
AD-A280 472IIII II 11111111 NEl Dll III 4M I I

NAVAL POSTGRADUATE SCHOOL
Monterey, California

,0.' STATES~

~'R AD V' o

THESIS

SACS: A CACHE SIMULATOR INCORPORATING
TIMING ANALYSIS WITH BUFFER AND DTII

MEMORY MANAGEMENT E ELECTI F

by a JUN22 19942 D

William G. Smith

March, 1994

Thesis Advisor: Douglas J. Fouts

Approved for public release, distribution is unlimited.

94-19105 5

Best
Available

Copy

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704

Pubh•c rerruna butrde for aw collection of mforinataon is estimated to arverue I howr perr mone inclucdng the une for re't~wue wjtruchtt ooc. k eeaRctueru extin• a at.a sources. patheros and umaiunnasu the date
nendeL and compietiu, and retewsong the cohle.tion of tnformation Send cotrments repardn dus burden estimate or my other asptg of this collecton of inforosrion. u t in aeud as mlgstauon for reducing thi burden, to
W haton henquaneru Serv•cs. [htrctorete for Informationm peetons and Reports. 121S Jeffernon Dams. Highay. State 1204. AslinitoiL VA 22202-4302. and to the Office of Manumg ent and ldgetL. Paperwork
Reduction Protect (0704-0188) Washington WIC 20503

i. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March, 1994 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SACS. A CACHE SIMI JLATOR INCORPORATIN(TIMIN(
ANALYSIS WITH BUFFER AND MEMORY MANAGEMENT

6. AUTHOR(S)

Smith, William, 6.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Postgraduate School
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

II. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release- distribution unlimited

13. ABSTRACT (maupmumm 200 words)

SACS is a cache simulator that provides the user with a wide range of timing infbrmation. in addition to providing typical
infannation such as hit and miss rates. The SACS model includes read and write buffers, main memory, and cache memory. In
addition, SACS supports a number of butfer and data forwarding policies, as well as the traditional block replacement. write, and
write miss policies. SACS also includes a self-testing mode which can be used to debug the program after source-code
modification.

14. SUBJE(r TERMS IS. NUMBER OF PAGES

SACS, Cache Memory. Cache Memory Simulation. Computer Architecture, 264
Computer Architecture Simulation 16. PRICE (ODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

I JNCLASSIFIEI) I JNCLASSIFIEr) I JNCLASSrFIEDI IJL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

SACS: A Cache Simulator Incorporating Timing Analysis
with Buffer and Memory Management

by

William G. Smith

Lieutenant, United States Naval Reserve
B.S., Saint Bonaventure University, Saint Bonaventure, New York, 1984

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Author: • 5 S
William G. Smith

Approved by: _ _ _ _ _ _ _ _

Douglas J Fouts, Thesis Advisor

Amr M. Zaky, Second"Rea er

Michael A. Morgan, Chair#Van,
Department of Electrical and Computer Engineering

• . . II I I II I I I I I I I I iI

ABSTRACT

SACS is a cache simulator that provides the user with a wide range of timing

information, in addition to providing typical information such as hit and miss rates. The

SACS model includes read and write buffers, main memory, and cache memory. In

addition, SACS supports a number of buffer and data forwarding policies, as well as the

traditional block replacement, write, and write miss policies. SACS also includes a

self-testing mode which can be used to debug the program after source-code modification.

Accesion For

NTIS CRA&M

CDTIC
TAB

Uniannounced
[

Justification ,.

By
Distributiofn I

Availability Codes

Avail and/or
Dist Special

Ill

TABLE OF CONTENTS

!. INTRODUCTION ... I

A. CACHE MEMORIES ... I

B. PROBLEMS OF CACHE MEMORIES 3

C. EXISTING CACHE SIMULATORS 4

D. PROBLEMS WITH EXISTING CACHE SIMULATORS 4

11. INTRODUCTION TO SACS .. 6

A. THE NEED FOR STILL ANOTHER CACHE SIMULATOR 6

B. COMPARING SACS TO OTHER CACHE SIMULATORS 6

C. THE CAPABILITIES OF SACS 7

Il. SACS INPUT PARAMETERS ... 8

A. INTRODUCTION ... 8

B. SIZE ARGUMENTS ... 9

C. CACHE ACCESS, HIT, AND MISS ARGUMENTS 9

D. MEMORY ACCESS AND TRANSFER TIME ARGUMENTS 9

E. BUFFER ARGUMENTS ... 9

F. CACHE POLICY ARGUMENTS 10

G. SEARCH BUFFERS AND UPDATE BUFFER ARGUMENTS I I

H. REMOVE READ DUPLICATES AND WRITE DUPLICATES
ARGUMENTS ... I I

!. PRIORITY ARGUMENTS .. I I

J. SACS CONTROL ARGUMENTS I I

IV. SACS DISPLAYS ... 15

A. TRACE DISPLAY ... 15

B. RESULTS DISPLAY ... 20

C. STALL DISPLAY .. 21

D. CACHE ARGUMENTS DISPLAY 22

E. GO TO A SPECIFIC TIME .. 22

F. INCREMENT TIME ... 23

G. DECREMENT TIME .. 23

H. HELP DISPLAY ... 23

iv

V. SACS DESIGN ... 25

A. OVERALL STRUCTURE OF SACS 25

B. MAIN EVENT LOOP .. 25

C. CACHE MODEL .. 26

D. MEMORY MODEL .. 34

E. TIME ESTIMATES .. 38

VI. PROGRAM VALIDATION .. 40

A. TESTING SACS ... 40

B. CHECKING COMPLETION TIME 42

C. CHECKING GLOBAL VARIABLES 43

VII. SAMPLE RUNS .. 44

A. EXAMPLE SACS SIMULATION RUN 44

VIII. CONCLUSION ... 55

LIST OF REFERENCES .. 57

APPENDIX (SOURCE CODE FOR SACS) .. 58

BIBLIOGRAPHY ... 256

INITIAL DISTRIBUTION LIST .. 257

V

I. INTRODUCTION

A. CACHE MEMORIES

Cache memories are usually small memories that contain blocks of data and/or

instructions [Ref. 1]. Each block is a copy of consecutive data and/or instruction bytes

from main memory. Caches are usually much faster than their main memory counter parts.

They are, in effect, short term memory. The cache contains a set of blocks recently

accessed by the CPU. The cache can provide the most recently used data and/or

instructions to the CPU in less time than it would have taken to get the information from

main memory. However, if the cache fails to provide the information, then it fetches the

information from main memory and, depending on its design, may choose to enter the

information into the cache. The cache also performs memory updates in the form of writes.

Memory updates can occur when the CPU makes a write request, or the cache can store

new data in the cache blocks and wait until later to write the data to memory [Ref 2:p. 197

]. A dirty block is a cache block which contains data that is more current than memory

because of a recent write request.

The concept of the cache storing recently used memory blocks is very simple. In

fact, many early cache designs were simple implementations of the concept. However, the

task of building an optimized cache is not trivial. The difficulty comes from trying to

provide the CPU with the correct data or instruction as soon as it is available. For example,

if a block read is in progress and there is enough data available to satisfy the pending load,

the data should be forwarded to the CPU rather than waiting for the block read and cache

update. The cache often performs block management between requests. One example of

block management is writing dirty data to memory. Another example is reading data that

was not part of the CPU request, but located in the same block. This allows the cache to

contain all the data that was in the block. An optimized cache performs block management

only after completing the CPU request. Complications arise when the CPU makes another

request before the block management for the last request is complete. If this happens, the

cache has to search for data in the control sections of the cache as well as the cache

memory.

More and more cache designs incorporate read and write buffers in their control

sections. These buffers allow the cache to perform block management while minimizing

the effect on the CPU request [Ref. 3]. For example, if a CPU read request results in a

miss and the block victim has a dirty sub block, then writing the dirty sub block to memory

may occur after reading the replacement block. This allows the cache to forward the read

data to the CP11 before writing the old data to memory. Figure 1 provides a simplified data

flow diagram that illustrates buffer use in modem cache designs.

Scoreboarding is a term that has been used to describe the process of searching, and

choosing the correct value of a register argument, Scoreboarding in a cache represents the

act of searching and altering buffers based on new CPU requests. One example of

scoreboarding is searching a buffer for CPU requested data. Searching block and write

2

Read & Write Write Data

Cache

C eqets , Cah Read Requests

CPU Read &Write Memory
DataDai

Assembly

Main Memory

Figure I Typical Cache Data Flow Design

buffers may provide data that is not available in the cache memory. Searching the read

buffer ensures that no duplicate read requests are placed in the buffer. However, it will not

provide any new data. Another example of scoreboarding is updating read requests in the

read buffer with data provided by CPU write requests.

B. PROBLEMS OF CACHE MEMORIES

Cache memories can cause more problems than they solve and they can

significantly complicate the memory model. The most obvious problem with a cache

memory is that it does not always contain the data that the CPU requests. This is defined

as a read miss. A write miss is when the CPU makes a write request and the correct block

is not in the cache. Conversely, a read hit is when the data is available, and a write hit is

when the block is available. There are three types of cache misses [Ref. 4:p. 419]. First,

3

the compulsor, miss results when data is accessed for the first time. Second. the capacniy

miss, occurs when the cache is not big enough to carry all the blocks required. The third

type, collision misses, occurs when the cache requires several main memory blocks that

map to the same set of cache blocks. This causes a form of thrashing similar to that seen in

virtual memories

In some numerical calculations, the cache makes the average access time greater

than the main memory access and transfer times. This is often due to matrix operations that

access elements across rows and force the cache to enter an entire block of data for each

element read Depending on the size of the matrix, it may not be possible to save enough

blocks to ensure that the next block accessed was not selected as a victim and replaced As

a result, many architectures support special load and store instructions that bypass the

cache.

C. EXISTING CACHE SIMULATORS

There are a number of cache simulators. Two examples include Dinero ET and

Tyco [Ref. 5]. Dinero H1 provides hit and miss data for a wide range of input arguments.

Dinero m will also simulate either a unified cache, or separate data and instruction caches.

Tvco. on the other hand. simulates several different cache options simultaneously for

comparison.

D. PROBLEMS WITH EXISTING CACHE SIMULATORS

Unfortunately, both Dinero IM and Tyco limit their simulations to hit-miss

calculations. With nothing but hit-miss information, the designer cannot optimize his cache

4

for the lowest aver,- access time- Most caches are designed to have low average access

times rather than high hit rates (Ref 4:p. 405]. Since Dinero HI and Tyco do not perform

V timing analysis, they may mislead the designer. Dinero HI and Tyco also do not

provide any buffer simulations because they assume that the cache has all the time it needs

between loads and stores to complete all of its block management. Since buffer

management and scoreboarding have such a large effect on the average access time, there

is an obvious need for a simulator that can perform accurate timing analysis, buffer

management, and scoreboarding

I!. INTRODUCTION TO SACS

A. THE NEED FOR STILL ANOTHER CACHE SIMULATOR

A cache simulator should not only simulate the cache memory, it should simulate

main memory and any buffers it uses. As discussed earlier, neither Dinero III nor Tyco

provide any means for simulating buffers or memory.

Without timing analysis, the designer is unable to determine the effect of

scoreboarding protocols. These protocols, which are usually very difficult to implement,

can be avoided by delaying any read requests until all writes are completed and the last

read block has been entered into the cache. Timing analysis allows the designer to choose

the scoreboarding technique that best suites his or her resources and architectural

requirements. A hit-miss cache simulator reduces this process to guess work.

B. COMPARING SACS TO OTHER CACHE SIMULATORS

As previously discussed, other cache simulators provide hit-miss results, while

SACS provides the all important average access time. However, in addition to the correct

performance measurements, a simulator should illustrate a cache's strengths and

weaknesses. It should give the user a clear understanding of how to improve the cache's

design. With Dinero III, the user could only guess on how to improve his/her cache design.

Tyco attempted to correct this problem by allowing the user to simulate several caches

simultaneously However, given the number of different variables and policy choices.

6

exhausting all possible combinations is not the best way to design a cache. SACS is unique

because it provides the user with a detailed analysis of exactly what the cache was doing

during a simulation run. The user can then identify and correct specific problems with a

cache design.

C. THE CAPABILITIES OF SACS

SACS allows the designer to experiment with different policies while measuring

their affect on the average access time. SACS provides the user with more detailed

information because it maintains a log of how every clock cycle is spent. This log is kept in

the form of a histogram. It allows the user to see exactly how much time is spent

performing read or write requests. It also records how many times a request was

completed within a given time period. With these details, the user can easily evaluate the

cache's performance. A second histogram is available which details the amount of time

spent performing cache accesses, memory accesses, and waiting for full buffers. With this

histogram, the designer can target specific weaknesses. It also provides a good comparison

of the effect of different scoreboarding policies between runs.

7

111. SACS INPUT PARAMETERS

A. INTRODUCTION

SACS provides a wide range of input parameters to model various different

functionally diverse caches. W~hile It is impossible to imagine what kinds of caches

designers might build in the fuiture, every effort was made to allow the designer to simulate,

or most nearly approximate, his or her design. Table I lists arguments that SACS

supports.

TABLE 1.
SACS INPUT ARGUMENTS

Cache Size (-cs n) Read Forward (-rf -drjD
Blocks Size (-bs n) CPU Waits For Cache Writes (-cwfciv -dc~ifc,)
Sub Block Size (-sbs n.) Search Block Buffer (-sbb, -dsbb1I
Associativity (-a n) Update Read Buffer &-urb, -durb)
Word Size (-%ws n)I Remove Read Duplicates (-rrd, -drrd)
Read Cache A ccess Time (-rcat n,) Remove Write Duplicates (-rwd, -dns'd)
Read Cache Hit Time (-rcht nt) Read Priority (-rpr n)
Read Cache Miss Time (-rcmt nt) Write Priority (-",pr n)
Write Cache A ccess Time (-",cat it) Read For Write Allocate Priority (-rfw~apr it)
Write Cache Hit Time (-wscht nt) Write iDirnv Block Priority (-wdbpr n)
Write Cache Miss Time (-wrcmit n) No Priority (-npr n)
Memory A ccess Time (-mat n) Trace (-t. -dt)
Memory Transfer T-ime (-nut n) Check (-c. -dc)
Buffer Cache Access Time Gbhcat nt) Test (-test)
Read Buffer Size &-rbs nt) Keyv Board 10 &-kbio, -fio)
Write Buffer Size (-wvbs n) D~ata File Name (-f "File Name")
Block Replacement Policy (-brp el) Screen Histogram Max Index (-shmi nt)
Write Policyv (-%,p e2) File Histogram Max Index (-Ihmi it)

LWriteMfissPolicy_(-wvmp e3)_______________________
nt Unswe~d Intrnr

I1 ,uneto type LRt'. F1 O. RAN I 1

.3 ,namerstiim tyleIr Write An,utd. Write AII,,atc

8

B. SIZE ARGUMENTS

All sizes are entered in bytes. (.ache Size must be an even multiple of both Bloc "

Size and Associativity. Block size must be an even multiple of Sub Block Size, and Sub

Block Sizc must be an even multiple of Word Sizc. Word Size may be any positive integer

that does not force an integer overflow in (?ache Size or Block Size.

C. CACHE ACCESS, HIT, AND MISS ARGUMENTS

Cache Access Times represent the time required for a request to access the cache,

providing the cache is not busy. At the end of this time it is determined whether the request

is a hit or a miss. The (ache Hit Time represents the time required to complete a request

once the cache access time has expired and the request has been identified as a hit. If the

request was a miss, then the Cache Miss Time is used instead.

D. MEMORY ACCESS AND TRANSFER TIME ARGUMENTS

The Memory Access Time is the time required for a buffer to access, and then

transfer, the first word of a request from memory. Memory Transfer Time is the time

required for a buffer to transfer each consecutive word following the first access.

E. BUFFER ARGUMENTS

After a memory read, the Block Buffer contains the new data that must be entered

into the cache. The time that the Block Buffer takes to access the cache is called the Buffer

(Cache Access Time. The Block Buffer may have to wait longer because the cache is busy.

The buffer cache access will not occur if a read or write cache access is required during the

same clock cycle. However, once the access begins, the read and write cache accesses are

9

locked out until the cache is updated. The Read and Write Buffer sizes can be any positive

non zero integer (< 100).

F. CACHE POLICY ARGUMENTS

Block replacement policy determines the method used to choose the location of a

new block in the cache. SACS supports three block replacement policies: Least Recently

Used (LR(), First In First Out (FIFO), and Random (RAND). There are two write

policies: Write Through, and Write Back. The Write Through policy forwards the data to

memory immediately after a write request. However, in the Write Back policy, the data is

saved in the cache until the block that contained the data is selected as a victim. Dirty bits

indicate which sub blocks have new data that must be written to main memory.

SACS can easily be modified to support new write, or write miss policies by adding

the new policy name to Write Policy Types, or the Write Miss Policy Types in SACS. h.

The code to simulate these new policies must be placed in the procedures Write Hit, and/or

Write Miss which are both located in Cache. c. New block replacement policies may also

be added by modifying Replacement Policy Types in SACS.h, and Select Block Victim in

(Cache. c.

If CPU Waits For Cache Writes is asserted the CPU will wait after a write request

until the cache is complete with the write. Otherwise, it is assumed that the cache can carry

out the write while the CPU continues with other instructions.

If Read Forward is asserted, then a read miss is complete once the data required

arrives in the block buffer. Otherwise, the read must wait until the block updates the cache.

10

G. SEARCH BUFFERS AND UPDATE BUFFER ARGUMENTS

Search Block Buffer allows the cache to search the block buffer in case the read

data was already received from memory. If any part of the data is found in the buffer, then

the size of the request will be appropriately reduced. Update Read Buffer allows a write

memory request to provide data required by a read request. If any read request needs the

data provided by the write memory request, then the size of the read request will be

reduced appropriately, and the data is not read from memory.

H. REMOVE READ DUPLICATES AND WRITE DUPLICATES

ARGUMENTS

Removing read and write duplicates means that requests that have intersecting or

concurrent data will get spliced together into one request. Otherwise, a buffer may contain

multiple requests to the same memory location.

I. PRIORITY ARGUMENTS

In SACS, the user specifies the priority of requests. The lowest numbers represent

the highest priority. This allows the designer to simulate a cache that must finish all writes

before starting a read. It also allows the designer to delay reads for write allocated blocks,

and the writing of dirty blocks.

.1. SACS CONTROL ARGUMENTS

I. Introduction

SACS has control arguments that allow the user to select one of several

modes of operation.

!1

2. Trace Argument

The trace mode permits the user to step through a trace, one clock cycle at a

time, viewing the contents of the cache and buffers, and obtain statistical results.

3. Check Argument

When SACS is in the check mode, it performs a self check of all of its

global variables. These checks include checking to see that all the global variables that

should remain constant, do in fact remain constant. Global variables that are not constant

are checked to see that they are within prescribed bounds. This form of checking can occur

while the program is in any other mode (i.e., Trace, Test, or Key Board I/O). This check

can be performed during normal data runs. This kind of checking helps to identify errors

that might have gone unnoticed. It also assures the user that the program did not

catastrophically fail during a run.

4. Test Argument

When SACS is in its test mode it can do nothing else. It will automatically

generate its own input data. The data is generated by randomly selecting a finite number of

test cases to use. Each test case has a combination of seven load/store instructions. The

expected number of read and write hits for each test case is known. Therefore, the total

number of read and write hits for the trace can be determined. The actual addresses used

for each test case are chosen randomly. However, all the loads for a particular test case

will map to the same block. Similarly, all stores will also map to the same block. SACS

will randomly select its own set of input parameters, ignoring any other arguments entered.

12

It will then run the main routine on the test trace as if it was a user defined file. Once the

trace is complete, SACS will compare the results with what it expected from the random

trace. If no errors have been detected, then SACS will repeat the process of randomly

generating its input file and input parameters. The test mode places SACS into an infinite

testing loop. The only way to terminate the process is to kill the process. The decision not

to give the user a more graceful way out of the test mode was made because C does not

provide a way to trap 10. While there are operating system methods of trapping 1O, they

would have made the program system dependent and, therefore, non-portable. The current

version of SACS has been compiled and run on both a PC running DOS and a SPARC

station running Sun -OS without any changes to the source code.

5. Key Board 10 Argument

SACS normally accepts its inputs from a data file. However, it can accept

inputs directly from the user. This input mode can be used with the trace and checking

modes if desired. SACS will ask for each request from the terminal as required. The trace

display will appear each time a new request is made. However, it will not stop every clock

cycle unless the user selects the trace mode.

6. Data File Name Argument

SACS normally assumes that the data file is named "SACS.Dat", however

the user can specify the name of the file he or she wishes to trace using the data file name

argument.

13

7. Histogram Max. Index Arguments

SACS provides the user with two timing histograms. One provides timing

analysis for read and write requests. The first histogram illustrates how many requests

were completed during the dtzignated time. The second histogram provides timing

analysis for the number of times the cache waited to complete a particular task in the

designated time. The maximum index for these histograms is the maximum number of

time bins. Since there may be data out of the maximum index range, the last bin is used to

total all events with times greater than or equal to the maximum index. The screen

histogram maximum index is the number used for screen displays. The screen maximum

histogram index has a default value of 4, which allows all displays to fit on a standard 80

column screen. However, if a Unix window is available, the designer may want to raisc

this number to get more detailed displays. The file histogram maximum index is used for

the output file generated by SACS. This file may have a much larger range because it does

not have to be printed on a screen. The output file is compatible with MATLAB script

files. This allows results to be read and processed by MATLAB for statistical analysis and

plotting purposes.

14

IV. SACS DISPLAYS

A. TRACE DISPLAY

1. Introduction

SACS includes a trace mode that allows users to monitor the behavior of the

simula=.d cache and the implemented policies and scoreboarding techniques. The user

may also need to debug any modifications made to SACS. The trace mode is also very

useful in identifying any programming errors. The trace mode allows the designer to

review the status of the cache at the end of each clock cycle. A trace display is shown in

Figure 2.

Current Request: Read Time: 46
Address: 2AF769F9 Next Request Time: 49
Size: 07 TOA: 49
Cache Waiting For: Read Newory Request
Memory Waiting For: "ae ry Read Access Cache Hit: No
Block Waiting For: M.emory Block Transfer Buffer Hit: No

Set Block Add ess V/D V/D V/D V/D
00031 00124 251379F0 0 0 0 0 0 0 1 0

00125 2AF769F0 0 0 0 0 0 0 0 0
00126 00000000 0 0 0 0 0 0 0 0
00127 00000000 0 0 0 0 0 0 0 0

Read Buffer Address Size Req. Block Priority Time Req. CoMp. Tine
2AP769"9 16 07 00125 00 7 53

Write Buffer Address Size Req. Block Priority Time Req. Coup. Time
25Z37A10 10 00 00000 11 5 58

Block Buffer Address Size Req. Block Priority Time Req. Coup. Time
2AF76918 00 00 00125 00 7 53

Next Command Please I T, R, S, C, G #,, -#, Help] >>>O

Figure 2 Trace Display

15

2. Curr--'t Request Fields

The trace display contains the last CPU request, as well as the request

address and size. SACS can only process requests that are contained within the same

block- If a request spans across two or more blocks, then the request is split up into block

size requests and processed separately.

3. Cache Waiting For Field

Whatever is holding up the last CPU request is shown in the Cache Waiting

For field. In Table 2, we can see all the things that the cache might have to wait for. If the

cache is waiting for nothing, then the request has been satisfied. If the cache is waiting for

a read or write cache request, then the cache is being accessed. If the cache is waiting for a

memory request, then some part of the request must be retrieved from memory and the

data is not available. If the request can not proceed because one of the buffers is full, then

(*ache Waiting For will indicate whether the request is waiting for the full read buffer or

the full write buffer. Note that a read miss request may have to wait for dirty blocks to be

written to memory, making it possible for a read request to wait on a full write buffer.

4. Memory Waiting For Field

Memory Waiting For identifies which memory function is in progress.

When a new memory access begins, Memory Waiting For indicates whether it is a memory

read request or a memory write request. Once the access of the first word is in progress,

then Memory Waiting F-or will indicate either read access or write access. However, once

the first word has been received, then Memory Waiting For will switch to indicate either a

16

read transfer or a write transfer. If a memory read request needs to begin and the block

buffer is busy because it has not updated the cache from the last request, then Memory

Waiting For will indicate cache update.

5. Block Waiting For Field

Block Waiting For describes what the block buffer is doing. It will indicate

memory block transfer when a memory read access or transfer is in progress. However,

once the transfer is complete, the block buffer must update the cache. If the cache is busy,

then Block Waiting For will indicate that it's waiting for cache access. When the cache is

not busy and the cache update begins, then Block Waiting For will switch to indicate block

cache transfer.

TABLE 2.
WAIT FOR CONDITIONS

Cache Memory Block Buffer
Wait For Conditions Wait For Conditions Wait For Conditions

Nothing Nothing Nothing
Read Cache Request Memory Read Request Memory Block Transfer

Read Memory Request Memory Read Transfer Block Cache Access
Write Cache Request Memory Write Request Block Cache Transfer

Write Memory Request Memory Write Access
Full Read Buffer Memory Write Transfer
Full Write Buffer Cache Update

CPU Cache Access

6. Timing Data Fields

The trace display shown in Figure 2 includes a time field that indicates how

many clock cycles have passed since the start of the run. The Next Request Time is the

17

time at which the CPU either has, or will make, another request. The TOA field indicates

when the next memory word will arrive into the Block Buffer. However, if a write was in

progress, this field would be a TOD field, and would indicate the time that the next word

will leave the Write Buffer.

7. Cache Hit and Buffer Hit Fields

The cache hit field indicates whether a request is a hit or not. The buffer hit

for a read request indicates whether the data requested is in the Block Buffer. A buffer hit

for a write request indicates that the Write Buffer needed to write the data to memory

anyway. A buffer hit will only occur during a cache miss. Buffer hits allow the designer to

determine how many times the scoreboarding was used during a run to avoid a memory

access. However, the true measurement of a cache's performance is its average access

time.

8. Address Block Selection Display

During a trace run it is helpful to see the cache set that the request address

got mapped to. This includes all the blocks that the cache had to work with to satisfy the

request. If the request is a hit, the block that it hit on has to be in this set. If a block victim

is chosen, it has to be chosen from this set.

9. Buffer Displays

The contents of all the buffers are displayed so that the designer may see

what the memory is working on. The Request Size is the number of bytes that have to be

read in order for the current request to have all the data originally asked for. This number

18

might be reduced from the original request size if part of the data is in the cache or if Block

Buffer is allowed to contribute data to the request. During the trace, the address, size, and

request size will constantly change as CPU requests, and memory accesses and transfers,

are made. The block field indicates which cache block the read data will be placed in. The

pnontv field indicates the priority of the memory request. A zero priority indicates that the

request is in progress. The next lowest number will be serviced next, unless a new

memory request is made. If more than one request has the same priority number, then the

read buffer will take priority If the read buffer has more than one request with the same

priority, then the priority will switch to FIFO.

10. Time Required and Completion Time Fields

Every memory request has a Time Required to complete and a Completion

Time. The Timc Required to complete is the time that memory will have to service the

request. The Completion Time is the time that the request is expected to be removed from

the buffer.

II. Next Command Please

The next command line includes a prompt for the user of all the available

commands Shown in Table 3 is a list of all the commands. In the following paragraphs.

these commands are discussed in detail.

19

TABLE 3.
TRACE COMMANDS

Trace Display (7)
Results Display (R)

Stall Timing Display (S)
Cache Arguments Display (C)
Go To A Specific Time (G #)

Increment Time (#)
Decrement Time (-#)

Help (H)

B. RESULTS DISPLAY

The Resuhls Display. shown in Figure 2, provides the user with the number of

requests, cache hits, and buffer hits. The hit rates are a combination of both the cache hits

and the buffer hits. The Request Time Histogram gives the number of requests that were

completed in the prescribed time. The total amount of time spent on each request, and the

average access times, are also displayed. As discussed previously, the average access time

is the ultimate measure of cache performance.

20

Requests Break Down

Number Number Number
Request of of of Hit Miss
Types Requests Cache Hits Buffer Hits Rates Rates

Read 4 1 1 50.00% 75.00%
Write 7 4 0 57.14% 42.86%
Total 11 5 1 54.55% 45.45%

Request Time Histogram.
Ave

Access
Time-00 Tim-01 Time-02 Time-03 Tirm>=04 Total Timm

Read 0 2 0 0 2 11 2.750000
Write 3 4 0 0 0 4 0.571429
Idle 0 21 0 0 0 21

Next Command Please C T, R, S, C, G #, #, -#, Help] >>>O

Figure 3 Results Display

C. STALL DISPLAY

The stall display provides the designer with an exact account of where the cache

spent all its time. As shown in Figure 4, the stall time histogram lists all the events that the

cache has ever waited for, and the number of times that the cache waited for an event

within a designated period.

Stall Time Histogram

Tim-e00 Tim-01 Timmo02 Timo>-03 Total

Nothing 4 0 1 3 21
Read Cache Request 0 4 0 0 4
Write Cache Request 0 4 0 0 4
Read M•oery Request 0 0 0 2 7
Write Mamory Request 0 0 0 0 0
Full Read Burffer 0 0 0 0 0
Full Write Buffer 0 0 0 0 0
CPU Cache Access 0 0 0 0 0

Next Connand Please IT, R, S, C, G#, 4. -#, Help] >>>O

Figure 4 Stall Timing Display

21

D. CACHE ARGUMENTS DISPLAY

The cache arguments display allows the user to review the arguments used by th-

simulator. Figure 5 shows an example of the cache arguments display.

Cache Arguments List

Cache Size: 00008192 Read Forward: Yes
Block Size: 00016 CPU Waits For Cache Writes: No
Sub Block Size: 00004 Search Block Buffer: Yes
Associativity: 04 Update Read Buffer: Yes
Word Size: 00004 Remove Read Duplicates: No
Read Cache Acccess Tinme: 0 Remove Write Duplicates: No
Read Cache Hit Tim: 0 Read Priority: 10
Read Cache Miss Time: 0 Write Priority: 11
Write Cache Access Time: 1 Read For Write Allocate: 12
Write Cache Hit Time: 1 Write Dirty Block Priority: 13
Write Cache Miss Time: 0 No Priority: 100
Memory Access Tim: 3 Trace: Yes
Memory Transfer Time: 1 Check: Yes
Buffer Cache Access Time: 1 Test: No
Read Buffer Size: 0" Key Board 10: No
Write Buffer Size: 04 Data File Na.m: SACS.Dat
Block Replacement Policy: LRU Screen History Max Index: 0004
Write Policy: Write Through File History Max Index: 0010
Write Miss Policy: Write Allocate

Next Command Please (T, R, S, C, G #, #, -#, Help] >>>Cl

Figure 5 Cache Arguments Display

E. GO TO A SPECIFIC TIME

Because data traces are usually very long, SACS was given the ability to run to a

specific time. This allows the user to begin a long trace and inspect the results after a

reasonable amount of time. If the user is debugging SACS because of a modification or,

God forbid, there is an original error in SACS, this command will allow the user to advance

to the last time the error occurred. If the time specified is earlier than the current time, then

22

SACS will temporally turn off the trace, restart the run from the beginning, and stop at the

desired time. Once SACS is at the desired time, it will turn the trace mode back on. To the

user, it will appear that SACS went backwards. However, in fact, SACS can not run its

simulations in reverse. Obviously, if the Desired Time is vary large, then this process

could take a great deal of time.

F. INCREMENT TIME

Increment time allows the user to adjust the time using a relative step size instead

of an absolute desired time.

G. DECREMENT TIME

Decrement time allows the user to adjust the time using a relative step size instead

of an absolute desired time. Again, SACS must restart the run from the beginning to stop

at the desired time.

H. HELP DISPLAY

The help menu, shown in Figure 5, gives the user simple descriptions of what all

the trace commands can do.

23

Help Menu

ETI Trace Display:
Displays current request, status of memory, and contents
of buffers.

(R] Results Display
Displays a break down of read and write cache hits, and
buffer hits, including a timing analysis.

(S) Stall Timing Display:
Displays histogram of the time spent on each stall.
Stalls represent time delays in coupleting a request.

(C] Cache Arguments Display:
Display input arguments to SACS.

[GI Go: Go to end of run.
(G #] Go To: Go to Time #.
[#1 Step: Increment Time By #.
(-#] Back Step: Decrement Time By#.
(H] Help: Displays this help menu.

Next Comannd Please CT, R, S, C, G #, #, -#, Help] >>>3

Figure 5 Help Display

24

V. SACS DESIGN

A. OVERALL STRUCTURE OF SACS

SACS simulates all events one clock cycle at a time using a global variable named

Time. Normally, it is preferable to perform timing simulations using event queues so that

time can advance to the next event. However, in most cache simulations, so many events

happen in one clock cycle that an event queue would probably not improve the performance

of the simulator.

B. MAIN EVENT LOOP

In the main event loop of SACS, Time is incremented one clock cycle at a time.

Time is never changed by any other procedure. The requests are entered into the

simulation from Get Next Request. Simulation of all events is performed by the Main

Event Loop calling Cache Model, Memory Model, and Update Cache.

SACS insures that all events that can be started during a particular clock cycle are

started, and that all events that can complete during a particular clock cycle do. CPU

accesses to the cache are given priority over the block buffer cache updates.

SACS's main loop includes the source code to control testing, checking, and

tracing. The Desired Time variable is controlled entirely by the Main Event Loop. Desired

Time represents a user request to advance the simulation to a particular time with the trace

off. SACS can not run Time backwards. However, if the Desired Time is less than Time,

25

then Time is reset back to zero and the run is repeated up to the Desired Time. The user

can make time requests using arguments "G #", "#", or "-#".

Throughout Main Event Loop, Cache Waiting For is checked to see if it's equal to

Nothing. This indicates that the last request has been serviced and that the cache is ready

for the next request. The procedures that model specific events as Read Hit, Read Miss,

and Access Cache are called repeatedly during their simulations. They utilize Cache

Waiting For and Time to determine what to do next. If any of these procedures need to

wait for a period, either to simulate an access or because a resource is not available, then

they will set Cache Waiting For to the appropriate value. The modeling procedures in

Memory Model work the same way using Memory Waiting For.

Whenever SACS finds an error or a discrepancy then the boolean variable

Discrepancy Found is set to Yes. This forces SACS into a trace mode so that the user may

try to identify the cause of the error. In test mode, a discrepancy forces SACS out of test

mode so that the trace file that caused the error is not erased by a new file.

C. CACHE MODEL

('ache Model makes all the necessary calls to simulate cache memory. Cache

Model decides which calls to make based on the values of (ache Hit and Request. This

function is called every time Time is incremented. If there are no read or write requests

waiting to be completed, the function does nothing. The value of Cache Hit will remain

Unknown until the appropriate cache access time has expired. Then, (Cache Model will call

Is Request A Hit to determine if the request is a hit or a miss.

26

1. Is Request A Hit

Is Request A Hit determines if the request is a hit or a miss, and sets Cache

Hit to the appropriate value. Is Request A Hit will find the Set Number that the data is

supposed to be in. Then, all (Cache Block Addresses in that set will be checked to see if

they equal the Block Address for that request. If the correct block is found, then all sub

blocks that are required to satisfy the request will be inspected for validity. If they are valid

then (Cache Hit will equal Yes.

2. Read Hit

Read Hit is called to simulate a cache hit during a read request. Read Hit

simply finishes simulating the cache access for the hit. Read Cache Hit Time is the time

required to send the data from the cache to the CPU. Note that the time to locate the block

in the cache is simulated in (Cache Model. Read Hit is called repeatedly while Time is

incremented until Access Cache returns with (Cache Waiting For equal to Nothing. Access

Cache will return Cache Waiting For equal to Read Cache Request until the Read Cache

Hit Time has expired.

3. Read Miss

Read Miss is called to simulate a cache miss during a read request. Read

Miss first simulates the time it would take to perform all the block management for a read

miss. This time is called Read (Cache Miss Time. Once that time M's expired, Read Miss

will call Select Block Victim to pick a block in the set. When Select Block Victim returns

27

with Cache Waiting For equal to Nothing the Request Block Number will contain the new

block number where the data will be placed.

