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Abstract

The problem of speech enhancement presents many obstacles in the speech processing field.

This thesis develops several speech de-noising systems (SDS) that can be used in the time, Fourier,

and the wavelet domains. We present two different thresholding techniques, the soft thresholding

technique (STT) and the hard thresholding technique (HTT). The application of these thresholding

techniques to noisy speech data is discussed. The combination of both the Fourier and wavelet

domains in speech de-noising proves to yield the best results in terms of speech intelligibility.

Informal listening tests are conducted in order to compare the effects of using the STT, the HTT,

the noisy phase, the time domain, the Fourier domain, and the wavelet domain.
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NOISE REDUCTION FOR SPEECH ENHANCEMENT USING

NON-LINEAR WAVELET PROCESSING

L Introduction

1.1 Background

In recent years, many speech processing scholars have developed speech systems that have

some degree of success when used with speech data acquired under near-ideal conditions. By far

the majority of recognition and encoding schemes have been developed and tested using speech

recorded on very sophisticated equipment in a quiet environment. As speech processing has moved

from the ideal laboratory conditions to the field, it has become significantly important to face the

problems imposed by the presence of ambient noise. Once in the real world, most of the speech

processing systems, especially speech recognition and speech encoding systems, fall very short on

their promises. Speech degraded by ambient noise has most of its formant's structure detectable by

the human listener, however, the human listener cannot listen to speech under degraded conditions

for a long time without suffering auditory fatigue (19). In order to reduce the effects of ambient

noise, many techniques for enhancement of noisy speech have been developed.

The main objective of the speech enhancement is to attenuate the intensity of the noise,

while preserving the overall structure (i.e., pitch, formants, etc.) and intelligibility of speech. In

particular, the military environment is one of the most crucial environments where speech data

is vulnerable to ambient noise, especially noise due to the engines of tanks, military vehicles,

helicopters, airplanes, and others.

1-1



1.2 Problem Statement

The problem considered in this thesis is to enhance noisy speech data and still preserve

intelligibility. In order to accomplish this goal, we propose to develop a speech processing scheme

using both wavelets and the thresholding techniques.

The United States military is carrying on intensive research in order to develop systems that

are very reliable and very robust in enhancing speech data degraded by ambient noise. One of the

new areas of this research is the use of wavelets in order to explore their unique filtering abilities

with noisy speech data. In the last decade, the theory of wavelets has grown significantly, and has

promised to change both signal and information processing. The major advantage of wavelets over

the classic signal processing tools (i.e., Fourier transform), is their unique ability to decompose a

signal into orthogonal resolution levels. This unique property, makes wavelets one of the best tools

to use with signals composed of many high energy peaks of frequencies, such as speech.

In general, noise is a broad-band signal. The ability of wavelets to decompose a signal into

various bands of frequencies, allows us to locate noise at certain frequency bands and eliminate it,

however, at the expense of affecting the formants structure of the signal degraded by this noise. In

order to avoid the distortion of the underlying signal, we resort to the use of many thresholding

techniques which are based on the general statistics of the ambient noise. Hard thresholding is a

technique that eliminates all data samples below a fixed threshold in absolute value. On the other

hand, soft thresholding is a technique that eliminates all data samples below a fixed threshold in

absolute value, and pulls towards zero all data above the threshold, by the amount of the threshold

in absolute value. The use of thresholding helps decrease the amount of noise, while preserving

most of formants' structure of the underlying signal.

1-2



1.3 Scope

This thesis is limited to the development of different speech de-noising systems to process

speech to which various amounts of white Gaussian noise have been added (signal-to-noise ratios

vary between -10db to 10db). These systems are based on the use of wavelets, Fourier, and non-

linear statistical processing of speech data from the TIMIT data base. Quantitative squared error

criteria and qualitative listening tests are performed.

No attempt to automatically determine pitch, silent, voiced, or unvoiced portions is made.

These are assumed to be known. The algorithm developed is intended to be one subsystem of a

pre-processor used to remove noise from noisy speech before use by other speech processing systems

(e.g., speech identification, speech recognition, etc) or by human listeners.

The necessary mathematical background in wavelets, Fourier, and non-linear statistical meth-

ods, which are necessary to understand the de-noising systems developed in this thesis is presented.

1.4 Approach

The noisy speech signal is decomposed into voiced, unvoiced, and silent portions. The silent

portions are used to estimate the variance of the noise which is assumed to be white Gaussian noise.

The voiced portions are subjected to the thresholding techniques. Depending on the method used,

we may process speech in time, frequency (Fourier), wavelet, or any combination of these three

domains. The phase of the noisy voiced speech may be saved before processing the noisy voiced

speech. On the other hand, both the unvoiced and silent portions are multiplied by a ratio to be

discussed later. Before processing any speech segment, each portion (i.e., voiced, unvoiced, and

silent) is multiplied by a window function to be defined later.
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1.3 Objectives

The objectives of this research are to answer the following four questions:

1. Can we enhance noisy speech by applying both wavelets and the thresholding techniques?

2. Under what conditions do the application of wavelets and the thresholding techniques to noisy

speech data yield intelligible results?

3. Can we use both wavelets and Fourier analysis to enhance noisy speech?

4. How do wavelets and the thresholding techniques affect the quality of the de-noised speech?

1.6 Equipment and Material.

The following tools were crucial to this research:

1. SPARC 2 workstations is used for cod;ug and testing purposes.

2. ANSI C is the programming language for all codes developed for this research.

3. Mathematica is used for developing graphsand bar-charts.

4. ESPS-4 (Entropic Signal Processing System) is. used for both spectrograms and listening tests.

5. 1IMTX is used to typeset this document.

6. TIMIT data base.

1.7 Oraniution

In chapter two, we present put and current remeach in the area of enhancement of noisy

speech. In chapter three, we discum the necessary wavelet, Fourier, and thresholding theores.

Based on the results and theories of chapter three, we present, in chapter four, eight de-noising

systems. In chapter five, we test the de-nois'ng systems of chapter four with actual noisy speech

data and analyze the results in terms of both error and spectrogram analysis as well as informal

listening tests. Finally, in chapter six, we present the thesis conclusions and recommendations.

1-4



I. Literature Review

2.1 Introduction

This chapter focuses on evaluating past techniques and research in the area of enhancing noisy

speech. These techniques cover several methods used to solve the problem of eliminating some of the

noise from a speech signal. Because of the similarities between the different techniques, we present

each method in chronological order in order to understand some of the problems encountered in

the field of speech processing.

2.2 Recent Developments In Enhancing Noisy Speech

Enhancing noisy speech presents three major problems:

a. detecting the presence of noise.

b. estimating the noise power.

c. differentiating between speech and non-speech signals.

The quality and intelligibility of the resulting speech signal depend on the method used and on the

assumptions made to locate and estimate the noise.

2.2.1 Suppression of Acoustic Noise In Speech Using Spectral Subtraction. In 1979, Steven

Boll presented a simple technique (Spectral Subtraction) to enhance speech degraded by additive

white noise (3). His technique (among the best techniques during the early eighties) is well known

in the speech processing field. His algorithm measures the signal present during non-speech activity

and use it as an estimate of the noise. The spectrum of the estimated noise is then subtracted from

that of the noisy speech . If we assume that speech is a stationary signal and that the noise is

additive and uncorrelated, then we can present the noisy speech signal as

y(t) = s(t) + n(t), (2.1)

2-1



where s and n are the speech and noise signals, respectively, where both are real. Taking the

Fourier transform (see equation 3.137) of equation 2.1, we obtain

O(w) = ;(w) + fi(w). (2.2)

The power of the above spectra is given by

1i(W)I2 
= lI(W)12 + Ifi(w)12 + 2 [Re[i(w))Re[,i(w)l + Im[i(w)ltm[,(,)l]. (2.3)

Since the noise and signal random variables are assumed to be uncorrelated, the expected value

(see equation 3.7) of the crossproduct terms of equation 2.3 are eliminated and the expected power

spectra can then be related by (19)

I#(W)12 = Ipe(W)1 2 + Ii'(W)12, (2.4)

where lfe(w) 12 and I~.(W)12 are estimates of the noise and speech powers, respectively.

If we can obtain a satisfactory estimate of IfL(W)1 2, we can recover Ip(w)12 by using equation

2.4, since we know the power 1i(W)I2. In practice, the noise is estimated by observing the signal

during non-speech activity (19). The result is

li.(W)l2 = 1i(W)12 - Iiie(W)1 2. (2.5)

Using the results from equation 2.5, Boll subtracted the magnitude spectra themselves instead of

the power spectra, and since the magnitude is a positive quantity, any negative output is set to

zero (19). The above process can be viewed as a filtering operation defined by

IPe(w)1 = W-(w)MI -I•(W)
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= I(wh), (2.6)

where the filter h is given by

14)=( iewI (2.7)

where 0 < Ih(w)l : 1. Since the negative amplitudes are not allowed, Boll used the filter h to define

a half-wave rectification filter hR as

- h(w) + Ih(w)I
hR(2) = 2 (2.8)

In order to recover the estimated speech signal se(t), we need to take the inverse Fourier

transform (see figure 2.1). However, we need the phase of ie(w). Boll approximated this phase by

the phase of the known noisy signal j(w). The recovered signal can then be obtained using the

following equation

MW(W) = I•, l)e), (2.9)

where 0 is the phase of j(w).

In order to account for the case where the speech is absent, Boll modified his algorithm to

allow a second pass to further reduce the residual noise left after the application of the spectral

subtraction. The residual noise can be further attenuated without distorting the speech signal(3).

2.2.2 Speech Enhancement By Fourier-Bessel Coefficients Of Speech And Noise. In 1990,

F.S. Gurgen and C.S. Chen introduced an enhancement technique for noisy speech based on the

Fourier-bessel (FB) expansion of the speech and noise (11). The method is based on the subtraction
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Estimated Amplitude
Of Noise
(1ft-w)I)

Amplitude

speech

Figure 2.1 Spectral Subtraction By Steven Boll

of the FB coefficients of the estimated noise from the coefficients of the noisy speech. The difference

in two sets of coefficients is then used to synthesize the enhanced speech.

2.2.2.1 Spectral Properties of Fourier-Bessel Coefficients. The solution of the wave

equation inside cylindrical structures (tubes) includes the first kind of the Bessel function (22). In

their method, Gurgen and Chen model the vocal tract as a cylindrical tube. The speech signal is

represented using the first kind and first order Bessel functions, J1 (t), as the basis functions for

expansion. This representation is called a Fourier-Bessel (FB) expansion.

The FB expansion of the speech signal is achieved by using J.(ant) as basis functions of

representation, where am "-= , t,1 is the m root of J7(t) = 0, and A is the duration of the time

frame under analysis. The decomposition describes a speech signal as a linear combination of the

orthogonal basis functions

00

s(t) = • cmJl(amt). (2.10)
M=1

2-4



The set {Ji (C..t)} is orthogonal with respect to the weighting function t, and the c.. coefficients

in equation 2.10 are given by

-2 A
= [A 2 (J0(tj))2A t s(t)JI (amt) dt. (2.11)

By taking the Fourier Transform of J(i ..t), Gurgen and Chen showed that the FB series behaves

like a low-pass filter. By using the magnitude and the phase spectrum, it is possible to calculate

the maximum frequency achieved with the number of the roots of J1 (at) as (11)

tinmz =2" (2.12)
21rA'

2.2.2.2 Noise suppression using FB ezpansion. Just like Boll's method, the speech

signal s(t) is assumed to be degraded by uncorrelated additive noise n(t) where the noisy speech

signal i.(t) is given by

y(t) = s(t) + n(t). (2.13)

Taking the FB expansion of the above signal, we get

Yrn = sm + nm, (2.14)

where m = 1, 2, 3,.

Experimentally, Gurgen and Chen showed that the FB coefficients representation, with up to

150 coefficients and 10ms analysis frame, introduces a low-pass filtering effect on the speech signal

by attenuating its high-frequency region. Therefore, the noise which is assumed to contain most of

the high frequency components, can be suppressed by using an appropriate number of coefficients

in the synthesis of the signal (11).
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Since Vy. is known (raw data), if we can obtain a satisfactory estimate of the noise level and calculate

its FB expansion we can get au ustimate of the enhanced speech signal as

s,= ,, m - n,,,. (2.15)

The estimation of the noise is based on two different techniques, the single-microphone case

and the two-microphone case. In the single-microphone case, the noise estimate is accomplished

by detecting the speech/non-speech intervals using energy thresholds to locate the silence intervals

where the energy of the noise can be estimated. In the two-microphone case, a reference microphone

path is used to estimate the noise and calculate its FB coefficients. A primary microphone path is

used to calculate the FB coefficients of the noisy speech. The difference between these two paths

is used to estimate the FB coefficients of the enhanced signal (11).

2.2.3 Adaptive Noise Reduction Using Discrimination Functions. Most speech enhance-

ment techniques (e.g., spectral subtraction by S. Boll) are based on using speech detectors to locate

the non-speech activities in a speech signal and use that information to estimate noise. The quality

of the results depends heavily on the quality of the speech detectors used in the analysis. The

Discrimination Function Minimization (DFM) method does not use a speech detector and does not

assume stationarity of the noise over an entire speech period. The purpose of the DFM is to define

a function that differentiates between clean and noisy speech signals in order to reduce the noise

in the noisy speech signal (10). Based on essential features of speech and ambient noise, the DFM

uses a single-microphone adaptive filtering approach and minimizes a mean square error function.

2.2.3.1 Discrimination Function Minimization (DFM). The DFM technique in-

volves two steps:

1. Definition of a Discrimination Function J(x)
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The discrimination function J(x) is defined for a vector x = szi}{O<i<N-1j Such that

J(x)IEsnN < J(x)l N, (2.16)

where

a. S = {s}, set of segments of clean speech.

b. N = {n}, set of segments of noise.

c. S fn N = {y = s + n}, set of noisy speech segments.

The above equation states that the value of J for pure noise signals is greater than that of speech

and noise signals.

2. Filtering or suppression of the noise based on setting the coefficients of the filter h

such that J is minimized (see figure 2.2).

y~k) s~k + nk) /estimated speech

SCalc optimal

Lfilter to minimize

Figure 2.2 Block Diagram ( The DFM Noise Reduction

2.2.3.2 Example Of A Discrimination Function JR(x). Since the rate of change

of the noise parameters (e.g., autocorrelation) are less than those of speech signals, the authors

concluded that it is possible to derive some discrimination functions directly from the dynam-

ics of the speech sample-variance. Experimentally, the authors found that the rate of change,
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Av(i), of a speech frame variances ar(i) and the duration of the so called stationary periods, where

AV(i) < AVTh.ea are two discriminating features that can be used to filter the noise out of a noisy

speech signal (10).

Let s be a clean speech segment degraded by uncorrelated additive noise n, the noisy speech

signal y is given by

s= + n, (2.17)

and define NR be a subset of the noise set N such that, the length &f each vector in NR is longer

than rma., the maximum length of a stationary period in a speech signal (i.e., Tr,a. = 200ms). The

discrimination function is then defined as

JR(X)IxESnN < JR(X)IxENR, (2.18)

where NR C N. Let JR(x) be a discrimination function defined over a data frame of length N.

The sample-variances are calculated for each sub-frame of length L. These sub-frames are non

overlapping and, therefore, we have p = A sub-frames.

The sample variance for each sub-frame is defined as

L-1

a(i) = E . 2 (iL - k), (2.19)
k=O

where i = 1,2, ... p and h(j) is the filtered signal at time j, which is calculated using the input

vector y and a transversal filter h of order M such that:

M-1

i(j) = E hny(j - n), (2.20)
n=O
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for j = 0, 1, ..N - 1. Now define the absolute value of the relative change of the variance as

S- o(i - 1)(
Av(i) = u(i - 1) (2.21)

and an exponential weighting factor as

w(i) = ri, (2.22)

where 0 < r < 1, and i = 1,2,... p.

Using the above definitions, we can define two discrimination functions:

1. A first discrimination function that maximizes the relative changes of variance

defined as

Jm(x)= (Zw(k)Av(p-k)). (2.23)

2. A second discrimination function that minimizes the durations of the stationary

periods under analysis defined as

p-1

JR2 (x) = Ew(k)e2 (p- _k), (2.24)
k=o

where e(i) is defined as

T" - T maz if T > Tmaz and Av(i) < AVThrea
e(i) = (2.25)

0 otherwise,
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where for i = 1, 2,... p, the value of e(i) is the excess time beyond the frames period r,,•.

The entire discrimination function can be defined as

JR(X) = CIJRl(X) + c 2JM (x), (2.26)

where c1 and c2 are normalizing factors. The minimization of JR in order to find the coefficients

of the filter h has two consequences: Jjn maximizes the relative changes of the variances and,

according to equation 2.25, JR2 minimizes the durations of the stationary periods (10).

The accuracy of the DFM method depends heavily on the validity of the discrimination

function. Besides the fact that the DFM does not require a speech activity detector, the main

advantage of the DFM is that the filter h adapts to the changes of the noise patterns throughout

the speech signal.

-,.2.4 Other Speech Enhancement Techniques. Many speech processing researchers model

speech as a sum of sinusoidal periodic functions. Kobatake, Karou, and Sheng approached the

speech enhancement problem by means of the maximum likelihood estimation (MLE). The authors

segmented the speech signal into frames and sub-frames and then, by maximizing an a posteriori

probability density function, they estimated the Fourier coefficients of the voiced portions at a

specific frame (15).

In 1989, Nadeem A. Bashir, a graduate student at the Air Force Institute Of Technology

(AFIT), developed a system in order to enhance the quality of mutilated speech. His technique

analyses the damaged speech in the Fourier domain and then, based on known properties of normal

speech, such as periodicity of voiced speech, a computer program generates a set of sinusoids whose

amplitudes and phases are derived directly from the speech signal itself. These sinusoids are used

to reconstruct a cleaner and clearer version of the mutilated speech (13).
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III. Stein's Criteria, Wavelet, And Fourier Theory

3.1 Introduction

In this chapter, we present three main topics: Stein's criteria, wavelets, and Fourier analysis.

Stein's criteria defines both the necessary conditions to estimate the mean of an independent normal

random vector, as well as a method for estimating the risk associated with the mean estimation

technique. Next, we present the necessary wavelet theory and how it can be related to Stein's

criteria. In fact, we will prove that the wavelet coefficients of an independent normal random

vector, are themselves independent and normal. This property of the wavelet coefficients makes

them candidates to use with Stein's criteria. Finally, we present the Fourier transform and some of

its properties and we will prove that the Fourier coefficients (with some restrictions to be discussed

later) can be used with Stein's criteria.

