).

However, if the estimate covariance is to low, then W should be increased in order to allow more

model correction. The model error corrects the finite element model in order to estimate the output

10



using experimental measurements. Therefore, the model error term tends to update the finite element

model to conform to actual system responses.

The necessary conditions for the minimization of J. with respect to the model correction term 1(t).

leads to the following Two-Point-Boundary-Value-Problem TPBVP15:

I(t) = .- (t) -Brn(t)- - (t)

A't) = (t)

-, . c1--'F- A(t)IA(t:) = ,(t-) - 2 CR - tk)-

where A(t) is a vector of co-states (Lagrange multipliers). Also, the co-state equation is updated at

each measurement interval. The boundary conditions are selected such that either A(to) - Q or ._(to) is

specified for the initial time and either A. = _or x,(tf) is specified at the final time. The solution of

the TPBVP involves the determination of a linear Riccati equation and a linear differential equation 16

Modified Eigensystem Realization Algorithm

The ERA method is a modal synthesis technique based on the concept of singular value decom-

position (see Reference 17 for more details). This procedure is capable of accurately identifying the

model properties of systems involving perfect or low-noise measurements. In this section the ERA is

expanded to include the state and output estimates given by the MME estimator.

Consider the discrete-time linear dynamic equation:

1_.(k - 1) = .-4x(k) ÷ B u(k)

y(k) = CZ(k) Du(k)

where z is a (nx 1) state vector, u_ is a (p xl) input vector, y is a (qx 1) output vector, and A. B,

and C are (nxn), (rnxp) and (qxn) constant matrices, respectively. A solution to Equation (10) is

I
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I
given by the Markov parameters from a unit impulse response:

Y(k) = C.4--'B X(K) = .4k-lB (1)

The first step in the modified ERA is to form an (r x s) block Hankel matrix composed of the impulse

response data from the MNME:

[ Z(k.) ... Z(k - m,- 1 )
Sg~~~(k - 1)= ."(2

L Z(k - 1,1) ... Z(k + 1,_1 -.- mi-,)]

Iwhere r and s are arbitrary integers satisfying the inequalities rq >_ n and sp >_ n, and

Ii (i = 1,2 ... , r - 1) and my (j = 1.2. s - 1 ) are arbitrary integers. The vector Z consists

of the estimated output and states given by the MME estimator, i.e. z = L_ yj . The singular

value decomposition of H may be expressed as H = PDQ. The ERA then forms the discrete-time,

reduced-order model realization of dimension n in the following form:I
.4 = D,, pTH(1),OD /2I B- ..¢"QE

(13)

C-Eq PnD1/2

D = Y(O)I
where P, and Q,, are formed from the first n columns of P and Q from the singular value decomposition,

and Dn is the diagonal matrix of singular values. ET is I,, 0], and ET is [1q, 0]. where Ip and Iq are

identity matrices of order p and q, respectively, and 0 is the zero matrix.

The modal damping ratios and damped natural frequencies are calculated by observing the real and

imaginary parts of the eigenvalues, after a transformation from the z-plane to the s-plane is completed' 7.

The physical mode shapes of the system are determined using the realized eigenvectors (,P) of the ERA
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I
state matrices. The physical mode shapes are given by T = C,, 1 . Physical state matrices can be

determined by using this mode shape matrix and the continuous eigenvalue matrix:

e ~~ 0 .. 0
=1*

0 . 0
A.,,, = 'k BM = 4 . . .B (14)

i 0 ( . .. -. ,--

where A is the continuous eigenvalue matrix. derived from a discrete to continuous eigenvalue transfor-

I mation of the ERA state matrix. Therefore. an identification of system parameters is possible by using

the physical state matrices shown in Equation (14).

Combined Realization Algorithm

The combined MME/ERA algorithm enables the realization of a MIMO model in the presence of

i significant model error. process noise, and measurement noise. In order to obtain impulse response

data, the test structure is excited using a random input with a bandwidth of 0-50 Hz. An inverse and

regular Fourier transformation is applied on this data to obtain the impulse response time histories. Also.

only one set of data for each input is taken for the identification. Therefore, extensive and repetitive

computational analysis is attenuated by using the combined MME/ERA method, since averaging of

i multiple sets of data is not needed. This is an important aspect due to the difficulty of obtaining

multiple sets of experimental data for orbiting space structures.

A block diagram illustrating the steps of the robust realization algorithm is shown in Figure 6.

i First, the finite element model is used as the assumed model in the MME estimator. Next, the MVIME

estimation problem is solved, using the covariance constraint to determine an optimal weighting matrix.

i The continuous estimated state histories produced from the MME are then re-sampled. Finally, these

estimated time histories are processed. in order to realize an accurate model of the system parameters,

using the modified version of the ERA. These steps may be repeated if necessary in order to further

I
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3 smooth the measurements and improve the identification process. However, accurate identification

3 results for this testbed required only one iteration through the MME estimation process.

Figure 6 Block Diagram of the Combined Realization Algorithm

U The modal properties for the first eleven flexible modes of the frame are shown in Table 1. The

frame has all of the characteristics of a large flexible structure. It is modally dense, with eleven modes in

the first 60 Hz bandwidth. Also. inherent damping in the structure is low, with modes having damping

3 ratios less than 0.50%. The combined algorithm also identifies the frequency response characteristics

of the in-room fluorescent lighting at about 60 Hz.

3 Table I Poles of the Identified Model

Mode -a (Hz) • (%)

1 1.91 0.46

4.00 0.25
10.14 0.21

4 15.80 0.20

, 23.10 0.13

6 29.67 0.17

3 7 37.06 0.13

8 48.36 0.45

9 49.00 0.36

10 54.55 0.25

11 56.08 0.27

lights 60.00 0.003 real 0.20

Magnitude Bode plots of the MME/ERA identification results are compared to experimental fre-

quency response characteristics in Figures 4 and 5 (also shown is the finite element model frequency

plot). The MME/ERA produced a near minimal realization (2 4th order) for the first eleven modes.

