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Abstract

The problem of speech enhancement presents many obstacles in the speech processing field.
This thesis develops several speech de-noising systems (SDS) that can be used in the time, Fourier,
and the wavelet domains. We present two different thresholding techniques, the soft thresholding
technique (STT) and the hard thresholding technique (HTT). The application of these thresholding
techniques to noisy speech data is discussed. The combination of both the Fourier and wavelet
domains in speech de-noising proves to yield the best results in terms of speech intelligibility.
Informal listening tests are conducted in order to compare the effects of using the STT, the HTT,

the noisy phase, the time domain, the Fourier domain, and the wavelet domain.




NOISE REDUCTION FOR SPEECH ENHANCEMENT USING
NON-LINEAR WAVELET PROCESSING

I. Introduction

1.1 Background

In recent years, many speech processing scholars have developed speech systems that have
some degree of success when used with speech data acquired under near-ideal conditions. By far
the majority of recognition and encoding schemes have been developed and tested using speech
recorded on very sophisticated equipment in a quiet environment. As speech processing has moved
from the ideal laboratory conditions to the tield, it has become significantly important to face the
problems imposed by the presence of ambient noise. Once in the real world, most ot che speech
processing systems, especially speech recognition and speech encoding systems, fall very short on
their promises. Speech degraded by ambient noise has most of its formant’s structure detectable by
the human listener, however, the human listener cannot listen to speech under degraded conditions
for a long time without suffering auditory fatigue (19). In order to reduce the effects of ambient

noise, many techniques for enhancement of noisy speech have been developed.

The main objective of the speech enhancement is to attenuate the intensity of the noise,
while preserving the overall structure (i.e., pitch, formants, etc.) and intelligibility of speech. In
particular, the military environment is one of the most crucial environments where speech data

is vulnerable to ambient noise, especially noise due to the engines of tanks, military vehicles,

helicopters, airplanes, and others.




1.2 Problem Statement

The problem considered in this thesis is to enhance noisy speech data and still preserve
intelligibility. In order to accomplish this goal, we propose to develop a speech processing scheme

using both wavelets and the thresholding techniques.

The United States military is carrying on intensive research in order to develop systems that
are very reliable and very robust in enhancing speech data degraded by ambient noise. One of the
new areas of this research is the use of wavelets in order to explore their unique filtering abilities
with noisy speech data. In the last decade, the theory of wavelets has grown significantly, and has
promised to change both signal and information processing. The major advantage of wavelets over
the classic signal processing tools (i.e., Fourier transform), is their unique ability to decompose a
signal into orthogonal resolution levels. This unique property, makes wavelets one of the best tools

to use with signals composed of many high energy peaks of frequencies, such as speech.

In general, noise is a broad-band signal. The ability of wavelets to decompose a signal into
various bands of frequencies, allows us to locate noise at certain frequency bands and eliminate it,
however, at the expense of affecting the formants structure of the signal degraded by this noise. In
order to avoid the distortion of the underlying signal, we resort to the use of many thresholding
techniques which are based on the general statistics of the ambient noise. Hard thresholding is a
technique that eliminates all data samples below a fixed threshold in absolute value. On the other
hand, soft thresholding is a technique that eliminates all data samples below a fixed threshold in
absolute value, and pulls towards zero all data above the threshold, by the amount of the threshold
in absolute value. The use of thresholding helps decrease the amount of noise, while preserving

most of formants’ structure of the underlying signal.
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1.9 Scope

This thesis is limited to the development of different speech de-noising systems to process
speech to which various amounts of white Gaussian noise have been added (signal-to-noise ratios
vary between -10db to 10db). These systems are based on the use of wavelets, Fourier, and non-
linear statistical processing of speech data from the TIMIT data base. Quantitative squared error

criteria and qualitative listening tests are performed.

No attempt to automatically determine pitch, silent, voiced, or unvoiced portions is made.
These are assumed to be known. The algorithm developed is intended to be one subsystem of a
pre-processor used to remove noise from noisy speech before use by other speech processing systems

(e.g., speech identification, speech recognition, etc) or by human listeners.

The necessary mathematical background in wavelets, Fourier, and non-linear statistical meth-

ods, which are necessary to understand the de-noising systems developed in this thesis is presented.

1.4 Approach

The noisy speech signal is decomposed into voiced, unvoiced, and silent portions. The silent
portions are used to estimate the variance of the noise which is assumed to be white Gaussian noise.
The voiced portions are subjected to the thresholding techniques. Depending on the method used,
we may process speech in time, frequency (Fourier), wavelet, or any combination of these three
domains. The phase of the noisy voiced speech may be saved before processing the noisy voiced
speech. On the other hand, both the unvoiced and silent portions are multiplied by a ratio to be
discussed later. Before processing any speech segment, each portion (i.e., voiced, unvoiced, and

silent) is multiplied by a window function to be defined later.
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1.5 Objectives
The objectives of this research are to answer the following four questions:
1. Can we enhance noisy speech by applying both wavelets and the thresholding techniques?
2. Under what conditions do the application of wavelets and the thresholding techniques to noisy
speech data yield intelligible results?
3. Can we use both wavelets and Fourier analysis to enhance noisy speech?

4. How do wavelets and the thresholding techniques affect the quality of the de-noised speech?

1.6 Eguipment and Materials

The following tools were crucial to this research:
1. SPARC 2 workstations is used for cod*ug and testing purposes.
2. ANSI C is the programming language for all codes developed for this research.
3. Mathematica is used for developing graphs.and bar-charts.
4. ESPS-4 (Entropic Signal Processing System) is' used for both spectrograms and listening tests.
5. IXTEX is used to typeset this document.

6. TIMIT data base.

1.7 Oryganization

In chapter two, we present past and current research in the area of enhancement of noisy
speech. In chapter three, we discuss the necessary wavelet, Fourier, and thruhgldingtheotis.
Based on the results and theories of chapter three, we present, in chapter four, eight de-noising
systems. In chapter five, we test the de-noising systems of chapter four with actual noisy speech
data and analyze the results in terms of both error and spectrogram analysis as well as informal

listening tests. Finally, in chapter six, we present the thesis conclusions and recommendations.
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II. Literature Review

2.1 Introduction

This chapter focuses on evaluating past techniques and research in the area of enhancing noisy
speech. These techniques cover several methods used to solve the problem of eliminating some of the
noise from a speech signal. Because of the similarities between the different techniques, we present
each method in chronological order in order to understand some of the problems encountered in

the field of speech processing.

2.2 Recent Developments In Enhancing Noisy Speech

Enhancing noisy speech presents three major problems:
a. detecting the presence of noise.
b. estimating the noise power.
c. differentiating between speech and non-speech signals.
The quality and intelligibility of the resulting speech signal depend on the method used and on the

assumptions made to locate and estimate the noise.

2.2.1 Suppression of Acoustic Noise In Speech Using Spectral Subtraction. In 1979, Steven
Boll presented a simple technique (Spectral Subtraction) to enhance speech degraded by additive
white noise (3). His technique (among the best techniques during the early eighties) is well known
in the speech processing field. His algorithm measures the signal present during non-speech activity
and use it as an estimate of the noise. The spectrum of the estimated noise is then subtracted from
that of the noisy speech . If we assume that speech is a stationary signal and that the noise is

additive and uncorrelated, then we can present the noisy speech signal as

y(t) = s(t) + n(t), (2.1)
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where s and n are the speech and noise signals, respectively, where both are real. Taking the

Fourier transform (see equation 3.137) of equation 2.1, we obtain

#Hw) = §(w) + i(w). (2.2)

The power of the above spectra is given by

|5 (w)I* = (W) + [3(w)[* + 2[Re5(w)]Reit(w)] + Im{é(w)|Imli(w)]]. (2.3)

Since the noise and signal random variables are assumed to be uncorrelated, the expected value
(see equation 3.7) of the crossproduct terms of equation 2.3 are eliminated and the expected power

spectra can then be related by (19)

'g(“)lz = I""e(“’)l2 + |'.‘e("’)|27 (24)

where |#i.(w)|? and |5.(w)|? are estimates of the noise and speech powers, respectively.

If we can obtain a satisfactory estimate of |i(w)|?, we can recover |(w)|? by using equation
2.4, since we know the power |j(w)]>. In practice, the noise is estimated by observing the signal

during non-speech activity (19). The result is

[5e(W)? = |5(w)? = e (w)|?. (2.5)

Using the results from equation 2.5, Boll subtracted the magnitude spectra themselves instead of
the power spectra, and since the magnitude is a positive quantity, any negative output is set to

zero (19). The above process can be viewed as a filtering operation defined by

lBe(@)l = (§(w)] - |fe(w)
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e (1- )

)]
= [§(w)lAw), (2.6)
where the filter A is given by
h(w) = (1 - %(—(3’%) @2

where 0 < |h(w)| < 1. Since the negative amplitudes are not allowed, Boll used the filter & to define

a half-wave rectification filter im as

ha(w) = f(—“’-)-w (2.8)

In order to recover the estimated speech signal s.(t), we need to take the inverse Fourier
transform (see figure 2.1). However, we need the phase of 3.(w). Boll approximated this phase by
the phase of the known noisy signal §(w). The recovered signal can then be obtained using the

following equation

Ge(w) = |3 (w)]e*, (2.9)

where @ is the phase of §(w).

In order to account for the case where the speech is absent, Boll modified his algorithm to
allow a second pass to further reduce the residual noise left after the application of the spectral

subtraction. The residual noise can be further attenuated without distorting the speech signal(3).

2.2.2 Speech Enhancement By Fourier-Bessel Coefficients Of Speech And Noise. In 1990,
F.S. Gurgen and C.S. Chen introduced an enhancement technique for noisy speech based on the

Fourier-bessel (FB) expansion of the speech and noise (11). The method is based on the subtraction
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Figure 2.1 Spectral Subtraction By Steven Boll

of the FB coefficients of the estimated noise from the coefficients of the noisy speech. The difference

in two sets of coefficients is then used to synthesize the enhanced speech .

2.2.2.1 Spectral Properties of Fourier-Bessel Coefficients.  The solution of the wave
equation inside cylindrical structures (tubes) includes the first kind of the Bessel function (22). In
their method, Gurgen and Chen model the vocal tract as a cylindrical tube. The speech signal is
represented using the first kind and first order Bessel functions, Ji(t), as the basis functions for

expansion. This representation is called a Fourier-Bessel (FB) expansion.

The FB expansion of the speech signal is achieved by using Ji(amt) as basis functions of
representation, where a,, = 5; , tm i the m*» root of J; (t) = 0, and A is the duration of the time
frame under analysis. The decomposition describes a speech signal as a linear combination of the

orthogonal basis functions

s(t)= Y emJi(amt). (2.10)

m=1
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The set {J1(a@mt)} is orthogonal with respect to the weighting function ¢, and the ¢,, coefficients

in equation 2.10 are given by

2 A
o = T, O an)ae -

By taking the Fourier Transform of J;(a,t), Gurgen and Chen showed that the FB series behaves
like a low-pass filter. By using the magnitude and the phase spectrum, it is possible to calculate

the maximum frequency achieved with the number of the roots of Ji(amnt) as (11)

tm

fmaz = m (2.12)

2.2.2.2 Noise suppression using FB ezpansion.  Just like Boll’s method, the speech
signal s(t) is assumed to be degraded by uncorrelated additive noise n(t) where the noisy speech

signal y(t) is given by
y(t) = s(t) + n(t). (2.13)

Taking the FB expansion of the above signal, we get

Ym = 8m + N, (214)

wherem = 1,2,3,....

Experimentally, Gurgen and Chen showed that the FB coeflicients representation, with up to
150 coeflicients and 10ms analysis frame , introduces a low-pass filtering effect on the speech signal
by attenuating its high-frequency region. Therefore, the noise which is assumed to contain most of
the high frequency components, can be suppressed by using an appropriate number of coefficients

in the synthesis of the signal (11).




Since y,, is known (raw data), if we can obtain a satisfactory estimate of the noise level and calculate

its FB expansion we can get an cstimate of the enhanced speech signal as

8m = Ym — Nm. (2.15)

The estimation of the noise is based on two different techniques, the single-microphone case
and the two-microphone case. In the single-microphone case, the noise estimate is accomplished
by detecting the speech/non-speech intervals using energy thresholds to locate the silence intervals
where the energy of the noise can be estimated. In the two-microphone case, a reference microphone
path is used to estimate the noise and calculate its FB coefficients. A primary microphone path is
used to calculate the FB coefficients of the noisy speech. The difference between these two paths

is used to estimate the FB coefficients of the enhanced signal (11).

2.2.3 Adaptive Noise Reduction Using Discrimination Functions.  Most speech enhance-
ment techniques (e.g., spectral subtraction by S. Boll) are based on using speech detectors to locate
the non-speech activities in a speech signal and use that information to estimate noise. The quality
of the results depends heavily on the quality of the speech detectors used in the analysis. The
Discrimination Function Minimization (DFM) method does not use a speech detector and does not
assume stationarity of the noise over an entire speech period . The purpose of the DFM is to define
a function that differentiates between clean and noisy speech signals in order to reduce the noise
in the noisy speech signal (10). Based on essential features of speech and ambient noise, the DFM

uses a single-microphone adaptive filtering approach and minimizes a mean square error function.

2.2.3.1 Discrimination Function Minimization (DFM). The DFM technique in-
volves two steps:

1. Definition of a Discrimination Function J(x)




The discrimination function J(x) is defined for a vector x = {z;}{0<i<n-1) such that

J(x)|xesnn < J(x)|xens (2.16)

where
a. § = {s}, set of segments of clean speech.
b. N = {n}, set of segments of noise.
c. SN N = {y = s + n}, set of noisy speech segments.
The above equation states that the value of J for pure noise signals is greater than that of speech
and noise signals.
2. Filtering or suppression of the noise based on setting the coefficients of the filter h

such that J is minimized (see figure 2.2).

y(k) = s(k) + n(k) estimated speech
> h >

Calc optimal
1 filter to minimize

J

Figure 2.2 Block Diagram ( The DFM Noise Reduction

2.2.8.2 Ezample Of A Discrimination Function Jg(x). Since the rate of change
of the noise parameters (e.g., autocorrelation) are less than those of speech signals, the authors
concluded that it is possible to derive some discrimination functions directly from the dynam-

ics of the speech sample-variance. Experimentally, the authors found that the rate of change,
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Av(i), of a speech frame variances o(i) and the duration of the so called stationary periods, where
Av(i) < AvThres are two discriminating features that can be used to filter the noise out of a noisy

speech signal (10).

Let s be a clean speech segment degraded by uncorrelated additive noise n, the noisy speech

signal y is given by

y=s+n, (2.17)

and define N be a subset of the noise set IV such that, the length ¢f each vector in Np is longer
than 7,,q., the maximum length of a stationary period in a speech signal (i.e., Tmqz = 200ms). The

discrimination function is then defined as

JR(XHXGSQN < JR(x)lxeNna (2.18)

where Ng C N. Let Jr(x) be a discrimination function defined over a data frame of length N.
The sample-variances are calculated for each sub-frame of length L. These sub-frames are non
overlapping and, therefore, we have p = %’- sub-frames.

The sample variance for each sub-frame is defined as

k=0

1 L-1
o(i) = J I > #2(GL-k), (2.19)

where ¢ = 1,2,...p and 5(j) is the filtered signal at time j, which is calculated using the input

vector y and a transversal filter h of order M such that:

M-1
5(7) = hay(j —n), (2.20)

n=0
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for j =0,1,..N — 1. Now define the absolute value of the relative change of the variance as

Av(i) = (2.21)

o(f)~o(i-1)
o(i-1) l’

and an exponential weighting factor as
w(i) =1, (2.22)

where0<r<1l,andi=1,2,...p.

Using the above definitions, we can define two discrimination functions:

1. A first discrimination function that maximizes the relative changes of variance

defined as

p—1
Jrm(x) = (Z w(k)Av(p — k)) . (2.23)

k=0

2. A second discrimination function that minimizes the durations of the stationary

periods under analysis defined as

p—-1
Tr(x) = Y w(k)e’(p - k), (2.24)
k=0

where e(2) is defined as

T = Tmaz T 2> Tmaz and Av(i) < AVrhres
(2.25)

0 otherwise,

29




where for 1 = 1,2,...p, the value of ¢(i) is the excess time beyond the frames period Tm,z.

The entire discrimination function can be defined as

Ja(x) = ClJ}n(X) + Csz(x), (2.26)

where ¢ and c¢; are normalizing factors. The minimization of Jg in order to find the coefficients
of the filter A has two consequences: Jp; maximizes the relative changes of the variances and,

according to equation 2.25, Jp, minimizes the durations of the stationary periods (10).

The accuracy of the DFM method depends heavily on the validity of the discrimination
function. Besides the fact that the DFM does not require a speech activity detector, the main
advantage of the DFM is that the filter & adapts to the changes of the noise patterns throughout

the speech signal.

2.2.{ Other Speech Enhancement Teckniques. Many speech processing researchers model
speech as a sum of sinusoidal periodic functions. Kobatake, Karou, and Sheng approached the
speech enhancement problem by means of the maximum likelihood estimation (MLE). The authors
segmented the speech signal into frames and sub-frames and then, by maximizing an a posteriori
probability density function, they estimated the Fourier coefficients of the voiced portions at a

specific frame (15).