Using the theory of Stein, we present two different thresholding techniques, the hard thresh-

olding technique (HTT) and the soft thresholding technique (STT). These thresholding techniques

will be used in our experiments dealing with de-noising speech. Throughout this chapter, we will

assume that all random vectors are independent, normal, and have the same variance.

3.2 Stein's Unbiased Estimate Of Risk (SURE)

Given a normal random vector, X = (Xo, X 1 , X 2,..., XN1-), whose elements ,Xi, are inde-

pendent normal random variables with arbitrary means and the same variance a2 such that for

i = 0,1,2,...,N- 1

Xi ,,- N(Ao, 2), (3.1)

Charles Stein, a statistician at Stanford University, introduced a simple equation (SURE) to

estimate the error associated with the estimation 14 = (O,21, A 2,2... , -,#N-1) of the true mean,
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17 = (AO, Al ,p2,... ,N - 1), of the normal random vector f by

S= J+g(g), (3.2)

where g : RN ---# RN is an almost differentiable function to be defined later (20).

Stein's theory can be used with any normal random vector with independent random variables

whose variances are identical. The next sections provide a detailed derivation of Stein's error

equation which we will use with both wavelets and Fourier. Stein developed his criteria by first

deriving the basic equations for a standard normal random variable (zero mean and variance of

one) and then, he extended the results to the case of several arbitrary normal random variables

with the same variance. It is important to understand that all the normal random variables are

assumed to be independent and have the same variance with an arbitrary mean.

3.2.1 Standard Normal Distribution: X , N(O, 1). Let X be a real random variable with

a standard normal distribution

1 _32
w(z) = -eL . (3.3)

The derivative of the above probability density function (pdf) is

O(W = -O(z), (3.4)

and let g be an indefinite integral of the Lebesgue measurable function g' such that

g: R --. R, (3.5)
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and

B{(I#'(X)I} <00o, (3.6)

where E is the expectation operator defined by

E [x] = o(z) d, (3.7)

and g' is the derivative of the function g. We shall show that

E, [g'(X)] = E [Xg(X)]. (3.8)

First of all, we have the following identities concerning the standard normal distribution

OW• = O '(z) d=~ dz

-- f -zo(z) dz. (3.9)

Since O(x) = 0(-z) and 0'(x) = -x•(x), we have the following relations

Ot(_X) = XO(-X)

= x¢(x)

= -4b'(z), (3.10)

and we can then write

OWz 0 (-X)

SL--0'(-z) dz

3-3



- 0:'(z) dz

- zoz) dz

- -- zO4-z)d(-z)

- zO(z) dz. (3.11)

Using the above equalities, we get

E [g'(X)] = 0 j 9'(x)Of(x) dx

=/g'(x)-O(x) dx + jo g'(x)O4x) dx

= 0g(x J -zO) dz dx + Jo =g'(x) J. zvk(z) dz dx.

(3.12)

Using Fubini's theorem (2), we can switch the order of integration and get

E [g'(X)] = - J. zO(z) f '(x) dx dz + I $O(z) f0 g'(x) dx dz

= f. ZO(z) J0 g'(W dx dz + J0 ZO(z) f0 g'(x) dx dz

= f. Zv/4z) g0 '(x) dx dz

= 00 zO(z)(g(z) - 9(0)) dz

f 00 zO(z)g(z) dz - f 0zO(z)g(O) dz

1= Jz4(z)g(z) dz

f= 0 JxOx)g(x) dx

B E[X g(X)] (3.13)

3-4



3.2.2 Arbitrary Normal Ditribution: Y ,- N(p, a.2). Using the results of the last section,

we will extend equation 3.13 to the case of an arbitrary normal random variable. The results of

this section will be used in the general case of a normal random vector whose components are

independent normal variables with the same variance and arbitrary mean.

Let Y be a real random variable with an arbitrary normal distribution. Since Y -,, N(p, u2),

the random variable X - has a standard normal distribution (i.e, X N(O, 1)). Define

h: R ----+ R such that

h(Y) = g[(YP) (3.14)

where g is defined by equation 3.5. We shall derive a formula for E [h'(Y)].

E[h'(Y)] = E dg f (-

=

__ Y 1 0

- E[g'[XJ]

= 1B[xgfxI]

= E [(Y it) h(Y)] (3.15)

3.2.3 Generalized Formulas For A Multivariate Normal Distribution. The formulas we

derived for the single normal random variables can be generalized to the case of a normal random

vector in which each element is an independent normal random variable with the same variance o-2.
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3.2.3.1 Multidimensional Definitions And Notations. Let )I = (Xo,X 1 ,X 2 ,... ,XN-1)

be a normal random vector in which each element Xi is an independent normal random variable

such that for i = 0, 1, 2,..., N - 1

Xi -N(i,ar2)

The mean of the vector )? is defined as

A = (i0o,Ip2,... ,N-i). (3.16)

The energy of the normal random vector t is defined as

N-I

IIAtE2  = j X2. (3.17)
i=0

A function h : RN -- R is called almost differentiable if there exists a function Vh: RN -+ RN

such that, for all Z E RN

h( + z-) - h(i) Z . Vh(i + t .at, (3.18)

for almost all : E R N. A function g : R N RN is called almost differentiable if all its coordinates

are. The symbol V is the vector differential operator of first partial derivatives with ith coordinate

v.0Vi = a ,'

so that

Vjh(Z) = Oh(z) (3.19)
ex,

(Oh(i) oh(i) Oh(s) (
Vh(i) = \( OOI OXI .. OZN-1" (3.20)
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3.2.3.2 Basic Formulas For An Arbitrary Normal Multidimensional Random Variable.

Let • be the multidimensional normal random variable defined in the previous section and h:

RN -- R R an almost differentiable function such that

E[IIVh(k)II] < oo, (3.21)

where

E[Vh(.)] = E[(Voh(X),Vjh(A),.....VN-h(9))

By analogy to equation 3.15, we can write for the multidimensional case

E [Vh~g)] = E[( 2 Lh~gX)]. (3.22)

Since each component Xi (for i = 0, 1, 2,...., N - 1) is an independent normal random variable and

Xi , N(/•i, or2), we can write

E['_•]h() = E [(Xi-P•) h(?)] (3.23)

3.2.4 A Closed Form Of Stein's Error Function. Given a multidimensional normal vector

A, composed of independent normal random variables Xi - N(Pi, r2 ) for i = 0, 1,2,... , N - 1,

Stein defined an estimate 11 = (AO,#I, - -.- , AN-1) of the true mean Ai = (po,1 Ai... Aij-1) as follows

A= +g(-), (3.24)

where g : RN - RN is an almost differentiable function with coordinates g(.9) = ((90 4), g 1 (-),... g- ())

such that

gi : RN --- R,
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and
N-I

where the subscript j. indicates the dependence oi the expectation operator on the mean.

For each normal random variable Xi, Charles Stein, defined an unbiased estimate of the risk

(SURE) associated with estimating the true mean pj of the single independent normal random

variable Xi as the expected squared error between the estimate Asi and the true mean Ai as follows

= EB[(X, _ A)2 + 2gi(I)(X, - Ad) + g2(±)]

= EMA [(X, _ A,)2] + EM [gi2 (,)] + 2E,.[gi (±) (Xi - )]

(3.25)

Since

EM[(X 1 -,Iig() = 
2E

(3.26)

equation 3.25 becomes

E '[(t  ,p)2] = 0,2 + EM]S (A) + 2u2E, a X] (3.27)

Using the above equation for a single random variable, Charles Stein defined an unbiased

estimate of the risk associated with estimating the mean P of the vector ± as follows

N

EM'A [11~ #I2] y EM [(Ai_ I3-8
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= 2+ E[2(9)]+ 2a2E, [ox J

=1 x

= Nor+EM[~(X12 + 2o'2E [Vg(A')]. (3.28)

Ideally, we want to minimize the risk defined by equation 3.28 in order to get a more accurate

estimate of the mean. Since this equation depends on the choice of the function g, many different

choices, which satisfy the differentiability conditions stated above, are available. Since the basic

estimation technique is based on adding a value to each element of the random vector A', the next

section introduces two different choices of the function g. These choices have a lot of practical

applications and can be used to de-noise signals degraded by additive white Gaussian noise. In

particular, the theory of Stein, proves that for white Gaussian noise with zero mean and a variance

of or2 , the mean estimate using Stein's criteria, is theoretically, zero. In other words, when we input

zero mean white Gaussian noise signal to a Stein based mean estimator, we expect the output signal

to be zero. This observation can be used to de-noise signals corrupted by additive white Gaussian

noise with zero mean and a variance of oa2.

3.3 Soft Thresholding Technique

Let A' be a multidimensional normal random vector whose elements are independent normal

random variables with the same variance ar2 and let its mean be the vector/i #= (p01, - ). ,

Define an estimate of the mean/i by 1i = ([O,,i, ...Al, [N-l) such that (5) (6) (9) (8) (7)

i=A'X + g(),

where g(A') = (go(A'),ggi ),... ,gN-1(XC)) is as defined in equation 3.24.
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Figure 3.1 Soft thresholding technique (STT).

The Soft Thresholding Technique (STT) uses a threshold (t > 0) to estimate the true mean,

Iii, of each normal random variable, X1 , by the estimate Aý, defined by (see figure 3.1)

where for each i=0, 1, 2,..., N- 1

-xi 1~xii < t. (.9
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This yields

Xi - tsgn(X1 ) jXjj>t
•,• =(3.30)

o0 Ixii <_ t.

An alternative representation of the soft thresholding technique is obtained by use of the minimum

operator to write

g•,,o = _ min(IXsI, t) sgn(Xi). (3.31)

Then, for soft thresholding, the mean estimate is defined as

g = Xi - min(1XiI, t) sgn(Xj). (3.32)

3.3.0.1 Definition of The Soft SURE Function. Since gt(fC) is almost differentiable,

we may write

Og8(.l) I 0 lxii > t

ox, • -1 IX I < t.

By using the characteristic function which is defined by

0 IXI > t
X[-t,t] (Xi) = (3.34)

1 Ix,tI_<t,

we get

OXi -X[-t,t] (Xi). (3.35)
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We conclude then that

N-1

Vg'(g) = - E X[-t,t] (Xi). (3.36)
i=0

Since

i=0N-1

E '[[Min (jX, 1, t)]' (3.37)
i=O

combining equations 3.24, 3.36, and 3.37 together, Donoho and Johnstone (5) (6) (9) obtained the

following:

2+[N-1 [i(,i1t)] 21] , N-1

SURE8 oft(t ) = [No2] + [Nor[mil(iX, t) -2o.[ E x[-tt] (Xi)].
i=O i=O

(3.38)

equation 3.28 becomes:

#~Ii-1112] = E,,[SURE..ft(t,fC)]. (3.39)

3.3.0.2 Soft Threshold. Since we want to minimize the estimate of the error associ-

ated with estimating the mean/a, we need to choose a threshold ta°ft that minimizes the SURE.o t

quantity defined by equation 3.38. In order to choose the right threshold we need to proceed as

follows. Assume that the coordinates Xi of the vector 9 have been ordered in an ascending manner

by absolute value such that:

IXol _ IX1 _< ... __ IXN-1l, (3.40)
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and let t > 0 be an arbitrary threshold such that for some i = 0,1, 2,..., N - 1

[IN :_ t < t +At _< 1xi+11.

We have

SUREoft(t+ At,9) - SURE..ft(t, )) = min(IXji , t + At) - [in(IxI t) -
j=O I

Io N-1 
-N-I]

2 E2  X[-(t+&t),t+&t] (x,) - N-i X,] A)

j=0 j=O

m $[iin(IxiI~t+ At)] - [min(IXiI~t)] 2]

F min(Oxi1,t + At0] [min(lXjl,t)]2]

- • [min(IXiIt+At)]-- [min(IXt)]2](+

j=i+l

N-1= [ [(2t + At)At_

j=i+l

> 0, (3.41)

which means that

SUREoit(t + At, )t) > SURE,,ot(t, 29) > SUREoit(IXi, .9).

We conclude then that in order to choose a threshold that minimizes the SURE.oJft quantity, we

need only test thresholds that are elements of the known set { fXi}N-1.
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The domain for our soft threshold is then defined as

t°oft E {o} U {IX I},-1.

The value 0 is included in order to take care of the cases where j7 = jZ and o2 = 0. The threshold

that minimizes the SURE.Oft quantity will be denoted by

tsoft = arg[min[SURE.of,(t,,)]], (3.42)

where t E {0} U { I Jr-

8.4 Hard Thresholding Technique

Just like the Soft Thresholding Technique (STT), the Hard Thresholding Technique (HTT)

uses a threshold (t > 0) to estimate the true mean, pi, of each independent normal random variable,

Xi, by the estimate A!, defined by (see figure 3.2)

Al• xi + gito?),

where for each i =0, 1, 2,..., N - 1

o IX, l > t
g x l t= (3.43)

- IXL<_t.

This yields

x• IXI>t
s= (3.44)

0 IXIl <t,
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Figure 3.2 Hard thresholding technique (HTT).

An alternative representation of the hard thresholding technique (HTT) is obtained by use

of the characteristic function defined by equation 3.34, such that

S=- Xi X[-t,tJ (Xi). (3.45)

Then, for hard thresholding, the gi function, is defined as

glIhard(fr) = X, (I _ X[-15 (Xi)). (3.46)
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3.4.0.3 Definition of The Hard SURE Function. Although the hard thresholding

function, gi(X), is not almost differentiable, we decided to use it with Stein's criteria in order to

compare the results with the soft thresholding technique. We may then write

gt()= 0 1x>t(3.47)
Ox i-1 IxI < t,

by using the characteristic function, we have

og.) = -x-t,tj(Xs). (3.48)OXi

We conclude then that

N-I

Vgt(g) = - X x[-t,t](X1). (3.49)
i=0

Since

N-1 [gi

fjgt(f~j2 = N [gE (2
i=0

N-1 
X

combining equations 3.28, 3.49, and 3.50 together, we can define the following quantity

+ N-1 N-I

SUREh.d(t,,) = [No,21 +E [jx2. X[_t,t](X)]] - 20. E X-,t,(x,)],
i=0 i=0

(3.51)

equation 3.28 becomes:

E [E-]= ,- [SUR d(t (3.52)
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Just like the case of the soft threshold, the domain of the hard threshold is given by:

thard E {0} U {lXl} N1 .

and the hard threshold should be chosen such that the SUREh.rd is minimized

t Hrd = arg[ min[SUREh.rd(t,.)], (3.53)

where t E {0} U fIx li}=o .

3.5 Wavelet Transform

The continuous wavelet transform (CWT) is a technique that decomposes and analyzes a finite

energy signal, f(t) E L (R) (set of Lebesgue-measurable functions) , using different resolutions for

different scales (4), where

L2(R)= Ifl 1+ lf(t)12 dt < oo0. (3.54)

The CWT is based on defining a "mother wavelet", ip, which is subject to the following condition

of admissibility:

j+00 I~V-Il()I 2d• < 00, (3.55)

where t is the Fourier transform of O. This condition implies that 4 decays to zero as the frequency

goes to infinity; furthermore, it implies that the mother wavelet, to, is zero-mean:

j 0k(t) dt = 0. (3.56)
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Since equation 3.55 requires that the Fourier transform of 10(t) at the zero frequency (i.e., w = 0)

is zero

4(O) = 0, (3.57)

it is clear that 4 represents a band-pass filter (see figures B.1 through B.6 for three different

wavelets).

Based on the above conditions, the continuous wavelet transform with scale a and shift b, is

defined as

-[(b ] =/ of(t)O,,b(t)dt, (3.58)

where (a, b) E R+ x R and

4,a,b(t) = a-/'24 (t•t b), (3.59)

and the asterisk indicates complex conjugation. The families of functions O.,b define a basis for the

family of finite energy functions L2 (R).

3.5.1 Properties of The Wavelet Transform. The following properties of the wavelet

transform will prove very useful in our future derivations of the discrete wavelet transform (DWT)

and the extension of the thresholding techniques to the wavelet domain.

Linearity: V a,#/ E R

Wab [af(t) + pg(t)] = CWab [f(t)] + #Wa'b [g(t)] (3.60)
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Scaling: V A E Rt - {0}

wa= Vj-JwM' [ff(t)] (3.61)

Time Shift: V to E R

wa& [p(t - to)] = W'b- to [p(t)]. (3.62)

From the above shifting property, it is clear that the wavelet transform is a linear time varying

(LTV) operator.

3.5.2 Resolution Properties Of The Wavelet ip. The energy of the Fourier transform of

the wavelet 7 is defined as

fOO

I1112  +00 Im)12 df. (3.63)

If we normalize the wavelet 0 such that I01112 = 1, we have

_ l(f)1 2 df = 1, (3.64)

which means that the square of the wavelet magnitude, 1,1
2 , represents a probability density func-

tion (pdf). Using the identities of Plancherel (preservation of energy) and Parserval (preservation

of geometry), we can also define a time domain pdf as 11(t)12 such that

J== I'(t)l2 dt = 1. (3.65)

We can then define the following statistics with respect to these wavelet based pdfs:

1. The center frequency, fo, is defined as the expected value with respect to the pdf
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I(f)l2, where f represents frequency.

fo =r f I4(f)I2 d. (3.66)

2. The second Moment or the variance, ur, of this wavelet based pdf is then defined as

r j (= - fo)2 I4(f)I2 df. (3.67)

The value of this variance measures the dispersion of frequencies relative to the mean I0. The larger

the variance, the more dispersed are the frequencies relative to the mean. This also means that

the pasband of the wavelet is larger with a wider bandwidth. The center frequency of a wavelet

allows us to determine the range of frequencies that are filtered at a specific resolution level "a".

3.5.3 Resolution Properties Of The families of Wavelets O.,b. The families of wavelets

i.,b(t) are formed by dialations (using the scale a) and translations (using the shift b) of the mother

wavelet 0. The admissibility condition defined above still holds for these newly formed wavelets.

Since

• a,&( -= a-/2 (t_-_b) (3.68)

these wavelets have an expected value at time t = b and it can be shown that their variance is given

by

(a-,2b) O (3.69)
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where •t 2 is the variance of the mother wavelet.