Once the new block has been chosen, Read Miss will call Add To Read

Buffcr. If Read Forward is selected, then Required Size for the memory request will be

equal to the Request Size. However, if it is not, then Required Size for the memory request

will equal Block Size. The Required Size in read memory request tells the Memory Model

how much of the requested data must be read into the Block Buffer before resetting Cache

Waiting For back to Nothing. By setting Required Size equal to Block Size, Read Miss is

forcing Memory Model to read in the entire block before setting (Cache Waiting For back to

Nothing. Once the Memory Model has received the data, it is assumed to he available to

the CPU during that clock cycle.

4. Write Hit

Write Hit is called to simulate a cache hit during a write request. Write Hit

will first simulate the time to write the data to the Request Block Number in the cache. The

time to locate the block was simulated by Cache Model. Once Write Cache Hit Time has

expired then Write Hit will perform the block management for the request. The block

management is dictated by the Write Policy. For a Write Back policy, the sub blocks

written to must have their dirty bits set. This is done by Set Dirty Bit. For a Write

Through policy, the memory request must be entered into the write buffer. This is done by

Add To Write Buffer.

28

5. Write Miss

Write Miss is called to simulate a cache miss during a write request. Write

Miss will first simulate the time needed to make all memory requests. This time is called

Write Cache Miss Time. This is only the time required to make the requests, not the time

required to complete them. The time to determine that the correct block was not in the

cache memory was simulated by (Cache Model. The memory requests are entered into the

buffers after the Write (ache Miss Time expires. The memory requests are dictated by the

Write Miss Policy. The simplest policy is Write Around. For a Write Around policy, the

write data is placed in the Write Buffer by Add To Write Buffer. Write Allocate, however,

is the toughest simulation in SACS. Write Miss must first choose a block to put the new

data in. This is done by Select Block Victim. Block data not provided by the write request

has to be read in. This read request is made by Add To Read Buffer. The read address is

calculated by adding the request size to the address. Because new address may be in the

next block, the Block Size may have to be subtracted to make the addition modulo. Sub

blocks that were written to in there entirety will have there valid bits set to reflect the

presence of the data provided by the CPU. However, if only part of a sub block was

written to, then the Cache Valid Bit will not be set.

Write Miss uses the Write Policy to dictate how the write data is to update

the memory. For a Write Back policy, dirty bits are set by Set Dirty Bits. For a Write

Through, the data is added to the Write Buffer by Add To Write Buffer.

29

6. Access Cache

Access Cache is called to simulate the CPU accessing the cache. Access

Cache first waits for the cache not to be busy. The only reason it could be busy is if the

Block Buffer is in the process of updating the cache. During this time, Access Cache will

return Cache Waiting For equal to CPU ?Cache Access. Once the cache is not busy then

Cache Busy is set to Yes. locking out the Block Buffer from accessing the cache. Then,

(Cache Waiting For will be set equal to Waiting For Request. This is a local variable

passed by the caller. It will either be equal to Read Cache Access or Write Cache Access.

Then, Cache Busy is set for the time specified by Request Time. Request Time is a local

variable. It could equal any of the hit, miss, or access times. Once Request Time has

expired then Access ('ache will set Cache Busy equal to No, and Cache Waiting For equal

to Nothing.

7. Select Block Victim

Select Block Victim chooses the next block to be used and writes the dirty

sub blocks out to the Write Buffer. Select Block Victim first surveys the cache set that the

Request Address maps to. The survey includes finding the block that was least recently

accessed. This Block Number is stored in LRtJBlock. Once the set has been surveyed then

the Replacement P'olicy dictates how the block is chosen. For the LR U policy, Request

Block Number is set equal to LRJBIock. For the FIFO policy, (Cache Next Block keeps

track of the next victim block for each set. (ache Next Block is initialized to all zeros

during the beginning of a run. Therefore, it must be checked to see if it is between the first

30

and last blocks for the set. If it is not, then Cache Next Block for Set Number is reset to

First Block. Once Se!,,? Block 'ic7icm knows it has a valid Cache Next Bio",k then R.etuest

Block is set equal to it. Then, Cache Next Block for the Set Number is incremented. For

RAND policy, the block number is chosen randomly from all the blocks in the set.

Select Block Victim writes all dirty sub blocks to the write buffer using Write Dirty

Sub Blocks. Write Dirty Sub Blocks takes care of clearing the dirty and valid bits in the

block. Once Select Block Victim is called and it gets to the bottom of the function with

Cache Waiting For equal to Nothing, then the Cache Block Address for the Request Block

Number is set equal to the block address of Request Address.

8. Set Dirty Bits

Set Dirty Bits sets the dirty bits for all sub blocks that contain data that was

modified by a write request.

9. Write Dirty Sub Blocks

Write Dirty Sub Blocks is called to simulate writing all the dirty sub blocks

in the Request Block. Write Dirty Sub Blocks not only clears all the dirty bits, it also clears

all the valid bits. Write Dirty Sub Blocks prepares a block to receive new data, and is

called after a block has been selected as a victim. Write Dirty Sub Blocks will search the

block for consecutive dirty blocks and splice them together into one write request. The

write request is then added to the Write Buffer. All of the sub blocks that make up the

request will have their dirty and valid bits cleared. This process of searching and writing is

repeated until all the bits are not dirty. Then, all the valid bits are cleared.

31

10. Add To Read Buffer

Add To Read Buffer takes the elements of a request and adds the request to

the Read Buffer. It will perform all of the searches and updates necessary to support the

appropriate scoreboarding protocols.

Add To Read Buffer will begin by searching the cache and Block Buffer for

each byte in the request, starting at the beginning of the request. Every time a byte is found

in one or the other, the Address is incremented while Size and Required Size are

decremented. This simulates removing the available data from the front of the request.

Then, Add To Read Buffer will search the cache and Block Buffer for the data at the end of

the request. Every time a byte is found, the Size of the request is decremented by one. If

the byte was a required byte then the Required Size is also decremented. This simulates

removing any data available from the end of the request. Add To Read Buffer is either left

with a request that has a Size equal to zero or the end points are both needed from memory.

If the Required Size is zero then the request is a buffer hit, otherwise the request is a buffer

miss. If the request is already a cache hit then the buffer hit is for some block management

request. These kinds of buffer hits are not recorded because it would confuse the Results

Displav by making it possible to get a hit rate greater than 100%. If the Size is not zero

and Remove Read I)uDlicates is equal to No then the request is added to the end of the

Read Buffer using Append. Append is a buffer utility that adds the request to the end of the

buffer. The request must be added to the end of the buffer in order not to interfere with

Memory Model. which may be in the middle of a memory read. If Remove Read

32

Duplicates is equal to Yes then the first byte in the request will be spliced into the Read

Buffer.

Splice is another buffer utility. Splice will first search the Read Buffer for the byte.

If it can't find a request in the buffer that contains the byte then it will search for a memory

request that is getting data from the same block. If one is found then the request is

modified to include the new read byte request. If no suitable request can be found then

Splice will add a one byte request to the Read Buffer. The Address is then incremented

while Size and Required Sizc are decremented. Then, the cache and Block Buffer are

searched for the next byte. If it is not found then the next byte is spliced into the Read

Buffer. This process is repeated until all of the bytes of the request have either been spliced

into the Read Buffer or found.

The Biuffer Hit is normally defined as when the data is available but not in the

cache. However, in order to support the testing of SACS, the definition of a buffer hit is

revised to mean that a request was found to have accrued recently, and that given time to

complete all block management requested data would have been in the cache. This allows

Test SA('S to predict the hits of a test run without taking into account the time it takes to

perform the block management.

Every time a request is spliced into the read or write buffers, the Time To Execute

and Coompletion Time Estimate must be recalculated. The new time estimates are

performed by Calculate Time Estimates.

33

11. Search Cache

Search Cache is called by Add To Read Buffer to find any parts of the

request that may already be located in the cache. This must be done because if a read

request follows a write request using a write allocate policy, then part of the read may be in

the cache while the rest may still need to be read from memory. Search ('ache checks all

Cache Block Addresses in the cache set. If any of the cache block addresses equal the

block address of the byte, then Search Cache checks the Cache Valid Bit for the sub block

that the byte is located in. If the sub block is valid then Search Cache returns Yes.

12. Add To Write Buffer

Add To Write Buffer adds one record to the write buffer. It also updates the

Read Buffer if the Update Read Buffer argument is asserted. The process of updating the

Read Buffer is simply changing the requests so that data made available by the write

request is not requested from memory. Update Read Buffer shotd not be used unless the

word and sub block sizes are equal. This is because a write request may reduce a read

request to where the read request will not be large enough to validate a sub block. The

write request may also be unable to set any valid bits because of sub block alignment. The

result is that a sub block that was suppose to be read in is not.

D. MEMORY MODEL

Memory Model makes all the necessary calls to simulate main memory. Memory

Model decides which calls to make based on Memory Waiting For. This function is called

every time Time is incremented. If there are no read or write requests waiting to be

34

completed, the function does nothing. Memory Model contains a loop that forces the

procedure to continue modeling until TOA and TOD are not equal to Time. This insures

that if there are any events that occur in zero clock cycles then the next event is allowed to

start.

Memory Model calls Select Memory Request to choose a request from either the

read or the write buffers. Memor,' Model calls Start Reads and Start Writes to simulate

accessing memory and receiving the first word of a memory request. Continue Reads and

Con,inue Writes are then called to simulate the memory transfer of the following words of

data.

1. Select Memory Request

Select Memory Request is called when memory is waiting for nothing.

Select Memory Request chooses a request from either the read or write buffers based on

priority. The request is not returned however, and the request is left at the top of the buffer

with its Priority set to zeros and Access In Progress set equal to Yes. If a request is found,

then Memory Waiting For is set to Memory Read Request or Memory Write Request.

depending on whether the request was found in the read or write buffer.

2. Start Reads

Start Reads begins a read request, simulating the first word read from

memory. The time to complete this read is called Memory Access Time. The Block Buffer

is initialized in preparation to receive the new data words. If Block Waiting For is not

equal to Nothing then Start Reads will have to wait before allowing the new memory read

35

request to start. If Start Reads does have to wait for the cache then Memory Waiting For is

set equal to Cache UJpdate, otherwise Memory Waiting For is set to Memory Read Access.

The new block record is equal to the Read Buffer with its sizes set to zero. This gives the

Block Memory Request the same block number as the Read Memory Request. The

Address is aligned to Word Size. The Address must be aligned because the words read in

will be aligned to Word Size. The new Block Memory Request is simply pushed onto the

Block Buffer. Block Waiting For is set equal to Memory Block Transfer to indicate that

data is being transferred from memory to the Block Buffer.

3. Continue Reads

Continue Memory Reads continues the memory read request started by

Start Memory Reads. It simulates every read from memory other than the first word,

which is simulated by Start Memory Reads. The time to complete each word transfer is

equal to Memory Transfer Time. The block and read buffers are altered every time a word

is read from memory. Once a request is complete, it is removed from the Read Buffer and

Memory Waiting For is reset to Nothing. Block Waiting For is set to Block Cache Access

in preparation to transfer the new data to the cache. If the Completion Tinic Estimate for

the memory read request is not equal to Time then a time prediction error is raised.

4. Start Memory Writes

Start Memory Writes begins a memory write request, simulating the first

word written to memory. The time to complete this one word write is called Memory

Access Time. Memory Waiting For is set to Memory' Write Access.

36

5. Continue Memory Writes

Continue Memory Writes continues the memory write request started by

Start Memory Writes. Like Continue Memory Reads, it simulates every write to memory

other than the first word, which is simulated by Start Memory Writes. The time to

complete each word transfer is equal to Memory Transfer Time. The Write Buffer is

altered every time a word is written to memory. Once the memory write request is

complete, it is removed from the Write Buffer, and Memory Waiting For is reset to

Nothing. If the Completion Time Estimate for the memory read request is not equal to

Time when the request is completed then a time prediction error is raised.

6. Update Cache

Update Cache simulates entering data form the Block Buffer into the cache.

U1pdate Cache first checks whether or not the cache is busy. If it is not, then Cache Busy is

asserted and Block Waiting For is set equal to Block Cache Transfer. The Block TOA is

calculated to enable Calculate Time Estimates to predict the completion times for

additional memory read requests in the buffer. If the cache is busy then the previous

memory request time completions may be wrong. That is because all of the last estimates

counted on the old Block TOA. Therefore they all must be recalculated.

Once the Bufffer Cache Access Time has expired then Block Waiting For is

set equal to Nothing and the (ache Busy is deasserted. The read data must then be

removed from the Block Butffer. The appropriate sub blocks in the cache will then have

their dirty bits cleared and valid bits set.

37

7. Add A Word To Memory Request

Add A Word To Memory Request adds a word to a Memory Request as if it

had been read in from memory. The address is first aligned to Word Size. Then, the size is

incremented by Word Sizc. This simulates the data being added to the request.

8. Remove A Word From Memory Request

Remove A Word Form Memory Request removes a word from a Memory

Request as if it had been written to memory. A copy of the Address is first stored in Old

Address. Then, the Address is word aligned and incremented by Word Size. The Required

Size and Size are then decremented by the difference of the new Address and the Old

Address. Finally, if the Address is outside the range of the original block, then Address is

decremented by Block Size to simulate modulo addition This simulates removing a word

from the memory request, taking into account word and block alignment constraints.

E. TIME ESTIMATES

Time estimates are performed to provide a method of testing Cache Model, and

Memory Model's handling of the read and write buffers. These two procedures are located

in "TimeEst.c"

I. Update Time To Execute

Update Time To Execute calculates the time to complete a memory transfer

given Memory Request. Memory Request could be a read or write request in a buffer.

Update Time To Execute changes the Time To Execute field to the new value. Time To

Execute is calculated by first finding the number of Words To Be Transferred. If the

38

Memory Request is not being accessed then the Time To Execute is simply the Access Time

plus the Transfer Time multiplied by one less than Words To Be Written. If the Memory

Request is in progress then the new Time To Execute is dependent on TOA or TOD of the

next word. Memory Waiting For dictates whether to use the TOA or TOD. If Memory

Waiting For is equal to Cache Update then the request has not actually begun transferring

data. Therefore, the Time To Execute can be calculated as if the read request is not in

progress.

2. Calculate Time Estimates

Calculate Time Estimates updates the Completion Time Estimates for each

request in both the read and write buffers. This function is called whenever the Cache

Model adds to the read or write buffers. Calculate Time Estimates must be called every

time new data is entered into the buffers. This is because all previous estimates did not

take into acc-unt the new data requested. Calculate Time Estimates first orders all entries

in both the Read Buffer and the Write Buffer by priority. Then, Calculate Time Estimates

steps though both buffers simultaneously, each time picking the request that has the highest

priority and adding the time to execute to the Time Estimate. The Time Estimate becomes

that requests Completion Time Estimate. This process is repeated until all requests have a

new Completion Time Estimatc. Time To Execute, for cache request, is updated before it

is used to calculate the Time Estimate.

39

VI. PROGRAM VALIDATION

A. TESTING SACS

Program validation was considered to be a paramount issue in designing and

implementing SACS. The debugging techniques for SACS were engineered during the

early planning phases, before any code was written. In fact, there was a great deal of

energy spent trying to make SACS a general event simulator. Not only would this have

made it easier for the user to alter the protocols, but more importantly, it would have been

easier to test the program. It would have been easier because the number of different kinds

of event transitions would have been less than the number of different cache argument

permutations. This method was aborted because data that was stored in the cache and the

buffers was completely different. Another problem that plagued this method was that the

scoreboarding techniques were unique for each buffer. Having abandoned the previous

method, and recognizing that SACS would have dozens of input parameters (37 to date), a

great deal of concern developed over how the program could be tested. It was decided that

hand testing would prove to be ineffective in eliminating most or all of the programming

errors. Therefore, an automated testing routine was developed. The testing routine was

incorporated into the source code of SACS and can be activated using the -tcst argument.

When the program is in the test mode, it goes into an infinite loop generating

pseudo-random load and store instructions. Each trace is processed using the same code as

40

if the trace was generated by a designer. Each time a new trace run is executed, the input

parameters are randomized. This testing method is the backbone of all other validation

methods for SACS. Other error checking is performed during this process. However, the

random trace and random argument testing is the best method to ensure that all lines of

code in SACS get executed during the test phase of SACS. This prevents SACS from

experiencing a catastrophic failure during an actual simulation because almost all

instructions are executed during the testing phase. SACS tries to predict the number of

read and write hits for each run. These predictions are compared to the number of cache

and buffer hits if the input arguments are expected to make the cache and buffer hits reflect

the predictions. An example of when the input arguments would make it impossible to

predict a hit or a miss is when the rand block replacement policy is used. A block of data

that has just been read into the cache may be selected as a victim. This makes it impossible

to predict which blocks will be in the cache at the beginning of the next request. Another

example is when a read forward policy is used and the block buffer is not searched. Data

expected to be in the cache may be in the Block Buffer, or in the Read Buffer. waiting to

complete the block transfer. This requires that the predicted hits only be compared when

the block and read buffers are searched. It also requires that during the test mode, buffer

hits will include the read buffer. Policies that can not be checked for predicted hits are

allowed in the test because they can be checked for other things including the simple, yet

important requirement that the program does not spontaneously abort.

41

The instructions that are randomly generated for a test trace are seeded from 64 test

vectors. These test vectors each have 7 read or write instructions. The number of these

vectors to be used to generate a trace is randomly chosen. The actual test vectors to be

used are also randomly chosen. Each test vector is assigned a random set of block

addresses. Each of the block addresses for a particular test vector will map to the same set

in the cache. The actual data address for each request is formed by taking the block

address and adding a random number such that the data address is still in the same block.

The size is also chosen randomly in such a way that the request does not violate block

alignment.

Once all the test instructions have been created, they are randomly shuffled in such

a way that the final number of hits and misses will remain the same as predicted.

B. CHECKING COMPLETION TIME

The timing analysis of SACS is so important that it was decided that every timing

test that could be performed would be performed. SACS simulates events based on the

current time only because some events can be predicted, such as the time that a buffer

request would be removed from a buffer. A good timing test would be to calculate the

estimated time of completion. Then, check to see if that estimated time is the same as the

time that the request is removed from the buffer. If they do not match then an error is

indicated. This kind of error checking goes on during every run whether it's a test run or a

user's run.

42

C. CHECKING GLOBAL VARIABLES

SACS uses 82 global variables. Approximately half of the global variables are

constant during a single run. These variables mostly represent input parameters, and

although they are changed in between test runs, they remain constant for the rest of the

trace run. SACS was written in C, a powerful language that permits the programmer to

create some powerful and elusive bugs. Specifically, C allows assignments to be buried in

logical expressions. This capability could easily result in altering input parameters instead

of checking a parameters value. To avoid this kind of error and others like it, copies of all

constant global variables are made before the beginning of the trace run. At the end of

every simulated clock cycle these variables are compared to their original copies. If a

discrepancy is found then an error is indicated.

Global variables that are not constant are also inspected. They are inspected to

ensure that they are all within acceptable boundaries. These boundaries are not always

constant. For example, histogram index and total time should always exceed Time.

43

VII. SAMPLE RUNS

A. EXAMPLE SACS SIMULATION RUN

In the first simulation run for SACS the defauit parameters were used. This run

will demonstrate a write allocation miss and a write through hit. This run will also

demonstrate a read miss that takes advantage of removing duplicates, and how a write

request can update the read buffer. Table 4 shows the trace data used for the simulation

run.

Table 4 TRACE DATA FOR RUN

Rtmu-klmr.'rR-U- TinifaH ritil
T-l N-'Xt F.~ji~

w .o()o.000 0(4 1

L. xO()00104 I

The Request Type is either a read or a write request. Read requests are indicated

with a lower case "r". Write requests are indicated with a lower case "w". The address is

read as a long hexadecimal integer. The Request Size is a long unsigned decimal integer.

It represents the size in bytes. Tie Until Next Request is the time between when the

CPU's current request is complete and when the CPU makes the next request. The

simulation run was performed by loading the trace data from Table 4 into an ASCII data

44

file named "SACS.Dat". Then, SACS was started with the trace mode on. The first trace

display that SACS produced is shown in Figure 6.

Current Requebsa: Writ. Time:
Address: 00000100 Next Remuest Tinm: 2
Size: 04

Cache Waiting For: Write Cache Request
Maimry Waiting For: Nothing Cache Hit: Unknown
Block Waiting For: Nothing Buffer Hit: Unknown

Set Block Address V/D V/D V/D V/D
00016 00000 00000000 0 0 0 0 0 0 0 0

00000 00000000 0 0 0 0 0 0 0 0
00000 00000000 0 0 0 0 0 0 0 0
00000 00000000 0 0 0 0 0 0 0 0

Read Buffer Addreas Size Req. Block Priority Tim Req. Coam. Time

Write Buffer Addreas Size Req. Block Priority Tim Req. Coup. Time

Block Buffer Addres Size Req. Block Priority Time Req. CoM. Tim

Next Command Please [T, R, S, C, G0, #, -#, Help] >>>O

Figure 6 Trace Display For Time=1

Figure 6 shows the status of SACS after the first clock cycle. The Cache Waiting

For field shows that SACS is modeling the cache access. Memory Waiting For is Nothing

because the cache does not know if the request is a hit or a miss. Block Waiting For is

Nothing because no read requests have started. The Next Request Time indicates that the

CPU will send another request at Time equal to 2. Cache Hit and Buffer Hit are Unknown

because the cache block still has not been accessed. The request will be mapped to set

number 16, block 64.

45

The trace display for Time equal to 2 is shown in Figure 7. This display shows that

the CPU has made the second write request. Again, the ('ache Waiting For indicates tht

the cache is accessing block 64. The Memorv Waiting For indicates that memory is

accessing the first word in memory for the last write request. The TO[) indicates that the

first word will be written to memory at Time equal to 5. Cache and buffer hits are again

(Inknoun because block 64 has not been accessed. The set data indicates that the last write

request at 100 validated the first sub block. The Read Buffer has the remaining data

needed for block 64. The Req. field is the number of bytes required to satisfy the CPU

request. None are required in this case because the data was only needed to fulfill a block

management requirement. The Write Buffer shows the last write request. It also predicts

that the memory write request will be complete at Tine equal to 5.

Current Request: Write Time: 2
Address: 00000108 Next Request Tim: 3
Size: 08 TOD: 5
Cache Waiting For: Write Cache Request

.miory Waiting For: Memory Write Access Cache Hit: Unknown
Block Waiting For: Nothing Buffer Hit: Unknown

Set Block Address V/D V/D V/D V/D
00016 00064 00000100 1 0 0 0 0 0 0 0

00065 00000000 0 0 0 0 0 0 0 0
00066 00000000 0 0 0 0 0 0 0 0
00067 00000000 0 0 0 0 0 0 0 0

Read Buffer Address Size Req. Block Priority Time Req. Comp. Tim
00000104 12 00 00064 12 5 10

Write Buffer Address Size Req. Block Priority Tim Req. Coup. Tim
00000100 04 00 00000 00 3 5

Block Buffer Address Size Req. Block Priority Time Req. Coup. Time

Next Command Please (T, R, S, C, G *, #, -#, Help] >>>U

Figure 7 Trace Display For Time=2

46

The next display is for Time equal to 3, and is shown in Figure 8. This display

shows that cache is still working on the last write request. Cache Waiting For still

indicates Write ('ache Request because the default for a write hit requires one clock cycle

after tne cache has been accessed to update the cache. The memory is still waiting for the

memory access of the first write memory request. The Next Request Time indicates that

the CPU is waiting for the cache to finish with the last write request.

Current Request: Write Time: 3
Address: 00000108 Next Request Time: 3
Size: 08 TOD: 5
Cache Waiting For: Write Cache Request
Memory Waiting For: Memory Write Access Cache Hit: Yes
Block Waiting For: Nothing Buffer Hit: No

Set Block Address V/D V/D V/D V/D
00016 00064 00000100 1. 0 0 0 0 0 0 0

00065 00000000 0 0 0 0 0 0 0 0
00066 00000000 0 0 0 0 0 0 0 0
00067 00000000 0 0 0 0 0 0 0 0

Read Buffer Address Size Req. Block Priority Time Req. Cowp. Time
00000104 12 00 00064 12 5 10

Write Buffer Address Size Req. Block Priority Timm Req. Coup. Time
00000100 04 00 00000 00 3 5

Block Buffer Address Size Req. Block Priority Time Req. Coup. Time

Next Conna•nd Please C T, R, S, C, G #, #, -#, Help] >>>3

Figure 8 Trace Display For Time=3

Figure 9 shows the display for Time is equal to 4. The last write request has

compieted and the data provided by tht rite request was placed in block 64. As a result,

the last two sub blocks are valid. The data was also placed into the Write Buffcr. At first,

it seems as though the two write memory requests should have been combined. The

47

resulting request would have had an address of 108 and a size of 12. Because words are

accessed in memory in modulo form, the data for the first sub block would have been

accessed last. However, because the last memory write request was in progress, the

request could not modify its starting address. Therefore, two different requests resulted,

and the Read Buffer's memory request size has been reduced by 8 bytes. This is an

example of updating the Read Buffer with write data. This scoreboarding policy is a

default for SACS, and can be disabled. The result is that the read request does not have to

z. .:,,s data that was provided by a write request.

Current Request: Read Tim.: 4
Address: 00000104 Next Request Time: 6
Size: 02 TOD: 5
Cache Waiting For: Read Cache Request
MIemory Waiting For: Memory Write Access Cache Hit: Unknown
Block Waiting For: Nothing Buffer Hit: Unknown

Set Block Address V/D V/D V/D V/D
00016 00064 00000100 1 0 0 0 1 0 1 0

00065 00000000 0 0 0 0 0 0 0 0
00066 00000000 0 0 0 0 0 0 0 0
00067 00000000 0 0 0 0 0 0 0 0

Read Buffer Address Size Req. Block Priority Time Req. Coup. Time
00000104 04 00 00064 12 3 12

Write Buffer Address Size Req. Block Priority Time Req. Coup. Time
00000100 04 00 00000 00 1 5
00000108 08 00 00000 11 4 9

Block Buffer Address Size Req. Block Priority Tinm Req. Coup. Time

Next Command Ple4se C T, R, S, C, GU, #, -#, Help] >>CO

Figure 9 Trace Display For Time=4

48

Figure 10 shows the trace display for Time equai to 5. The last read request has

turned out to be a miss. The buffers were also no help. At first glance, it might seem as

though the read buffer should have provided a buffer hit. This would have been true if

SACS were in a test mode. However, in a non test mode, the read buffer is not searched

because the data is not really available. It still has to be read in from memory. The first

write memory request starting at address 100 has completed, as predicted at Time equal to

5. The next memory request was chosen to be the write request because it had a high

priority of 11, versus the read memory request with a priority of 12. Unfortunately, the

request began before the cache could raise the priority to 10. Once the write request began,

the priority went to 0 to prevent interruption.

Current Request: Read Timen: 5
Address: 00000104 Next Request Time: 7
Size: 02 TOD: 8
Cache Waiting For: Read Memory Request
Memory Waiting For: Memory Write Access Cache Hit: No
Block Waiting For: Nothing Buffer Hit: No

Set Block Address V/D V/D V/D V/D
00016 00064 00000100 1 0 0 0 1 0 1 0

00065 00000000 0 0 0 0 0 0 0 0
00066 00000000 0 0 0 0 0 0 0 0

00067 00000000 0 0 0 0 0 0 0 0

Read Buffer Address Size Req. Block Priority Time Req. Couip. Timn
00000104 04 02 00064 10 3 12

Write Buffer Address Size Req. Block Priority Time Req. Coup. Time
00000108 08 00 00000 00 4 9

Block Buffer Address Size Req. Block Priority Time Req. Coup. Time

Next Command Please C T, R, S, C, G *, #, -#, Help] >>>O

Figure 10 Trace Display For Run #1, Time=5

49

From the TOD in Figure 10, it is obvious that little will happen until at least the first

word is sent to memory. The display trace for Time equal to 8, when the first word is

written to memory, is shown in Figure !1. It shows how SACS adjusts its buffers to

represent individual words sent or rec% ed from memory. The Memory Waiting For

switched to Memory Write Transfer, illustrating the transition from memory access to

memory transfer. The TOD shows that the write will be complete at Time equal to 9,

which is a lot better than the 3 clock cycles normally used to access memory.

Current Request: Read Time: 8
Address: 00000104 Next Request Time: 10
Size: 02 TOD: 9
Cache Waiting For: Read Memory Request
Memory Waiting For: Memory Write Transfer Cache Hit: No
Block Waiting For: Nothing Buffer Hit: No

Set Block Address V/D V/D V/D V/D
00016 00064 00000100 1 0 0 0 1 0 1 0

00065 00000000 0 0 0 0 0 0 0 0
00066 00000000 0 0 0 0 0 0 0 0
00067 00000000 0 0 0 0 0 0 0 0

Read Buffer Address Size Req. Block Priority Time Req. Coup. Tim
00000104 04 02 00064 10 3 12

Write Buffer Address Size Req. Block Priority Time Req. Coup. Tim
0000010C 04 00 00000 00 4 9

Block Buffer Address Size Req. Block Priority Tim Req. Coup. Tim

Next Conmand Please (T, R, S, C, G #, *, -#, Help] >>>»

Figure I I Trace Display For Time=8

50

Figure 12 shows the completion of the write memory request, and the beginning of

the read memory request at Time equal to 9. The Block Buffer has also been prepared t,"

receive the read memory data. The Block Waiting For indicates that the Block Buffer is

busy receiving read data from memory. The TOA shows that Time 12 is when the read

memory request will be complete.

Current Request: Read Time: 9
Address: 00000104 Next Request Time: 11
Size: 02 TOD: 12
Cache Waiting For: Read Memory Request
Memory Waiting For: Memory Read Access Cache Hit: No
Block Waiting For: Memory Block Transfer Buffer Hit: No

Set Block Address V/D V/D V/D V/D
00016 00064 00000100 1 0 0 0 1 0 1 0

00065 00000000 0 0 0 0 0 0 0 0
00066 00000000 0 0 0 0 0 0 0 0
00067 00000000 0 0 0 0 0 0 0 0

Read Buffer Address Size Req. Block Priority Time Req. Coup. Time
00000104 04 02 00064 10 3 12

Write Buffer Address Size Req. Block Priority Time Req. Comp. Time

Block Buffer Address Size Req. Block Priority Time Req. Conm. Time
00000104 00 00 00064 00 3 12

Next Cormiand Please C T, R, S, C, G #, 4, -#. Help] >>>1

Figure 12 Trace Display For Time=9

51

Figure 13 shows the completion of the read memory request at Time equal to 12.

The Cache Waiting For indicates Nothing because the request was satisfied when the

required bytes arrived in the block buffer. The memory has nothing to do because both the

read and the write buffers are empty. The simulation is not finished however, because the

block buffer still has to update the cache with the new block data. Block Wailing For

shows that the transfer is in progress.

Last Request: Read Time: 12
Address: 00000104 Next Request Time: 13
Size: 02
Cache Waiting For: Nothing
Meamory Waiting For: Nothing Cache Hit: No
Block Waiting For: Block Cache Transfer Buffer Hit: No

Set Block Address V/D V/D V/D V/D
00016 00064 00000100 1 0 0 0 1 0 1 0

00065 00000000 0 0 0 0 0 0 0 0
00066 00000000 0 0 0 0 0 0 0 0
00067 00000000 0 0 0 0 0 0 0 0

Read Buffer Address Size Req. Block Priority Time Req. ComW. Time

Write Buffer Address Size Req. Block Priority Tim Req. Comp. Time

Block Buffer Address Size Req. Block Priority Time Req. Coup. Tim
00000104 04 00 00064 00 1 13

Next Conmand Please C T, R, S, C, G #, #, -#, Help] >>>»

Figure 13 Trace Display For Time=12

52

Figure 14 shows the trace display for Time equal to 13. This display shows how

the block buffer updated block 64. One word of data was provided at address 104, making

the second sub block valid. Once the block transfer was completed, SACS removed the

memory request from the block buffer.

Last Request: Read Ti•m: 13
Address: 00000104 Next Request Time: 13
Size: 02
Cache Waiting For: Nothing
Memory Waiting For: Nothing Cache Hit: Unknown
Block Waiting For: Nothing Buffer Nit: Unknown

Set Block Address V/D V/D V/D V/D
00016 00064 00000100 1 0 1 0 1 0 1 0

00065 00000000 0 0 0 0 0 0 0 0
00066 00000000 0 0 0 0 0 0 0 0
00067 00000000 0 0 0 0 0 0 0 0

Read Buffer Address Size Req. Block Priority Time Req. Coup. Time

Write Buffer Address Size Req. Block Priority Time Req. Coup. Time

Block Buffer Address Size Req. Block Priority Time Req. Comp. Time

Next Cownvad Please [T, R, S, C, G #, -#, Help] >>>0

Figure 14 Trace Display For Time=13

53

Figure 15 shows the results display. This display is always shown at the end of the

run. It is interesting to note that even with the SACS default parameters, which lean

toward providing the fastest response time to all CPU requests, the average access time for

the one read miss was 8 clock cycles. Had this simulation been done with Dinero III, the

user could only have assumed that a 2 byte read would have taken the memory access time

of 3 clock cycles.

Requests Break Down

Number Number Number
Request of of of Hit Miss
Types Requests Cache Hits Buffer Hits Rates Rates

Read 1 0 0 0.00% 100.00%
Write 2 1 0 50.00% 50.00%
Total 3 1 0 33.33% 66.67%

Request Tim Histogram.
Ave

Access
Time-00 Tm.hm01 Time-02 Tiaww03 Time>e04 Total Timm

Read 0 0 0 0 1 8 8.000000
Write 0 1 1 0 0 3 1.500000
Ideal 2 0 1 0 0 2

Next Command Please [T, R, S, C, G #, #, -#, Help] >>>O

Figure 15 Results Display

54

VIII. CONCLUSION

For more than a decade, caches have been designed and built. Despite the time and

effort spent on cache designs, there seems to be no one design that has emerged as the best

cache design. Even the most basic choices, such as associativity, block size, and whether

to use a unified cache or two separate data and instruction caches, has not been a clear

choice, or at least the correct choice was not agreed upon by all concerned.

The diversity of cache designs has been caused by budget constraints, changing

memory technology, and changing CPU bandwidth requirements. Without proper timing

information, matching the correct cache to the architecture is more of an art than a science.

SACS offers a powerful tool in the early planning phase of a cache design. Its large set of

scoreboarding, block management, and cache memory arguments allow the designer to

survey different designs quickly. SACS is well documented and provides the designer with

a number of debugging tools, including self-testing and global variable bounds checking.

This makes modifying SACS to simulate a unique design feature extremely easy compared

to other programs.

As mentioned throughout this paper. the most critical aspect of SACS is its ability

to provide the designer with the average access time. Since the ultimate purpose of the

cache is to minimize the average access time, any simulator that does not provide this

number can only hope to provide the designer with superficial and misleading data.

55

Future developments of SACS will include more elaborate timing information. The

number of histograms will expand to include what the CPU, memory, and block buffer

were waiting for during a run. A new stall histogram will be introduced that will allow the

user to easily modify SACS to analyze any combination of conditions. For example, how

many times does a read request wait for access to the cache memory while an old write

miss request updates the allocated block. A new global variable will allow the user to

change all the histogram displays to probability density tables.

56

LIST OF REFERENCES

I. Patterson, D. A., and Hennessy, J. L., Computer Organization & Design
The Hardwarc'Software Interface, p. 458-481, Morgan Kaufmann
Publishers, Inc., 1994.

2 Jouppi, N. P., "Cache Write Policies and Performance," Proceedings of the
20th Annual International Symposium on Computer Architecture, p. 191-20 1,
May 1993.

3. Smith, A. J., "Cache Memories," Computing Survcys, vol. 14-3, p. 473-530,
September 1982.

4. Hennessy, J. L., and Patterson, D. A., Computer Architecture. A Quantitative
Approach, p. 403-425, Morgp-i Kaufmann Publishers, Inc., 1990.

5. Hill, M. D.. and others, "Wisconsin Architectural Research Tool Set," Computer
Architecture News. v. 21-4, p. 8-10, September 1993.

