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Atmospheric Structure Simulation: An ARMA
Model for Smooth Isotropic Two-Dimensional

Geophysical Power Spectra

1. INTODUCTIoN

Atmospheric fluctuations in wind speed, temperature. and density are chaacterzed by
continuous power spectral density functions. For example, two dimensional wind speed PSD's are
found to have log-log slopes of about -2.67. Such spectra often are used In simulating an envi-
ronment or predicting atmospheric structure. Fast Fourier transform analysis provides a means
for filtering white noise with spatial filters to simulate a stationary time or spatial data set. In

many applications the Fourier transform technique provides adequate processing speed. At-
mospheric structure, which Is multidimensional and extends over large volumes, is not readily
simulated by conventional techniques. For example, stationary baseline Fourier simulation of a
two-dimensional vertical sheet using numerical fast complex Fourier transform (FFT} algorithms
requires - 4MNLog2(MN) multiplications on the two-dimensional random number set. The
resulting Fourier transform values then must be multiplied by the desired power spectrum given
the required vertical (LUc and horizontal (LeOh) correlation values and variances (A2) corresponding
to a particular altitude. One must then compute the inverse 2-D transform of this array. The total
number of computer multiplications for each altitude is O{4MNILog 2 (MN)+ 1 . Since Lt,,. Lch, and
a vary with altitude, M 2-D sheets must be calculated; resulting in a combined number of mul-
tiplications of O{4M2 N[Log2(MN)+ lB. If one wishes to simulate a detailed square vertical plane
environment having a side of 100 km with 100 m resolution, then M - N - 1024 and the number
of multiplications exceed 9.0 x 1010. A three dimensional analog of this procedure would require
O{4M4 (3Log2 (M)+I)I computer multiplications or O(1.4 x 1014). Even high speed computers
available today (-100 Mflop/sec) would take - 378 hours or 2.25 weeks to produce a single
realization. Thus alternative multidimensional techniques available through modern spectral
estimation (and perhaps new developments in chaos or wavelet theory) must be exploited to
reduce the computational burden.

Received for publication 4 Oct 1993



The Phillips Laboratory Strategic High Altitude Atmospheric Radiance Code (SHARC)I uses
first principles to calculate point to space and limb viewing atmospheric background infrared
radiance and transmittance. Real atmospheric Infrared background perturbations occur from
fluctuations In temperature and density of the contributing molecular species. Version 4 of the
SHARC code envisions a capability to evaluate radiance structure from estimated variances in the
standard temperature and density profiles. This report studies the possibility of producing two-
dimensional synthetic structure from autoregressive/moving average (ARMA) analysis as
contrasted with the Fourier method. The analysis Is performed with a view toward producing
circularly symmetric power spectral densities that account for Isotropic correlations in the
horizontal plane, including the line-of-sight, that existing methods approximate.

During the course of the study, it became apparent that low-order auto-regressive (AR)
analysis alone was unable to produce two-dimensional power spectra for the large correlation
lengths, evident in the upper atmosphere, that matched desired geophysical specifications. The
study, therefore, was extended to include full ARMA analysis. Although low order AR analysis
could efficiently be used near ground level where correlation lengths typically are small, the larger
high altitude correlation lengths called for complete ARMA analysis, where structure simulations
required application of a high order recursion technique. As part of an ongoing study, this report
describes an intermediate stage between a one-dimensional auto-regressive model described
earlier and a full three-dimensional hybrid structure model to be described in a subsequent
report. The hybrid model has its bases in the one-dimensional AR model and is suggested
naturally by the present work.

2. - OREICAL DISCUSSION

This report is a two-dimensional extension of a previous report 2 that treated one-dimensional

simulation from the autoregressive (AR) modeling perspective. Though the theoretical background
for one-dimensional analysis can be extended to two dimensions, the method for estimating the
ARMA coefficients is treated somewhat differently in this report.

For the two-dimensional case, we wish to simulate a horizontal sheet of stationary data
having a constant correlation length (Lc), variance (02), and spatial spectra characterized by the

symmetric two-dimensional power spectral density function (PSD):

a~va 2 vF(fk) : FV~

ic(a2 + fk2)v+l

ISharma, iRD., Duff. J.w., Sundberg. R.L. Gruninger, J.H.. Bernstein. LS.. Robertson. D.C.. and Healey. RJ..
(1991r Descwof JT O g. Strategic High Altitude Atmospheric Radiance Code. Phillips Laboratory technicalreport. PL-TR-91-2071 9DA 8~

2 Brown,. J.H., (1993) Atnospherc Structure Simudaton: An Autoregresstve Model for Smooth Geophusical Power
Spectra with Known Autocorrelation ftnction. Phillips Laboratory technical report, PL-TR-93-2185. ERP # 1128. ADA276691
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where.

a-'= ' V+ I Le andwhere, f =f2+f1If2v).

Here, fk is the spatial frequency (kmn-1) and -2(v+ 1) a the spectral slope of log(F vs Iogfk.

The two-dimensional ARMA power spectral density model Is3,4 :

P..(f" fY-- = T1T•w A 7; f)p

where the autoregressive factor Is,

A(fx,fy) = 7,a(m,nflk2xfminT -2xwYfT2

= n

and the moving average factor Is,

B(fz. f) = X 1 b(m. n)e-2rT, e-"IiT 2 .
m n

T1 and T2 are the sampling intervals, Pw Is the variance of the white noise process, and a(m.n),

b(mn) are respectively the autoregressive and moving average filter coefficients.

The discrete two-dimensional series, x(k,l), that approximates these deterministic and sto-

chastic processes can be simulated by the finite filter difference equation:
x(k.l) = - Y Xa(mn)xtk - m.,- nj+y•b~m~n)e~k - m,l- ni

M n M n
(m.jna(0.0)

in which the range of summations denote the order of the 2D difference equation. In this report,

the order of the arrays a(m,n) and b(m.n) are (2M+I) x (2N+I) where the region of support is the
square full plane covering -MgniOM and -N~n.N and where M = N. The output sequence is x(k.l).

and e(k,l) is a white noise input driving sequence. The a(mn) autoregressive coefficients were

calculated from an auto-regressive estimator and the b(m,n) moving average coefficients were
calculated from the equivalent MA filter.5

3Marple. S.L (1967) DWt Speda Analysis w(th Ahnpmtw Chapter 6. Prente-Hal. Kagewood Clf, New
Jersey.

4Kay, Steven M..(196) Moder SVec&W EsMtkn Theory & App•katom Prentice-HaD. Enewoad Cak New
Jersey.