1. The Fourier transform of .. ,b(t) is given by

4.,b,(f) = ie-'i2 *'j'(af), (3.70)

where ý is the Fourier transform of the mother wavelet, defined by

im = +o ,0(t)e -i=wt dr, (3.71)

and i is the complex number such that

i2 -1. (3.72)

2. The center frequency, hb, of these wavelets is related to the center frequency, fo, of

the mother wavelet by the following relation

f -,b = fo (3.73)
a

3. The variance of these wavelets, a!,b, are then related to the variance, a 2, of the mother

wavelet by the following equation

or22=,b = f- (3.74)

A moment's reflection on the above two parameters shows that as the value of the dilation

parameter a increases, the bandpass center frequency ,J.,b, of the wavelet 4a,b(t), approaches the

lower frequencies near the origin, the dc frequency, with a smaller variance or bandwidth, .4. This
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shows that by changing the value of the dilation parameter "a", we can "zoom in" to different

frequencies in the spectrum of the signal f(t).

3.6 Discrete Wavelet Transform

Since the admissibility condition defined above holds for ta.,b(t), the families of functions

io.,b(t), which are formed by dialations (scale a) and translations (shift b) of the mother wavelet

0, are themselves wavelets. They form a basis for L2 (R). Since equation 3.58 represents an inner

product between the function f(t) and the corresponding wavelet ioa,b (t), the wavelet transform with

a particular choice of "a" and "b" is, indeed, a measure of the similarity between f(t) and •ip,b(t).

While these newly formed wavelets are a basis for L2 (R), they are not necessarily orthogonal and

may redundantly represent the signal, f(t) (1). By discretizing the values of the shift and scale

parameters, it is possible to find an orthonormal set of wavelets to represent functions in L2 (R). If

we choose a = a' and b = nboa' for some m, n E Z, it is possible to find an orthonormal wavelet

basis for L2(R). The choice most commonly made is for ao = 2 and b0 = 1, where ao is known as

the dilation factor.

3.6.1 Multi-resolution Analysis. The Multi-resolution Analysis (MRA) of a signal f(t)

was first introduced by Mallat and Meyer in 1986 (16). The MRA decomposes a signal into a set of

approximations where the orthonormal wavelet bases are used as a tool to describe, mathematically,

the "increment of information" needed to go from one coarse approximation to a finer or higher

resolution approximation (4). Since the analysis of the signal f(t) is based on a set of orthonormal

wavelets which form a basis for L2 (R), the amount of information needed to implement the MRA

is kept to a minimum. Mallat developed a fast algorithm to implement the MRA.

3.6.1.1 MRA Requirements. A multi-resolution analysis consists of a set of approx-

imation spaces, Vi C L2 (R) (j E Z), which satisfy the following six requirements (21):

Requirement 1
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The approximation spaces Vi are embedded such that

S..V2 C V C V O C V-1 C V- 2 C ... (3.75)

Requirement 2

U V = L2 (R). (3.76)
jEZ

Requirement 3

nflV = {0}. (3.77)
jEZ

Equation 3.76 ensures that V f E L2 (R)

lim Pif = f,

where Pjf is the orthogonal projection of f(t) onto V3.

Requirement 4

The above approximation spaces must satisfy

f(t) E V3 4 -= f(2 3 t) E V0. (3.78)

Equations 3.75 and 3.78 imply that all spaces of the MRA are scaled versions of the central space

V10.

Requirement 5

The central space VO must be invariant under integer translations. Vn E Z we have

f(t) E Vo==•(t - n) E Vo. (3.79)
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Requirement 6

There must exist a scaling function 4. E Vo such that

{fOO,n}n•Z is an orthonormal basis in V0,

where Vm, n E Z

.m,.(x) = 2-m/2-(2-mz - n). (3.80)

The above equation implies that the set {10n,n)nEZ is an orthonormal basis for the approximation

space Vm, where m E Z.

3.6.1.2 Detail spaces. To completely characterize the MRA, the above six criteria

can be used to construct a set of orthonormal wavelet basis {7bm,,n}n,mEZ of L2 (R), where

-O,n(x) 2-,n/ 2 P(2-mz - n), (3.81)

such that

P._-I f P.f + E(likr,.), (3.82)
nEZ

where Pnf is the orthogonal projection of f onto the approximation space Vm and (f,O4 m,n)

represents the L2(R) inner product of f and On,n.

Let W,, be the orthogonal complement of Vm in Vn-I such that

Wm I Vn, with V,. C V1n-, and Wrn C Vmi-.

The above definitions imply that the orthogonal projection of the function f(t) onto the approxima-

tion space Vmn-I is the same as the orthogonal projection of the function f(t) onto the approximation

space Vn, plus the "information difference", Qmf, between the two successive approximations, Pmf
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and Pm.-I!:

Qinf = Pw.-If - Pm!, (3.83)

where Qmf E Wm and Qrnf .l Vm.

Equation 3.83 implies that the set {f'm,n}nEZ is an orthonormal basis for Wm and that

Vm-I = Vm 0 Win, (3.84)

where • designates the direct sum operator of two linear spaces. Furthermore, the orthogonal

complements, {Wm}mEz are mutually orthogonal such that for i 6 j

W. I W, =0.

Since the subspaces {Wm}mEz are mutually orthogonal, they effectively divide L2 (R) into mutually

orthogoLal subspaces and we have

( W, = L2 (R). (3.85)
mEZ

In conclusion, the set of wavelets {1'm,n}n,mEZ is an orthonorma] basis for L2 (IR).

3.6.2 Decomposition and Reconstruction of a finite energy signal using DWT. Let

f(t) E L2 (R), and denote the orthogonal projection of f(t) onto the space Wn by Qmf(t). Since

{1m,n}nEZ is an orthonormal basis for Win, we can write Qrnf(t) as a linear combination of the

discrete wavelet series {tm,n}nEZ such that

Qmf(t) = _ dm,ni/m,n(t), (3.86)
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where dmn = (fPm,n) are known as the mth-level "detail coefficients". Since {•m,n~nEz is an

orthonormal basis for Vm, the orthogonal projection Pmf (t) of f(t) onto the space Vm is defined

in a similar way as

Pmf (t) = C cm,ntm,n(t), (3.87)
nEZ

where cm,n = (f, 'km,n) are known as the Mth-level "approximation coefficients".

Consider the scaling function 01 ,o(t). Since V, C VO, we can represent 01,0(t) as a linear

combination of the zeroth level basis, {fO,n(t)}nEz

2-1/2-(t/2) =E hnO(t - n), (3.88)
nEZ

where

hn = (01,0, 0O,n). (3.89)

Similarly, since W1 C Vo and {JO1,n(t)}nEZ is a basis for W1 , we can define

2-11/2 O(t/2) = 1 gno•(t - n), (3.90)
nEZ

where

=n = (01,0, 00,n). (3.91)

The discrete filters hn and gn play a major role in the multi-resolution analysis. Mallat

showed that the h and g filters can be used to relate the approximations at the Mth-level to the

approximations and details at the (m + 1)8i-level, respectively. Using these filters, it can be shown
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that the equations that relate the approximations and details of different levels are given by

cmn = E Cm-.,khk.2n (3.92)
kEZ

d.,n = E Cm.-1,k•9-2n. (3.93)

kEZ

The above equations are the heart of the MRA fast algorithm that was developed by Mallat. Using

these equations, we can calculate the approximations of the mth-level using both the approximations

and details of the (m + 1)11-level, as follows.

After decomposing the approximation coefficients at the mth-level into details and approxi-

mations at the (m + 1)a'tlevel, we can perform the inverse procedure by using these (m + 1)"t-level

approximations and details to get back our mrth-level approximations. In fact, the filters h and g

may also be used to calculate the approximations at the mth-level starting with both the approxi-

mations and details of the (m + 1)'t-level using the following equation

Cm-l,n = E cm,khn.-2 + E dm,kgn-2k. (3.94)

kEZ kEZ

3.6.3 Characteristics Of The h and g Filters. Daubechies (4) showed that the filters h

and g have the following properties

: hnI < 00 (3.95)
nEZE I- < 0.(3.96)

nEZ

The above two equations require that the filters h and g must be stable.

Let H(f) and G(f) represent the Fourier transforms of the filters h and g, respectively. A sufficient
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condition for the construction of the ip is that the matrixIH(f) G(f)
U+ = ,G(i+ ] (3.97)

2 2

must be unitary (i.e., U TU = I, where I is the identity operator).

One possible choice for G is

G(f) = e-'i2 H f + 1), (3.98)

which lead to the following relation between the coefficients of the h and g filters, Vn E Z

g, = (-1)(-")-'-.. (3.99)

Finally, The filters h and g must satisfy the following conditions

Shn = vf (3.100)
nEZ

S2 = 1 (3.101)

nEZ

Sgn = 0 (3.102)
nEZ

Sgn= 1. (3.103)
nEZ

Equation 3.100 implies that the h filter is a low-pass filter while equation 3.102 implies that the g

filter is a high-pass filter.

3.6.4 Examples Of Wavelets And Filter Coefficients. The following wavelets will be used

in our analysis of noisy speech data (chapter 4). In tables A.1 through A.3, we present the fiter

coefficients of three different wavelets, db6, coiflet(6), and db20. These wavelet-based discrete filters

have different filtering properties (see figures A.1, A.2, and A.3). Observe that the h filters are
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low-pass filters, while the g filters are high-pass filters. Figures B.1 through B.6 show the wavelets,

scaling functions, and their Fourier transforms. Observe, the amplitude of the Fourier transform of

all wavelets represent band-pass filters; while the corresponding scaling functions represent low-pass

filters. Notice, the wavelets corresponding to db6 and coifiet(6) have many hi&h energy side-lobes;

while those of the db20 wavelet, have very small side-lobes.

3.7 Implementation Of The Discrete Wavelet Transform (DWT)

In order to efficiently implement The MRA developed by S. Mallat, we proceed as follows

(21)

Given a T-periodic signal f(t) such that V t E R

f(t + T) = 1(t), (3.104)

the wavelet transform satisfies

Wab [f.(t + T)] = Wab+T [p(t + T)], (3.105)

which means that the continuous wavelet transform of a T-periodic signal, is also T-periodic. We

can use this property to minimize the number of calculations needed to decompose a given signal

into sets of details and sets of approximations. The next two sections use this property to develop

an efficient algorithm for decomposing and reconstructing a signal using wavelets.

3.7.1 Decomposition Using DWT. Now, given the filter sequence hn and N samples of

the function f(t), at a sampling period, At, we compute the approximation coefficients, {cn,nn}EZ

where 1 < m < M, for a total of M levels of decomposition as

Cm,n = 1 cmjl,khk-2n, (3.106)
&EZ
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where the zeroth-level approximation coefficients are taken to be the samples of 1(t) at integer

multiples of At

S= (nAt).

Using equation 3.99, we can calculate the gk filter sequence. The detail coefficients are then

calculated using the following equation

dm,n = cm-1,k9g-2n. (3.107)
hEZ

We can then write

Cm,n -- E-c,-1,khj-lj_-2n (3.108)
kEZ

dm,n = Cmn1,0cg,. :1j=.2n, (3.109)
kEZ

where V n E Z, the new filters h and § are defined as

hn = h-n and §n = 9-,.

The above two decomposition equations may be viewed as a two steps operation: A convo-

lution of the sequence {cm.-1,nnEZ with the filters h and #, followed by the operation of "down-

sampling" by a factor of 2; i.e., the convolutions are evaluated at 2n, keeping only the evenly-indexed

coefficients of the convolution's result.

If the filter h has at most L non-zero elements and the sampled signal fn = cO,n has at most

N non-zero elements, for n = 0,1, ... , N - 1, it can be shown that the above convolutions of h and

g with cO,n, will have, in general, N + L - 1 non-zero elements. The above convolution operations

"spread" the sequences Cm,,n, and dm,n. In fact the spreading increases as we move from the mr14

to the (m + 1)at-level, for m = 1,2, ..M. In order to avoid this "spreading" at each stage of the

decomposition, the DWT can be implemented using a periodic extension of f so that the sequence
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cs,. ;B N-periodic

CO,n+N = CO'n.

Assuming that N = 2', where M is a positive integer, and due to the down-sampling operations

mentioned above, the sequences c,n,, and dm,n are also periodic with period 2-"N. We can then

write the following relations for mn = 1, 2,...., M

cnn = Cmln+2--N]

dm,n = dmn,[n+2--N'.

Starting with N = 2 M samples of the original N-periodic signal, the down-sampled discrete

wavelet transform (DWT) allows a maximum of M levels of decomposition where at each level m, we

have exactly 2-'N unique approximation coefficients (cm,n) and 2-'N unique detail coefficients

(dmn,n). The last level of decomposition, the Mth level or the coarsest level, has one approximation

element and one detail element (i.e., 2-MN = 1). After M levels of decomposition, we end-up with

a total of N - 1 unique approximation coefficients and N - 1 unique detail coefficients (see figure

3.3).

To completely define the above convolutions, at each level m, we need only compute the

2-'N unique elements. In order to efficiently implement the above convolutions, we can rewrite

the approximation coefficients at the mth decomposition level as

k.

cn,n = L Cn-1,[(k+2n)mod(2-_N)]hA,
k=k.
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CO'. = original signal 7

t

C-.-

Figure 3.3 Wavelet decomposition of a signal staring with N = 2" samples and decomposing up
to the mth -level where 1 < m < M.

where mod represent the modulo operator and k, and k. represent the first and last non-zero

components of the filter h, respectively. They are related to the length, L of the filter h as follows

k. - k. = L- 1.

In a similar fashion, the detail coefficients are implemented as

k,.
d,n = Cm-l,[(k+2n)mod(2-mN)]gk.

k=k.

Since gn = (-1)(1 -n)h-•-n, the g filter length is also L and we have

k. -k =L-1.
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The first and last non-zero elements of the filters h and g, can be chosen so that the filters' energies

are well-centered, though not all wavelets have fiters which can be centered exactly.

3.7.2 Reconstruction Using DWT. We have seen that the reconstruction of the approxi-

mation coefficients at the (m - 1)at-level are related to both the approximations and details of the

muth-level by

cml,n = E c,.,kh._2k + E d•,gkn-2k, (3.110)

kEZ kEZ

where for M levels of decompositions, m takes the values m = 1, 2,... M.

The above equation can be rewritten as

Cmln= E Z.,khn~-k + E dm,tcgn-k
kEZ kEZ

wherein cm,k and dmk represent the "up-sampled" approximation and detail coefficients at the mth

decomposition level, respectively. V k E Z

Z.,2k = C•,k and Zm,2k+i = 0

,•,2A= dm,& and dn,2k+l = 0.

In order to efficiently implement the above reconstruction equation, using the periodic exten-

sion from the last section, we proceed as follows:

Since we have one unique approximation and one unique detail elements at the Mth-level (i.e., The

Mth-level is 1-periodic, we can use the above equation to compute the approximations at the level

above (i.e., (M - 1)At-level). The number of unique approximation coefficients is 2(M-1)N, where

N = 2" is the number of samples we started with. We can then compute the approximations at the

(M - 2)nd-level using this newly reconstructed approximation set and the 2(m- 1 )N details obtained

during the decomposition process at the (M - 1)a'-level. All in all, for perfect reconstruction of
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the sequence {Co,,llO<_,<N=2M at the zeroth level, we need to keep the following data

1. All the details obtained during the decomposition process (a total of N - 1 unique detail

coefficients).

2. The unique approximation coefficient obtained during the decomposition process at the

Mth decomposition level.

In conclusion, starting with an N = 2M-periodic signal, the full DWT (i.e., M levels of

decomposition), produces a total of N - 1 unique detail coefficients, and 1 unique approximation

coefficient at the Mth decomposition level, for a total of N coefficients. The partial DWT (i.e.,

m levels of decomposition where I < m < M), produces a total of N - 2(m-m) unique detail

coefficients, and 2 (M-m) unique approximation coefficient at the mth decomposition level, for a

total of N - 2 M coefficients (see figure 3.4).

co.= full reconstruction of a signal

I C o.. II

t

ES

c-.l Id ,.i

Figure 3.4 Wavelet reconstruction starting from the mth-level where 1 < m < M to the zeroth
level where the number of samples is N = 2"
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The reconstruction equation at the mth-level can be rewritten as

k.
C_,, = L [(n - k + 1) mod 2]c ,[r'•1.d 2_... ] h& +

k=k.

S[( -k + 1) mod 21d[ [..o[,_] g,
k=k.

where 0 < n < 2-(m-l)N.

3.7.3 Statistical Properties Of The Wavelet Coefficients Of Random Variables. Let J? -

(Xo, X 1 , X2 ,... , XN- 1) be a normal random vector of N = 2M independent random variables such

that for i 0, 1, 2,..., N - 1

X, - N(p,0,2), (3.111)

where 0 -- ( 0o, A2,.2,... ,pN-i) is the vector mean of the normal random vector I?. We will

show that, at each level of decomposition, the details and approximations are also normal random

vectors such that the discrete wavelet decomposition at the m th-level (1 <- m 5 M) is given as in

equations 3.106 and 3.107 by

Cm,. = j C.-l,khk-2. (3.112)
kEZ

Dm,n = C-"Im-a,g-2., (3.113)
kEZ

where C and D denote the approximation and detail random variables, respectively. This property

of the DWT coefficients allows us to use the SURE criteria which requires the input data to

be normally distributed (see figures C.A through C.6 for using the STT technique with a noisy

sinewave).
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During the decomposition process, the zeroth level approximations are taken to be the vector

gitself such that

CO,. = X.,,

where n = 0,1,2,..., N - 1. Since, according to equation 3.111, the vector )? is normal and all

random variables, Xi , are independent, the zeroth-level approximations are also independent and

normally distributed with the same parameters as the vector V. By using equation 3.112, the first

level approximations can be written as a linear combination of the zeroth level approximations such

that

C(1,. = E Co,khA.-2,. (3.114)
kEZ

Since CO,- N(,' , r2 ), where "••, 0,k = /4k, we conclude that Cl,,, is also independent and normally

distributed. The mean of C1 ,,,, denoted by 14C, is given by

S= E [C,,,]

= E E Co,k]
kEZ

- Ehj.-.2n/&0,k

kEZ

-E hk-2.t/h. (3.115)
kEZ

Using equation 3.101 and the independence of the zeroth-level approximations, Co,,,, the variance

is given by (12)

Var [C1,,,, = Vaur [EZ Ikk-n
= h 2 .Var [Co,kl

kEZ
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- h 2•_j r2

kEZ

- r E2 h2k2

kEZ
= •2. (3.116)

The random variable C 1,, is then distributed as

C1 ,0  N(~ hk.n ,k' ,
2) (3.117)

kEZ

Recursively, the approximation coefficients at the mt-hlevel are also independent and normally

distributed such that the mean is related to the mean of the (m - 1)'-level by

P•,, = E hk-2.1.,-1,k.* (3.118)
kEZ

Using the above results, we can write

C, 0 -N(/I,&, a2 ), (3.119)

MCnr10'2)

where Ij,n is defined by equation 3.118.