In 1989, Nadeem A. Bashir, a graduate student at the Air Force Institute Of Technology
(AFIT), developed a system in order to enhance the quality of mutilated speech. His technique
analyses the damaged speech in the Fourier domain and then, based on known properties of normal
speech, such as periodicity of voiced speech, a computer program generates a set of sinusoids whose
amplitudes and phases are derived directly from the speech signal itself. These sinusoids are used

to reconstruct a cleaner and clearer version of the mutilated speech (13).
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IIl. Stein’s Criteria, Wavelet, And Fourier Theory

3.1 Introduction

In this chapter, we present three main topics: Stein’s criteria, wavelets, and Fourier analysis.
Stein’s criteria defines both the necessary conditions to estimate the mean of an independent normal
random vector, as well as a method for estimating the risk associated with the mean estimation
technique. Next, we present the necessary wavelet theory and how it can be related to Stein’s
criteria. In fact, we will prove that the wavelet coefficients of an independent normal random
vector, are themselves independent and normal. This property of the wavelet coefficients makes
them candidates to use with Stein’s criteria. Finally, we present the Fourier transform and some of
its properties and we will prove that the Fourier coefficients (with some restrictions to be discussed

later) can be used with Stein’s criteria.

Using the theory of Stein, we present two different thresholding techniques, the hard thresh-
olding technique (HTT) and the soft thresholding technique (STT). These thresholding techniques
will be used in our experiments dealing with de-noising speech. Throughout this chapter, we will

assume that all random vectors are independent, normal, and have the same variance.

3.2 Stein’s Unbiased Estimate Of Risk (SURE)

Given a normal random vector, X = (X0, X1, Xa2,...,XN-1), whose elements ,X;, are inde-
pendent normal random variables with arbitrary means and the same variance o2 such that for

i=0,12,...,N~1

Xi ~ N(pi,02), (3.1)

Charles Stein, a statistician at Stanford University, introduced a simple equation (SURE) to

estimate the error associated with the estimation ;7 = (fo, fi1, fi2+-..,fiN-1) of the true mean,

3-1




£ = (po, 1, 42, - - - , kN -1), of the normal random vector X by
i = X+gX), (3.2)

where g : RN — RN is an almost differentiable function to be defined later (20).

Stein’s theory can be used with any normal random vector with independent random variables
whose variances are identical. The next sections provide a detailed derivation of Stein’s error
equation which we will use with both wavelets and Fourier. Stein developed his criteria by first
deriving the basic equations for a standard normal random variable (zero mean and variance of
one) and then, he extended the results to the case of several arbitrary normal random variables
with the same variance. It is important to understand that all the normal random variables are

assumed to be independent and have the same variance with an arbitrary mean.

3.2.1 Standard Normal Distribution: X ~ N(0,1). Let X be a real random variable with

a standard normal distribution

#(z) = \/-—12_;.3". (3.3)

The derivative of the above probability density function (pdf) is
¢'(z) = —z4(z), (3.4)
and let g be an indefinite integral of the Lebesgue measurable function ¢’ such that

g:R—R, (3.5)
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and

E{|¢'(X)|} < oo, (3.6)

where E is the expectation operator defined by

E[X] = f :z¢(z)dz, (3.7

and ¢’ is the derivative of the function g. We shall show that
E[¢'(X)] = B[X ¢(X)]. (38)

First of all, we have the following identities concerning the standard normal distribution

¢(z)

/:; ¢'(z)dz
/ TR (3.9)

-0

Since ¢(z) = ¢(—z) and ¢'(z) = —z¢(z), we have the following relations

¢'(-z) = z¢(-z)

= z¢(z)

-¢'(z), (3.10)

and we can then write

¢(z) = ¢(-z)

= [ #(-2a

33




= /_: —¢'(z)dz

= /_‘ z¢(z)dz
= [ -sb-aa-2
= /oo z¢(z)dz.
Using the above equalities, we get
Ey)] = [ s@eeds

/" (@@ dz+ /o ” ¢(2)8(z) dz

Using Fubini’s theorem (2), we can switch the order of integration and get

—[L z¢(z)[9'(z)da:dz+/om 24(z) /o‘zg'(z)dzdz

/_oco z4(z) /0‘ g (z)dzdz+ ./ooo z¢(2) -/o’ ¢ (z)dzdz

[0 [ d@)dzas

[ #e)0(2) - s@)

Elg'(X))

./_: z2¢(z)g(z)dz ~ /: 2¢(2)g(0) dz

= [ st

o0

= [ ab@a)is

= E[Xg(X))]

3-4

./:o 9'(z) /_; —2¢(2)dzdz + ‘/“m g'(z) /:o 2¢(z) dzdz.

(3.11)

(3.12)

(3.13)




3.2.2 Arbitrary Normal Distribution: Y ~ N(g,0%).  Using the results of the last section,
we will extend equation 3.13 to the case of an arbitrary normal random variable. The results of
this section will be used in the general case of a normal random vector whose components are

independent normal variables with the same variance and arbitrary mean.

Let Y be a real random variable with an arbitrary normal distribution. Since Y ~ N(u,0?)

1,

the random variable X = ‘-Y—;El has a standard normal distribution (i.e, X ~ N(0,1)). Define

h: R — R such that

o

hY) = g [—(Y —F£ )], (3.14)
where g is defined by equation 3.5. We shall derive a formula for E[h’(Y)].

E[+'(Y)]

s[5

- E[zg,[g_—_ﬂ‘
o o ]

- zE[g,[w_-ﬂ”

= ZB[yX]

= %E[Xg[X]]

_ éEFYJM”FY;MH

Y —
= E [L—a-i-”—)h(Y)]. (3.15)

3.2.8 Generalized Formulas For A Multivariate Normal Distribution.  The formulas we
derived for the single normal random variables can be generalized to the case of a normal random

vector in which each element is an independent normal random variable with the same variance 2.
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$.2.3.1 Multidimensional Definitions And Notations. Let X = (Xo, X3, X2,...,XnN-1)
be a normal random vector in which each element X; is an independent normal random variable
such that fori =0,1,2,... N -1

Xi ~ N(pi,0?)
The mean of the vector X is defined as
TES (l“os“lvﬂzv-'sl‘N-l)‘ (3.16)

The energy of the normal random vector X is defined as

N-1
Ix©e = Y x2 (3.17)

=0

A function h : R¥ — R is called almost differentiable if there exists a function VA : R¥ — RN

such that, for all Z€ RV
1
ME+2)-h(Z) = / Z.Vh(Z +t2)dt, (3.18)
0

for almost all £ € R". A function g : R¥ — RY is called almost differentiable if all its coordinates

are. The symbol V is the vector differential operator of first partial derivatives with i** coordinate

d
Vi=5—£,
so that
i = M3
Vih(Z) = vt (3.19)
L [onE) onE)  OK(Z)
Vh(Z) = (azo e s ) (3.20)
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3.2.9.2 Basic Formulas For An Arbitrary Normal Multidimensional Random Variable.
Let X be the multidimensional normal random variable defined in the previous section and 4 :

RY — R an almost differentiable function such that
E["Vh(i')u] < oo, (3.21)

where

E[Vh()?)] =E [(vohu?), Vih(R),... ,vN_lh(X))] .

By analogy to equation 3.15, we can write for the multidimensional case
X — -’
E[vA(X)| = B [(—;,—“)h()t)]. (3.22)

Since each component X; (fori =0,1,2,..., N —1) is an independent normal random variable and

X; ~ N(u;,0?), we can write

E[ig%—) = E[(—)f—"a’z—"‘)h()?)]. (3.23)

8.2.4 A Closed Form Of Stein’s Error Function.  Given a multidimensional normal vector
X, composed of independent normal random variables X; ~ N (i 0?) fori = 0,1,2,...,N -1,

Stein defined an estimate ii = (fio, fi1,- - - , fin—1) of the true mean i = (po, p1,..., pN-1) a8 follows
i = X+9X), (3.24)

where g : RN — R is an almost differentiable function with coordinates g(X) = (9o(X),91(X),..., 981 (X))
such that

gi:RN R,

3-7




and

E, [Nz_f|v.-g.~(x)|] <,

i=0
where the subscript u indicates the dependence of the expectation operator on the mean.
For each normal random variable X;, Charles Stein, defined an unbiased estimate of the risk
(SURE) associated with estimating the true mean u; of the single independent normal random

variable X; as the expected squared error between the estimate ji; and the true mean y; as follows

B[ - m)] = Bu(Xita(X) - w)?)

B, [(X: = ) + 20(R)(X: - ) + G2 (R)]

E,[(X: - w)?] +Eu[g2(X)] + 2Eu [ D) (X: - )],

(3.25)
Since
B[Xi-ma®)] = o, [20),
(3.26)
equation 3.25 becomes
E, [(,1,- - p,-)z] = o?+E, [g,?()?)] + 2a2E,,[a-"(,;—}(§) . (3.27)

Using the above equation for a single random variable, Charles Stein defined an unbiased

estimate of the risk associated with estimating the mean ji of the vector X as follows

Bufli- ) = 3B
i=1
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89.()? )

H

Za +E,.[g,()?)] +20%E,

No®+E, [||g(X)||2] +20°E,, [vg(X')]. (3.28)

Ideally, we want to minimize the risk defined by equation 3.28 in order to get a more accurate
estimate of the mean. Since this equation depends on the choice of the function g, many different
choices, which satisfy the differentiability conditions stated above, are available. Since the basic
estimation technique is based on adding a value to each element of the random vector X, the next
section introduces two different choices of the function g. These choices have a lot of practical
applications and can be used to de-noise signals degraded by additive white Gaussian noise. In
particular, the theory of Stein, proves that for white Gaussian noise with zero mean and a variance
of 0%, the mean estimate using Stein’s criteria, is theoretically, zero. In other words, when we input
zero mean white Gaussian noise signal to a Stein based mean estimator, we expect the output signal
to be zero. This observation can be used to de-noise signals corrupted by additive white Gaussian

noise with zero mean and a variance of o2.

3.8 Soft Thresholding Technique

Let X be a multidimensional normal random vector whose elements are independent normal
random variables with the same variance 02 and let its mean be the vector £ = (uo, g1, .., #N-1)-

Define an estimate of the mean & by @ = (jio, i1, ... ,AN—1) such that (5) (6) (9) (8) ()

where g(X) = (go(]'f),gl(}?), .. ,gN_l()-f)) is as defined in equation 3.24.
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Figure 3.1 Soft thresholding technique (STT).

The Soft Thresholding Technique (STT) uses a threshold (¢t > 0) to estimate the true mean,

pi, of each normal random variable, X;, by the estimate ji{, defined by (see figure 3.1)
= X; +92(X)’
where for each ¢ =0,1,2,...,N-1

g(X) =

{ —tsgn(X;) |Xi|>¢t
(3.29)

-X; |X,| <t

3-10




This yields

{X.- ~tsgn(Xi) |Xi| >t
(3.30)

0 |X:] < ¢

An alternative representation of the soft thresholding technique is obtained by use of the minimum

operator to write
9:°°7"(X) = — min(|Xi| , ) sgn(X;). (3.31)
Then, for soft thresholding, the mean estimate is defined as

¢ = X; — min(|X;|,t) sgn(X). (3.32)

8.3.0.1 Definition of The Soft SURE Function.  Since g¢(X ) is almost differentiable,

we may write

x. = (3.33)
¢ -1 |Xi|<t.
By using the characteristic function which is defined by
0 |Xi|>t
X[t (X:) = (3.34)
1 |Xi| <t
we get
agh(X
%) = (). (3.35)
1
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We conclude then that

Vgt (X)

- Z X[-t,4) \ Xi) - (3.36)

1=0

Since

N-1 2
> [ai(X)]
= E [min(IX,'I,t)] , (3'37)

=0

lg*(X)|1?

combining cquations 3.24, 3.36, and 3.37 together, Donoho and Johnstone (5) (6) (9) obtained the

following:

SURE,p(t. X\ = [Na [Z min (| X:], 2) ] ] ~ 20 [EX[ g (X )]

=0 =0

(3.38)

equation 3.28 becomes:
Eu[li- 7] = Bu[SURB.p(t, ). (3.39)

3.3.0.2 Soft Threshold. Since we want to minimize the estimate of the error associ-
ated with estimating the mean jZ, we need to choose a threshold ¢*°/* that minimizes the SURE,.;
quantity defined by equation 3.38. In order to choose the right threshold we need to proceed as
follows. Assume that the coordinates X; of the vector X have been ordered in an ascending manner

by absolute value such that:

IXol < [Xa| £ ... < | XN-a, (3.40)
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and let ¢t > 0 be an arbitrary threshold such that for some i = 0,1,2,...,N -1

|X.| <t<t+ At < lXH-lI'

We have

SURE,op:(t + At, X) — SURE,o44(t, X)

which means that

need only test thresholds that are elements of the known set {|X;|}

NZ_I[[min(lle’t‘*’At)]z—[minﬂle,t)]z] -

j=0

N-1 N-1
20% 2 X[-(t+at),e+aq (X5) = Z X[~ (Xj)]

g [J[n:n(lx,-l,t +a9)] - [m:n(olx,-l,t)] 2]
g[[minﬁle,t + At)]z— [min(|Xj|,t)]2] N
jlg [[min(lXth +aq)] - [min(lX,-l,t)r]
ng [[min(lX,-Lt + At)] ‘ [mi,,(l X_,-[,t)] ’]
R s

J}::ij:l [(2t + At)A]

% (3.41)

SURE,of:(t + At, X) > SURE,of4(t, X) > SURE,o5:(1X:l, X).

We conclude then that in order to choose a threshold that minimizes the SURE,.s; quantity, we

N-1
i=0 °
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The domain for our soft threshold is then defined as

t*of* € {0} u {IX:|} 0"

=0

The value 0 is included in order to take care of the cases where j = 7 and 02 = 0. The threshold

that minimizes the SURE,qs: quantity will be denoted by

tSoft = arg [min [SURE, f:(t, X )]] , (3.42)

N-1
i=0 °

where ¢t € {0} U {|X;|}

3.4 Hard Thresholding Technique

Just like the Soft Thresholding Technique (STT), the Hard Thresholding Technique (HTT)
uses a threshold (¢ > 0) to estimate the true mean, y;, of each independent normal random variable,

X, by the estimate i}, defined by (see figure 3.2)
ﬂ’: = X; +gf()?),

where for each:=0,1,2,... , N -1

0 Xl > ¢t
g(X) = (3.43)
-X; | Xi|<t
This yields
X: | Xi|>t
Bo= (3.44)
0 IXil<t,
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Figure 3.2 Hard thresholding technique (HTT).

An alternative representation of the hard thresholding technique (HTT) is obtained by use

of the characteristic function defined by equation 3.34, such that

fif = Xix(—eq(X3). (3.45)

Then, for hard thresholding, the g{ function, is defined as

g™ (X = Xi(1 - x-eg(X2)- (3.46)
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3.4.0.3 Definition of The Hard SURE Function. Although the hard thresholding

function, gf(ff ), is not almost differentiable, we decided to use it with Stein’s criteria in order to

compare the results with the soft thresholding technique. We may then write

ag:(x) _ 0 |Xi>t
0X; -1 X<t

by using the characteristic function, we have

agt(X)

ax, - =x[-1,8(X5).
We conclude then that
N-1
Vg‘(X) = - Z X[-t.t](xi)'
=0

Since

=0

N-1 2
e = Z[:(X')]
N-1

= Z [X‘z 'X[—t.t](Xi)]’

=0

combining equations 3.28, 3.49, and 3.50 together, we can define the following quantity

SUREnaa(t,X) = [NaZ]+[Nz—:l[x3.x[_,,,,(x.-)]] -2«2[15;([_‘,,,()(..)],
=0

=0

equation 3.28 becomes:

E,,[||;z-,z||2] = E,,[SURE;md(t,X)].
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Just like the case of the soft threshold, the domain of the hard threshold is given by:

therd e {0} U {)Xi|} e

=0
and the hard threshold should be chosen such that the SURE} 4,4 is minimized

tord = arg [min [SUREhara(t, X)]] , (3.53)

N-1
i=0 °

where ¢t € {0} U {|X;|}

3.5 Wavelet Transform

The continuous wavelet transform (CWT) is a technique that decomposes and analyzes a finite
energy signal, f(t) € L?(R) (set of Lebesgue-measurable functions) , using different resolutions for

different scales (4), where

L*(R) = {f| /_ :” IF(t)I2 dt < oo}. (3.54)

The CWT is based on defining a “mother wavelet”, 3, which is subject to the following condition

of admissibility:

+o0 -
[ e eoras < o (355)
—-—00
where 9 is the Fourier transform of 4. This condition implies that v decays to zero as the frequency
goes to infinity; furthermore, it implies that the mother wavelet, 9, is zero-mean:

+00
$(t)dt = 0. (3.56)
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Since equation 3.55 requires that the Fourier transform of v(t) at the zero frequency (i.e., w = 0)

is zero

$(0) =0, (3.57)

it is clear that ¥ represents a band-pass filter (see figures B.1 through B.6 for three different

wavelets).

Based on the above conditions, the continuous wavelet transform with scale a and shift b, is

defined as
+00
werltel = | fe)gis(e)a, (3.58)
where (a,b) € R* x R and
Yap(t) = a2y (_t_;—_b) ; (3.59)

and the asterisk indicates complex conjugation. The families of functions ¥, define a basis for the

family of finite energy functions L?(R).

3.5.1 Properties of The Wavelet Transform. The following properties of the wavelet
transform will prove very useful in our future derivations of the discrete wavelet transform (DWT)
and the extension of the thresholding techniques to the wavelet domain.

Linearity: Vo, € R

W [af(t) + Bg(t)] = aW*t[f(8)] + BW**[g(t)] (3.60)
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Scaling: V A € R - {0}

yes [f (§)] = VAW [£(t)] (361)
Time Shift: V2, € R
WeR[f(t - to)] = Wbt [f(2)]. (3.62)

From the above shifting property, it is clear that the wavelet transform is a linear time varying

(LTV) operator.