5LUn, J.S. (19M Two-Dfmenslonal mnd In rge Processim . PrentceýHaHl. Engleood Cl ff New Jersey. pg 269.
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FE.LT=m ca•c.'Ons

'set us first treat the autoregresslve factor In a region of full plane support.

A(f~..f) = u ~.W -2~fT+f2

mr-Mn--N

Considering the 8-fold symmetries of the present problem, the following relationships appl

a(m.n) = a(-m,n) = a(m.-n) = a(-m.-n)

= a(n.m) = a(-n.m) = a(n.-m) = a(-n.-m),

with similar symmetries for the b's. And we define a(0,0) a 1.

Due to these symmetries. A(fx.fy). and in a similar way B(fx.fy). tan be written as:

A(ff,fy)= a

mrIn-N In-N

ek + e-•
Using the identity: cos(x) = 2 . then.

;d N N

A(fx.fy) = 2 a(m'nlcos(2afxmT,)e-f'•rI + ja(0'nle-Y'
m-In=-N a--N

and then similarly.

M N

A(fx. fy) = 4 Xa(m.n)cos(2xfnmT1)cos(2xfynT1)

N M

+2ja(0.n)cos(2xfynT,) + 2' a(m.O)cos(2xfnmT') + a(0.0)
rn-i

Assume that A(fx.fy) defines a stable filter, then A~ff,f 7 ) > 0 for all (f,.fy); or,

/PSV~f1 , fy) = T': T••~ ~~. 7
A(f,.f)VýýD_=fx.f) `=I-Fs TfxfT

We then find an approximate solution for A(f,.fy) by setting B(f.f= 4pTT. Then with

a(0.0) = 1. we find a(m.n) for niŽ0 and n20 by solving the following least square problem for a
large set of f.,fy values: I - A(fx.fyF,)F4rFi. The set of "theoretical" PSD's used in solving the least

square problem are chosen from 50 circles defined by fk = = constant, which Is equally

spaced in Log f+f and by 20 points on each circle defined by 20 equally spaced angles

tan-i(¶ff) between 0andl/4. The minimum frequency. (fk). used in the fit is

4



I

(fkuin = Nspacing' where N is usually set to 128. In finding a(m.n) from the least squares

procedure, the analysis places a weight of 100x for the minimum frequency.

Having found a least squares solution for a(m.n), we proceed as before to solve for

B(fX, fy) = 4 1 b(m, n)cos(2%f'mT, )cos(2xfynT,)
m=In=l

N M

+2X b(O, n)cos(2xfynT,) + 2 Xb(m.,Ocos(2xflmT,} + b(O.0)
n-1 -

B(f ,f} )4TjIT2
by setting up the least squares problem: 1 - (fjfy) PF(fT , where A(f.,fy) are the values found

from using the solved set of a(mn) values, and where the solution is over a large set of f, fy

values.

4. MODEL DISCUSSION AND RESULTS

The following discussion Is aimed at producing a practical two dimensional isotropic autore-
gressive/moving average (ARMA) model of horizontal atmospheric structure consistent with
having a pre-assigned power spectral density. Correlation lengths and a2 variances are taken
from Strugala, et al.6 In the following discussion the full plane autoregressive a(m,n) coefficients
will be referred to as the AR coefficients and the moving average b(m,n) coefficients will be referred
to as the MA coefficients. The order of the full plane AR or MA calculations will be referred to as
having a (2M+ 1) x (2M+ I) region of support. Because the region of support has an 8-fold
symmetry and the desired 2-D PSD is circularly symmetric, the total number of full plane unique

AR or MA coefficients is equal to (M + 2XM + 1); whereas the total number (non-unique) AR
2

coefficients is equal to 4M(M + 1) and the total number of (non-unique) MA coefficients is equal to
(2M +I) 2 .

Three model curves are plotted in each of Figures 1-2, 5-6, 9-11. and 14. In these figures.

curves marked by an asterisk (*) at the first frequency are the desired or "theoretical" PSD's

(that is, F(fk)). Curves marked by open squares (0) represent the PSD of the full plane auto-

regressive IARI predictor model alone that is, 2) multiplied by the factor indicated on

the plot. Curves marked by an open triangle (A) at the first frequency represent the PSD's of the

6 Strugala. LA.. Newt, J.E.. Futterman. W.. Schweitr, E.L. Herman, BJ., and Sears. R.D.(1991} Development of
High Resolution Statistically Non-stationary Infrared Earthllmb Radiance Scenes, Oiarcuteflzadon = =p~thandSar,. Sr and Badwids A sFz - The Intenwonal Socky for Optical Eu r.ertiv. V1486. pp
176-187. A0r11 1991. Orlando.



full ARMA predictor model (that is, (PTI;2 I~ ]}f. , which is to say, the AR model corrected by

the moving average RMA moea Exept wh ere otherwise noted, the sampling spacing Is 100 m. N
for determination of the minimum frequency - 128, and the Nyquist frequency is 5 km-1 . This
means that the "minimum" frequency that went into calculating the AR and MA coefficients was

f = - 0.078 km-n. In the model plots, this point is marked by the left-most X. Figure 1 is

typical of the model plots in this report showing log-log power spectral densities (PSD's). This and
subsequent two-dimensional power spectral density plots have PSD's measured in
(8T/Temperature) and wavenumber measured in km-n. The input parameters for Figure 1 are

Wavenumber2

Lch= 32 km. o2 = 0.02, and spectral slope (S) = -8/3. This plot was calculated along a principal
axis using a 3 x 3 order AR calculation and a 7 x 7 order MA calculation. Except for a small
amount of overshoot at low frequencies (- 0.2-0.3 km'n), agreement between desired and
predicted PSD is good. Since the ARMA PSD model can be calculated at any frequency, this and
subsequent figures show the expected bias between the desired and predicted PSD below the
"minimum" frequency. Figure 2. which is evaluated along a diagonal axis, shows similar results
and verifies the circular symmetry of the 2D ARMA PSD. Further evidence of the near circular
symmetry is shown in Figure 3. which displays contours of constant PSD in two-dimensional
linear frequency space. Although perfectly symmetrical, the contours exhibit deviations from
perfect circularity. For the most part, these deviations are suppressed when plotted in log-log
frequency space as shown In Figure 4.

Figures 5 and 6 use the same parameters as Figure 2. except that Figure 5 is evaluated for a
slope of -3 and Figure 6 is evaluated for a slope of -11/3. These plots indicate that slightly better
agreement obtains between the "theoretical" and model curves as the spectral slope steepens. Also
the "DC" bias diminishes with steeper slope. Figures 7 and 8 show constant contours of the - 11/3
model PSD plotted in two-dimensional linear space and two-dimensional log-log space
respectively. Comparing these to Figures 3 and 4, we see that slightly better circularity evidently
obtains at the steeper slope.