Since the detail coefficients are also a linear combination of the approximation coefficients

(see equation 3.113), it is easy to show that the details at the mth-level are also independent and

normal random variables such that

D.,n - N(/ 0,2,3 ), (3.120)
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where the detail's means at the mth-level are related to the approximation's means at the (m - 1)8t-

level by

D,= A . (3.121)
kEZ

3.8 Complex Statistics and Analysis

The purpose of this section is to relate the statistics of a complex random variable to the

statistics of its real and imaginary parts. The relations to be developed in this section, will be used

in the analysis of the Fourier traisform of normal random vector.

A complex number z can be defined in its rectangular form as

z = z + i Y, (3.122)

where x and y are real numbers which represent the real and imaginary parts of z, respectively.

The complex number i is as defined in equation 3.72. The next sections, will develop the

3.8.0.1 Geometric Properties of Complex Numbers. The amplitude of a complex

number is defined as

Izi = VI+ Y. (3.123)

When the product zy A 0, the phase of a complex number is defined as

arg[z] = 0, (3.124)
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where 0 < 0 < 2w and

9 = arctan(•). (3.125)0x

a. If z = 0 (i.e., x = 0 and y = 0), then the phase is not defined.

b. If z = z is pure real and non-zero (i.e., x 6 0 and y = 0), then

0 x>O
0 = j0 (3.126)

Wr X<O.

c. If z = i V is imaginary and non-zero (i.e., x = 0 and y # 0), then

o = (3.127)

Using the above properties of complex number we can rewrite equation 3.122 in its polar form as

z = Izle, (3.128)

where 0 and eip are defined by equations 3.125 and 3.140, respectively.

3.8.0.2 Statistical Properties Of Complex Random Variables. A complex random

variable is defined as

Z = X + i Y, (3.129)

where both X and Y are real random variables.

1. The expected value of a complex random variable is defined as

E[Z] = E[X+iY]
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- E[X]+iE[Y]. (3.130)

2. The variance of a complex random variable is defined as-

Var[Z] = Var[X + i YI

= E [IZ12] - I[Z]12

= E[X 2 + y 2 ] - [E [x]2 + E [y]2]

=[E[X2] -E[x]] + [E[Y2] -E[xj]

= Var•X + Var[Y]. (3.131)

3.8.0.3 Statistics Of The Amplitude And Phase Of A Complez Random Variable.

Let Z be a complex random variable such that

Z = X+iY, (3.132)

where both X and Y are real independent normal random variables

X ~N(IL, a2)

Y • N(/A,, or2).

The amplitude IZI .IX 2 + Y 2 , which is a function of the random variables X and Y, has a

probability density function defined by

-(,2+,2)

f(Z) &= -[(3.133)

0 z < 0,
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where p, -- p• + AX and Io(z) is the modified Bessel function defined as

IO(W) = 1 exCoo&d. (3.134)

If • y = = 0, f(z) is called a Rayleigh distribution (18). The phase 0 of the complex random

variable Z which is defined as

0= arctan (3.135)

where -ir < 0 < 7, has a uniform distribution (18) in the interval (-7r, 7r) defined by{1
f (0) = Y; -w < 0 _< 7r (3.136)

10 otherwise.

3.9 Fourier Analysis

The purpose of this section is to define the discrete Fourier transform (DFT), apply the results

of the last section to the real and imaginary parts of the DFT of a random vector, and define the

statistics of the real and imaginary parts. The results of this section, will be used with the results

of Stein in order to de-noise the real and imaginary parts of the DFT of a normal random vector.

Given a signal f(t), one is interested in analyzing its frequency content locally in time (4).

The standard Fourier transform which is defined as

f /+_•f(t)e-tw t dt, (3.137)2=w

gives a representation of the frequency content of f(t), but it is unable to localize frequencies in

time. In order to localize the time occurrence of many high frequency bursts, we may first window
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the signal f(t) and then take the Fourier transform of this windowed portion of the signal f1(t)

f = j f(s)g(s - t)e-'-' ds, (3.138)

where g(t) is a window function.

The above equation is well known in the signal processing field by its discrete form, where

the shift t and the frequency w are discretized as t = nt0 and w = mw•0 . The Windowed Fourier

transform or the short-time Fourier transform (STFT), (.F"inf)(w,t), can be interpreted as the

"amount of the frequency w" present in the signal f near time t.

One similarity between the Fourier transform and the wavelet transform is that both equation

3.58 and 3.137 take the inner product of f with a family of functions indexed by two variables,

,b(t) ---= a-1/20(t-) and g1,,t = ei"ag(s - t). However, the difference between the wavelet and

windowed Fourier transforms lies in the shapes of the analyzing functions g',t and la,b(t).

The functions g',t all consist of the same envelope function g, translated to the proper time

location, and "filled in" with higher frequency oscillations. The windowed Fourier transform ef-

fectively divides the frequency spectrum of the function f(t) into equal-bandwidth regions. In

contrast, the windows used by the wavelet transform are well adapted to their frequency. The use

of both a dilation factor "a" coupled with a shift variable "b", allows the wavelet transform to

decompose and analyze signals using a small bandwidth (broader window) for low frequencies and

large bandwidth (narrow window) for higher frequencies.

The main characteristic of the wavelet transform lies in its ability to "zoom in" and detect very

short-lived high frequency phenomena, such as transients in signals or discontinuities in functions

(i.e., human vocal tract glottal closure).
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3.9.1 Discrete Fourier Transform (DFT). The discrete Fourier transform (DFT) of a

periodic finite-length sequence of N points, n is defined as

k= N- E[zme()km] (3.139)
m=0

where 0 < k < N - 1.

The quantity e'O is defined as

eiO = cos(O) + i sin(0), (3.140)

where i is the complex number defined by equation 3.72. For each 0 < k < N - 1, the quantity I Xk

measures the amount of frequency w = (11)k present in the signal n In order to get back

our original signal, f{Xm}m=, from its DFT sequence, {fk} =)1 , we perform the inverse discrete

Fourier transform (IDFT) defined as

1 N-1

•= 7N= E [4&e-(*)'"]" (3.141)
k=o

We conclude then that the sequence {Xm}{j=0,1,2,...,N-j} can be represented as asum of sinu-

soids of frequencies 0, 1, 2_.... N - 1. Hence t•,." discrete Fourier transform can also be interpreted

as a frequency analysis (or "spectrum analysis") of the input signal f -x} (1)

3.9.2 Properties Of The DFT. In this section, we will show some of the properties of the

real and imaginary parts of the DFT of signal. We will use these properties in several occasions

in order to decrease the number of calculations needed to implement the DFT. We will also show

that some of the DFT components (i.e., dc component) have very unique properties.
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Using equation 3.139 and 3.140, we can decompose the DFT into a sine and cosine series as

follows

N-I ]~ (#k

'Tk - NE I15 [x [ cos (2 2w
= •joZm [cos(-1km) +i sin(-km)]]

= ~xmcos[( km] ] +

1 _7oL[xn sin[(2)k]]. (3.142)

From the above equation, the real part is defined as

Re[] = If [xm cos [(-i)km]], (3.143)
M7=0

and the imaginary part is defined as

Im[&k] = 1N- [X sin ( )km]]. (3.144)

The elements of the DFT sequence, {i•}I=0, can then be rewritten as

iA = Re[Ii] + iIm[iA]. (3.145)

Assume that N is even

a. The dc component (k = 0) is real:

1N-1

=o = E [xm] (3.146)

=- Re[ o],
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which means that the imaginary part of Zo is zero:

Im[:o] = 0.

b. zq is real:

N-i

S= ~E [(-I-l 'n]' (3.147)
M=0

which means that the imaginary part of i is also zero:

IM[iq] =0.

c. Symmetry: 1 < k < N - 1

Xk = XN--. (3.148)

The above equation has some practical consequences:

1. We need only calculate the partial DFT sequence {z•1'=0"

2. Re [4i] is even since the cosine function is even.

3. Im[iA] is odd since the sine function is odd.

3.9.3 Statistical Properties Of The DFT series Of Random Variables. Let . =(Xo,XI,X 2 ,...,XN_,)

be a normal vector where N is an even number and each element Xm is an independent normal

random variable such that for m = 0,1, 2,..., N - 1

Xm N(~ ma 2 ).
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The mean of the vector 9 is defined as

/ -M (IAoqtI•,2• ... ,IsN-i). (3.149)

Using equation 3.139, the discrete Fourier transform of 9 is as follows

1N-1

-kg = -=N [Xme'*)klmj. (3.150)
M=O

Similarly, the discrete Fourier transform of PZ is as follows

I•k = e•-[pei(*)km] (3.151)
M=O

where 0 < k < N - 1.

Since equation 3.150 represents a linear combination of independent normal random variab!es, Xk is

also an independent normal complex random variable. Using the results from the complex analysis

section, we have the following statistical properties of the DFT complex random variable Xk (12)

a. Mean of the complex variable Xk:

E[X,&] = E[B, ÷±i,,,[kl]

- E[Re[AL,,j + i E [Im[k,]]. (3.152)

1. Using equation 3.143, the expected value of the real part is:

B[Re[Xk]] = 1[N- 1 [XM cos (2)km]]]

1 [E[Xm] cos (2)k

- [Amcos (2)]]. 
(3.153)
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2. Using equation 3.144, the expected value of the imaginary part is:

E[IM[fX&]] = [~ [X -n[~ km]]

N- 9~[E[Xns] sin [(2w)km]]

r1= N-I

= N-= I[Omsin[(2)kM]]. (3.154)

We conclude then that

E[Xkh] = ,a, (3.155)

where ith is kzh element of the DFT of 17 at the frequency k.

b. Variance of the complex variable Xt:

Var [.] = var [e [±k• ] + Var [Im . (3.156)

1. Variance of the real part:

Var[Re[±aI] = Var[ ___ - [Xm Cos [(2) k]]

1.Ne_ [Var[Xl cos2 [(21r)km]]

N -' [ .,2 cos2 [ ( L~)k .]]

= "N' [Cos (-7)k . (3.157)
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Using the following trigonometric identity:

-I[O [a] 1 si ( Io]
~1 [cafr1] = + ifl[A~-Da](3.158)

2 2sin[ ]

where a 9 2qw for q E Z. and the fact that:

coS2[#] = cos[2,O] + 1
2

we can write:

N- CO2 re]] N-1 [cos[2r91 + 1]r=O •r'--O

"+ [ cos [2tO

+ sin[(N - ])2

= + + Ni] '(3.159)

provided that 9 # qi for q E Z.

Going back to equation 3.157, we can use equation 3.159 with:

2irk9 = ----- ,

where 9 t qa for q E Z implies that k Z 0 and k . N. The result is as follows

-[co,,f,.] = + -+ [ 2
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2 1 sin[(2.k)]

_N ![ý+ sin[(4jk)1

N 1 sin[(n )]

N +
N 411
N- .

(3.160)
2

The variance of the real part of Xk is as follows

la. When k #0 and k -9 N:

V~[~XL2 N- ~~[Coi2 [(r)kM]]

o.2 N
N2
or.2 (3.161)

lb. When k = 0:

2 N-1Var [Re [)ýo] = E• P 21)z

= 2-N

= 2.. (3.162)

Ic. When k N = :

or"2 N-1
Var[Re[fC4]] -o [(

= 2-N
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= a 2. (3.163)

2. Variance of the imaginary part:

I =

.= [2x11km
N 2 1 Var J sin2  [(1r )km]]

1 2w22

M=•0

-- • 1-os[() )kin]

= or 2 - .. 2 [os (21) km

- g sin 1

N or2_or2N1[sci82 (21r)k ]

= o'2 - Var [ReXI3 (3.164)

3.9.4 Summary Of The Statistics Of The DFT Of Random Variables. Given a normal

vector 9 = (Xo,X,,X 2,... ,XN-I) and its mean vector 9i = (p0,o1,pi2,... ,AN-1) where N is

an even number and each element Xm is a real independent normal random variable such that for

m=O, 1,2,...,N- 1

Xm - N(.m, o.2 ),

The elements of the DFT of 9 has the following distributions:

Define the mean ,jik, of the kth complex coefficient by

1 N-1
-N (3.165)

M=0
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where i, is the mean of the independent normal random variable X,,. we have

a. k #0 and k #9
27

Re[.,k] - N(Re[f&&],-i-) (3.166)
2

lm[-A;] N(I[AA:, 2(3.167)

b. k=0ork=2 2

Re[fk] ~ N(Re[,], '2 ) (3.168)

Im[fk] = 0. (3.169)
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IV. Speech De-noising Systems

4.1 Introduction

In this chapter, we present several speech de-noising systems (SDS) using Stein's criteria,

wavelets, Fourier, and both the soft thresholding technique (STT) and the hard thresholding tech-

nique (HTT). We begin this chapter by an overview of our speech de-noising algorithm, a summary

of the main characteristics of spe;.ch (voiced, unvoiced, silent, pitch, and formant frequencies), and

finally, we present our SDSs.

The speech de-noising systems we developed are applied to noisy voiced portions only. The

unvoiced and silent speech portions are processed using a multiplication ratio based on the results

of de-noising the voiced portions. Some of our SDSs use the noisy phase in order to eliminate the

phase distortions caused by the non-linear processing of the STT and HTT thresholding techniques.

4.2 Speech De-noising Systems Using The SURE Criteria

We present several techniques that are based on using the SURE criteria described in Chapter

3. These techniques assume the following restrictions:

1. A clean speech signal has additive white Gaussian noise which has a normal distribution

with zero-mean and variance of a 2 .

2. Only voiced speech is subjected to the de-noising process.

3. Unvoiced speech and the silent portions are not subjected to the de-noising process,

instead, they are adjusted by an energy-related ratio to be defined later.

4. The location of the voiced, unvoiced, and silent portions of speech are assumed to be

known.

5. The variance required by the SURE function is calculated using an estimate from the

silent portions of the speech.
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4.2.1 Characteristics Of Speech. In order to understand how the human speech is pro-

duced, we are obliged to study and characterize the vocal organs responsible for its production.

The vocal organs work by using compressed air which is supplied by the lungs through the trachea

(19). The compressed air can then be subjected to periodic pulses (excitations) by the vocal cords

(the glottis). The repetition rate of these pulses is termed pitch and the resulting periodic speech

is termed voiced. When the compressed air passing through the vocal cords is not periodically

excited and is forced to passe through a small opening, an air turbulence occurs and a wide-band

or broadband noise-like sound is generated. This speech sound is termed unvoiced. After passing

through the glottal output, the speech sound, voiced or unvoiced, is subjected to a filtering oper-

ation by the shape of the vocal tract. This organ acts as an acoustical tube which strongly passes

some natural frequencies which are termed formants.

We conclude then that speech is a signal that is mainly composed of voiced and unvoiced

sounds. Voiced speech is characterized by a periodic behavior where the fundamental frequency

and the pitch frequency may range from 30Hz to about 500Hz (19). The pitch varies between

males and females. Normally, the pitch frequency is about 125Hz. In our future discussions, we

will assume a typical --itch frequency of 125Hz. On the other hand, unvoiced speech has virtually

no periodicity and behaves like wide-band noise with less energy than voiced speech. If a speech

signal is clean, the energy of the periodic voiced portions is concentrated in bands of frequencies

which are harmonics of the fundamental frequency. The pitch frequency, the first, second, and third

formant frequencies are normally located below the 3kHz frequency. The energy of the unvoiced

portions has a broad-band energy distribution similar to that of noise.

4.2.2 De-noising Algorithm. We developed a speech de-noising algorithm having features

described below.

1. The user inputs the following parameters:

a. The noisy speech file name and the number of samples in this file.
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b. The file containing the characteristics of each speech segment: start sample number, end

sample number, and status (i.e., voiced, unvoiced. or silent).

c. The number of overlap points between adjacent segments.

d. The percent, p, of the energy of the unvoiced and silent portions to keep.

e. The domain where the de-noising is to take place: time, Fourier (Real and Imaginary),

Fourier (Real and Imaginary) to be constructed using noisy phase, wavelets, or any combination of

the last four domains.

f. If the wavelets are not involved in the process, the user chooses between using soft or hard

thresholding.

g. If the user chooses the wavelet domain, the following parameters are also requested:

i . The wavelet filter and the number of filter points.

ii. The number of decomposition levels.

iii. The thresholding method for the details: soft or hard thresholding.

iv. The de-noising process for the approximation coefficients. The choices include: soft

or hard thresholding, no change to the approximations, or energy reduction of the approximations

by the same amount as the energy change, Rd , of the processed details.

2. The program searches for the first silent portion and estimates the variances (see equation 4.2).

3. Using the input information from part 1 and the variance from part 2, the program searches for

the first voiced portion, multiplies it by a window function using the overlap specified by the user

(see equation 4.3), and applies the de-noising process specified by the user.

4. The program calculates the energy ratio R, between t1 c-noised voiced portion and the noisy

voiced portion.

5. After initializing the variance obtained by step 2 and thu energy ratio obtained by step 4, the

program steps through the segments file starting from the beginning as follows:

a. read the speech segment and multiply 't by a window func'ion using the overlap specified

by the user.
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b. If the segment is silent:

i. Update the variance.

ii. Multiply this segment by the energy ratio R, and the percent choice p.

c. If the segment is unvoiced, multiply this segment by the energy ratio R, and the percent

choice p.

d. If the segment is voiced:

i. Apply the de-noising process specified by the user.

ii. Update the energy ratio R,,.

4.2.3 Variance Estimation And The Window Function. The use of the SURE function

(see equation 3.28), requires the knowledge of the variance a 2 . Generally, when processing noisy

speech data, we don't know in advance the value of this variance. One way of estimating this

variance, is to detect the speech silent portions and then use the statistics about white Gaussian

noise in order to estimate the variance a 2 .