57

APPENDIX

SOURCE CODE FOR SACS

58

/****************************** ***

** Page 1- 0

** SACS.h **

** Part Of SACS 1.0 *

** (StillAnother Cache Simulator) **

** Program Modified: 3/17/94 **

** File Modified: 3/17/94 **

** Author: William G. Smith **

** Address: Electrical Engineering Department **

** Naval Postgraduate School **
** Monterey, CA 93940 **
** **

** Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and **

** its documentation for any purpose and without fee is hereby granted **

** provided that the above copyright notice appears in all copies. No **

** modified version of this program should be redistributed without the **

** authors consent. William G. Smith makes no warranty or **

** representation, promise of guarantee, either expressed or implied, **
** with respect to this software's ability to produce valid results. **

** This program is provided "as is" any financial, personal or property **

** damage caused by the use of this program is the responsibility of the **

** user. **

** **

** Page I- 1 **

** SACS. h **

** Still Another Cache Simulator **

** Description: **

** SACS.h defines all enumeration types. It Contains forward
** declarations of all functions used in SACS, (not just SACS.c). SACS.h **

** also includes a list of all inline functions (macros). **

** Table of Contents **

** Cover Page Page 1- 1
** Enumeration Definitions Page 1- 2 **

** Type Definitions Page 1- 4 **

** Inline Function Definitions **
** SubBlock(Address) Page 1- 5 **

** Set (Address) Page 1- 5 **
** BlockAddress(Address) Page 1- 5 **
** WordAddress (Address) Page 1- 5
** SubBlockAddress (Address) Page 1- 5 **

** Complete List of Function Declarations within SACS **

** SACS.c Page 1- 6 **

** Cache.c Page 1- 7 **

** Memory.c Page 1- 8
** TimeEst.c Page 1- 9 **

** Get.c Page 1-10 **

** Display.c Page 1-11
** Record.c Page 1-12 **

** Buffer.c Page 1-13 **
** Array.c Page 1-14 **

** TestingSACS.c Page 1-15 **

Checking.c Page 1-16 **

#ifndef _CACHE.H

#define _CACHE.H

#define ClearScreen "ClearScr"

** ~Page 1- 2 *

** ~SACS.h *

** ~Enumeration Definitions *

**Description: *

** Listed below are the enumerations used in the SACS environment. *

**Wait2.ngForTypes, and MemoryWaitingForTypes are on listed on the *

**following page. *

enum YesNoTypes
No,
Yes,
Unknown

enum RequestTypes
None,
Read,
Write,
NumberOfRequestsAvailable

enum BlockReplacementPolicyTypes
LRU,
FIFO,
RAN~D,
NumberOfReplacementPoliciesAvailable

enum WritePolicyTypes
WriteThrough,
WriteBack,
NumberOfWritePoliciesAvailable

enum WriteMissPolicyTypes
WriteAround,
WriteAllocate,
NumberOfWriteM~issPoliciesAvailable

** ~Page 1- 3 *

** ~SACS.h *

** ~Enumeration Definitions *

** ~continued *

enum CacheWaitingForTypes
Nothing,
CacheWait ingForReadCacheRequest,
CacheWaitingForWriteCacheRequest,
CacheWait ingForReadMemoryRequest,
CacheWaitingForWriteMemoryRequest,
CacheWait ingForFullReadBuf fer,
Cachel~ait ±nqForFu~ll Writ eB' ffer,
Cache Wait ingForCPUCacheAccess,
NumberOfCacheWait ingForsAvailable

enum MemoryWait ingForTypes
NothingTwo,
MemoryWait ingForMemoryReadRequest,
MemoryWait ingForMemoryR--cadccess,
MemoryWait ingForMemoryReadTrans fer,
MemoryWait ingForMemoryWriteRequest,
MemoryWaitingForMemoryWriteAccess,
MemoryWait ingForMemoryWriteTrans fer,
MemoryWaitingrorCacheUpdate,
NumberOfMemoryWaitingForsAvailable

enum BlockWait ingForTypes
NothingThree,
MemoryBlockTrans fer,
BlockCacheAccess,
BlockCacheTransfer,
NumberOfBlockWait ingForsAvai lable

** ~Page 1- 4 *

** ~SACS.h *

** Type Definitions *

**Description:

**These are all of the type definitions used in the SACS *

**environment, excluding enumeration types which are listed on the last *

**two pages. *

typedef unsigned long mnt TimeType;
typedef unsigned long mnt ScoreType;
typedef unsigned long mnt AddressType;
typedef unsigned long mnt CacheSizeType;
typedef unsigned mnt SizeType;
typedef unsigned mnt BufferSizeType;
typedef unsigned mnt PriorityType;
typedef unsigned mnt AssociativityType;
typedef unsigned mnt HistogramlndexType;

typedef enuxn YesNoTypes YesNoType;
typedef enum ReqruestTypes RequestType;
typedef enum BlockReplacementPolicyTypes BlockReplacementPolicyType;
typedef enum WriteMissPolicyTypes WriteMissPolicyType;
typedef enum WritePolicyTypes WritePolicyType;
typedef enum. CacheWaitingForTypes CacheWaitingForType;
typedef enum. MemoryWaitingForTypes MemorywaitingForType;
typedef enum BlockWaitingForTypes BlockWaitingForType;

struct MemoryRequestStructType

AddressType Address;
SizeType Size;
SizeType RequiredSize;
SizeType Block;
PriorityType Priority;
YesNoType AccesslnProgress;
TimeType TimeToExecute;
TimeType CompletionTimeEstirnate;

typedef struct MemoryRequestStructType MemoryRequestType;

struct BufferStructType

MemoryRequestType MemoryRequest (10];
YesNoType Full;
YesNoType Empty;
BufferSizeType Next;
BufferSizeType Max;
CacheWaitingForType WaitingForFlag;
I1;

typedef struct BufferStructType BufferType;

** ~Page 1- 5 *

** ~SACS~h

** ~Inline Function Definitions *

**Description: *

** ~These macros act as inline functions. They are the only *

**macros which act as inline functions within the SACS environment, *

**except those located in "TestSACS.c". *

#define SubBlock (Address) (((Address) %BlockSize) /SubBlockSize)
#define Set (Address) (((Address) /BlockSize) %NumberOfSets)

#define BlockAddre5ss(Address) (((Address) /BlockSize) *BlockSize)
#define WordAddress (Address) (((Address) /WordSize) *WordSize)
#define SubBlockAddress (Address) (((Address) /SubBlockSize) *SubBlockSize)

** Page 1- 6 **

* * SACS.h **

** List of SACS.c Function Declarations **

** Description: **
** **

** This is a list of function declarations within the file scope
** of "SACS.c".

extern int maino; /* Page 2- 8 */
extern void LoadArgumentso; /* Page 2-11 */
extern unsigned long int ScanArgumento; /* Page 2-14 */
extern void InitializeProgrammersGlobalVariables();

/* Page 2-15 */
extern void hiitializeBuffers); /* Page 2-16 */
extern void vefineArrayso; /* Page 2-17 */
extern void FreeArrayso; /* Page 2-18 */
extern void OpenDataFile); /* Page 2-19 */
extern void CloseDataFile(; /* Page 2-20 */
extern void PauseForCommando; /* Page 2-21 */
extern void Pauseo; /* Page 2-23 */

/**
Page 1-7 **

SACS. h **

** List of Cache.c Function Declarations **

** Description: **

** This is a list of function declarations within the file scope **
** of "Cache.c".
** **

extern void CacheModel(); /* Page 4- 3 */
extern void IsRequestAHito; /* Page 4- 4 /
extern void ReadHito; /* Page 4- 5 */
extern void ReadMisso; /* Page 4- 6 */
extern void WriteHito; /* Page 4- 7 */
extern void WriteMisso; /* Page 4- 8 */
extern void AccessCacheo; /* Page 4-10 */

extern void SelectBlockVictimo; /* Page 4-11 */
extern void SetDirtyBitso; /* Page 4-13 */
extern void WriteDirtySubBlockso; /* Page 4-14 */
extern void AddToReadBuffero; /* Page 4-16 */
extern YesNoType SearchCache(); /* Page 4-20 */
extern void AddToWriteBuffer(; /* Page 4-21 */

** Page 1- 8 **

** SACS.h **

** List of Memory.c Function Declarations **

** Description: **

** This is a list of function declarations within the file scope
** of Memory.c **

extern void MemoryModel(); /* Page 5- 3 */
extern void SelectMemoryRequesto; /* Page 5- 4 */
extern void StartMemoryReadso; /* Page 5- 5 */
extern void ContinueMemoryReads 0; /* Page 5- 6 */
extern void StartMemoryWriteso; /* Page 5- 8 */
extern void ContinueMemoryWrites 0; /* Page 5- 9 */
extern void UpdateCacheo; /* Page 5-11 */
extern void AddAWordToMemoryRequest 0; /* Page 5-13 */
extern void RemoveAWordFromMemoryRequest(; /* Page 5-14 */

/**
** Page 1- 9 **

** SACS .h

** List of TimeEst.c Function Declarations **
** **

** Description: **
** **

** This is a list of function declarations within the file scope **

of TimeEst.c **

extern void UpdateTimeToExecuteo; /* Page 6- 3 */
extern void CalculateTimeEstimates 0; /* Page 6- 5 */

/**
Page 1-10 **

** SACS.h **

** List of Get.c Function Declarations
** **

** Description: **

** This is a list of function declarations within the file scope **

of "Get.c". **

extern void GetNextRequesto; /* Page 7- 3 */
extern void GetNextFileRequesto; /* Page 7- 5 */
extern void GetNextKeyBoardRequesto; /* Page 7- 6 */

/** ********************************

** Page 1-1i **

** SACS.h **

** List of Display.c Function Declarations

** Description: **

** This is a list of function declarations within the file scope **

** of "Display.c". **

extern void DisplayTraceo; /* Page 8- 3 */
extern void DisplayCurrentRequesto; /* Page 8- 4 */
extern void DisplayWaitingForso; /* Page 8- 5 */
extern void DisplayBlocko; /* Page 8- 6 */
extern void DisplayBuffers(); /* Page 8- 7 */
extern void DisplayBuffero; /* Page 8- 8 */

extern void DisplayRequestsBreakDowno; /* Page 8- 9 *1
extern void DisplayRequestHistogram(; /* Page 8-11 */

extern void DisplayStalliHistogramo; /* Page 8-13 *1
extern ScoreType LastScreenHistogramScore(; /* Page 8-14 */
extern void DisplayCacheArguments); /* Page 8-15 */
extern void DisplayHelpo; /* Page 8-17 */

extern void DisplayTestingHeadero; /* Page 8-18 */

extern void PrintYesNoo; /* Page 8-19 */
extern void PrintRequest(); /* Page 8-19 */
extern void PrintReplacementPolicy(); /* Page 8-19 */
extern void PrintWritePolicyo; /* Page 8-19 *1
extern void PrintWriteMissPolicyo; /* Page 8-19 */
extern void PrintWaitingForo; /* Page 8-19 */
extern void PrintMemoryWaitingForo; /* Page 8-19 */
extern void PrintBlockWaitingForo; /* Page 8-19 */

extern void PrintTime(; /* Page 8-20 */
extern void PrintTimeCentered); /* Page 8-20 */
extern void PrintScoreCenteredo; /* Page 8-20 */
extern void PrintAddress 0; /* Page 8-20 */
extern void PrintCacheSizeo; /* Page 8-20 */
extern void PrintSize(; /* Page 8-20 */
extern void PrintSize2(); /* Page 8-20 *1
extern void PrintBufferSizeo; /* Page 8-21 */
extern void PrintPriority); /* Page 8-21 */
extern void PrintAssociativity); /* Page 8-21 */
extern void PrintHistogramIndexo; /* Page 8-21 */

extern void PrintBito; /* Page 8-22 */
extern void PrintPercent); /* Page 9-22 */
extern voiJd •rnt- 0,Ac=, /* Page 8-22 *1

/**
** Page 1-12 **

** SACS.h **

** List of Record.c Function Declarations **

** Description: **

** This is a list of function declarations within the file scope **

** of "Record.c". **

extern void RecordRequest(); /* Page 9- 3 */
extern void RecordStall(); /* Page 9- 5 */
extern void RecordForMatlab(; /* Pege 9- 7 */

** Page 1-13 **

** SACS.h **

** List of Buffer.c Function Declarations **

** Description:

** This is a list of functions declarations within the file scope
** of "Buffer.c". **
** **

extern void Pusho; /* Page 10- 3 */
extern MemoryRequestType Popo; /* Page 10- 4 */
extern void ChangeTopMemoryRequesto; /* Page 10- 5 */
extern void Appendo; /* Page 10- 6 */
extern MemoryRequestType Viewo; /* Page 10- 7 */
extern void Clearo; /* Page 10- 8 */
extern void Ordero; /* Page 10- 9 */
extern void Spliceo; /* Page 10-10 */
extern YesNoType Searcho; /* Page 10-12 */
extern YesNoType UpdatingReadBuffero; /* Page 10-13 */
extern void RemoveZeroSizeso; /* Page 10-15 */
extern YesNoType NoRequestsLefto; /* Page 10-16 */

** Page 1-14
** SACS.h **

** List of Array.c Function Declarations **
** **

** Description: **

** This is a list of function declarations within the file scope **

** of "Array.c". **

extern int *DefineArraylD(); /* Page 11- 3 */
extern int **DefineArray2DO; /* Page 11- 4 */
extern void FreeArraylDO; /* Page 11- 5 */
extern void FreeArray2DO; /* Page 11- 6 */

** Page 1-15 **

** SACS.h **

** List of TestSACS.c Function Declarations **

** Description: **

** This is a list of functions declarations within the file scope
** of "TestSACS.c". **

extern void ChangeArgumentso; /* Page 12- 6 */
extern void TestSACSO; /* Page 12- 8 */
extern void CreateInstructionSetso; /* Page 12- 9 */
extern void ShufflingInstructionSetso; /* Page 12-12 */
extern YesNoType CanBeSwitchedo; /* Page 12-14 */
extern void WriteinstructionSeto; /* Page 12-15 */

** Page 1-16 **

** SACS.h **

** List of Checking.c Function Declarations **

** Description: **

** This is a list of function declarations within the file scope **
** of "Checking.c". **

extern void Checkingo; /* Page 13- 3 */
extern void CheckingConstants(); /* Page 13- 4 */
extern void PrintConstError(; /* Page 13-11 */
extern void CheckingForValuesOutOfBounds(; /* Page 13-12 */
extern void PrintTimeBoundaryError(; /* Page 13-15 */
extern void PrintScoreBoundaryErroro; /* Page 13-16 */
extern void PrintSizeBoundaryError(; /* Page 13-17 */
extern void PrintEnumBoundaryError(; /* Page 13-18 */
extern void CheckingForInconsistencies(; /* Page 13-19 */
extern void PrintTotalTimeError(; /* Page 13-21 */
extern void PrintTotalScoreError(; /* Page 13-22 */
extern void CheckingPredictions(); /* Page 13-23 */
extern void PrintScorePredictionError(; /* Page 13-24 */

extern void PrintTimePredictionError(; /* Page 13-25 */

#endif

** Page 2- 0 **

** SACS.c **

** Part Of SACS 1.0 **

** (StillAnother Cache Simulator)

** Program Modified: 3/17/94 **
** File Modified: 3/17/94 **

** Author: William G. Smith **
** Address: Electrical Engineering Department **
** Naval Postgraduate School **
** Monterey, CA 93940 **

** Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and **
** its documentation for any purpose and without fee is hereby granted **

** provided that the above copyright notice appears in all copies. No
** modified version of this program should be redistributed without the **
** authors consent. William G. Smith makes no warranty or
** representation, promise of guarantee, either expressed or implied, **
** with respect to this software's ability to produce valid results. **
** This program is provided "as is" any financial, personal or property **
** damage caused by the use of this program is the responsibility of the
** user. **

** Page 2- 1
** SACS.c **
** **

** Still Another Cache Simulator **

** Description: **

** SACS simulates all functions one clock cyc2.2 at a time using a **

** global variable named Time. Normally it is preferred to preform timing
** simulations using event queues so that time can advance to the next
** event. However, in most cache simulations so many things happen in one **

** clock cycle that en event queue would probably not improve the **

** preformance of the simulator **

** In the main event loop of SACS, Time is incremented one clock **

** cycle at a time. Time is never changed by any other procedure. **

** The requests are entered into the simulation from GetNextRequest. **

** Simulation of all events is performed by the Main Event Loop calling *
** CacheModel, MemoryModel, and UpdateCache. **

** The main procedure of SACS seems to call simulations in a fairly **

** strange order. This is because SACS is insuring that all events that **

** can be started, during a particular clock cycle are started, and that **
** all events that can bomplete during a particular clock cycle do. It **

** also gives an inherent priority to the cache access events. **

** Specifically accesses from the CPU to the cache are given higher **

** priority that accesses from the BlockBuffer. This is why the Update **

** Cache procedure is found in three different places in the main loop. **

** Memory Model calls are found before and after the CacheModel. This **

** allows memory events that are to complete during a clock cycle to do **

** so. The Cache Model will then have the benefit of the newly arrived **

** data. The MemoryMode] call after the CacheModel call insures that any **

new memory request made by the cache are started that clock cycle.

** SACS's main loop includes the source code to control testing, **

checking, and tracing. The DesiredTime variable is controlled entirely **

** by the MainEventLoco. DesiredTime represents a user request to advanre **

** the simulation to a particular time without the trace on. SACS can not *
** run nime backwards. However if the Desired Time. The user can make **

* time requests using argiien-, "G #V, "#", "-#" **

Throughout MainEventLoop, CacheWaitingFor is checked to bee if **
** it's equal to Nothing. This indicates that the last request has been *
** serviced and that the cache is ready for the next request. The

** procedures that model -pecific events as ReadHit, ReadMiss, and
AccessCache are called - peatedly during their simulations they use **

** Cache Waiting For and Time to determine what to dn .iext. If any of
those procedures needs to wait for a period either to simulate an

** access or because a resource js not available, then they will set Cache **

Waiting For to the appropriate value. The modeling procedures in
** Memory Model work the same way using Memory Waiting For.

** Whenever SACS finds an error or a discrepancy then the boolean

va Lable Discrepancy Founa is set to Yps. This forces SACS into a
* tract mode so that the user may try to identify the cause of the error. *
** In test mode a discrepancy forces SACS out of test mode so that thhe
** trace file that caused the error is not erased by a new file.

** Page 2- 2 **
SACS.c **

** Still Another Cache Simulator
** continued

** SACS.c contains the source code for maino, which contains the **

main loop. All initialization of global variables, array definitions, **

** and file management are done inside "SACS.c". **
** &

** For information on what SACS does see the User's Guide. **
** i*

For information on how to run SACS see the User's Guide. **
** **

** For information on how to modify SACS see the Programmer's Guide. *
** W*

** For information on how SACS works see the Programmer's Guide. *

Table of Contents **

** Cover Page Page 2- 1 **

** User Defined Global Variables Page 2- 3 **
** Programmer Defined Global Variables Page 2- " **
** Enumerator Strings Page 2- 5 **

** List of SACS.c Function Declarations Page 2- 7 **

main () Page 2- 8 **
** LoadArguments() Page 2-11
** ScanArgument ()...................... Page 2-14
** InitializeProgrammersGlobalVariables() . Page 2-15 **

** InitializeBuffers() Page 2-16 **

** DefineArrays() Page 2-17 **

** FreeArrays() Page 2-18 **

** OpenDataFile() Page 2-19 **
** CloseDataFile() Page 2-20 **

** PauseForCommand() Page 2-21 **

** Pause() Page 2-23 **

#include <stdlib.h>
#include <stdio.h>

#include "SACS.h"

** ~Page 2- 3 *

** ~SACS. c

User Defined Global Variables

**Description: *

** ~These variables represent the programs input parameters. *

CacheSizeType CacheSize =8192; /* -Cs *
SizeType BlockSize = 16; 1* -bs ~
SizeType SubBlockSize = 4; /* -sbs *
AssociativityType Associativity = 4; /* -a ~
SizeType WordSize = 4; /* -w5 *

TimeType ReadCacheAccessTime = 1; /* -rcat ~
TimeType ReadCacheHitTime = 0; /* -rcht ~
TimeType ReadCacheMissTime = 0; /* -rcmt *
TimeType WriteCacheAccessTiine = 1; /* -wcat *
TimeType WriteCacheHitTime = 1; /'* -wcht ~
TimeType WriteCacheM2.ssTlme = 0; /* -wcmt

TimeType MemoryAccessTime = 3; /* -mat ~
TimeType MemoryTransferTime = 1; /* -mtt ~
TimeType BufferCacheAccessTime 1; /* -bcat ~

BufferSizeType ReadBufferSize = 4; /* -rbs *
BufferSizeType WriteBufferSize = 4; /* -wbs ~

BlockfleplacementPolicyType BlockReplacementPoilicy = LRU; 1* -brp *
WritePolicyType WritePolicy - WriteThrough; /* -wp *
WriteMissPolicyType WriteMissPolicy = WriteAllocate;/* -wmp *

YesNoType ReadForward - Yes; /* -rf -drf *
YesNoType CPUWaitsForCacheWrites - No; /* -cwfcw -dcwfcw *
YesNoType SearchBlockBuffer = Yes; /* -sbb *-dsbb *
YesNoType UpdateReadBuffer = Yes; /* -urb -durb ~
YesNoType RemoveReadDuplicates = Yes; /* -rrd -drrd *
YesNoType RemoveWriteDuplicates = Yes; /* -rwd -drwd ~

PriorityType ReadPriority = 1; /* -rpr *
PriorityType WritePriority - 2; /* -wpr *
PriorityType ReadForWriteAllocatePriority = 3; /'* -rfwapr *
PriorityType WriteDirtyBlockPriority = 4; /'* -wdbpr
PriorityType NoPriority 100; 1* -npr *

YesNoType Trace =No; /* -t -dt ~
YesNoType Check -Yes; /* -c -dc ~
YesNoType Test =No; /* -test *

YesNoType KeyBoardIO =No; /* -kbio -fio ~
char *DataFileName -"SACS.Dat"; I* -f *

HistogramlndexType ScreenHistograrnMaxlndex = 5; /* -shmi *
HistogramlndexType FileHistogramMaxlndex 10; /* -fhmi

** ~Page 2- 4 *

** ~SACS.c *

** ~Programmner Defined Global Variables. *

TimeType Time;
TimeType Des iredTime;
Cache Wait ingForType CacheWait ingFor;
MemoryWait ingForType MemoryWaitingFor;
BlockcWaitingForType BlockWaitingFor;
YesNoType DiscrepancyFound;

YesNoType CacheHit;
YesNoType Bufferait;
YesNoType CacheBusy;

RequeStType Request;
RequestType LastRequest;
AddressType RequestAdd~ress;
SizeType RequestSize;
SizeType RequestBlockNuxnber;
TimeType TimeOfNextRequest;

SizeType NumrberOfBlocks;
SizeType NumberOfSubBlocks;
SizeType NumiberOfSets;

AddressType *CacheBlockAcidress; 1* fNuxnberOfBlocks] *
TimeType *atah~okcesie
SizeType *CacheNextBlock; 1* fNuxnberafSets] *
YeSlNoType **CacheValid~it; /* fNuxnberOfBlocks] *
YesNoType **CacheDirtyBit; 1* (NumberOfSubBlocks] *

TimeType **RequestTimeHistogram; 1* (NumberOfRequestsAvailable] *
/* [FileaistograxnMaxlndexl *

TimeType **StallTimeHistogram; 1* [NuxnberOfWaitingForsAvailable] */
/* (FileHistogramMaxIndex] *

TimeType *TotalRequestTime; /* [NumberOfRequestsAvailable] *
TimeType *TotalStallTifle; /* [NuinberOfWaitingForsAvailable] */
ScoreType *NumberOfAccesse5; /* [NumberOfRequestsAvailable) *
ScoreType *NumerOfCacheHits;
ScoreType *Number~fBufferHits;
ScoreType *PredictedNumerOfAccesses;
ScoreType *PredictedNumTberOfHits;
ScoreType TotalNumberOfAccesses =0; 1* Not reset during test ~

ScoreType TotalNumberOfWordsReadrrornMemory;
ScoreType TotalNumberOfWordsWrittenToMemory;
ScoreType TotalNuxnberOfWordsWrittenToCache;

BufferType ReadBuffer;
BufferType WriteBuffer;
BufferType BlockBuffer;

AddressTyre MAR;
TimeType TOA;
TimeType TOD;
TimeType BlockTOA;

FILE *DataFile;
YesNoType EndOfDataFile;

/**
** Page 2- 5 **
** SACS.c **
** **

** Programmer Defined Global Variables **

continued **

** Enumerator Strings **

** Description: **

** Enumerator strings are string copies of enumeration types. These **
** are used for display purposes. **

char *YesNoString[3]=f
"No
"Yes ",

"Unknown"
I};

char *RequestString[NumberOfRequestsAvailable]=
{
"None ",

"Read ",

"Write"
I;

char *ReplacementPolicyString[NumberOfReplacementPoliciesAvailable] =

f
"LRU ",

"FIFO",
"RAND"

Iha *WieoiytigNme;frt~lce~albe
char *WritePolicyString (NunberOfWritePoliciesAvailable

"Write Though",
"Write Back
I;

char *WriteMissPolicyString(NumberOfWriteMissPoliciesAvailable] =
{
"Write Around ",

"Write Allocate"
1;

/.*****l***

** ~Page 2- 6 *

*i SACS.C **

** Programmer Defined Global Variables
** continued **

*. Enumerator Strings **

** continued **
** Description: **

** numerator strings are string copies of enumeration types. These **
** are used for display purposes. **

char *CacheWaitingForString[NumberOfCacheWaitingForsAvailable]={
"Nothing ",
"Read Cache Request ",
"Write Cache Request ",

"Read Memory Request ",
"Write Memory Request",
"Full Read Buffer ",
"Full Write Buffer ",
"CPU Cache Access "

char *MemoryWaitingForString[NumberOfMemoryWaitingForsAvailable]=

"Nothing ",
"Memory Read Request ",

"Memory Read Access ",
"Memory Read Transfer ",
"Memory Write Request ",
"Memory Write Access ",
"Memory Write Transfer",
"Cache Update

char '•2occWaitingForString[NumberOfBlockWaitingForsAvailable]-
{
"Nothing "
"Memory Block Transfer",
"Block Cache Access ",
"Block Cache Transfer "

** Page 2- 7 **
** SACS.c **

** List of SACS.c Function Declarations **

** Description: **

** This is a list of function declarations within the file scope **
** of "SACS.c". **

int maino; /* Page 2- 8 *1
void LoadArguments(); /* Page 2-11 */
unsigned long int ScanArgument(); /* Page 2-14 */
void InitializeProgrammersGlobalVariableso; /* Page 2-15 */
void InitializeBufferso; /* Page 2-16 */
void DefineArrays(); /* Page 2-17 *1
void FreeArrays(); /* Page 2-18 */
void OpenDataFile(; /* Page 2-19 */
void CloseDataFile(); /* Page 2-20 */
void PauseForCommando; /* Page 2-21 */
void Pause(; /* Page 2-23 */

** Page 2- 8
** ~SACS.c *

char *argv[];

LoadArguments (argc, argv);

if (KeyBoardIO='-No 11 Test==Yes) OpenDataFileo;

Time-O;

while (Time=-O 11I Test==Yes)

if (Test--Yes) ChangeArgumentso;
InitializePrograinmersGlobalVariables 0;
InitializeBuffers 0;
DefineArrays 0;

if (Test==Yes) TestSACS (PredictedNuinberOfAccesses, PredictedNuinberOfRits);

RecordRequest(NumberOfRequestsAvailable); /* Reseting LastTimes ~
RecordStall (NurnberOfCacheWaitingForsAvailable);

CheckingConstants (Yes);

GetNextRequest 0;
CacheHit=Unknown;
BufferHit=Unknown;

** ~Page 2- 9 *

** ~SACS.c *

** Main Event Loop. *

while ((Request+CacheWaitingFor+MemoryWaitingFor>Nothing 1 I
Tixne<=TimeOfNextRequest) &&

DiscrepancyFound==No &&
Time>O

if (BlockWaitingFor==BlockCacheTransfer) UpdateCache 0;
MemoryModel(0;
CacheModel(0;
if (BlockWaitingFor==BlockCacheAccess && BufferCacheAccessTime==O)

UpdateCache 0;
MemoryModel(0;

RecordRequest (Request);
if (CacheWaitingFor==Nothing) Request=None;
RecordRequest (Request);
RecordStall (CacheWait ingFor);

if (Time==DesiredTime) f Trace=Yes; DesiredTime=O;I

if (CacheWaitingFor!=Nothing &&
((CPUWaitsForCacheWrites && Request-=Write) 11I Request==Read))
TimeOfNextRequest++;

if (Time>=-TimeOfNextRequest && CacheWaitingFor==Nothing)

GetNextRequesto;
CacheHit-Unknown; Buffei..Hit=Unknown;
if (Request==None)

i
if (BlockWaitingFor==BlockCacheAccess) UpdateCache();
Time++;
RecordSt~all(CacheWaitingFor);
RecordRequest (Request);
Time--
if (Check) Checkingo;
if (Trace) PauseForCommnando;
Time ++;

else

if (BlockWaitingFor==BlockCacheAccess) UpdateCache 0;
Time++;
RecordStall (CacheWait ingFor);
RecordRequest (Request);
Time--;
if (Check) Checkingo;
if (Trace) PauseForCommando;
Time++;

if (Time>DesiredTime && DesiredTime!=O) Time-O;

** ~Page 2-10 *

** ~SACS.c *

** ~End Of Main Event Loop. *

if (Test==Yes && DiscrepancyFound-=No)

CheckingPredictions 0;

TotalNuxnberOfAccesses+=NuxnberOfAccesses [Read]
+NuxnberOfAccesses [Write];

/*if (TotalNuxnberOfAccesses>=11270) {Trace=Yes; Test=No; I*/

if (DiscrepancyFound=-Yes)
I
Pause 0;
Trace-Yes;
Test-No;
DesiredTime-0;
Time-0;
i

if (DiscrepancyFound==No && Test=-No && Time!=0)
f
DisplayRequestsBreakDown 0;
RecordForMatlabo;

FreeArrays 0;

rewind (DataFile);
EndOfDataFile=No;

if (KeyBoardlO=-No) CloseDataFile 0;

return (0);

** ~Page 2-11 *

** ~SACS. c

** LoadArguments

**Description: *

LoadArguments takes the argument list argv and changes the *

**user defined global variables (See Page 2-3). *

void LoadArguments (argc, argv)

mnt argc;
char *argvz[];

I

int i,j;

for (i=1; i<argc; i++)

if (!(strcmp(argvfi],"-cs"))
CacheSize =ScanArgument (argv(++i]);

if (!(strcmp(argv[iJ,,"-bs")))
BlockSize =ScanArgument (argvt++i]);

if (!(strcmp(argvfiJ,"-sbs")))
SubBlockSize =ScanArgument (argv[++i]);

if ('-(strcmp(argv~i], "-a"
Associativity =ScanArgument (argv[-i+i]);

if (!(strcmp(argv[i], "-wsgf)))
WordSize =ScanArgument (argv[++i]);

if (!(strcmp(argv[i],"-rcat"I)))
ReadCacheAccessTime =ScanArgument (argv[++i]);

if (!(strcmp(argvfij,"-rcht")))
ReadCacheHitTime =ScanArgument (argv(++i]);

if (!(strcmp(argv[ih,"-rcmt")))
ReadCacheM~issTime =ScanArgument (argv(++i]);

if (!(strcmp(argv~iJ,"-wcat")))
WriteCacheAccessTime =ScanArgument (argv [++i]);

if (!(strcmp(argv~i],"-wcht")))
WriteCacheflitTime =ScanArgument (argv(++iJ);

if (!(strcmp(argv~i],"-wcmt")))
WriteCacheMissTime =ScanArgument (argv(++i]);

if (!(strcmp(argv[iJ,"-xnatII)))
MemoryAccessTime =ScanArgument (argv [++i]);

if (!(strcmp(argv[i),"-mtt")))
MemoryTransferTime =ScanArgument (argv (++i]);

if (!(strcmp(argv[iJ,"-bcat")))
BufferCacheAccessTime -ScanArgument (argv(++i]);

if (!(strcmp(argv~i],'"-rbs")))
Read~ufferSize =ScanArgument (argv [++i]);

if (!(strcmp(argv~i],,"-wbs")))
WriteBufferSize =ScanArgument (argv(++iJ);

Page 2-12 *

SACS. c

** ~LoadArguments *

** ~Cant inued *

if (! (strcmp(argv[ih,"-brp")))
{
BlockReplacementPolicy=-l;
for (j-0; j<NumberOfReplacementPoliciesAvailable; j++)

if (! (strcmp(argv[il ,ReplacementPolicyString [ii)))
BlockReplacementPolicy'-j;

if (BlockReplacementPolicy<O)

printf ("Invalid Block Replacement Policy");
exit (1);

if (~(strcmp(argv~iJ,"-wp'")))
f
WritePolicy--i;
for (j-0; j<NumberOfWritePoliciesAvailable; j++)

f
if (! (strcmp(argv(iJ ,WritePolicyString[j])))

WritePolicy-j;

I

printf ("Invalid Write Policy");
exit (1);

if (! (strcmp(argvti],"'-wmp"I)))

WriteMi5SPoliCY--1;
for (j-0; j<NuxnberOfWriteMissPoliciesAvailable; j++)

if (! (strcmp(argvti] ,WriteMissPolicyString[jl)))
WriteMissPolicy-j;

if (WriteMissPolicy<O)

printf("Invalid Write Miss Policy");
exit (1);

** ~Page 2-13 *

SACS.c *

** ~LoadArguments *

** ~Continued *

if (!(strc~mp(argv[i],"-rf"))ReadForward =Yes;
if (!(strc~mp(argv[i],"-drf"))ReadForward =No;
if (! (strcmp(argv~il,"-cwfcw"))CPUWaitsForCacheWrites =Yes;
if (! (strcmp(argvfil,"-dcwfcw"))) CPUWaitsForCacheWrites =No;
if (!(strc~mp(argv(i],"-sbb"))SearchBlockBuffer =Yes;
if (!(strcmp(argvti],"-dsbb"))SearchBlockBUffer -NO;
if (!(strc~mp(argv(i],"-urb"))UpdateReadBuffer =Yes;
if (! (strc~mp(argvfi],"-durb"))UpdateReadfluffer -No;
if (!(strcmp(argv[i),"-rrd"))RemoveReadDuplicates =Yes;
if (!(strc~mp(argv~il,"-drrd"))RemoveReadDuplicates = No;
if (! (strc~mp(argv[il,"-rwd"))RemoveWriteDuplicates =Yes;
if (!(strcmp(argvfil,"-drwd"))RemoveWriteDuplicates =No;

if (!(strcmp(argv(i], "-rpr"
ReadPriority =ScanArgument (argv(++i));

if (!(strcmp(argv~iJ,"-wpr"))
WritePriority =ScanArgument (argv[++ifl;

if (! (strcmp(argv~iJ,"-rfwapr")))
ReadrorWriteAllocatePriority =ScanArgument (argv [++iJ);

if (! (strcmp(argvti],"-wdbpr")))
WriteDirtyBlockPriority =ScanArgument (argv [++iJ);

if (! strcmp (arg [i]I, "-npr")))
WriteDirtyBlockPriority -ScanArgument (argv (++i]);

if (!(strc~mp(argv[i),"-t"))Trace = Yes;
if (!(strc~mp(argv~iD,"-dt"))Trace = No;
if (!(strc~mp(argv[i], "-c"))Check = Yes;
if (! (strcnip(argvfi],"-dc"))Check = No;
if (! (strcmp(argv(i],"-test"))Test = Yes;

if (!(strcmp(argvfi],"-kbio"))KeyBoardIO = Yes;
if (!(strc~mp(argv(i),"-fio"))KeyBoard.IO = No;
if (!(strc~mp(argv~i),"-f") DataFileName = argv[++il;

if (!(strcmp(argv[i),"-shmi"))
ScreenHistogramMaxlndex =ScanArgument (arqv [++i]);

if (! (strcmp(argvfi)2'-fhmi"))
FileHistogramMaxlndex =ScanArgument (argv(++i]);

** Page 2-14 **

** SACS.c **

** ScanArgument **

** Description: **

** ScanArgument scans the input string for an unsigned long int, **
** if one is not found an error is raised. **
** **

unsigned long int ScanArgument(Argument)

char *Argument;

f

unsigned long int Temp;

if (sscanf(Argument, "%U",&Temp) !=i)

printf("Error unsigned integer expected [%s].",Argument);
};

return (Temp);

** Page 2-15
** ~SACS. C

** mIit ializePrograxmmersGlobalvariables

**Description: *

** ~InitializeProgrammersGlobalvariables takes the user defined global
**variables and calculates programmer defined global variables, which are *

**constant, once the input paramaters are determined, and reinitializes
the global variables what will change. *

void InitializePrograxnmersGlobalVariableso(

Time = 1;