This MIMO model is extremely accurate with good agreement to experimental frequency response re-

I sults. Also, the modal amplitude coherence' 7 (MAC) factors are substantially improved when using

I '4
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I
the combined MME/ERA algorithm. Therefore. this MIMO state-space model forms the basis for the

I robust control design.

I Robust Control Design

I In this section the concepts and limitations for the selection of the proper weighting functions used

in the A, design are presented. The appropriate selection of weighting functions over the desired

frequency range is not explicitly related to the performance objectives in a straightforward manner.

Numerous trial selections are usually required in order to obtain desired performance objectives.

The goal of the Hc design is to reshape the open-loop dynamics in order to provide vibration

I suppression in the frequency region considered. Therefore, the sensitivity function in Equation (-4) is

utilized to reshape these desired frequency characteristics and provide adequate damping to the structure.

The complementary sensitivity function is used as an uncertainty weight for the sensor output. After

careful consideration and numerous trials, a set of proper inverse weighting functions is obtained. The

inverse weighting functions for the sensitivity and complementary sensitivity functions are shown in

I Figure 7. The t 1.71 1 function weights the sensitivity function along the zero decibel region over a desired

frequency. Damping can be added to the system by decreasing the overall magnitude of this weighting

function (accomplished by increasing 7 in the control solution formulation). The W-"1 frequency

function invokes a higher weight at lower frequencies with a first order roll-off at higher frequencies.

This limits the low frequency noise from the sensor so that it is not amplified through the controller.

Figutre i Magnitude Plots of the Inverse Weighting Functions

The inverse weighting function for the controller output is also shown in Figure 7. The desired

characteristics of the controller is to obtain an attenuated controller response at lower and higher

I frequencies. This results in a third-order weighting function that simulates a band-pass filter. The

choice of this weighting function insures that the controller does not destabilize higher frequency modes

and also attenuates control signals at lower frequencies.

I15



U The selection of these weighting functions provides adequate damping in the closed-loop system.

I An optimal H, controller solution. using the - iteration technique, is determined with these weighting

functions. The controller is found to oe proper and rational. Since the augmented state-space model.

I derived from Equation (3). is 2 9 1h order. the subsequent H, controller is also 2 9 1h order. The Schur

balanced model reduction method 24 is used to reduce this controller. The size of the resulting controller

is 15 1h order. The frequency response characteristics of the control design is shown in Figure 8. The

controller size is the maximum allowable order for the digital computer implementation. The next

section summarizes the closed-loop results and shows a comparison between analytical simulations and

I experimental results.

Figure 8 Magnitude Plot of the Robust Controller

Experimental Control Results

In this section, the H_, controller is experimentally implemented .onto the testbed in order to test

I the validity of the identification and control techniques previously described. Results show that the

performance objectives can be met with a significant increase in damping for more than one mode.

E Model uncertainties are also experimentally investigated and the results are compared to theoretical

i predictions.

The initial HO, controller design (shown in Figure 8) is found to substantially increase the damping

I in the first two modes without the destabilization of higher modes. Digital implementation of this

controller onto the testbed increases the damping in the first mode (bending) by a factor of about 14

I ((,, = 6.32%) and the second mode (torsional) by a factor of about 30 ((,, = 7.5 1%). These results are

i summarized in Table 2 (the table also gives results for perturbed systems and a second control design,

each described later). Slight damping is also provided in higher frequency modes. The closed-loop

I transfer function between the disturbance input and position sensor for the first two modes is shown in

Figure 9. The Ho, controller is able to significantly provide active damping in the targeted frequency

I region. Figure 10 shows the position sensor output to a random noise input (bandwidth of 0-5 Hz)

I
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applied at the disturbance strut. Both open-loop and closed-loop responses are shown. Without the

I H., controller, the vibration of the frame does not settle out for well over 80 seconds. Closing the

loop not only attenuates the level of vibration by over 75%, but the increase in damping also reduces

the settling time to less than 4 seconds. In fact. the closed-loop response has a magnitude near to the

noise level of the sensor.

Ta-ble 2 System Results for Two Controller Designs and Perturbations

I System Nominal I' Perturbed 2 nd Perturbed

Initial 1) 1.91 0.46 1) 1.95 6.32 1) 1.95 6.55 unstable

Controller 2) 4.00 0.25 2) 4.41 7.51 2) 4.44 6.57 unstable

Second 1) 1.91 0.46 =,1.91 1.94 1) 1.91 1.93 1) 1.59 1.56

Controller 2) 4.00 0.25 2) 4.12 2.56 2) 4.11 2.50 2) 3.93 2.62

Figure 9 Closed-Loop and Open-Loop Transfer Function Magnitude Plots

Figure 10 Closed-Loop and Open-Loop Time Responses

I With the nominal design complete, model and structural uncertainties are next studied in order to

test the robustness and sensitivity of the H,, controller on the closed-loop system. This is accomplished

by varying the modal properties of the frame, while utilizing the controller designed for the nominal

system. The net effect on the structure is to incorporate multiplicative perturbations into the system.

The H, norm of a system can be used to measure the stability margimns of the nominal control design

I in the face of these perturbations. Applying small gain theory5 to this uncertainty case, a sufficiency

test for stability robustness with a multiplicative uncertainty input is given as:

im(s)) < (15)#(A~~s))< 6•F(s)(i - G(s)F(s))J-I

where --%re(s) denotes multiplicative uncertainties and j- denotes the maximum singular value over
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the desired frequency region. Therefore. a multiplicative uncertainty bound over all frequencies can

be used to determine which frequency is most sensitive to multiplicative perturbations. A plot of the

theoretical uncertainty bound for the initial control design using the nominal plant is shown in Figure

1 11. From this figure. the frequency which is most sensitive to plant perturbations is the 23 Hz mode.

Therefore, this mode is most likely to become unstable in the face of perturbations on the frame.