Figures 9, 10, and 11 repeat the input parameters of Figures 2. 5, and 6. except that Lch is
increased to 84 km and o2 is decreased to 0.005. Again slightly better agreement obtains as the
slope steepens from -8/3 in Figure 9 to -3 In Figure 10 to -11/3 in Figure 11. In fact, agreement
is particularly good at the "minimum" frequency for the -11/3 slope. Figures 12 and 13 which
show, respectively, two-dimensional linear and log-log frequency plots of constant PSD contours
for Lch = 84 km and -11/3 spectral slope, are comparable to the Lch = 32 km contour plots of
Figures 7 and 8.

Figure 14 repeats the calculation of Figure I for Lch = 32 km, 2-D slope = -8/3, but now N =

1024. Clearly the low order ARMA model does not provide good agreement for the wider frequency
range. Figure 15 provides an indication of the results of using higher order AR and MA models.
The curves in Figure 15 also are calculated for Lch = 32 kIn. 2-D slope = -8/3, and N = 1024, and
thus may be compared with Figure 14. Comparing Just the AR curves, we observe that as the

6



order of the AR process increases from 3 x 3 (FIgure 14) to 13 x 13 (FIgure 15): the low frequency
"rollover" occurs at smaller frequencies, and the number of "ripples" increase. Comparing the
complete ARMA curves, we observe that as the order of the AR process increases from 3 x 3 to 13
x 13 and as the order of the MA process increases from 7 x 7 to 25 x 25: the "theoretical" and
model PSD's agree much better at low frequency. the "DC" bias decreases, and the amplitude of
the "ripples" decrease. As observed, PSD's having a small slope, large correlation length. and
small data spacing are more difficult to model than PSD's with larger slope, smaller correlation
length, and wider data spacing.

The analysis indicates that two-dimensional Isotropic horizontal atmospheric temperature
structure, having a data spacing of 100 m and a characteristically smooth power spectral density
can be modeled within a frequency band ranging from 0.08 kmn- to 5 kIn-1 by an autoregressive 3
x 3 order process and a moving average 7 x 7 order process. At the expense of increasing
computer time. one may increase the frequency range and achieve agreement to 0.01 km-1 by
choosing a 13 x 13 AR model and 25 x 25 MA model.

7
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figure 4. Same as Figure 3 but the two-dimnasional plot is plotted In logarithmic frequency space
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FIgure 13. Same as FIgure 4. except LC -84 km and 2-D slope = -3.67
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5. 3=IA=ON -ROC3DUR3

To simulate sets of two-dimensional Gaussian correlated data from the model filters described
above, we start out with a sheet of pseudo-random numbers having a standard deviation a = 1.
The square N x M sheet (N - M - 1300) Is somewhat larger than the sheet we wish to simulate,
say an extra 138 values on each side. The extra points allow Iterative relaxation. FIgure 16 depicts
the 1300 x 1300 two-dimensional sheet of random numbers.

A problem ensues when we attempt to employ the full plane A(fx.fy) filter. A(fx.fy) is not a
"computable" infinite impulse response filter. A "computable" filter can be applied directly to a
sheet of numbers. A~fx, fy). however, involves the solution of N2 linear equations in N2 unknowns.
For N - 1000. the computational requirements become prohibitive. An approximate solution Is
therefore obtained as follows.

An initial "guess" for the solution of the N2 equations in N2 unknowns Is made by summing
the separate results of four quarter plane filters. AAI(fx.fy). applied to each corner of the same
sheet of random numbers. Each of the quarter plane filters Is "computable". In effect, computable
means that the resulting N2 linear equations in N2 unknowns can be written as the solution of a
triangular matrix equation. The four quarter plane filters are derived from the full plane filter
coefficients as follows, where a(mn) are the full plane AR filter coefficients and al(m.n}. a2(mn),
a3(m.n), and a4(m.n) are the four quarter plane filter coefficients:

Let al(mn)=0 for m<Oor n<0

al(m.n)=2a(m.n) m=0, n>0

al(mn) = 2a(m.n) m>0. n=0

al(mn) = 4a(mn) m>0, n>0

Let a2(mn)=0 for m>Oor n<0

a2(mn) = 2a(mn) m=0. n>0

a2(m.n) = 2a(m.n) m<0, n=0

a2(m.n) = 4a(mn) m<0. n>0

Let a3(m.n)=0 for m<0or n>0

a3(m.n)=2a(mn) m = 0. n<0

a3(mn) = 2a(m.n) m>O, n=0

a3(mn) = 4a(mn) m > 0. n<0

Let a4(mn)=0 for m>Oor n>0

a4(m.n) = 2a(mn) m = 0. n<O

a4(m.n})=2a(mn) m < 0. n=0

a4(m.n)=4a(mn) m < 0. n<0
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These relationships are schematically/ilustrated in Figure 17. The principal reason for employing
this Initialization procedure Is that It seems to allow the iteration scheme described below to
converge faster to the actual solution. In general, iteration schemes that attempt to simulate
filtered data converge inversely with the power spectral density as a function of frequency. Since
the greatest power occurs at the lowest frequencies, we therefore wish to devise an initialization
procedure that enables the low frequency behavior of the simulation to follow the low frequency

behavior of the AR filter. This is accomplished with near circular symmetry by summing the
results of the four quarter plane filters. Figures 18. 19. and 20 illustrate the method for applying
the quarter plane filter. Figure 18 depicts the starting condition for a 2 x 2 quarter plane AR
example (derived as implied above from a 3 x 3 full plane AR model; that is. 0 q.p.
=0 f.p. + 11 /2). The procedure is iterative and starts in the upper right comer. The arrows
indicate that the filter is moved column-wise to the left. At the left edge of the sheet, the filter is
brought back to the right and dropped one row. Figure 19 shows an intermediate stage in the first
comer process. It illustrates that points within and to the right of the filter have been processed,
while points in the adjacent first row to the left of the filter region also have been processed. In

this particular iteration, the point at the extreme left-bottom of the 2 x 2 filter region contains the

original random number but gets replaced by the 2 x 2 AR filtered value. Note that points in the
one-point-wide border remain unprocessed. Figure 20 illustrates the starting condition for the
second pass at the upper left comer. Here the filter is moved to the right and then down. The

extreme right-bottom point in the filter region contains the original random number but gets
replaced by the 2 x 2 filtered value. After four such passes. (one pass starting from each corner
and each pass using the same original random numbers) the results are summed. The following
analysis indicates why the four-quarter-plane solution provides a good approximation of the low
frequency behavior.