3.5.2 Resolution Properties Of The Wavelet .  The energy of the Fourier transform of

the wavelet ¢ is defined as

- +w ~
Wi = [ R (3.63)

If we normalize the wavelet ¥ such that [|9||2 = 1, we have

+00
[ e =1, (364)

which means that the square of the wavelet magnitude, hl;P , represents a probability density func-
tion (pdf). Using the identities of Plancherel (preservation of energy) and Parserval (preservation

of geometry), we can also define a time domain pdf as [()]* such that

j " Pt = 1. (3.65)

We can then define the following statistics with respect to these wavelet based pdfs:

1. The center frequency, fo, is defined as the expected value with respect to the pdf
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[$(£)I?, where f represents frequency.

fo= _/: T2 (3.66)

2. The second Moment or the variance, a;, of this wavelet based pdf is then defined as

+00 .
of = /o- (f = fo)* ()P df. (3.67)

The value of this variance measures the dispersion of frequencies relative to the mean f;. The larger
the variance, the more dispersed are the frequencies relative to the mean. This also means that
the passband of the wavelet is larger with a wider bandwidth. The center frequency of a wavelet

allows us to determine the range of frequencies that are filtered at a specific resolution level “a”.

3.5.3 Resolution Properties Of The families of Wavelets v, ,. The families of wavelets
¥a,b(t) are formed by dialations (using the scale a) and translations (using the shift b) of the mother
wavelet 1. The admissibility condition defined above still holds for these newly formed wavelets.

Since

Yas(t) = a"”vlz(?), (3.68)

these wavelets have an expected value at time ¢t = b and it can be shown that their variance is given

by

ol = %03, (3.69)
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where ;2 is the variance of the mother wavelet.

1. The Fourier transform of ¥, ;(t) is given by
bas(f) = Vae " %(af), (3.70)
where 1} is the Fourier transform of the mother wavelet, defined by
- +w »,
W= [ vwerta, (3.71)
—o0
and i is the complex number such that
2 =-1 (3.72)

2. The center frequency, f,, of these wavelets is related to the center frequency, fo, of

the mother wavelet by the following relation
Jap = —. (3.73)

3. The variance of these wavelets, o2 ;, are then related to the variance, a"‘;, of the mother

wavelet by the following equation

o
02, =L (3.74)

A moment’s reflection on the above two parameters shows that as the value of the dilation
parameter a increases, the bandpass center frequency ,f, 5, of the wavelet ﬁa,b(t), approaches the

2
lower frequencies near the origin, the dc frequency, with a smaller variance or bandwidth, %{- This
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shows that by changing the value of the dilation parameter “a”, we can “zoom in" to different

frequencies in the spectrum of the signal f(t).

8.6 Discrete Wavelet Transform

Since the admissibility condition defined above holds for ¥,3(¢), the families of functions
Ya,(t), which are formed by dialations (scale a) and translations (shift b) of the mother wavelet
%, are themselves wavelets. They form a basis for L?(R). Since equation 3.58 represents an inner
product between the function f(t) and the corresponding wavelet ¥4, (t), the wavelet transform with
a particular choice of “a” and “b” is, indeed, a measure of the similarity between f(t) and ¥44(t).
While these newly formed wavelets are a basis for L2(R), they are not necessarily orthogonal and
may redundantly represent the signal, f(t) (1). By discretizing the values of the shift and scale
parameters, it is possible to find an orthonormal set of wavelets to represent functions in L?(R). If
we choose a = af* and b = nbpaf® for some m,n € Z, it is possible to find an orthonormal wavelet
basis for L?(R). The choice most commonly made is for ag = 2 and by = 1, where ao is known as

the dilation factor.

3.6.1 Multi-resolution Analysis.  The Multi-resolution Analysis (MRA) of a signal f(t)
was first introduced by Mallat and Meyer in 1986 (16). The MRA decomposes a signal into a set of
approximations where the orthonormal wavelet bases are used as a tool to describe, mathematically,
the “increment of information” needed to go from one coarse approximation to a finer or higher
resolution approximation (4). Since the analysis of the signal f(t) is based on a set of orthonormal
wavelets which form a basis for L(R), the amount of information needed to implement the MRA

is kept to a minimum. Mallat developed a fast algorithm to implement the MRA.

3.6.1.1 MRA Reguirements. A multi-resolution analysis consists of a set of approx-
imation spaces, V; C L?(R) (j € Z), which satisfy the following six requirements (21):

Requirement 1
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The approximation spaces V; are embedded such that

wCVecWhhcWhecVa,acVC.. (3.75)
Requirement 2
Uvi = *m). (3.76)
j€Z
Requirement 3
n V; = {0} (3.77)
i€z

Equation 3.76 ensures that V f € L?(R)

lim P;f =,
j—=—o00

where P; f is the orthogonal projection of f(t) onto Vj.
Requirement 4

The above approximation spaces must satisfy
f(t) € V; <= f(2t) € Vp. (3.78)

Equations 3.75 and 3.78 imply that all spaces of the MRA are scaled versions of the central space
Vo.
Requirement 5

The central space Vp must be invariant under integer translations. ¥n € Z we have

f(t) € Vo = f(t—n) € V. (3.79)

3-23




Requirement 6

There must exist a scaling function ¢ € V} such that

{¢0.n}nez is an orthonormal basis in Vj,

where Ym,n € Z

Pmn(z) = 27™2$(27™z - n). (3.80)

The above equation implies that the set {¢m,n}nez is an orthonormal basis for the approximation

space Vp,, where m € Z.

3.6.1.2 Detail spaces.  To completely characterize the MRA, the above six criteria

can be used to construct a set of orthonormal wavelet basis {$m,n }n,mez of L*(R), where

Ym,n(z) = 27 P27z - n), (3.81)
such that
Pon1f=Pnf+ Z(L#’m,n% (3.82)
nezZ

where Pr,f is the orthogonal projection of f onto the approximation space Vi, and (f,%mn)

represents the LZ(R) inner product of f and ¥mn.

Let W,,, be the orthogonal complement of V,, in V,,_; such that

W L Vi, with Vi, C Vi3 and W,,, € V.

The above definitions imply that the orthogonal projection of the function f(t) onto the approxima-
tion space V., is the same as the orthogonal projection of the function f(t) onto the approximation

space Vi, plus the “information difference”, Qm f, between the two successive approximations, P,, I
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and Pm—lf:

Qmf = Pm-1f = Pulf, (383)

where Q. f € Wy, and Qm f L Vin.

Equation 3.83 implies that the set {#);m n}nez is an orthonormal basis for W, and that

Vin-1=Vm & Wp,, (3.84)

where @ designates the direct sum operator of two linear spaces. Furthermore, the orthogonal

complements, {W,,}mecz are mutually orthogonal such that for i # j
W; L Wj =0.

Since the subspaces {Wm}mez are mutually orthogonal, they effectively divide L?(R) into mutually

orthogoi.al subspaces and we have

P W = L*(R). (3.85)
mezZ

In conclusion, the set of wavelets {{; n}n,mez is an orthonormal basis for L*(R).
3.6.2 Decomposition and Reconstruction of a finite energy signal using DWT. Let
f(t) € L*(R), and denote the orthogonal projection of f(t) onto the space W,, by Qmf(t). Since

{¥mmn}nez is an orthonormal basis for W,,, we can write Qn, f(¢) as a linear combination of the

discrete wavelet series {%m n}nez such that

Qmf(t) =Y dmn¥m,n(t), (3.86)

nezZ
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where dmn = (f,¥mn) are known as the m*P-level “detail coefficients”. Since {¢mmn}nez is an
orthonormal basis for V,,,, the orthogonal projection P, f(t) of f(t) onto the space Vi, is defined

in a similar way as

Puf(t) = cmndmn(t), (3.87)

nezZ

where ¢ = {f, $m,n) are known as the m*P-level “approximation coeficients”.

Consider the scaling function ¢ (t). Since Vi C Vj, we can represent ¢, o(t) as a linear

combination of the zeroth level basis, {¢o.n(¢)}ncz

2712(t/2) = Y hnd(t = m), (3.88)
nez
where
hn = (1,0, P0,n)- (3.89)

Similarly, since W1 C Vy and {¥1,n(t)}nez is a basis for W, we can define

27V 29(t/2) = Y gad(t — m), (3.90)
ne€zZ
where
In = (¥1,0, bo,n)- (3.91)

The discrete filters h,, and g, play a major role in the multi-resolution analysis. Mallat
showed that the h and g filters can be used to relate the approximations at the m*»-level to the

approximations and details at the (m + 1)**-level, respectively. Using these filters, it can be shown
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that the equations that relate the approximations and details of different levels are given by

Cmnn = Zcm-l,khk-dn (3.92)
k€Z

dmn = Y Cm-1kGk-2n- (3.93)
kEZ

The above equations are the heart of the MRA fast algorithm that was developed by Mallat. Using
these equations, we can calculate the approximations of the m*»-level using both the approximations

and details of the (m + 1)*-level, as follows.

After decomposing the approximation coefficients at the m*-level into details and approxi-
mations at the (m + 1)*t-level, we can perform the inverse procedure by using these (m + 1)*-level
approximations and details to get back our m*"-level approximations. In fact, the filters & and g
may also be used to calculate the approximations at the m*-level starting with both the approxi-

mations and details of the (m + 1)**-level using the following equation

Cm-1n = 3 Cmkhn_zk + Y dm kgn-2k- (3.94)
k€EZ kE€EZ

3.6.3 Characteristics Of The h and g Filters.  Daubechies (4) showed that the filters h

and g have the following properties

Y lhal < o0 (3.95)
nezZ
2'97!' < ©0o. (3.96)
nez

The above two equations require that the filters A and g must be stable.

Let H(f) and G(f) represent the Fourier transforms of the filters k and g, respectively. A sufficient

3-27




condition for the construction of the 4 is that the matrix

H(f) G(f)
= , (3.97)
H(f+3) G(f+})
must be unitary (i.e., TUu=1 , where I is the identity operator).
One possible choice for G is
G(f)=e'H (f + %) (3.98)
which lead to the following relation between the coeflicients of the k and g filters, Y¥n € Z
gn = (1) "R L (3.99)
Finally, The filters h and g must satisfy the following conditions
Yoha = V2 (3.100)
neZ
Z B =1 (3.101)
nez
S =0 (3.102)
nezZ
>é =1 (3.103)
nezZ

Equation 3.100 implies that the A filter is a low-pass filter while equation 3.102 implies that the g

filter is a high-pass filter.

3.6.4 Ezamples Of Wavelets And Filter Coefficients.  The following wavelets will be used
in our analysis of noisy speech data (chapter 4). In tables A.1 through A.3, we present the filter
coefficients of three different wavelets, db6, coiflet(6), and db20. These wavelet-based discrete filters

have different filtering properties (see figures A.1, A.2, and A.3). Observe that the h filters are
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low-pass filters, while the g filters are high-pass filters. Figures B.1 through B.6 show the wavelets,
scaling functions, and their Fourier transforms. Observe, the amplitude of the Fourier transform of
all wavelets represent band-pass filters; while the corresponding scaling functions represent low-pass
filters. Notice, the wavelets corresponding to db6 and coiflet(6) have many high energy side-lobes;

while those of the db20 wavelet, have very small side-lobes.

3.7 Implementation Of The Discrete Wavelet Transform (DWT)

In order to efficiently implement The MRA developed by S. Mallat, we proceed as follows
(21)

Given a T-periodic signal f(t) such that Vt e R

f(t+T) = f(¢), (3.104)
the wavelet transform satisfies
web[f(t+ T)) = W T[f(t + T)], (3.105)

which means that the continuous wavelet transform of a T-periodic signal, is also T-periodic. We
can use this property to minimize the number of calculations needed to decompose a given signal
into sets of details and sets of approximations. The next two sections use this property to develop

an efficient algorithm for decomposing and reconstructing a signal using wavelets,

3.7.1 Decomposition Using DWT.  Now, given the filter sequence h,, and N samples of
the function f(t), at a sampling period, At, we compute the approximation coefficients, {¢mmn}nez

where 1 < m < M, for a total of M levels of decomposition as

Cmn = E Cm-l,khk—2m (3'106)
keZ
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where the zeroth-level approximation coefficients are taken to be the samples of f(t) at integer

multiples of At

Con = f(nAt)

Using equation 3.99, we can calculate the gi filter sequence. The detail coefficients are then

calculated using the following equation

dmn =Y Cm-1,k9k-2n- (3.107)
keZ
We can then write
Cmpn = Z cm—l,kilj—klj___zn (3.108)
keZ
dmn = Y Cm-1kGi-kljzz0 (3.109)
kEZ

where V 7 € Z, the new filters & and § are defined as

il,, =h_, and §p = g—-p.

The above two decomposition equations may be viewed as a two steps operation: A convo-
lution of the sequence {¢m—1,n}nez With the filters h and g, followed by the operation of “down-
sampling” by a factor of 2; i.e., the convolutions are evaluated at 2n, keeping only the evenly-indexed

coeflicients of the convolution’s result.

If the filter h has at most L non-zero elements and the sampled signal f, = ¢y , has at most
N non-zero elements, for n = 0,1,..., N — 1, it can be shown that the above convolutions of h and
g with ¢, will have, in general, N + L — 1 non-zero elements. The above convolution operations
“spread” the sequences ¢y, and dy n. In fact the spreading increases as we move from the mt*
to the (m + 1)**-level, for m = 1,2,..M. In order to avoid this “spreading” at each stage of the

decomposition, the DWT can be implemented using a periodic extension of f so that the sequence
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€o,n ‘8 N-periodic

Co,n+N = Co,n-

Assuming that N = 2M_ where M is a positive integer, and due to the down-sampling operations
mentioned above, the sequences ¢, , and dp, , are also periodic with period 2 ™N. We can then

write the following relations for m =1,2,..., M

c'n)" = cm,[n+2 hiad N]

dm,n = dm,[n+2 -mN]-

Starting with N = 2™ samples of the original N-periodic signal, the down-sampled discrete
wavelet transform (DWT) allows a maximum of M levels of decomposition where at each level m, we
have exactly 2 ™N unique approximation coefficients (¢m ) and 2~™N unique detail coefficients
(dm,n). The last level of decomposition, the M th Jevel or the coarsest level, has one approximation
element and one detail element (i.e., 2~ N = 1). After M levels of decomposition, we end-up with
a total of N — 1 unique approximation coefficients and N — 1 unique detail coefficients (see figure

3.3).

To completely define the above convolutions, at each level m, we need only compute the
2~™N unique elements. In order to efficiently implement the above convolutions, we can rewrite
the approximation coefficients at the m*® decomposition level as

ke

Cman = z Cm—1,[(k+2n)mod(2-™N)] bk
k=k,
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Con = original signal

€1.n

Cm-1.,n

Cm,n dm,n o0 00 dy,n

Figure 3.3 Wavelet decomposition of a signal staring with N = 2™ samples and decomposing up
to the mt-level where 1 < m < M.

where mod represent the modulo operator and k, and k. represent the first and last non-zero
components of the filter h, respectively. They are related to the length, L of the filter A as follows

ke—k,=L-1.

In a similar fashion, the detail coefficients are implemented as

k

dmn = Z Cm—1,{(k+2n)mod(2-™ N)}Gk-
k=f:,

Since g, = (=1)*~™h;_y, the g filter length is also L and we have
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The first and last non-zero elements of the filters h and g, can be chosen so that the filters’ energies

are well-centered, though not all wavelets have filters which can be centered exactly.

3.7.2 Reconstruction Using DWT. We have seen that the reconstruction of the approxi-
mation coefficients at the (m — 1)*-level are related to both the approximations and details of the

m*h-level by

Cm-1n = ) Cmkha-zk + Y dm kgn_2k, (3.110)
k€Z k€Z

where for M levels of decompositions, m takes the values m =1,2,... M.

The above equation can be rewritten as

Cm-1,n = Z ém.khn-k + Z dm,kgn—k’
keZ kez

wherein ¢, x and d~m,k represent the “up-sampled” approximation and detail coefficients at the m*?

decomposition level, respectively. Vk € Z

ém,zk = Cm,k and ém,2k+l =0

dm,2k = dm k and Jm,2k+1 =0.

In order to efficiently implement the above reconstruction equation, using the periodic exten-
sion from the last section, we proceed as follows:
Since we have one unique approximation and one unique detail elements at the M*-level (i.e., The
M?h.]evel is 1-periodic, we can use the above equation to compute the approximations at the level
above (i.e., (M — 1)*-level). The number of unique approximation coefficients is 2(¥ -1 N, where
N = 2M js the number of samples we started with. We can then compute the approximations at the
(M —2)"9-level using this newly reconstructed approximation set and the 2(M~1) N details obtained

during the decomposition process at the (M — 1)**-level. All in all, for perfect reconstruction of
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the sequence {co.n}o<cn<n=2v at the zeroth level, we need to keep tae following data

1. All the details obtained during the decomposition process (a total of N — 1 unique detail
coefficients).

2. The unique approximation coefficient obtained during the decomposition process at the

M decomposition level.