Figure 11 Theoretical MultipUcative Lncertainty BoundI
Multiplicative perturbations are accomplished experimentally by varying the modal properties of the

frame, while utilizing the initial (nominal) control design. The natural frequencies and mode shapes are

altered by placing weights at various points along the frame. These weights have a mass of approximately

3-5% of the mass of the total structure. The first perturbation is to place the weights on nodes 4 and

I 5 on the restbed (see Figure 3). The second perturbation is to place the weights on nodes 16 and 17

I on the testbed. The resulting changes in natural frequencies for these perturbations are shown in Table

3. The first perturbation has an average deviation of about 10% from the nominal natural frequencies.

I The second perturbation has an average deviation of about 15%. The most significant changes occur at

higher frequencies. Therefore, the nominal H,, controller can be tested for stability and performance

E using the experimentally perturbed systems. The controller is first used with the weights on nodes 4

and 5. Results for the closed-loop damping ratios are shown in Table 2. Even with an average of 10%

changes from the nominal system, robust stability aid performance is achieved, with equal damping

I ratios as the nominal system. osed-loop results for the second perturbation show that the system

becomes unstable. However, as raeory predicts from the multiplicative uncertainty plot (Figure 1I). the

I closed-loop system becomes unstable at a frequency of about 23 Hz (shown in Figure 12). Therefore,

with the aid of accurate system models, the sensitivity of the H. controller can be investigated and

adjusted in order to compensate for perturbations without implementing the controller to the actual frame.

Figure 12 Experimental Instability using the First Perturbed System

I I
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U Table 3 Natural Frequencies of the Perturbed Models

I Mode . (Hz) d (Hz) ., (Hz)

number (nom.) (Ist pert.) (2nd pert.)

1 1.91 1.88 1.59

2 4.00 4.00 3.88

10.14 9.78 9.41

4 15.80 15.28 15.03

i _ _ 23.10 22.66 21.38

6 29.67 25.09 24.03

7 37.06 29.03 27.97

8 48.36 32.12 35.47

3 9 49.00 44.25 39.72

10 54.55 47.25 ,46.16I
The second controller design provides more robust stability, but decreases performance slightly.

This controller is derived by simply decreasing the - term during the Hr solution. The experimental

closed-loop results for the nominal, first perturbation, and second perturbation systems are shown in

Table 2. The magnitude frequency response and time responses to a random input are also shown

i in Figures 9 and 10, respectively. The nominal design increases damping by a factor of about 4

in the first mode and by a factor of about 10 in the second mode. This damping is less than the

first controller design; however, the multiplicative uncertainty bound allows a greater perturbation at

23 Hz, as opposed to the initial controller design. Closed-loop results indicate that robust stability

i and performance is maintained for both perturbation systems (see Table 2). The second perturbation

system remains stable and has approximately the same increase in damping as the first perturbation and

nominal design, using the second controller.

i The control of the frame is next tested by placing the sensor at various nodes along the frame. The

sensor is next mounted at node 15 and the H,, control design is repeated. Results indicate that significant

i damping is again achieved in the first two modes with good agreement between theory and experiment.

I
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I
The control design for all cases involved SISO control of one node. The final control design is a MIMO

controller with sensors placed at nodes 15 and 18. Theoretical results indicate that no significant increase

in damping is achieved for the MIMO design. This is most likely due to the frame being controlled

only by one strut. If multiple controller actuators are used. then greater possibilities of ML%40 control

I can be achieved. The MME/ERA identification algorithm is extremely useful for designing MfvlO

feedback loops, since accurate (near minimal) realizations of MIMO systems are possible. Therefore.

the extension to more complicated flexible frames can easily be accomplished using H, control.

Finally, the increase in system performance is achieved without the use of any supplementary low

authority) control. In many circumstances, passive damping elements and colocated control loops are first

I implemented in the design. The H, controller is then used to further improve stability and performance.

The results in this paper illustrate that system performance can be significantly improved and maintained

in the face of modest perturbations, without the use of supplementary control. Therefore, eliminating

the need for supplementary active or passive damping decreases the complexity of the overall control

I problem.

* Conclusions

A controller using H, optimal control theory was designed and experimentally implemented to

provide vibration suppression on a flexible frame structure. Time domain data was first used to obtain

I an accurate MIMO model. The identification algorithm combined the Minimum Model Error estimator

with the Eigensystem Realization Algorithm in order to update a finite element model to conform with

experimental data. Eleven flexible modes were found to be inside the frequency range of 0-60 Hz.

Hall with damping ratios of less than 0.5% critical. This MIMO model formed the basis for the H,

control design.

I A formulation designed to add active damping to the structure was determined for the control

design. The closed-loop response characteristics of the structure was shaped by careful choice of three

weighting functions. The first weight constrained sensor noise uncertainty. The second weight was

* 20
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I
designed to roll-off the controller at low and high frequencies. The last weight controlled the amount

of active damping in the structure. Experimental implementation of the Hc controller on the flexible

frame validated the control formulation. Two control designs were considered. The first design provided

significant damping in the first tw. modes. but was sensitive to structural perturbations. The second

I design provided damping to a lesser degree, but supplied robust stability over significant perturbations

to the structure. Results also indicate that with accurate model representations, the H, controller can

provide not only robust stability., but robust performance to modest system perturbations.

The difficult problem of designing a non-colocated controller for a flexible structure was handled

well using H, control theory. The framework in which the controller was designed was greatly

simplified due to the accuracy of the identified state-space model. Reducing the complexity of the

problem allowed a physical basis for choosing weighting functions. Therefore, the amount of effort

3 needed to obtain and implement an H,_ controller was greatly decreased.
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ABSTRACT

A testbed consisting of a flexible frame slewed by a dc motor is modeled for
active vibration suppression. This presents a challenging control problem since
the primary action of slewing induces both bending and torsional vibrations in
the structure. Inserted into the frame are two active members that can be used
as colocated sensor/ actuators in feedback control loops. A theoretical study is
conducted to obtain control laws that simultaneously slew the frame and
suppress the residual vibrations. Simulation results indicate that the dc motor is
effective in slewing the frame and suppressing the bending motion but not the
torsional motion. Hence, the torsional vibrations are suppressed using the active
members in colocated feedback loops.

