
AD-A280 468

NASA Contractor Report 194906

ICASE Report No. 94-27

4. ICASE
ANALYSIS OF OPTIMISTIC
WINDOW-BASED SYNCHRONIZATION

-DTIC
EECTE

Phillip M. Dickens
David M. Nicol
Paul F. Reynolds, Jr. , a

J.M. Duva

Contract NASI -19480 9418964
April 1994

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association

9-4 • ••

Best
Available

Copy

Analysis of Optimistic Window-based

Synchronization *

Phillip M. Dickens David M. Nicol

ICASE College of William and Mary

Paul F. Reynolds, Jr. J. M. Duva

University of Virginia University of Virginia

Abstract

This paper studies an analytic model of parallel discrete-event simulation, compar-
ing the costs and benefits of extending optimistic processing to the YAWNS synchro-

nization protocol. The basic model makes standard assumptions about workload and
routing; we develop methods for computing performance as a function of the degree
of optimism allowed, overhead costs of state-saving, rollback, and barrier synchroniza-
tion, and LP aggregation. This allows an approximation-based analysis of the range
of situations under which optimism is a beneficial extension to YAWNS. We find that
limited optimism is beneficial if the processor load is sparse, but that aggregating LPs
onto processors improves YAWNS relative performance.

"This wnrk was supported by the National Aeronautics and Space Administration tinder NASI-19480
while Dickens and Nicol were in residence at the Institute for Computer Applications in Science and En-
gineering (ICASE), NASA Langley Research (C'enter, Hampton, VA 23681. Nicol's work was additionally
supported by Carleton College while he was resident as a visiting research associate, and by NSF grant
(CR-9201 195.

1 Introduction

Discrete-event simulations model physical systems. The literature on parallel discrete-event
simulation (PDES) usually views a physical system as a set of communicating physical

processes, each of which is represented in the simulation by a logical process (LP). LPs
communicate through time-stamped messages reflecting changes to the system state. A
time-stamp refhects an instant where a state change occurs in the physical process model.

Parallel discrete event simulation poses difficult synchronization problems, due to the

underlying sense of logical time. Each LP maintains its own logical clock representing the
time up to which the corresponding physical process has been simulated. The fundamental

problem is to determine when an LP may execute a known future event, and in so doing

advance its logical clock. If ani LP advances its logical clock too far ahead of any other
LP in the system it may receive a message with a time-stamp in its logical past, called a

straggler. The threat of stragglers is dealt with by saving the simulation state periodically,
and rolling back as appropriate when a straggler arrives . Messages sent at times ahead of
the straggler's time-stamp must be undone. Fundamental problems of PDES are reviewed

in Misra (1986), Fujimoto (1990), Righter and Walrand (1989). Nicol and Fujimoto (1994)

give a more current state-of-the-art review.

Most PI)ES synchronization protocols fall into two basic categories. Conservative pro-

tocols (e.g. C(handy and Misra 1979, Bryant 1979, Peacock, Wong and Manning 1979,

Lulbachevsky 1988, C'handy and Sherman 1989 and Nicol 1993) do not allow an LP to pro-
cess anl event with time-stamp t if one is unable to assert that it will not receive another
event with time-stamp less than t at some point in the future. Optimistic protocols (e.g.

Time Warp, Jefferson (1985)) allow an LP to process an event before it is known for certain
that the LP will not later need to process an event with' earlier time-stami). Causality errors

are corrected through a rollback mechanism. A more careful taxonomy of protocol charac-

teristics is (letailed in Reynolds (1988); in keeping with standard (but imprecise) practice,
we will speak in terms of conservative and optimistic protocbls.

The earliest synclhronization protocols are asynchronous-an LP synchronizes solely on

the basis of interactions with LPs with which it directly communicates. Recently more
synchronous protocols have attracted interest. While details vary, the basic idea is to in-

corporate barrier synchronizations and global reductions on functions of future simulationt"
times. Examples include Moving Time Window (Sokol Ht al. 1988), Conservative Time Win- &I

(lows (Ayani and Rajaei, 1992), Conditional Events (Chandy and Sherman, 1989), Bounded 11

Lag (Lubachevsky, 1988), Synchronous Relaxation (Eick et al., 1993), Bounded Time Warp, 0

(Turner and Xu, 1992), Breathing Time Buckets (Steinman, 1991), and YAWNS(Nicol,'

199:3). The advantage to a conservative protocol is that synchronization information moves
quickly through the system, lowering overhead costs. [his efficiency usually comes at the

GOden

1D1it Special,

conservative optimistic
window window

simulation time i I I i

t t+C t+A

Figure 1: Extended YAWNS window is comprised of one conservative and one optimistic

subwindow.

price of more pessimistic synchronization, e.g., an LP A may block against the threat of a

receiving a message at time t, whereas the threatened message is actually from LP B to LP

C. The global mechanisms allow for efficient computation of simulation times, like t, but do
not handle routing details well. The advantage to an optimistic protocol is the elimination of

a separate GVT (G(lobal Virtual Time) calculation, and the reduction of the risk of cascading

rollbacks. As for the conservative methods, the price paid is the reduction of asynchrony,
and more limited opportunities for parallelism.