We have.

+ + +
AA(f..fy) AU(fX.fy) ^A 2 (fx.fy) f AA4fXfy)

where AA(fx,fy) is the AR filter associated with the sum of the four quarter plane filters and
AM(fxfy) is the AR filter associated with the ith quarter plane filter.

Using the Identity. e-" = cos(x)-isin(x) and setting N = M and TI - T2 . we have,

I I
AAI(fZ.fy) m Xa1(m~n)cos[2xTs(mf. + nfy) -I sqn2xT1 (mf. + nfy)]I

mr-M n--N

andasf. -- 0 and fy--•

AA (f. -# 0.ffy -+ 0) M Na,(m,n)cos(2xTlmf1 )cos(2xTlnfy)
In-- Ia-N
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I Full Plane AR Filter
n I coefficients, a(an)

A2 O OI I

I _________-

0X0 0 0  0 0 0

0 000 0oo 0
I00 0O~ 0 I

2X -- I~&-rIv

000 000 0 0

U 000 000 4X

A4 A3

Ful Plniltar ineffeint aytrim*

a (m, n) - a(-m,n) - (a, -n) - a(-=,-n) -
- a(na) - a(-nm) - a(n,-m) - a(-n,--m)

4 quarter plane filter --_mMetries
as derived for each of the four corners.

al(n,m) - a4(-n,m)

a2(-nm) - a3(m,-n) - al(n,m)

Flgure 17. Dimgrm of symmetrical relatnhips of four quarter-plane AR raters to
each other and to the AR full plane region of support
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and. noting that al(m.n) - a2 (-m.n) - a3 (-m.-n) - a4nm.-n).

I I I

+ MN NAA . al(m, n)cos(-2zTninf 1 )co(2xTjnf.) F ial(m.n)coe(-2xs(ijf 1 )cou(-2xTjnf,)
m-nla=0 r =n=~i0

M N 4I 1aI(m.n)cos(-2xTjmf, +o(~Tn 7 nfay)nc]2l~m 1 cs-2Tn 7

4

Md N
1 alm71ca[l~(m4 +e2m.lc*2ny,-i(x.T~i(xfT)

m,,i0nO

4
T. £almn~o(2mf.Tncos(2xznf 1T 1 )co(xfT)-sn2nfT sn2n, 1U N

where again. we have ignored the sine terms. Recalling the symmetries of the al4m.n) coefficients,

we find,

M N
4AA(f. £,) = 4 a( , n)cos(2xrf.n 2 T)cos(2xfnT,)

re-In-I

N 
M

+ 2Ya(O.n)cos(2f.,nT,1 )+ 2 a(m.)os2xf..mT,) + a(0,0)
n=l m=1

and arrive at the approximation, -1 -- 4 It is unclear why the sum of the filters
AA(fx.fY) - A(&f1 ,f)

fy-. 0

performs better than the average. A more complete description of this process for the four quarter
plane filters is provided in the appendix

The four-quarter-plane procedure provides an Initial guess for the correct data array.

Subsequently, this Initial guess Is used as Input to the full plane process. Following the
four-quarter-plane Initialization. the procedure continues by Iteratively updating and correcting
the spatial data set in the following way. At a point in the array (x~y) we sum the products of all
neighboring points within the region of support and their corresponding full plane coefficients. lb
this sum Is added the original (x~y) random number ex.y); the result replacing the latest (x~y)

value. This procedure continues for each point (x,y) In the array. Array substitutions are made In
the same order as taken for the four quarter plane filters. To vector optimize for the Convex
computer, elements In the lower row of the filter region were not replaced until all columns of that
row were processed. The optimization process decreased computer run times significantly. One
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set of substitutions (a set being defined by the same and every path taken by the four passes as

previously defined for the four quarter plane passes - one pass per comer) constitutes one total
Iteration in this stage of the procedure.

Figures 21 and 22 Illustrate application of the full plane autoregressive filter Affxfy) using
multiple predictor-corrector iterations. Figure 21 shows the starting condition for a 3 x 3 full
plane AR example. The plane is initialized by the final (summed) values of the quarter plane AR
process as described above. As before, the procedure is Iterative and starts in the upper right
comer. Also, as described before, points in a one-point-wide border remain unprocessed. Figure
22 shows an intermediate stage in the first comer process. It illustrates that points above the
center point and points to the right in the row adjacent to the center point of the filter have been
processed. In this iteration, the center point of the 3 x 3 filter region contains the original random
number but gets replaced by the 3 x 3 full plane AR filtered value. Four such passes, one starting
from each comer, are performed. Unlike the quarter plane initialization process, each subsequent
pass is performed on the numerical results of the preceding pass. Consequently, no summing Is
performed. We emphasize, however, that every iteration begins with a center value equal to the
oilginal random number, which gets replaced by the full plane AR filtered value. As discussed
earlier, it is necessary to cycle though the full plane AR procedure several times to achieve a
satisfactory estimate of the set of 1300 linear equations in 1300 unknowns. In general, we find
that 20 cycles provides reasonable power spectral densities that parallel the "theoretical" PSD's.

Figure 23 illustrates application of the final moving average filter B(fxfy). The MA process Is a
mapping procedure that Is performed only once on the sheet containing the final numerical
results of the full plane process. As before, we start from the upper right comer and proceed left
and down. Actually we could start and end anywhere since the process simply maps the center
points of the 7 x 7 MA full plane region to points co-located on a separate sheet.

6. ARMA SIMULATIONS - RESULTS AND DISCUSSION

In the above procedure we discussed a method for generating simulated two-dimensional

correlated data by applying two-dimensional ARMA filters to Gaussian random noise. We now
examine several simulated data sets for fidelity to the original or "theoretical" power spectral
density specifications.