INTRODUCTION

Slewing a flexible structure involves vibration suppression as well as accurate
pointing and tracking. For simple structures such as flexible beams, both of
these objectives can be obtained using a feedback loop consisting of the slewing
actuator and angular rate and position sensors (Garcia [1]). A variety of control
laws have been presented, some based on optimal control theory (Juang, et al
(2]), others designed with Lyapunov methods (Junkins, et al [3], Fujii, et al
[41). For a structure that exhibits more complicated dynamics, slewing the
structure and suppressing vibrations calls for a more sophisticated control

203



I

I system. The increase in controller complexity is necessary since it is likely that
not all of the flexible modes are easily controlled using the slewing actuator. A
straightforward approach is to take advantage of recent developments in smart
structure control and integrate active members into the slewing structure.
Integrating active members into the structure provides additional sensors and
actuators for feedback control and has been shown to improve performance(Garcia and Inman [5]). Vibration suppression and accurate pointing isaccomplished using Multiple-Input-Multiple-Output (MIMO) control.

I This approach is taken in the design of a control system for a slewing flexible
frame. This is a challenging control problem since the slewing motion excites
bending and torsional vibrations in the structure. Previous results illustrate the
need for multiple control loops, since the torsional motion is difficult to
suppress with the slewing actuator (Leo and Inman [6]). The ability to
implement MIMO control is provided by replacing two passive members of the
frame with active elements. The active members can be used in conjunction
with the slewing actuator in non-colocated control loops, or they can used as
independent colocated sensor/ actuators. This paper discusses the merits of each
approach with regards to design, robustness, and performance.

MODELING OF THE SLEWING FRAME

The slewing frame is modeled as a set of second order ordinary differential
equations of the form

f (t) 1 1 r(r) + 2g ( D +9(t) J,,., .6 (1)

where M, D, and K are the (n+1) x (n+l) mass, damping and stiffness matrices
derived from a finite element model consisting of the first n elastic modes of the
frame. The modal coordinates are denoted r(t) and the rotation of the structure's
rigid body about its axis is 0(t). The overdot represents differentiation with
respect to time. Three inputs to the system exist: the slewing actuator and two
active members. The (n+l) x 1 forcing vectors for these actuators are B., Bmz1 ,
and B,, respectively. The slewing actuator is a dc motor with armature current
i(t), v1 and v., are the actuator voltages across the active members. The input to
the motor is the armature voltage, e,(t). The relationship between the input
voltage and the armature current is

d

The parameters L. and R. are the inductance and resistance of the dc motor, and
Kb is the back-emf constant. The angular rate of the slewing frame is denoted

6,(t). It differs from 0(t) because it is the summation of the rigid body rotation
and the rotation due to flexibility. The sensor outputs of the system are the
angular rate and position of the frame, 6,(t) and 0,(t), and the output signals of
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the active members, v, ,( t) and vp,2 (t). The outputs are can be related to the
system coordinates and inputs by the expressions

S.()C, {r(t)} (t)C. {i(
_, 0,(t)/ 0, (t)l

19(r) #) B + (3)

where C. and C, are the 1 x (n+l) output vectors corresponding to the angular
position and rate, respectively. Since each active member is a colocated sensor/
actuator, the output vector is simply the transpose of the input vector. The
impedance mismatch between the active members and the structure is modeled
as a feedthrough term, Kf&. coupling the output directly to the input. The
piezoceramics on the active members are coupled to ground through a resistor,
thus creating a high-pass filter. The sensor signals from the active members,
v,1(t) and v,2(t), are related to v. I(t) and v.. 2(t) by the following expression

v,i (S) = rs +V,,(s) = G,(s)V,.(s) (4)
-rs +1

where s is the Laplace operator and r, is the circuit's time constant. The model
is displayed graphically in Figure 1. A complete derivari-nn of this model is
presented in Leo [7].

*~a -KbQp%

Figure 1: Block diagram of the slewing frame model.

In Figure 1, the following notation is used:

s L.s + R. (5)

3 G--(s) = {MS2 + Ds + K}-'
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THE SLEWING FRAME TESTBED

A frame slewed by a dc motor is presented as a testbed for experiments in the
control of slewing flexible structures. Due to its configuration, the action of
rotating the frame about an axis causes both bending and torsional vibrations.
The frame consists of individual elements of thin-walled circular aluminum
tubing. Each member is 0.635 cm in diameter and has a wall thickness of
0.124 cm. The elements are joined at octagonal nodes that are also made of
aluminum. Each member is pinned and bolted into the node to eliminate
looseness in the joints. The frame is mounted onto the larger steel shaft by
bolting two of the nodes into aluminum clamps.

The slewing actuator is an Electro-Craft 670 dc motor. The shaft of the motor
is coupled to a steel shaft with a diameter of 0.635 cm, which in turn is
connected to another steel shaft of diameter 1.270 cm. The smaller shaft can
easily be removed so that gears can be placed between the motor and the
structure. A tachometer housed inside the motor measures angular rate, and a
potentiometer attached to the bottom of the larger steel shaft produces a signal
proportional to angular position. The whole slewing rig is attached to a large
concrete block that serves as ground. Figure 2 is a diagram of the slewing
frame testbed.

Slewing AxisI
DC Motor and Tachometer

Active Member I
Shaft Coupler

-0.635 cm Steel

%dzs for

I no eternt Ball Bearings
and Pillowblock

Active Member 2

-03 meters
Figure 2: Slewing frame testbed showing the location of the active members,
angular rate and position sensors, and the dc motor.

Two of the passive elements of the frame have been replaced by active
elements. The active members are flat aluminum bars that have four strips of
piezoceramic material bonded to each side (see Figure 3). The piezoceramics
are model G-1 195 from Piezo Electric Products and have dimensions 6.350 cm
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x 1.905 cm x 0.025 cm. Each ceramic is glued to the member with Duro
Depend 11 adhesive. All of the piezoceramics are electrically coupled to one

_ another to create one sensor/ actuator. On both active members, the aluminum
beam is used as a ground for the underside of all the ceramics.

The parameters for the dc motor and the active members are listed in Table 1.