CacheWaitingFor = Nothing;
MemoryWaitingFor = Nothing;
BlockWaitingFor = Nothing;
DiscrepancyFound = No;

CacheHit = Unknown;
Bu fferHit = Unknown;
CacheBusy - No;

Request = None;
LastRequest = None;
RequestAddress = 0;
RequestBlockNumber = 0;
RequestSize = 0
RequestBlockNumber = 0;
TimeOfNextRequest = 0;

NumberOfBlocks = CacheSize/BlockSize;
NumberOfSubBlocks = BlockSize/SubBlockSize;
NumberOfSets = NumberOfBlocks/Associativity;

TotalNumberOfWordsReadFromMemory = 0;
TotalNumberOfWordsWrittenToMemory = 0;
TotalNumberOfWordsWrittenToCache = 0;

ReadsLeftForBlock - 0;
ReadsLeftForRequest = 0
WritesLeftForBlock = 0;
WritesLeftForRequest -0;

MAR = 0;
TOA = 0;
TOD - 0;
BlockTOA = 0;

EndOfDataFile - No;

** ~Page 2-16 *

** ~SACS. c

** ~InitializeBuffers *

**Description: *

** ~InitializeBuffers places the buffers in an empty state, with *

**their Max values set to the appropriate size. *

void InitializeBufferso(

ReadBuffer.Full = No;
Readfluffer.Empty = Yes;
ReadBuffer.Next = 0;

WriteBuffer = ReadBuffer;
BlockBuffer = ReadBuffer;

ReadBuffer.Max = ReadflufferSize-1;
WriteBuffer .Max = WriteBufferSize-1;
BlockBuffer.Max = 0;

ReadBuffer. WaitingForFlag = CacheWaitingjForFullReadBuffer;
WriteBuffer. WaitingForFlag = CacheWaitingForFullWriteBuffer;
BlockBuffer. WaitingForFlag = Nothing;

** ~Page 2-17 *

** ~SACS.c *

** ~DefineArrays *

**Description:

** DefineArrays assigns memory to the array pointers.

void DefineArrayso(

I

CacheBlockAddress = (AddressType*)
DefineArraylD (NumberOf~locks,

sizeof (AddressType));
T.Pqf$-CacheBlcckAc~essTime = ýx ime-.Ype*')

DefineArraylD (NumberOfBlocks,
sizeof (TimeType));

CacheNextBlock = (SizeType*)
DefineArraylD (NumberOfSets,

sizeof(SizeType));
CacheValid~it = (YesNoType**)

DefineArray2D (NurnberOfBlocks,
NumberOfSubBlocks,
sizeof (YesNoType));

CacheDirtyBit = (YesNoType**)
DefineArray2D (NumberOf~locks,

NumberOfSubBlocks,
sizeof (YesNoType));

RequestTimeHistogram - (TimeType**)
DefineArray2D (NuniberOfRequestsAvailable,

FileHistogramMaxlndex,
sizeof (TimeType));

StallTimeHistogram = (TimeType**)
DefineArray2D (NunlberOfCacheWaitingForsAvailable,

FileHistogramMaxlndex,
sizeof (TimeType));

TotalRequestTime - (TimeType*)
DefineArraylD (NumberOfRequestsAvailable,

sizeof (TimeType));
TotalStallTime - (TimeType*)

DefineArraylD (NumberOfCacheWaitingForsAvailable,
sizeof (TimeType));

NumberOfAccesses = (ScoreType*)
DefineArraylD (NumrerOfRequestsAvailable,

sizeof (ScoreType));
NurnberOfCacheHits - (ScoreType*)

DefineArraylD (NuxnberOfRequestsAvailable,
sizeof (ScoreType));

NuxnberOfBufferHits =(ScoreType*)

DefineArraylD (NuxnberOfRequestsAvailable,
sizeof (ScoreType));

PredictedNuxnberOfAccesses = (ScoreType*)
D~efineArr~v1D (NuxrberOfRequestsAvailable,

sizeof (ScoreType));
PredictedNumberOfHits - (ScoreType*)

DefineArraylD (NumberOfRequestsAvailable,
sizeof (ScoreType));

** ~Page 2-18 *

** ~SACS.c *

** ~FreeArrays *

**Description: *

** ~FreeArrays deallocates the memory assigned to the array points *

**by DefineArrays. *

void FreeArrays()

char c;

FreeArraylD (CacheBlockAddress, NuxnberOfBlocks);
FreeArraylD (LastCacheBlockAccessTime, NumrberOfBlocks);
FreeArraylD (CacheNextBlock, NuxnberOfSets);
FreeArray2D (CacheValid~it, NurnberOfBlocks, NuxnberOfSubBlocks);
FreeArray2D(CacheDirtyBit, NumberOfBlocks, NuniberOfSubBlocks);

FreeArray2D (RequestTimeliistogram, NuxnberOfRequestsAvailable,
FileHistogramMaxlndex);

FreeArray2D (StailTimeHistogram, NUanberOfCacheWaitingForsAvailable,
FileHistogramMaxlndex);

FreeArraylD (TotalRequestTime, NumberOfRequestsAvailable);
FreeArraylD (TotaiStailTime, NumberOfCacheWaitingForsAvailable);

FreeArraylD (NumberOfAccesses,, NuxnberOfRequestsAvailable);
FreeArraylD (NuxuberOfCacheHits, NurnberOfRequestsAvailable);
FreeArraylD (NumberOfBufferliits, NtumberOfRequestsAvailable);
FreeArraylD (PredictedNuxnberOfAccesses, NumberOfRequestsAvailable);

FreeArraylD (PredictedNuxnberOtHits, NumberOfRequestsAvaiLlable);

** ~Page 2-19 *

SACS.c *

** ~OpenDataFile *

**Description: *

** ~OpenDataFile opens the file specified by DataFileName for *

**reading. This becomes the data file that GetNextFileRequest reads *

**from. *

void OpenDataFile()

f

if (Test==No)

if ((DataFile=fopen(DataFileName, "r"))==NULL)

printf ("Cannot open %s file",DataFileName);
exit (0);

else
f
if ((DataFile-fopen (DataFileName, "w+"))--=NULL)

printf ("Cannot open %s file",DataFi3.eName);
exit (0);

** ~Page 2-20 *

** SACS.c

** ~CloseDataF ile *

**Description: *

** CloseDataFile closes the data file that OpenDataFile opened.

void CloseDataFileo(

fclose (DataFile);

** ~Page 2-21 *

** SACS.c

** ~PauseForCommnnd *

**Description: *

** PauseForCommand controles the displays. It takes input for the
**keyboard to determan which display to provide. It also adjusts the *

**global variabie Desl1 red Time based on "#,"*,and "G #1 conmands. *

void PauseForConmennd 0)

static char LastDisplayMode=' '

char InputString[255],
*TnlpStringPt,
CommandChar,
DisplayMode-' '

int Index;
TimeType TmpTime;

if (Trace--Yes) LastDisplayMode-'t'; else LastDisplayMode-'r';

while (DisplayMode!I=LastDisplaymode)

f

if (DisplayMode!I-, ') LastDisplaymode-DisplayMode;
DisplayMode-LastDisplayMode;

4.f (LastDisplayMode--'t') DisplayTrace 0;
if (LastDisplayMode--.'r') DisplayRequestsBreakDown 0;
if (LastDisplayMode--' s') DisplayStallHistograxn0;
if (LastDisplayMode=-' c') DisplayCacheArguments 0;
if (LastDisplayMode--'h') DisplayHelp 0,

printf("\nNext Command Please [T, R, S, C, G ##,-,Help]»>)

Index--i;
do

Index++;
scanf("%c",&InputString[Index]);
I

while(InputStringtlndexl !='\n');

while (InputString[OJ--' ')

for (Index-0; InputString (Index] -, \n'; Index++)
InputString (Index) =InputStrinig Index+l. ;

CoimmandChar-InputString (01;

if (CommandChar>-'A' && ConmmndChar<-'Z') CommandChar+-('a'-'A');

** iPage 2-22 *

** ~SACS.c *

** ~PauseForCo~mand *

** ~continued *

if (sscanf(InputString, "%U",&TmpTime)==l && CornuandChar!-' \n')

DesiredTime=Time+TmpTime;
Trace=No;
I

if (CommandChar==' -')

TmpStringPt=InputString;
TmpStringPt++;
if (sscanf (TmpStringPt, "%U", &TmpTime)==l) DesiredTime=Time-TmpTime;
Trace=No;

if (CommandChar=='q')

TmpStringPt=InputString;
TmpStringjPt++;
if (sscanf(TmpStringPt, "%U",&TmpTime)==1) DesiredTime=TxnpTime;
Trace=No;
I

if (ConuuandChar-== t') DisplayMode=' t';
if (ConmmandChar=' r') DisplayMode=' r';
if (ComrnandChar==' s') DisplayMode=' s';
if (CommandChar=='c') DisplayMode='c';
if (CommandChar=-'h') DisplayMode='h';
if (ConumandChar=='q') exit(O);

Page 2-23
SACS.c **

** **

Pause **

** Description:

** Waiting for a character to be entered in. **

void Pause()

I

char InputCharacter;

printf("\nHit the return key to Continue:");

do

scanf("Ic",&InputCharacter);
}

while (InputCharacter!=' \n');

** Page 3- 0 **
** Global.h **

** Part O SACS 1.0 **
** (StillAnother Cache Simulator) **

** Program Modified: 3/17/94 **

** File Modified: 3/17/94

** Author: William G. Smith **

** Address: Electrical Engineering Department **

** Naval Postgraduate Sc:ool **

** Monterey, CA 93940 **

** Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and **
** its documentation for any purpose and without fee is hereby granted **
** provided that the above copyright notice appears in all copies. No **
** modified version of this program should be redistributed without the *
** authors consent. William G. Smith makes no warranty or **

** representation, promise of guarantee, either expressed or implied,
** with respect to this software's ability to produce valid results. **
** This program is provided "as is" any financial, personal or property **

** damage caused by the use of this program is the responsibility of the **
** user. **

** Page 3- 1 **
** Global.. **
** **

** Global Variables Used by SACS Packages **

** Description: **

** Global.h is the only include file needed by all of the SACS source **

* files. It contains all the global variables, both user and programmer **

* defined variables. The user defined variables represent all the input **
** parameters. The programmer defined variables represent all global
** variables that are shared between all the SACS source code files, that **
* the user does not have access to. **

** SACS.c defines all of the initial values of the global variables *
** therefore, does not include Global.h **

** Table of Contents **

** Cover Page Page 3- 1 **

** User Defined Global Variables Page 3- 2
Programmer Defined Glotal Variables Page 3- 3 **

#ifndef GLOBAL.H
#define _GLOBAL.H
#include <stdlib.h>

#include <stdio.h>

#include "SACS.h"

** ~Page 3- 2 *

** ~Global .h *

** User Defined Global Variables *

**Description: *

These variables represent the programs input parameters. *

extern CacheSizeType CacheSize;
extern SizeType BlockSize;
extern SizeType SubBlockSize;
extern AssociativityType Associativity;
extern SizeType WordSize;

extern TimeType ReadCacheAccessTime;
extern TimeType ReadCacheHitTime;
extern TimeType ReadCacheMissTime;
extern Tir'eType WriteCacheAccessTime;
extern TimeType WriteCachellitTime;
extern TimeType WriteCacheMissTime;

extern TimeType MemoryAccessTime;
extern TimeType MemoryTransferTime;
extern TimeType BufferCacheAccessTime;

extern bufferSizeType ReadBufferSize;
extern BufferSizeType WriteBufferSize;

extern BlockReplacementPolicyType BlockReplacementPolicy;
extern WritePolicyType WritePolicy;
extern WriteMissPolicyType WriteMissPolicy;

extern YesNoType ReadForward;
extern YesNoType CPUWaitsForCacheWrites;
extern YesNoType SearchBlock.Buffer;
extern YesNoType UpdateReadfluffer;
extern YesNoType RemoveReadDuplicates;
extern YesNoType RemoveWriteDuplicates;

extern PriorityType ReadPriority;
extern PriorityType dJritePriority;
extern PriorityType ReadForWriteAllocatePriority;
extern PriorityType WriteDirtyBlockPriority;
extern PriorityType NoPriority;

extern YesNoType Trace;
extern YesNoType Check;
extern YesNoType Test;

extern YesNoType KeyBoardIO;
extern char *DataFileName;

extern HistogramlndexType ScreenHistogramMaxlndex;
extern HistogramlndexType FileHistogramMaxlndex;

** Page 3- 3
** ~Global .h *

** Programmer Defined Global Variables

extern TimeType Time~;
extern TimeType DesiredTime;
extern CacheWaitingForType CacheWaitingFor;
extern MemoryWait ingForType MemoryWaitingFor;
extern BlockWaitingForType BlockWaitingFor;
extern YesNoType DiscrepancyFound;

extern YesNoType CacheHit;
extern YesNoType BufferHit;
extern YesNoType CacheBusy;

extern RequestType Request;
extern RequestType LastRequest;
extern AddressType RequestAddress;
extern SizeType RequestSize;
extern SizeType RequestBlockNumber;
extern TimeType TimeOfNextRequest;

extern SizeType NumberOfBlocks;
extern SizeType NuxnberOfSubBlocks;
extern SizeType NumberOfSets;

extern AddressType *CacheBlockAddress; /* (NumberOfBlocks] *
extern TimeType *LastCacheBlock~ccessTime;
extern SizeType *CacheNextBlock; /* ENuxnberOfSets] *
extern YesNoType **CacheValidBit; 1* [NumberOfBlocks])
extern YesNoType **CacheDirtyBit; 1* [NumberafSubBlocks] *

extern TimeType **RequestTimesistogram; /* [NumberOfRequestsAvailablel *
/* (FileHistgramMaxlndexj *

extern TimeType **StallTimeflistogram; 1* (NumberOfCacheWaitingForsAv] */
/* [FileHistgramMaxlndexj *

extern TimeType *TotalRequestTiiwe; /* (NumberOfRequestsAvailablej *
extern TimeType *TotalStallTime; 1* [NumberOfStallsAvailableJ *
extern ScoreType *NulkberofAccesses; /* (NumberOfRequestsAvailable] *
extern ScoreType *NumerOfCacheHits;
extern ScoreType *Nuy 4berOfBufferHits;
extern ScoreType *Predicted~umerOfAccesses;
extern ScoreType *PredictedNumberOfHits;
extern ScoreType Totalb~umberOfAccesses;

extern ScoreType TotalNumberOfWordsReadpromMemory;
extern ScoreType TotalNumberOfWordsWrittenToMemory;
extern ScoreType TotalNumberOfWordsWrittenToCache;

extern BufferType ReadBuffer;
extern BufferType WriteBuffer;
extern BufferType BlockBuffer;

extern AddressType MAR;
extern TimeType TOA;
extern limeType TOD;
extern Ti~meType BlockTOA;

extern FILE *DataFile;

** ~Page 3- 4 *

** ~Global .h *

** ~Programner Dý'fined Global Variables *

** ~continued *

** ~Enumerator Strings *

extern char

YesNoString(], I [2]
ReqljestString [], 1 tNuxnberOfRequestsAvailable] *
ReplacementPolicyStrilg [1, 1 [ReplacementPolicyString] *
WritePolicyStringE), / tNuxnberOfWritePoliciesAvailable) *
Write~issPolicyString (1, I [NuniberOfWriteMi-. PoliciesAvailableI]*

CacheWaitingForString l, / ENumberOfCacheWaitingForsAvailablej *
MemoryWaitingForString (], 1 [NunberOfMemoryWaitingForsAvailable] *
BlockWaitingForString[]; / (NumxberOfBlockWaitingForsAvailable] *

#endif

** Page 4- 0 **

** Cache.c **

** Part Of SACS 1.0 **

** (StillAnother Cache Simulator)
** **

** Program Modified: 3/17/94
** File Modified: 3/17/94 **

** Author: William G. Smith **
** Address: Electrical Engineering Department **

Naval Postgraduate School **
** Monterey, CA 93940 **

** Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and **

** its documentation for any purpose and without fee is hereby granted **

provided that the above copyright notice appears in all copies. No
** modified version of this program should be redistributed without the *
** authors consent. William G. Smith makes no warranty or **

** representation, promise of guarantee, either expressed or implied, **
** with respect to this software's ability to produce valid results.
** This program is provided "as is" any financial, personal or property *
** damage caused by the use of this program is the responsibility of the **
** user.

** Page 4- 1 **

** Cache.c **

** Description: **

** CacheModel makes all the necessary calls to simulate cache memory. **
** CacheModel decides which calls to make, based on the value of CacheHit, *

** and Request. This function is called every time Time is incremented.
** If there are no read or write requests waiting to be completed the **

** function does nothing. The value of CacheHit will remain Unknown until **
** the appropriate cache access time has expired. Then CacheModel will
** call IsRequestAHit to determine if the request is a hit or a miss. **

** Table of Contents

** Cover Page Page 4- 1 **

** List of Cache.c Function Declarations Page 4- 2 **

** CacheModel() Page 4- 3 **

** IsRequestAHit() Page 4- 4 **

** ReadHit (). Page 4- 5 **

** ReadMiss()............................... Page 4- 6 **

WriteHit()............................... Page 4- 7 **

** WriteMiss (). Page 4- 8 **

** AccessCache()............................ Page 4-10 **

** SelectBlockVictim() Page 4-11
** SetDirtyBitso()............................. Page 4-13 **

** WriteDirtySubBlocks() Page 4-14 **

** AddToReadBuffer()........................... Page 4-16 **

** SearchCache()............................ Page 4-20 **

** AddToWriteBuffer().......................... Page 4-21 **

#include "Global.h"

** Page 4-2 **

** Cache.c

List of Cache.c Function Declarations **

** Description: **

** This is a list of function declarations within the file scope **
of "Cache.c". **

void CacheModel(); /* Page 4- 3 */
void IsRequestAHit 0; /* Page 4- 4 */
void ReadHito; /* Page 4- 5 */
void ReadMisso; /* Page 4- 6 */
void WriteHito; /* Page 4- 7 1
void WriteMisso; /* Page 4- 8 */
void AccessCache(; /* Page 4-10 */

void SelectBlockVictim(; /* Page 4-11 */
void SetDirtyBits(); /* Page 4-13 */
void WriteDirtySubBlocks(); /* Page 4-14 */
void AddToReadBuffer(0; /* Page 4-16 */
YesNoType SearchCache(); /* Page 4-20 */
void AddToWriteBuffer(); /* Page 4-21 */

Page 4- 3 **
** Cache. c
** **

CacheModel **

** Description: **

** CacheModel makes all the necessary calls to simulate cache memory. **
** CacheModel decides which calls to make, based on the value of CacheHit, **
** and Request. This function is called every time Time is incremented. **

** If there are no read or write requests waiting to be completed the **
** function does nothing. The value of CacheHit will remain Unknown until **
** the appropriate cache access time has expired. Then CacheModel will
** call IsRequestAHit to determine if the request is a hit or a miss. **
** **

void CacheModel()

if (CacheHit==Unknown && Request!=None)
{
if (Request==Read

AccessCache(ReadCacheAccessTime, CacheWaitingForReadCacheRequest);
if (Request--Write)

AccessCache (WriteCacheAccessTime, CacheWait ingForWriteCacheRequest);
if (CacheWaitingFor==Nothing) IsRequestAHit 0;
I

if (Cachelit==Yes && Request==Read) ReadHito;
if (CacheHit--No && Request==Read) ReadMiss 0;
if (CacheHit==Yes && Request==Write) WriteHito;
if (CacheHit--No && Request--Write) WriteMiss(0;

** ~Page 4- 4 *

** ~Cache. c

** ~IsRequestAHit *

**Description: *

** IsRequestAHit determ-ines if the request is a hit or a miss, and *

**sets CacheHit to the appropriate value. IsRequestAHit will find the *

**SetNumber that the data is supposed to be in. Then all *

**CacheBlockAddresses in that set will be checked to see if they equal
Sthe BlockAddress for that- request. If the correct block is found, *

**then all sub blocks that. are required to satisfy the request will be *

**inspected for validity. If all required sub blocks are valid then *

**CacheHit will equal Yes on return from IsRequestAHit. *

void IsRequestAHit (

SizeType SetNumber = Set (RequestAddress);
SizeType FirstBlock = SetNumber*Associativity;
SizeType LastBlock = FirstBlock+Associativity-1;
SizeType BlockIndex;
SizeType SubBlocklndex;

CacheHit-No;
Buffer~it=Unknown;

for (Blocklndex=FirstBlock; Blocklndex<=LastBlock; Blocklndex++)
I

if (CacheBlockAddress (BlockIndex] ==BlockAddress (RequestAddress))
{
CacheHit=Yes;
if (Request==Read)

for(u~okne=u~okRqetdrs)
fo SubBlocklndex<=SubBlock (RequestAddress+Rq)t;z-)

SubBlock Index++)
if (CacheValidBit [BlockIndex] (SubBlocklndex]==No) CacheHit=No;

LastCacheBlockAccessTime (BlockIndex] =Time;

if (CacheHit==Yes) Buffer.'it=No;

** Page 4- 5 **

** Cache.c **

** Readgit **
** **

** Description: **

4. ReadHit is called to simulate a cache hit during a read request. .4
.4 Read Hit simply finishes simulating the cache access for the hit. *.

** ReadCachHitTime is the time required to send the data from the cache *
.4 to the CPU. Note that the Ttime to locate the block in the cache is **

** simulated in CacheModel. ReadHit is called repeatedly while Time is **

** incremented until Access Cache returns with CacheWaitingFor equal to **
** Nothing. AccessCache will return CacheWaitingFor equal to **

** ReadCacheRequest until the ReadCacheHitTime has expired. **

void ReadHit()

AccessCache(ReadCacheHitTime, CacheWaitingForReadCacheRequest);

/***************************** ** *********** *** *** ** ********* ** ************

** Page 4- 6 **

** Cache.c **

** ReadMiss

** Description:

ReadMiss is called to simulate a cache miss during a read request. **
** ReadMiss first simulates the time it would take to perform all block **

** management for a read miss. This time is called Read Cache Miss Time. **
** Once that time has passed Read Miss calls Select Block Victim to pick a **

* block in the set. When SelectBlockVictim returns with CacheWaitingFor **
** equal to Nothing the Request Block Number will contain the new block
** number where the data will be placed. **

** Once the new block has been chosen, ReadMiss will call **

** AddToReadBuffer. If ReadForward is selected, then RequiredSize for the
** memory request will be equal BlockSize. The RequiredSize in the read *
** memory request tells the MemoryModel how much of the requested data **

** must be read into the BlockBuffer before resetting Cache WaitingFor **

** back to Nothing. By setting RequiredSize equal to BlockSize, Read Miss **

is forcing Memory Model to read in the entire block before setting **
** Cache aiting For back to Nothing. Once the Memory Model has read in **

** the data, it is assumed to be able to the CPU during that clock cycle. **

void ReadMiss()

AccessCache(ReadCacheMissTime, CacheWaitingForReadCacheRequest);

if (CacheWaitingFor==Nothing II
CacheWaitingFor==CacheWaitingForFullWriteBuffer)

SelectBlockVictimo;

if (CacheWaitingFor==Nothing II
CacheWaitingFor==CacheWaitingForFullReadBuffer)

{
if (ReadForward==Yes)

AddToReadBuffer (RequestAddress,
BlockSize,
RequestSize,
RequestBlockNumber,
ReadPriority);

else
AddToReadBuffer(RequestAddress,

BlockSize,
BlockSize,
RequestBlockNumber,
ReadPriority);

if (CacheWaitingFor==Nothing)
CacheWaitingFor=CacheWaitingForReadMemoryRequest;I

RecordStall(CacheWaitingFor);

if (CacheWaitingFor--CacheWaitingForReadMemoryRequest &&
NoRequestsLeft(&ReadBuffer))

CacheWaitingFor-Nothing;

** Page 4- 7 **

** Cache.c **

** WriteHit **
** * *

** Description: **

** WriteHit is called to simulate a cache hit during a write request. **
** Write Hit will first simulate the time to write the data to the **
** RequestBlockNumber in the cache. Note that the time tc locate the **
** block was simulated by CacheModel. Once WriteCacheHitTime has expired **
** then WriteHit will perform the block management for the request. The **
** block management is dictated by the WritePolicy. For a WriteBack **

** policy the sub blocks written to must have their dirty bits set. This **
** is done by SetDirtyBit. For a WriteThrough policy the request must be **

** set to the write buffer. This is done by AddToWriteBuffer. **

void WriteHit()

AddressType TempAddress;

AccessCache(WriteCacheHitTime, CacheWaitingForWriteCacheRequest);

if (CacheWaitingFor==Nothing I1
CacheWaitingýor=-CacheWaitingForFullWriteBuffer)
i
switch (WritePolicy)

f
case WriteBack:

f
SetDirtyBits();
break;}

case WriteThrough:
f
for (TempAddress =SubBlockAddress(RequestAddress+SubBlockSize-l);

TempAddress <SubBlockAddress(RequestAddress+RequestSize);

TempAddress+=SubBlockSize)
CacheValidBit[RequestBlockNumber][SubBlock(TempAddress)]=Yes;

AddToWriteBuffer(RequestAddress,RequestSize,WritePriority);
break;
I

default:
printf("WritePolicy not defined for (WriteHit] procedure.");
exit (1);

I

}

** Page 4- 8 **

** Cache.c **

** WriteMiss **
** **

** Description: **

** WriteMiss is called to simulate a cache miss during a waite **
** request. WriteMiss will first simulate the time needed to perform
** all block management requests. The time is called WriteCacheMissTime. *
** This is only the time required to make the requests, not the time **

** required to complete the block management requests. The time to **
** determine that a miss occurred was simulated by CacheModel. Once the **

WriteCacheMissTime has expired, then WriteMiss will perform all block **
** management requests. The memory requests are dictated by the **

WriteMissPolicy. The simplest policy is WriteAround. For a **
** WriteAround policy the write data is placed in the WriteBuffer by **
** AddToWriteBuffer. WriteAllocate however, is the toughest simulation **
** in SACS. WriteMiss must first choose a block to put the new data in. **
** This is done by SelectBlockVictim. Then the block data not provided **
** by the write has to be read in. This read request is made by **
** AddToReadBuffer. Because the read address is calculated by adding the **

* request size to the address. The new address may be in the next block **
** so to make the addition modulo the BlockSize may have to be subtracted. **
** When the read request has been make then the sub blocks that were
** written to in there entirety will have there valid bits set. If only **
** part of a sub block was written to then the CacheValidBit will not be **
** set. **

** WriteMiss then uses the WritePolicy to dictate how the write data **
** is to update the memory. For a WriteBack policy dirty bits are set by **

** SetDirtyBits. For a WriteThough the data is added to the WriteBuffer
by AddToWriteBuffer. **

void WriteMiss()

AddressType TempAddress;

AccessCache(WriteCacheMissTime, CacheWaitingForWriteCacheRequest);

switch (WriteMissPolicy)
f

case WriteAround:
i
if (CacheWaitingFor==Nothing II

CacheWaitingFor==CacheWaitingForFullWriteBuffer)
AddToWriteBuffer(RequestAddress, RequestSize, WritePriority);

break;

default:

printf("WriteMissPolicy not defined in [WriteMiss] procedure");
exit(l);

** ~Page 4- 9 *

** ~Cache. c *

** ~Wri~teM~iss *

** continued

case WriteAllocate:
I

if (CacheWaitingFor==Nothing 11I
CacheWait ingFor==CacheWait ingForFullWriteBuf fer)

SelectBlockVictim 0;

if (CacheWaitingFor==Nothing 11
CacheWaitingFor==CacheWait ingForFullReadfluffer)

f
if ((BlockSize-RequestSize) >0)

if (BlockAddress (RequestAddress+RequestSize)
-=BlockAddress (RequestAddress))
AddToReadBuffer (RequestAddress-fRequestSize,

BlockSize-RequestSize,
0,
RequestBlockNuxnber,
ReadForWriteAllocatePriority);

else
AddToReadBuffer ((RequestAdciress+RequestSize) -BlockSize,

BlockSize-RequestSize,
0,
RequestBlockNumber,
ReadForWriteAllocatePriority);

if ((CacheWaitingFor==Nothing 11I
CacheWaitingFor==CacheWaitingForFullWriteBuffer) &

CacheBlockAddress [RequestBlockNuxnber] ==BlockAddress (RequestAddress))

for(epdrs Sblc~des(eus~desSblc~z-)

fo TempAddress <SubBlockAddress (RequestAddress+ReuestocSize-);

TempAddress+=SubBlockSize)
CacheValidBit(RequestBlockNumber] [SubBlock (TempAddress)]=Yes;

switch (WritePolicy)
f
case WriteBack:

SetDirtyBits 0;
break;

case WriteThrough:
AddToWriteBuffer (RequestAddress, RequestSize, WritePriority);
break;

default:
printf ("WritePolicy not defined for [WriteMiss] procedure");
exit (1);

break;

** Page 4-10 **

** Cache.c **

** AccessCache **

** Description:

** AccessCache is called to simulate a the CPU accessing the cache. **
** AccessCache first waits for the cache not to be busy. The only reason **
** it could be busy is if the BlockBuffer is in the process of updating **

** the cache. During this time AccessCache will return CacheWaitingFor *
** equal to CPUCacheAccess. Once the cache is not busy then CacheBusy is **
** set to Yes locking out the BlockBuffer from accessing the cache. Then **
** CacheWaitingFor will set equal to WaitingForRequest this is a local **
** variable passed by the caller. It will either be equal to **
** ReadCacheAccess, or WriteCacheAccess. Then CacheBusy is set for the **
** time specified by RequestTime. RequestTime is a local variable. It **
** could equal any of the hit, miss, or access times. Once RequestTime **
** has expired then AccessCache will set CacheBusy equal to No, and **

** CacheWaiting For equal to Nothing. **

void AccessCache(RequestTime, WaitingForRequest)

TimeType RequestTime;
CacheWaitingForType WaitingForRequest;

f

static TimeType CacheTOA=0;

if (CacheBusy=-Yes && CacheWaitingFor==Nothing
CacheWaitingFor=CacheWaitingForCPUCacheAccess;

if (CacheBusy=-No && CacheWaitingFor==CacheWaitingForCPUCacheAccess)
CacheWaitingFor=Nothing;

if (CacheWaitingFor==Nothing)
f
CacheBusy=Yes;
CacheWaitingFor=WaitingForRequest;
CacheTOA=Time+RequestTime;
I

RecordStall(CacheWaitingFor);

if (CacheTOA<=Time && CacheWaitingFor==WaitingForRequest)
f
CacheBusy=No;
CacheWaitingFor=Nothing;

** Page 4-11 **

** Cache.c **

SelectBlockVictim **

"* Description: **

** SelectBlockVictim chooses the next block tr he used, and writes *
the dirty subblocks out to the WriteBuffer. Se :BiockVictim first **

** surveys the cache set that the RequestAddress m--3 to. The se:vey **
4* includes finding the block that was least recently accessed. This
** BlockNumber is stored in LRUBlock. Once the set has been surveyed **

* then the ReplacementPolicy dictates how the block is chosen. For the *
LRU policy Request Block Number is set equal to LRUBlock. For the
FIFO policy CacheNextBlock keeps track of the next victim block for **

** each set. CacheNextBlock is initialized to all zeros during the
beginning of a run. Therefore it must be checked to see if it is
between the first, and last blocks for the set. If it is not then

** CacheNextBlock for SetNumber is reset to FirstBlock. Once
** SelectBlockVictim knows it has a valid Cache Next Block then

RequestBlock is set equal to it. Then CacheNextBlock for the
* SetNumber is incremented. For RAND policy the block number is chosen *

** randomly from all the blocks in the set

** SelectBlockVictim writes all dirty sub blocks to the WriteBuffer *
using WriteDirtySubBlocks. WriteDirtySubBlocks takes care of clearing *
the dirty and valid bits in the block. Once SelectBlockVic-im is

* called and it gets to the bottom of the function with Cache-aitingFor *
equal to Nothing then the CacheBlockAddress for the RequestBlockNumber
is set equal to the block address of RequestAddress.

void SelectBlockVictim()

SizeType SetNumber = Set(RequestAddress);
SizeType FirstBlock = SetNumber*Associativity;
SizeType LastBlock = FirstBlock+Associativity-l;
SizeType BlockIndex;
SizeType SubBlockIndex;

TimeType LRUTime = Time+l;
SizeType LRUBlock;

** ~Page 4-12 *

** ~Cache. c

** ~Select~lockVicti~m
** ~Continued *

RequemttBlockNunmber-FirstBlock;

for (Blocklndex=FirstBlock; Blocklndex<=LastBiock; Blocklndex++)

if (CacheBlockAddress [Blocklndex]--BlockAddress (RequestAddress))
RequestBlockNurnber-Blocklndex;

if (LRUTime>LastCacheBlockAccessTime(BlockIndex])
I
LRUTime=LastCacheBlockAccessTime [BlockIndex];
LRUBlock=Block Index;

if (CacheBlockAddress(RequestBlockNuxnber] !=BlockAddress (RequestAddress)

switch (BlockReplacementPolicy)

case LRU:
RequestBlockNuxnber=LRUBlock;
LastCacheBlockAccessTime [RequestBlockNuxnber] =Time;
break;

case FIFO:
if (CacheNextBlock(SetNumrber]<FirstBlock 11

CacheNextBlock [SetNumber] >LastBlock
CacheNextBlock [SetNuniber] =FirstBlock;

Req-uestfllockNuxnber=CacheNextBlock [SetNumber];
if (RequestBlockNumber<LastBlock)

CacheNext~lock [SetNumber] ++;
else

CacheNextBlock (SetNumber] =FirstBlock;
break;

case RAND:
RequestBlockNumber= (rand ()%Associativity) +FirstBlock;
break;

I

if (CacheftWAtingFor-=Nothing)

CacheBlockAddress [RequestBlockNurnber] =BlockAddress (RequestAddress);

** ~Page 4-13 *

** ~Cache. c

** ~SetDirtyBits *

**Description: *

** ~SetDirtyBits sets the dirty bits for all, sub blocks that contains *

**data that was modified by a write request. *

void SetDirtyBitsoC

SizeType SubBlocklndex;

for (SubBlocklndex=SubBlock (RequestAddress);
SubBlocklndex<=SubBlock (RequestAddress+RequestS2.ze-1);
SubBlocklndex++)

CacheDirtyBit (RequestBlockNumber] fSubBlocklndex]=Yes;

/** ****************************

** Page 4-14

Cache.c **

** WriteDirtySubBlocks **

** Description: **

** WriteDirtySubBlocks is called to simulate writing all the dirty **

** sub blocks in RequestBlock. WriteDirtySubBlocks not only clears all **
** the dirty bits. It also clears all the valid bits. **

* WriteDirtySubBlocks prepares a block to receive new data, and is called **
** after a block has been selected as a victim. WriteDirtySubBlocks will **
** search the block for consecutive dirty blocks and splice them together **
** into one write request. The write request is then added to the
** WriteBuffer. All of the sub blocks that make up the request will have **
** their dirty and valid bits cleared. This process of searching and **
** writing is repeated until all the bits are not dirty. Then all the
** valid bits are cleared. **

void WriteDirtySubBlocks()

SizeType i;
SizeType SubBlockIndex = 0;

AddressType MemoryRequestAddress = CacheBlockAddress [RequestBlockNumber];
SizeType MemoryRequestSize = 0;
PriorityType MemoryRequestPriority = WriteDirtyBlockPriority;

** Page 4-15
** ~Cache. c

** ~Writ eDirtySub~lockcs
** continued

do

MemoryRequestSize-O;

while ((CacheDirtyBit [RequestBlockNurnber] [SubBlocklndex] ==No 11
CachevalidBit[RequestBlockNuniber] tSubBlocklndex]==No) &&

SubBlockIndex'<NuxuberOfSubBlocks)
SubBlocklndex++;

MemoryReqfuestAddress=CacheBlockAddress (RequestBlockF~umber]
+SubBlocklndex *SubBlockSize;

while (CacheDirtyBit (Reqfuest~lockNurnter][SubBlocklndex]==Yes &&
SubBlocklndex<NumberOfSubB~ocics)

f
MemoryRequestSize+=Wo.cdSize;
SubBlocklndex++;

if (MemoryRequestSize)

AddToWriteBuffer (MemoryReqfuestAddress,
MemoryRequestSize,
MemoryReqfuestPriority);

if (CacheWaitingFor==Nothing)
for (i=O; i<-SubBlocklndex && i<NumberOfSubBlocks; i++)