Figure 24 shows four logarithm:. plots of two-dimensional power spectral density (PSD)
versus logarithmic spatial frequency plotted along a diagonal axis. As before, the curve marked by

an asterisk M*} is the desired or "theoretical" PSD. The curve marked by open squares (a)

represents the PSD of the full plane auto-regressive MARI predictor model. The curve marked by an
open triangle (a) at the first frequency represents the PSD of the full ARMA predictor model (which
is to say, the (ARI model corrected by the moving average IMA] model). Finally, the curve marked
by an X is a two-dimensional periodogram derived from two-dimensional simulated data. The
1024 x 1024 simulated data set was derived from an original set of 1300 x 1300 random
numbers. Figure 24 is calculated for a "theoretical" 2-D slope of -8/3 and correlation length Lc =
32 kIn. The region of support for the full plane AR model is of order 3 x 3 and the region of
support for the full plane MA model is of order 7 x 7.
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Figure 24. Log-log plot of two-dimensional power spectral density (PSD) versus spatial fr-equency
plotted along a diagonal. Curve marked by an asterisk (s) is the desired or "theoretical"
PSD. Curve marked by open squares (M) represents the PSD of the full plane
auto-regressive MAR predictor model multiplied by the factor indicated on the plot.
Curve marked by an open triangle (A) at the first fr-equency represents the FSD of the
full ARMA predictor model (which is to say, the AR model corrected by the moving
average (MAI model). Curve marked by an X is the 2-D perogam derived from the
2-D simulation. The 1024 x 1024 simulated data set was derived from an original set
of 1300 x 1300 random numbers (see text for discussion of DPI' low frequency
replacement). The "theoretical" 2-D slope Is -2.67 and the correlation length Lc
32 kim. The order of the AR coefficients -=3 x 3. Order of the MA coefficients -=7 x 7
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As noted, the 2-D FFT periodogram corresponding to Figure 24 was calculated from the 1024
x 1024 simulated data array. However, since a goal of this effort was to minimize the
computational burden, the minimum frequency that was adequately modeled by the 3 x 3 AR and

7 x 7 MA processes occurred at a minimum frequency of fft = -= 1 = 0.078 km'. ToNAx 128 x0.1

expand the usable frequency range and lower the minimum simulated frequency to

1= = 0.0098 km-' the following procedure was performed. At each frequency below
1024x0.1

0.078 km-1 , the power (as determined by the 2-D FFT periodogram) was subtracted from the 1024
x 1024 simulated data array. A short 12 x 12 discrete Fourier transform, DFT, procedure was
then performed to replace the simulated power from 0.0098 km"I to 0.078 km-1 . A detailed
description of the procedure may be found in the appendix. Agreement between the 2-D FFT
periodogram and the ARMA model is good to 0.078 km-1 . With the addition of the DFT
replacement procedure, agreement with the 'theoretical" PSD curve is good over the entire
frequency range, 0.0098 km-1 to 5 km-n.

One may also examine the simulation by comparing the "theoretical" one-dimensional power
spectral density of the two-dimensional data to one-dimensional equivalents of the simulated
data. Figure 25 shows three logarithmic plots of one-dimensional power spectral density (PSD)
versus logarithmic spatial frequency plotted along a major axis. The curve marked by an asterisk
(e) is the desired or "theoretical" I-D PSD. The curve marked by an open circle (o) at the first
frequency represents the I-D PSD derived by integrating the 2-D PSD ARMA model. Finally, the
curve marked by an X at the first frequency represents a one-dimensional autoregresstve PSD
model derived from the simulated 2-D data. The latter is accomplished by treating all rows and
columns as I-D data and finding the corresponding AR model. The parameters are the same as
used in Figure 24 with the 2-D -8/3 slope becoming a I-D slope of -5/3. Figure 25 shows that the
I-D power spectral density curve as derived by integrating the 2-D ARMA model is faithful to the
"theoretical" model. Of course the curve rolls off as it approaches its lower limit. Also, the I -D AR
power spectral density curve follows the "theoretical" to much lower frequencies. The slight over-
shoot of the AR-PSD model seems to be due to the difficulty in approximating the PSD at low
frequencies using an AR model of limited extent.

We may also examine the one-dimensional FFT periodograxn derived from the simulated two-
dimensional data set. Figure 26 shows the same curves as Figure 25, except that the curve
marked by an X is the one-dimensional power spectral density derived by finding the FFT of all
rows and columns. Again, good agreement obtains between the "theoretical" and the I-D
periodogram. Of course, at the expense of computer time, better and better agreement would
obtain (especially near the "rollover" frequency) as the number of AR iterations increase.

Figures 27 and 28 show the same four two-dimensional PSD plots as Figure 24 except that
Figure 27 is plotted for a slope of -3 and Figure 28 is plotted for a slope of- 11/3. These cases
show that the simulated data retains high fidelity to the "theoretical" 2-D PSD slope from -8/3 to
-11/3.
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Figure 25. Log-log plot of one-dimensional power spectral density (PSD) versus spatial frequency
plotted along a major axis. Curve marked by an asterisk (e) is the desired or
"theoretical" 1-D PSD. Curve marked by an open circle (o) at the first frequency
represents the 1-D PSD derived by integrating the 2-1) PSD ARMA model. Curve
marked by an X at the first frequency represents an auoersiePSD modlel derived
from the simulated 2-D) data (with DFT low frequency r eplacement). The 1024 x 1024
simulated data set was derived from an original set of 1300 x 1300 random numbers.
The "theoretical" -1) slope Is -1.67 and the correlation length 1- -32 kmn. The order of
the AR coefficients - 3 x 3. Order of the MA coefficients I 7 x 7
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Figure 26. Log-log plot of one-dlmensional power spectral density (PSD) versus spatial frequency
plotted along a major axis. Curve marked by an asterisk (}) is the desired or
"theoretical" I-D PSD. Curve marked by an open circle (o) at the first frequency
represents the I-D PSD derived by Integrating the 2-D PSD ARMA model. Curve
marked by XVs represents the ID erlodrm derived from the rows and columns of
the 2-D simulated data (with DIrT low frequency replacement). The 1024 x 1024
simulated data set was derived from an original set of 1300 x 1300 random numbers.
The "theoretica" I-D slope Is -1.67 and the correlation length Lm - 32 km. The order of
the AR coefficlents - 3 x 3. Order of the MA coefficients - 7 x 7
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Figure 27. Same as Figure 24. except 2-D slope = -3.00
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The curves presented In Figures 29, 30, and 31 repeat the plots of Figures 24. 27, and 28

except that Lc - 84 kIn. Clearly the two-dimendonal per a Indicate good agreement with
the "theoretical" PSD slopes for the entire spread of correlation lengths and spectral slopes.

The 2-D curves presented In Figure 32 repeat the plot of Figure 29 except Figure 32 is
calculated for an AR order 13 x 13, MA order 25 x 25, N = 1024. and with no low frequency
replacement Clearly, the AR and ARMA model curves match the "theoretical" PSD better.

especlally. the high order ARMA model matches the "theoretical" PSD to much lower frequencies.