Table 1: Parameters for the slewing actuator and active members.

back emf constant K. 0.11298 V/rad/sec
feedthrough Kra 0.024

_ motor inductance L. 0.002 H
motor resistance Ro 0.63 Ohms
piezo thickness t,. 3.175 e-3 m

member thickness t, 2.54 e-4 m
circuit time constant r, 0.275 seconds

piezoceramics aluminum beam

I _ _ _ _ _ _ _ _ _ _ _ _" _ _ __,_

r cMember acts a?4jround3 Electrical co g for piezoceramics

Figure 3: Piezoceramic active member.

CONTROL SIMULATIONS

The objective of this study is to develop control schemes for the slewing frame.
The primary action of the frame is a rotation about its slewing axis, which, due
to the flexibility and low inherent damping of the structure, induces vibrations
that do not decay for a considerable amount of time. Using the model
developed in this paper, control laws are designed that simultaneously slew the
frame and suppress the vibrations. The simulations involve designing a
controller that provides satisfactory step response. Important performance
criteria include minimizing the settling time and overshoot of the frame's hub
position, as well as suppressing the structural vibrations induced during the
maneuver.

Consider the case of designing a controller to obtain satisfactory step response
of the frame's hub position. The input command to the motor corresponds to a
15" slewing maneuver. Three designs are studied. The first is a simple
Proportional-Derivative controller using the slewing actuator and angular rate
and position feedback. The second control law has a non-colocated control loop
using active member 2 in addition to the PD compensator. The final control
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scheme involves two separate colocated controllers, one loop closed around the
motor and the other loop closed around active member 2. All designs are
performed using the nominal model shown in the previous section. Robustness
is checked by closing the control loops around models that have slightly higher
and lower natural frequencies [see Table 2]. While not an exhaustive search,
this check indicates how well the controllers can tolerate uncertainty.

Table 2: First three natural frequencies (in Hz) for the nominal model and the
perturbed models used for stability analysis during the simulations.

I Nominal Model 1 Model 2
1st torsional 4.21 4.33 4.09
1st bending 7.17 7.33 7.00
2nd torsional 13.90 14.30 13.53

Proportional-Derivative Control
The procedure for designing this type of controller is rather straightforward,
since both angular rate and position measurements are available. The form for
the control law is

e(t) = K,[O,, - O(t)]- K,6(t) (6)

where O(t) and 0(t) are the outputs of the potentiometer and tachometer,
respectively. The reference voltage, Oe, commands a 15' slew. After iterating
on the controller gains, values of K. = 2.5 and K. = 40 produce a satisfactory
step response without exceeding the voltage limits on the motor (see Figure 4).
The overshoot of the hub position is less than 5 % and the settling time is
approximately 4 seconds.

The importance of examining this control design lies in its inability to suppress
the torsional motion of the frame. This results in substantial residual vibrations
after the end of the slewing maneuver, as illustrated by the output of active
member 2 in Figure 4. This problem is due to the pole-zero cancellation that
occurs in the transfer function between the motor and the tachometer/
potentiometer outputs. As listed in Table 3, the PD compensator successively
adds damping to the first bending mode, but leaves the torsional modes lightly
damped. The ability to suppress the bending motion of the frame is due to the
large interaction between the motor and the structure, as evidenced in the open
loop magnitude plots.

I Proportional-Derivative Compensation with Supplementary Non-Colocated
Contrl
A natural extension of simple PD control is to use an active member as a non-
colocated sensor for a supplementary feedback loop. The function of the
supplementary control is to suppress the torsional motion of the frame while the
PD compensator provides a satisfactory step response. Using the active
member in this manner leads to the design of a control law for a non-colocated
sensor and actuator. Similar actuator/ sensor arrangements have been used in
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the past (Juang, et a, [2]), but with different design strategies and on structures
that did nol exhibit torsional vibration&

time (sec) time (sec)"T0'4 , ";Il_____
Ic IW

Itime (sec)t

Itm nmesec)

(c) (d)
Figure 4: Simulated step responses for the slewing frame with PD control
(dotted) and PD with supplementary GSF feedback (solid). (a) Hub position.
(b) Motor control voltage. (c) Output of active member 1. (d) Output of

member 2 showing instability due to model error.

Control law development is performed using a method called Generalized
Structural Filtering (GSF). A detailed treatment of the GSF method is
presented in Wie and Byun (8]. In its basic form, Generalized Structural
Filtering is a classical control approach to active vibration suppression in that
frequency domain and root locus techniques are used to find a suitable
compensator. The design for the slewing frame is accomplished in the
following manner. First, the model is used to find the transfer function between
the motor input and the output of active member 2, with the PD control loop
closed. Closing the first loop is important since it greatly effects the dynamics
of the structure. The first stage of the design involves introducing a fourth order
Butterworth Lowpass Filter into the forward loop with a comer frequency of 20
Hz. This attenuates the high frequency content of the signal but causes
substantial phase lag in the target region, 0 to 20 Hz. Following the procedure
outlined in Wie and Byun (8], a lead filter is then placed in the compensator to
recover phase around the frequency of the fiust torsional mode (4 Hz). Finally,
parameters of a non-minimum phase second order filter are chosen to actively
damp the first torsional mode. The final form for the control law is
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e,(t)-= 2.[0, - (t)-v, (t]- 406(t) (7)

where ve,(t) is the output of the GSF compensator. In the Laplace domain, it
takes the form

I 0.025(154.4 1 +iI(+1)
vW (S) = (1.±41 20v, (S)

48.1 ±jll6 116 _±. j 48.1  14±j37.5 40

(8)

A root locus plot for the GSF design is shown in Figure 5a. From the roots
locus, a gain of 0.025 is chosen since it increases the damping in the first
torsional mode. An important feature of the root locus is that the damping in
the first bending mode is being decreased as a result of the supplementary
control loop. This is an unattractive feature of this method. The time responses
of the slewing frame with supplementary control are shown in Figure 4. The
rigid body response has slightly greater overshoot due to the added control
effort in the motor. The motor voltages with and without supplementary control
are similar, although a higher frequency component is added to the input due to
the GSF compensator (Figure 4b). The marked difference with this control
scheme is the suppression of the residual vibrations in the frame. With the
supplemenrary control, the structural vibrations are negligible at the end of the
slewing maneuver, which contrasts sharply with the case when there is only PD
compensation (Figure 4c). The addition of the non-colocated GSF controller
enables the suppression of the first torsional mode of the frame.