In conclusion, starting with an N = 2M-periodic signal, the full DWT (i.e., M levels of
decomposition), produces a total of N — 1 unique detail coeficients, and 1 unique approximation
coefficient at the M** decomposition level, for a total of N coefficients. The partial DWT (i.e.,
m levels of decomposition where 1 < m < M), produces a total of N — 2(M—™) ypique detail
coefficients, and 2(¥~—™) unique approximation coefficient at the m** decomposition level, for a

total of N = 2M coefficients (see figure 3.4).

co,n = full reconstruction of a signal

—>- 000 —p{ =

Cm-1,n

€m,n dm,n (A XY] dy,n

Figure 3.4 Wavelet reconstruction starting from the m*"-level where 1 < m < M to the zeroth
level where the number of samples is N = 2M
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The reconstruction equation at the m**-level can be rewritten as

k.
Cm-1n = ’ZE [(n —k+ 1) mod 2]cm,[[=i$]mod[2-"m] he +
k.
E [(n - k+1) mod2]d [(258}modfz-=n] I**

where 0 < n < 2-(m-1N,

3.7.8 Statistical Properties Of The Wavelet Coefficients Of Random Variables. Let X =
(X0, X1,X2,...,Xn-1) be a normal random vector of N = 2™ independent random variables such

that for1=0,1,2,..., N -1

X; ~ N(pi,0%), (3.111)

where i = (po, ph1, p2,-..,4N-1) is the vector mean of the normal random vector X. We will
show that, at each level of decomposition, the details and approximations are also normal random
vectors such that the discrete wavelet decomposition at the m**-level (1 < m < M) is given as in

equations 3.106 and 3.107 by

Cm,n = ZCm—l.khk—Zn (3.112)
kezZ

Dy = ZCm—l.kgk—Zn, (3.113)
keZ

where C and D denote the approximation and detail random variables, respectively. This property
of the DWT coefficients allows us to use the SURE criteria which requires the input data to
be normally distributed (see figures C.1 through C.6 for using the STT technique with a noisy

sinewave).
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During the decomposition process, the zeroth level approximations are taken to be the vector

X itself such that

Co,n = X,,

where n = 0,1,2,...,N — 1. Since, according to equation 3.111, the vector X is normal and all
random variables, X; , are independent, the zeroth-level approximations are also independent and
normally distributed with the same parameters as the vector X. By using equation 3.112, the first
level approximations can be written as a linear combination of the zeroth level approximations such

that

Cin= Z Co,khk—2n- (3.114)
kez

Since Co i ~ N (1S, 0%), where poc’k = p, we conclude that C, , is also independent and normally

distributed. The mean of C},n, denoted by uf,,, is given by

I‘lc,ﬂ = E [Clvn]

= E [2 co,khk-z..]

kEZ

= E hi-2nE[Co )
k€Z

= Z hk—2nl“((l;:k
kez

= 2 Rk —2n bk (3.115)
k€EZ

Using equation 3.101 and the independence of the zeroth-level approximations, Cy », the variance

is given by (12)

Var [Cl ,ﬂ]

Var 2 Co,khk—zn]

k€Z

Z hi—vaar [Coik]
k€Z
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= z hi-—znaz

keZ

= 0,2 Z hi—2n

k€Z
= ol (3.116)

The random variable C ,, is then distributed as

Crn~ N(D_ he-2ab§s , 0%). (3.117)
k€Z

Recursively, the approximation coefficients at the m*i-level are also independent and normally

distributed such that the mean is related to the mean of the (m — 1) -level by

Han = Z hk-2np 1 k- (3.118)
kez

Using the above results, we can write

Crn ~ N(1G, 1 0%), (3.119)

where S, , is defined by equation 3.118.

Since the detail coefficients are also a linear combination of the approximation coefficients
(see equation 3.113), it is easy to show that the details at the m*P-level are also independent and

normal random variables such that

D~ N(p3 ., o), (3.120)
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where the detail’s means at the m*"-level are related to the approximation’s means at the (m —1)**-

level by

Bon = 3 Gk-2nbm-1 k- (3.121)
kez

3.8 Complez Statistics and Analysis

The purpose of this section is to relate the statistics of a complex random variable to the
statistics of its real and imaginary parts. The relations to be developed in this section, will be used

in the analysis of the Fourier transform of normal random vector.

A complex number z can be defined in its rectangular form as
z=z+1iy, (3.122)

where z and y are real numbers which represent the real and imaginary parts of z, respectively.

The complex number i is as defined in equation 3.72. The next sections, will develop the

3.8.0.1 Geometric Properties of Complez Numbers. The amplitude of a complex

number is defined as

lz] = V=% + 2. (3.123)

When the product zy # 0, the phase of a complex number is defined as

arg(z] = 4, (3.124)
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where 0 < 8 < 27 and
— y
O—arcta.n(z).

a. If z =0 (i.e., z = 0 and y = 0), then the phase is not defined.

b. If z = z is pure real and non-zero (i.e., £ # 0 and y = 0), then

0 z>0
0={

® z<0.

c. If z =iy is imaginary and non-zero (i.e., z = 0 and y # 0), then

y>0
0 =
& y<o0.

i

(3.125)

(3.126)

(3.127)

Using the above properties of complex number we can rewrite equation 3.122 in its polar form as

z = |z]e*,

where 8 and €'’ are defined by equations 3.125 and 3.140, respectively.

3.8.0.2 Statistical Properties Of Complez Random Variables.

variable is defined as

Z =X +1iY,

where both X and Y are real random variables.

1. The expected value of a complex random variable is defined as

E[Z] = E[X+iY]
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A complex random

(3.129)




= E[X] +iE[Y]. (3.130)
2. The variance of a complex random variable is defined as:

Var[Z] = Var[X +iY]
= EB[zP] - [E(z)"
= E[X*+Y?] - [E[x]* +E[v]’]
= [E[x*] -E[x]] + [E[¥*] - E[x]]

= Var[X]+ Var[Y]. (3.131)

3.8.0.53 Statistics Of The Amplitude And Phase Of A Complex Random Variable.

Let Z be a complex random variable such that
Z=X+1iY, (3.132)
where both X and Y are real independent normal random variables

X~ N(,u.,,o‘z)

Y ~ N(py,0%).

The amplitude |Z| = v X2 + Y2, which is a function of the random variables X and Y, has a

probability density function defined by

—(s2+ud)
Y N z>0
=47 o[5#] (3.133)
0 z<0,
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where p3 = u3 + 4} and Io(z) is the modified Bessel function defined as
1 2%
h(z)= — / e ady, (3.134)
2x 0

If po = py = 0, f(2) is called a Rayleigh distribution (18). The phase 6 of the complex random

variable Z which is defined as
Y
0 = arctan [f] , (3.135)

where —7 < 6 < «, has a uniform distribution (18) in the interval (~=,7) defined by

z= -¥<0<«™
fo(0) = (3.136)
0 otherwise.

3.9 Fourier Analysis

The purpose of this section is to define the discrete Fourier transform (DFT), apply the results
of the last section to the real and imaginary parts of the DFT of a random vector, and define the
statistics of the real and imaginary parts. The results of this section, will be used with the results

of Stein in order to de-noise the real and imaginary parts of the DFT of a normal random vector.

Given a signal f(t), one is interested in analyzing its frequency content locally in time (4).

The standard Fourier transform which is defined as

1 [re

(Ff)w) = ord f(t)e™**dt, (3.137)

gives a representation of the frequency content of f(t), but it is unable to localize frequencies in

time. In order to localize the time occurrence of many high frequency bursts, we may first window
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the signal f(¢) and then take the Fourier transform of this windowed portion of the signal f(t)

3 +w 3
Fn )= 7= [ flelgta- e da, (3.138)

where g(t) is a window function.

The above equation is well known in the signal processing field by its discrete form, where
the shift ¢t and the frequency w are discretized as ¢t = nty and w = mwy. The Windowed Fourier
transform or the short-time Fourier transform (STFT), (F“*"f)(w,t), can be interpreted as the

“amount of the frequency w” present in the signal f near time 2.

One similarity between the Fourier transform and the wavelet transform is that both equation
3.58 and 3.137 take the inner product of f with a family of functions indexed by two variables,
Yap(t) = a~V/?9(122) and ¢t = €*“?g(s — t). However, the difference between the wavelet and

windowed Fourier transforms lies in the shapes of the analyzing functions ¢g*»* and ¥4(t).

The functions g** all consist of the same envelope function g, translated to the proper time
location, and “filled in” with higher frequency oscillations. The windowed Fourier transform ef-
fectively divides the frequency spectrum of the function f(t) into equal-bandwidth regions. In
contrast, the windows used by the wavelet transform are well adapted to their frequency. The use
of both a dilation factor “a” coupled with a shift variable “b”, allows the wavelet transform to
decompose and analyze signals using a small bandwidth (broader window) for low frequencies and

large bandwidth (narrow window) for higher frequencies.

The main characteristic of the wavelet transform lies in its ability to “zoom in” and detect very
short-lived high frequency phenomena, such as transients in signals or discontinuities in functions

(i-e., human vocal tract glottal closure).
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3.9.1 Discrete Fourier Transform (DFT). The discrete Fourier transform (DFT) of a

periodic finite-length sequence of N points, {zm} ¥}, is defined as

N-1
1 (3§ )km
= — Tm€ . 3.139
2 3 e 7 (3.139)
where 0 < k< N -1.
The quantity €' is defined as
e® = cos(9) + i sin(0), (3.140)

where 1 is the complex number defined by equation 3.72. For each 0 < k < N —1, the quantity |5:k|
measures the amount of frequency w = (4F)k present in the signal {zm}NZ). In order to get back
our original signal, {z,}¥_1 from its DFT sequence, {ik}i":'ol, we perform the inverse discrete

Fourier transform (IDFT) defined as

2

-1
[ re~(H)km] (3.141)

ffM

T

We conclude then that the sequence {Zm}(m=0,1,2,....n-1} can be represented as a sum of sinu-
soids of frequencies 0,1,2,..., N — 1. Hence t'. discrete Fourier transform can also be interpreted

as a frequency analysis (or “spectrum analysis”) of the input signal {z,,}N_3 (19).

3.9.2 Properties Of The DFT. In this section, we will show some of the properties of the
real and imaginary parts of the DFT of signal. We will use these properties in several occasions
in order to decrease the number of calculations needed to implement the DFT. We will also show

that some of the DFT components (i.e., dc component) have very unique properties.
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Using equation 3.139 and 3.140, we can decompose the DFT into a sine and cosine series as

follows

z
L

.zme"( ”)EMJ

M3 14

Tem [cos(%,’lkm) +1i sin(%"km)]]

=3
11l
[~

]

+

2~ 3~ 3~

Zm cos[(%")km]

1

1 . [,2x
= "E:o [zm sin [(W)km ] (3.142)

3
il
| o

2

From the above equation, the real part is defined as

Re[i:] = :/lﬁ z_:l [zm cos[(%")km]], (3.143)

m=0

and the imaginary part is defined as
1 21
Im(i] = i ,,,z=:0 [:c,,. sin [(-I-V—) km]] . (3.144)
The elements of the DFT sequence, {Zx}} ', can then be rewritten as
ik = Re[Z:] +iIm[z]. (3.145)

Assume that N is even

a. The dc component (k = 0) is real:

1 N-1
Tg = -‘/__—ﬁ Z[zm] (3.146)

m=0

= Re [570] )
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which means that the imaginary part of Z, is zero:
Im[i:o] =0.

b. Ty is real:

p N2
iy =—7= ) [(-1)"zn),
TN ,,fz,
which means that the imaginary part of £ ¥ is also zero:
Im[iy] =0.
c. Symmetry: 1<k<N-1

Tk = TN_k-

The above equation has some practical consequences:

1. We need only calculate the partial DFT sequence {5k}z—_o-

2. Re [.'i:k] is even since the cosine function is even.

3. Im[z;] is odd since the sine function is odd.

3.9.3 Statistical Properties Of The DFT series Of Random Variables.

(3.147)

(3.148)

Let X =(Xo, X1, Xz,..., Xn-1)

be a normal vector where N is an even number and each element X,, is an independent normal

random variable such that for m =0,1,2,...,N -1

Xm ~ N(pm,0?).
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The mean of the vector X is defined as

(M*”’l,m,--wl‘N—l)- (3.149)

Using equation 3.139, the discrete Fourier transform of X is as follows

Z [Xmei3Yem), (3.150)

m—O

Similarly, the discrete Fourier transform of fi is as follows

N-
E [pme3PVem] (3.151)

where0 <k< N-1.
Since equation 3.150 represents a linear combination of independent normal random variables, Xiis
also an independent normal complex random variable. Using the results from the complex analysis

section, we have the following statistical properties of the DFT complex random variable X (12)

a. Mean of the complex variable X

EX) = E[f  +ilm[kl]]

E[Re|A.|| +iE[Im[%.]]. (3.152)

1. Using equation 3.143, the expected value of the real part is:

E[Re[%:]] = E %E[xﬂ. cos (%r)km”]

m=0

= IN.;o E[X ) cos[ )km]]
- lNsz[pm coo[ (&2 km]] (3.159)

m=0
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2. Using equation 3.144, the expected value of the imaginary part is:

E [lm [X,,]]

We conclude then that

et

j—ﬁ Y |BlXnm] sin[(%)km”
g

where jii is k** element of the DFT of f at the frequency k.

b. Variance of the complex variable Xj:

Var[X.] = Var[Re[Xi]] + Var[Im[%.]].

1. Variance of the real part:

Var [Re [Xx] ]

2/~ =2~

=z,

=0

Var[—lNNz:l Xm COS[( )km]”

:z;) Var[X,] cos [(—)km]]
g}r cos [ )km]]
5[]
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Using the following trigonometric identity:

(N -1
[cos [ra]] -l- [ : ] , (3.158)
2" 2sin[§]
where a # 2gx for ¢ € Z. and the fact that:
cos[2ﬂ] + 1

cos?[f] =

we can write:

i

[cosz r 9]] Z cos[2r0] + l]

r=0
- ;’:g [onterl
¥y 1h sin[(N - %)20]
= 3 + 2|3 + Tn[%—!—]—-]
- % + % -1 + ﬂ:;_;ﬂ], (3.159)

provided that @ # g for q € Z.

Going back to equation 3.157, we can use equation 3.159 with:

where @ # gx for ¢ € Z implies that £ # 0 and k # % The result is as follows

o] - 2ot )
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w a[ |- b2
= S +:|1+——

2 "4 sin[(%#)]

- i — 3=k

_ £+ll+sm(41rk N)]
-2 T4 | sin[(lff)]
_ N 1f sn[Ce)
T2 74 | sin (2&k))

N 1
= 3+3t-
- ¥
= 5

The variance of the real part of X is as follows
la. Whenk;éOandk;é%:
Var[Re[f{ ]] o E [cos2 [(2“)km]]
k —3 —— —
N &~ N

- TN

-~ N2

-z

= 5

1b. When k = 0:

lc. When k = %:

var[Re(%il] = & 3 [07]

Var[Re[f(g]]

i
B
™
T
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(3.160)

(3.161)
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3, (3.163)

1
qQ

2. Variance of the imaginary part:

g

Var[Im[%:]] = Lz\rwz—:l[x"‘ sm[(%)km]”

m=0

z

I
z-
\g

I

:Var[X,,.] sin? [(%E)km]]

= vl

= 5[]

2> G

e L ]

= crz—Var[Re[)-(g]] (3.164)

3.9.4 Summary Of The Statistics Of The DFT Of Random Variables. Given a normal

vector X = (X0, X1,X2,...,XN-1) and its mean vector & = (po,pi1,p2,...,6N-1) Where N is

m=012,...,N-1

Xm ~ N(I‘m’ 02)1

The elements of the DFT of X has the following distributions:

‘ an even number and each element X,, is a real independent normal random variable such that for
Define the mean ,jix, of the k** complex coefficient by

1 N-1 )
= —= 3 [ume" ¥, (3.165)
v 2N ]
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where g, is the mean of the independent normal random variable X,,. we have

a. k#0andk# ¥

Re[X:] ~ N(Re[ﬁ,,],f’;) (3.166)

Im[X;] ~ N(Imvlk]va_;) (3.167)
b k=0ork=%

Re[Xi] ~ N(Re[i],0?) (3.168)

Im[Xx] = o (3.169)
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1V. Speech De-noising Systems

4.1 Introduction

In this chapter, we present several speech de-noising systems (SDS) using Stein’s criteria,
wavelets, Fourier, and both the soft thresholding technique (STT) and the hard thresholding tech-
nique (HTT). We begin this chapter by an overview of our speech de-noising algorithm, a summary
of the main characteristics of spe::ch (voiced, unvoiced, silent, pitch, and formaut frequencies), and

finally, we present our SDSs.

The speech de-noising systems we developed are applied to noisy voiced portions only. The
unvoiced and silent speech portions are processed using a multiplication ratio based on the results
of de-noising the voiced portions. Some of our SDSs use the noisy phase in order to eliminate the

phase distortions caused by the non-linear processing of the STT and HTT thresholding techniques.

4.2 Speech De-noising Systems Using The SURE Criteria

We present several techniques that are based on using the SURE criteria described in Chapter
3. These techniques assume the following restrictions:
1. A clean speech signal has additive white Gaussian noise which has a normal distribution
with zero-mean and variance of o2.
2. Only voiced speech is subjected to the de-noising process.
3. Unvoiced speech and the silent portions are not subjected to the de-noising process,
instead, they are adjusted by an energy-related ratio to be defined later.
4. The location of the voiced, unvoiced, and silent portions of speech are assumed to be
known.
5. The variance required by the SURE function is calculated using an estimate from the

silent portions of the speech.




4.2.1 Characteristics Of Speech. In order to understand how the human speech is pro-
duced, we are obliged to study and characterize the vocal organs responsible for its production.
The vocal organs work by using compressed air which is supplied by the lungs through the trachea
(19). The compressed air can then be subjected to periodic pulses (excitations) by the vocal cords
(the glottis). The repetition rate of these pulses is termed pitch and the resulting periodic speech
is termed voiced. When the compressed air passing through the vocal cords is not periodically
excited and is forced to passe through a small opening, an air turbulence occurs and a wide-band
or broadband noise-like sound is generated. This speech sound is termed unvoiced. After passing
through the glottal outpui, the speech sound, voiced or unvoiced, is subjected to a filtering oper-
ation by the shape of the vocal tract. This organ acts as an acoustical tube which strongly passes

some natural frequencies which are termed formants.

We conclude then that speech is a signal that is mainly composed of voiced and unvoiced
sounds. Voiced speech is characterized by a periodic behavior where the fundamental frequency
and the pitch frequency may range from 30Hz to about 5U0Hz (19). The pitch varies between
males and females. Normally, the pitch frequency is about 125Hz. In our future discussions, we
will assume a typical nitch frequency of 125Hz. On the other hand, unvoiced speech has virtually
no periodicity and behaves like wide-band noise with less energy than voiced speech. If a speech
signal is clean, the energy of the periodic voiced portions is concentrated in bands of frequencies
which are harmonics of the fundamental frequency. The pitch frequency, the first, second, and third
formant frequencies are normally located below the 3kHz frequency. The energy of the unvoiced

portions has a broad-band energy distribution similar to that of noise.