CacheDirtyBit tRequestBlockNuxnber] (i]=No;

while (SubBlocklndex<NuxnberOfSubBlocks && CacheWait ingFor==Nothing);

if (CacheWaitingFor--Nothing)
for (i=O; i<NuxnberOfSubBlocks; i++)

CacheValid~it [RequestBlockNurnbprJ i]=No;

/****************************** **

** Page 4-16 **

** Cache.c **

** AddToReadBuffer **

** Description:

** AddToReadBuffer takes the elements of a request, and adds the **
** request to the ReadBuffer. It will perform all of the searches, and **

** updates necessary to support the appropriate scoreboarding protocals. **

** AddToReadBuffer will begin by searching the cache, and **
** BlockBuffer for each byte in the cequest starting at the beginning of *
** the request. Every time a byte is found in one or the other then the **
* Address is incremented, while Size and RequiredSize are decremented. **
** This simulates removing the available data from the front of the **
** request. Then AddToReadBuffer will search the cache, and BlockBuffer *
** for the data at the end of the request. Every time a byte is found **
** then the Size of the request is decremented by one. If the byte was a *
** required byt then the RequiredSize is decremented also. This simulates **
** removing any data available from the end of the request. **
** AddToReadBuffer is either left with a request that has a Size equal to **
** zero or the end points are both needed from memory. If the RequiredSize **

** is zero then the request is a buffer hit, otherwize the request is a **
** buffer miss. If the request is already a cache hit then the buffer **

** hit is for some block management request. These kinds of buffer hits **
** are not recorded because it would confuse the ResultsDisplay, by making **

** it possible to get a hit rate greater tha 100%. If the Size is not **
** zero and Remove ReadDuplicates is eaual to No then the request is **
** added to the end of the ReadBuffer using Append. Append is a buffer **
** utility that adds the request to the end of the buffer. The request **
** must be added to the end of the buffer in ouder not to interfere with **
** MemoryModel which maybe in the middle of a memory read. If **
** RemoveReadDuplicates is equal to Yes then the first byte in the request **
** will be spliced into the Read Buffer. **

** Splice is another buffer utility. Splice will first search the
** ReadBuffer for the byte if it cant't find a request in the buffer that **
** contains the byte then it will search for a read request that is **
** getting data from the same block. If one is found then the request is **

* modified to include the new read byte request. If no suitable request **
** can be found then Splice will add a one byt request to the Read BUffer. **
** The Address is then incremented while the Size, and Required Size are **
** decremented. Then the cache, and BlockBuffer are searched for the next **
** byte. If it is not found then the next byte is spliced into the **
** ReadBuffer. This process is repeated until all of the bytes of the **
** request have either been spliced into the ReadBuffer or found. **

** The BufferHit is normally defined as when the data is available
** but in the cache. However in order to support the testing of SACS, **
** the definition of a buffer hit is redefined to mean that a request was **
** found to have accrued recently, and that given time to complete all **
** block management the requested data would have been in the cache. **
** This allows TestSACS to predict the hits of a test run without taking **
** into account the time in takes to preform the block management. **

** Every time a request is spliced into the read or write buffers
** then the TimeToExecute, and CompletionTimeExtamate must be **
** recalculated. The new time estimates are performed by **
** CalculateTimeEstimates. **

** ~Page 4-17 *

** ~Cache. c

** ~AddToReadBuffer *

** ~continued *

void AddToReadBuffer (Address, Size, RequiredSize, Block, Priority)

AddressType Address;
Zzype Size;

SizeType RequiredSize;
SizeType Block;
PriorityType Priority;

MemoryRequestType ReadMemoryRequest;
YesNo Type FoundByte;
AddressType ByteAddress;
AddressType CurrentBlockAddress = BlockAddress (Address);
BufferSizeType OldReadBufferNext - ReadBuffer.Next;

ReadMemoryRequest.Address =Address;
ReadMemoryRequest.Size -Size;
ReadMemoryRequest .RequiredSize -RequiredSize;
ReadMemoryRequest.Block = Block;
ReadMemoryRequest .Priority - Priority;
ReadMemoryRequest .AccesslnProgress = No;
ReadMemoryRequest .TimeToExecute = 0;
ReadMemoryRequest .CompletionTimeEstimate - 0;

** ~Page 4-18 *

** ~Cache. c

** ~AddToReadBuffer *

** ~continued *

if (CacheWaitingFor==CacheWaitingForFul lReadfluffer) CacheWaitingFor=Nothing;

FoundByte=Yes;
while (FoundByte=-Yes && Size>O)

I
FoundByte-No;
if (SearchCache (Address)==Yes)

FoundByte-Yes;
else if (SearchBlockBuffer==Yes && Search(&BlockBuffer, Address))

FoundByte=Yes;
if (FoundByte-=Yes)

Address++;
if (BlockAddress(Address) !=CurrentBlockAddress) Address--BlockSize;
if (Size>O) Size--;
if (RequiredSize>O) RequiredSize--;

ByteAddress=Address+Size-l;
if (BlockAddress(ByteAddress) !=CurrentBlockAddress) ByteAddress-=BlockSize;
FoundByte=Yes;
while (FoundByte==Yes && Size>O)

I
FoundByte-No;
if (SearchCache (ByteAddress) ==Yes)

FoundByte-Yes;
else if (SearchBlockBuffer-=Yes && Search(&BlockBuffer, ByteAddress))

FoundByte-Yes;
if (FoundByte--Yes)

ByteAddress---;
if (BlockAddress(ByteAddress) !-CurrentBlockAddress)

ByteAddress+=BlockSi ze;
if (Size>O) Size--;
if (RequiredSize>Size) RequiredSize-Size;

if (Request--Read && Test--No)

if (RequiredSize=-O && CacheHit--No)
Buf ferHit=Yes;

else
BufferHit-No;

if (RequiredSize--O && Request--Read) CacheWaitingFor=Nothing;

ReadMemoryRequest.Address = Address;
ReadMemoryRequest.Size - Size;
RezacMemoryRequest .RequiredSize - RequiredSize;

if (RemoveReadDuplicates--No && Size>O)
Append(&ReadBuffer, &ReadMemoryRequest);

** ~Page 4-19 *

** ~Cache. c

** AddToReadBuffer
** ~continued *

while (Size>O && RemoveReadfluplicates==Yes)

FoundByte-No;
if (SearchCache (Address) ý-Yes)

FoundByte=Yes;
else if (SearchBlockBuffer--Yes && Search(&BlockBuffer, Address))

FouadByte-Yes;

if (FoundByte--No)
Splice (&ReadBuffer, Address, RequiredSize, Block, Priority);

Add~ress++;
if (BlockAddress (Address)!=CurrentBlockAddress) Address-=BlockSize;
if (Size>O) Size--;
if (RequiredSize>O) RequiredSize--;

if (Request-=Read && Test==Yes)
f
if (ReadBuffer .Next-=OldReadBufferNext && CacheHit==No)

BufferHit-Yes;
else

BufferHit-No;
I

CalculateTimeEstirnates 0;

** Page 4-20 **

** Cache.c **

** SearchCache **

** Description: **

** SearchCache is called by AddToReadBuffer to find any parts of **

** the request that may be already located in the cache. This must be **
** done because if a read request follows a write request using a write *
** allocate policy then part of the read may be in the cache while the **
** rest may still need to be read from memory. Search Cache checks all **
** CacheBlockAddresses in the cache set. If any of the cache block **
** addresses equals the block address of the byte, then Search Cache
** checks the CacheValidBit for the sub block that the byte is located in. **
** If the sub block is valid then SearchCache returns Yes. **

YesNoType SearchCache(Address)

AddressType Address;

{

SizeType FirstBlock = Set(Address)*Associativity;
SizeType LastBlock = FirstBlock+Associativity-l;
SizeType BlockIndex;
YesNoType FoundByte;

for (BlockIndex=FirstBlock; BlockIndex<=LastBlock; BlockIndex++)
if (CacheBlockAddress[BlockIndex]==BlockAddress(Address))

if (CacheValidBit[BlockIndex][SubBlock(Address)]) FoundByte=Yes;

return(FoundByte);

I

** Page 4-21 **

** Cache.c **

** AddToWriteBuffer **

** Description: **
** **

** AddToWriteBuffer adds one record to write buffer. It also updates **
** the ReadBuffer it the UpdateReadBuffer arguments is asserted. The **
** process of updating the ReadBuffer is simply changein the requests so **
** that data make available by the write request is not requested form **
** memory. UpdateReadBuffer should not be used unless the word and sub *
** block sizes are equal. This is because a write request may reduce a **
** read request to where the read request will not be large enough to
** validate a sub block. The write request may alsobe unable to set any **

** valid bits because of sub block alignment. The result is that a sub **
** block was supposed to be read in is not. **
** t*

void AddToWriteBuffer(Address, Size, Priority)

AddressType Address;
SizeType Size;
PriorityType Priority;

I

MemoryRequestType WriteMemoryRequest;
YesNoType FoundByte;
AddressType ByteAddress;
AddressType CurrentBlockAddress = BlockAddress(Address);
SizeType NoBytes;
BufferSizeType OldWriteBufferNext = WriteBuffer.Next;

WriteMemoryRequest.Address = Address;
WriteMemoryRequest.Size = Size;
WriteMemoryRequest.RequiredSize = 0;
WriteMemoryRequest.Block = 0;
WriteMemoryRequest.Priority = Priority;
WriteMemoryRequest.AccessInProgress = No;
WriteMemoryRequest.TimeToExecute = 0;
WriteMemoryRequest.CompletionTimeEstimate = 0;

Page 4-22 *

** ~Cache. c

** ~AddToWriteBuffer *

** ~continued *

if (CacheWaitingFor==CacheWaitingForFullWriteBuffer)
CacheWait ingFor=Nothing;

FoundByte-Yes;
while (FoundByte-=Yes && UpdateReadfluffer=-Yes)

FoundByte-No;
ByteAddress-Address;
for (NoBytes-O; NoBytes<Size; NoBytes++)

I
if (UpdatingReadBuffer (ByteAddress) ==Yes) FoundByte=Yes;
ByteAddress++;
if (BlockAddress(ByteAddress) !=CurrentBlockAddress)

ByteAddress--BlockSize;

if (RemoveWriteDuplicates==No && Size>O)
Append(&WriteBuffer, &WriteMemoryRequest);

while (RemoveWriteDuplicates==Yes && Size>O)

Splice (&WriteBuffer,Address,0, O,Priority);
Address++;
if (BlockAddress (Address)!=CurrentBlockAddress) Address-=BlockSize;
if (Size>O) Size--;

if (Request--Write)

BufferHit=No;
if (WriteBuffer .Next==OldWriteBufferNext && Cachellit==No) BufferHit=Yes;
if (WriteBuffer .Next==OldWriteBufferNext &&

CacheWaitingFor !=CacheWaitingForFullWriteBuffer)
CacheWaitingFor=Nothing;

CalculateTimeEstimates 0;

I

** Page 5- 0 **

** Memory.c

** Part Of SACS 1.0 **

** (StillAnother Cache Simulator)

** Program Modified: 3/17/94 **

** File Modified: 3/17/94 **
** **

** Author: William G. Smith **
** Address: Electrical Engineering Department **

** Naval Postgraduate School **
** Monterey, CA 93940 **
** **

** Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and **

** its documentation for any purpose and without fee is hereby granted **
** provided that the above copyright notice appears in all copies. No **

** modified version of this program should be redistributed without the **

** authors consent. William G. Smith makes no warranty or **

** representation, promise of guarantee, either expressed or implied, **

** with respect to this software's ability to produce valid results. **

** This program is provided "as is" any financial, personal or property **

** damage caused by the use of this program is the responsibility of the **
** user. **

/**
** Page 5- 1 **

Memory.c **
** **

** Description: **

** Memory.c contains all functions that relate to the simulation of **

** main memory. Memory Model makes all the necessary calls to simulate
** main memory. MemoryModel decides which calls to make, based on **

** MemoryWaitingFor. This function is called every time Time is **
** incremented. If there are no read or write requests waiting to be **
** completed, the function does nothing. Memory Model contains a loop **
** that forces the procedure to continue modeling until TOA and TOD are *
** not equal to Time. This insures that if there are any events that **
** occur in zero clock cycles then the next event is allowed to start. **
** **

** Memory Model calls SelectMemoryRequest to choose a request from
** either the read or the write buffers. Memory Model calls Start Reads, **

** and Start Writes, to simulate accessing memory and receiving the first **
** word of a memory request. ContinueMemoryReads, and **

** ContinueMemoryWrites are then called to simulate the memory transfer **
** of the following words of data.

** The simulation of main memory includes: **

** Choosing memory request from read, write buffers.
** Simulated memory access times.

Simulated memory transfer times. **
** Cache Update after memory read.

** Table of Contents **

** Cover Page Page 5- 1 **
** List of Memory.c Function Declarations Page 5- 2
** MemoryModel() Page 5- 3 **
** SelectMemoryRequest Page 5- 4 **
** StartMemoryReads() Page 5- 5 **
** ContinueMemoryReads() Page 5- 6 **

** StartMemoryWrites() Page 5- 8
ContinueMemoryWrites() Page 5- 9 **

** UpdateCache() Page 5-11 **
** AddAWordToMemoryRequest() Page 5-13 **

RemoveAWordFromMemoryRequest ()............ Page 5-14 **

#include "Global.h"

Page 5- 2 **
** Memory.c

List of Memory.c Function Declarations **

** Description: **

** This is a list of function declarations within the file scope
** of Memory.c **

void MemoryModel(); /* Page 5- 3 */
void SelectMemoryRequest(); /* Page 5- 4 */
void StartMemoryReads(); /* Page 5- 5 */
void ContinueMemoryReads(); /* Page 5- 6 */
void StartMemoryWrites(); /* Page 5- 8 */
void ContinueMemoryWrites(); /* Page 5- 9 "I
void UpdateCache(); /* Page 5-11 */
void AddAWordToMemoryRequest(); /* Page 5-13 */
void RemoveAWordFromMemoryRequest(); /* Page 5-14 */

/**
** Page 5- 3 **
** Memory.c
** **

** MemoryModel **

** Description: **

** Memory.c contains all functions that relate to the simulation of *
** main memory. Memory Model makes all the necessary calls to simulate **
** main memory. MemoryModel decides which calls to make, based on **
** MemoryWaitingFor. This function is called every time Time is
** incremented. If there are no read or write requests waiting to be **
** completed, the function does nothing. Memory Model contains a loop **
** that forces the procedure to continue modeling until TOA and TOD are **
** not equal to Time. This insures that if there are any events that **
** occur in zero clock cycles then the next event is allowed to start. **

** Memory Model calls SelectMemoryRequest to choose a request from **
** either tht read or the write buffers. Memory Model calls Start Reads, **

** and Start Writes, to simulate accessing memory and receiving the first **
** word of a memory request. ContinueMemoryReads, and **
** ContinueMemoryWrites are then called to simulate the memory transfer **
** of the following words of data. **

** The simulation of main memory includes: **
** **

** Choosing memory request from read, write buffers.

** Simulated memory access times.
** Simulated memory transfer times. **
** Cache Update after memory read. **

void MemoryModel()

MemoryWaitingForType LastMemoryWaitingFor;

do

LastMemoryWaitingFor=MemoryWaitingFor;

if (MemoryWaitingFor==Nothing) SelectMemoryRequest(&MemoryWaitingFor);

else if (MemoryWaitingFor==MemoryWaitingForMemoryReadRequest I1
MemoryWaitingFor==MemoryWaitingForCacheUpdate)

StartMemoryReads();

else if (MemoryWaitingFor==MemoryWaitingForMemoryReadAccess I
MemoryWaitingFor==MemoryWaitingForMemoryReadTransfer)

ContinueMemoryReads();

else if (MemoryWaitingFor==MemoryWaitingForMemoryWriteRequest)
StartMemoryWrites();

else if (MemoryWaitingFor==MemoryWaitingForMemoryWriteAccess i1
MemoryWaitingFor==MemoryWaitingForMemoryWriteTransfer)

ContinueMemoryWrites(0;
Iwhile (MemoryWaitingFor!=LastMemoryWaitingFor 11 TOA==Time 11 TOD==Time);

** ~Page 5- 4 *

** ~Memory. c

** ~SelectMemoryRequest *

**Description: *

** ~SelectMemoryRequest is called when memory is waiting for nothing. *

SSelectMemoryRequest chooses a request from either the read or write *

buffers, based on priority. The request is not returned ho.;evcr, the
**request is left at the top of the buffer with its Priority and
**Accesslnprogress set equal to Yes. If a request is found then *

**MemoryWaitingFor is set to MemoryReadRequest, or MemoryWriteRequest
**depending on whether the request was found in the read or write *

**buffers. *

void SelectMemoryRequest (MemoryWaitingFor)

MemoryWait ingForType *MemoryWaitingFor;

{eoyeus~p Ra~mr~qet

MemoryRequestType WRieaMemoryRequest;

if (!(ReadBuffer.Empty))
ReadMemoryRequest=View (&ReadBuffer);

else
ReadMemoryRequest .Priority=NoPriority;

if (!(WriteBuffer.Empty))
WriteMemoryRequest=View (&WriteBuffer);

else
WriteMemoryRequest .Priority=NoPriority;

if (ReadMemoryRequest .Priority<=WriteMemoryRequest .Priority &&
ReadmemoryRequest .Priority!=NoPriority)

f
*MemoryWait ingFor=MemoryWait ingForMemoryReadRequest;
ReadMemoryRequest .Access InProgress=Yes;
ReadMemoryRequest .Priority=O;
ChangeTopMemoryRequest (&ReadBuffer, &ReadMemoryRequest);
I

else if (WriteMemoryRequest .Priority!-NoPriority)
f
*MemoryWait ingFor=MemoryWait ingForMemoryWriteRequest;
WriteMemoryRequest .Access InProgress-Yes;
WriteMemoryRequest .Priority=O;
ChangeTopMemoryRequest (&WriteBuffer, &WriteMemoryRequest);

/**
** Page 5-5 **

Memory.c **

StartMemoryReads **

** Description: **

** StartMemoryReads begins a read request, simulating the first word **

** read from memory. The time to complete this read is called **
** MemoryAccessTime. The BlockBuffer is initialized in preparation to **

** receive the new data words. i1 BlockWaitingFor is not equal to
** Nothing the StartMemoryReads will have to wait until it is before **

** allowing the new memory read request to start. If StartMemoryReads **
** does have to wait for the cache then MemoryWaitingFor it set equal to **
** CacheUpdate, otherwise MemoryWaitingFor is set to MemoryReadAccess. **
** The new block record is equal to the ReadBuffer with its sizes set to **
** zero. This gives the Block Memory Request the same block number and *
** the ReadMemoryRequest. The Address is aligned to WordSize. The
** Address must be aligned because the words read in will be aligned **
** to WordSize. The new BlockMemoryRequest is simply pushed onto the **
** Block Buffer. The BlockWaitingFor is set equal to MemoryBlockTransfer. **

** To indicate that data is being transferred from memory to the
** BlockBuffer. **

void StartMemoryReads()

MemoryRequestType ReadMemoryRequest;
MemoryRequestType BlockMemoryRequest;

if (BlockWaitingFor--Nothing)
I

ReadMemoryRequest=View(&ReadBuffer);

TOA=Time+MemoryAccessTime;
MemoryWaitingFor=MemoryWaitingForMemoryReadAccess;

BlockMemoryRequest=ReadMemoryRequest;

BlockMemoryRequest.Address=WordAddress(ReadMemoryRequest.Address);
BlockMemoryRequest.Size-C;
BlockMemoryRequest.RequiredSize-0;
BlockMemoryRequest.Priority-0;
BlockMemoryRequest.AccessInProgress=No;

Push(&BlockBuffer,&BlockMemoryRequest);

BlockWaitingFor=MemoryBlockTransfer;

}
else

MemoryWaitingFor=MemoryWaitingForCacheUpdate;

** ~Page 5- 6 *

Memory. c

** ~Cont inueMemoryReads *

**Description: *

** ~ContinueMemoryReads continues the memory read request started by *

**StartMemoryReads. It simulates every read from memory other than the
**first word which was simulated by StartMemczyReads. The time to
**complete each word transfer is equal to MemroyTransferTime. The block,
**and read buffers are altered every time a word is read from memory. *

**Once a request is complete, it is removed from the Read Buffer, and
**Memory WaitingFor is reset to Nothing. Block Waiting For is set to *

~~BlockCacheAccess in preparation to transfer the new data to the cache.
**If the CompletionTimeEstimate for the memory read request is not equal
**to Time then a time predition error is rased. *

void ContinueMemoryReadso(

MemoryRequestType BlockMemoryRequest;
MemoryRequest Type ReadMemoryRequest;

if (TOA<=Time)

BlockMemoryRequest=View (&BlockBuffer);
AddAWordToMemoryRequest (&BlockMemoryRequest);
ChangeTopMemoryRequest (&BlockBuffer, &BlockMemoryRequest);

ReadMemoryRequest=View (&ReadBuffer);

RemoveAWordFrorrMemoryRequest (&ReadMemoryRequest);

if (ReadMemoryRequest .Size>O)

ChangeTopMemoryRequest (&ReadBuffer, &ReadMemoryRequest);
TOA=Time+MemoryTrans ferTime;
MemoryWait ingFor=MemoryWaitingForMemoryReadTrans fer;

else

Pop (&ReadBuffer);
TOA-O;
if (Time! =ReadMemoryRequest .CompletionTimeEstimate)

PrintTimePredictionError (ReadMemoryRequest . CompletionTimeEstimate,
Time,
"Read",
"ContinueMemoryReads");

MemoryWait ingFor-Nothing;
BlockWait ingFor=BlockCacheAccess;
BlockTOA=Time+Buf ferCacheAccessTime;

TotalNumberOfWordsReadFromMemory++;

Page 5- 7 *

** ~Memory. c

** ~Cont inueMemoryReads *

** ~continued *

else

{

ReadMemoryRequest-View (&ReadBuffer);

if (ReadMemoryRequest .Size--O)

Pop(&ReadBuffer);
TOA-O;
if (Time -ReadMemoryRequest.CompletionTimeEstimate)

PrintTimePredictionError (ReadMemoryRequest .CompletionTimeEstimate,
Time,
"Read",
"ContinueMemoryReads");

MemoryWait ingFor-Nothing;
BlockWaitingFor-BlockCacheAccess;
BlockTOA=Time+BufferCacheAccessTime;

** ~Page 5- 8 *

** ~Memory. c

** ~StartMemoryWrites *

**Description: *

** StartMemoryWrites begins a memory write request, simulating the
**first word written to memory. The time to complete this one word write *

**is called MemoryAccessTime. M.emoryWaitingFor is set to *

**MemoryWriteAccess. *

void StartMemoryWriteso(

if (MemoryWaitingFor=-MemoryWaitingForMemoryWriteRequest)
f
TOD=Time+MemoryACcesSTime;
MemoryWaitingFor=MemoryWaitingForMemoryWriteAccess;

** ~Page 5- 9 *

** Memory c

** ~Cont ±nueMemoryWrites *

**Description: *

** ~ContinueMemoryWrites continues the memory write request started ~
**by StartMemoryWrites. Like ContinueMemoryReads, it simulate$ every
**write to mwmory other than the first word which was simulated by *

**StartMemroyWrites. The time to complete each word transfer is equal *

**to MemoryTransferTime. The Write Buffer is altered every time a word *

**is written to memory. Once the memory write request is complete, it
**is removed form the WriteBuffer, and MemoryWaitingFor is reset to *

**Nothing. If the CompletionTimeEstimate for the memory -read request is
**not equal to Time when the request is completed then a time predition
**error is rased.

void ContinueMemoryWriteso(

MemoryRequestType WriteMemoryRequest;

if (TOD<=Time)
f
WriteMemoryRequest=View (&WriteBuffer);
RemoveAWordFromMemoryRequest (&WriteMemoryRequest);
if (WriteMeutoryRequest .Size>O)

I
ChangeTopMemoryRequest (&WriteBuffer, &WriteMemoryRequest);
TOD-Time+MemoryTrans ferTime;
MemoryWait ingFor-MexnoryWaitingForMemoryWriteTransfer;
I

else

Pop (&WriteBuf fer);
TOD-O;
if (Time!-WriteMemoryRequest .CompletionTimeEstimate)

PrintTimePredictionError (Write~emoryRequest .CompletionTimeEstimate,
Time,
"Write",
"ContinueMemoryWrites");

MemoryWait ingFor-Nothing;

TotalNumberOfWordsWrittenToMemory++;

** Page 5-10
** ~Memory. c

** ~Cont inueMemoryWrites *

** ~continued *

else
{
WriteMemoryRequest-View (&WriteBuffer);
if (WriteMemoryRequest .Size--0)

Pop (&Write~uffer);
TOD-0;
if (Time!-WriteMemoryRequest .CompletionTimeEstimate)

PrintTimePredicti~onError (WriteMemoryRequest .CompletionTimeEstimate,
Time,
"Write",
"ContinueMemoryWrites");

MemoryWait ingFor=Nothing;

** Page 5-11 **
** Memory.c **

** UpdateCache **

** Description:

** UpdateCache simulates entering data from the BlockBuffer into the **
** cache. UpdateCache first checks wheter of not the cache is busy. If **
** it is not then CacheBusy is asserted, and BlockWaitingFor is set equal **

** to BlockCacheTransfer. The BlockTOA is calculated, to enable **

** CalculateTimeEstimates to predict the completion times for additional **
** memory read request in the buffer. If the cache is busy then the

previous memory request time completions may be wrong. That is because **
** the last estimates conunted on the old BlockTOA. This means that all **
** the time estimates must be recalculated. **

** Once the BufferCacheAccessTime has expired then BlockWaitingFor **
** is set equal to Nothing, and the CacheBusy is deserted. The read data **

** must then be removed from the BlockBuffer. The appropriate sub blocks **
** in the cache will then have there dirty bits cleared, and valid bits **

** set. **

void UpdateCache()

{

MemoryRequestType BlockMemoryRequest;
AddressType TempAddress;

Page 5-12 *

** ~Memory. c

** ~UpdateCache *

** ~continued *

if (BloclcWaitingFor--BlockCacheAccess && CacheBusy-=Yes)
f
BlockcTOA-Time+BufferCacheAccessTi~me+1;
CalculateTimeEstimates 0;
I

if (BlocicWaitingFor--BlockCacheAccess && CacheBusy--No)
f
CacheBusy-Yes;
BlockTOA-Time+BufferCacheAccessTime;
BlockWait ingFor-BlockCacheTrans fer;
I

if (BlockWaitingFor==BlockCacheTransfer && BlockTOA<=Time)

CacheBusy-No;
BlockWait ingFor-Nothing;
BlockTOA-O;
BlockMemoryRequest-Pop (&BlockBuffer);
if (CacheBlockAdclress (Block~emoryRequest .Block] ==

BlockAddress (BlockMemoryRequest .Address))

fo{ Tm~desBok~mr~qetAdes
fo TempAddress<-BlockMemoryRequest .Address;

+BlockMemoryRequest.Size-i;
TempAddress+=SubBlockSize)

{ah~ryi(lc~mr~qetBlc]Sblc(epdrs)-o
Cache~airtBit (BlockMemoryRequest .Block] [SubBlock (TempAddress)]I No;

else

BlockMemoryRequest=View (&BlockBuffer);
Block-MemoryRequest.TimeToExecute-BufferCacheAccessTime;
BlockMemoryRequest.CompletionTirneEstimate-BlockTOA;
ChangeTopMemoryRequest (&BlockBuffer, &ElockMemoryRequest);

** ~Page 5-13 *

** ~Memory. c

** ~AddAWordToMemoryRequest *

**Description: *

** ~AddAWordToMemoryRequest adds a word to a MemoryRequest as if it
**had been read in from memory. The address is first aligned to *

**WordSize. This simulates the data being added to the request. *

void AddAWordToMemoryRequest (MemoryRequest)

MemoryRequestType *MemoryRequest;

MemoryRequest->Address-WordAddress (MemoryRequest->Address);

MemoryRequest->Size+=WordSize;

** ~Page 5-14 *

** ~Memory. c

RemoveAWordFroxnMemoryRequest *

**Description: *

** ~RemoveAWordFromMemoryRequest removes a word from a Memory Request,
Sas if it had been written to memory. A copy of the Address is first *

**stored in OldAddress. Then the Address is word aligned and incremented *

by WordSize. The Required Size, and Size are then decremented by the
**difference of the new Address, and the OldAddress. Finally if the
**Address is outside the range of the original block then the Address is *

~~decremented by BlockSize to simulate modulo addition. This simulates *

removing a word from the memory request taking into account word and *

~~block alignment constraints. *

void RemoveAWordFromMemoryRequest (MemoryRequest)

MemoryRequestType *MemoryRequest;

AddressType OldAddress-MemoryRequest->Address;

MemoryRequest->Address=WordAddress (MemoryRequest->Address) +WordSize;

if (MemoryRequest->Size>BJlockSize-WordSize)
MemoryRequest->Size=BlockSize-WordSize;

else if (MemoryRequest->Size>MemoryRequest->Address-OldAddress)
MemoryRequest-> Size--MemoryRequest->Address-OldAddress;

else
MemoryRequest->Size-O;

if (MemoryRequest->RequiredSize>BlockSize-WordSize)
MemoryRequest->RequiredSize=BlockSize-WordSize;

else if (MemoryRequest->RequiredSize>MemoryRequest->Address-OldAddress)
MemoryRequest->RequiredSize-=MemoryRequest->Addres s-OldAddres s;

else
MemoryRequest->RequiredSi ze=O;

if (BlockAddress (OldAddress) <BlockAddress (MemoryRequest->Address))
MemoryRequest->Address-=BlockSize;

/****************************** ***************** ****************

Page 6- 0 **

"TimeEst.c **

** Part Of SACS 1.0 **

** (StillAnother Cache Simulator) **

** Program Modified: 3/17/94 **
** File Modified: 3/17/94

** Author: William G. Smith **

** Address: Electrical Engineering Department **

** Naval Postgraduate School **

** Monterey, CA 93940 **

** Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and
** its documentation for any purpose and without fee is hereby granted *
** provided that the above copyright notice appears in all copies. No **

** modified version of this program should be redistributed without the *
** authors consent. William G. Smith makes no warranty or **

** representation, promise of guarantee, either expressed or implied,
** with respect to this software's ability to produce valid results. **

** This program is provided "as is" any financial, personal or property **
** damage caused by the use of this program is the responsibility of the
** user. **

/**
** Page 6- 1.
** TimeEst.c **
** **

** Description: **

** TimeEst.c contains all functions that relate to estimating the
execution, and completion times of memory requests. **

** Table of Contents **

Cover Page Page 6- 1
** List of TimeEst.c Function Declarations ... Page 6- 2
** UpdateTimeToExecute() Page 6- 3

CalculateTimeEstimates() Page 6- 5

#include "Global.h"

** Page 6- 2
** TimeEst.c **

** List of TimeEst.c Function Declarations

** Description: **

** This is a list of function declarations within the file scope **
** of TimeEst.c **

void UpdateTimeToExecute(); /* Page 6- 3 */
void CalculateTimeEstimates 0; /* Page 6- 5 */

** Page 6- 3 **

TimeEst.c **

** UpdateTimeToExecute

Description: **

** UpdateTimeToExecute calculates the time to complete a memory **
** transfer given the MemoryRequest. The Memory Request could be a read **

** or write request in a buffer. UpdateTimeToExecute changes the
** TimeToExecute field to the new value. TimeToexecute is calculated by **
** first finding the number of WordsToBeTransfered. If the MemoryRequest **

** is not being accessed then the TimeToExecute is simply the AccessTime **
** plus the TransferTime times one less then WordsToBeWritten. If the
** MemoryRequest is in progress then the new TimeToExecute is dependent **

* on TOA, or TOD of the next word. MemoryWaitingFor dictates whether to **
use the TOA, or TOD. If MemoryWaitingFor is equal to CacheUpdate then

** the request has not actually begun transferring data. So the
** TimeToExecute can be calculated as if the read request is not in

progress. **

void UpdateTimeToExecute (MemoryRequest)

MemoryRequestType *MemoryRequest;

SizeType WordsToBeTransfered;

if (MemoryRequest->Size>0){
WordsToBeTransfered-WordAddress(MemoryRequest->Address

+MemoryRequest->Size-1)
-WordAddress (MemoryRequest->Address) +WordSize;

)
else

{
WordsToBeTransfered=0;}

WordsToBeTransfered/-WordSize;

if (WordsToBeTransfered>(BlockSize/WordSize))
WordsToBeTransfered-BlockSize/WordSize;

** ~Page 6- 4
** ~TimeEst c *

** ~Updat eTiMeToExecute *

** ~continued *

if (wordsToBeTransfered>O)
f
if (MemoryRequest->AccessInProgress=-No)

I
MemoryRequest->TimeToExecute=MemoryAcces sTime

+MemoryTransferTi-me* (WordsToBeTransfered-l);
I

else

if Mmr~iigo~=eoyJiigo~mr~a~cs
i MemoryWaitingFor-=MemoryWaitingForMemoryReadrAnces fer

MemoryRequest->TimeToExecute=TOA-Time+Mem~oryTrans ferTime
* (WordsToBeTransfereci-1);

else if (MemoryWaitingFor=-MemoryWaitingFor~emoryWriteAccess 11
MemoryWaitingFor=='MemoryWaitingForMemoryWriteTransfer)

MemoryRequest->TimeToExecute=TOD-Time+MemoryTrans ferTime
* (WordsToBeTransfered-1);

else if (MemoryWaitingFor=-MemoryWaitingForCacheUpdate)
*1
MemoryRequest->TimeToExecute=MemoryAccessTime+MemoryTrans ferTime

* (WordsToBeTransfered-1);

else

printf ("Error found in [UpdateTimeToExecutel MemoryRequest\n");
printf ("with access in progress while MemoryWaitingFor not\n");
printf ("reading or writing.");
Dis crepancyFound=Yes;

else

MemoryRequest->TimeToExecute=O;

Page 6- 5 **
** TimeEst.c

** CalculateTimeEstimates **

** Description: **

** CalculateTimeEstimates updates the CompletionTimeEstimates for **
** each request in both the read and write buffers. This funtion is
** called when ever the CacheModel adds to the read or write buffers. **
** CalculateTimeEstimates must be called every time new data is entered **
** into the buffers. This is because all previous estimates did not take *
** into account the new data requested. This is because all previous **
** estimates did not take into account the new data requested. **

** CalculateTimeEstimates first orders all entries in both the ReadBuffer, **
* and the WriteBuffer by priority. Then CalculateTimeEstimates steps **

though both buffers simultaneously. Each time picking the request that **
** has the highest priority, and adding the time to execute to the **
* TimeEstimate. The TimeEstimate becomes that requests
** ConpletionTimeEstimate. This process is repeated until all requests **
** have a new CompletionTimeEstimate. TimeToExecute for cache request is **
** updated before it is used to calculate the TimeEstimate. **

void CalculateTimeEstimates ()

BufferSizeType ReadIndex-0;
BufferSizeType WriteIndex-0;
TimeType TimeEstimate-Time;
TimeType BlockTOAEstimate-BlockTOA;

Order (&ReadBuffer);
Order (&WriteBuffer);

Page 6- 6 *

** Ti~meEst. C

** ~CalculateTimeEstimates *

continued *

while (Readlndex<ReadBuffer.Next 11I Writelndex<WriteBuffer.Next)

f
if (Readlndex<ReadBuffer .Next && Writelnciex<WriteBuffer .Next)

if (ReadBuffer.MemoryRequest[ReadIndex].Priority <=
WriteBuffer .MemoryRequest (WriteIndex] .Priori~ty)

f
UpdateTimeToExecute (& (ReadBuffer.MemoryRequest [ReadIndex)));

if (TimeEstimate<BlockTOAEstimate) TimeEstirnate=BlockTOAEstixnate;
TimeEstimate+=ReadBuf fer .MemoryRequest (ReadIndex] .TimeToExecute;
ReadBuffer.MemoryRequest (ReadIndex] .CompletionTimeEstirnate=

TimeEstimate;
BlockcTOAEst imat e-TimeEstimate+BufferCacheAcces sTime;
Readlndex++;
I

else
4
UpdateTimeToExecute (6 (WriteBuf fer .MemoryRequest (Writelndex]))