"2nd bendingS- ..
1st bending 1st bending

filter pole __filter pole

real (radls) [) = design region real (radls)

(a) (b)
Figure 5: Root locus plots for the GSF design (a) and the PPF design (b).
The PPF controller does not exhibit the spillover into the higher modes that
occurs in the GSF compensation.

The robustness of this control strategy is checked by closing the loop around the
perturbed models shown in Table 2. For both cases, an instability in the first
torsional mode results. This is illustrated in Figure 4d, where it shows that the
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frame is still vibrating almost forty seconds after the slewing maneuver is over.
This vibration is due to the mode at 4 Hz being marginally stable. Checking the
robustness in this manner indicates that the non-colocated control design is
sensitive to the uncertainties that are bound to exist in the model. Attempts at
redesigning the control law in light of these results could be made, but a more
practical approach to achieving performance and robustness specifications is
detailed in the next section.

Proportional-Derivative Compensation with Supplementary Colocated Control
The final design for satisfactory step response uses active member 2 as both a
sensor and an actuator to provide vibration suppression. As in the previous
case, a PD compensator is used to slew the frame, with the colocated control
loop acting as supplementary feedback. The control law chosen for the active
member is Positive Position Feedback. Much like the GSF method, Positive
Position Feedback (PPF) consists of second order filters tuned to suppress
specific structural modes. For a detailed treatment of the design procedure, the
reader is referred to Fanson and Caughey [9]. PPF control is chosen since it is
easy to design and is robust with respect to unmodeled dynamics (Goh and
Caughey (10]). It has also been experimentally implemented in previous work
(Fanson and Caughey [9]). In the Laplace domain, the form of the PPF
controller is

2,= s 2 V+ (S) (9)S+2f (f + O, j

The parameters for the filter design are found using root locus techniques (see
Figure 5b). The design procedure for PPF control is more straightforward than
for the GSF method and requires much less iteration. In this case, the first
torsional mode is targeted for suppression. An important feature of the control
law is that the spillover into the high frequency modes of the system is almost
negligible due to the controller roll-off. This contrasts with the GSF design,
which decreases the damping in the first bending mode. After performing the
analysis, the following control law is obtained

e.(t) =2.5[8, - 0(r)]- 406(t)

V. 2 (S)= 1.6(31)2 V (s)(10)
s2 + 2(0.08)(3 1)s +(31) 2  2(

The first part of equation (10) is simply the PD compensator designed in the
previous section, the second part is the PPF controller using active member 2 as
a colocated sensor/ actuator. A simulated slewing maneuver is shown in Figure
6. The hub position response and motor voltage are essentially the same with
and without PPF control. This is to be expected since the feedback loop is
independent of the motor. With the supplementary conarol loop, the structural
vibrations in the frame are suppressed by the time the slewing maneuver is over
(Figure 6c). The damping out of the torsion is not as fast as with the GSF
controller, but this is due to the fact that the motor is a much more powerful
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actuator. During the design, the achievable damping was limited by the peak
value of the active member control effort, which is approximately 100 volts
(Figure 6d).

0tZ S • s * O" t S I 0 I 0 7 It I II

time (sec) time (sec)
(a) (b)

time ( sec ) time ( sec )
(c) (d)

Figure 10: Simulated time responses for PD control with supplementary PPF
feedback. (a) Hub position. (b) Motor control voltage. (c) Sensor output of
active member 1. (d) Active member 2 control voltage.

Ile robusmess tests are performed on this control scheme. 'Me test is to close
the feedback loops around the perturbed models listed in Table 2. For both
cases, the system remains stable. This represents a major advantage over the
non-colocated control, which results in an unstable system in the presence of
model error.

Table 3: Comparison of the results for the three separate simulations.

Control Law PD PD + GSF PD + PPF
Damping (%)

I1st torsional 0.2 8.2 4.8
I1st bending 6.1I 4.8 6.1I

2nd torsional 0.4 0.5 0.4
Rigid Body Response

settling time (seconds) 4 seconds 4 seconds 4 seconds
overshoot (degrees) 0.7 1.1 0.4

Stability RobustnessI Yes No Yes

Defined as being stable with the perturbed models listed in Table 2.
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Discussion of the Simulation Results
These simulations indicate the inability of a motor control law to suppress the
torsional motion of the slewing frame. This is a result of a pole-zero
cancellation that occurs between the motor input and the angular rate and
position sensors. Physically, this means that the interaction between the input
torque and the torsional modes is small. These modes can be suppressed,
though, by integrating actuators and sensors into the structure. In one control
law, the active member is used solely as a sensor in a non-colocated feedback
loop. This achieves the desired vibration suppression, but is difficult to design
and does not maintain stability in the presence of model error. Another
approach is to use the active member in a colocated feedback loop, taking
advantage of the piezoelectrics ability to actuate. This leads to a rather simple
design that has negligible spillover into the higher modes. It is also more robust
with respect to model uncertainty. The results of these simulations are
consistent with initial experiments on the slewing frame (Leo and Inman [6]).

CONCLUSIONS AND FLUURE WORK

Integrating active members into complicated slewing structures is an effective
means of suppressing vibrations during and after maneuvers. This is the result
of a modeling and simulation study of a slewing frame. The distinctive feature
of the slewing frame is that the torsional modes cannot be controlled using
feedback loops consisting of the slewing actuator and angular rate and position
sensors. Vibration suppression is achieved by using active members as sensors
in non-colocated feedback loops, bur this yields a difficult design that is
sensitive to model error. A superior approach is to use the active members in
colocated feedback loops with robust control laws such as Positive Position
Feedback. When used in conjunction with a simple Proportional-Derivative
compensator, this design produces satisfactory slewing maneuvers and
simultaneously suppresses the structural vibrations.