Given a silent noisy speech portion, X {XN-1, we estimated the variance using the

following consistent estimators as described in (12):

N-1E xi
N= (4.1)N '

the estimate of the variance a2 is given by

N-1

= i=oN (4.2)

We mentioned earlier that before processing any speech segment, we multiply it by a window

function. In speech processing, it is important to window a speech data before processing it. The

reason for using windows is to analyze a finite segment at a time. The length of the window may
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vary depending on the desired properties of the signal under analyses (i.e., pitch, time resolution,

frequency resolution). However, both the type and the filtering characteristics of the window

function play an important role in the results of the analysis. Ideally, we would like a window

whose Fourier transform does not have any side-lobe peaks. In practice, we use many different

windows, such as the Bartlett window, The Hamming window, and the Hanning window.

Since parts of our algorithm use the discrete wavelet transform (DWT) which is implemented

using a periodic extension of the signal under analysis, we chose to implement our window using

smooth functions. The trigonometric functions, sines and cosines, are good examples of smooth

function. Our window is implemented as follows:

si ( 46) tb- < k < tb +

1 tb + I <k < t. - 6win(k) = (4.3)

1- sin2 (2(-•) t, - <k < t,+!6

10 elsewhere,

where 6 is the overlap between adjacent windows (i.e., all our speech experiments have an overlap

of 6 = 16). The overlap between three adjacent windows are illustrated in figure 4.1. Figure 4.2

illustrates the window described by equation 4.3 and its Fourier transform. Observe that the time

domain function has smooth transitions from both ends in order to avoid the introduction of sudden

discontinuities caused by a purely rectangular .indow.

4.2.4 De-noising The Unvoiced And Silent Portions Of Speech. The unvoiced and silent

portions of noisy speech have characteristics that are similar to the characteristics of noise. Since

the SURE function treats them as white Gaussian noise and tries to eliminate these portions, we

decided to de-noise only the voiced portions (see figures D.1 through D.5 for white Gaussian noise

and figures D.6 through D.15 for unvoiced speech). The speech without silent and unvoiced portions

tends to sound distorted and is hard to understand. For these reasons, we choose not to process the

silent and unvoiced portions; instead, we multiply them by the percent (p = 50%) and the energy
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Figure 4.1 Overlap of three window where the overlap 6 = 16.
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Figure 4.2 Speech window and its Fourier transform.
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ratio (R.) of the change of the energy of the voiced portions as

/. = Y. (4.4)

where

N-I

E, x 2(4.5)
n,0

and

N-i

E:= t(x
t )2, (4.6)

where zx and a4, are the noisy and thresholded (STT or HTT) voiced speech samples, respectively.

Since the noisy samples are thresholded, we have E, _< E,. The voiced ratio is then constrained as

0 < R,P < 1. (4.7)

The new silent and unvoiced samples are then defined as

(&,new) = P RP•, X o (4.8)

, (u,ne -i) (4.9)

(s~niay)(u~oisy (s~ew _(u,new)

where - ) Xnu tv), -( , and xn are the silent noisy samples, unvoiced noisy sam-

pies, the silent reduced samples, and unvoiced reduced samples, respectively. The ratio R, helps

balance the energy between the voiced, unvoiced, and silent portions, as well as reduce the power

of the noise in the silent and unvoiced portions.
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4.2.5 De-noising in the time domain. Given anoisy voiced speech signal A = (Xo, X 1 ,X 2 ,... XN - 1)

such that

= ? +2, (4.10)

where • = (SO, S1, S 2,..., SN -1) is a clean speech vector and 2 = (ZO, Z 1, Z 2,.. •, ZN -i) is a white

Gaussian noise vector such that for m = 0, 1, 2,..., N - 1

Zm ~ N(O, o 2 ),

the expected value, #, of the clean speech data q is given by

where -- (AO, I1, /1... ,s -1).

The noisy vector X, which is formed by the sum of the constant vector g and the normal vector

2, has a normal distribution with mean #i such that

X. - N(pm,ca 2), (4.11)

where ra = 0,1, 2,..., N - 1.

Since X has a normal distribution, we can directly use the time domain speech data degraded

by white Gaussian noise with the SURE function (see figure 4.3). The time domain speech de-

noising system (SDS) has the advantage of not requiring further transformations which are time

consuming. However, the application of either the soft or the hard thresholding techniques to a

segment of speech in the time domain, uses a single threshold to adjust a whole window of speech.
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This threshold may not be sufficient to eliminate most of the noise and hence we may expect that

the output of the time SDS to be only slightly cleaner than the input speech.

Noisy Speech Speech Denoising Processed
0

System S e c
(SDS)

Figure 4.3 Speech de-noising in the time domain

4.2.6 De-noising in the time domain using the noisy phase. In the speech processing

field, it is believed that some of the distortion caused by de-noising speech data is mainly due to

the change of the phase in the Fourier representation of speech. These distortions may diminish

the intelligibility of the de-noised speech. In order to Atudy the effect of the phase, 0, on our SDS

and on the intelligibility of the de-noised speech, we save the noisy phase for reconstruction and

apply the de-noising techniques described in the previous section (see figure 4.4).

Although this technique improves intelligibility, it requires more processing due to the Fourier

transform and more storage due to phase saving.

4.2.7 De-noising in the frequency domain. We have seen that if the real and imaginary

parts of a complex random variable are normal, the amplitude and phase can't be normal. Since

the Fourier transform is a linear operation, the Fourier transform of a normal multivariate vector

is also normal. However, the variance of the Fourier transform coefficients were shown to be not

identical (e.g., dc component). Recall the discrete Fourier transform (DFT) of a periodic finite-
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Speech Speech

-• SDS F •(W) Amplitude

Figure 4.4 Speech de-noising in the time domain using noisy phase

length sequence of N points, {Xm}=O- is

1 N-i
XS = • E [XMe( *)km1, (4.12)

M=0

where 0 < k < N- 1. We have shown that if the time sequence {Xm}m=0 has a normal distribution

such that each random variable Xm ,- N(pm, a 2 ), the Fourier sequence Yk}N-I is conjugate sym-
t k=Oiscnuaesm

metric such that the real and imaginary parts of Xk have the normal distributions N(Re [hik], M-)cr2

and N(Im[jik], E22) for 1 < k < f, respectively. However, the 0 th and the N real and imagi-

nary elements are distributed according to N(Re [j/], '0 2 ) and N(Im[Ak] ,0), respectively. This

property of the Fourier coefficients allows us to use the sequence of real and imaginary elements 1

through (E - 1), inclusive, with the SURE function which requires the input random variables to

be normal, independent, and to have the same variance.

The method calls for processing separately, the two time sequences

(Re [] and JIm[X&] ,where each element has a normal distribution with vari-
k=l Ik=l

ance - (see figure 4.5). After the application of the SURE threshold, the real and imaginary

outputs are combined with the original dc component and the A component and then inverse
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Fourier transformed to produce back the time domain de-noised signal. The elements (10, X* }

are left untouched because of their unique distributions and characteristics (see equations 3.168

and 3.169). Depending on how the DFT is defined, the dc component, l 0 , is a measure of the

mean of the time sequence {XM}=0, while Xc is the high frequency component. Since noise is

generally composed of high frequencies, little or no modification to the dc component may occur.

Noisy RelSSProcessed

Speech Speech

Imag SDS

Figure 4.5 Speech de-noising in the frequency domain

4.2.7.1 Soft Thresholding Of Complez Data. When using the shrinkage or the soft

thresholding technique (STT) in the Fourier domain, the real and imaginary parts are affected in

a way that affects the phase of the complex Fourier coefficients being de-noised. Consider the kIth

Fourier coefficient where k = 1,2,... , (E - 1), and denote the real and imaginary soft thresholds

by t.Re and ti, respectively. Because of the definition of the STT, which pulls a noisy data sample

towards zero if its magnitude is greater than the threshold or sets it to zero otherwise, we have four

different cases (see figure 4.6).

Define the new modified complex number, gaoft, by

ytOoft = Re [X o + i Im [,,ooft], (4.13)
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Figure 4.6 Four possible changes and orientations of a de-noised complex number using the STT.

where the de-noised real part is defined as (see equation 3.32)

Re [-X'Saot] = Re[k]- min ( Re[Xl ,týi) sgn(Re[Xk]), (4.14)

and the imaginary part is defined as

Imk. -t Im[-kk] -min (jIr.±1n 1k]t-.) g.n(Im[fkl). (4.15)

Combining equation 4.14 and 4.15 we get

o Re [$.,,aolt] + i im[tsoft]kk

= [IRe[[m] 1, t!) sgn(Re[.k])] +

i Im[ti]- min( IMn[kk] , t,,) sgn(Im[ki])]

[Re [Xk] + i Im[fk]]-

min (jRe[.t] ,t:U) sgn(Re[.k])) +i i mai (Im[±k] j,t.) sgn (Im[±k])]

=Xk + gtSoft [X±A], (4.16)
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where

9 t'soft [±AI =-Min ( Re[Xkl]It.R') sgn(Re[fk]l) - i min (1im[fki] 11t:-) n(niI)

(4.17)

The above gt,"Oft function is the complex equivalent of the real gt",Oft(.) function defined

by equation 3.31. The phase (provided it exists) of the de-noised complex coefficient, ktsoft, i

defined as

s = arctan Ie[ImjAtaoIt
ktaf I Re [k~t~softI]

= arctan Im[fik] -min( Im[fck] 1t.m) sgn(Im[±k&])

[Re [kkl - min(IRel~k& ,1 qu ) sgn(R

(4.18)

On the other hand, the phase Ok of the noisy coefficient XCk is defined as

= - 1[ (4.19)

We see from equations 4.18 and 4.19 that this new shrinkage technique applied to the real

and imaginary parts separately, has the potential to introduce a lot of distortion due to the phase

changes of the entire frequency spectrum. In fact when the thresholds act on the real and imaginary

parts, the phase can take any value within its domain (see case 0"'Oft 0 Ok in figure 4.6). One

way of avoiding more phase distortior than present in the noisy signal is to keep the original noisy

phase and use it in the inverse Fourier transform back to the time domain.
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4.2.7.2 Hard Thresholding Of Complez Data. When using the Hard Thresholding

Technique (HTT) in the Fourier domain, the real and imaginary parts are also affected in a way

that affects the phase of the complex Fourier coefficients being de-noised. Consider the kth Fourier

coefficient where k = 1, 2,... (A - 1), and denote the real and imaginary hard thresholds by t•

and tim, respectively. Because of the definition of the HTT, which sets a noisy data sample to zero

if its magnitude is less than the threshold , we have four different cases (see figure 4.7).

09-hard 01-hard 0

Ot ---- f to-

& th

t Be t--Re

= tset to zero

Rn h

t~m t

Figure 4.7 Four possible changes and orientations of a de-noised complex number using the HTT.

Define the new modified complex number, thard b

- t,hard [t d hard]

=Re [XZhar + i IM[•h (4.20)

where the de-noised real part is defined as (see equation 3.45)

Re [X-,hard] =Re[Xk] X[-tjU,tR] (Re[Xk]) (4.21)

and the imaginary part is defined as

IM[IX~shard] = Im[.dk] X[i-,tl-, ,tn](Im[Xk]). (4.22)
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Combining equation 4.21 and 4.22 we get

Xt,hard = Re [t,hard] + iim[kC,hard]

R- fe[X9kI X[-t,,•] (Re[t k) + ilm[k]i j X[-t'-,,[-] (Im[.k])

= + gtChard [Xk], (4.23)

where

g thard[5kk]=--Re[f-k] (1--X[_tr.,tR](Re[A.X]))-ilm[.hk] (i- X[-t_. ,t-](Im[If,)).

(4.24)

The above gthard function is the complex equivalent to the real g.hard(f) function defined by
t,hard

equation 3.46. The phase (provided it exists) of the de-noised complex coefficient, hk , is

defined as

Ot,hard - t [_k[t~had]
arctan R [ t ,hard]

"= arctan [I Xk] X[-,) ]

artnRe [fXk] X[_,,.,,,e] (Re [•]

= arctan [tan[ekI X[-t~e,t~e] m[-kkl)], (4.25)

where the phase Ok of the noisy coefficient -Xk is defined as

okr=Im[*,I 1
.= arctan Re[k]] (4.26)
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We see from equations 4.25 and 4.26 that when the HTT is applied to the real and imaginary parts

separately, it has the potential to introduce a lot of distortion due to the phase changes of the entire

frequency spectrum. However, these phase distortions can take only four different forms:

1. Don't change the phase.

2. set the phase to zero.

3. set the phase to 2.

4. set the noisy data to zero, changing the phase from defined to undefined.

4.2.8 Speech de-noising in the frequency domain using noisy phase. It was noted in the

previous section that without saving the noisy phase, we might introduce many phase distortions

to the speech signal. In order to improve intelligibility, we save the noisy phase and use the same

thresholding process as before (see figure 4.8). In order to restore the noisy phase 0, we need to

first apply the thresholding technique as in the previous section, calculate the amplitude of the

modified Fourier coefficients, and then combine the amplitude with the noisy phase.

L Processed

Figure 4.8 Speech de-noising in the frequency domain using noisy phase
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4.2.8.1 Soft Thresholding Of Complex Data With Noisy Phase Restoration. Con-

sider the kth Fourier coefficient where k = 1.2,..., (E - 1), and denote the real and imaginary soft

thresholds by t' and t,, respectively. Define the modified complex coefficient by the shrinkage

technique (see equation 4.13) as

-t, -- Re[Xt'a°/t] + i um[X"°f], (4.27)

and denote the new modified complex coefficient with noisy phase restoration by

Xtaoft-o = r'soft (4.28)

where phase 0k is defined by equation 4.19 and the real and imaginary components of Xsoft, are

as defined by equations 4.14, 4.15, respectively. In rectangular form, we have

.Xioft/-0 Re[Xtoft-] + iim[X,,o1 -]. (4.29)

Expanding equation 4.28, the new de-noised real part is defined as

Re[•-t ft-] - Itsoft I cos(Ok), (4.30)

and the imaginary part is defined as

Im[ft-] - I•"°aofti sin(Ok). (4.31)

This new shrinkage technique takes advantage of the normal distribution properties of the

real and imaginary parts in order to shrink the amplitude. Pictorially, there are four different

cases that we need to consider (see figure 4.9). When applied to the complex number Xk, this new
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shrinkage technique has no effect on the phase (since the noisy phase is restored), however, the

amplitude is affected in one of two different manners:

1. The amplitude is shrunken toward zero by a nonzero amount.

2. The amplitude is set to zero.
p

We see then that there are a lot of advantages to keeping the noisy phase so that when we inverse

Fourier transform, many of the potential phase distortions due to the thresholding techniques are

eliminated.

R.[I&I > t~a" Ro.[h > tf'

Im[fth] > C.1- {/ft! Im{k/] <: $1.-

paegin aetriton

tit

t.t

Figure 4.9 Four possible changes and orientations of a de-noised complex number with noisy
phase restoration.

4.2.8.2 Hard Thresholding Of Complez Data With Noisy Phase Restoration. Fol-

lowing the same procedure as before and denoting the modified complex coefficient by the hard

thresholding technique (see equation 4.20) as

fXt,hard - e[fhard] + i Im [jrtar (4.32)

and the new modified complex coefficient with noisy phase restoratiou by

k thardO = [1~hard1 e0b (4.33)k 4
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we obtain the same results as the shrinkage technique. In fact all the equations of the HTT are

the same as the STT except for the naming designators (soft and hard). Again four cases can be

considered (see figure 4.9).

4.3 Application Of SURE To DWT

We have seen that the wavelet transform is a linear operator and that the detail coefficients,

at a decomposition level m, measure the degree of similarity between the signal f(t) and the the

analyzing wavelet ikm,n(t); furthermore, the details give us some degree of information concerning

the frequency content of the signal f(t). Recall, due to the down-sampling and filtering operations

performed during the decomposition process, the lower levels (i.e., m = 1, 2,..) represent high

frequency information, and the higher levels (i.e., m = M, M - 1, M - 2,..) represent low frequency

information.

Define a noisy vector X = (Xo,X 1,X 2 ,... ,XN-1) such that

Xc = §+ Z, (4.34)

where g = (So, S1 ,S 2 ,... ,SNI-) is a clean data vector and g = (Zo, Z1 ,Z 2 ,... ZN-1) is a white

Gaussian noise vector such that for m = 0, 1,2,... , N - 1

Zm , N(O, .
2).

Since g is a constant clean data vector, the expected value of this vector is the vector #1 such that

g =,

where (i = A2.... ,/N-1).
0

The noisy vector A', which is formed by the sum of a constant vector g and a normal vector g, has
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a normal distribution with mean P2 such that

Xm , N(pm, oa2 ), (4.35)

where m = 0,1, 2,..., N - 1.

4.3.1 Voiced speech vs. White Gaussian Noise. The wavelet decomposition of the normal

random vector )t at the Mrh-level (1 <_ m < M) is given by equations 3.106 and 3.107 as

Cx;, - , C!-lkhk_2 , (4.36)
kEZ

DXn = E C,•_,kg•-2,, (4.37)
kEZ

where Cx and Dx denote the approximation and detail random variables with respect to A,

respectively. Since the DWT is linear and orthogonal, we have

Cx C., + Cz,. (4.38)

Dx s + z (4.39)

Using the above results and the fact that the DWT coefficients are also independent and nor-

mally distributed, it can easily be shown that the wavelet coefficients (details and approximations)

of the white Gaussian noise, 2, at the mth decomposition level, are themselves white Gaussian

noise with zero-mean and the same variance, a2. This normal distribution property of the wavelet

coefficients makes them candidates for use with the SURE function developed earlier. Since the

detail coefficients measure the amount of some frequencies in a well defined band of frequencies

(depending on the decomposition level m and the analyzing wavelet Pm,,), we can directly apply

the de-noising process to certain bands of frequencies where the white Gaussian noise has a high

probability of residing. Since the formant frequencies of voiced speech are relatively low-frequencies
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(below 3kHz), and white Gaussian noise uniformly contains all frequencies, the early stages of de-

composition have a high probability of filtering most of the high frequencies that are due to noise,

while the later stages of decomposition filter the voiced speech signal (see figures E.1 through E.10

for voiced speech de-noising using shrinkage).