Also, the periodogram matches the "theoretical" PSD well. Not much Impt, however, was
seen as the AR order increased above order 13 x 13. Again, the cost of increasing the ARMA model

to high order Is greatly increased computer time.

The 2-D curves presented in Figure 33 repeat the plots of Figure 29, except that the
perlodogram plot in this figure shows the effect of subtracting out the low frequency components
from the 1024 x 1024 ARMA simulated scene. The PSD fails abruptly by many orders of
magnitude Just below the 128 point "minimum" cutoff frequency. Figure 34 presents a two-
dimensional gray scale 102.4 km x 102.4 km pictorial realization corresponding to Figure 33. The
high-frequency-only structured data was constructed for L1 = 84 km. 2-D slope = -8/3. spacing =

100 m, AR order = 3 x 3, and MA order - 7 x 7 but with the low frequency components removed.
The two figures show that the procedure described in the appendix is highly effective in removing

the low frequency components, leaving only the ARMA high frequency components. Figure 35

repeats the curves presented in Figure 29, except that the perlodogram shows only the added low
frequency DFT replacement portion of the spectrum. Clearly, the 12 x 12 replacement scheme,

described in the appendix, Is able to provide low frequency power components that match the
"theoretical" PSD well.

For completeness. Figure 36 shows a finished two-dimensional gray scale pictorial realization

of 102.4 x 102.4 km ARMA simulated data with low frequency DFT replacement. The structured
data were constructed for Lc = 84 km. 2-D slope = -8/3, spacing = 100 m, AR order = 3 x 3, and

MA order = 7 x 7. The model and calculated power spectral densities of this data were presented
in Figure 29.
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Figure 29. Log-log plot of two-dimensional power spectral density (PSD) versus spatial frequency
plotted along a diagonal. Curve marked by an asterisk (.) Is the desired or "theoretialr
PSD. Curve marked by open squares (a) represents the PSD of the full plane
auto-regressive JARI predictor model multiplied by the factor indicated on the plot
Curve marked by an open triangle (a) at the first frequency represents the PSD of the
full ARMA predictor model (which Is to say. the AR model corrected by the moving
average IMAM model). Curve marked by an X Is the 2-D periodogram derived from the
2-D simulation. The 1024 x 1024 simulated data set was derived from an original set
of 1300 x 1300 random numbers (see text for discussion of DFT low frequency
replacement). The "theoretical" 2-D slope Is -2.67 and the correlation length Lc -
84 km. The order of the AR coefficients - 3 x 3. Order of the MA coefficients - 7 x 7
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Figure 33. Same as Figure 29. except the low frequency power has been subtracted from the
1024 x: 1024 simulated data
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Figure 34. Two-dinensional gray scale pictorial representation of 1024 x 1024 ARMA simulated
data with low f.equencies subtracted (as In Figure 33). The data set was constructed
for Lc = 84 km, 2-D slope = -8/3, spacing 1 100 m, AR order = 3 x 3, and MA order
=7x7
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FIgure 35. Same as Figure 29. except only the DFT low frequency replacement power values are
shown in the simulation
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Figure 36. Two-dlmensional gray scale pictorial representation of 1024 x 1024 ARMA simulated
data (corresponds to Figure 29). The data set was constructed for Lc = 84 km. 2-D
slope - -8/3, spacing = 100 m, AR order =3 x 3, and MA order - 7 x 7
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7. C MIONAL SIVM A72ON - RESJLTS AND

This section focuses on comparing the 2-D ARMA results with a corresponding simulation
obtained by invoking the conventional fast Fourier transform method. The FFT method Is
straightforward In that (a) we calculate the FFT of dx~y). where e(xy) is chosen to be the same set
of Gaussian random numbers that we used in calculating the ARMA simulation: (b) multiply by
the desired filter (that Is. the square root of the desired PSD. Flfx.fy}, divided by the spacing. TI);
and Mc). perform the inverse FFT. Where g(xy) comprises the conventional 2-D simulation, the
process is described by.

g(x.y) = fft{flt(E(x.y})} × T,

Figure 37 shows a two dimensional perlodogram of data simulated by using this technique.
The log-log plot shows the two-dimensional power spectral density (PSD) versus spatial frequency
plotted along a diagonal. The curve marked by an asterisk (s) is the desired or "theoretical" PSD
and the curve marked by an X is the 2-D PSD obtained from the 1024 x 1024 FFT simulated data
set. The "theoretical" 2-D slope Is -2.67 and the correlation length Lc - 84 kin. Figure 37 thus
corresponds to the ARMA plot in Figure 29. Exam/naton of these plots show that the ARMA and
FFT simulation methods appear to yield very similar PSD's.

Figure 38 shows a one-dimensional perlodogrmn of the two-dimensional data set just
described. The log-log plot shows the I-D power spectral density (PSD) versus spatial frequency
plotted along a major axis. Again. the curve marked by an asterisk (.) is the desired or
"theoretical" I-D PSD and the curve marked by Ks represents the ID periodogram derived from
the rows and columns of the 2-D simulated data corresponding to Figure 37. Not unexpectedly,
good agreement obtains between the "theoretical" 1-D PSD and the PSD of the FFr generated data
set.

For completeness. Figure 39 shows a two-dimensional gray scale pictorial realization of
102.4 x 102.4 km FFT simulated data corresponding to Figure 37. The structured data was
constructed for Lc = 84 kIn, 2-D slope = -8/3, and spacing = 100 m. Comparison of the 2-D ARMA
gray scale plot (Figure 36) with Figure 39 provides visual (though suiJective) evidence of the
ability of the ARMA method and FFT method to generate equivalent structured scenes.
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FIgure 37. Log-log plot of two-dimensional power spectral density (PSD) versus spatial frequency
plotted along a diagonal. Curve marked by an asterisk (.) is the desired or "theoretical"
PSD. Curve marked b an X is a 2-D PSD of a 2-D sheet of data derived from
conventional (that is. FF1) simulation. The 1024 x 1024 simulated data set was derived
by performing FFT operations on the same set of random numbers as obtained for
Figure 29. The "theoretical" 2-D slope is -2.67 and the correlation length Lc = 84 km
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Figure 39. Two-djmensional gray scale pictoral representation of 1024 x 1024 FFT simulated data
(corresponds to Figure 37). The data set was constructed for IT - 84 km. 2-D slope
= -8/3. spacing = 100 m
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As mentioned In the introduction, enormous computer Um Is consumed In constructing

realistic but practical three dimensional maps of atmospheric temperature or density fluctuations
from conventional analysis techniques. It is necessary therefore to explore alternative means of
constructing structure maps while reducing the computational burden. Although the present
work succeeded In providing a reliable alternative method, it did not realize the goal of reducing
the computational burden. This work does, however, point to the possibility of using a hybrid
FFT/AR three-dimensional technique that promises signlflcant computer savings. This Idea will

be explored In a subsequent report.