Our interest is in the conservative YAWNS protocol, and in determining conditions un-
der which it makes sense to extend it by incorporating optimism. YAWNS conservatively

constructs a window of simulation time within which events on different processors may be
concurrently simulated (details follow in Section 2). This conservative uindow tends to be

small. However, under the YAWNS mechanism, an LP that executes an event outside of
the window risks receiving a straggler message. We extend optimism to YAWNS by ap-

pending an optimistic u'indow to the conservative window; when an LP executes events in
the optimistic window it must be prepared to deal with straggler messages. The advantage

is to increase the number of events processed per window, in hopes of lowering the amor-
tized cost of of computing and synchronizing at the window. The cost of the extension is
due to state-saving, rollback, and additional global synchronization. The basic form of the

extension is illustrated in Figure 1-at simulation time t all LPs use the standard YAWNS

mechanism to compute the conservative window [t, t + C), but also append an optimistic

window [t + (7, t + A). Processors synchronize globally at simulation time t + A. For our

purpostes wc take A as a user-specified parameter that governs the degree to which optimistic
execution is permitted. We will call the method YOW (YAWNS Optimistic Window).

We find that there is a best optimistic window size that is much larger than YAWNS's.

We derive formulas for YAWNS' and YOW's performance as a function of synchronization,
state-saving, and event-reprccessing costs. Using these we determine that when the problem
is sparse-one fine-grained LP per processor- then asymptotically (as the number of LPs

2

increases) then YOW prevails. However, if we fix the size of the architecture and aggregate

LPs onto processors, then YAWNS can prevail.
The remainder of the paper is organized as follows. Section 2 describes our analytic model

and its relationship to others in the literature. Section :3 develops methods for approximating

the probability distribution of an LPs workload, included reprocessed messages due to roll

backs. Section 4 applies those approximations to compare conservative YAWNS with its

optimistic extension, and Section 5 presents our conclusions.

2 Model

Our analysis is of a parallelized queueing network simulation. LPs represent servers, and

events occur when jobs either enter service, or are received by a queue. A job's random

service time increases its LP's simulation clock by the service amount. Event processing

cannot be interrupted; furthermore a job's post-service destination is presumed to be known

at the time it enters service. The destination is chosen uniformly at random from the set of

all LPs. We do assume that the data content and next destination of a serviced job depend

upon the contents and times of all jobs received by the LP prior to the event entering
service. Because of this, a message reporting the job's arrival at its new destination is sent

to its recipient at the time the job enters service. This is called prc-sending the job, and

is an important aspect of both YAWNS and Time Warp. A message has both a scnd-tinc

and rcccivc-time, corresponding to the service-entry and service departure times. Service

time (reflecting an advancement in simulation time) is also random, and is exponentially

distributed with rate p',. We assume that the cost of processing a service-entry event or a

job arrival event is unity; our expression of physical execution times will be in these units.

While simple, models like there are the basis for several analytic studies. This model is

similar to the one studied by Gupta, Akildiz and Fujimoto (Gupta ct al., 1991) (which we'll

refer to as GAF) in their study of asynchronous Time Warp. The main differences are that
we assume unit cost for executing an event and the GAF model assumes an exponentially

distributed execution cost; that our model is basically that of a queueing system with single

servers and a non-preemptive queuing discipline whereas the GAF model is of a queuing

system with infinite servers; our model indirectly reflects the effects of communication delay,

and the GA F model assumes instantaneous communication. These differences are significant

enough to prevent us from quantitively comparing our model results to GAF's. We do note

that (AFs assumption of random event costs should tend to worsen performance over our

model, but tLe instantaneous communication and infinite servers should tend to improve

it over ours. Furthermore, one increasce the available i)arallh'lism in the GAF modeh by

increasing the number of messages; in our model one must increase the number of LPs.

3

Our model is also loosely related to the self-initiating model studied by Nicol (1991), and
is subsumed by Nicol's message-initiating model in his study of YAWNS (Nicol, 1993). The

former model concentrates on the effects of fan-outs greater than one, and ignores the effects
of rollback; the latter model provides the analysis of YAWNS that we use in this paper. The

bonding model of Eick ct al. (199:3) is closely related to ours, in that it essentially describes
tile behavior of a parallelized queuing simulation identical to ours c.rccpt that a message

describing a job's departure is sent only at the simulation instant when tile job departs-
we assume the message is sent at the time the job) enters service. Another difference is
that we assume that a re-executed event may send its subsequent message to a different

LP than before, whereas the bonding model assumes it is directed to the same LP. Finally,
the randomly uniform routing assumption is shared by the model studied by Felderman and

Kleinrock (1991), who make different assumptions concerning time-stamp advancement and

event execution time.