TiMeEStimate+zWriteBuf fer .MemoryRequest (WriteIndex)I .TimeToExecute;
WriteBuffer .MemoryRequest (WriteIndex] .CompletionTimeEstirnate=

TimeEstimate;
Writelndex++;

else if (Readlndex<ReadBuffer .Next)
f
UpdateTimeToExecute (& (ReadBuffer.MemoryRequest (ReadIndex]));

if (TimeEstimate<BlockTOAEstixnate) Ti, .stimate=BlockTOAEstirnate;
TimeE st irat e+=ReadBu ff er. MemoryReques~ m-, ead Index I.TimeToExecute;
ReadBuffer .MemoryRequest (ReadIndex].CompletionTimeEstimate=

TimeEstimate;
BlockTOAEstimate=TimeEstimate+BufferCacheAccessTime;
Readlndex++;

else if (Writelndex<WriteBuffer .Next)

UpdateTiMeToExe cute (& (WriteBuffer.MemoryRequest [WriteIndex]));

TimeEstimate+-WriteBuffer .MemoryRequest (WriteIndex].TimeToExecute;
WriteBuffer .MemoryRequest [WriteIndex] .CompletionTimeEstirnate=

TimeEstimate;
Writelndex++;

/****************************** **

** Page 7-0 **

Get.c **

Part Of SACS 1.0 **
(StillAnother Cache Simulator) **

Program Modified: 3/17/94 **
** File Modified: 3/17/94 **

** Author: William G. Smith
** Address: Electrical Engineering Department **
** Naval Postgraduate School **

Monterey, CA 93940

** Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and **

** its documentation for any purpose and without fee is hereby granted *
** provided that the above copyright notice appears in all copies. No **

** modified version of this program should be redistributed without the **
** authors consent. William G. Smith makes no warranty or **
** representation, promise of guarantee, either expressed or implied, **
** with respect to this software's ability to produce valid results. **
** This program is provided "as is" any financial, personal or property **
** damage caused by the use of this program is the responsibility of the **

** user. **

** **

/*** h** ********************************

** Page 7- 1 *
** Get.c **
** **

** Description: **

** Get.c contains all functions that relate getting the next CPU
** request. GetNextRequest is the only procedure called outside of this **

** file scope. It determines whether to take input from the keyboard or **

** aa input file. It also checks the input data to see if it makes sense. **

** Table of Contents **

** Cover Page Page 7- 1 **
** List of Get.c Function Declarations Page 7- 2 **

** GetNextRequest() Page 7- 3 **

** GetNextFileRequest() Page 7- 5 **
** GetNextKeyBoardRequest() Page 7- 6 **
** **

#include "Global .h"

/**
** Page 7-2 **

** Get.c **

** List of Get.c Function Declarations **

Description: **

This is a list of function declarations within the file scope **
** of "Get.c".

void GetNextRequest 0; /* Page 7- 3 */
void GetNextFileRequest(0; /* Page 7- 5 */
void GetNextKeyBoardRequest(0; /* Page 7- 6 */

/*** ********.**********

** Page 7- 3 **

** Get.c **

** GetNextRequest **
** **

** Description: **

** GetNextRequest gets the next simulated request from the CPU to **

** cache (ie a Read or Write request). The request is checked to make **
** sure it makes sense. If a request is not block alined, then **

** GetNextRequest will split the request up and return portions of the **

** request until all portions have been used, as if the user had made **

** several different requests. **

void GetNextRequest()

{

static AddressType NextRequestAddress;
static SizeType NextRequestSize-0;
static RequestType NextRequest;

** ~Page 7- 4 *

** ~Get. c

** ~GetNextRequest *

continued *

if (NextRequestSize>O)

if (NextRequestSize<=BlockSize)

RequestSize-NextRequestSize;
NextRequestSize-O;

else

RequestSize-BlockSi ze;
NextRequestSize--BlockSize;

RequestAddress-BlockAddress (RequestAddress) +BlockSize;
Request-NextRequest;
I

else

f

if (KeyBoardIO)

PauseForCoinmando;
GetNextKeyBoardRequest 0;
I

else
f
GetNextFileRequest 0;
I

if (BlockAddress(RequestAddress)!
BlockAddress (RequestAddress+RequestSize-1))

NextRequest Size-Request Size;
RequestSize- (BlockAddress (RequestAddress) +BlockSize) -RequestAddress;
lNextRequestSize--RequestSize;
NextRequestAddress-BlockAddress (RequestAddress) +BlockSize;
NextRequest-Request;

if (Request!=None)

LastRequest-Request;
NuxnberOfAccesses [Request] ++;

Page 7- 5
Get. c

GetNext~ileRequest *

**Description: *

** ~GetNextFileRequest reads in one request, without doing any error *

**checking. *

void GetNextFileRequest (

i

char RequestChar-' '

Chr;

Request-None;

if (feof(DataFile)) EndOfDataFile-Yes;

while (RequestChar!-'r' & RequestChar!='w' && RequestChar!='E' &
EndOfDataFile--No && feof(DataFile))

fscanf (DataFile, "%c", &RequestChar);

if (feof (DataFile) 11 RequestChar--' E') EndOfDataFile-Yes;

if (EndOfDataFile--No)
i

fscanf (DataFile, "%lX", &RequestAddress);
fscanf(DataFile, "W'h, &RequestSize);
fscanf (DataFile, "WU", &TixneOfNextRequest);

if (RequestChar--'r') Request-Read;
if (RequestChar--'w') Request-Write;

TimeOfNextRequest+-Time;

while (RequestChar!='\n' && !feof(DataFile))

fscanf (DataFile, "%c", &RequestChar);

if (feof(DataFile)) EndOfDataFile-Yes;

** ~Page 7- 6 *

** ~Get.c *

** ~GetNextBoard~ey *

**Description:

GetNextFileRequest reads in one request, without doing any error *

**checking. *

void GetNext KeyBoardRequesto(

{

char chr;

printf("Please enter request type (r,w).)
while (chr!='r' && chr!='w' && chr!='q')

{
scanf("%c", &chr);

if (chr--'q') exit(O);
if (chr--'r') Request-Read; else Request-Write;
printf ("Please enter Address")
scanf ("%U", &RequestAddress);
printf ("Please enter size)
scanf("%u", &RequestSize);
printf ("Time until next request.")
f flush (stdin);
scanf("%U", &TimeOfNextRequest);

TimeOfNextRequest+=Time;

0* Page 8- 0 *

Display.c 0*

** Part Of SACS 1.0 00

0* (StillAnother Cache Simulator) *

0* Program Modified: 3/17/94 *0
** File Modified: 3/17/94 *

*0 Author: William G. Smith *
0* Address: Electrical Engineering Department **
** Naval Postgraduate School **
** Monterey, CA 93940 *0

00 Copyright 1994, William G. Smith *

** Permission to use, copy, modify, and distribute this software and *0
*0 its documentation for any purpose and without fee is hereby granted 00

** provided that the above copyright notice appears in all copies. No *0
*0 modified version of this program should be redistributed without the *
*0 authors consent. William G. Smith makes no warranty or **
** representation, promise of guarantee, either expressed or implied, *0
00 with respect to this software's ability to produce valid results. **
** This program is provided "as is" any financial, personal or property *.

** damage caused by the use of this program is the responsibility of the **
user. *

Page 8- 1
Display.c **

** Description: **

** Display.c contains all display functions used within SACS. **

** Table of Contents **

** Cover Page Page 8- 1
** List of Cache.c Function Declarations Page 8- 2 **

** DisplayTrace().............................. Page 8- 3 **

** DisplayCurrentRequest() Page 8- 4
DisplayWaitingFors() Page 8- 5 **

DisplayBlock() Page 8- 6 **

DisplayBuffers() Page 8- 7
** DisplayBuffer() Page 8- 8 **

** DisplayRequestsBreakDown() Page 8- 9 **

DisplayRequestHistogram() Page 8-11 **

** DisplayStallHistogram() Page 8-13
** LastScreenHistogramScore() Page 8-14 **

** DisplayCacheArguments() Page 8-15 **

DisplayHelp()............................... Page 8-17 **

** DisplayTestingHeader() Page 8-18 **

** PrintTimeo()................................ Page 8-20
PrintTimeCentered() Page 8-20 **

** PrintScoreCentered() Page 8-20 **

PrintAddress().............................. Page 8-20 **

** PrintCacheSize() Page 8-20
** PrintSize()................................. Page 8-20 **

** PrintSize2() Page 8-20 **

** PrintBufferSize() Page 8-21
"PrintPriority() Page 8-21 **

** PrintA•jociativity() Page 8-21 **

** PrintHistogramIndex() Page 8-21

** PrintBit Page 8-22**
PrintPercent() Page 8-22 **

PrintAveAccess() Page 8-22 **

#include "Global.h"

** ~Page 8- 2
** Display. c

** ~List of Display.c Function Declarations *

Description: *

** This is a list of function declarations within the file scope *

**of "Display.c". *

void DisplayTrace 0; /* Page 8- 3 ~
void DisplayCurrentRequest 0; /* Page 8- 4 *
void DisplayWaitingFors 0; 1* Page 8- 5 ~
void DisplayBlocko; /* Page 8- 6 *
void DisplayBuffers 0; 1* Page 8- 7 *
void DisplayBuffer 0; 1* Page 8- 8 ~

void DisplayRequestsBreakDowno; 1* Page 8- 9 ~
void DisplayRequestHistogramo; /* Page 8-11 *

void DisplayStallHistograxn0; /* Page 8-13 *
ScoreType LastScreenliistogramScoreo; /* Page 8-14 *
void DisplayCacheArguments 0; /* Page 8-15 *
void DisplayHelpo; I* Page 8-17 *

void DisplayTestingHeader 0; /* Page 8-18 *

void PrintYesNo 0; /* Page 8-19 *
void PrintRequest 0; /* Page 8-19 *
void PrintReplacementPolicy 0; /* Page 8-19 *
void PrintWritePolicyo; /* Page 8-19 *
void PrintWriteMissPolicy 0; /* Page 8-19 *
void PrintWaitingForo; /* Page 8-19 *
void PrintMemoryWaaitingFor 0; 1* Page 8-19 *
void PrintBlockWaitingFor 0; /* Page 8-19 *

void PraintTimeo; 1* Page 8-20 ~
void PrintTimeCenteredo; 1* Page 8-20 *
void PrintScoreCenteredo; /* Page 8-20 *
void PrintAddress 0; /* Page 8-20 *
void PrintCacheSize 0; 1* Page 8-20 *
void PrintSizeo; 1* Page 8-20 *
void PrintSize2(0; /* Page 8-20 *
void PrintBufferSizeo; /* Page 8-21 *
void PrintPriorityo; /* Page 8-21 *
void PrintAssociativityo; /* Page 8-21 *
void PrintHistogramlndex 0; /* Page 8-21 *

void PrintBito. 1* Page 8-22 *
void PrintPercent 0; /* Page 8-22 *
void PrintAveAccess 0; /* Page 8-22 *

** Page 8- 3
** Display.c

** ~DisplayTrace *

void DisplayTraceo(

f

SizeType BlockO=Set (RequestAddress) *Associativity;
SizeType BlockIndex;
SizeType SubBlocklndex;

system (ClearScreen);

DisplayCurrentRequest C';
DisplayWaitingFors 0;

printf ("\n");
printf(" Set Block Address")
for (SubBlocklndex=O; SubBlocklndex<NumberOfSubBlocks; SubBlockrIndex++)

printf (" V/D")
printf("\n");

for (Blocklndex=BlockO; Blocklndex<BlockQ+Associativity; Blocklndex++)
DisplayBlock (Block Index);

printf ("\n");

DisplayBuffers 0;

** ~Page 8- 4 *

Display.c *

Diplyuren*qus

voi Displaayuurrenteequest

if (Request !=None) LastRequest=Request;

if (LastRequest--None)

RequestAddress-O;
RequestSize-O;
CacheHit=No;

if (Request !=None) LastRequest=Request;
if (Cache Wait ingFor! =Nothing)

f
printf("\nCurrent Request:
I

else
f
printf("\nLast Request:

PrintRequest (LastRequest);
printf(" Time: i)

Print Time (Time);

printf("\nAddress:
PrintAdd~ress (RequestAddress);
printf(" Next Request Time:)

Print Time (TimeOfNextRequest);

printf("\nSize: i)

PrintSize2 (RequestSize);

if (MemorylaitingFor==MemoryWaitingForMemoryReadAccess 11
MemoryWait ingFor==MemoryWait ingForMemoryReadTrans fer)

printf (" TOA:
Print Time (TOA);

if Mmr~iigo=Mmr~iigo~mr~ieces1
i(MemoryWaitingFor==MemoryWaitingForMemoryWriteracc fers)

I
printf (" TOD:
PrintTime (TOD);

printf("\n");

Page 8- 5
** ~Display.c *

** ~DisplayWait ing~ors *

void DisplayWaitingForso(

I

printf("Cache Waiting for: ";PrintWaitingFor(CacheWaitingFor);

printf ("\nMemory Waiting For: ";PrintMemoryWaitingFor (MemoryWaitingFor);
print f(" Cache Hit: "); PrintYesNo(CacheHit);
printf ("\nBlock Waiting For:);PrintBlockWaitingFor (BlockWaitingFor);
printf(" Buffer Hit: ";PrintYesNo(BufferHit);

printf ("\n");

** ~Page 8- 6 *

** ~Display. c

** ~DisplayBlock *

void DisplayBlock (BlockIndex)

SizeType BlockIndex;

i

SizeType SubBlocklndex;

if (Blocklndex%Associativity--O)

PrintSize (Blocklndex/Associativity);

else

printf(" i)

printf(M ")

PrintSize (Block Index);
printf(" ");
PrintAddress (CacheBlocjcAddress [BlockIndex J);

for (SubBlocklndex=O; SubBlocklndex(NumberofSubBlocks; SubBlocklndex++)

printf(" i)

Print~it (CacheValidBit [BlockIndex] [SubBlocklndex]);
printf(" 'I);
PrintBit (CacheDirtyBit [BlockIndex] [SubBlocklndex]);
pri~ntf("")

printf("\n");

** ~Page 8- 7 *

** ~Display.c *

** ~DisplayBuffers *

void DisplayBuffersoC

I

printf ("Read Buffer")
DisplayBuffer (&ReadBuffer);

printf("\n");
printf ("Write Buffer")
DisplayBuffer (&WriteBuffer);

printf("\n");
printf ("Block Buffer")
DisplayBuffer (&BlockBuffer);

I

** ~Page 8- 8 *

** ~Display. c

** ~DisplayBuffer *

void DisplayBuffer (PrintBuffer)

BufferType *PrintBuffer;

I

int R;

priritf ("Address Size Req. Block Priority");
printf(" Time Req. Comp. Time\n");

for (R-0; R<PrintBuffer->Next; R++)
f
printf("
PrintAddress (PrintBuffer->MemoryRequest [RI .Address);
printf(")
PrintSize2 (PrintBuffer->MemoryRequest (RI .Size);
printf("
PrintSize2 (PrintBuffer->MemoryRequest ER].RequiredSize);
printf(")
PrintSize (PrintBuffer->MemoryRequest (RI .Block);
printf("
PrintPriority (PrintBuffer->MemoryRequest (RI .Priority);
printf("
PrintTimeCentered (PrintBuffer->MemoryRequest fRI .TimeToExecute);
printf("
PrintTimeCentered(PrintBuffer->MemoryRequest [RI.CompletionTimeEstimate);
printf (1\n");

Page 8- 9
** ~Display. c

** ~DisplayRequestBreakDown *

void DisplayRequestsBreakDowno(

ScoreType
TotalNumberOfAccesses -NumberOfAccesses (Read] +NumberOfAccesses (Write 1,
TotalNumberOfCacheHits-NumberOfCacheHits (Read] +NurnberOfCacheHits (Write],
TotalNumberOfBufferHits=NumberOfBufferHits [Read] +Number~fBufferHits (Write];

system (ClearScreen) ;

printf ("\fl Requests Break Down\n");
printf("\n
printf(" Number Number Number
printf("\n
printf("Request of of of Hit Miss")
printf("\n
printf(" Types Requests Cache Hits Buffer Hits Rates Rates");

printf("\n");
priritf("\n Read
PrintScoreCentered (NumberOfAccesses LRead]);
printf(" R)
PrintScoreCentered (NuxnberOfCacheHits Read]);
printf(")
PrintScoreCentered(NuznberOfBufferHits (Read]);
if (NumberOfAccesses [Read] >0)

f1
printf("
PrintPercent (NuniberOfCacheHits [Read] +NumberOfBufferHits (Read],

NumnberOfAccesses (Read]);
printf("l ");
PrintPercent(C(NuniberOfAccesses (Read] -NuxnberOfCacheHits (Read]),

NumberOfAccesses (Read]);
I

printf("\n Write
PrintScoreCentered(NumberOfAccesses [Write]);
printf("l
PrintScoreCentered(NuniberOfCacheHits (Write]);
printf(" ")
PrintScoreCentered(NuxnberOfBufferHits (Write]);

if (NuinberOfAccesses (Write]>0)
{
printf("
PrintPercent (NuznberOfCacheHits [Write] +NumberOfBufferHits (Write],

NumberOfAccesses (Write]);
printf(" ");
PrintPercent ((NumberOfAccesses [Write] -NumberOfCacheHits [Write]),

NurnberOfAccesses (Write]);

** ~Page 8-10 *

Display. c

** ~DisplayRequest~reakDown *

** continued

printf("\n Total
PrintScoreCentered (TotalNunmberOfAccesses);
printf("
PrintScoreCentered (TotalNuniberOfCacheHits);
printf(" ")
PrintScoreCentered (TotalNuxnberOfBufferHits);

if (TotalNuxnberOfAccesses>0)

printf("
PrintPercent (TotalNtumberOfCacheliits+TotalNumberOfBufferHits,

TotalNuniberOfAccesses);
printf(" ");
PrintPercent (TotalNuxnberOfAccesses-TotalNuxnberOfCacheHits

-TotalNuxuberOf~ufferHits,
TotalNumberOfAccesses);

printfQ'\n");

DisplayRequestHistogram 0;

** ~Page 8-11
** ~Display. c

Diplyeqet*soga

voi Displayyequesttistogram *

SizeType TimeIndex;

printf ("\n Request Time Histogram");
printf("\n
for (Timelndex-O; Timelndex<ScreenHistograxnMaxlndex; Timelndex++)

printf("

printf(" Ave)
printf("\n
for (Timelndex-O; Timelndex<ScreenHistogramrMaxlndex; Timelndex++)

printf(");

printf(" Access");
printf("\n

for (Timelndex=O; Timelndex<ScreenHistogramMaxlndex-1; Time Index++)

printf(" Time-");
PrintSize2 (TimeIndex);

printf(" Time>-");
PrintSize2 (TimeIndex);
printf(" Total Time")

** ~Page 8-12 *

** ~Display.c *

** DisplayRequestHistogram
** cont inued

printf("\n Read")
for (Tixnelndex-O; Timelndex< (ScreenHistograxnMaxlndex-1); Timelndex++)

{
printf("")
PrintScoreCentered (RequestTimeHi3togram (Read) (TimeIndex]);

printf(")
PrintScoreCentered (LastScreenHistograniScore (RequestTimeliistogram (Read]));
printf(" ");
Print ScoreCentered (TotalRequestTime (Read]);
printf(" ");
PrintAveAccess (TotalRequestTime [Read] ,NurnberOfAccesses [Read));

printf("\n Write ");
for (Timelndex-O; Timelndex< (ScreenHistograxnMaxlndex-1); Timelndex++)

{
printf("")
PrintScoreCentered (RequestTimeHistograxn[Write] [TimeIndex]);

printf("")
PrintScoreCentered(LastScreenHistogramScore (RequestTimeHistogram[Write]));
printf(" ");
PrintScoreCentered (TotalRequestTime [Write]);
printf(" ");
PrintAveAccess (TotalRequestTime [Write] ,NumberOfAccesses [Write]);

printf("\n Ideal ");
for (Timelndex-O; Timelndex< (ScreenHistogramMaxlndex-1); Timelndex++)

I
printf(")
PrintScoreCentered (RequestTimeHistogram [None] (TimeIndex]);

printf(")
PrintScoreCentered(LastScreenHistogramScore (RequestTimeHistograrn[None]));
printf(" ");
Print ScoreCentered (TotalRequestTime [None]);
printf("\n");

Page 8-13 *

** ~Display.c *

** ~DisplayStaliHistogram *

void DisplayStaliHistogramo(

SizeType TimeIndex;

CacheWaitingForType StallIndex;

system (ClearScreen);

printf ("\n\n Stall Time Histogram\n\n");
printf(")

for (Timelndex-O; Timelndex<ScreenHistograxnMaxlndex-l; Tirnelndex++)

I
printf(" Time>-");
Print Size2(Time Index);

printf(" Total\n");
printf("\n");

for (StallIndex-C;
Stalllndex<NumberOfCacheWaitingForsAvailable;
Stalllndex++)

f
Print Wait ingFor (StallIndex);
for (Timelndex=O; Timelndex<ScreenHistogramMaxlndex-l; Timelndex++)

f
printf("")
PrintScoreCentered (StallTimeHistogram(Stalllndex] [TimeIndex]);

printf("")
Print ScoreCent ered (Last ScreenHist ogramScore (Stal lTimeHist oqram StalllIndex])
printf(" ");
PrintScoreCentered(TotalStallTime (Stalllndex]);
printf("\n");

** ~Page 8-14 *

** ~Display.c *

** ~LastScreenHistogramScore *

ScoreType LastScreenilistogramScore (Histogram)

TimeType *Histogram;

I

TimeType TimeIndex;
ScoreType Sum-O;

for (Timelndex-ScreenliistograniMaxlndex-1;
Timelndex<FileHistogramMaxlndex;
Timelndex++)

Sum+-Histogram [TimelndexJ;

return (Sum);

** ~Page 8-15 *

** ~Display.c *

** ~DisplayCacheArgument s

void DisplayCacheArgumentso(

f

system (ClearScreen) ;

printf("\n");
printf (" Cache Arguments List");
printf("\n");
printf("\nCache Size: ";PrintCacheSize (CacheSize);
printf("
printf ("Read Forward:);PrintYesNo (ReadForward);
printf("\nBlock Size:);PrifltSize(BlockSize);

printf("
printf ("CPU Waits For Cache Writes:);PrintYesNo(CPUWaitsForCacheWrites);

printf("\nSubBlock Size: if;PrintSize (SubBlockSize);
printf(" "
printf ("Search Block Buffer:);PrintYesNo(SearchBlockBuffer);
printf("\nAssociativity:);PrintAssociativity(Associativity);
printf(" i)

printf ("Update Read Buffer:);PrintYesNo(UpdateReadBuffer);
printf("\nWord Size:);PrintSize(WordSize);
printf("
printf ("Remove Read Duplicates: ";PrintYesNo(RemoveReadDuplicates);
printf("\nRead Cache Access Time: ";PrintTime(ReadCacheAccessTime);
printf("
print f("Remove Write Duplicates: ";PrintYesNo (RemoveWriteDuplicates);
printf("\nRead Cache Hit Time: "'); PrintTime(ReadCacheHitTime);
printf("
printf ("Read Priority: ";PrintPriority (ReadPriority);
printf("\nRead Cache Miss Time: ";PrintTime(ReadCacheMissTime);

printf(" "
printf ("Write Priority: "1); PrintPriority(WritePriority);
printf("\nWrite Cache Access Time:);PrintTime(WriteCacheAccessTime);

printf("
printf ("Read For Write Allocate:

PrintPriority (ReadForWriteAllocate'vriority);
printf("\nWrite Cache Hit Time:);PrintTirne(WriteCacheHitTime);
printf("
printf ("Write Dirty Block Priority:")

PrintPriority (WriteDir'ý,.PojkP riority);
printf("\nWrite Cache Miss Time: ";PrintTime(WriteCacheMissTime);

printf("
printf ("No Priority: ";PrintPriority(NoPriority);

** ~Page 8-16 *

Display. c

** ~DisplayCacheArgument s
continued

printf("\nlMemory Access Time: ";PrintTime(MemoryAccessTime);

printf("
printf ("Trace: ";PrintYesNo (Trace);
printf%("\nMemory Transfer Time: ";PrintTime (MemoryTransferTime);
printf(");
printf ("Check:);PrintYesNo (Check);
printf("\nBuffer Cache Access Time:);PrintTime(BufferCacheAccessTime);
printf(");
printf ("Test: "LPrintYesNo(Test);
printf("\nRead Buffer Size: 11); PrintBufferSize(ReadBufferSize);
printf(" f)

printf ("Key Board 10:);PrintYesNo(KeyBoardI0);

printf ("\nWrite Buffer Size:);PrintBufferSize (WriteBufferSize);
printf(");
prir.tf ("Data File Name: ts",DataFileName);
printf("\nBlock Replacement Policy: ");

PrintReplacementPolicy (BlockReplacementPolicy);
printf(");
printf ("Screen History Max Index: ")

PrintHistogramlndex (ScreenliistogramMaxlndex);
printf ("\nWrite Policy);PrintWritePolicy (WritePolicy);
printf(" 11) ;
printf("File History Max Index:

PrintHistogramlndex (FileHistogra~mMaxlndex);
printf("\nWrite Miss Policy:

Print WriteMissPolicy (WriteMissPolicy);

printf ("\n");

** Page 8-17 **
Display.c **

** DisplayHelp

void DisplayHelp ()

system(ClearScreen);

printf (" Help Menu -);

printf("\n");
printf("\n [T] Trace Display:
printf("\n Displays current request, status of memory, and contents ");
printf("\n of buffers.

printf ("\n") ;
printf("\n [R] Results Display:
printf("\n Displays a break down of read and write cache hits, and ");
printf("\n buffer hits, including a timing analysis.

printf ("\n");
printf%"\n (S] Stall Timing Display: -);
printf("\n Displays a histogram of the time spent on each stall.
printf("\n Stalls represent time delays in completing a request

printf("\n");
printf("\n [C] Cache Arguments Display:
printf("\n Displays input arguments to SACS.

printf("\n");
printf("\n [G] Go: Go to end of run.
printf("\n [G #1 Go To: Go to Time #. ");
printf("\n [#1 Step: Increment Time By #.
printf("\n [-#] Back Step: Decrement Time By #. V);
printf("\n [H] Help: Displays this help menu.
printf ("\n

Page 81
** Display. c

DisplayTest ingHeader *

void DisplayTesting~eadero(

printf("\n");
system (ClearScreen);
printf("\n\ri");
printf("\n\n 9)

printf(" Testing SACS");
printf("\n\n
printf ("Total number of loads and stores tested %lu.",

TotalNuniberOfAccesses);
printf("\n\n
printf(" Test Cases chosen ...

printf("\rAn");

** ~Page 8-19 *

** ~Display. c

** Print Enumeration Stings

void Print YesNo (Value)
YesNoType Value;

printf('%s",YesNoString[Value]);

void PrintRequest (Value)
RequestType value;
I
printf("%s",RequestString[Value]);
I

void PrintReplacementPolicy (Value)
BlockReplacementPolicyType Value;

printf ("%s", ReplacementPolicyString [Value]);

void PrintWritePolicy (Value)
WritePolicyType Value;
f
printf("%s", WritePolicyStringfValue]);

void PrintWriteMissPolicy (Value)
WriteMissPolicyType Value;
f
printf ("%os",WriteMissPolicyString(ValueI);

void PrintWait ingFor (Value)
CacheWait ingForType Value;

printf("%s",CacheWaitingForString(Value]);

void PrintMentoryWaitingFor (Value)

MemoryWait ingForType Value;

printf ("%s",MernoryWaitingForString[Value]);

void PrintBlockWaitingFor (Value)
BlockWaitingForType Value;

printf("%s",BlockWaitingForString(Value]);

** ~Page 8-20 *

** ~Display.c *

** ~Print Routines *

void PrintTime (Time)
TimeType Time;
{
if (Time>-10000000) printf("%.8l", Time);
else if (Time>-1000000) printf("%71u ",Time);
else if (Time>-100000) printf("%61u ",Time);
else if (Time>=10000) printf("%51u ",Time);
else if (Time>-l000) printf('%4lu ",Time);
else if (Time>-100) printf("%31u ",Time);
else if (Time>=1O) printf("%2lu ",Time);
else printf("%llu ",,Time);

void PrintTimeCentered(Time)
TimeType Time;
f
if (Time>-l000000) printf ("%81uI, Time);
else if (Time>=l0000) printf("%7lu ",Time);
else if (Time>=100) printf("%61u %,Time);
else printf("%51u %,Time);

void PrintScoreCentered (Score)
ScoreType Score;

if (Time>-1000000) printf ("%Blu", Score);
else if (Time>=lO000) printf("%71u ff,Score);
else if (Time>=100) printf("1%61u ",Score);
else printf("%51u ",Score);
I

void PrintAddress (AddreSs)
AddressType Address;
{
printf("%081X"I,Address);

void PrintCacheSize (CacheSize)
CacheSizeType CacheSize;

printf("%081u"I,CacheSize);

void PrintSize (Size)
SizeType Size;

printf ("%05u", Size);

void PrintSize2 (Size)
SizeType Size;

printf("%02u", Size);

** ~Page 8-21 *

** ~Display.c *

** Print Routines
** ~continued *

void PrintBufferSize (BufferSize)
BufferSizeType BufferSize;

printf("%02u",BufferSize);
I

void PrintPriority (Priority)
PriorityType Priority;

printf ("%02u",Priority);

void PrintAssociativity (Associativity)
ASsociativityType Associativity;
f
printf ("%02u",Associativity);

void PrintHistogramlndex (HistogramIndex)
HistogramlndexType HistogramIndex;

printf ("%04u", HistogramIndex);
I

** ~Page 8-22 *

Display.c *

Print Routines *

** ~continued *

void Print~it (Bit)
YesNoType Bit;
f
printf("%Olu",Bit);
I

void PrintPercent (Numerator, Denominator)
ScoreType Numerator;
ScoreType Denominator;
I
if (Denominator>O)

f
printf("%6.21f", (100.O*Numerator) /Denominator);
printf("%");
I

else
I
printf("

void PrintAveAccess (TotalTime, TotalNumberofAccesses)
TimeType TotalTime;
ScoreType TotalNuxnberofAccesses;

if (TotalNumberofAccesses>O)

printf ("%8. 6lf", (1.O*TotalTime) /TotalNumberofAccesses);

else

printf("

** Page 9- 0 **
** Record.c **

** Part Of SACS 1.0 **
** (StillAnother Cache Simulator) **

** Program Modified: 3/17/94
** File Modified: 3/17/94 **

** Author: William G. Smith **
** Address: Electrical Engineering Department **
** Naval Postgraduate School **
** Monterey, CA 93940 **

** Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and **
** its documentation for any purpose and without fee is hereby granted **
** provided that the above copyright notice appears in all copies. No **
** modified version of this program should be redistributed without the **
** authors consent. William G. Smith makes no warranty or **
** representation, promise of guarantee, either expressed or implied, **
** with respect to this software's ability to produce valid results. **
** This program is provided "as is" any financial, personal or property **
** damage caused by the use of this program is the responsibility of the **
** user. **

I*** ************ ***************w***

** Page 9- 1
Record.c **

** Description: **
** **

Record.c contains all functions that relate to the recording of *
** time for requests, and waiting fors, as well as a procedure for saving *
** the data in a file using a format that Matlab(TM) could read. **

** Table of Contents **

** Cover Page Page 9- 1 **
** List of Record.c Function Declarations Page 9- 2 **

** RecordRequest () Page 9- 3
** RecordStall() Page 9- 5 **

** RecordForMatlab()......................... Page 9- 7 **

#include "Global.h"

** Page 9- 2 **
** Record.c **
** **

** List of Record.c Function Declarations **
** **

** Description: **

** This is a list of function declarations within the file scope
** of "Record.c".

void RecordRequest(); /* Page 9- 3 */
void RecordStall(); /* Page 9- 5 */
void RecordForMatlab(; /* Page 9- 7 */

** ~Page 9- 3 *

** ~Record. c

** Record Request

**Description: *

** ~RecordRequest records the time spent on a particular request and *

**stores the result in RequestTimeHistogram. *

void RecordRequest (Req)

RequestType Req;

f

static TimeType LastTime-1;
static TimeType Lastdt-O;
static RequestType LastReq=NumberOfRequeStsAvailable;

TimeType dt=Time-LastTime;

if (Req=-NumberOfRequestsAvailable)
{
LastTime=1;
Lastdt-O;
LastReq-Req;

I

TotalRequestTime (LastReqJ -=Lastdt;
if (Lastdt>FileHistograilMaxlndex-1) Lastdt-FileflistograniMaxlndex-1;
RequestTimeHistograin ILastReq) ILastdt] -- ;

I
else if (LastReq! -NumberOfRequestsAvailable)

{
LastTime=Time;
dt-O;
NuxnberOfCacheHits fLastReq] +=Cache~it;
NuniberOfBufferHits ILastReqlj+=BufferHit;

LastReq-Req;

** ~Page 9- 4 *

** Record. c

** ~Record Request *

continued *

if (Req! =NumberOfRequestsAvailable)

TotalRequestTime (Reqi +=dt;
Lastdt-dt;
if (dt>FileHistograrnMaxlndex-1) dt=FileHistogramMaxlndex-1;
if (Time>=LastTime)

f
RequestTimeHistogram [Req] (dt] ++;
I

else
i
printf (n\n\nError [RecordRequest] caculated a time less than 0");
printf("\n\n Time = ";PrintTime(Time);

printf ("\n\nLastTime =);PrintTime (LastTime);
pri~ntf("\n\n");
Dis crepancyFound=Yes;

Page 9- 5 *

** ~Record.c *

** ~RecordStall *

**Description: *

** ~RecordStall records the time spent on a particular waiting for and
**stores the result in StailTimeHistogram. *

void RecordStall (CurrentWaitingFor)

CacheWaitingForType CurrentWaitingFor;

i

static TimeType PastTime=l;
static TimeType Pastdt=O;
static CacheWaitingForrype PastWaitingFor=None;

TimeType dt=Tiine-PastTime;

if (Current Wait ingFor--NuxnberOfCacheWait ingForsAvailable)

Past Time-l;
Pastdt=O;
PastWait ingFor'.CurrentWait ingFor;

else if (CurrentWaitingFor==PastWaitingFor)
i
TotalStallTime (PastWait ingForj -=Pastdt;
if (Pastdt>FileHistogramMaxlndex-1) Pastdt-FileHistogramMaxIndex-1;
StallTimeHistogram(PastWaitingForj EPastdt I--;

else if (PastWaitingFor! =NumberOfCacheWaitingForsAvailable)

Past Time=Time;
dt- 0;

Past Wait ingFor=Current Wait inqFor;

** Page 9- 6
** ~Record. c

** ~RecordStall *

** ~continued *

if (Current Wait ingFor =NuxnberOfCacheWaitingForsAvailable)

TotalStallTime (CurrentWaitingFor] +=dt;
Pastdt-dt;
if (dt>Fi sHistograxnMaxIndex-1) dt=FileHistograxmmaxlndex-1;
if (Time>-PastTime)

4
StallTimeHistogram[CurrentWaitingForl (dt] ++;

else

printf("\n\nError [RecordStall] calculated a time less than 0");
printf("\n\n Time = ";PrintTime(Time);

printf ("\n\nPastTi~me = ";PrintTime (PastTime);
printf ("\n\n") ;
DiscrepancyFound=Yes;

** Page 9- 7
** ~Record. c

** ~RecordForMatlab *

**Description: *

** ~RecordForMatlab saves the RequestTimeHistograxn, and *

**StaliTimeliistograms in a format that Matlab(TM) reconizes. *

void RecordForMat labo(

CacheWaitingForType StallIndex;
RequestType RequestIndex;

int Column,
NuniberOfColumns=2;

HistogramlndexType HistogramIndex;

FILE *MatlabOut;

if ((MatlabOut=fopen("timing.m", "w"))==NULL)

printf' 'Can not open matlab output file.");
I

for (Requestlndex=0; Requestlndex<NumberOfRequestsAvailable; Requestlndex++)
{

fprintf (MatlabOut, "%s= [", RequestString [RequestlndexJ);
fprintf (MatlabOut, " %081u", RequestTimeHistogram [Request Index]1 [03);

Column=l;

for (Histogramlndex=1;
Histogramlndex<FileHistograxnMaxlndex;
Histograxnlndex++)

Co lumn++;
if (Column>NumberOfColumns)