The computer timings for calculations in this report were measured on the Phillips Laboratory
model 210 Convex computer. In solving for the ARMA filter coefficients, it was found that most of
the time was spent calculating the MA terms. For example. solving for a 3 x 3 AR filter took 1.2 s
and solving for a 13 x 13 AR filter took 3.0 a but solving for a 25 x 25 MA filter took 12.3 s.
Table I however shows that these times are small compared to the time needed to construct a
simulation given the filter coefficients. For example, It took 104 seconds to simulate 1300 x 1300
data points using an order 13 x 13 AR and order 25 x 25 MA filter. In contrast to the time
required to construct the ARMA simulations, Table I shows that less than 56 seconds were
required to perform a conventional 2-D FFT simulation corresponding to FIgure 37 (due to our
self-imposed constraint of using sections of the aforementioned ARMA program, approximately
28 percent of the time is excess overhead). Even the low order 3 x 3 AR and 7 x 7 MA filter took
nearly ten times as long to process as the conventional method. Thus the FFT technique proves
much faster than the 2-D ARMA modern spectral analysis method In constructing comparable 2-
D structure.

Table 1. Timing of Simulations

1300 x 1300 ARMA 1024 x 1024 FFr
(seconds) (seconds)

13x13 AR (10 cycles) approx.Ix10 4 s <56s

&25x25 MA
3 x 3 AR (10 cycles) approx.Ix1 3 s <568

& 31 x 31 MA___________ ____

21x21AR(10cycles) approx 3 x 104 s <568& 31 x31 MA
&31x31 MA___________ ____

3 x 3 AR (20 cycles)
&7x7MA approx. 580 s <56s

with DFT replacement
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9. cONCLUSIOIN

Because geophysical data often are characterized by smooth continuous power spectral
density functions, this report has explored the possibility of generating two-dimensional synthetic
structure scenes by passing stochastic data through an autoregresstve/moving average filter
having the characteristics of the desired two-dimensional PSD.

Several alternative procedures were developed to construct ARMA filters that covered a broad
frequency range, and featured near circular symmetry. A combination of quarter plane and full
plane autoregressive filters cascaded with a moving average filter coupled with low frequency
discrete Fourier transform power replacement proved satisfactory and effective In generating high
fidelity power spectral density functions. Simulated In this way, the two-dimensional power
spectral density functions of several scene realizations closely matched the desired or
"theoretical" PSD. As observed, PSD's having a small slope, large correlation length, and small
data spacing were more difficult to model than PSD's with larger slope, smaller correlation length,
and wider data spacing. The analysis Indicated that two-dimensional Isotropic horizontal atmos-
pheric temperature structure, having a data spacing of 100 m and a characteristically smooth

power spectral density can be modeled within a frequency band ranging from 0.08 kn-1 to 5 km-1

by an autoregressive 3 x 3 order process and a moving average 7 x 7 order process. DFT
replacement allowed extension of the lower frequency bound to 0.01 kmn-. At the expense of
Increasing computer time, one may Increase the frequency range without DFT replacement and
achieve agreement to 0.01 kn- I by choosing a 13 x 13 AR model and 25 x 25 MA model. Synthetic
scenes generated by the ARMA process maintained high fidelity to the "theoretical" PSD's for two-
dimensional spectral slopes ranging from -8/3 to -11/3 and correlation lengths ranging from
32 to 84 km. Comparison with a conventional technique (Fast Fourier Transform), showed that
the ARMA and FFT simulation methods appear to yield similar power spectral density functions
and visual two-dimensional scenes.

A reliable alternative procedure was developed to produce structure arrays having circularly
symmetric power spectral densities that matched desired geophysical specifications. The
procedure accounts for the isotropic horizontal correlation scales. including the line-of-sight, that
existing models approximate. The computational burden of the ARMA iterative process proved
more severe than the conventional FF1 technique for large correlation scales. The process that
was eventually chosen led to run times 10 times the execution time of the 2-D FFT process.
Despite the success of the model in achieving fidelity to filter specifications, It is hoped this report
will serve as a detailed study in 2-D ARMA analysis for a particular geophysical condition, and as
a caution to the ability of method to achieve computer savings. This and the previous work does,
however, point to the favorability of using a hybrid FFT/AR three-dimensional technique that
promises to have economical computer savings. This idea will be explored In a subsequent report.
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Appendix

Computaional DtaIs

MNALY=I OF SUKO FOUR SYUTRIAL guawim HLAM 1!FMM

1 N

AM~fX~fY) I Xa(mn)co(m111'ilmfxT+ nf 3,) Isn(ijmf )+ sn(2T(f3,))))

Mh N 1(2 N N2

I Tat(m.n){cos[2ilý(mfi+f,] + 7.~ la,(m.n)'{aiz42ienfmf. +nfy)I1)
m-n-N ) kmp-N n--N

Looking at the numerators, N, and N4 of -- Ln 1A eoseve

NJ = l±lXaj(m,n){cos[21eli(mf. + nf 7)Jii. hr2*T 1(mf. + nf 7)J

m=--N nu-N

but al(m.n) = a 4 (-m.-n)

go,

N4 N ~a 4 (m~n){cos[21(Ii(-mf. - nf-l] h4j2isr(-mfx - nf7 )J}

so that.

M N

N + N4 =2 1Xlaj(m,n)cos[21er,(mf, + nf,)]
in-on-0
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Looking at the denominators D, and D4 of -Land -- , we observe.
AAI AA4

D1I = X amncsf2T(f +1 { ai(m. n)sin[2xT'1 (mf,. + nf3,

D4=I I1 a 4 (m. n~cos[2xTrimfx + lfy)I1 I I a 4(m~n)sin[2xTj(Inf 1 +nfy)I1
~M=-MnU--N I t r--U n--N

but, a, (m. n) = a 4 (-m. -n). so that,

D=( N Xa,(m. n)cos(27cTi(-mf. - nf3,)) +( MI X al(m.n)sin(2xTd(-Inf, - nfy,))
M-On=OJIrn0-

so that. D, = D

conseqluently.