4.2.2 De-noising Algorithm.  We developed a speech de-noising algorithm having features

described below.
1. The user inputs the following parameters:

a. The noisy speech file name and the number of samples in this file.
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b. The file containing the characteristics of each speech segment: start sample number, end
sample number, and status (i.e., voiced, unvoiced. or silent).

¢. The number of overlap points between adjacent segments.

d. The percent, p, of the energy of the unvoiced and silent portions to keep.

e. The domain where the de-noising is to take place: time, Fourier (Real and Imaginary),
Fourier (Real and Imaginary) to be constructed using noisy phase, wavelets, or any combination of
the last four domains.

f. If the wavelets are not involved in the process, the user chooses between using soft or hard
thresholding.

g. If the user chooses the wavelet domain, the following parameters are also requested:

i . The wavelet filter and the number of filter points.

ii . The number of decomposition levels.

ili. The thresholding method for the details: soft or hard thresholding.

iv . The de-noising process for the approximation coefficients. The choices include: soft
or hard thresholding, no change to the approximations, or energy reduction of the approximations
by the same amount as the energy change, R4 , of the processed details.

2. The program searches for the first silent pertion and estimates the variances (see equation 4.2).
3. Using the input information from part 1 and the variance from part 2, the program searches for
the first voiced portion, multiplies it by a window function using the overlap specified by the user
(see equation 4.3), and applies the de-noising process specified by the user.

4. The program calculates the energy ratio R, between tI. "c-noised voiced portion and the noisy
voiced portion.

5. After initializing the variance obtained by step 2 and the energy ratio obtained by step 4, the
program steps through the segments file starting from the beginning as follows:

a. read the speech segment and multiply it by a window func*ion using the overlap specified

by the user.

4-3




b. If the segment is silent:
i. Update the variance.
ii. Multiply this segment by the energy ratio R, and the percent choice p.
c. If the segment is unvoiced, multiply this segment by the energy ratio R, and the percent
choice p.
d. If the segment is voiced:
i. Apply the de-noising process specified by the user.

ii. Update the energy ratio R,.

4.2.3 Variance Estimation And The Window Function.  The use of the SURE function
(see equation 3.28), requires the knowledge of the variance o2. Generally, when processing noisy
speech data, we don’t know in advance the value of this variance. One way of estimating this
variance, is to detect the speech silent portions and then use the statistics about white Gaussian

noise in order to estimate the variance o2.

Given a silent noisy speech portion, X = {X,-}f:ol, we estimated the variance using the

following consistent estimators as described in (12):

N-1
Ex
X= '=‘1’v , (4.1)
the estimate of the variance a2 is given by
N-1 _
T (Xi-X)?
6% = —f°—N———— (4.2)

We mentioned earlier that before processing any speech segment, we multiply it by a window
function. In speech processing, it is important to window a speech data before processing it. The

reason for using windows is to analyze a finite segment at a time. The length of the window may
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vary depending on the desired properties of the signal under analyses (i.e., pitch, time resolution,
frequency resolution). However, both the type and the filtering characteristics of the window
function play an important role in the results of the analysis. Ideally, we would like a window
whose Fourier transform does not have any side-lobe peaks. In practice, we use many different

windows, such as the Bartlett window, The Hamming window, and the Hanning window.

Since parts of our algorithm use the discrete wavelet transform (DWT) which is implemented
using a periodic extension of the signal under analysis, we chose to implement our window using
smooth functions. The trigonometric functions, sines and cosines, are good examples of smooth

function. Our window is implemented as follows:

( sin?(22F) tb—S<k<ti+$
1 th+i<k<t.—$
win(k) = < (4.3)
1—sin®(2%k) t. -$<k<t.+%
0 elsewhere,

where § is the overlap between adjacent windows (i.e., all our speech experiments have an overlap
of 6 = 16). The overlap between three adjacent windows are illustrated in figure 4.1. Figure 4.2
illustrates the window described by equation 4.3 and its Fourier transform. Observe that the time
domain function has smooth transitions from both ends in order to avoid the introduction of sudden

discontinuities caused by a purely rectangular x.indow.

4.2.4 De-noising The Unvoiced And Silent Portions Of Speech. = The unvoiced and silent
portions of noisy speech have characteristics that are similar to the characteristics of noise. Since
the SURE function treats them as white Gaussian noise and tries to eliminate these portions, we
decided to de-noise only the voiced portions (see figures D.1 through D.5 for white Gaussian noise
and figures D.6 through D.15 for unvoiced speech). The speech without silent and unvoiced portions
tends to sound distorted and is hard to understand. For these reasons, we choose not to process the

silent and unvoiced portions; instead, we multiply them by the percent (p = 50%) and the energy
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Figure 4.1 Overlap of three window where the overlap § = 16.
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Figure 4.2 Speech window and its Fourier transform.

4-7




ratio (R,) of the change of the energy of the voiced portions as

Et
R, = E:, (4.4)
where
N-1
E, =) 2, (4.5)
n=0
and
N-1
E, =) (zh), (4.6)
n=0

where z,, and z}, are the noisy and thresholded (STT or HTT) voiced speech samples, respectively.

Since the noisy samples are thresholded, we have E! < E,. The voiced ratio is then constrained as

0<R,<1 (4.7)

The new silent and unvoiced samples are then defined as

zs:,new) = pR”zs:.ﬂOiW) (48)
zS.u,neu:) — pths,u'nd.y), (4.9)

(u,new)

(smoisy) (unoisy)  (smew) nd z; are the silent noisy samples, unvoiced noisy sam-

where z,
ples, the silent reduced samples, and unvoiced reduced samples, respectively. The ratio R, helps
balance the energy between the voiced, unvoiced, and silent portions, as well as reduce the power

of the noise in the silent and unvoiced portions.
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4.2.5 De-noising in the lime domain.  Given a noisy voiced speech signal X= (Xo, X1, X2,

such that

X=8+ Z, (4.10)

where § = (Se, S1,852,...,SN-1) is a clean speech vector and Z= (Z0,21,22,...,ZN—1) is a white

Gaussian noise vector such that for m =0,1,2,... , N -1

Zm ~ N(O,Uz),

the expected value, i, of the clean speech data §is given by

Uy
]
Fi

where i = (po, p1,42,-- ., iN-1)-
The noisy vector X, which is formed by the sum of the constant vector § and the normal vector

Z, has a normal distribution with mean i such that

X ~ N(tm,0?), (4.11)

where i =0,1,2,... ,N - 1.

Since X has a normal distribution, we can directly use the time domain speech data degraded
by white Gaussian noise with the SURE function (see figure 4.3). The time domain speech de-
noising system (SDS) has the advantage of not requiring further transformations which are time
consuming. However, the application of either the soft or the hard thresholding techniques to a

segment of speech in the time domain, uses a single threshold to adjust a whole window of speech.
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This threshold may not be sufficient to eliminate most of the noise and hence we may expect that

the output of the time SDS to be only slightly cleaner than the input speech.

Noisy Speech Speech Denoising Processed
———— _O_...
System
Speech
(SDS)

Figure 4.3 Speech de-noising in the time domain

4.2.6 De-noising in the time domain using the noisy phase. In the speech processing
field, it is believed that some of the distortion caused by de-noising speech data is mainly due to
the change of the phase in the Fourier representation of speech. These distortions may diminigh
the intelligibility of the de-noised speech. In order to -tudy the effect of the phase, 4, on our SDS
and on the intelligibility of the de-noised speech, we save the noisy phase for reconstruction and

apply the de-noising techniques described in the previous section (see figure 4.4).

Although this technique improves intelligibility, it requires more processing due to the Fourier

transform and more storage due to phase saving.

4.2.7 De-noising in the frequency domain. = We have seen that if the real and imaginary
parts of a complex random variable are normal, the amplitude and phase can’t be normal. Since
the Fourier transform is a linear operation, the Fourier transform of a normal multivariate vector
is also normal. However, the variance of the Fourier transform coeflicients were shown to be not

identical (e.g., dc component). Recall the discrete Fourier transform (DFT) of a periodic finite-
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o F(w) > 0
Noisy - Processed
—T F U (w) f——
Speech Speech
» SDS o F(w) »{ Amplitude

Figure 4.4 Speech de-noising in the time domain using noisy phase
length sequence of N points, {Xm} =1 is

N-1
X = ,/l_ﬁ 3 (KmetBkm], (4.12)

m=0

where 0 < k < N —1. We have shown that if the time sequence { X} ¥ -1 has a normal distribution
such that each random variable X,;, ~ N(ftrn,0?), the Fourier sequence { X3} ! is conjugate sym-
metric such that the real and imaginary parts of Xi have the normal distributions N(Re [4e] s "2—’

and N(Im[g;], "72) for 1 < k < &, respectively. However, the 0** and the & real and imagi-
nary elements are distributed according to N(Re [ix],0?) and N(Im[j],0), respectively. This
property of the Fourier coefficients allows us to use the sequence of real and imaginary elements 1

through ( % — 1), inclusive, with the SURE function which requires the input random variables to

be normal, independent, and to have the same variance.

The method calls for processing separately, the two time sequences

o y(&-1 _ y(¥-p
{Re [Xk]} and {Im[X;,]} , where each element has a normal distribution with vari-
k=1 k=1

ance ’Tz (see figure 4.5). After the application of the SURE threshold, the real and imaginary

outputs are combined with the original dc component and the -’21 component and then inverse
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Fourier transformed to produce back the time domain de-noised signal. The elements {).(o,i' ;}}
are left untouched because of their unique distributions and characteristics (see equations 3.168
and 3.169). Depending on how the DFT is defined, the dc component, Xy, is a measure of the
mean of the time sequence {X,,}N =}, while X ¥ is the high frequency component. Since noise is

generally composed of high frequencies, little or no modification to the dc component may occur.

Real SDS
Noisy Processed
—_— F(w) F Y (w) >
Speech > Speech
Imag » SDS

Figure 4.5 Speech de-noising in the frequency domain

4.2.7.1 Soft Thresholding Of Complez Data. =~ When using the shrinkage or the soft
thresholding technique (STT) in the Fourier domain, the real and imaginary parts are affected in
a way that affects the phase of the complex Fourier coefficients being de-noised. Consider the k"
Fourier coefficient where k¥ = 1,2,..., (% — 1), and denote the real and imaginary soft thresholds
by ¢ and t!™, respectively. Because of the definition of the STT, which pulls a noisy data sample
towards zero if its magnitude is greater than the threshold or sets it to zero otherwise, we have four

different cases (see figure 4.6).

Define the new modified complex number, X ;‘”’ ' by

X”t‘,aoft = Re [X"te,sof!] + ilm[X:-‘oft]’ (413)
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Figure 4.6 Four possible changes and orientations of a de-noised complex number using the STT.

where the de-noised real part is defined as (see equation 3.32)

Re [X’t:,aoft] = Re [Xk] - min( Re[f(k] ,tf‘) sgn (Re [X'k]) ) (4.14)
and the imaginary part is defined as
Im[j(,:’”ﬂ] = Im[Xk] - min( Im[X',,] ,tfm) sgn (Im[Xk]) . (4.15)

Combining equation 4.14 and 4.15 we get

X':,aoft _ Re[X"’te,soft]_*_iIm[X’t‘,aoﬂ]

[Re [Xi] — min (

Re [f(k]

Im[X;]

,tfe) sgn(ne[xk])] +
i [Imp'(k] - min(

, tf”‘) sgn (Im [X4) )]
[Re[)i’k] +um[fr,,]] -

[min( Jf‘) sgn (Re [X’,,]) +i min( ,t{"‘) sgn (Im [X,,])]

= Xi+g"" " [Xx), (4.16)

Re [X k] Im [X k]
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where

g"""’ft [X.k] = — min ( Re [xk] Im[Xk]

,tf‘) sgn(ne[jr,.]) - min(

,tfm) sgn (Im[)h]).

(4.17)

The above g*°f* function is the complex equivalent of the real gi*°/*(X) function defined
by equation 3.31. The phase (provided it exists) of the de-noised complex coefficient, X:’“’f ‘s

defined as

[ Im [X’;""f |

at,aoft =
: | Re[X5"7]

arctan

Im[X;] - min( Im[X;]

= arctan

,t:m) sgn (xmpr,,])
,tfe) sgn (Re[f(k]) ]

Re [X k]

Re[Xk] - min(
(4.18)

On the other hand, the phase ) of the noisy coeflicient X} is defined as

Im[X;]
Re [).( k] '

0 = a.rcta.n[ (4.19)

We see from equations 4.18 and 4.19 that this new shrinkage technique applied to the real
and imaginary parts separately, has the potential to introduce a lot of distortion due to the phase
changes of the entire frequency spectrum. In fact when the thresholds act on the real and imaginary
parts, the phase can take any value within its domain (see case 0;”°f * # 0 in figure 4.6). One

way of avoiding more phase distortior than present in the noisy signal is to keep the original noisy

phase and use it in the inverse Fourier transform back to the time domain.




4.2.7.2 Hard Thresholding Of Complez Data.  When using the Hard Thresholding
Technique (HTT) in the Fourier domain, the real and imaginary parts are also affected in a way
that affects the phase of the complex Fourier coeficients being de-noised. Consider the k** Fourier
coefficient where k = 1,2,..., (-’.% ~ 1), and denote the real and imaginary hard thresholds by t?
and /™, respectively. Because of the definition of the HT'T, which sets a noisy dta sample to zero

if its magnitude is less than the threshold , we have four different cases (see figure 4.7).

0:-hard =8,
tim
original vector
7
Re Re
tf th
t—hard __
0:. =% ¢im set to zero
1.3
™
Re Re
t th

Figure 4.7 Four possible changes and orientations of a de-noised complex number using the HTT.

Define the new modified complex number, X;’h“'d, by

X",tc,hard =Re [X.:,hard] + ilm[x-’tc,hard] , (4.20)

where the de-noised real part is defined as (see equation 3.45)

Re [X‘-,tc”lard] = Re [X.k] X[-—tfe,tf‘] (Re [Xk]) 3 (4.21)
and the imaginary part is defined as o
Im[x",tc,ha"'d] = Im[Xk] X[_t'l.m’t'l.m] (Im[Xk]) . (4.22)
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Combining equation 4.21 and 4.22 we get

vi,hard
Xk

Xk + gt,hard [X"k] ,

where

Re [X"’:,hard] +i Im [X:,hard]

- / N - -
Re[X4] x{—egesp (Re[Xk]) 4 Im K] x(_ggm g (nn[x,,])

(4.23)

g*hemd[Xy] = —Re[Xi] (1 = X[-tRe eRe (Re[f(k])) —ilm[X;] (1 = X[-tim i) (Im[ffk])).

(4.24)

The above g*"%™¢ function is the complex equivalent to the real gf"'“'d()? ) function defined by

equation 3.46. The phase (provided it exists) of the de-noised complex coefficient, X x ,

deﬁned as
tyha’ d
0‘:

arctan

arctan

arctan

t,hard -
shard Lo

[ Im [ X ,: , hard]
| Re[X]

|

FIm{X] x_etm o) (Im[x"]) ]
L Re[ Xy X[-tfe tRe] (Re [X"])

X[—tlmtlm] (Im[xk])

where the phase 8; of the noisy coefficient X} is defined as

6

tan[6y] - ] \ (4.25)
L x[-tfeytfe] (Re [Xk])
arctan [:::{?ﬂ ] (4.26)
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We see from equations 4.25 and 4.26 that when the HT'T is applied to the real and imaginary parts
separately, it has the potential to introduce a lot of distortion due to the phase changes of the entire
frequency spectrum. However, these phase distortions can take only four different forms:

1. Don’t change the phase.

2. set the phase to zero.

3. set the phase to 3.

4. set the noisy data to zero, changing the phase from defined to undefined.

4.2.8 Speech de-noising in the frequency domain using noisy phase. It was noted in the
previous section that without saving the noisy phase, we might introduce many phase distortions
to the speech signal. In order to improve intelligibility, we save the noisy phase and use the same
thresholding process as before (see figure 4.8). In order to restore the noisy phase 6, we need to
first apply the thresholding technique as in the previous section, calculate the amplitude of the

modified Fourier coefficients, and then combine the amplitude with the noisy phase.

~ 0
Processed
Noisy F Y (w) p——s
— F(w) »i Real SDS > Speech
Speech
Amplitude s

> Imag » SDS

Figure 4.8 Speech de-noising in the frequency domain using noisy phase

4-17




4.2.8.1 Soft Thresholding Of Complez Data With Noisy Phase Restoration. Con-
sider the k*® Fourier coefficient where k = 1.2,..., (% —1), and denote the real and imaginary soft
thresholds by tR¢ and ™, respectively. Define the modified complex coefficient by the shrinkage

technique (see equation 4.13) as

Rp®I* < Re[R{*" +Tm[Xp", (2

and denote the new modified complex coefficient with noisy phase restoration by

X:.aoft—O = | j(:.aoftl %, (4.28)

where phase 0; is defined by equation 4.19 and the real and imaginary components of X ,:‘“f t are

as defined by equations 4.14, 4.15 , respectively. In rectangular form, we have

Xbeoft=0 Re[f(:’”ﬂ_e] +iIm[¥peoft-9) (4.29)

Expanding equation 4.28, the new de-noised real part is defined as

Re[X}*7%] = |X’,“”°f | cos(8r), (4.30)

and the imaginary part is defined as

Im[ X270 = | X507 sin(6k). (4.31)

This new shrinkage technique takes advantage of the normal distribution properties of the
real and imaginary parts in order to shrink the amplitude. Pictorially, there are four different

cases that we need to consider (see figure 4.9). When applied to the complex number X, this new
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shrinkage technique has no effect on the phase (since the noisy phase is restored), however, the
amplitude is affected in one of two different manners:

1. The amplitude is shrunken toward zero by a nonzero amount.

2. The amplitude is set to zero.

We see then that there are a lot of advantages to keeping the noisy phase so that when we inverse

Fourier transform, many of the potential phase distortions due to the thresholding techniques are

eliminated.
Re[X,] > tRe 4 Re(X,] > tRe
Im{%X,) > ¢Im ™ { Im[X,} < ¢Im
.
original vector
* L_.
the
tRe
Re[X,] < tHe | Re[X,] < ¢fe
Im[Xy] > ¢Im tf"‘l Im{Xy] < ¢Im
t,
tRe tRe

Figure 4.9 Four possible changes and orientations of a de-noised complex number with noisy
phase restoration.