Since both the STT and the HTT techniques are non-linear thresholding techniques, we

decided to DWT (discrete wavelet transform) our signal up to a decomposition level where the

pitch frequency is not affected by the non-linear thresholding (Note: our algorithm gives you an

option to process both the approximations and the details). Recall that the DWT is a fitering

operation that uses a low-pass filter (h) and a high-pass filter (g). At each level of decomposition,

the high-pass g filter divides the frequency spectrum by half. Given a noisy voiced speech signal

where the pitch frequency fp is known and a sampling frequency f. = 16kHz, the maximum

resolvable frequency is f, = 8kHz (14) (17). In order not to affect the pitch frequency, we need to2

decompose up to a level m < m,, where

= [lo 2 [h..]],(4.40)
where [.j is the floor function. Since our speech data is sampled at 16kHz and we are assuming a

typical pitch frequency of 125Hz, the m,, value is 6. By decomposing the signal up to the m 1h-level

and applying our thresholding techniques, we have a high chance of eliminating most of the noise

in the first m,, levels without affecting the pitch of the voiced speech which resides in the remaining

coarser levels. This partial wavelet decomposition of the voiced speech signal yields voiced speech

where the structure of the pitch is not subjected to the thresholding techniques, i.e., the pitch is

contained mostly at the approximation levels (see figure 4.10).

4.3.2 Wavelet Coefficients Thresholding. Having determined the maximum level of de-

composition, m,,, we can apply either the soft thresholding techniqt1e or the hard thresholding
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lithd high frequency noise details

Figure 4.10 Filtering noise and voiced speech by DWT of voiced speech up to the m'h-level.

technique to each of the mu levels of details. Consider the noisy signal )? with N = 2M points.

We know that by applying the DWT discussed earlier, the total number of decomposition levels is

M. Define the detail coefficients of the mth decomposition level by Dn,,. where 1 < m < m. and

0< n < 2 M-- - 1.

4.3.2.1 Wavelet Shrinkage Of The Detail Coefficients. -Consider the mth decompo-

sition level and denote the soft threshold at this level by, ts'. Define the shrunken version of the

detail coefficient D,,n by

D 7T = Dmv, - min(ID,,I ,tTn ) sgn(Dm,.), (4.41)
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where 0 < n < 2 M-m. We can then define a function gn, which is level dependent, such that

gW(L)m) = - min(IDm,nI, t") sgn(Dm,n), (4.42)

where •, is the vector whose elements are the 2 M-m detail coefficients at the mth decomposition

level. Since we have m, levels, we have m, thresholds t', and m,, functions 9'g(1m).

4.3.2.2 Hard Thresholding Of The Wavelet Detail Coefficients. In a similar fashion,

we can apply the hard thresholding technique to the wavelet details and the results are similar to

the shrinkage case. Consider the mth decomposition level and denote the hard threshold at this

level by, t'. Define the hard thresholded version of the detail coefficient Dmn by

Dmn = Dmn X[-t,-,t-] (Dm,n), (4.43)

where 0 < n < 2 M-m. We can also define a function gt that is level dependent, such that

(13.) = -Dm,n (I - X(-4,t)] (Dnn) (.,

where ,n is the vector whose elements are the 2 M-m detail coefficients at the mth decomposition

level. Since we have m, levels, we have m, thresholds t', and m,, functions gh (Dm).

4.3.2.3 De-noising The Approzimations. Since the pitch of the voiced speech is

represented by the approximation coefficients at the mvth decomposition level. The total number of

these coefficients is 2 M-m-. In order to prevent this voiced signal from being distorted, we choose

to either leave the approximation coefficients {Cm.,n } untouched or adjust their energy

by the same amount as the energy change of all the thresholded details (STT or HTT). In other

4-24



words, the ratio between the energies of the noisy details and the de-noised details is defined by

Rd = ,(4.45)

where

Mt 2M-'- -1

ED ~j[ 1[D.~I2 (4.46)

and

Mo 2r-m--1

E = 2 [1: [D n ] 2] (4.47)
m--=1 I =

Since the noisy details are thresholded, we have Et < ED. The detail ratio is then constrained as

0 < Rd < 1. (4.48)

The new approximation coefficients at the mth-level are then defined as

Cm.,n = Rd Cm..,n, (4.49)

where 0 _< n < 2 M-m-. The ratio Rp helps balance the energy between the approximations and

the details as well as reduce the power of any noise that passed through the m, decomposition level

(see figure 4.11).

4.3.3 De-noising The DWT of The Time Domain. We have seen that the the wavelet

transform of a normal multidimensional random vector, produces &. set of detail coefficients vectors

that are also normal. By applying the SURE thresholding techniques to these details (see figure

4.12), we can eliminate most of the noise at the first m, levels. Sincý the wavelets are band-pass
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Figure 4.11 Wavelet reconstruction of the thresholded (STT or HTT) voiced speech starting from
the m'h-level where 1 < m,, < AM to the zeroth level where the number of samples is
N_2M

filters, at each level of decomposition, an entire band of high frequencies is being de-noised. We

expect then that the output of this method to eliminate most of the high frequencies that are

mainly due to noise.

A variation of this purely time-wavelet domain scheme may be employed to minimize the

phase distortion introduced by the nonlinear effect of the thresholding techniques (STT and HTT).

In order to reduce the effect of phase distortions, we may save the noisy phase from the Fourier

transform of the noisy voiced speech and restore it after the de-noising procedures. Figure 4.13

illustrates the method; the time domain voiced speech waveform is first Fourier transformed to

extract the phase and then wavelet transformed before the de-noising process is applied. The

thresholded details, are then inverse wavelet transformed, Fourier transformed in order to extract
0

the de-noised amplitude. Finally, the old phase is combined with this newly calculated amplitude
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Figure 4.12 Speech de-noising in the time domain using wavelets

and inverse Fourier transformed back to the time domain. Observe, this method requires three

Fourier transforms and two wavelet transforms.

Noisy Processed

Speech - D-T I Speech

Figure 4.13 Speech de-noising in the time domain using noisy phase and wavelets

4.3.4 De-noising The DWT of The Fourier Domain. We have seen that the the Fourier

transform of a normal multidimensional random vector, produces a set of real and imaginary coef-

ficients that are also normal. Since the wavelet transform is a linear and orthogonal operation, the

wavelet transform of the Fourier transform of a normal multidimensional random vector produces

a normal complex vector. Let f(t) E L2(R) and define its Fourier transform by

(YPf)(M) = - 0 f (t)e--1 " dt. (4.50)
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The continuous wavelet transform with scale a and shift b of the Fourier transform of f, is defined

as

W"'&[(GF)(w)] = (.f)(Mw) .,b(W)dW, (4.51)

where (a, b) E R+ x R and

OabW=a- a1/2,0 (wcŽ) (4.52)

Substituting equation 4.50 into equation 4.51, we get

wO,b[(FI)(,)] = +_ 0-0 f(t)e-' t dtOP•,&(w)dw

f f(t) W -jr e-i t aPb(w)dw dt

- j (t)PO'•,(t) dA, (4.53)

where for real wavelets,

af,b(t) = Vae- 2 "tbt(at), (4.54)

and ý is the Fourier transform of the mother wavelet 0. Equation 4.53 represents the inner product

of f(t) with respect to the wavelet based function 'P*,(t). In other words, W4•'b[(.Ff)(w)] represents

the similarity between f(t) and the function 0*--b(t), which acts like a window on the signal, f(t).

By applying the SURE thresholding techniques to the real and imaginary wavelet-Fourier

details (see figure 4.14), we can eliminate most of the noise at each decomposition level.

A variation of this purely wavelet-Fourier domain scheme may be employed to minimize the

phase distortion introduced by the nonlinear effect of the thresholding techniques (STT and HTT)
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Figure 4.14 Speech de-noising in the frequency domain using wavelets

on the real and imaginary parts of the wavelet-Fourier details. In order to reduce the effect of

phase distortions, we may save the noisy phase from the Fourier transform of the noisy voiced

speech and restore it after the de-noising procedures. Figure 4.15 illustrates the method; the time

domain voiced speech waveform is first Fourier transformed to extract the phase and then the

wavelet transform of the Fourier transform is taken before the independent de-noising process of

the real and imaginary parts is applied. The thresholded details (real and imaginary), are then

inverse wavelet transformed independently in order to produce the de-noised real and imaginary

parts, Fourier transformed in order to extract the de-noised amplitude, and finally, the old phase is

combined with this newly calculated amplitude and inverse Fourier transformed back to the time

domain. Observe, this method requires two Fourier transforms and four wavelet transforms (see

figure 4.15).
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V. Experiments And Results

5.1 Ezperiments

In this chapter, we present the results of applying the thresholding techniques we developed

in the last chapter. Eight different speech processing systems were studied. We start by explaining

the assumptions made and the parameters used for each experiment. We then discuss the quanti-

tative and qualitative results for all eight experiments, as well as the spectrum analysis for some

experiments. The qualitative results are based on the total squared error between each experiment's

output and both the clean and noisy signals. On the other hand, the qualitative results are all

based on the results of the listening tests that we conducted with an untrained jury of six students

(four males and two females). Before each informal listening test, the listener is given a chance to

listen to both the clean and noisy speech speech signals (SNRs of 0db and 6db) and then he or

she is briefed about what the test is all about (see figure 5.1). The listeners were asked to make

a choice between two de-noised speech signals (e.g., choice between time processing vs. Fourier

processing of the same noisy signal). Finally, we present and analyze some spectrograms of four

different de-noising methods. We conclude this chapter with a summary of the tests' results and

some of the recommendations we encountered throughout this thesis work.
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5.1.1 Experimental Set Up. Due to the large number of methods and the flexibility of

the parameters available for experiments, we fixed the following inputs to the speech de-noising

algorithms we presented in chapter four:

1. The percent factor p applied to the unvoiced and silent portions is p = 50%.

2. The maximum voiced decomposition level is mi,, = 6.

3. The overlap between adjacent speech windows is overlap = 16.

4. The number of samples of the original speech ("They enjoy it when I audition") is

N = 31200.

5. The sampling frequency is 16kHz.

6. The approximation coefficients (pitch of voiced speech) are not processed (i.e., untouched

and still noisy).

Experimentally, we fixed the overlap between adjacent windows (p = 16), and we determined

that by keeping only p = 50% of the ratio R, (see equation 4.4), the transitis i obtained between

the voiced portions to both the silent and the unvoiced portions improved intelligibility considerably.

5.1.2 Experimental Speech Signals. Starting with a clean speech signal ("They enjoy it

when I audition") of 31200 samples, we generated seven different white Gaussian noise signals and

seven noisy signals such that the signal-to-noise-ratios (SNRs) are as follows: -10db, -6db, -3db,

0db, 3db, 6db, and 10db. Using these noisy signals, we produced both soft thresholded and hard

thresholded signals with the following methods:

1. De-noising in the time domain.

2. De-noising in the time domain using the noisy phase.

3. De-noising in the frequency domain.

4. De-noising in the frequency domain using the noisy phase.

5. De-noising in the time domain using wavelets.

6. De-noising in the time domain using the noisy phase and wavelets.
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Figure 5.1 Clean speech and noisy speech (6db and 0db SNRs).
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7. De-noising in the frequency domain using wavelets.

8. De-noising in the frequency domain using the noisy phase and wavelets.

The total number of de-noised signals without wavelets (i.e., using Steig's criteria) is 56. Since there

are two thresholding techniques (STT and HTT), seven different noisy signals, and four different

methods that don't involve wavelets. The total number of de-noised signals with wavelets (i.e.,

using Donoho's criteria) is 168, using two thresholding techniques (STT and HTT), seven different

noisy signals, four different methods that involve wavelets, and three different wavelets used (db20,

db6, and coiflets(6)). Hence, the total number of files studied is 224.

5.1.3 Quantitative analysis. Since the soft thresholding technique (STT) pulls towards

zero every single voiced sample and the hard thresholding technique (HTT) pulls towards zero only

the voiced elements below the hard threshold (thard) in absolute value, theoretically, we expect

that the energy of the de-noised signal under the STT to be less than the energy of the de-noised

signal under the HTT. In order to quantify this result, the total squared error between the de-noised

signal and the noisy signal, using the STT technique, is defined as

N-1Ero noisy -Xoiy- S~TT)2,
rrOrsTT = (zfloua " (5.1)

n=O

where N is the total number of samples of the speech signal under analysis (i.e., N = 31200).

Similarly, the HTT total error is defined as

N-1

Errori4T = HTT)
2 . (5.2)

n=O

Both Err... and Error.TT measure the closeness of the de-noised signal to the noisy

signal. Ideally, we want to be as far away as possible from the noisy signal, and still preserve the

intelligibility of the de-noised speech signal. The experiments illustrate that (see figures F.1 and
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F.3)

E oaly > E??or""'. (5.3)

In fact, because of the definitions of the STT and the HTT, the use of the STT removes

noise from all samples, while the use of the HTT removes noise ondy from certain samples. For this

reason, the de-noised speech signal under the HTT has more remaining noise than the de-noised

speech signal under the STT. In all experiments and for all soven noisy speech signals analyzed,

figures F.1 and F.3, illustrate the fact that the STT outperforms the HTT with respect to the total

squared error between the de-noised signals and the noisy signals.

Since the purpose of our de-noising technique is to attenuate the effect of the noise, we would

like the de-noised speech signals to be as close to the clean signal as possible. In order to quantify

this result, the total squared error between the de-noised signal and the clean signal, using the STT

technique, is defined as

N-1
Errorclean = l(zcan- zSTT) 2 . (5.4)

niO

Similarly, the HTT total error is defined as

N-1

Errorclean clean HTT)
2HlT an - (5.5)

n=O

Both Err" clean •...clean
Both. .and Error measure the closeness of the de-noised signal to the clean

signal. Ideally, we want the de-noised speech signal to be as close as possible to the clean signal,

and still preserve the intelligibility of the de-noised speech signal. Both theory and experiments
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prove that (see figures F.2 and F.4)

Errorsla < Error cla.n (5.6)

Again, in all experiments and for all seven noisy speech signals analyzed, figures F.2 and F.4,

illustrate the fact that the STT outperforms the HTT with respect to the total squared error

between the de-noised signals and the clean signal.

5.1.4 Qualitative Analysis Of The Informal Listening Tests. The qualitative analysis of

the de-noised speech signals, depends on many factors. In order to understand the advantages and

disadvantages of each of the eight methods, described earlier, we chose to study two noisy signals

with signal to noise ratios 0db and 6db, respectively. The 0db signal represents a noisy speech

signal with a relatively high level of noise, while the 6db signal represents a noisy speech signal

with a relatively low level of noise.

5.1.4.1 Effects Of STT vs. HTT. In order to study the effects of the STT vs. the

HTT, we randomly selected a jury of six students (four males and four females), considered to

be untrained listeners. We presented to these listeners two groups of speech signals; group A has

speech signals processed using the STT method and group B has speech signals processed using

the HTT method. Each group has two sets of de-noised speech signals, where the original noisy

speech signals have SNRs of 0db and 6db. Each set has speech data processed using the following

speech de-noising systems (SDS):

1. De-noising in the time domain.

2. De-noising in the time domain using the noisy phase.

3. De-noising in the frequency domain.

4. De-noising in the frequency domain using the noisy phase.

5. De-noising in the time domain using wavelets.
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6. De-noising in the time domain using the noisy phase and wavelets.

7. De-noising in the frequency domain using wavelets.

8. De-noising in the frequency domain using the noisy phase and wavelets.

We asked the students to listen to each speech signal from group A and compare it with its

counterpart in group B (e.g., 0db of group A using SDS-1 vs. 0db of group B using SDS-1). All

the students, concluded that the STT method has less remaining noise and, hence, it is easier to

listen to the STT-processed speech signals than the HTT-processed speech signals. For this reason,

we chose to continue experimenting with only the speech signals produced by the STT method.

5.1.4.2 Effects Of Preserving The Noisy Phase Using STT. Based on the results

of the STT vs. the HTT experiment, above, and in order to study the effects of the phase, we

presented to the same jury of students, two groups of speech signals processed using the STT

method; grou:p A has de-noised speech data processed without restoration of the noisy phase and

group B has de-noised speech data with restoration of the noisy phase. Each group has two sets of

de-noised speech signals, where the original noisy speech signals have SNRs of 0db and 6db. Each

set has speech data processed using the following speech de-noising systems (SDS):

A. No preservation of the noisy phase:

1. De-noising in the time domain.

2. De-noising in the frequency domain.

3. De-noising in the time domain using wavelets.

4. De-noising in the frequency domain using wavelets.

B. Preservation of the noisy phase:

1. De-noising in the time domain using the noisy phase.

2. De-noising in the frequency domain using the noisy phase.

3. De-noising in the time domain using the noisy phase and wavelets.

4. De-noising in the frequency domain using the noisy phase and wavelets.
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We asked the students to listen to each speech signal from group A and compare it with its

counterpart in group B (e.g., 0db of group A using SDS-1 vs. 0db of group B using SDS-1). All the

students, concluded that intelligibility of group B is much better than the intelegibility of A and

it is easier to listen to the speech signals processed with noisy phase restoration than to listen to

the speech signals processed without noisy phase restoration. For this reason, we chose to continue

experimenting with only the speech signals produced using both the STT method and the phase

restoration technique.

5.1.-4.3 Effects Of The Time vs. Fourier Domains On Speech De-noising Using STT

And Noisy Phase Restoration. Based on the results of the last two sections, we chose to continue

experimenting with speech data processed using both the STT and the phase restoration techniques.

In order to study the effect of the time domain vs. the Fourier domain, we presented to the jury

of students, two groups of de-noised speech signals; group A has speech data processed in the time

domain and group B has speech data processed in the Fourier domain. Both groups have speech

data processed using both the STT and phase restoration techniques. Each group has two sets of

de-noised speech signals, where the original noisy speech signals have SNRs of 0db and 6db. Each

set has speech data processed using the following speech de-noising systems (SDS):

A. Time domain:

1. De-noising in the time domain using the noisy phase.

2. De-noising in the time domain using the noisy phase and wavelets.

B. Fourier domain:

1. De-noising in the frequency domain using the noisy phase.

2. De-noising in the frequency domain using the noisy phase and wavelets.

We asked the students to listen to each speech signal from group A and compare it with its

counterpart in group B (e.g., 0db of group A using SDS-1 vs. 0db of group B using SDS-1). All the

students, concluded that the intelligibility of group B is much better than the intelligibility of A
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and it is easier to listen to the speech signals prucessed in the Fourier domain than to listen to the

speech signals processed in the time domain. For this reason, we chose to continue experimenting

with only the speech signals produced in the Fourier domain using both the STT method and the

phase restoration technique.