Our analysis is unique in several ways. First, nearly all of the afore-mentioned models

regard communication, state-saving, and synchronization as negligible. We believe that
these same costs largely define which synchronization approach is best suited for a problem,

and so should l)e explicitly incorl)orated in the model. Secondly, our analysis is of an

optimistic window-based scheme where performance del)en(ds on tile level of optimism, in
this regard only Eick ct al. ' model is similar. Our analytic approach is different, but can

also be extended to the Eick ct al. model. While we apply the model to the problem
of extending YAWNS, the approach applies more generally to the analysis of window-based
ol)timistic protocols. Finally, only the analysis in Nicol (1993) considers tile beneficial effects
of aggregating LPs: as we shall see, this consideration can make it more advantageous to

fore-go op)timism in a sufficiently aggregated case, whereas optimism is better in the non-

aggregated case.

Our analytic approach is computational and is based on simplifying approximations.

We develop an intuitive al)l)roximation to the l)robability distrilbution of the number of
events processed by an LP while executing a window. The workload distribution includes

reprocessed events induced by rollbacks. With this distribution as a basis we add overhead

costs, and coml)ute the average execution cost (in real time) per unit simulation tiue.
Before proceeding to the analysis, it is useful to review the YAWNS mechanism. Presume

that all LPs have execute(d all events up) to simulation time /. U nder the assumptions that

permit 1)re-sending messages, each LP i can examine its state and l)redidt the depart'ure time
di(t) of the next job) to receive service, excluding the one receiving service at. t, assmiinu ng
no further message arrivals at i prior to that, job entering service. This sort of lookahead is
called conditional knou'ld•q by ('handy and Sherman (1989). because the validity of di(I) is
conditional. I sing standard iniimum reduction techniques, the Lls can lmquickly comnpute

w(t) = min,{,/,(t)J} the conservative YAWNS window is Bt,w(t)). 1y construction, no job

entering service during the [t, w(t)), window also departs service. Coupling this feature with

message pre-sending, no message generated by an event in [t,w(t)) has a receive time in

[t, wv(t)).

We extend optimism to YAWNS by requiring that LPs synchronize at the upper edge of

the optimistic window. The same min-reduction as before is used to synchronize, only now

the result w(t) indicates the upper edge of a "safe region" into which no straggler message will

ever venture. Only one global synchronization is needed per window- a min-reduction serves

both to synchronize the processors at some time t, and to compute w(t). The processors

know to synchronize again at time t + A. No state-saving need be performed prior to any

event in the conservative window.

One essential difference between YOW and Bounded Time Warp (Turner 1992) is the

computation and exploitation of the conservative window. Another is the proposed syn-

chronization mechanism. Special care must be taken when synchronizing at t + A since an

LP may simulate up to that time but then be rolled back. Bounded Time Warp proposes

an essentially linear time (in the number of LPs) termination detection mechanism. More

efficient methods can be supported in hardware (Reynolds et al. 1993), or using special

algorithms in software (Nicol 1993a). Our model presumes Nicol's software solution.

We assume that an event at LP i which is reprocessed due to rollback randomly selects

a new destination with each reprocessing. This reflects the assumption that a message's

content and destination is a sensitive function of the complete message history at LP i up to

the time where the job enters service. Thus two messages are generated upon reprocessing

an event, an anti-message to cancel its previous routing and a new routing message sent

to another (probably different) LP. Like other analyses of Time Warp, we assume that the

anti-message exacts no computational cost at either the sender or receiver. However, our

model will not assume that all anti-message is received instantaneously. We do not model

the message delay directly, but rather model the effects of such a delay.

3 Analysis

Within any given window of width A, an LP will execute (and re-execute) a random number

of events, say W. This random variable (like all others in our analysis) depends on A, but

this dependence will not be expressed in the notation. Our initial goal is to determine the

probability distribution of W; note that this distribution is the same for all LPs under the

uniformity assumptions made. Given the distribution, we can add overhead and execution

costs, aid determine the mean time PA required to complete the window by the processor

re(qiiriiing the longest time to do so. PA/A serves as our metric, measuring the average

execition time reqiiired per unit simulation time.