4.2.8.2 Hard Thresholding Of Complez Data With Noisy Phase Restoration. Fol-
lowing the same procedure as before and denoting the modified complex coefficient by the hard

thresholding technique (see equation 4.20) as

Xthard _ Re| X',:'h"d] +ilm] )'(;v’“"d], (4.32)

and the new modified complex coefficient with noisy phase restoration by

Xihard=0 _ | Xthard) g (4.33)
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we obtain the same results as the shrinkage technique. In fact all the equations of the HTT are
the same as the STT except for the naming designators (soft and hard). Again four cases can be

considered (see figure 4.9).

4.8 Application Of SURE To DWT

We have seen that the wavelet transform is a linear operator and that the detail coefficients,
at a decomposition level m, measure the degree of similarity between the signal f(¢) and the the
analyzing wavelet ¥, »(t); furthermore, the details give us some degree of information concerning
the frequency content of the signal f(t). Recall, due to the down-sampling and filtering operations
performed during the decomposition process, the lower levels (i.e., m = 1,2,..) represent high
frequency information, and the higher levels (i.2., m = M, M —1, M - 2,..) represent low frequency
information.

Define a noisy vector X = (X0, X1,X32,...,Xn—1) such that

X=5+2, (4.34)

where § = (So,51,52,-..,8n-1) is a clean data vector and Z= (Z0,21,24,...,ZN_1) is a white

Gaussian noise vector such that form =0,1,2,...,N -1

Zm ~ N(0,0%).

Since § is a constant clean data vector, the expected value of this vector is the vector 7 such that

Uy
I
=

where @ = (fto, 1,425 .. s N -1)-

]

The noisy vector X, which is formed by the sum of a constant vector § and a normal vector Z, has
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a normal distribution with mean 7 such that

Xm ~ N(l-"m’az)’ (4.35)

where m =0,1,2,...,N-1.

4.3.1 Voiced speech vs. White Gaussian Noise. The wavelet decomposition of the normal

random vector X at the m**-level (1<m < M ) is given by equations 3.106 and 3.107 as

ng" = E C'{-—l,k"’k-Zﬂ (4-36)
keZ

DX, = Y CX_ .02, (4.37)
k€eZ

where CX and DX denote the approximation and detail random variables with respect to X,

respectively. Since the DWT is linear and orthogonal, we have

Cin = Can+Ci. (4.38)

DX, = DS.+Di,. (4.39)

Using the above results and the fact that the DWT coefficients are also independent and nor-
mally distributed, it can easily be shown that the wavelet coefficients {details and approximations)
of the white Gaussian noise, 4 , at the m*® decomposition level, are themselves white Gaussian
noise with zero-mean and the same variance, 02. This normal distribution property of the wavelet
coefficients makes them candidates for use with the SURE function developed earlier. Since the
detail coefficients measure the amount of some frequencies in a well defined band of frequencies
(depending on the decomposition level m and the analyzing wavelet ¥, 5,), we can directly apply
the de-noising process to certain bands of frequencies where the white Gaussian noise has a high

probability of residing. Since the formant frequencies of voiced speech are relatively low-frequencies
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{below 3kHz), and white Gaussian noise uniformly contains all frequencies , the early stages of de-
composition have a high probability of filtering most of the high frequencies that are due to noise,
while the later stages of decomposition filter the voiced speech signal (see figures E.1 through E.10

for voiced speech de-noising using shrinkage).

Since both the STT and the HTT techniques are non-linear thresholding techniques, we
decided to DWT (discrete wavelet transform) our signal up to a decomposition level where the
pitch frequency is not affected by the non-linear thresholding (Note: our algorithm gives you an
option to process both the approximations and the details). Recall that the DWT is a filtering
operation that uses a low-pass filter (h) and a high-pass filter (g). At each level of decomposition,
the high-pass g filter divides the frequency spectrum by half. Given a noisy voiced speech signal
where the pitch frequency f, is known and a sampling frequency f, = 16kHz, the maximum
resolvable frequency is t.; = 8kHz (14) (17). In order not to affect the pitch frequency, we need to

decompose up to a level m < m, where

m, = llogz [—ZL;; J, (4.40)

where |.| is the floor function. Since our speech data is sampled at 16kHz and we are assuming a
typical pitch frequency of 125Hz, the m,, value is 6. By decomposing the signal up to the m"-level
and applying our thresholding techniques, we have a high chance of eliminating most of the noise
in the first m, levels without affecting the pitch of the voiced speech which resides in the remaining
coarser levels. This partial wavelet decomposition of the voiced speech signal yields voiced speech
where the structure of the pitch is not subjected to the thresholding techniques, i.e., the pitch is

contained mostly at the approximation levels (see figure 4.10).

4.3.2 Wavelet Coefficients Thresholding. Having determined the maximum level of de-

composition, m,, we can apply either the soft thresholding techniqye or the hard thresholding
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Figure 4.10 Filtering noise and voiced speech by DWT of voiced speech up to the mt*-level.

technique to each of the m, levels of details. Consider the noisy signal X with N = 2™ points.
We know that by applying the DWT discussed earlier, the total number of decomposition levels is
M. Define the detail coefficients of the m** decomposition level by D, , where 1 < m < m, and

0<n<2M-m_1,

4.3.2.1 Wavelet Shrinkage Of The Detail Coefficients. Consider the m** decompo-
sition level and denote the soft threshold at this level by, tT*. Define the shrunken version of the

detail coeflicient D,, , by

D = Dy — min(|D |, t7) sg0(Dim ), (4.41)
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where 0 < n < 2M-™_ We can then define a function g:.:‘ which is level dependent, such that
¢ (Dm) = = min(|Dim,nl ") 6g0(Dm.n), (4.42)

where ﬁm is the vector whose elements are the 2™ detail coeflicients at the m*? decomposition

level. Since we have m, levels, we have m,, thresholds t7*, and m, functions g:.r(ﬁ,,.).

4.3.2.2 Hard Thresholding Of The Wavelet Detail Coefficients.  In a similar fashion,
we can apply the hard thresholding technique to the wavelet details and the results are similar to
the shrinkage case. Consider the m*® decomposition level and denote the hard threshold at this

level by, ¢]*. Define the hard thresholded version of the detail coefficient D, , by
D = Do Xj-tp,tp1 (Dmin), (4.43)
where 0 < n < 2M-™, We can also define a function gj'" that is level dependent, such that

6 (B = =D (1= X1-1p.71 (Do) ) (4.44)

where D,, is the vector whose elements are the 2M~™ detail coefficients at the mt» decomposition

level. Since we have m, levels, we have m, thresholds t7*, and m, functions g:.r (ﬁm).

4.3.2.3 De-noising The Approzimations. Since the pitch of the voiced speech is
represented by the approximation coefficients at the mt* decomposition level. The total number of

these coefficients is 24 ~™-. In order to prevent this voiced signal from being distorted, we choose
2M-me_y

to either leave the approximation coeflicients {Cm,.n} untouched or adjust their energy

n=0

by the same amount as the energy change of all the thresholded details (STT or HTT). In other
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words, the ratio between the energies of the noisy details and the de-noised details is defined by

Ry = z; (4.45)
where
m, p2M-m_ 2
Ep = Z[ > [D ) ] (4.46)
m= n=0
and
m, 2M-m_ 2
E, = E[ > [D:,, n) ] (4.47)
m=1 n=0

Since the noisy details are thresholded, we have E}, < Ep. The detail ratio is then constrained as

0<Ri<1. (4.48)

The new approximation coefficients at the m"-level are then defined as

Cvtn.,n = R4Com, n, (449)

where 0 < n < 2M-™+, The ratio R, helps balance the energy between the approximations and
the details as well as reduce the power of any noise that passed through the m, decomposition level

(see figure 4.11).

4.3.3 De-noising The DWT of The Time Domain. We have seen that the the wavelet
transform of a normal multidimensional random vector, produces & set of detail coefficients vectors
that are also normal. By applying the SURE thresholding techniques to these details (see figure

4.12), we can eliminate most of the noise at the first m, levels. Since the wavelets are band-pass
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Figure 4.11 Wavelet reconstruction of the thresholded (STT or HTT) voiced speech starting from

the mf,"-level where 1 < m, < M to the zeroth level where the number of samples is
N=2M

filters, at each level of decomposition, an entire band of high frequencies is being de-noised. We
expect then that the output of this method to eliminate most of the high frequencies that are

mainly due to noise.

A variation of this purely time-wavelet domain scheme may be employed to minimize the
phase distortioz introduced by the nonlinear effect of the thresholding techniques (STT and HTT).
In order to reduce the effect of phase distortions, we may save the noisy phase from the Fourier
transform of the noisy voiced speech and restore it after the de-noising procedures. Figure 4.13
illustrates the method; the time domain voiced speech waveform is first Fourier transformed to
extract the phase and then wavelet transformed before the de-noising process is applied. The
thresholded details, are then inverse wavelet transformed, Fourier transformed in order to extract

°

the de-noised amplitude. Finally, the old phase is combined with this newly calculated amplitude
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Figure 4.12 Speech de-noising in the time domain using wavelets

and inverse Fourier transformed back to the time domain. Observe, this method requires three

Fourier transforms and two wavelet transforms.

Noisy > Processed
- F W) f——
Speech > Speech
»] DWT [—» SDS IDWT F(w) ] ampiitude

Figure 4.13 Speech de-noising in the time domain using noisy phase and wavelets

4.3.4 De-noising The DWT of The Fourier Domain. We have seen that the the Fourier
transform of a normal multidimensional random vector, produces a set of real and imaginary coef-
ficients that are also normal. Since the wavelet transform is a linear and orthogonal operation, the
wavelet transform of the Fourier transform of a normal multidimensional random vector produces

a normal complex vector. Let f(t) € L?(R) and define its Fourier transform by

1 +oc .
(FHw) = 2= /_ Ft)e—t dt. (4.50)
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The continuous wavelet transform with scale a and shift b of the Fourier transform of f, is defined

as

+00
W [(Ff)(w)] = [ (F @) p(w)de,

—o0
where (a,b) € R* x R and

Yap(w) =a"12y (‘” ; b) '

Substituting equation 4.50 into equation 4.51, we get

1 +00  ptoo .
waEN@] = = [ [ et a o)
+ 00 1 +00 .
= [tz [ e i
+00

—

F(e)pg () dt,

where for real wavelets,

Do4(t) = Vae 2" (at),

(4.51)

(4.52)

(4.53)

(4.54)

and 1/; is the Fourier transform of the mother wavelet 4. Equation 4.53 represents the inner product

of f(t) with respect to the wavelet based function @(t). In other words, W? (£ )(w)] represents

the similarity between f(t) and the function 9 ,(t), which acts like a window on the signal, f(t).

By applying the SURE thresholding techniques to the real and imaginary wavelet-Fourier

details (see figure 4.14), we can eliminate most of the noise at each decomposition level.

A variation of this purely wavelet-Fourier domain scheme may be employed to minimize the

phase distortion introduced by the nonlinear effect of the thresholding techniques (STT and HTT)
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Figure 4.14 Speech de-noising in the frequency domain using wavelets

on the real and imaginary parts of the wavelet-Fourier details. In order to reduce the effect of
phase distortions, we may save the noisy phase from the Fourier transform of the noisy voiced
speech and restore it after the de-noising procedures. Figure 4.15 illustrates the method; the time
domain voiced speech waveform is first Fourier transformed to extract the phase and then the
wavelet transform of the Fourigr tt.'ansform is taken before the independent de-noising process of
the real and imaginary parts is applied. The thresholded details (real and imaginary), are then
inverse wavelet transformed independently in order to produce the de-noised real and imaginary
parts, Fourier transformed in order to extract the de-noised amplitude, and finally, the old phase is
combined with this newly calculated amplitude and inverse Fourier transformed back to the time
domain. Observe, this method requires two Fourier transforms and four wavelet transforms (see

figure 4.15).
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Figure 4.15 Speech de-noising in the frequency domain using noisy phase and wavelets
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V. Ezperiments And Results
5.1 Ezperiments

In this chapter, we present the results of applying the thresholding techniques we developed
in the last chapter. Eight different speech processing systems were studied. We start by explaining
the assumptions made and the parameters used for each experiment. We then discuss the quanti-
tative and qualitative results for all eight experiments, as well as the spectrum analysis for some
experiments. The qualitative results are based on the total squared error between each experiment’s
output and both the clean and noisy signals. On the other hand, the qualitative results are all
based on the results of the listening tests that we conducted with an untrained jury of six students
(four males and two females). Before each informal listening test, the listener is given a chance to
listen to both the clean and noisy speech speech signals (SNRs of 0db and 6db) and then he or
she is briefed about what the test is all about (see figure 5.1). The listeners were asked to make
a choice between two de-noised speech signals (e.g., choice between time processing vs. Fourier
processing of the same noisy signal). Finally, we present and analyze some spectrograms of four
different de-noising methods. We conclude this chapter with a summary of the tests’ results and

some of the recommendations we encountered throughout this thesis work.
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5.1.1 Ezperimental Set Up. Due to the large number of methods and the flexibility of
the parameters available for experiments, we fixed the following inputs to the speech de-noising
algorithms we presented in chapter four:

1. The percent factor p applied to the unvoiced and silent portions is p = 50%.

2. The maximum voiced decomposition level is m,, = 6.

3. The overlap between adjacent speech windows is overlap = 16.

4. The number of samples of the original speech (“They enjoy it when I audition”) is
N = 31200.

5. The sampling frequency is 16kHz.

6. The approximation coefficients (pitch of voiced speech) are not processed (i.e., untouched

and still noisy).

Experimentally, we fixed the overlap between adjacent windows (p = 16), and we determined
that by keeping only p = 50% of the ratio R, (see equation 4.4), the transiti- 1 obtained between

the voiced portions to both the silent and the unvoiced portions improvéd intelligibility considerably.

5.1.2 Ezperimental Speech Signals.  Starting with a clean speech signal (“They enjoy it
when I audition”) of 31200 samples, we generated seven different white Gaussian noise signals and
seven noisy signals such that the signal-to-noise-ratios (SNRs) are as follows: -10db, -6db, -3db,
0db, 3db, 6db, and 10db. Using these noisy signals, we produced both soft thresholded and hard
thresholded signals with the following methods:

1. De-noising in the time domain.

2. De-noising in the time domain using the noisy phase.

3. De-noising in the frequency domain.

4. De-noising in the frequency domain using the noisy phase.

5. De-noising in the time domain using wavelets.

6. De-noising in the time domain using the noisy phase and wavelets.




1§

TR

Figure 5.1 Clean speech and noisy speech (6db and 0db SNRs).
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7. De-noising in the frequency domain using wavelets.

8. De-noising in the frequency domain using the noisy phase and wavelets.
The total number of de-noised signals without wavelets (i.e., using Steip’s criteria) is 56. Since there
are two thresholding techniques (STT and HTT), seven different noisy signals, and four different
methods that don’t involve wavelets. The total number of de-noised signals with wavelets (i.e.,
using Donoho’s criteria) is 168, using two thresholding techniques (STT and HTT), seven different
noisy signals, four different methods that involve wavelets, and three different wavelets used (db20,

db6, and coiflets(6)). Hence, the total number of files studied is 224.

5.1.3 Quantitative analysis. Since the soft thresholding technique (STT) pulls towards
zero every single voiced sample and the hard thresholding technique (HTT) pulls towards zero only
the voiced elements below the hard threshold (¢*"9) in absolute value, theoretically, we expect
that the energy of the de-noised signal under the STT to be less than the energy of the de-noised
signal under the HTT. In order to quantify this result, the total squared error between the de-noised

signal and the noisy signal, using the STT technique, is defined as

N-1
Errorgg¥ = 3 (2o - 2577)%, (5.1)
n=0

where N is the total number of samples of the speech signal under analysis (i.e., N = 31200).

Similarly, the HTT total error is defined as

N-1
i i HTT)?2
Errorgry = Z (zhotov — HTT)®, (5.2)
n=0
Both Errorgps’ and Errorgps measure the closeness of the de-noised signal to the noisy

signal. Ideally, we want to be as far away as possible from the noisy signal, and still preserve the

intelligibility of the de-noised speech signal. The experiments illustrate that (see figures F.1 and




F.3)

Errorynty > Errorgny. (5.3)

In fact, because of the definitions of the STT and the HTT, the use of the ST'T removes
noise from all samples, while the use of the HTT removes noise only from certain samples. For this
reason, the de-noised speech signal under the HT'T has more remaining noise than the de-noised
speech signal under the STT. In all experiments and for all seven noisy speech signals analyzed,

figures F.1 and F.3, illustrate the fact that the STT outperforms the HTT with respect to the total

squared error between the de-noised signals and the noisy signals.

Since the purpose of our de-noising technique is to attenuate the effect of the noise, we would
like the de-noised speech signals to be as close to the clean signal as possible. In order to quantify
this result, the total squared error between the de-noised signal and the clean signal, using the STT

technique, is defined as

N1
Errordeas = E (zcteam — .1:,5,7‘7')2 . (5.4)
n=0

Similarly, the HTT total error is defined as

N-1
Error§sin = E (zleam — 8 TT)z . (5.5)
n=0
Both Error$f3® and Error§ss measure the closeness of the de-noised signal to the clean

signal. Ideally, we want the de-noised speech signal to be as close as possible to the clean signal,

and still preserve the intelligibility of the de-noised speech signal. Both theory and experiments




prove that (see figures F.2 and F.4)
Errorss® < Error§5en. (5.6)

Again, in all experiments and for all seven noisy speech signals analyzed, figures F.2 and F.4,
illustrate the fact that the STT outperforms the HTT with respect to the total squared error

between the de-noised signals and the clean signal.