5.1.4.4 Effects Of Wavelets On Speech De-noiaing In The Fourier Domain. Based

on the results of the last three sections, we chose to continue experimenting with speech data

processed in the Fourier domain using both the SST and the phase restoration techniques. In order

to study the effect of using wavelets vs. not using wavelets in the Fourier domain, we presented to

the jury of students, two groups of de-noised speech signals; group A has speech data processed in

the Fourier domain without using wavelets and group B has speech data processed in the Fourier

domain using wavelets. Both groups have speech data processed in the Fourier domain using the

STT and phase restoration techniques. Each group has two sets of de-noised speech signals, with

SNRs of 0db and 6db. Each set has speech data processed using the following speech de-noising

systems (SDS):

A. wavelets:

1. De-noising in the frequency domain using the noisy phase and wavelets.

B. No wavelets:

1. De-noising in the frequency domain using the noisy phase.

We asked the students to listen to each speech signal from group A and compare it with

its counterpart in group B (e.g., 0db of group A using SDS-1 vs. 0db of group B using SDS-1).

All the students, concluded that for 6db, the de-noised speech signals from both groups are very

close in terms of intelligibility, however, for 0db, the intelligibility of group A is much better than

the intelligibility of B. Since our jury is forced to choose only one group, all students chose group

A because they concluded that it is easier to listen to the speech signals processed in the Fourier
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domain using wavelets than to listen to the speech signals processed in the Fourier domain without

using wavelets.

5.1.5 Spectrum Analysis Of De-noised Speech Data Using The STT. We mentioned earlier

that the production of speech through the vocal tract is characterized as either voiced or unvoiced.

The unvoiced speech signals, the fricatives, behave like noise and have high energy above about

3kHz and relatively very low energy below 3kHz (19). On the other hand, most voiced speech is

located at bands of frequencies below 3kHz. The pitch and the first formant are, in general, located

below 50OHz, while the second and third formants are located between 500Hz and 3kHz. The

formant frequencies are important because most of the voiced speech characteristics (i.e., pitch) are

based on the location of these frequencies. In order to study the effects on the frequency content

of our speech signals, we choose three different wavelets and four different de-noising techniques.

We generated two sets of spectrograms, wide-band and narrow-band (for clean and noisy speech,

only). Wide-band spectrograms have a small analysis window, therefore, the frequency resolution

is low, while the time resolution is high. On the other hand, narrow-band spectrograms have a

large analysis window, therefore, the frequency resolution is high, while the time resolution is low.

Each set (narrow-band and wide-band) of spectrograms includes:

1. Clean speech.

2. Noisy speech 0db (relatively high noise level).

3. Noisy speech 6db (relatively low noise level).

4. for each of the three wavelets used (db20, db6, and coiflets(6)) and for each of the noise

levels used (0db and 6db), we studied the frequency content of the de-noised speech data using

shrinkage with the following speech de-noising systems (SDS):

a. De-noising in the time domain.

b. De-noising in the time domain using wavelets.

5-10



c. De-noising in the frequency domain using the noisy phase.

d. De-noising in the frequency domain using the noisy phase and wavelets.

The spectrograms of the clean signal show very clearly the pitch, the first, second, and third

formants. These frequencies have high energy below 3kHz (see figure G.1). Despite the addition of

the white Gaussian noise, the spectrograms of the noisy speech signals with signal-to-noise ratios

of 0db and 6db, show that the pitch, the first, second, and third formants are still dominant below

the 3kHz frequency. However, the effect of white Gaussian noise can be clearly seen throughout

the spectrograms. In fact, since the white Gaussian noise is, in general, a broad-band signal, the

spectrogram indicates high energy at all frequency bands (see figures G.2 and G.3).

5.1.5.1 Effects Of Stein's Criteria On Time De-noising vs. Fourier De-noising Using

Noisy Phase Restoration. De-noising in the time domain using both Stein's criteria and the

noisy phase, works relatively well for high signal-to-noise ratios. In fact when the noise level is very

low (i.e., 6db), most of the signal's formant's structure below the 3kHz frequency is still preserved;

however, a lot of high frequency noise is still present (see figure H.1). When the noise level increases,

the noisy speech signal looks like white Gaussian noise and the application of Stein's criteria tends

to eliminate most of the speech signal itself, and hence affecting most of the formant frequencies.

On the other hand, de-noising in the Fourier domain using Stein's criteria and preserving the noisy

phase, works much better because of the fact that the noise is split between the real and imaginary

parts of the Fourier transform. Since the noisy phase is restored, most of the noisy speech structure

(pitch and formants) is restored back to the de-noised speech signal. Despite these improvements,

when the noise level is relatively high, the real and imaginary parts become very noisy and Stein's

criteria affects the true structure of the signal (see figure H.2).

5.1.5.2 Effects of The wavelet Choice On De-noising In The Time Domain. By us-

ing wavelets, we decompose a noisy signal into bands of frequencies and then we de-noise each band

separately. This process is potentially more powerful than the methods that don't use wavelets.
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However, the choice of the right wavelet with good filtering characteristics is very important. We

choose three different wavelets: db6, coiflets(6), and db20. Since the wavelet transform is a filtering

operation, the effecL of the filtering characteristics of the wavelet become very crucial. The spec-

trograms for both 0db and 6db using wavelets in the time domain show that there is an aliasing

effect for both db6 and coiflets(6) (see figures 1.1 and 1.2). The reason for this aliasing is due to

the fact that the Fourier transforms of both db6 and coiflets(6) have a lot of high energy side lobes

which cause the filtering qualities of these wavelets to be of low importance. On the other hand,

the spectrograms of db20 show no aliasing at all, which make db20 a very good wavelet to use

in speech processing (see figure 1.3). However, because of the fact that the cubic splines are not

compactly supported wavelets, their use in practice requires an approximations which affects the

general behavior of the spline wavelets. The best results in terms of total square error, intelligibility,

and the preservation of formant frequencies, were given by db20 which is a compactly supported

wavelet with a very good filtering quality (i.e., very small side lobes).

5.1.5.3 Effects Of The Wavelet Choice On De-noising In The Fourier Domain With

Noisy Fhase Restorations. Since the de-noising process is carried out in the Fourier domain, the

noise level is split between the real and imaginary parts. These are then wavelet transformed and

decomposed into bands of frequencies in order to eliminate most of the noise from each band. By

restoring the noisy phase and applying the wavelet shrinkage to both the real and imaginary parts

of the Fourier transform of the noisy signal, the effect of aliasing seems to decrease, even for db6

and coiflets(6) (see figures J.1 and J.2). However, for the same reasons described in the previous

section, most of the formants' structure of the noisy speech signal is preserved when using db20

(see figure J.3).
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5.2 Conclusions

In this chapter, we presented the results of several speech de-noising experiments on various

noisy speech data (-10db to 10db). In general, we saw that the performance of the speech de-noising

systems using both Fourier and wavelets resulted in intelligible speech even for low signal-to-noise

ratios (SNR). The use of the noisy phase improved both the quality and the intelligibility of the

de-noised speech signals. The use of the soft thresholding technique (STT), in the wavelet-Fourier

domain, proves to be a very good technique to use in the enhancement of noisy speech data.
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VI. Conclusions and Recommendations

6.1 Introduction

In this chapter, we present both the conclusions of this research and some of the recommen-

dations for future research in the area of enhancing noisy speech data. We summarize the major

points and evaluate how well the objectives of this thesis were met.

6.2 Main Conclusions Of The Thesis

This thesis is successful in producing several speech de-noising systems (SDS) in the time,

Fourier, and the wavelet domains. Without the use of wavelets, the SDS systems perform relatively

well and produce intelligible speech when the noise level is low (SNR = 6db). These systems are

comparatively fast (since they don't require the wavelet transform) and can be used to produce

comparable results to the wavelet-based SDSs, for low levels of noise (e.g., SNR = 6db). However,

when the noise level is high (SNR = 0db), the non-wavelet SDSs do not produce intelligible speech.

In fact, without using wavelets, the application of either the soft thresholding technique (STT) or

the hard thresholding technique (HTT) to noisy speech data, with noise levels below SNR = 6db,

produced de-noised speech data, that is worst to listen to, than the noisy speech data itself.

The application of Stein's criteria to noisy voiced speech using wavelets on the time data

(Donoho's technique) did not produce intelligible speech for all noise levels (i.e., -10db to 10db).

In fact, this method produced a very distorted de-noised speech with a constant disturbing sound,

which is mainly due to the non-linear effect of the thresholding techniques. The use of the noisy

phase produced a slight improvement of the intelligibility of speech. Finally, the use of the wavelet

shrinkage techniques applied to the Fourier domain with noisy phase restoration proves to be a

powerful technique to enhance speech data degraded by additive white Gaussian noise. In fact,

when using a wavelet with good filtering characteristics (e.g., db20), the formants' structure and

intelligibility can be considerably preserved. This new technique involves a lot of calculations
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due to the Fourier transforms, the wavelet transforms, and the phase calculations. However, the

intelligibility of the de-noised speech data, outperformed all the other de-noising systems, especially

when the noise levels were high (SNRs below 6db).

The combination of the noisy phase and the wavelet-Fourier technique produced the best

results (intelligibility) because it involves a de-noising process on two less noisy sets of data; the

real and imaginary parts of the Fourier transform of the noisy signal. The Fourier transform splits

the noise level between the real and imaginary parts. De-noising the wavelet details of both the

real and imaginary parts, reduces the noise at each level of decomposition, resulting in a large

amount of noise being taken from both the real and imaginary parts. After this de-noising process,

the combination of the real and imaginary parts produces a cleaner amplitude which is further

combined with the noisy phase, wherein important speech information is saved. Most importantly,

this research illustrated the fact that the phase has the potential to preserve a lot of the underlying

speech formants' structure and that, in order to avoid aliasing and still preserve intelligibility, it is

very important to choose a wavelet with very good filtering characteristics.

6.3 Evaluation Of The Thesis Objectives

In terms of the four objectives mentioned in the first chapter, in this thesis, we were able

to apply both wavelets and the soft thresholding technique (STT) to enhance noisy speech data.

The speech de-noising systems (SDS) can only be applied to the voiced portions. The unvoiced

and silent portions are not to be processed using the SDSs discussed in the fourth chapter. These

portions tend to disappear when processed by the SDSs, and hence, we can use our SDSs as detector

systems for the unvoiced, voiced, and silent speech portions by using a single window on the entire

speech utterance. The use of the noisy phase, combined with both wavelets, Fourier, and the STT

technique, considerably improved intelligibility. The use of wavelets with thresholding is important,
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however, in order to obtain good results, the choice of a wavelet with good filtering characteristics

(no high energy side-lobes) have a direct effect on the quality of the de-noised speech data.

6.4 Recommendations

Further investigations in the area of noise cancellation using both Fourier and wavelets can

further the results of this research. Many of the methods described in this work can be further

explored, improved (i.e., hard or soft thresholding of the approximations where the pitch of voiced

speech resides), and compared to our results. The STT and HTT methods can be used to develop

a pre-processing system to detect the voiced, unvoiced, and silent speech portions. Since this

research assumes that the location of voiced, unvoiced, and silent portions are known, the STT or

HTT based detector system, can complete our de-noising system.

One of the main concerns of our speech de-noising algorithm is speed. Due to the fact

that our algorithm uses the Fourier transform, the wavelet transform, and the STT or the HTT

techniques, the results tend to take considerable time to produce (an average of 8 minutes on a

Sparc2 station with a single processor). In order to reduce the algorithm execution time, we suggest

implementation of the algorithm in a parallel machine and we need also to derive a better way of

finding the thresholds that minimize the SURE functions of either the HTT or the STT methods.

In fact, the SURE function involves many loops and many comparisons that use each element of the

noisy data. This means that as the number of data points increases, the execution time increases

exponentially.

Finally, the results of this research illustrated the need for a better metric system for analyzing

the performance of de-noising speech data. Most of the speech de-noising systems produced speech

data with low L' error with respect to the clean speech signal, however, they do not have good

intelligibility.
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Most importantly, since we are using both wavelets and Fourier transforms, most of the

processing can be implemented using parallel processing to speed up the results. Finally, the SURE

functions should be further studied in order to find an effective criteria to choose the thresholds

that minimize the SURE functions without checking all the samples available.
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Appendiz A. Wavelet Coefficients

This Appendix contains both the h filter coefficients and the Fourier transforms for each of the

three wavelets used in this thesis: db6, coifiet(6), and db20. The Fourier transforms show clearly

that the approximation filters, h, are low-pass filters, while the detail filters, g, are high-pass fiters.

These filters are used in the discrete wavelet transform (DWT) to divide the frequency spectrum, of

the signal under analysis, into bands which have a constant bandwidth on a logarithmic frequency

scale (in our case the bandwidths change by a factor of 2, the dilation factor). Observe that the

Fourier transforms (g and h filters) of both db6 and coifiet(6) do not have a sharp roll-ofit. while

those of the Fourier transform of db20 are sharper than those of db6 and coifiets(6).
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Nn coefficient. of the fdter h
6 0 .332670552950

1 .806891509331
2 .459877502118
3 -. 135011020010
4 -.085441273882
5 .035226291882

Table A.1 Scaling function coifficients of db6.

N n coefficients ofthe fdter h
6 0 -.07273261951

1 .33789766250
2 .85257202020
3 .38486484700
4 -.07273296500
5 -.01565572800

Table A.2 Scaling function coifficients of coiflet(6).

N n coefficients of the filter h
20 0 .026670057901

1 .188176800078
2 .527201188932
3 .688459039454
4 .281172343661
5 -.249846424327
6 -. 195946274377
7 .127369340336
8 .093057364604
9 -.071394147166

10 -.029457536822
11 .033212674059
12 .003606553567
13 -.010733175483
14 .001395351747
15 .001992405295
16 -.000685856695
17 -.000116466855
18 .000093588670
19 -.000013264203

Table A.3 Scaling function coifficients of db20.
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Wavelet: clb6
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Figure A. 1 Fourier transforms of the h and g filters of db6.
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Wavelet coiflt_6

h filter (approximation) Amplitude Of Ma FFr Of h
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Figure A.2 Fourier transforms of the h and g filters of coiflet(6).
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Wavelet- db2O
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Figure A.3 Fourier transforms of the h and g filters of db20.
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Appendix B. Wavelets And Their Fourier Transform

This Appendix contains the plots, on linear scales, of the three wavelets used in this thesis.

All figures have identical time and frequency axes in arbitrary units. The amplitude of the Fourier

transform of all three wavelets represent band-pass filters. Observe that the amplitudes of the

Fourier transforms of db6 and coifiet(6), have many high energy side-lobes, while the amplitude of

the Fourier transform of db20 has very little or no side-lobes at all. These filtering characteristics of

the three wavelets affect the quality of the speech de-noising results (see spectrograms of Appendix

J through L).
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wavelet function (db6)

Fourier Amplitude (db6)

Figure B.1 Wavelet db6 and its Fourier transform.
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scding fiumcon (db6)

Fourier Amplitude (db6)

Figure B.2 Scaling function of the wavelet db6 and its Fourier transform.
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wavelet function (coiflcL_6)

Fourier Amplitude (coifleLt6)

Figure B.3 Wavelet coiflet(6) and its Fourier transform.
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scaling function (cotfier_6)

Fourier Amplitude (coifleL6)

Figure B.4 Scaling function of the wavelet coiflet(6) and its Fourier transform.
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wavelet function (db2O)
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Founer Amplitude (cdb20)

Figure B.5 Wavelet db20 and its Fourier transform.
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scaling hnxton (db20)

Fourier Amplitude (db2O)

Figure B.6 Scaling function of the wavelet db20 and its Fourier transform.
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Appendix C. Wavelet Shrinkage of Sinewave

This appendix contains the de-noising results of a sinewave of frequency 2Hz. We generated

two signals, each contains 512 samples. The first signal is a 2Hz sinewave and the second is a white

Gaussian noise of zero mean and variance of 0r2 =. We added the white Gaussian noise to the

clean sinewave and then applied the soft thresholding technique (STT) to both the clean and noisy

sinewaves. The de-noising process was carried in the wavelet domain using db20. The discrete

wavelet transform (DWT) of the clean 2Hz sinewave, shows high energy details at the seventh and

eighth levels, while the DWT of the noisy sinewave shows high energy details at all levels (see

figures C.1 and C.2). The high energy details of the early levels of decomposition (i.e., levels 1, 2,

3, and 4) of the noisy sinewave, are mainly due to noise. We applied the STT to both the clean

and noisy sinewaves, separately.

The clean signal was processed using the STT method and a variance value of a2 = 1. Figure

C.3 shows that the details of the clean signal are still preserved and figure C.4 shows the near

perfect reconstruction of the the clean sinewave. Observe, the amplitude of the Fourier transform

of the STT processed clean signal is almost identical to that of the original clean sinewave (see

figure C.5). Notice the phase distortions caused by the non-linear processing of this sinewave (see

figure C.6).

The application of the STT to the noisy sinewave has eliminated most of the high frequency

details which are mainly due to noise. Figure C.7 shows that the high energy details of the early

levels of decomposition (i.e., levels 1, 2, 3, and 4) of the noisy sinewave, have been completely

eliminated, while the details of the seventh and eighth levels of decomposition, which characterize

the clean sinewave, are still preserved. The reconstructed sinewave, see figure C.8, is very close to

the clean sinewave. Observe, the effects of the STT on both the amplitude and the phase of the

Fourier transform of the noisy and reconstructed sinewaves (see figures C.9 and C.10).

C-1



Sinewave: Frequency - 2 And Varian =1

II i I Ii

I0 AV .. . Imm
II.n m | -• m

*1 - • - - . .. .I*1 I

-it

os

11. 1' _
- a.

Figure C.1 Details of the clean sinewave (2Hz).
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Figure C.2 Details of the noisy sinewave (2Hz).
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Figure 0.3 Details of the processed clean sinewave (2Hz) after the STT (u2 _ 1).
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Figure 0.4 Clean sinewave (MH) after the STT (0,2 -1).
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Figure C.5 Amplitude of the FFT of the clean sinewave (2Hz) after the STT (o2 _ 1).
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Figure C.6 Phase of the FFT of the clean sinewave (2H[z) after the STT (ar2 1)
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Appendix D. Effect Of Wavelet Shrinkage On White Gaussian Noise and Unvoiced

Speech

This Appendix contains the plots of a white Gaussian noise signal and an unvoiced speech

signal before and after the application of the soft thresholding technique (STT). The de-noising

method uses wavelets in the time domain without noisy phase restoration (using db20). 512 samples

of a white Gaussian noise signal with zero mean and a 2 = 1 was generated. This signal was

processed using the STT. Since the SURE function estimates the mean of an independent and

normally distributed random signal, the expected result is a signal with 512 zeros (i.e., the noise

has zero mean). The white Gaussian plots illustrate the fact that the application of the STT to

the white Gaussian noise is very close to zero. Observe, the Fourier transform of the noise has high

energy throughout the entire energy spectrum. Also, notice that the high decomposition detail

levels (i.g., 1,2, and 3) filter most of the white Gaussian noise.