Future work on this topic includes experimentally implementing active control
schemes and studying the effects of actuator and sensor dynamics. The
problem of controlling the slewing frame is well suited to the study of MIMO
control systems.
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ABSTRACT A SMART MATERIAL WITH MODULATED ELv.STIC
A method is proposed for suppressing dte resonances that occur MODULUS

as an item of rotating machinery is spun-up from rest to its operat- Here we present an approach for modulating the elastic moduli
ing speed. This proposed method invokes "sffness schedulg" so of materials by introducing a reinforcing material whose conlu•-
that the resonant frequency of the system is shifted during spin-up tion to the stiffness of the composite can be turned on and off. We
so as to be distant from the excitation frequency. A strategy for first consider an elastic mairix structure through which an aray of
modulating the stiffness through the use of shape memory alloy is holes has been drilled. Then strands of shape memory alloy (SMA)
also presented. are threaded through the holes and knobs (or knots) we placed at

the ends of the strands, leaving just a litle slacL (See Figure I and
Figure 2.) Since the SMA can move freely through the matrix, it

INTRODUCTION contributes nothing to the stiffness of the composite structure.
Most cmmon applications of "smart materials" actuators

involves obliging them to undergo some generalized displacement
in response to a specified stimulus. A slighdy different approach is
suggested in this paper. Here, we consider an application in which
a modulus rather than a displacement is manipulated. Further, we
present a class of problems for which such a smart material can be
used to address very simply a problem of rotating equipmenL-

The first portion of this paper proposes a method of fabricating a
material whose modulus can be changed substantially through the ..... ..
application of a specified stimulus. The particular implementation
presented here indirectly exploits the large deformation associated _ . .....
with shape memory alloys to achieve the desired modulation of
stiffnes.

The next portion of this paper discusses a class of vibration prob-
lems for which such materials have a serious potential for vibration
suppression. These awe problems. such as the spinning up of rotat- FIGURE 1. THE MATRIX MATERIAL WITH HOLES
ing machinery, in which the excitation at any time lies within a THROUGH WHICH SMA IS THREADED. THE FREE
narrow frequency band, and that band moves through the fre- MOVEMENT OF THE SMA WITH RESPECT TO THE
quency spectrm in a predictable manner. MATRIX PREVENTS IT FROM CONTRIBUTING TO THE

Finally, an example problem is examined and the utility of this STIFFNESS OF THE COMPOSITE STRUCTURE.
approach is discussed.

We now take advantage of a funidamental feature of shape mem-
ory alloy: when shape memory alloy is subjected to a change of
temperature it is aoned to jump to an equilibrin phae appropmr-

'Work supported by the U.S. Depanment of E=Vry at Sandia National ate to that temperature. In pwticular, it can be switched from the
Labortsores under Coetract DE-ACO476DPWO789 extended, stress-free state shown in Figure 2 to the shortened state



t his important to note that ae effect that is being targeted hre is
to modul,. st s rather tn to impose a deformation, as has4 been done often before; see Lagoudas and Tadjbakhsh (1992). A.
Baz et &l (1992) have used shape-memory alloy enbeddad in a
composite to achieve a more gradual modulation in stiffliness.exploiting primarily the modulus change accompwayig phase

Sn.change.
Because applications described below require a change in modu-

lus just from one stage of a transient sinning process so another,
rather than within each rotation, particularly fast response times
Mae not necessay.

FIGURE 2. THE MATRIX MATERIAL WITH HOLES It should be noted that the strategy presented above for modulat-
THOUGH THERE ARE KNOBS ON THE ENDS OEF ing the stiffness of a composite structure could be applied with
THE SMA STRANDS, THERE IS STILL ENOUGH mateials other than shape memory alloy. so long as those materi-
SLACK TO PERMIT FREE MOVEMENT. AGAIN, THE ais can be caused to undergo large static deformation through some
FREE MOVEMENT OF THE SMA WITH RESPECT TO outside stimulus. Classes of such materials besides shape memory
THE MATRIX PREVENTS IT FROM CONTRIBUTING alloys include therino-elastic. piezo-elecuric, and magnetostrictive
TO THE STIFFNESS OF THE COMPOSITE. materials.

A further note should observe that the crude configuration shown
above could be extended by placing the SMA nea the surface of a
beam, and staggered along the length of the beam. This configma-
tion, shown in Figure 4. permits effective modulation of the bend-

ins modulus of the beam. If the beam is originally in a spiral
configuration, one now has a spring whose stiffness is modulated.

Cavities ej

FIGURE 3. THE MATRIX MATERIAL WITH HOLES I l.
THROUGH WHICH SMA IS THREADED. THE SMA
HAS BEEN ACTIVATED, CAUSING A JUMP TO A
PHASE WITH A SHORTER EQUILIBRIUM LENGTH,
TAKING UP ALL SLACK. THE KNOBS ARE NOW
PRESSING AGAINST THE MATRIX MATERIAL,
COMPLETELY COUPLING EXTENSIONAL
DEFORMATIONS OF THE TWO MATERIALS. SMA

shown in Figure 3. In the shortened state, all slack is taken up, the
knobs are pulled into the matrix, and the SMA is in tension. FIGURE 4. A STAGGERED CONFIGURATION OF SMA

This state, in which the SMA is contracted, the knobs fully cou- FILLERS IN AN ELASTIC MATRIX.
pie the extensional deformation of the SMA to that of the matrix
material. One may now use any one of the standard formulae to
estimate the extensional modulus of the composite structure. A APPLICATION TO A CLASS OF VIBRATION PROBLEMS
good review of alternative methods of performing these calcula-
tions is presented by Christensen (1991). A first approximation of
the stiffening effect of the SMA is obtained by assuming uniform Gene.ml Problem Descrilotion
strains within the composite. This analysis results in a stiffness The vibration suppression capabilities of the smart material
increase proportional to the relative stiffness of the SMA and the described above will be demonstrated by application to a class of
matrix material, to the ratios of the cross sectional areas of the rotating vibration problems. This class of problems is defined by
SMA and the matrix materials, and to the percentage of the SMA the excitation frequency of the system being an integer multiple, n,
strands that have been activated to contract, of the angular velocity of the system so that during spin-up, the