5.1.4 Qualitative Analysis Of The Informal Listening Tests.  The qualitative analysis of
the de-noised speech signals, depends on many factors. In order to understand the advantages and
disadvantages of each of the eight methods, described earlier, we chose to study two noisy signals
with signal to noise ratios 0db and 6db, respectively. The 0db signal represents a noisy speech
signal with a relatively high level of noise, while the 6db signal represents a noisy speech signal

with a relatively low level of noise.

5.1.4.1 Effects Of STT vs. HTT. In order to study the effects of the STT vs. the

HTT, we randomly selected a jury of six students (four males and four females), considered to
be untrained listeners. We presented to these listeners two groups of speech signals; group A has
speech signals processed using the STT method and group B has speech signals processed using
the HTT method. Each group has two sets of de-noised speech signals, where the original noisy
speech signals have SNRs of 0db and 6db. Each set has speech data processed using the following
speech de-noising systems (SDS):

1. De-noising in the time domain.

2. De-noising in the time domain using the noisy phase.

3. De-noising in the frequency domain.

4. De-noising in the frequency domain using the noisy phase.

5. De-noising in the time domain using wavelets.
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6. De-noising in the time domain using the noisy phase and wavelets.
7. De-noising in the frequency domain using wavelets.

8. De-noising in the frequency domain using the noisy phase and wavelets.

We asked the students to listen to each speech signal from group A and compare it with its
counterpart in group B (e.g., 0db of group A using SDS-1 vs. 0db of group B using SDS-1). Al
the students, concluded that the STT method has less remaining noise and, hence, it is easier to
listen to the STT-processed speech signals than the HTT-processed speech signals. For this reason,

we chose to continue experimenting with only the speech signals produced by the STT method.

5.1.4.2 Effects Of Preserving The Noisy Phase Using STT. Based on the results
of the STT vs. the HTT experiment, above, and in order to study the effects of the phase, we
presented to the same jury of students, two groups of speech signals processed using the STT
method; groiip A has de-noised speech data processed without restoration of the noisy phase and
group B has de-noised speech data with restoration of the noisy phase. Each group has two sets of
de-noised speech signals, where the original noisy speech signals have SNRs of 0db and 6db. Each
set has speech data processed using the following speech de-noising systems (SDS):
A. No preservation of the noisy phase:
1. De-noising in the time domain.
2. De-noising in the frequency domain.
3. De-noising in the time domain using wavelets.
4. De-noising in the frequency domain using wavelets.
B. Preservation of the noisy phase:
1. De-noising in the time domain using the noisy phase.
2. De-noising in the frequency domain using the noisy phase.
3. De-noising in the time domain using the noisy phase and wavelets.

4. De-noising in the frequency domain using the noisy phase and wavelets.

5-7




We asked the students to listen to each speech signal from group A and compare it with its
counterpart in group B (e.g., 0db of group A using SDS-1 vs. 0db of group B using SDS-1). All the
students, concluded that intelligibility of group B is much better than the intelegibility of A and
it is easier to listen to the speech signals processed with noisy phase restoration than to listen to
the speech signals processed without noisy phase restoration. For this reason, we chose to continue
experimenting with only the speech signals produced using both the STT method and the phase

restoration technique.

5.1.4.3 Effects Of The Time vs. Fourier Domains On Speech De-noising Using STT
And Noisy Phase Restoration.  Based on the results of the last two sections, we chose to continue
experimenting with speech data processed using both the STT and the phase restoration techniques.
In order to study the effect of the time domain vs. the Fourier domain, we presented to the jury
of students, two groups of de-noised speech signals; group A has speech data processed in the time
domain and group B has speech data processed in the Fourier domain. Both groups have speech
data processed using both the STT and phase restoration techniques. Each group has two sets of
de-noised speech signals, where the original noisy speech signals have SNRs of 0db and 6db. Each
set has speech data processed using the following speech de-noising systems (SDS):
A. Time domain:
1. De-noising in the time domain using the noisy phase.
2. De-noising in the time domain using the noisy phase and wavelets.
B. Fourier domain:
1. De-noising in the frequency domain using the noisy phase.

2. De-noising in the frequency domain using the noisy phase and wavelets.

We asked the students to listen to each speech signal from group A and compare it with its
counterpart in group B (e.g., 0db of group A using SDS-1 va. 0db of group B using SDS-1). All the

students, concluded that the intelligibility of group B is much better than the intelligibility of A




and it is easier to listen to the speech signals prucessed in the Fourier domain than to listen to the
speech signals processed in the time domain. For this reason, we chose to continue experimenting
with only the speech signals produced in the Fourier domain using both the STT method and the

phase restoration technique.

5.1.4.4 Effects Of Wavelets On Speech De-noising In The Fourier Domain.  Based

on the results of the last three sections, we chose to continue experimenting with speech data
processed in the Fourier domain using both the SST and the phase restoration techniques. In order
to study the effect of using wavelets vs. not using wavelets in the Fourier domain, we presented to
the jury of students, two groups of de-noised speech signals; group A has speech data processed in
the Fourier domain without using wavelets and group B has speech data processed in the Fourier
domain using wavelets. Both groups have speech data processed in the Fourier domain using the
STT and phase restoration techniques. Each group has two sets of de-noised speech signals, with
SNRs of 0db and 6db. Each set has speech data processed using the following speech de-noising
systems (SDS):

A. wavelets:

1. De-noising in the frequency domain using the noisy phase and wavelets.
B. No wavelets:

1. De-noising in the frequency domain using the noisy phase.

We asked the students to listen to each speech signal from group A and compare it with
its counterpart in group B (e.g., 0db of group A using SDS-1 vs. 0db of group B using SDS-1).
All the students, concluded that for 6db, the de-noised speech signals from both groups are very
close in terms of intelligibility, however, for 0db, the intelligibility of group A is much better than
the intelligibility of B. Since our jury is forced to choose only one group, all students chose group

A because they concluded that it is easier to listen to the speech signals processed in the Fourier
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domain using wavelets than to listen to the speech signals processed in the Fourier domain without

using wavelets.

5.1.5 Spectrum Analysis Of De-noised Speech Data Using The STT. We mentioned earlier
that the production of speech through the vocal tract is characterized as either voiced or unvoiced.
The unvoiced speech signals, the fricatives, behave like noise and have high energy above about
3kHz and relatively very low energy below 3kHz (19). On the other hand, most voiced speech is
located at bands of frequencies below 3kHz. The pitch and the first formant are, in general, located
below 500H 2z, while the second and third formants are located between 500H z and 3kHz. The
formant frequencies are important because most of the voiced speech characteristics (i.e., pitch) are
based on the location of these frequencies. In order to study the effects on the frequency content
of our speech signals, we choose three different wavelets and four different de-noising techniques.
We generated two sets of spectrograms, wide-band and narrow-band (for clean and noisy speech,
only). Wide-band spectrograms have a small analysis window, therefore, the frequency resolution
is low, while the time resolution is high. On the other hand, narrow-band spectrograms have a
large analysis window, therefore, the frequency resolution is high, while the time resolution is low.
Each set (narrow-band and wide-band) of spectrograms includes :

1. Clean speech.

2. Noisy speech 0db (relatively high noise level).

3. Noisy speech 6db (relatively low noise level).

4. for each of the three wavelets used (db20, db6, and coiflets(6)) and for each of the noise
levels used (0db and 6db), we studied the frequency content of the de-noised speech data using
shrinkage with the following speech de-noising systems (SDS):

a. De-noising in the time domain.

b. De-noising in the time domain using wavelets.

5-10




c. De-noising in the frequency domain using the noisy phase.

d. De-noising in the frequency domain using the noisy phase and wavelets.

The spectrograms of the clean signal show very clearly the pitch, the first, second, and third
formants. These frequencies have high energy below 3kHz (see figure G.1). Despite the addition of
the white Gaussian noise, the spectrograms of the noisy speech signals with signal-to-noise ratios
of 0db and 6db, show that the pitch, the first, second, and third formants are still dominant below
the 3kHz frequency. However, the effect of white Gaussian noise can be clearly seen throughout
the spectrograms. In fact, since the white Gaussian noise is, in general, a broad-band signal, the

spectrogram indicates high energy at all frequency bands (see figures G.2 and G.3).

5.1.5.1 Effects Of Stein’s Criteria On Time De-noising vs. Fourier De-noising Using
Noisy Phase Restoration. De-noising in the time domain using both Stein’s criteria and the
noisy phase, works relatively well for high signal-to-noise ratios. In fact when the noise level is very
low (i.e., 6db), most of the signal’s formant’s structure below the 3kHz frequency is still preserved;
however, a lot of high frequency noise is still present (see figure H.1). When the noise level increases,
the noisy speech signal looks like white Gaussian noise and the application of Stein’s criteria tends
to eliminate most of the speech signal itself, and hence affecting most of the formant frequencies.
On the other hand, de-noising in the Fourier domain using Stein’s criteria and preserving the noisy
phase, works much better because of the fact that the noise is split between the real and imaginary
parts of the Fourier transform. Since the noisy phase is restored, most of the noisy speech structure
(pitch and formants) is restored back to the de-noised speech signal. Despite these improvements,
when the noise level is relatively high, the real and imaginary parts become very noisy and Stein’s

criteria affects the true structure of the signal (see figure H.2).

5.1.5.2 Effects of The wavelet Choice On De-noising In The Time Domain. By us-
ing wavelets, we decompose a noisy signal into bands of frequencies and then we de-noise each band

geparately. This process is potentially more powerful than the methods that don’t use wavelets.
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However, the choice of the right wavelet with good filtering characteristics is very important. We
choose three different wavelets: db6, coiflets(6), and db20. Since the wavelet transform is a filtering
operation, the effecu of the filtering characteristics of the wavelet become very crucial. The spec-
trograms for both 0db and 6db using wavelets in the time domain show that there is an aliasing
effect for both db6 and coiflets(6) (see figures I.1 and 1.2). The reason for this aliasing is due to
the fact that the Fourier transforms of both db6 and coiflets(6) have a lot of high energy side lobes
which cause the filtering qualities of these wavelets to be of low importance. On the other hand,
the spectrograms of db20 show no aliasing at all, which make db20 a very good wavelet to use
in speech processing (see figure 1.3). However, because of the fact that the cubic splines are not
compactly supported wavelets, their use in practice requires an approximations which affects the
general behavior of the spline wavelets. The best results in terms of total square error, intelligibility,
and the preservation of formant frequencies , were given by db20 which is a compactly supported

wavelet with a very good filtering quality (i.e., very small side lobes).

5.1.5.3 Effects Of The Wavelet Choice On De-noising In The Fourier Domain With
Noisy Fhase Restorations.  Since the de-noising process is carried out in the Fourier domain, the
noise level is split between the real and imaginary parts. These are then wavelet transformed and
decomposed into bands of frequencies in order to eliminate most of the noise from each band. By
restoring the noisy phase and applying the wavelet shrinkage to both the real and imaginary parts
of the Fourier transform of the noisy signal, the effect of aliasing seems to decrease, even for db6
and coiflets(6) (see figures J.1 and J.2). However, for the same reasons described in the previous
section, most of the formants’ structure of the noisy speech signal is preserved when using db20

(see figure J.3).
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5.2 Conclusions

In this chapter, we presented the results of several speech de-noising experiments on various
noisy speech data (-10db to 10db). In general, we saw that the performance of the speech de-noising
systems using both Fourier and wavelets resulted in intelligible speech even for low signal-to-noise
ratios (SNR). The use of the noisy phase improved both the quality and the intelligibility of the
de-noised speech signals. The use of the soft thresholding technique (STT), in the wavelet-Fourier

domain, proves to be a very good technique to use in the enhancement of noisy speech data.
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VI. Conclusions and Recommendations

6.1 Introduction

In this chapter, we present both the conclusions of this research and some of the recommen-
dations for future research in the area of enhancing noisy speech data. We summarize the major

points and evaluate how well the objectives of this thesis were met.

6.2 Main Conclusions Of The Thesis

This thesis is successful in producing several speech de-noising systems (SDS) in the time,
Fourier, and the wavelet domains. Without the use of wavelets, the SDS systems perform relatively
well and produce intelligible speech when the noise level is low (SNR = 6db). These systems are
comparatively fast (since they don’t require the wavelet transform) and can be used to produce
comparable results to the wavelet-based SDSs, for low levels of noise (e.g., SNR = 6db). However,
when the noise level is high (SNR = 0db), the non-wavelet SDSs do not produce intelligible speech.
In fact, without using wavelets, the application of either the soft thresholding technique (STT) or
the hard thresholding technique (HT'T) to noisy speech data, with noise levels below SNR = 6db,

produced de-noised speech data, that is worst to listen to, than the noisy speech data itself.

The application of Stein’s criteria to noisy voiced speech using wavelets on the time data
(Donoho’s technique) did not produce intelligible speech for all noise levels (i.e., -10db to 10db).
In fact, this method produced a very distorted de-noised speech with a constant disturbing sound,
which is mainly due to the non-linear effect of the thresholding techniques. The use of the noisy
phase produced a slight improvement of the intelligibility of speech. Finally, the use of the wavelet
shrinkage techniques applied to the Fourier domain with noisy phase restoration proves to be a
powerful technique to enhance speech data degraded by additive white Gaussian noise. In fact,
when using a wavelet with good filtering characteristics (e.g., db20), the formants’ structure and

intelligibility can be considerably preserved. This new technique involves a lot of calculations
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due to the Fourier transforms, the wavelet transforms, and the phase calculations. However, the
intelligibility of the de-noised speech data, outperformed all the other de-noising systems, especially

when the noise levels were high (SNRs below 6db).

The combination of the noisy phase and the wavelet-Fourier technique produced the best
results (intelligibility) because it involves a de-noising process on two less noisy sets of data; the
real and imaginary parts of the Fourier transform of the noisy signal. The Fourier transform splits
the noise level between the real and imaginary parts. De-noising the wavelet details of both the
real and imaginary parts, reduces the noise at each level of decomposition, resulting in a large
amount of noise being taken from both the real and imaginary parts. After this de-noising process,
the combination of the real and imaginary parts produces a cleaner amplitude which is further
combined with the noisy phase, wherein important speech information is saved. Most importantly,
this research illustrated the fact that the phase has the potential to preserve a lot of the underlying
speech formants’ structure and that, in order to avoid aliasing and still preserve intelligibility, it is

very important to choose a wavelet with very good filtering characteristics.

6.3 Evaluation Of The Thesis Objectives

In terms of the four objectives mentioned in the first chapter, in this thesis, we were able
to apply both wavelets and the soft thresholding technique (STT) to enhance noisy speech data.
The speech de-noising systems (SDS) can only be applied to the voiced portions. The unvoiced
and silent portions are not to be processed using the SDSs discussed in the fourth chapter. These
portions tend to disappear when processed by the SDSs, and hence, we can use our SDSs as detector
systems for the unvoiced, voiced, and silent speech portions by using a single window on the entire
speech utterance. The use of the noisy phase, combined with both wavelets, Fourier, and the STT

technique, considerably improved intelligibility. The use of wavelets with thresholding is important,
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however, in order to obtain good results, the choice of a wavelet with good filtering characteristics

(no high energy side-lobes) have a direct effect on the quality of the de-noised speech data.

6.4 Recommendations

Further investigations in the area of noise cancellation using both Fourier and wavelets can
further the results of this research. Many of the methods described in this work can be further
explored, improved (i.e., hard or soft thresholding of the approximations where the pitch of voiced
speech resides), and compared to our results. The STT and HTT methods can be used to develop
a pre-processing system to detect the voiced, unvoiced, and silent speech portions. Since this
research assumes that the location of voiced, unvoiced, and silent portions are known, the STT or

HTT based detector system, can complete our de-noising system.

One of the main concerns of our speech de-noising algorithm is speed. Due to the fact
that our algorithm uses the Fourier transform, the wavelet transform, and the STT or the HTT
techniques, the results tend to take considerable time to produce (an average of 8 minutes on a
Sparc2 station with a single processor). In order to reduce the algorithm execution time, we suggest
implementation of the algorithm in a parallel machine and we need also to derive a better way of
finding the thresholds that minimize the SURE functions of either the HTT or the STT methods.
In fact, the SURE function involves many loops and many comparisons that use each element of the
noisy data. This means that as the number of data points increases, the execution time increases

exponentially.

Finally, the results of this research illustrated the need for a better metric system for analyzing
the performance of de-noising speech data. Most of the speech de-noising systems produced speech
data with low L? error with respect to the clean speech signal, however, they do not have good

intelligibility.
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Most importantly, since we are using both wavelets and Fourier transforms, most of the
processing can be implemented using parallel processing to speed up the results. Finally, the SURE
functions should be further studied in order to find an effective criteria to choose the thresholds

that minimize the SURE functions without checking all the samples available.