The second set of plots, deals with both clean and noisy unvoiced speech. The plots illustrate

the fact that unvoiced speech is treated as white Gaussian noise. In fact, when using the STT to

de-noise a clean unvoiced speech signal (similar to the case of a clean sinewave), the result is a signal

with zeros everywhere (see figure D.11). Notice that the effects of the STT on a noisy unvoiced

speech signal are similar to the effects of the STT on white Gaussian noise. We conclude then, that

the noisy unvoiced speech data has characteristics similar to those of white Gaussian noise. In order

to prevent loosing all the unvoiced as well as the silent speech portions, we chose not to process

these portions. One important observation is that both the soft and hard thresholding techniques

(STT and HTT) can be used as detectors for voiced, unvoiced, and silent speech segments.
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White Gaussian Noise With Variance = 1

2.1

01. I

:1.1 S. .. • . . I. - ,* • - . J j

-2

oM

0 No 260 me

os

2r *1

0 m le 560

-2:1.

-1.
0v -. . • . . . • . .- - - •

I°I

Figure D.2 Details of the processed white Gaussian noise after the STT (o'2 = 1).
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Figure D.10 Noisy unvoiced speech after the STT (o2 = 1).
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Figure D.12 Amplitude Of the FFT of the noisy unvoiced speech after the STT (q2 - 1).
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Figure D.14 Phase Of the FFT of the noisy unvoiced speech after the STT (a'2  1).
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Figure D.15 Phase of the FFT of the clean unvoiced speech after the STT (Or2 _ 1).
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Appendix E. Effect Of Wavelet Shrinkage On Voiced Speech

This Appendix illustrates the effects of applying the STT to both a noisy and a clean voiced

speech segments. The wavelet decomposition of the clean voiced speech segment shows high energy

details at the coarser levels of decomposition (i.e., levels 4, 5, and 6), while the finer levels of

decomposition (i.e., levels 1 and 2) have little or no high energy details at all (see figure E.1). On

the other hand, the noisy version (clean voiced speech and noise with variance o.2 = 1) of this

voiced speech signal, shows high energy at all detail levels; especially levels 1 and 2 (see figure E.2).

The effects of the STT on both the clean and noisy voiced speech signals is that most of the high

frequency details are eliminated (see figures E.3 and E.4). Observe that the reconstruction of both

signals, the STT processed clean voiced speech signal and the STT processed noisy voiced speech

signal, are very close to the original voiced speech signal. The amplitude of the Fourier transforms

of the reconstructed signals show very little high frequency components. Finally, notice the effects

of the non-linear processing on the phase (see figures E.10 and E.9).

E-1



Voiced Speech With Noise Variance I

Fmd

oo No - -

- -

110 LvSi

Figure E.1 Details of the clean voiced speech.

E-.2



Voiced Speech With Noiwe Variance = 1

-. - -_ -• - _ _ - - --

' o U a- - 3-
Ai 0" -"1"4 -- WO- -Am- -- ,* A

J r . . . .. . . . .. . . . . ..
Im t -.,, --- " ". .. ' N -- '

I M ..

am a :1 ...
I-. - V - - I ii

Aii ... .L .4

41 A . . . .

-4 -- I I

i- ami - -I _ •

"a " I A

4 EU . . , ..

I -2

4

.2

xv4

Figure E.2 Details of the noisy voiced speech.

-13



Voiced Spat With Now Varane I1

PIALO" 1AJM1- - o

41

0 4W m

E-4

oo

.I.

• .s U. . . .

" -- - -

FigreE.3 Deail o te pocsse cea vocdsec ferteST(* 1 ).

o - E- -



Voiced Speech With Noiae Varianc =1

41

31 - . ,

* .I6

0i m xv A

1I

~I

0~ W6 AVp Ii

Figure EA Details of the processed noisy voiced speech after the STT (a 2 1).

E-5



Voicd Speech With Noise Vaimm -1

4

2

0 
-

-2

-4

0 100 200 300 400 500

4

2

0I
-2

-4

0 10. 2N v 300 M00 5_I

4

2 A- AA5
-2

-4 - - - - - -
0 100 200 300 400 5oo

Figure B.5 Noisy voiced speech after the STT (0,2 =1).

E-6



Viemd Speeca With Noiw Varimc m I

4

2

0-&A

-4

0 1" 200 300 4. . 530

4

2

-2It 

F T1
-4

0 100 200 30 400 500

4

2

.4

0 100 200 300 400 500
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Figure E.7 Amplitude Of the FFT of the noisy voiced speech after the STT (a2 - 1).
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Figure E.9 Phase Of the FFT of the noisy voiced speech after the STT (or2  1)
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Figure E.10 Phase of the FFT of the clean voiced speech after the STT (a2 = I).
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Appendix F. Total Squared Error With Respect To Both The Clean And Noisy

Speech Signals Using Compactly Supported Wavelets

This Appendix contains bar-charts showing the total squared error (TSE) between the de-

noised speech signals and both the clean and noisy speech signal, using db6, coiflet(6), and db2O.

We studied the effects of both the soft and hard thresholding techniques (STT and HTT) on seven

different noisy signals with signals-to-noise-ratios (SNR): -10db, -6db, -3db, 0db, 3db, 6db, and

10db. Eight different speech de-noising systems (SDS) have been studied:

1. WRINP means that the SDS uses the wavelet transform on the real and imaginary parts

of the Fourier transform of the original noisy signal. This method reconstructs the signal using the

phase of the original noisy sý..ech signal.

2. WRI means that the SDS uses the wavelet transform on the real and imaginary parts

of the Fourier transform of the original noisy signal. This method does not use the phase of the

original noisy speech signal.

3. WTNP means that the SDS uses the wavelet transform of the original noisy signal (no

Fourier transform). This method reconstructs the signal using the phase of the original noisy speech

signal.

4. WT means that the SDS uses the wavelet transform of the original noisy signal (no Fourier

transform). This method does not use the phase of the original noisy speech signal. This method

is based on Donoho's original work on wavelet shrinkage.

5. SRINP means that the SDS uses Stein's criteria directly on the real and imaginary parts

of the Fourier transform of the original noisy signal. This method reconstructs the signal using the

phase of the original noisy speech signal. This method resembles the spectral subtraction developed

by Steven Boll.

6. SRI means that the SDS uses Stein's criteria directly on the real and imaginary parts

of the Fourier transform of the original noisy signal. This method does not use the phase of the

F-1



original noisy speech signal.

7. STNP means that the SDS uses Stein's criteria directly on the original noisy signal (no

Fourier transform). This method reconstructs the signal using the phase of the original noisy speech

signal.

8. ST means that the SDS uses Stein's criteria directly on the original noisy signal (no

Fourier transform). This method does not use the phase of the original noisy speech signal.

The bar-charts (SNRs 0db and 6db), of the TSE with respect to the noisy signal (see figures

F.1 and F.3), show the closeness between the de-noised signals and the noisy signal. Ideally, we

would like the processed speech signals to be as far away as possible from the noisy signal, indicated

by large TSE. All the bar-charts illustrate the fact that the STT outperforms the HTT, since all

the STT bars have higher TSEs than the HTT bars.

The bar-charts (SNRs 0db and 6db), of the TSE with respect to the clean signal (see figures

F.2 and F.4), show the closeness between the de-noised signals and the clean signal. Ideally, we

would like the processed speech signals to be very close to the clean signal, indicated by small TSE.

All the bar-charts illustrate the fact that the STT outperforms the HTT, since all the STT bars

have lower TSEs than the HTT bars.
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Figure F.1 TSE using noisy speech and the de-noised speech (0db) with wavelets: db6, coiflets,
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Figure F.2 TSE using clean speech and the de-noised speech (0db) with wavelets: db6, coiflets,
and db20.
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Appendix G. Spectrum Analysis Of The Clean And Noisy Speech Signals

This appendix contains both the wide-band and narrow-band spectrograms of the clean speech

signal, the 6db noisy speech signal, and the 0db noisy speech signal. Observe, the high energy of

the first formant frequency (below 500Hz), the second and third formants frequencies (below 3kHz).

In all figures, the vertical axis represents frequency and the horizontal axis represents samples of

the signal (sampling frequency is 16kHz).
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Appendix H. Spectrum Analysis Of The De-noised Speech Signals (Odb and 6db)

Without Using Wavelets

This appendix contains the wide-band spectrograms of two de-noised speech signals (0db

and 6db). The speech signals were processed using the soft thresholding technique (STT) and

Stein's criteria. Figure H.1 shows the noisy speech data processed in the time domain using Stein's

criteria. Observe that when the signal-to-noise ratio (SNR) is 6db, all the formant frequencies

are still preserved, however, the third formant frequency of the 0db processed speech signal was

affected by the non-linear shrinkage. Figure H.2 shows the effects of applying the STT to the real

and imaginary parts of the Fourier transform of the original signal. The original noisy phase was

used before reconstruction of the de-noised speech signal. Observe that as the noise level increases

(i.e., from 6db to 0db), the formants are affected. In all figures, the vertical axis represents frequency

and the horizontal axis represents samples of the signal (sampling frequency is 16kHz).
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Appendix L Spectrum Analysis Of The De-noised Speech Signals (Odb and 6db)

Using Wavelets In Time

This appendix contains the wide-band spectrograms of two de-noised speech signals (0db and

6db). The speech signals were processed using the soft thresholding technique (STT) and Stein's

criteria was applied to the wavelet transform. Observe the aliasing produced by db6 and coifiet(6).

This aliasing is mainly due to the fact that these wavelets have Fourier transforms with many

high energy side-lobes. All wavelets used (db6, coiflet(6), and db20) preserve most of the formant

frequencies. Notice the performance of the db20; no aliasing and very clear formant frequencies.

In all figures, the verticzA- axis represents frequency and the horizontal axis represents samples of

the signal (sampling frequency is 16kHz).
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Appendiz J. Spectrum Analysis Of The De-noised Speech Signals (Odb and 6db)

Using Wavelets In Fourier

This appendix contains the wide-band spectrograms of two de-noised speech signals (0db and

6db). The speech signals were processed using the soft thresholding technique (STT) and Stein's

criteria was applied to the wavelet transforms of both the real and imaginary parts of the Fourier

cransform of the original noisy signals. The original noisy phase was used before reconstruction

of the de-noised signal. Observe that most of the formant frequencies are still preserved for all

wavelets used and that there is no noticeable aliasing caused by any wavelet. In all figures, the

vertical axis represents frequency and the horizontal axis represents samples of the signal (sampling

frequency is 16kHz).

J-1



6d)

400-2



7S

looo-

a

Sml= is I
4'PF" 6"-M 3@tnd RWthifop

SG=p S4 IJatoC~I~ 9~eus

FiueJ2 D-osdsec sig( RNOn aee ofet6)wd-adsetus(d

anM= b)

low3



I LPL

Soma Pveqe ISM~r. 96Mi inotrod* WR!1W £3~rinkqpm)

700

Figure J.3 De-noised speech using (WRIJNP and wavelet db2O) wide-band spectrums (0db and
6db).

J-4



Bibliography

1. Anderson, B.P. Theory and Implementation of Wavelet Analyses in Rational Resolution De-
compositions. MS thesis, Air Force Institute of Technology, December 1992.

2. Apostol, M.T. Mathematical Analysis (second Edition). Addison Wesley Publishing company,
1974.

3. Boll, S.F. "Suppression of Acoustic Noise in Speech Using Spectral Subtraction,` IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, ASSP-27(2):113-120 (1979).

4. Daubechies, I. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics,
1992.

5. Donoho, D.L. De-noising by Soft-thresholding. Technical Report, Stanford University, 1992.

6. Donoho, D.L. Ideal Spatial Adaptation by Wavelet Shrinkage. Technical Report, Stanford
University, 1992.

7. Donoho, D.L. Wavelet Shrinkage and W. V.D.: A 10-Minute Tour. Technical Report, Stanford
University, 1992.

8. Donoho, D.L. and I.M. Johnstone. Adapting to Unknown Smoothness via Wavelet Shrinkage.

Technical Report, Stanford University, 1991.

9. Donoho, D.L. and I.M. Johnstone. Minimax Estimation via Wavelet Shrinkage. Technical
Report, Stanford University, 1991.

10. Etter, W., et al. "Adaptive Noise Reduction Using Discrimination Functions," IEEE (1991).

11. Gurgen, F.S. and C.S. Chen. "Speech Enhancement by Fourier-Bessel Coefficients fo Speech
and Noise," fEE Proceedings, 137(5):290-294 (1990).

12. Hogg, R.V. and A.T. Craig. Introduction to Mathematical Statistics (Fourth Edition). Macmil-
lan Publishing Co., Inc., 1978.

13. Kabrisky, M., et al. "Reconstruction of Mutilated Speech," IEEE AES Magazine (1989).

14. Kay, S.M. Modern Spectral Estimation: Theory and Application. Signal Processing Series,
Prentice-Hall, 1988.

15. Kobatakeand, H., et al. "Enhancement of Noisy Speech by Maximum Likelihood Estimation,"
IEEE (1991).

16. Mallat, S.G. and S. Zhong. Complete Signal Representation with Multiscale Edges. Technical
Report, New York University, 1989.

17. Oppenheim, A.V. and R.W. Schafer. Discrete-Time Signal Processing. Prentice-Hall, 1989.

18. Papoulis, A. Probability, Random Variables, and Stochastic Processes (Third Edition).
McGraw-Hill, Inc., 1991.

19. Parsons, T.W. Voice and Speech Processing. McGraw-Hill, Inc., 1987.

20. Stein, C.M. "Estimation of the Mean of a Multivariate Normal Distribution," The Annals of
Statistics, 9(6):1135-1151 (1981).

21. Warhola, G., et al. "Applications of Wavelets to Signal Processing,". AFIT Science And
Research Center, 1991.

22. Watson, G.N. A treatise on the theory of Besselfunctions (2nd Edition). Cambridge University
Press, 1966.

BIB-1



Vita

Lieutenant Hassan Dehmani was born Dec 27, 1968 in Casablanca, Morocco. At the age of

sixteen, he attended the College Royal Preparatoire aux Techniques Aeronautiques (CRPTA) in the

southern city of Marrakech, Morocco. Upon graduation in the summer of 1988, with a high school

diploma in mathematics, Lieutenant Dehmani received a scholarship to study in the United States

of America. He was selected to continue his education at the United States Air Force Academy

(USAFA) in Colorado Springs, Colorado. He graduated with a Bachelor of Science in Electrical

Engineering with a strong emphasis on computer engineering and mathematics.

Upon graduation from USAFA in the summer of 1992, Lieutenant Dehmani received a second

scholarship to pursue a Master's Degree in Computer Engineering with an emphasis on Digital

Signal Processing at the United States Air Force Institute Of Technology.

Lieutenant Dehmani married Danielle A. Dix on Valentine's Day 14 February 1994. Upon

graduation from AFIT, he will be assigned to the First Air Base in the city of Sale, Morocco. There

he will be in charge of the Computer Center of the First Air Base.

Permanent address: 65 Rue Rabia-Al-Adaouiya
Casa03
Casablanca, Morocco

VITA-I



I Form ApprovedREPORT DOCUMENTATION PAGE OMJ No 0704-0188

Pjogiic .O•cot'flc ourel *Ot -or (%:lectO•io Ot mfOrfmatiOfl -s -,stgmated to 4vlejr" !our pe• " ejpes•e. •tcliuadin the time tOt rev. qiewing insttucti.ons, ýearcnq es•ilnq data sOurc
qathetriq rma unftaittni; the -lata needed. and coImoetlnq and reviewi•: the coILecton of nformation Sena comments regarding this burden estimate or 4nv )thef aspect•3t !N,%
col0elon ot Mntrmaton. noluonq suq•i•ston$ t•r reducing this ourcen to Nashinqton .1e stada rters Servces, Directorate for tnformation OperatiOn and Repors. :215 t elferson
Davis Hiqnwav. iute '204.rnqgton. j .1 2202-43]0. an to totn. 2t"ce ot•Managemet and Budget, 4oerworx Reduction Projec (07C4-0t I). Was•ington. C 20503

1. AGENCY USE ONLY (Leave WIank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

JUNE, 1994 MASTER'S THESIS
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

NOISE REDUCTION FOR SPEECH ENHANCEMENT USING NON-LINEAR
WAVELET PROCESSING

6. AUTHOR(S)

HASSAN DEHMANI, LIEUTENANT, ROYAL MOROCCAN AIR FORCE (RMAF)

7. PERFORMING ORGANIZATICN NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

AIR FORCE INSTITUTE OF TECHNOLOGY, WPAFB OH 45433-7765 REPORT NUMBER

AFIT/GCE/ENC/94J-1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING, MONITORING

DEPARTMENT OF DEFENSE AGENCY REPORT NUMBER

R52
FT MEADE, MD 20755-6000
CONTRACT NUMBER: H98230-R5-93-9187

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)

THE PROBLEM OF SPEECH ENHANCEMENT PRESENTS MANY OBSTACLES IN THE SPEECH PROCESSING
FIELD. THIS THESIS DEVELOPS SEVERAL SPEECH DE-NOISING SYSTEMS THAT CAN BE USED IN
THE TIME, FOURIER, AND WAVELET DOMAINS. WE PRESENT TWO THRESHOLDING TECHNIQUES:
SOFT AND HARD. THE APPLICATION OF THESE THRESHOLDING TECHNIQUES TO NOISY SPEECH
DATA IS DISCUSSED. THE COMBINATION OF BOTH WAVELETS AND THE FOURIER DOMAINS WITH
NOISY PHASE RESTORATION PROVES TO YIELD THE BEST RESULTS IN TERMS OF INTELLIGIBITY.
INFORMAL LISTENING TESTS WERE CONDUCTED IN ORDER TO COMPARE THE EFFECTS AND
DIFFERENCES BETWEEN THE SPEECH DE-NOISING SYSTEMS.

14. SUBJECT TERMS 15. NUMBER OF PAGES

WAVELETS, SPEECH, MULTIRESOLUTION ANALYSIS, NOISE REDUCTION, 199
SHRINKAGE 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

'JNCLASSIFIEDIONCARR'TIWTn =VA~TVT%1 _________

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39.-1
2I-102