The phase transformations of the SMA is reversible, so that a excitation frequency passes through the natural frequency of the
return to the previous temperature will result in a return to the con- system.
figuration shown in Figure 2. By raising and dropping temperature,
on can cause repeated reversals in the stiffness of the composite.
The issue of response time becomes primarily an issue of the rates Paradlam Problem Descrlotion
of heating and cooling. Heating is usually achieved by running a We consider here the simplest such case, that of a rigid disk
current through the SMA itself while cooling is usually achieved pinned to a rigid shaft. The connection includes a keyway so that
through convective and diffusive processes. However, response the disk must rotate with the shaft, though it may wobble from side
times can be accelerated by using more aggressive cooling tech- to side. A torsional spring serves to restore the disk to its normal
niques (Zerkus 1992). configuration. This simple model, used in other dynamics analysis
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by Chan and Bogy(1992). is meant to acoount in a very approxi- C diesols apncai
mate way for shaft or disk flexibility. The disk rotates between 21".
frictionless spring loaided plates. A munmbr u. of small sinusoi-
dally shaped projections on the surface of the disk cause a sintasoi- A Adiesols xtaocamiue
dal ecmitation. 7he torsional spring is oriented such that a line 2

coninecting the peak of the projections an the disk would be per-~d~l dfecinamltd
pendicular to the axis of rotation of the torsional spring. This sys- 0a(7) diesone-)ficinamltd
ten is shown in Figure 5.

z The dimensionless, equationi of motion is:

0" + 24W+ (0 +co?) 4 = A sin(,a7) (3)

d - r - 0.1 Stiffness modulation will be affected by changing P. repesent-
ing a gsai factor for stiffness.

- Te spin-up profile for die class of problems considered is.

This spin-up profile causes the differential equation of motion to
contain coefficients which wre explicit functions of atime and the
forcing shinsoid to be a function oft?. The ramping nature of the
forcing funiction contains a narrow band of frequencies about the
instantaneous frequency of anr. Thiis results in the system's

03 damped natural frequency being excited prior to the intersection of
the instantaneous excitation frequency and the system's domped
natural frequency.

FIGURE 5. DISK/SHAFT SYSTEM.

SMART MATERIAL APPLICATION - STIFFNESS
The governing equations can be derived in many ways (the SCHEDULING

authors have used the method presented by Segalmut and Dolor Stiffness scheduling is defined as adapting die stiffness of the

maim (1990). Thie equation for the angle 0. by which th is i structure to reduce disturbance sensitivity. (T'his approach has been
investigated by Videmnan and Porat (1987 and by Nagoya et al

off normal is: (1987) in which the stiffliesses at the support of rotors are modu-
lated.) Since die usnot material describe above can take on two

1,.,i + c4 + * (5k + 1,,co2) = A sin (nomt) (1) distinct elastic moduhi, the system will have two distinct damped
notural frequencies. If the frequency responses for these two sys-

The multiplier 0 is ordinarily unity, but will be used later on as a tent can be sufficiently separated, then the frequenicy responise of
"stiffening" multiplier. An interesting feature of this system is that the smart system can be greatly reduced.
the excitation frequency at resonance is: Here we consider a system with the following dimensionless

parameters:

k c 2 4a0.021, 2, 2)n 2
2 _1 0.1

so that excitation will pass through th dane naua frequenc 1200r T>200.0
of the system only for 'a greate than one. 2~ 0.

r 0.005
The following quantities are used to make the equation of A fourth order Runge-Kutta method was used to integrae the

motion dimensionless: governing equation for this system for three c

J7* k naua rqecyfr0n ~ the dimensionless stiffness is set to a&higher value;

Y1 * the dimnensionless stiffness 0 is set to a relatively low value
systemlL

* * and= dimensionless stiffness is appropriatel switohed during
ot = -dimenisionless frequency the romp up of spin.

T = Ot dimensionless time,

3



RESULTS--
Figure 6 shows the dimensionless tik as; a function of dimension--___ _ _ _ _____ _ _

less bane for the case where fth torsional spring is held in a stiffer 067

mode thrughout: 0 = 4. For that case, a large resonance: behav- 0.50____
ior is seen nea a dimensionless time of 120. A beating occurs for a __ _ _ __25____ _ _ _

while after the shaft reaches, its terminal speed. More significanrtly. ~
a fairly learg oscillation rmainsai at long times, after die disk has *
reached teminal speed. _ _ _ _-

0.425

450 _ _

0.25 0 100 200 300 411

am FIGURE 8. AMPLITUJDE RESPONSE WITH
-025 r wqr __4"M_-_ STIFFNESS SCHEDULING.

.450sawtucne at long times being that of the material shown in Figure 7.
-0.75_ mi__ __ _ _ __ _ad the forced response at thos frequencies wre similst

FIGURE 6. SITIFFENING ACTUATOR TURNED ON CNLUSION
THROUGHOUT SPIN-UP. The smart material described here can be used in conjunction

with stiffness scheduling to give a reduction in vibration, amplitude

Figure 7 shows the corresponding curve for the case of =1. for a class of rowaing systems where the excitation is proportional
to the spin rate. The time at which to chanige stiffness is based on

As expected, the resonance-like behavior occurs earlier in the pro- the spin-up profile being known in advance. Thiis permits the best
cess. when the excitation frequencies are lower. It s important that switching time to be chosen based on the frequency components of
the behavior at long times manifests much lower amplitudes than the excitation and the stiffness switching transients.
is the case with the stiffer spring. 7This difference occurs because
the natural frequency in this, case is further from the steadyste
forcing frequency. FUTURE WORK

1.0D A control haw for choosing the stiffniess switching timne is being
developed which does not requirie exact knowledge of the spin-up

0.75 profile. Further, basic work in the materials issues of such actua-
0M tors; must be done.
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