Appendiz A. Wavelet Coefficients

This Appendix contains both the h filter coefficients and the Fourier transforms for each of the
three wavelets used in this thesis: db6, coiflet(6), and db20. The Fourier transforms show clearly
that the approximation filters, h, are low-pass filters, while the detail filters, g, are high-pass filters.
These filters are used in the discrete wavelet transform (DWT) to divide the frequency spectrum, of
the signal under analysis, into bands which have a constant bandwidth on a logarithmic frequency
scale (in our case the bandwidths change by a factor of 2, the dilation factor). Observe that the
Fourier transforms (g and A filters) of both db6 and coiflet(6) do not have a sharp roll-off<. while

those of the Fourier transform of db20 are sharper than those of db6 and coiflets(6).
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N coefficients of the filter h
~ .332670552950 |
.806891509331
459877502118
-.135011020010
-.085441273882
035226291882
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Table A.1 Scaling function coifficients of db6.

coefficients of the filter h
N -.07273261951
.33789766250
.85257202020
.38486484700
-.07273296500
-.01565572800
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Table A.2 Scaling function coifficients of coiflet(6).

coefficients of the filter h

Nl n

20| 0 026670057901
1 188176800078
2 527201188932
3 688459039454
4 281172343661
5 -249846424327
6 -195946274377
7 127369340336
8 093057364604
9 -.071394147166
10 -.020457536822
11 033212674059
12 003606553567
13 -.010733175483
14 001395351747
15 001992405295
16 -000685856695
17 -.000116466855
18 000093588670

) -.000013264203

Table A.3 Scaling function coifficients of db20.
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Wavelet: db6
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Figure A.1 Fourier transforms of the A and ¢ filters of db6.
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Wavelet: coiflet_6
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Figure A.2 Fourier transforms of the h and g filters of coifiet(6).




Wavelet: db20
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Figure A.3 Fourier transforms of the A and g filters of db20.
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Appendiz B. Wavelets And Their Fourier Transform

This Appendix contains the plots, on linear scales, of the three wavelets used in this thesis.
All figures have identical time and frequency axes in arbitrary units. The amplitude of the Fourier
transform of all three wavelets represent band-pass filters. Observe that the amplitudes of the
Fourier transforms of db6 and coiflet(6), have many high energy side-lobes, while the amplitude of
the Fourier transform of db20 has very little or no side-lobes at all. These filtering characteristics of
the three wavelets affect the quality of the speech de-noising results (see spectrograms of Appendix

J through L).




wavelet function (db6)

Fourier Amplitude (db6)

Figure B.1 Wavelet db6 and its Fourier transform.
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scaling function (db6)

Fourier Amplitude (db6)

Figure B.2 Scaling function of the wavelet db6 and its Fourier transform.

B-3




wavelet function (coiflet_6)

Fourier Amplitude (coiflet_6)

Figure B.3 Wavelet coiflet(6) and its Fourier transform.
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scaling function (coiflet_6)
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Fourier Amplitude (coiflet_6)

Figure B.4 Scaling function of the wavelet coiflet(6) and its Fourier transform.
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wavelet function (db20)
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Fourier Amplitude (db20)

Figure B.5 Wavelet db20 and its Fourier transform.
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scaling function (db20)

Fourier Amplitude (db20)
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Figure B.6 Scaling function of the wavelet db20 and its Fourier transform.
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Appendiz C. Wavelet Shrinkage of Sinewave

This appendix contains the de-noising results of a sinewave of frequency 2Hz. We generated
two signals, each contains 512 samples. The first signal is a 2Hz sinewave and the second is a white
Gaussian noise of zero mean and variance of 62 =. We added the white Gaussian noise to the
clean sinewave and then applied the soft thresholding technique (STT) to both the clean and noisy
sinewaves. The de-noising process was carried in the wavelet domain using db20. The discrete
wavelet transform (DWT) of the clean 2Hz sinewave, shows high energy details at the seventh and
eighth levels, while the DWT of the noisy sinewave shows high energy details at all levels (see
figures C.1 and C.2). The high energy details of the early levels of decomposition (i.e., levels 1, 2,
3, and 4) of the noisy sinewave, are mainly due to noise. We applied the STT to both the clean

and noisy sinewaves, separately.

The clean signal was processed using the STT method and a variance value of % = 1. Figure
C.3 shows that the details of the clean signal are still preserved and figure C.4 shows the near
perfect reconstruction of the the clean sinewave. Observe, the amplitude of the Fourier transform
of the STT processed clean signal is almost identical to that of the original clean sinewave (see

figure C.5). Notice the phase distortions caused by the non-linear processing of this sinewave (see

figure C.6).

The application of the STT to the noisy sinewave has eliminated most of the high frequency
details which are mainly due to noise. Figure C.7 shows that the high energy details of the early
levels of decomposition (i.e., levels 1, 2, 3, and 4) of the noisy sinewave, have been completely
eliminated, while the details of the seventh and eighth levels of decomposition, which characterize
the clean sinewave, are still preserved. The reconstructed sinewave, see figure C.8, is very close to
the clean sinewave. Observe, the effects of the STT on both the amplitude and the phase of the

Fourier transform of the noisy and reconstructed sinewaves (see figures C.9 and C.10).
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Figure C.1 Details of the clean sinewave (2Hz) .
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Figure C.2 Details of the noisy sinewave (2Hz).




Sinewave: Frequency = 2 And Variance = 1
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Figure C.3 Details of the processed clean sinewave (2Hz) after the STT (02 = 1).
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Figure C.4 Clean sinewave (2Hz) after the STT (02 = 1).
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Figure C.5 Amplitude of the FFT of the clean sinewave (2Hz) after the STT (02 = 1).
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Figure C.6 Phase of the FFT of the clean sinewave (2Hz) after the STT (02 = 1).
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Sinewave: Frequency = 2 And Variance = |
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Figure C.7 Details of the processed noisy sinewave (2Hz) after the STT (o2 = 1).
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Figure C.8 Noisy sinewave (2Hz) after the STT (02 = 1).
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Figure C.9 Amplitude Of the FFT of the noisy sinewave (2Hz) after the STT (02 = 1).
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Sinewave: Frequency = 2 And Variance = 1
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Figure C.10 Phase Of the FFT of the noisy sinewave (2Hz) after the STT (02 = 1).
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Appendiz D. Effect Of Wavelet Shrinkage On White Gaussian Noise and Unvoiced
Speech

This Appendix contains the plots of a white Gaussian noise signal and an unvoiced speech
signal before and after the application of the soft thresholding technique (STT). The de-noising
method uses wavelets in the time domain without noisy phase restoration (using db20). 512 samples
of a white Gaussian noise signal with zero mean and 0> = 1 was generated. This signal was
processed using the STT. Since the SURE function estimates the mean of an independent and
normally distributed random signal, the expected result is a signal with 512 zeros (i.e., the noise
has zero mean). The white Gaussian plots illustrate the fact that the application of the STT to
the white Gaussian noise is very close to zero. Observe, the Fourier transform of the noise has high
energy throughout the entire energy spectrum. Also, notice that the high decomposition detail

levels (i.g., 1,2, and 3) filter most of the white Gaussian noise.

The second set of plots, deals with both clean and noisy unvoiced speech. The plots illustrate
the fact that unvoiced speech is treated as white Gaussian noise. In fact, wher using the STT to
de-noise a clean unvoiced speech signal (similar to the case of a clean sinewave), the result is a signal
with zeros everywhere (see figure D.11). Notice that the effects of the STT on a noisy unvoiced
speech signal are similar to the effects of the STT on white Gaussian noise. We conclude then, that
the noisy unvoiced speech data has characteristics similar to those of white Gaussian noise. In order
to prevent loosing all the unvoiced as well as the silent speech portions, we chose not to process
these portions. One important observation is that both the soft and hard thresholding techniques

(STT and HTT) can be used as detectors for voiced, unvoiced, and silent speech segments.
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Figure D.1 Details of the white Gaussian noise (0% = 1).
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White Gaussian Noise With Variance = 1
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Figure D.2 Details of the processed white Gaussian noise after the STT (o2
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Figure D.3 White Gaussian noise after the STT (o2 = 1).




White Gaussian Noise With Variance = 1

v . s

Moy
Noisy Signal

Wavelet:db20
9
4

Figure D.4 Amplitude Of the FFT of the white Gaussian noise after the STT (o2 = 1).
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Unvoiced Speech With Noise Variance = 1
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Figure D.6 Details of the clean unvoiced speech.
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Figure D.7 Details of the noisy unvoiced speech.
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Figure D.8 Details of the processed clean unvoiced speech after the STT (o2 = 1).
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Unvoiced Speech With Noise Variance = 1
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Figure D.9 Details of the processed noisy unvoiced speech after the STT (o2 = 1).
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Figure D.10 Noisy unvoiced speech after the STT (02 = 1).
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Figure D.11

Clean unvoiced speech after the STT (o2 = 1).
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Wavelet:db20

Figure D.12 Amplitude Of the FFT of the noisy unvoiced speech after the STT (o2 = 1).
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Unvoiced Speech With Noise Variance = |
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Figure D.13 Amplitude of the FFT of the clean unvoiced speech after the STT (02 = 1).
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Figure D.14 Phase Of the FFT of the noisy unvoiced speech after the STT (o2 = 1).
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Figure D.15 Phase of the FFT of the clean unvoiced speech after the STT (02 = 1).
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Appendix E. Effect Of Wavelet Shrinkage On Voiced Speech

This Appendix illustrates the effects of applying the STT to both a noisy and a clean voiced
speech segments. The wavelet decomposition of the clean voiced speech segment shows high energy
details at the coarser levels of decomposition (i.e., levels 4, 5, and 6), while the finer levels of
decomposition (i.e., levels 1 and 2) have little or no high energy details at all (see figure E.1). On
the other hand, the noisy version (clean voiced speech and noise with variance 0> = 1) of this
voiced speech signal, shows high energy at all detail levels; especially levels 1 and 2 (see figure E.2).
The effects of the STT on both the clean and noisy voiced speech signals is that most of the high
frequency details are eliminated (see figures E.3 and E.4). Observe that the reconstruction of both
signals, the STT processed clean voiced speech signal and the STT processed noisy voiced speech
signal, are very close to the original voiced speech signal. The amplitude of the Fourier transforms
of the reconstructed signals show very little high frequency components. Finally, notice the effects

of the non-linear processing on the phase (see figures E.10 and E.9).
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Figure E.1 Details of the clean voiced speech.
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Figure E.2 Details of the noisy voiced speech.
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Figure E.3 Details of the processed clean voiced speech after the STT (0% = 1).
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Voiced Speech With Noise Variance = 1
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Figure E.4 Details of the processed noisy voiced speech after the STT (0% = 1).
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Figure E.5 Noisy voiced speech after the STT (o2 = 1).
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Figure E.6 Clean voiced speech after the STT (02 = 1).
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Figure E.7 Amplitude Of the FFT of the noisy voiced speech after the STT (02 = 1).
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Figure E.8 Amplitude of the FFT of the clean voiced speech after the STT (o2 = 1).
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Figure E.9 Phase Of the FFT of the noisy voiced speech after the STT (02 = 1).

E-10




Wavelet:db20

Voiced Speech With Noise Variance = 1

Original Signal

| 1_1“’ "‘ ‘," ‘.

Hil l 11

Noisy Signal

h_ If ‘ |
VUL AN ﬂ” |

0 30 100

750 200 250

Figure E.10 Phase of the FFT of the clean voiced speech after the STT (0% = 1).
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Appendiz F. Total Squared Error With Respect To Both The Clean And Noisy
Speech Signals Using Compactly Supported Wavelets

This Appendix contains bar-charts showing the total squared error (TSE) between the de-
noised speech signals and both the clean and noisy speech signal, using db6, coifiet(6), and db20.
We studied the effects of both the soft and hard thresholding techniques (STT and HTT) on seven
different noisy signals with signals-to-noise-ratios (SNR): -10db, -6db, -3db, 0db, 3db, 6db, and
10db. Eight different speech de-noising systems (SDS) have been studied:

1. WRINP means that the SDS uses the wavelet transform on the real and imaginary parts
of the Fourier transform of the original noisy signal. This method reconstructs the signal using the
phase of the original noisy s;..ech signal.

2. WRI means that the SDS uses the wavelet transform on the real and imaginary parts
of the Fourier transform of the original noisy signal. This method does not use the phase of the
original noisy speech signal.

3. WTNP means that the SDS uses the wavelet transform of the original noisy signal (no
Fourier transform). This method reconstructs the signal using the phase of the original noisy speech
signal.

4. WT means that the SDS uses the wavelet transform of the original noisy signal (no Fourier
transform). This method does not use the phase of the original noisy speech signal. This method
is based on Donoho’s original work on wavelet shrinkage.

5. SRINP means that the SDS uses Stein’s criteria directly on the real and imaginary parts
of the Fourier transform of the original noisy signal. This method reconstructs the signal using the
phase of the original noisy speech signal. This method resembles the spectral subtraction developed
by Steven Boll.

6. SRI means that the SDS uses Stein’s criteria directly on the real and imaginary parts

of the Fourier transform of the original noisy signal. This method does not use the phase of the




original noisy speech signal.

7. STNP means that the SDS uses Stein’s criteria directly on the original noisy signal (no
Fourier transform). This method reconstructs the signal using the phase of the original noisy speech
signal.

8. ST means that the SDS uses Stein’s criteria directly on the original noisy signal (no

Fourier transform). This method does not use the phase of the original noisy speech signal.

The bar-charts (SNRs 0db and 6db), of the TSE with respect to the noisy signal (see figures
F.1 and F.3), show the closeness between the de-noised signals and the noisy signal. Ideally, we
would like the processed speech signals to be as far away as possible from the noisy signal, indicated
by large TSE. All the bar-charts illustrate the fact that the STT outperforms the HTT, since all

the STT bars have higher TSEs than the HTT bars.

The bar-charts (SNRs 0db and 6db), of the TSE with respect to the clean signal (see figures
F.2 and F.4), show the closeness between the de-noised signals and the clean signal. Ideally, we
would like the processed speech signals to be very close to the clean signal, indicated by small TSE.
All the bar-charts illustrate the fact that the STT outperforms the HTT, since all the STT bars

have lower TSEs than the HTT bars.
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Figure F.1 TSE using noisy speech and the de-noised speech (0db) with wavelets: db6, coiflets,
and db20.
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Figure F.2 TSE using clean speech and the de-noised speech (0db) with wavelets: db6, coiflets,
and db20.
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SNR = 6db (thresholded vs noisy)
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Figure F.3 TSE using the noisy speech and the de-noised speech (6db) with wavelets: db6, coiflets,
and db20.
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Figure F.4 TSE using the clean speech and the de-noised speech (6db) with wavelets: db6, coiflets,
and db20.
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Appendiz G. Spectrum Analysis Of The Clean And Noisy Speech Signals

This appendix contains both the wide-band and narrow-band spectrograms of the clean speech
signal, the 6db noisy speech signal, and the Odb noisy speech signal. Observe, the high energy of
the first formant frequency (below 500Hz), the second and third formants frequencies (below 3kHz).
In all figures, the vertical axis represents frequency and the horizontal axis represents samples of

the signal (sampling frequency is 16kHz).
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Figure G.1 Clean speech wide-band and narrow-band spectrums.
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Figure G.3 Noisy speech wide-band and narrow-band spectrums (0db).
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Appendiz H. Spectrum Analysis Of The De-noised Speech Signals (0db and 6db)
Without Using Wavelets

This appendix contains the wide-band spectrograms of two de-noised speech signals (0db
and 6db). The speech signals were processed using the soft thresholding technique (STT) and
Stein’s criteria. Figure H.1 shows the noisy speech data processed in the time domain using Stein’s
criteria. Observe that when the signal-to-noise ratio (SNR) is 6db, all the formant frequencies
are still preserved, however, the third formant frequency of the O0db processed speech signal was
affected by the non-linear shrinkage. Figure H.2 shows the effects of applying the STT to the real
and imaginary parts of the Fourier transform of the original signal. The original noisy phase was
used before reconstruction of the de-noised speech signal. Observe that as the noise level increases
(i.e., from 6db to 0db), the formants are affected. In all figures, the vertical axis represents frequency

and the horizontal axis represents samples of the signal (sampling frequency is 16kHz).
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Figure H.1 De-noised speech using (ST) wide-band spectrum (0db and 6db).
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Figure H.2 De-noised speech using (SRINP) wide-band spectrums (0db and 6db).
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Appendiz I. Spectrum Analysis Of The De-noised Speech Signals (0db and 6db)
Using Wavelets In Time

This appendix contains the wide-band spectrograms of two de-noised speech signals (0db and
6db). The speech signals were processed using the soft thresholding technique (STT) and Stein’s
criteria was applied to the wavelet transform. Observe the aliasing produced by db6 and coiflet(6).
This aliasing is mainly due to the fact that these wavelets have Fourier transforms with many
high energy side-lobes. All wavelets used (db6, coiflet(6), and db20) preserve most of the formant
frequencies. Notice the performance of the db20; no aliasing and very clear formant frequencies.
In all figures, the verticz® axis represents frequency and the horizontal axis represents samples of

the signal (sampling frequency is 16kHz).
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Figure 1.1 De-noised speech using (WT and wavelet db6) wide-band spectrums (Odb and 6db).
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Figure .2 De-noised speech using (WT and wavelet coiflet(6)) wide-band spectrums (0db and
6db).
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Figure L3 De-noised speech using (WT and wavelet db20) wide-band spectrums (0db and 6db).
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Appendiz J. Spectrum Analysis Of The De-noised Speech Signals (0db and 6db)

Using Wavelets In Fourier

This appendix contains the wide-band spectrograms of two de-noised speech signals (0db and
6db). The speech signals were processed using the soft thresholding technique (STT) and Stein’s
criteria was applied to the wavelet transforms of both the real and imaginary parts of the Fourier
cransform of the original noisy signals. The original noisy phase was used before reconstruction
of the de-noised signal. Observe that most of the formant frequencies are still preserved for all
wavelets used and that there is no noticeable aliasing caused by any wavelet. In all figures, the
vertical axis represents frequency and the horizontal axis represents samples of the signal (sampling

frequency is 16kHz).
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Figure J.1 De-noised speech using (WRINP and wavelet db6) wide-band spectrums (0db and
6db).
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Figure J.2 De-noised speech using (WRINP and wavelet coiflet(6)) wide-band spectrums (0db
and 6db).
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Figure J.3 De-noised speech using (WRINP and wavelet db20) wide-band spectrums (Odb and
6db).
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