Column-l;
fprintf (MatlabOut, ",\n

else

fprintf(MatlabOut,",t);

fprintf(MatlabOut," %081u",
RequestTimeHistogram(Requestlndex] [HistogramIndex]);

fprintf (MatlabOut, "3; \n\n"');

** ~Page 9- 8 *

** ~Record. c

** ~~RecordForl'at lab *

** Continued

for (Stalllndex=O; Stalllndex<NumberOfCacheWaitingForsAvailable; StallIndex-H-)

fprintf (MatlabOut, "%s= (", CacheWaitingForString [StallIndex));
fprintf (MatlabOut," %081u", StallTime~istogram[Stalllndex) [OJ),

Colunin=l;

for (Histograxnlndex=l;
Histogramlndex<FileHistogramMaxlndex;
Histogramlndex++)

f
Colum~n++;
if (Column>NumberOfColumns)

Columrn=l;
fprintf(MatlabOut, ",\n

else

fprintf(MatlabOut,",");

fprintf(MatlabOut," %081u".
StallTimeHistogrand StallIndex] [HistogramIndex]);

I

fprintf (MatlabOut,'1 ; \n\n"');

fclose (MatlabOut);

** Page 10- 0 **

** Buffer.c **

** Part Of SACS 1.0 **

** (StillAnother Cache Simulator) **
*. **

** Program Modified: 3/17/94
** File Modified: 3/17/94 **

** Author: William G. Smnith **
** Address: Electrical Engineering Department **

** Naval Postgraduate School **
** Monterey, CA 93940 **

** Copyright 1994, William G. Smith **
** **

** Permission to use, copy, modify, and distribute this software and **

** its documentation for any purpose and without fee is hereby granted *
** provided that the above copyright notice appears in all copies. No
** modified version of this program should be redistributed without the **

** authors consent. William G. Smith makes no warranty or
** representation, promise of guarantee, either expressed or implied, **

** with respect to this software's ability to produce valid results. **
** This program is provided "as is" any financial, personal or property **

** damage caused by the use of this program is the responsibility of the **

** user. **

/************************&**
** Page 10- 1 **

** Buffer.c **

** **

** Description:

** Buffer.c contains all functions that relate to the management of **

** the Read, Write, and Block Buffers. **

** Table of Contents **

** Cover Page age 10- 1 **

** List of Cache.c Function Declarations Page 10- 2 **

** Push() Page 10- 3
** Pop()....................................... Page 10- 4 **

** ChangeTopMemoryRequest() Page 10- 5 **

** Append().................................... Page 10- 6 **

** View()...................................... Page 10- 7 **

** Clear()..................................... Page 10- 8 **

** Order()..................................... Page 10- 9 **

** Splice().................................... Page 10-10
** Search().................................... Page 10-12 **

** UpdatingReadBuffer ()...................... Page 10-13 **

** RemoveZeroSizes() Page 10-15 **

** NoRequestsLeft () Page 10-16 **

#include "Global.h"

** Page 10- 2 **

Buffer.c **

** List of Buffer.c Function Declarations **

** Description: **

** This is a list of functions declarations within the file scope **

** of "Buffer.c". **

void Pusho; /* Page 10- 3 */
MemoryRequestType Pop(); /* Page 10- 4 */
void ChangeTopMemoryRequesto; /* Page 10- 5 */
void Append(); /* Page 10- 6 */
MemoryRequestType Viewo; /* Page 10- 7 */
void Clearo; /* Page 10- 8 /
void Ordero; /* Page 10- 9 */
void Splice(; /* Page 10-10 */
YesNoType Search(); /* Page 10-12 */
YesNoType UpdatingReadBuffer(; /* Page 10-13 */
void RemoveZeroSizes(); /* Page 10-15 */
YesNoType NoRequestsLeft(); /* Page 10-16 */

** ~Page 10- 3 *

** ~Buffer.c *

** ~Push *

**Description: *

** Push adds a new record to the top of the buffer.

void Push(Buffer, MemoryRequest)

BufferType *Buffer;
MemoryRequestType *MemoryReqljest;

BufferSizeType i;

if (Buffer->Full)

CacheWait ingFor=Buffer->Wait ingForFlag;

else

for (i-Buffer->Next; i>0; i--)
Buffer->MemoryRequest [i] =Buffer->MemoryRequest [i-i];

Buffer->Next++;
Buffer->MemoryRequest (0] =*MemoryRequest;
if (Buffer->Next>Buffer->Max) Buffer->Full=Yes;
Buffer->Empty=No;
if (CacheWaitingFor==Buffer->WaitingForFlag) CacheWaitingFor=Nothing;

** ~Page 2.0- 4 *

** ~Buffer. c

** ~Pop *

**Description: *

** Pop removes a record from the top of the buffer, and returns it to *

**the caller of the function. *

Bufr*p *Bffr

MemoryRequeStType MemoryRequest;
BufferSizeType i;

if (Butter->Empty 11I Buffer->Next==0)
I
printf("\n\n Tryed to Pop an empty buffer!\n\n");
exit (1);
I

else
{
MemoryRequest=Buffer->MemoryRequest [01;
for (i-0; i<Buffer->Next; i++)

Buffer->MemoryRequest [ii=BUffer-->MemoryRequest [i+1 J;
Buffer->Next--;
if (Buffer->Next==O) BUffer->Empty=Yes;

return (MemoryRequest.);

** ~Page 10- 5 *

** Buffer.c

** ~ChangeTop~emoryRequest *

**Description: *

** Push adds a new record to the top of the buffer. *

void ChangeTopMemoryRequest (Buffer, MemoryRequest)

BufferType *Buffer;
MemoryRequestType *MemoryReqljest;

f

if (Buffer->Empty==No && Buffer->Next>0)

Buff er->MemoryRequest [0 ,*MemuryRequest;

else

printf("\n\n Tryed to Pop an empty buffer!\n\n");
exit (1);

Page 10- 6 *

** ~Buffer. c

** ~Append *

**Description: *

** Append adds a new record to the bottom of the buffer. *

void Append(Buffer, MemoryRequest)

BufferType *Buffer;
MemoryRequestType *MemoryRequest;

f

if (Buffer->Full)

CacheWait ingFor=Buffer-> Wait ingForF lag;

else

Buffer->MemoryRequest [Buffer->Next] =*MemoryRequest;
Buffer->Next++;
if (Buffer->Next>Buffer->Max) Buffer->Full=Yes;
Buffer->Empty-No;
if (CacheWaitingFor==Buffer->WaitingForFlag) CacheWaitingFor=Nothing;

/ ******* *-A* k k.**** ************************** *

** Page 10- 7
Buffer. c

** ~View *

**Description: *

** ~View returns a copy of the top record in the buffer without *

**altering the buffer. *

BufferType *Buffer;

MemoryRequestType MemoryRequest;

if (Buffer->Empty)

printf('\n\n Tryed to View an empty buffer!\,n\n");
exit (1);

else

MernoryRequest-Buffer->MemoryRequest tO];

return (MemoryRequest);

** Page 10- 8 **

** Buffer.c **

Clear **

** Description: **

"Clear removes all entrees in the buffer. **

void Clear (Buffer)

BufferType *Buffer;

{
Buffer->Next=0;
Buffer->Full=No;
Buffer->Empty=Yes;
I

* ~Page 10- 9 *

* Buffer.c

* ~Order *

*Description: *

* Order sorts all of the entries in the buffer by priority such *

*that the highest priority (lowest priority number) is at the top. *

-oid Order (Buffer)

BufferType *Ruffer;

MemoryRequestType TrnpMemoryRequest;
YesNoType Change=Yes;
BufferSizeType i;

while (! (Buffer->Empty) && Change)

Change-No;
for (i-Buffer->Next-1; i>0; i--)

if (Buffer->MemoryRequest ti].Priority<
Buffer->MemoryRequest [i-i] .Priority)

TmnpMemoryRequest=Buffer->MemoryRequest (i];
Buffer->MemoryRequest (ii -Buffer->MemoryRequest [i-i];
Buffer->MemoryRequest (i-i] =TmpMemoryRequest;
Change=Yes;

** Page 10-10
** Buffer.c **

** Splice **

** Description: **

** Splice is buffer utility that takes a one byte memory request and **
** enters it into a buffer if the buffer does not already have the byte. **
** Splice will first searchthe ReadBuffer for the byte if it can't find a **
** request in the buffer that contains the byte then it will search for a *
** memory request that has data from the same block. If one is found
** then the request is modified to include the new read byte request. **
** If no suitable request can be found then Splice will add a one byte
** memory request to the Buffer.

void Splice (Buffe- ,Address, RequiredSize, Block, Priority)

BufferType *Buffer;
AddressType Address;
SizeType RequiredSize;
SizeType Block;
PriorityType Priority;

BufferSizeType BufferIndex;
YesNoType FoundByte=No;
AddressType FrontAddress;
AddressType BackAddress;
AddressType CurrentBlockAddress=BlockAddress(Address);
SizeType NextSize;

MemoryRequestType MemoryRequest;

MemoryRequest.Address = Address;
MemoryRequest.Size = 1;
MemoryRequest.RequiredSize = 0;
MemoryRequest.Block = Block;
MemoryRequest.Priority = Priority;
MemoryRequest.AccessInProgress = No;
MemoryRequest.TimeToExecute = 0;
MemoryRequest.CompletionTimeEstimate = 0;
if (RequiredSize>0) MemoryRequest.RequiredSize-1;

** Page 10-11
** ~Buffer.c *

** ~Splice *

** ~continued *

if (I (Buffer->Empty))
f
for (Bufferlndex=0; Bufferlndex<Buffer->Next; Bufferlndex++)

f
if (BlockAddress (Buffer->MemoryRequest [BufferIndex] .Add~ress) ==

CurrentBlockAddress)

NextSize-i;
FrontAddress-Buffer->MemoryRequest (BufferIndex] .Address;
BackAddress =FrontAddress;
while (FoundByte--No && NextSize<-BlockSize &&

NextSize<- (Buffer->MemoryRequest [BufferIndex].Size+l))

if (BackAddress--Address)

if (NextSize>Buffer->MemoryRequest(Bufferlndex] .Size)
Buffer->MemoryRequest (BufferIndex] .Size=NextSize;

if (RequiredSize>O)
Buffer->MemoryRequest [BufferlndexJ .RequiredSize=NextSize;

if (Buffer->MemoryRequest[Bufferlndex] .Priority>Priority)
Buffer->MemoryRequest [BufferIndex] .Priority=Priority;

FoundByte-Yes;

if (FrontAddress--Address &
Buffer->MemoryRequest (BufferIndex] .AccesslnProgress--No)

I
Buffer->MemoryRequest (BufferIndex].Size=NextSize;
if (RequiredSize>O)

Buffer->MemoryRequest [BufferIndex] .ReqfuiredSize++;
if (Buffer->MemoryRequest[Bufferlndex] .Priority>Priority)

Buffer->MemoryRequest [BufferIndex] .Priority=Priority;
FoundByte-Yes;
I

NextSize++;
if (NextSize>Buffer->MemoryRequest [BufferIndex] Size)

FrontAddress--;
BackAddress++;
if (BlockAddress(FrontAddress) !-CurrentBlockAddress)

FrontAddress+-BlockSize;
if (BlockAddress (BackAddress) !-CurrentBlockAddress)

BackAddress--BlockSize;
I

if (Buffer->MemoryRequest(Bufferlndex] .Size-=BlockSize &
Buffer->MemoryRequest [BufferIndex] .AccesslnProgress--No)

Buffer->MemoryRequest (BufferIndex] .Address-RequestAddress;
Buffer->MemoryRequest [BufferIndex] .RequiredSize-RequestSize;

if (FoundByte--No) Append (Buffer, &MemoryRequest);

** ~Page 10-12 *

** ~Buffer.c *

** ~Search *

**Description: *

** ~Search checks a buffer to see if it contains a byte addressed by *

Address. *

YesNoType Search (Buffer, Address)

BufferType *Buffer;
AddressType Address;

i

BufferSizeType BufferIndex;
AddressType ByteAddress;
AddressType CurrentBlocicAddress=B~lockAddress (Address);
SizeType NoBytes;
YesNoType FoundByte=No;

if (! (Buffer->Empty))

for (Bufferlndex=O; Bufferlndex<Buffer->Next; Bufferlndex++)

if (BlockAddress (Buffer->MemoryRequest fBufferlndex] .Address) ==

CurrentBlockAddress)

ByteAddress=Buffer->MemoryRequest (BufferIndex] .Address;
for (NoBytes=0;

NoBytes<Buffer->MemoryRequest [BufferIndex] .Size;
NoBytes++)

if (ByteAddress==Address) FoundByte=Yes;
ByteAddress++;
if (BlockAddress (ByteAddress) !=CurrentBlockAddress)

ByteAddress-=BlockSize;

return (FoundByte);

/** ********************************

** Page 10-13 **
** Buffer.c

** UpdatingReadBuffer **

** Description: **

** UpdatingReadBuffer takes a byte of data provided by a CPU write **
** reqeust and checks to see if it is needed in the read buffer. If the **
** byte is needed then the MemoryRequest is modified so that the byte **
** is no longer in the request. **

YesNoType UpdatingReadBuffer(Address)

AddressType Address;

AddressType ByteAddress;
AddressType CurrentBlockAddress = BlockAddress (Address);
BufferSizeType BufferIndex;
YesNoType FoundByte - No;

** ~Page 10-14 *

** ~Buffer.c *

** ~UpdatingReadBuffer *

** ~continued *

if (! (ReadBuffer.Empty))

for (Bufferlndex-0; Bufferlndex<ReadBuffer .Next; Bufferlndex++)

if (BlockAddress (ReadBuffer.MemoryRequest [BufferIndex] .Address)==
CurrentBlockAddress

&& Read&. 'fer.MemoryRequestfBufferIndex] .Access InProgress==No)
f
if (ReadBuffer .MemoryRequest [BufferIndex).Size>0)

ByteAdd~res s=ReadBuf fer. MemoryRequest [Buffer Index I.Address +
ReadBuffer.MemoryRequest (BufferIndex] .Size - 1;

if (ByteAddress==Address)

fedufrMmr~qet[ufrne).ie-
i (ReadBuffer .MemoryRequest[BufferIndex] .Riequre-ie
i ReadBuffer.MemoryRequest [BufferIndex] .RqieSize)
ReadBuffer .MemoryRequest [BufferIndex] .Reired) ze
ReadBuffer.MemoryRequest [BufferIndex] .RueSize;

FoundByte=Yes;

if (ReadBuffer.MemoryRequestEBufferlndex) .Size>0)
f
if (ReadBuffer.MemoryRequest[Bufferlndex] .Address--Address)

f
ReadBuffer .MemoryRequest (BufferIndex] .Address++;
if (BlockAddress(ReadBuffer.MemoryRequest[Bufferlndex] .Address)

=-CurrentBlockAddress)
ReadBuffer .MemoryRequest [BuffLerIndex] .Acidress-=BlockSize;

if (ReadBuffer.MemoryRequest [BufferIndex] .Size >0)
ReadBuffer.MemoryRequest [BufferIndex] .Size--;

if (ReadBuffer .MernoryRequest [BufferIndex] .RequiredSize>0)
ReadBuffer.MemoryRequest (BufferIndex] .RequiredSize--

FoundByte=Yes;

RemoveZeroSizes (&ReadBuffer);

return (FoundByte);

** ~Page 10-15 *

** ~Buffer.c *

** ~RemoveZeroSizes *

**Description: *

** ~RemoveZeroSizes removes all entrees that have a zero size from *

**the buffer. *

void RemoveZeroSizes (Buffer)

BufferType *Buffer;

{ufrieyei0

BufferSizeType j-0;

while (j <Buffer->Next)

if (Buffer->MemoryRequest(j] .Size-==0&
!Buffer->MemoryRequest (jJ.AccesslnProgress)

f
j ++;
Buffer->Full-No;
I

else
I
Buffer->MemoryRequest Ci] =Buffer->MemoryRequest iJ];

Buf fer->Next-i;
if (Buffer->Next--0) Buffer->Empty-Yes;

** ~Page 10-16 *

** ~Buffer.c *

** ~NoRequestsLeft *

**Description: *

** ~NoRequestsLeft returns Yes if tPere are no more requests left *

**in the buffer. *

YesNoType NoRequestsLeft (Buffer)

BufferType *Buffer;

BufferSizeType i;

for (i=0; i<Buffer->Next; i++)

if (Buffer->MemoryRequest Eu .RequiredSi~ze>0) return(No);

return (Yes);

** Page 11- 0 **

** Array.c **

** Part Of SACS 1.0 **

** (StillAnother Cache Simulator) **

** Program Modified: 3/17/94 **
** File Modified: 3/17/94 **

** Author: William G. Smith **
** Address: Electrical Engineering Department **
** Naval Postgraduate School **

Monterey, CA 93940 **

Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and **
** its documentation for any purpose and without fee is hereby granted *
** provided that the above copyright notice appears in all copies. No **
** modified version of this program should be redistributed without the *
** authors consent. William G. Smith makes no warranty or **
** representation, promise of guarantee, either expressed or implied, **
** with respect to this software's ability to produce valid results. **

** This program is provided "as is" any financial, personal or property *
** damage caused by the use of this program is the responsibility of the **
** user.

** Page 11- 1 **
** Array.c **

** Description: **

** Array.c contains all functions that relate to definition and **
** freeing, or allocation, and deallocation of arrays. **

** Table of Contents **

** Cover Page Page 11- 1 **
List of Array.c Function Declarations Page 11- 2 **

** DefineArraylD() Page 11- 3 **
** DefineArray2D() Page 11- 4 **

** FreeArraylD() Page 11- 5 **
FreeArray2D() Page 11- 6 **

r . . .

** Page 11- 2 **

** Array.c **

** List of Array.c Function Declarations **

** Description: **

** This is a list of function declarations within the file scope **
** of "Array.c". **

int *DefineArraylD(); /* Page 11- 3 */
int **DefineArray2D 0; /* Page 11- 4 */
void FreeArraylD(0; /* Page 11- 5 /
void FreeArray2D 0; /* Page 11- 6 */

** Page 11- 3 **

** Array.c **
** **

** DefineArraylD **

** Description: **

** DefineArraylD allocates memory large enough for a 1 dimensional **

** array of length Xmax, where each element has "size" bytes. **

int *DefineArraylD(Xmax, size)

unsigned Xmax;
unsigned size;

{

int *Array;

Array=(int*) calloc(Xmax,size);

return(Array);

/**
** Page 11- 4 **

** Array.c **

** DefineArray2D **

** Description: **
** **

** DefineArray2D allocates memory large enough for a 2 dimensional *
** array Xmax, by Ymax, where each element has "size" bytes.
** **

int **DefineArray2D(Xmax, Ymax, size)

unsigned Xmax;
unsigned Ymax;
unsigned size;

{

int **Array;
unsigned x;

Array-(int**) calloc(Xmax, size);

for (x-0; x<Xmax; x++) Array[x]=(int*) calloc(Ymax,size);

return (Array);

I

** Page 11- 5 **
** Array.c **

** FreeArraylD **

** Description: **

** FreeArraylD deallocates the memory assigned to the 1 dimensional **
** array. **
** **

void FreeArraylD(Array,Xmax)

int *Array;

f

free (Array);

}

** Page 11- 6 **
** Array.c **
** t*

** FreeArray2D **

** Description: **

** FreeArray2D deallocates the memory assigned to the 2 dimensional **

** array. **

void FreeArray2D (Array, Xmax, Ymax)

int **Array;
unsigned Xmax;
unsigned Ymax;

i

unsigned x;

for (x-0; x<Xmax; x++) free(Array[x]);

free(Array);

Page 12- 0 **

TestSACS.c *
** **

** Part Of SACS 1.0 **
** (StillAnother Cache Simulator) **

** Program Modified: 3/17/94 **

** File Modified: 3/17/94 **

** Author: William G. Smith **

** Address: Electrical Engineering Department **
** Naval Postgraduate School **

** Monterey, CA 93940 **

** Copyright 1994, William G. Smith **
** **

** Permission to use, copy, modify, and distribute this software and **
** its documentation for any purpose and without fee is hereby granted **
** provided that the above copyright notice appears in all copies. No **
** modified version of this program should be redistributed without the **

** authors consent. William G. Smith makes no warranty or **
representation, promise of guarantee, either expressed or implied,

** with respect to this software's ability to produce valid results. **
** This program is provided "as is" any financial, person- or property *
** damage caused by the use of this program is the responsibility of the **
** user. **

** Page 12- 1 **
** TestSACS.c **
** Description: **

** TestSACS randomly creates instructions and writes them to **
** "SACS.Dat". The instrcutions are generated by first choosing **
* NoTestCases. The Number of test cases to be used will always
** be less than MaxNoTestCases. Then the TestCaseChoosen is picked **
** from TestCases. TestCases represent different possible ways in **
** which an address trace could procede. PredictedNoRead, HitsInTest, **
** and PredictedNoWriteHitsInTest, tells TestSACS how many hits it can
** expect because, it used a specific test. **

** Example: **

** main() **

** unsigned long int NoLoadHits; **
** unsigned long int NoLoadRequests; **

** TestSACS(NumberOfRequests, NumberOfHits); **

** printf("\n\nNumber of read hitsul",NoReadHits);**
** printf("\n\nNumber of read requests-%ul",NoReadRequests); **
** printf("\n\nNumber of write hits-%ul",NoWriteHits);t**
** printf("\n\nNumber of write reqhests=%ul",NoWriteRequests);
** **

** } **

** Table of Contents

** Cover Page Page 12- 1
** List of definitions Page 12- 2
** List of TestSACS.c Function Declarations .. Page 12- 3 **
** TestCases Page 12- 4
** PredictedNoReadHits Page 12- 5 **
** PredictedNoWriteHits Page 12- 5 **
** ChangeArguments() Page 12- 6 **
** TestSACS() Page 12- 8 **
** CreateInstructionSets() Page 12- 9 **
** Creating One Instruciton at a Time .. Page 12-10 **
** ShufflingInstructionSets() Page 12-12 **
** CanBeSwitched() Page 12-14 **
** WriteInstructionSet() Page 12-15 **

#include<time.h>

#include "Global.h"

** Page 12-2 **

** TestSACS.c **

** Description: **

** List of definitions. **

#define MaxNoOfTestCases 3 /* Can be changed without other changes. */

#define NoTestCaseChoices 64 /* I/ Need to change TestCases, and */
#define NoLoadStoresInTestCases 7 /* \\ PredictedNoHitsInTest */

#define lrand() ((unsigned long) ((rand() *Ox1000l+rand())*Oxl0001+rando))

/**
** Page 12- 3
** TestSACS. **

** List of TestSACS.c Function Declarations

** Description: **

** This is a list of functions declarations within the file scope
** of "TestSACS.c". **

void ChangeArguments 0; /* Page 12- 6 */
void TeStSACSO; /* Page 12- 8 */
void CreateInstructionSets(); /* Page 12- 9 */
void ShufflingInstructionSets(; /* Page 12-12 */
YesNoType CanBeSwitched(0; /* Page 12-14 */
void WriteInstructionSet(0; /* Page 12-15 */

** Page 12- 4 **
** TestSACS. c **

** TestCases **

** Description: **
** **

** Loading Test Cases, the each number is an indexe for an array of **
** BlockAddressChoices. **

int TestCases (NoTestCaseChoices] (NoLoadStoresInTestCases]'=
4
4 1, 1, 1, 2, 2, 2, 11, 4 1, 1, 1, 2, 2, 2, 21,
4 1, 1, 2, 1, 2, 2, 11, 1 1, 1, 2, 1, 2, 2, 21,

1 1 , 2, 2, 2, 2, 11, f 1, 1, 2, 2, 2, 2, 21,
4 1, 1, 2, 2, 2, 2, 11, 1 1, 1, 2, 2, 2, 2, 21,
4 1, 1, 2, 2, 2, 2, 1), 4 1, 1, 2, 2, 2, 2, 21,
j 1, 2, 1, 2, 2, 2, 1), 4 1, 2, 1, 2, 1, 2, 21,
1 1, 2, 1, 2, 2, 2, 11, 4 1, 2, 1, 2, 2, 2, 21,
1 1, 2, 1, 2, 2, 2, 11, f 1, 2, 1, 2, 2, 2, 21,
1, 1, 2, 1, 2 , 2 , 11, 1, I2, 1 2, 2, 2, 2),

4 1, 2, 2, 1, 1, 2, 11, 4 1, 2, 2, 1, 1, 2, 21,
1 1, 2, 2, 1, 2, 1, 1), 1 1, 2, 2, 1, 2, 1, 21,
1 1, 2, 2, 1, 2, 2, 11, 1 1, 2, 2, 1, 2, 2, 21,

4 1, 2, 2, 2, 1, 1, 11, 1 1, 2, 2, 2, 1, 1, 21,
1 1, 2, 2, 2, 1, 2, 11, 4 1, 2, 2, 2, 1, 2, 21,
1 1, 2, 2, 2, 2, 1, 11, 4 1, 2, 2, 2, 2, 1, 21,
1 1, 2, 2, 2, 2, 2, 1), 4 1, 2, 2, 2, 2, 2, 21,
1;, 2, 1, 1, 1, 1, 1, f 1, 2, 1, 1, 1, 1, 2),
|1, 2, 1, 1, 1, 2, 1), j 1, 2, 1, 1, 1, 2, 2},
(1, 2, 1, 1, 2, 1, 1}, j 1, 2, 1, 1, 2, 1, 21,
{1, 2, 1, 1, 2, 2, 1), f 1, 2, 1, 1, 2, 2, 2),
1 , 2, 1, 2, 1, 1, 1i} f 1, 2, 1i, 2, 1, 1, 2),
1 , 2, 1, 2, 1, 2, 11, 1 1, 2, 1, 2, 1, 2, 2),

(1, 2, 1, 2, 2, 1, 1), (1, 2, 1, 2, 2, 1, 2),
1 , 2, 1, 2, 2, 2, 1i} f 1, 2, 1, 2, 2, 2, 2},
1 , 2, 2, 1, 1, 1, 1i , 1 1, 2, 2, 1, 1, 1, 2),
1 , 2, 2, 1, 1, 2, 1I} j 1, 2, 2, 1, 1, 2, 2),
1 , 2, 2, 1, 2, 1, 1}, f 1, 2, 2, 1, 2, 1, 2),
1 , 2, 2, 1, 2, 2, 1}, f 1, 2, 2, 1, 2, 2, 21,
1 , 2, 2, 2, 1, 1, 1}, f 1, 2, 2, 2, 1, 1, 21,

{ 1, 2, 2, 2, 1, 2, 11, { 1, 2, 20, 2, 1, 2, 21,
1 1, 2, 2, 2, 2, 1, 11, j 1, 2, 2, 2, 2, 1, 2),
1 , 2, 2, 2, 2, 2, 11, (1, 2, 2, 2, 2, 2, 2)

/********** ***************•********************* *******************************

• * Page 12- 5 **

• * TestSACS. c

• * PredictedNoReadHits, and PredictedNoWriteHits **

•* Description: **

• * No Hits Predicted for each test case. **

int PredictedNoReadHitsInTest [NoTestCaseChoices)]=

6, 5, 5, 4,
5, 4, 4, 3,
5, 4, 4, 3,
4, 3, 3, 2,
5, 4, 4, 3,
4, 3, 3, 2,
4, 3, 3, 2,
3, 2, 2, 1,
5, 4, 4, 3,
4, 3, 3, 2,
4, 3, 3, 2,
3, 2, 2, 1,
4, 3, 3, 2,
3, 2, 2, 1,
3, 2, 2, 1,
2, 1, 1, 0
1;

int PredictedNoWriteHitsInTest (NoTestCaseChoices]=

0, 0, 0, 1,
0, 1, 1, 2,
0, 1, 1, 2,
1, 2, 2, 3,
0, 1, 1, 2,
1, 2, 2, 3,
1, 2, 2, 3,
2, 3, 3, 4,
0, 1, 1, 2,
1, 2, 2, 3,
1, 2, 2, 3,
2, 3, 3, 4,
1, 2, 2, 3,
2, 3, 3, 4,
2, 3, 3, 4,
3, 4, 4, 5

** ~Page 12- 6
** ~TestSACS . c

** ~ChangeArguments *

**Description: *

** ~ChangeArguments, change the global variables in SACS that the *

**user can change. *

void ChangeArgumentso(

SizeType WordSizeLimit =8;
SizeType WordsPerSubBlock =4;
SizeType NumoberOfSubBlocksLimit - 4;
SizeType NumberOfBlocksLimit - 32;
AssociativityType AssociativityLimit =8;
BufferSizeType BufferSizeLim~it =8;
TimeType TimeLimit =8;

wordSize = (randO% (WordSizeLimit-1))+l;
SubBlockSize - WordSize* ((rand ()%WordsPerSubBlock) +1);
BlockSize - SubBlockSize

* ((rand()%N4umberOfSubBlocksLirrat)+l);

Associativity -(rand()%AssociativityLimi~t) +2;
CacheSize - BlockSize*Associativity*

((rand()%NumberOfBlocksLimit) +1);

ReadCacheAccessTime -rand()%TimeLimit;
ReadCacheliitTime -rand() 'TimeLimit;
ReadCacheMissTime -rando%TimeLimit;
WriteCacheAccessTime -rand ()%TimeLim~it;
WriteCacheHitTime -rand C)%TimeLimit;
WriteCacheMissTime -rand()%TimeLimit;
MemoryAccessTime =rando%TimeLimit;
MemoryTransferTime -rand()%TimeLimit;
BufferCacheAccessTime -rand()%TimeLimi~t;

Read~ufferSize -(rand()%BufferSizeLimit)+1;
WriteBufferSize - (rand()%BufferSizeLim~it)+1;

BlockReplacementPolicy - rand()%NuniberOfReplacementPoliciesAvailable;
WritePolicy -rand()%NumberOfWritePoliciesAvailable;
WriteMissPolicy - rand()%Number~fWriteMissPoliciesAvailable;
ReadForward - rando%Unknown;
CPUWaitsForCacheWrites - rand()%Unknown;
SearchBlockBuffer - rand()%tUnknown;
UpdateReadBuffer - rando%Unknown;
RemoveReadDuplicates - rand C)%Unknown;
RemoveWriteDuplicates - rand()%Unknown;

ReadPriority = (rand()% (NoPriority-1))+1;
WritePriority - (rand)% (NoPriority-1))+1;
ReadForwriteAllocatePriority - (rand()% (NoPriority-1)) +;
WriteDirtyBlocjcPriority = (randC)% (NoPriority-1)) +;

/**
** Page 12- 7 **

TestSACS.c **

** ChangeArguments **

** continued **

** Description: **

** Ensuring that the new arguments are valid combinations. **

if (SearchBlockBuffer=-No) RemoveReadDuplicates=No;

if (UpdateReadBuffer ==Yes) WordSize-SubBlockSize;

}

** Page 12- 8
** ~TestSACS.c *

** TestSACS

**Description: *

** TestSACS will create a test set, shuffle the instructions, and
**write them out to "ISACS.Dat". *

void TestSACS (NumberOfRequests, NumberOfliits)

ScoreType *NumerOfRequIests;
ScoreType *NumerOfHits;

I

char Request LMaxNoOfTestCases*NoTestCaseChoices+1];
AddressType DataAddress (MaxNoOfTestCases*NoTestCaseChoices+l];
SizeType Size (MaxNoOfTestCases*NoTestCaseChoices+11;
TimeType TimeUntilNextRequest (MaxNoOfTestCases*NoTestCaseChoices+1];
int Irnax=O;

DisplayTestingHeader 0;

CreatelInstruct ionSets (Request, DataAddress, Size, TimeUntilNextRequest,
& Imax,,
NumberOfRequests, NumberOf~its);

ShufflinglnstructionSets (Request, DataAddress, Size, TimetintilNextRequest,
Imax);

rewind (DataFile);

WritelnstructionSet (Request, DataAddress, Size, TimeUntilNextRequest,
Irnax);

rewind (DataFile);
EndOfDataFile-No;

/**
** Page 12- 9 **

TestSACS.c **

** CreateInrtructionSets **

** Description: **

** The instructions are created from a set of test cases. The **
** the number of predicted hits for each case is stored in
** PredictedNoHitsInTest. CreateInstructionsSets randomly chooses the **

NoOfTestCases to be used, and randomly selects the individual **
** TestCases. The BlockAddressChoices for each test case is also chosen **
** randomly. The DataAddress, and Size of each instuction is chosen **

** randomly such that they are within the block chosen. The NoLoadHits **
** is predicted by summing up all of the PredictedNoHitsInTest. **

void CreateInstructionSets(Request,
DataAddress,
Size,
TimeUntilNextRequest,
Imax,
NumberOfRequests,
NumberOfHits)

char *Request;
AddressType *DataAddress;
SizeType *Size;
TimeType *TimeUntilNextRequest;
int *Imax;
ScoreType *NumberOfReque5ts;
ScoreType *NumberOfHits;

TimeType MaxTimeUntilNextRequest = 101;
AddressType BlockAddressChoices(NumberOfRequestsAvailable];
SizeType SetChosen;

int TestCaseIndex;
int LoadIndex;
int NoOfTestCases;
int TestCaseChosen;
int i,j,k;

time t t;
/* srand((unsigned) time(&t)); */ /* Uncomment to randomize each test run */

/* otherwise every test run will be
/* identical. Leaving the seed
/* commented out allows any errors */
/* found by -test to be revisited. */

NumberOfRequests[Read 1-0;
NumberOfRequests[Write]-0;
NumberOfHits [Read 1=0;
NumberOfHits [Write]-0;

Page 12-10 *

TestSACS c *

** ~CreatedlnstrutionSets *

** Continued

**Description: *

** ~Creating one instruction at a time. *

*Iax-0;
NoOfTestCases-rand () %MaxNoOfTestCases+1;
for (TestCaselndex-0; TestCaselndex<NoOfTestCases; TestCaselndex++)

f

TestCaseChosen-rand ()%NoTestCaseChoices;
Set Chosen-rando0 NuxnberOf Sets;

BlockAddressChoices (Read] =
(lrando/ (NoOfTestCases*NuxnberOfSets*BlockSize))

*NoOfTestCases+TestCaselndex)
*Nme~~t + SetChosen) *BlockSize;

BlockAddressChoices [Write] =BlockAddressChoices [Read];
if (rand()%.2)

BlockAddressChoices [Write]-
(lrand()/ (NoOfTestCases*NuxnberOfSets*BlockSize))
*NoOfTestCases+TestCaselndex)

*NunlberOfSets + SetChosen) * BlockSize;

if (BlockAddress (BlockAddressChoices [Read]) I-BlockAddressChoices (Read])
printf ("Read is not a BlockAddress");

if (Blockkddress(BlockAddressChoices(Write]) !=BlockAddressChoices[Write])
printf("Write is not a BlockAddress");

if (Set(BlockAddressChoices[Read]) 1-SetChosen)
printf ("Read is not a good Set");

if (Set(BlockAddressChoices(Write]) 1-SetChosen)
printf ("Write is not a good Set");

if (BlockAddressChoices [Read] -'BlockAddressChoices (Write])
printf ("%4dE", TestCaseChosen);

else
printf ("%4dN", TestCaseChosen);

if (TestCaselndex%15=-14) printf("\n"');

Page 12-11
** TestSACS c

** Createdlnstrut jonSets
** ~Continued *

if (BlockAddressChoices (Read] ==BlockAddressChoices [Write])
f
NumberOfHits [Read] +=PredictedNoReadHitslnTest [TestCaseChosen];
NuxnberOfHits [Write] +-PredictedNoWriteHitsInTe3t [TestCaseChosen];

Loadlndex=O;
while (TestCases [TestCaseChosen] [LoadIndex] ==Write &&

WriteMissPolicy!=WriteAllocate &&
Loadlndex<NoLoadStores InTestCases)

f
NuxnberOfHits [Write] -- ;
Load Index++;

if (TestCases[TestCaseChosen] [O]==Read && TestCaseChosen!=O)
NuxnberOfHits [Write] ++;

if (TestCases[TestCaseChosen](0)=-Write &&
WriteMissPolicy--WriteAllocate)

NuxnberOfHits [Read] ++;
I

else
f
NuxuberOfHits [Read) +-PredictedNoReadHitsInTest [TestCaseChosen];
if (WriteMissPolicy==WriteAllocate)