2 2X a,(m. n)cos[2xTi (mf. + nfy)]

AMl AA4  { N ajim~n)cos[21el(mnf.c+ nfy)I}2+j M{Nal(m.n)sin[21cTdmf. + nfy)]}

Likewise looking at the numerators. N2 and N. of and we observe,
AA3

N0 N ~a 2 (m~n){cos[27nTi(mf. + nfy)]+ i51422ier(mf. + nyI

but a2(-in.n) = a 3 (M,-n)

so,

M N

N2 = y Xa 2 (-m,n~fcos[2,eriF-mf. + nfy)J + iIjsn2xTr,(-in11 + nfy)]}
m=On=O

N M N X a3 (m.-n)Icos[2xieýmf. - nfy)]+ isii2Kieillf. - nyI

but a3 (m.-n) = a2 (-rn.n) = a1 (m.n)

so that,

N2 + N3 = 2 71 Yai(m~n)cos[2xTrr(mf. - nfy)]
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Laookn at the denominators D2 and D)3 Of Iand *We observe

71) { I a2(m~n)cos[2zT 1 (mf, tI nf)} a2(m. n)in[2xT3 (mf + nf7 )j}

1: { ~ a2 (-m.n~cost2xTs-mf, I 2 ~ 2-~~n[*, f + {n;)
m-0 n-0 COw

D)3=1M+n,]+ : X~a3(m.n)cos[2%1 (nif. +nl + a3(m, n)M~n[2nie;(mf.~ +nl, )I}

I 3 M -n)cosf 2xr1 (xnf. - nf,) + : 7a~.n~n I (nf,1 -n 7 )J}

but a2(-ni,n) = a3(M,-n) = al(m.n)

so that. D2 =1D3
consequently,

2=1 2X a,(m. Wcosf2%1'i(mf. - nf,)J

AA2 AA3 ajtm~n)cos[2xrTjmf. - nfy I If Xa,(m. n) sh2xrT, mf1 - nfy))

Iw-On-0J L-o-

Finally

1 aco2~j:f.ny 2XjaicosI2xai(nf1 -nf)J
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Ignoring the sine terms for f. --.0 and fy -. 0:

1 4

- I- - M N 
4WA a, 2 (m.nkof2xT3 (mf +n 2=f)]

04
M N

I ~a, (m~n4cos(2xmf.T1 )cos(2xnf~T1 ) - sin(2xmf.T1 )fn(2xnfy,T)]
m=On-O

4

. i~al(m.n)(COS(2xmf1 T1 )cos(2znfyT1 )]
M-On-0

where, again we have Ignored sine terms. This implies that as f, -+ 0. and fy -+ 0, and checking
1 4

the definition of al(mAn}, we see as before, the following approximaton: A f- X Is
AAXAX-fy) A(f. -fy)

unclear why the sum of the quarter plane filters performs better than the average.

ANALYSIS OF LOW FREQUENCY DFIT

The following describes the analysis and procedure for subtracting the low
frequency components of the 2-D ARMA simulated scene.

Assume that G(x,y) is a two-dimensional sheet of simulated data. We wish to find the discrete
Fourier coefficients AwI ,wk2) at frequencies (I and c2 where.

0.2x, +2(21), +32x),..

0. =o.-xf.*2!-F). 3(2x).....

but not (01 =(2 =0 or Iw, I= w2 -= x. Then,

A(ah 302) = VT7 G(x,y~e-khe-khy
x y

and.

A(-co,-w 2 ) = I- I G(x~ylekxemfy
x y

SA'(w l .w2)
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So. where 9JR signie the real comnponents. anid 3 signifies the lamginary compmiets:

2 11 ~G(x. y)cos(ohx)cos~u 2y) - sfn(chx)sln(umjr)J
lWxy

and.

SA~ml~m= -SA(-&.-m2

2 7 ~G(x. y)cos(wlx)sin(w2 y) + hln(ahx)cos(co~y)]
x y

Now the contribution of AMw 1 .o2) at point x~y is:

C(x.y) = 9tA(o1 .m2 )][cos(m~x)cos(oy) - uln(m1 x)sin(co~y)1

+-1[A(ah.w 2 )][s(ahx)uln(ay) + uln(m1 x)cos(w2y)]

and the contribution of Ake-o1 -. ) at point xy is:

= 9I[A(-o~ .-w2)][cos(ahx)cos(co 2y) - sin(cthx)sin(m~y)]

+ 93[A(-w, .-o2)J[-cos(uilx)sin((o~y) - sin(mjx)cos(co~y)]

anid since A(0)1, 0)2) = A*(-(o. '-(02), the contribution of A((w1 , (o2) + A(--o1 1 '(2) 'S:

CC(x.y) = 29t[A(ah,%o)Icos(coix)cos(omay) - sin(mjx)sMn(m~y)]

,w[~cl~2 )Icos(wix)sin(02Y) + sin(ohxkcos(w 2y)]

Taking the subset of frequencies:

-11 and O5coi!i1(§ but notoh== 2 =O0

(we call this a 12 x 12 or L x L subset of fr-equencies) we subtract CC~xry) at these fr-equencies
fr-om G~x~y) and add instead the DD(x~y) values described below.
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The foi/owing describes the analysis and procedure for replacing the low
frequency components to the simulated scene.

We set up an array of 2L x 2L pseudo-random numbers e(s,t) drawn from a Gaussian
probability distribution with standard deviation - I and then calculate the 2-D FFT of e(s,t., G(f 3 ,
0)4), where.

203= -L TS L.
2UT

(04 = 2L

Invoking Pascal's theorem, the expected value of the square of the amplitudes of G({.m4) is (2LW2 .
But G(c3.c4) has the proper functional form of the probability density function for the Fourier
transform of the data we wish to simulate. The idea is to take a value of G(c.wm) and multiply it
by a value M(wl,.2) to get the expected value of A(wl,( 2) which will have the power spectral
density we wish to simulate. This means:

IGG(o. (4 •[M(L .•]=F((0,,.%)
= (T)[)(N=) where F((0o,2) is the power spectral density we are trying to

simulate and Ax = 100 m is the spacing of the data we are simulating. Thus,

(2L)f[M(.oj}]2)f = F((ol.w 2 )

(Ax)2 (N)2

or,

M(.o 1IW2)= = F(wi'(o2)
2x AxxLxN

and.

D((ol,)'} = GG(N• -__.•.}*M((o1.(02)
2'2L

Then, as above, the contribution at point (xy) of D((O1,a)2 ) + D(-(01,-0o2) is:

DD(x.y) = 2A [D((ol, }2)jcos((ojx)cos(%y) - sin((olx)sin(woy)]

+23[D(1)( ,9o)j}cos((1x)sin((0y) + sln(cojx)cos(w•y)]
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