NuxnberOfHits (Write] +=PredictedNoWriteHitslnTest [TestCaseChosen];
I

for (Loadlndex-O; Loadlndex<NoLoadStoreslnTestCases; Loadlndex++)
f
if (TestCases[TestCaseChosen] [Loadlndex]-=Read)

f
Request(*Inax]=' r';
NuxnberOfRequests (Read] ++;
I

else

Request[*Imax]=' w';
NuxnberOfRequests [Write] ++;
I

DataAddress (*Imax]
BlockAddressChoices (TestCases [TestCaseChosen) [LoadIndex]];

Size [* Imax] =lrand ()%BlockSize+1;
if (Size[*ImaxB<BlockSize)

DataAddress(*Irnax] += lrand()% (BlockSize-Size[*Irnax])+1;
TimeUntilNextRequest (*Imax] =lrand ()%MaxTimeUntilNextRequest;

(*Irnax) ++;

Page 12-12 *

** ~TestSACS . c

** ShufflingInstruct jonSets

**Description: *

** ~Shuffling Instruction Sets. *

void ShufflinglnstructionSets (Request,
DataAddress,
Size,
TimeUntilNextRequest,
Imax)

char *Request;
AddressType *DataAddress;
SizeType *Size;
TimeType *TimeUntjlNextRequest;
irit Imax;

f

int Jump;
char RequestTemp;
AddressType AddressTemp;
SizeType SizeTemp;
Time Type TimeTemp;
int i,j,k;

Page 12-13 *

TestSACS c

ShufflinglnstructionSets
continued *

for (i=1; i<Imax; ij+-)

Jump=Yes;

for (j-i; j>O && Jump==Yes; j--)
f

if (BlockAddress (DataAddress [j])==BlockAddress (DataAddress (j-1]))
Jump=No;

if ((rand()% (Associativity*NoLoadStoreslnTestCases))==O)
Jump=No; /* Gives Uniform distrabution. *

if (Jump=-Yes)
Juxnp-CanBeSwitched(DataAddress, j, Imax);

if (Jump==Yes)
i
ReqfuestTemp-Request [j-11;
Request (j-lihRequest [jJ;
Request (ii RequestTemp;

AddressTemp-DataAddress (j-1);
DataAddress [j-l]I=DataAddress (ji;
DataAddress fi)=AddressTemp;

SizeTemD=Size (j-1];
Size[j-1J-Size(j);
Size [ii SizeTemp;

TimeTemp=TimeUntilNextRequest (j-1 3;
TimeUntilNextRequest [j-] =TimeUntilNextRequest (ji;
TimeUntilNextRequest (j]I=TimeTemnp;

** Page 12-14
** ~CanBeSwitched *

**DESCRIPTION: *

** ~Can InstructionAddress[iJ be switched with Instructionfi-1]. *

**If so return Yes, else return No. *

YesNoType CanBeSwit ched (DataLAddress, Io, Inlax)
unsigned long mnt *DataAddress;
int I0;
mnt Imax;

int i'j;
YesNoType Jump-Yes;
YesNoType NoJumped;
YesNoType JumpedBefore;
unsigned long mnt Addressiumped(1001;

Jump-Yes;

NoJumped-1;
AddressJumped(O]=BlockAddress (DataAddress (10]);
i-Io-2;
while (i>=O && NoJumped<Associativity &

BlockAddress (DataAddress fi]) =BlockAddress (DataAddress (Io-1]))
I
JumpedBefore-No;
for (j-0; j<NoJumped; j++)

if (AddressJumped~jJ==BlockAddress (DataAddress (iJ)) JumpedBefore-Yes;
if (JumpedBefore--No && NoJumped<Associativity)

AddressJumped (NoJumped++]=BlockAddress (DataAddress (ii);
in-.
I

if (NoJumped>-Associativity) Jump-No;

NoJumped-1;
AddressJumped (0]=BlockAddress (DataAddress[(b-i]);
i-Io+1;
while (J<Irnax && NoJumped<Associativity &&

BlockAddress (DataAddress (i]) !-BlockAddress (DataAddress (10]))
f
JumpedBe fore-No;
for (j-0; j<NoJumped; j++)

if (AddressJumped~j]--BlockAddress (DataAddress [ii)) JumpedBefore=Yes;
if (JumpedBefore--No && NoJumped<Associativity)

AddressJumped (NoJumped++]=B~l ckAddress (DataAddress [i]);

if (NoJumped>-Associativity) Jump-No;

return (Jump);

** Page 12-15
** TestSACS **

** ~Write InstructionSet *

**Description: *

** ~Write SACS.Dat one line at a time. *

voi~d WritelnstructionSet (Request,
DataAdciress,
Size,
TimeUntilI~extRequest,
Imax)

char *Request;
AddressType *DataAddress;
SizeType *Size;
TimeType *TimeUntilNextReq.Jest;
mnt lImax;

int i;

for (i-0; i<Imax; i++)
f
fprintf (DataFile, "%c " Request (il);
fprintf (DataFile, "%O.,0X ",DataAddress [i]);
fprintf (DataFile, "%2u " ,Sizet(i]);
fprintf (DataFile, "%lu" ,TimneUntilNextRequest (iJ);
fprintf (DataFile, "\n");

fprintf (DataFile, "End Of Trace\n\n");
fprintf (DataFile, "If any instructions follow\n");
fprintf(DataFile,"they were not used for the\n");
fprintf (DataFile, "last run.\n)
fprintf (DataFile, "\n'");

I

/**
** Page 13- 0 **

** Checking.c **
** **

** Part Of SACS 1.0 **

(StillAnother Cache Simulator) **

** Program Modified: 3/17/94 **
** File Modified: 3/17/94 **

** Author: William G. Smith **

** Address: Electrical Engineering Department **
** Naval Postgraduate School **
** Monterey, CA 93940 **

Copyright 1994, William G. Smith **

** Permission to use, copy, modify, and distribute this software and
** its documentation for any purpose and without fee is hereby granted **
** provided that the above copyright notice appears in all copies. No **

** modified version of this program should be redistributed without the **

** authors consent. William G. Smith makes no warranty or
** representation, promise of guarantee, either expressed or implied, **
** with respect to this software's ability to produce valid results. **

** This program is provided "as is" any financial, personal or property **

** damage caused by the use of this program is the responsibility of the **

** user. **

** Page 13-1 **
** Checking.c **

** Description:

** Checking.c contains all of the functions that relate to error **

** checking. Note that an error could be raised anywhere. The error **
** mesage will contain the procedure name in square brackets. This **
** section contains the functions spicifically designed to check variable **
** to see if they are consitant with each other, and if they are within
** set boundarys. **

** Table of Contents **

** Cover Page Page 13- 1
** List of Cache.c Function Declarations Page 13- 2 **

** Checking() Page 13- 3 **
** CheckingConstants() Page 13- 4 **

** PrintConstError() Page 13-11 **
** CheckingForValuesOutOfBounds() Page 13-12 **
** PrintTinieBoundaryErroro; Page 13-15
** PrintScoreBoundaryErroro; Page 13-16
** PrintSizeBoundaryErroro; Page 13-17
** PrintEnumBoundaryErroro; Page 13-18 **
** CheckingForlnconsistencies() Page 13-19

PrintTotalTimeError() Page 13-21 **
** PrintTotalScoreError() Page 13-22 **
** CheckingPredictions() Page 13-23 **
** PrintScorePredictionError() Page 13-24 **
** PrintTimePredictionError() Page 13-25 **

#include "Global.h"

Page 13- 2
** ~Checking.c *

** List of Checking.c Function Declarations

**Description: *

** This is a list of function declarations within the file scope *

**of "Checking.c". *

void Checkingo; /* Page 13- 3 *
void CheckingConstants 0; /* Page 13- 4 *
void PrintConstError 0; /* Page 13-11 *
void CheckingForValuesOutOfBoundso; /* Page 13-12 *
void PrintTimeBoundaryError 0; f* Page 13-15 *
void PrintScoreBoundaryErroro; /* Page 13-16 *
void PrintSizeBoundaryError 0; /* Page 13-17 *
void PrintEnuniBoundaryError 0; /* Page 13-18 *
void Checking~orlnconsistencies 0; /* Page 13-19 *
void PrintTotalTimeError 0; /* Page 13-21 *
void PrintTotalScoreError 0; /* Page 13-22 *
void CheckingPredictions 0; /* Page 13-23 *
void PrintScorePredictionErroro; /* Page 13-24 *
void PrintTimePredictionErroro; /* Page 13-25 *

** Page 13- 3
** Checking.c

** Checking **

** Description: **

** Checking checks the global variables to insure that constants **
** remain constant, and Values are in bounds, als that there are no **

** inconsistencies. **

void Checking()

CheckingConstants(No);
CheckingForValuesOutOfBounds();
CheckingForInconsistencies();

** ~Page 13- 4
** ~Checking.c *

** ~CheckingConstants *

**Description: *

** Checking global constants to insure that they do not change,
**unless they are being Reset. *

void CheckingConstants (Reset)

YesNoType Reset;

f

static CacheSizeType CacheSizeCopy;
static SizeType BlockSizeCopy;
static SizeType SubBlockSizeCopy;
static AssociativityType AssociativityCopy;
static SizeType WordSizeCopy;

static TimeType ReadCacheAccessTimeCopy;
static TimeType ReadCacheliitTimeCopy;
static TimeType ReadCacheMissTimeCopy;
static TimeType WriteCacheAccessTimeCopy;
static TimeType WriteCacheHitTimeCopy;
static TimeType WriteCacheMissTimeCopy;

static TimeType MemoryAccessTimeCopy;
static TimeType MemoryTrans ferTimeCopy;
static TimeType BufferCacheAccessTimeCopy;

static BufferSizeType ReadBufferSizeCopy;
static BufferSizeType WriteBufferSizeCopy;

static BlockReplacementPolicyType BlockReplacementPolicyCopy;
static WritePolicyType WritePolicyCopy;
static WriteM~issPolicyType WriteMissPolicyCopy;
static YesNoType ReadForwardCopy;
static YesNoType CPUWaitsForCacheWritesCopy;
static YesNoType Search~lock~ufferCopy;
static YesNoType UpdateReadBufferCopy;
static YesNoType RemoveReadDuplicatesCopy;
static YesNoType RemoveWriteDuplicatesCopy;

static PriorityType ReadPriorityCopy;
static PriorityType WritePriorityCopy;
static PriorityType ReadrorWriteAllocatePriorityCopy;
static PriorityType WriteDirtyBlockPriorityCopy;
static PriorityType NoPriorityCopy;

static YesNoType CheckCopy;

static YesNoType KeyBoardlOCopy;
static char *DataFileNameCopy;

static HistogramlndexType ScreenHistograznMaxlndexCopy;
static HistogramlndexType FileliistogramMaxlndexCopy;

Page 13- 5
Checking.c

CheckingConstants *

** ~continued *

static SizeType NuxnberOfBlocksCopy;
SLadiC SizeType NumberOfSubBlocksCopy;
static SizeType NumberOfSetsCopy;

static AddressType *CacheBlocrk~ddressCopy;
static TimeType *LastCacheBlock~ccessTimeCopy;

static SizeType *CacheNextBlockCopy;

static YesNoType **CacheValidBitCopy;
static YesNoType **CacheDirtyBitCopy;

static TimeType **RequIestTimeHistogranCopy;
static TimeType **StallTjimeHistogramCopy;

static TimeType *TotalRequestTimeCopy;
static TimeType *TotalStallTimeCopy;

static ScoreType *NumberOfAccessesCopy;
static ScoreType *NumerOfCacheHitsCopy;
static ScoreType *NumberOfBufferHitsCopy;
static ScoreType *PredictedNumerOfAccessesCopy;
static ScoreType *PredictedNumerOfHitsCopy;

static FILE *Data'ileCopy;

Page 13- 6
** ~Checking. c

** CheckingConstants
** ~continued *

if (Reset)

I

CacheSizeCopy - CacheSize;
BlockSizeCopy - BlockSize;
SubBlockSizeCopy - SubBlockSize;
AssociativityCopy - Associativity;
WordSizeCopy -WordSize;

ReadCacheAccessTimeCopy - ReadCacheAccessTime;
ReadCacheliitTimeCopy - ReadCacheHitTime;
ReadCacheM~issTimeCopy = ReadCacheMissTime;
WriteCacheAccesSTimeCopy -WriteCacheAccessTime;
WriteCacheHitTimeCopy - WriteCacheHitTime;
WriteCacheMissTimeCopy - WriteCacheMissTime;

MemoryAccessTimeCopy -MemoryAccessTime;
MemoryTrans ferTimeCopy - MemoryTrans ferTime;
BufferCacheAccessTimeCopy - BufferCacheAccessTime;

Read~ufferSizeCopy - ReadBufferSize;
WriteBufferSizeCopy - WriteBufferSize;

BlockReplacementPolicyCopy -BlockReplacementPolicy;
WritePolicyCopy - WritePolicy;
WriteMissPolicyCopy - WriteMissPolicy;
ReaciForwardCopy - ReadForward;
CPUWaitsForCacheWritesCopy - CPUWaitsForCacheWrites;
SearchBlockBufferCopy -SearchBlockBuffer;
UpdateReadBufferCopy = UpdateReadBuffer;
RemoveReadDuplicatesCopy - RemoveReadDuplicates;
RemoveWriteDuplicatesCopy = RemoveWriteDuplicates;

ReadPriorityCopy = ReadPriority;
WritePriorityCopy - WritePriority;
ReadForWriteAllocatePriorityCopy - ReadForWriteAllocatePriority;
WriteDirtyBlockPriorityCopy = WriteDirtyBlockPriority;
NoPriorityCopy = NoPriority;

CheckCopy = Check;

KeyBoardIOCopy = KeyBoardIO;
DataFileNameCopy = DataFileName;

ScreenflistograrnMaxlndexCopy - ScreenHistograxnMaxlndex;
FileliistogramMaxlndexCopy - FileHistogramMaxlndex;

Page 13- 7 *

** ~Checking. c

** CheckingConstants
** continued

NuxnberOfBlocksCopy - Nuniberof~locks;
NuxDoerutbuDkbiocKsCopy - NumberOLSubBlocks;
NumberOfSetsCopy = NumberOfSets;

CacheBlockAddressCopy - CacheBlockAddress;
LastCacheBlockAccessT-'meCopy = LastCacheBlockAccessTime;

CacheNextBlockCopy - CacheNext~lock;

CacheValidBitCopy = CacheValid~it;
CacheDirtyBitCopy - CacheDirtyBit;

RequestTimeHistogramCopy - RequestTimeHistograxn;
StallTimeHistogramCopy = StallTimeHistogram;

TotalRequestTimeCopy - TotalRequestTime;
TotalStallTi~meCopy - TotaiStaliTime;

NuruberOfAccessesCopy = NuniberOfAccesses;
NumberOfCacheHitsCopy = NuniberOfCacheHits;
NumberOfBufferHitsCopy - NuniberOfBufferHits;
PredictedNuniberOfAccessesCopy = PredictedNumberOfAccesses;
PredictedNuniberOfHitsCopy - PredictedNumberOfHits;

DataFileCopy - DataFile;

** ~Page 13- 8 *

** ~Checking.c *

** ~CheckingConstant s
** continued

if O(Reset))

if(CacheSizeCopy ~=CacheSize)
PrintConstError ("CacheSize'");

if(BlockSizeCopy !=BlockSize)

PrintConstError ("BlockSize");
if(SubBlockSizeCopy !=SubBlockSize)

PrintConstError ("SubBJlockSize");
if%' AssociativityCopy ~=Associativity)

PrintConstError ("Associativity");
if(WordSizeCopy !WordSize)

PrintConstError ("WordSize");
if (ReadCacheAcce$STi~meCopy =ReadCacheAccessTime)

PrintConstError ("ReadCacheAccessTime");
if(ReadCacheHitTi~meCopy !- ReadCacheHitTime)

PrintConstError ("ReadCacheHitTime");
if(ReadCacheMissTimeCopy !- ReadCacheMissTinte)

PrintConstError ("ReadCacheMissTirne");
if (WriteCacheAccessTimeCopy !- WriteCacheAccessTime)

PrintConstError ("WriteCacheAccessTime");
if(WriteCacheHitTimeCopy !- WriteCacheHitTime)

PrintConstError ("WriteCacheHitTi~me"l);
if(WriteCacheM~issTimeCopy !- WriteCacheMissTime)

PrintConstError ("WriteCacheMissTime");
if(MemoryAccessTimeCopy 1- MemoryAccessTime)

PrintConstError ("MemoryAccessTime");
if (MemoryTransferTimeCopy !- MemoryTransferTime)

PrintConstError ("MemoryTransferTime");
if (BufferCacheAccessTinieCopy !- BufferCacheAccessTime)

PrintConstError ("BufferCacheAccessTime");
if(Read~ufferSizeCopy !- ReadBufferSize)

PrintConstError ("Read~ufferSize");
if(WriteBufferSizeCopy !- WriteBufferSize)

PrintConstError ("WriteBufferSize"f);
if (BlockReplacementPolicyCopy 1- BlockReplacementPolicy)

PrintConstError ("BlockReplacementPolicy");
if(WritePolicyCopy !- WritePolicy)

PrintConstError ("WritePolicy"l);
if(WriteM~issPolicyCopy !- WriteMissPolicy)

PrintConstError ("WriteM~issPolicy");
if(ReadForwardCopy !- ReadForward)

PrintConstError ("ReadForward");
if (CPUWaitsForCacheWritesCopy I-CPUWaitsForCacheWrites)

PrintConstError ("CPUWaitsForCacheWrites");
if(SearchBlockBufferCopy !- SearchBlockBuffer)

PrintConstError ("SearchBlockBuffer");
if(tlpdateReadBufferCopy 1- UpdateReadBuffer)

PrintConstError ("UpdateReadBuffer");

** ~Page 13- 9
** ~Checking.c *

** ~CheckingConstants *

** ~continued *

if (RemoveReadDiunlicato-sCopy =RemoveReadDuplicates)

PrintConstError ("RemoveReadDuplicates");
if(C RemovewriteDuplicatesCopy != RemoveWriteDuplicates)

PrintConstError ("RemoveWriteDuplicates");
if(ReadPriorityCopy != ReadPriority)

PrintConstError ("ReadPriority");
if(WritePriorityCopy != WritePriority)

PrintConstError ("WritePriority");
if(C ReadForWriteAllocatePri-orityCopy != ReadForWriteAllocatePriority)

PrintConstError ("ReadForWriteAllocatePriority");
if(C WriteDirtyBlockPriorityCopy !-WriteDirtyBlockPriority)

PrintConstError ("WriteDirtyBlockPriority");
if(NoPriorityCopy NoPriority)

PrintConstError ("NoPriority");
if(CheckCopy .=Check)

PrintConstError ("Check");
if(KeyBoardlOCopy !=KeyBoardIO)

PrintConstError ("KeyBoardIO");
if(DataFileNameCopy .=DataFileName)

PrintConstError ("DataFileName");
if(C ScreenHistogjraniMaxlndexCopy =ScreenHistograxnMaxlndex)

PrintConstError ("ScreenHistograxnMaxlndex");
if(FileHistograznMaxlndexCopy 1- FileHistogramMaxlndex)

PrintConstError ("FileliistograrnMaxlndex");

Page 13-10 *

** ~Checking. c

** ~CheckingConstants *

** ~continued *

if(N~uxnberOfBlocksCopy ~-NuxnberOfBlocks)
PrintConstError ("NuxnberOfBlocks");

if(NuxnberOfSubBlocksCopy !- NuxnberOfSubBlocks)
PrintConstError ("NumberOfSubBlocks");

if(NuniberOfSetsCopy !- NumberOfSets)
PrintConstError ("NunmberOfSets");

if(CacheBlockAddressCopy !- CacheBlockAddress)
PrintConstError ("CacheBlockAddress");

if (LastCacheBlock.AccessTimeCopy !- LastCacheBlockAccessTime)
PrintConstError ("LastCacheBlockAccessTime"l);

if(CacheNextBlockCopy !- CacheNextBlock)
PrintConstError ("CacheNextBlock");

if(CacheValidBitCopy CacheValidBit)
PrintConstError ("CacheValidBit");

if(CacheDirtyBitCopy -CacheDirtyBit)

PrintConstError ("CacheDirtyBit");
if(RequestTimeHistogramCopy ~ -RequestTimeHistogram)

PrintConstError ("RequestTimeHistogramTM);
if(StallTimeHistogramCopy !- StallTimeHistogram)

PrintConstError ("StaliTimeHistogramff);
if(TotalRequestTimeCopy !- TotalRequestTime)

PrintConstError ("TotalRequestTime");
if(TotaiStallTimeCopy 1- TotaiStallTime)

PrintConstError ("TotaiStallTime");
if(NuxnberOfAccessesCopy !- NumberOfAccesses)

PrintConstError ("NuxnberOfAccesses");
if(NuxnberOfCacheflitsCopy !=NumberOfCacheHits)

PrintConstError ("NuxnberOfCacheHits");
if(NumTberOfBufferHitsCopy !- NumberOfBufferHits)

PrintConstError ("NuxnberOfBufferHitsCopy"l);
if (PredictedNuxnberOfAccessesCopy != PredictedNuxnberOfAccesses)

PrintConstError ("PredictedNurnberOfAccesses");
if (PredictedNuxuberOfHitsCopy !- PredictedNuxnberOfHits)

PrintConstError ("PredictedNuxnberOfHits");
if(DataFileCopy ~=DataFile)

PrintConstError ("Datafile");

Page 13-11 *

Checking.c *

PrintConstError *

roid PrintConstError (VariableName)

char *VariableNarne;

printf("\n\nError in (CheckingConstants]");
printff" \nts did not remain constant.\n", VariableName);
exit (0);

** Page 13-12
** ~Checking.c *

** CheckingForValuesOutOfBounds

**Description: *

** ~CheckingForValuesOutOfBounds checks all bounded global variables
**to see J-f they fall within their prescribed boundaries. *

void CheckingForValuesOutOfBoundso(

TimeType MaxTime -10000000001;
ScoreType MaxScore=1000000000l;

SizeType Blocklndex;
SizeType SubBlocklndex;
SizeType SetIndex;
RequestType RequestIndex;
CacheWaitingForType Stall~ndex;

if (Time<0
11I Time>MaxTime)
PrintTimeBoundaryError ("Time", Time, 01, MaxTime);

if (CacheWaitingFor<Nothing
I I CacheWait ing~or>NumrberOfCacheWaitingForsAvailable)
PrintEnumBoundaryError ("CacheWaitingFor", CacheWaitingFor,

Nothing, NumberOfCachewaitingForsAvailable);

if (MemoryWaitingFor<NothingTwo
11I MemoryWaitingFor>NumberOfMemoryWaitingForsAvai.lable)
PrintEnuxnBoundaryError ("MemoryWaitingFor", MemoryWait ingFor,

NothingTwo, NumberOfMemoryWaitingForsAvailab2le);

if (BlockWaitingFor<NothingThree
11I BlockWaitingFor>NuxnberOfBlockWaitingForsAvailable)
PrintEnumBoundaryError ("BlockWaitingFor", BlockWaitingFor,

NothingThree, NuxnberOfBlockWaitingForsAvailable)

if (Cacheliit<No
IICacheHit>Unknown)

PrintEnumBoundaryError ("CacheHit", CacheHit, No, Unknown);

if (CacheBusy<No
11 CacheBusy>Yes)
PrintEnuxrBoundaryError ("CacheBusy", CacheBusy, No, Yes);

if (Request<None
11I Request>NuxnberOfRequestsAvailable)
PrintEnuxnBoundaryError ("Request", Request,

None, NumberOfRequestsAvailable);

if (LastRequest<None
11I LastRequest>NuniberOfRequestsAvailable)
PrintEnumBoundaryError ("LastRequest ",Request,

None, NumberOfRequestsAvailable);

** ~Page 13-13 *

** ~Checking. c

** ~CheckingForValuesOutOfBounds *

** ~continued *

if (RequestSize<O
IIRequestSize>BlockSize)

PrintSizeBoundaiyError("RequestSize", RequestSize, 0, BlockSize);

if (ReqruestBlockNumber<0
IIRequestBlockNumber>-NumberOfBlocks)

PrintSizeBoundaryError ("RequestBlockNumber", RequestBlockNumber,
O,NwnberOfBlocks);

I

if (TimeOfNextRequest<O
11I TimeOfNextRequest>MaxTime)
PrintT:-'ueBoundaryError ("TimeOfNextRequest", TimeOfNextRequest,

01, MaxTime) ;

for (Setlndex=O; Setlndex<NumberOfSets; Setlndex++)
if (CacheNextBlock[Setlndexl<0

11 CacheNextBlock [SetIndex] >=NumberofBlocks)
PrintSizeBoundaryError ("CacheNextBlock", CacheNext~lock [SetIndex],

0,NumberOfBlocks);

for (Blocklndex-0; Blocklndex<NumberOfBlocks; Blocklndex++)
{
for (SubBlocklndex-O; SubBlocklndex<NumberOfSubBlocks; SubBlocklndex+4-)

If ah~ldi Bokne][u~okne]<
if (CacheValidBit (BlockIndex] [SubBlocklndex]<>1
11rinthnuxnioundaryocrror ([Cache ocalndeit"l

Pitnmonayro(CacheValidBit"[lc, dx Su~okne)

0, 1);

if (CacheDirtyBit(Blocklndex] [SubBlocklndex]<0
11 CacheDirtyBit[Blocklndex] [SubBlocklndex]>1)
PrintEnumBoundaryErrorC" CacheDirtyBit",

CacheDirtyBit [BlockIndex] [SubBlocklndex],
0,1);

for (Requestlndex-0; Requestlndex<NumiberOfRequestsAvailable; Requestlndex++)
if (TotalRequestTime (RequestIndex] <0

11I TotalRequestTime [Request Index] >Time)
Print TimeBoundaryError ("TotalRequestTime",

TotalRequestTime [RequestIndex],
01, Time);

** ~Page 13-14 *

** ~Checking. c

** ~CheckingForValuesOutOfBounds *

** ~continued *

for (Stalllndex-O;
Stalllndex<NuxnberOfCacheWait ingForsAvailable;
Stalllnciex++)

if (TotalStallTime(Stalllndex]<0
IITotaiStaliTime (StallIndex] >Time)

PrintTimeBoundaryError ("TotaiStaliTime",
TotaiStallTime (StallIndex],
Ol,Time);

if (TotalNumberOfAccesses<0
IfI TotalNumberOfAccesses>MaxScore)
PrintScoreBoundaryError ("TotalNuxnberOfAccesses1, TotalNuxnberOfAccesses,

01, MaxScore);

if (TOA(O
IITOA>MaxTime)

PrintTimeBoundaryError ("TOA", TOA, 01, MaxTime);

if (TOD<O
IITOD>MaxTime)

PrintTimeBoundaryError ("TOD", TOD, 01, MaxTime);

I

Page 13-15 *

Checking.c *

** ~PrintTimeBoundaryError *

void PrintTimeBoundaryError(VariableName, Value, LowLimit, HighLimit)

char *VariableName;
TimeType Value;
TimeType LowLimit;
Time Type HighLim~it;

f

printf ("\n\nError found in [CheckingForValuestOutOfBounds]');

printf(" \nts is out of prescribed bounds.",VariableName);

printf("\n\n The value was..............
PrintTime (Value);

printf(" \n The low limit was..........
PrintTime (LowLimi~t);

printf(" \n The high limit was.........
PrintTime (HighLimit);

printf("\n\n");

DiscrepancyFound=Yes;

** Page 13-16
** ~Checking.c *

** ~PrintScoreBoundaryError *

void PrintScoreBoundaryError(variableName, Value, LowLim.it, HighLimit)

char *VariableName;
ScoreType Value;
ScoreType LowLimit;
ScoreType HighLi~mit;

f

printf ("\n\nError found in [CheckingForValuestOutOfBounds]");
printf(" \n%s is out of prescribed bounds.",Variablewame);

printf("\n\n The value was..............
Print ScoreCentered (Value);

printf(" \n The low limit was..........
PrintScoreCentered (LowLimi~t);

printf(" \n The higit limit was.........
PrintScoreCentered (RighLim~it);

printf ("\n\n");

DiscrepancyFound-Yes;

** ~Page 13-17 *

** ~Checking. c

** ~Print SizeBoundaryError *

void PrintSizeBoundaryError(VariableName, Value, LowLimit, HighLimit)

char *VariableName;
SizeType Value;
SizeType LowLimit;
SizeType HighLimit;

printf ("\n\nError found in [CheckingForValuestOutOfBounds]");
printf(" \nts is out of prescribed bounds.",VariableName);

printf("\n\n The value was..............
Print Size (Value);

printf(" \n The low limit was..........
PrintSize (LowLimit);

printf(" \n The high limit was.........
PrintSize (HighLimit);

printf('\n\n");

DiscrepancyFound-Yes;

** ~Page 13-18 *

** ~Checking. c

** ~PrintEnumBoundaryError *

void PrintEnumBoundaryError (VariableName, Value, LowLimit, HighLimit)

char *VariableName;
int Value;
int LowLimit;
int HighLimit;

f

printf ("\n\nError found in ECheckingForValuestOutOfBounds]");
printf(" \nts is out of prescribed bounds.",VariableName);

printf("\n\n The value was..............
printf("td",Value);

printf(" \n The low limit was..........
printf ("%d", LowLimit);

printf(" \n The high limit was

printf ("%d", HighLimit);

printf("\n\n");

DiscrepancyFound=Yes;

** ~Page 13-19 *

** ~Checking. c

Checkingrorlnconsistencieso(

void CheckingForrInconsistencieso(

I

CacheWaitingForType CacheWaitingForlndex;
RequestType RequestIndex;
TimeType TotalTime;

ScoreType SumOfAccesses;
HistogramlndexType HistogramIndex;

ScoreType PredictedNumberOfWordsReadFromiMemory;

Tot alTime-O;
for (CacheWaitingForlndex=Nothing;

CacheWaitingForlndex<NumberOfCachewaitingForsAvailable;
CacheWaitingForlndex++)

TotalTime+-TotalStallTime [CacheWaitingForlndex];

if (TotalTime! -Time)
PrintTotalTimeError (Time, TotalTime, "Stalls");

** ~Page 13-20 *

** Checking. c

** ~CheckingForlnconsistencies (*

TotalTime-0;
for (Requestlndex=Nothing;

Request Index<NumiberOfRequestsAvailable;
Request Index++)

TotalTime+-.TotalRequestTime (Request Index] ;

if (TotalTime!-Time)
PrintTotalTiMeError (Time, TotalTime, "Requests");

for (Request Index-Read;
Request Index<NumberOfRequestsAvailable;
Request Index++)

SumOfAccesses - 0;

for (Histogramlndex-0;
Histogramlndex<FileHistograxnMaxlndex;
Histogramlndex++)

SumOfAccesses+-RequestTimeHistogram[Requestlndex] (HistogramIndex];

if (SumOfAccesses ! NuniberOfAccesses (Request Index])
PrintTotalScoreError (NuniberOfAccesses (Request Index],

SumOfAccesses,
Request String (Request Index]);

if (CacheWaitingFor--Nothing && ReadBuffer.Empty--Yes &&
UpdateReadBuffer--No && Search~lock~uffer--No &&
RemoveReadDuplicates=-Yes && WriteMissPolicy--Wr2.teAround

PredictedNumberOfWordsReadFroxnMemory-
(NuznberOfAccesses (Read]
-NumberOfCacheliits (Read]
-NumberOfBufferliits (Read])*BlockSize/WordSize;

if (PredictedNuznberOfWordsReadFroxnMemory I-
TotalNumberOfWordsReadFromMemory)

PrintTotalScoreError (PredictedNumberOfWordsReadrromMemory,
TotalNuxnberOfWordsReadFrornMemory,
"Read Misses");

** ~Page 13-21 *

** ~Checking. c

** ~PrintTotalTimeError *

void PrintTotalTimeError (TimeValue, TotalTimeValue, VariableName)

TimeType Time Va lue;
TimeType TotalTimeValue;
char *VariableName;

f

printf("\n\nError found in (Checkingrorinconsistencies] the total sum");
printf(" \nof ts times does not equal the actual time.", VariableName);

printf("\n\n Total time was equal to..
PrintTime (TimeValue);

printf(" \n The sumation of %s", VariableName);
printf(" \n times was..................
PrintTime (TotalTimeValue);

printf("\n\n");

DiscrepancyFound-Yes;

** ~Page 13-22 *

** Checking.c

** PrintTotalScoreError

void PrintTotalScoreError (TotaiScoreValue, SumScoreValue, VariableName)

ScoreType TotaiScoreValue;
ScoreType SumScoreValue;
char *VariableNanme;

I

printf("\n\nError found in (Checking~orlnconsistencies) the total for");
printf(" \n%s does not equal the summation.", VariableName);

printf("\n\n Total number of ts accesses", VariableName);
printf(" \n was equal to..............
PrintScoreCentered (TotaiScoreValue);

printf(" \n The sumation of %s request histogram", VariableName);
printf(" \n was equal to..............
Print ScoreCentered (SumScoreValue);

printf("\n\n");

Dis crepanc~yFcnnrd-Yen;

** ~Page 13-23 *

Checking.c *

Chckngrditin

voieckingkredictionsions

if (PredictedNumberOfAccesses [Read] -NuruberOfAccesses [Read])

PrintScorePred~ictionError (PredictedNumberOfAccesses [Read],
NuniberOfAccesses (Read],
"Read Accesses");

if (PredictedNumberOfAccesses(Write] I-NumberOfAccesses(Write])

PrintScorePredictionError (PredictedNuxnberOfAccesses (WriteJ,
NwnberOfAccesses (Write],
"Write Accesses");

if (DiscrepancyFound--No)

if (PredictedNuniberOf~its (Read] !- NurnberOfCacheHits (Read]
+ NumberOfBufferHits[ReadJ)

BlockReplacementPolicy-LRU &
SearchBlockBuffer--Yes && RemoveReadDuplicates--Yes)

PrintScorePredictionError (PredictedNuniberOfHits (Read],
NuntberOfCacheliits (Read]
+NuznberOfBufferHits (ReadJ,
"Read Hits");

if (PredictedNuniberOfHits (Write] !- NuxnberOfCacheHits (Write]
+ NurnberOfBufferHits(Write] &

BlockReplacementPolicy--LRU && WriteMissPolicy--WriteAllocate &
WritePolicy-WriteThrough)

PrintScorePredictionError (PredictedNurnberOfHits [Write],
NuxnberOfCacheHits [Write]
+NunlberOf~ufferHits (Write],
"Write Hits");

** ~Page 13-24 *

Checking. c

** ~PrintPredictionError *

void PrintScorePredictionError (PredictedValue, ActualValue, VariableName)

ScoreType PredictedValue;
ScoreType ActualValue;
char *VariableName;

I

printf ("\n\nEr.,-or found in [CheckingPredi ct ions)I when trying to predict %s",
VariableName);

printf('\n\n The predicted value was..
Print ScoreCentered (PredictedValue);

printf(" \n The actual value was.......
Print ScoreCentered (ActualValue);

printf("\n\n");

DiscrepancyFound-Yes;

** Page 13-25
Checking.c *

** PrintTimePredictionError

void PrintTimePredictionError (PredictedValue,
ActualValue,
RequestName,
!ProcedureName)

TimeType PredictedValue;
TimeType ActualValue;
char *ReqljestName;
char *ProcedureName;

printf("\n\nError found in (%sl when trying to predlict time to complete %s".
ProcedureName, RequestName);

printf("\n\n The predicted value was..
PrintScoreCentered (PredictedValue);

printf(" \n The actual value was.......
PrintScoreCentered (ActualValue);

printf("\n\n");

DiscrepancyFound-Yes;

BIBLIOGRAPHY

1. Jouppi, N.P., "Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,"
The 17th Annual Symposium on Computer Architecture, IEEE
Computer Society Press, p. 364-373, May, 1990.

2. Hill, M. D., Aspects of C'ache Memory and Instruction Buffer
Per.formance. Ph.D. Thesis, University of California, Berkeley, 1987.

3. Smith, A. J., "Bibliography and Readings on CPU Cache Memories,"
C'omputer Architecture News v. 14-1, p. 22-42, January 1986.

4. Smith. A. J., "Second Bibliography on Cache Memories," v. 19-4,
p. 154-182, June 1991.

256

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943

3. Chairman, Code EC
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943

4. Douglas J. Fouts, Code EC/Fs 2
Elccrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943

5. Shridhar B. Shukla, Code EC/Sh
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943

6. Amr M. Zaky, Cod.: CS/Za
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. Diane Beckman 3
PO Box 252
James Town, NY 14702

257