We focus oin "genlerations" of messages. a uiotionl whlich arises as follows. Imagine that

LPs synchronize at f, and thien each executes all known events inl the wind1ow without paying

all%' attention to any' possible communications. The set of messages sent during the first

sweep with timle-stamlps ill [t, t + A) are inl generation 1. Imagine now that anl LP gat hers

upl all the generation 1 messages sent to it, and p~rocesses them. These imust cause rollb~ack.

anti-mnessages, and new routing messages. The set of all anti-messages anl(niew rouiting

messages are inl generation 2. In1 general, a miessage is inI generation I + I if It is the direct

result of a rollback caused byV a generation 1 message. We denote the randIom mnunber of

generation i' messages received by ani LP as Gi, and denlote by Ri the randomn number of

events processed as a result of receiving generation imessages.

We assume that A is smiall emloiigh and the message denlsity is high enouigh to ignore thet

possiblitY of a job) received inl [t, t + A) going inito service inl that same window. U nder this

assuimlption, tile numbher and timies of all service-entry events (iig[,f+A r nw

after tile LPs synchlronize at t, and remain uinaltered (except for dlestination and~ conlteint)

While processinzg [I, I + A). Tile number of suich events at a giveni LP is a random variable S

t hat is P~oisson dlist ri bited with mean Api., All ofther events are Job arrivals, of which thlere

are J1. which is also Poissonl with! iuleali A/1s.

Event reprocessing costs depend oil ho0w quickly the p~aral lel slimulator receives and reacts

to straggler messages. For example, the analysis of Cuipta ct al. (1991) assumnes zero message

transmission delay, and that rollbIack occurs i immediately following ftile comp 1 lete p~rocessing

of whatever event is b~eing servedI at thje instant, the straggler miessage arrives. If two or

more st raggler.i arrive (hirinng t Iiat p~rocessi ng t i me, t he reprocessinmg effect, is as t himigli onlvl.

t.hle straggler withi least. time stamnpJ was received, others exact no ad(di tional cost. Hut. hlow

(c0m1sidler thle effect. a coimnllimica~tion delay may' have onl the algorithm. If A is smnall enoughi

anl LIP will have few events ill a wi li(Iow: inl the time it takes a. message to travel bet weeni

p)rocessors, tie reci pient LIY will al readyv be readyX to ycrnz ttm .Ee 1

COll mIInII icat ion is faster it is frequiently the case (and we have obser'ved empi ricallyI oti act izal

applications) that tile cost of p)robing for new messages after each evemit is prohibit ivelv hiigh

on (list imi bt ed memory archiit ect ires, b~ecaulse suich a prob~e iiivolves a. s 'stem) c-all. To model

thus effect, we assume t hat if a straggler muessage is received(att somue tili 114 E [t. t + A) tOhel

lie(effect of that. straggler is to re-execute all events at that LIT froml ; to t + A, anid to seiid

amiti-tinessages after all messages generated p~revioulsly bvy t hose events.IfalLrcie

A- gemieratiololl stragglers, we asshinle t hat, each is p)rocessed(serially, InIcuIring711 k separate

recoml)pim at lon costs. Thiis assuiliption is reasonable so long as all LP~ has only' a few events

Ill a winidow.

If we dlefine geiieratioi 0) miessages as corresponidi ng to thle service enit rv events anid job

arrival evenits. we write UR +.1 and~ exp~ress the total numnber of evenits processed inI the

Window by
W = -•Ri.

i=O

The distribution of each reprocessing cost Ri depends on the number and time-stamps
of generation i messages. The actual distributions for these messages are untractably com-
plicated, so we will approximate. For generations i > 1, we assume that Gi has a Poisson

distribution. Such an assumption is standard, since given a total number N generation i - I
messages, the number arriving at an LP is binomial B(N, I/P), P being the number of LPs.
Binomials with large N and small probabilities of success are frequently modeled as Poisson.

We also approximate the distributional form of the random arrival time of a generation
i message. Each such message corresponds to a service-entry event in some LP; the arrival

time is the service-entry time plus an exponential. Each service entry event has some rank
reflecting whether it is the first, second, or so on service entry event in [t, t + A), on its LP.

The arrival time distribution of the message sent by the i"• service entry event following time
t is / plus the convolution of i + I i.i.d. exponentials, i.e., an Erlang-(i + 1); we say that the
arrival message has rank i -+ 1. We will have occasion to condition on the service-entry event

lying in [t, t + A), in which case the message's arrival time distribution is suitably modified.

In order for such a message m to be sent (in generations > 0), the I" service entry event
must be reprocessed, implying the arrival of an earlier straggler-information that alters
in's arrival time distrilbution. Our model does not attempt to capture this distributional

dependency. Under our simplifying assumption then, every generation i arrival message in
[t. I + A) has a time-stamp whose distribution is t, plus some Erlang conditioned on being

less than A. Let ai,k denote the mean fraction of generation i messages that have rank k.
Letting fk(.q) be the density function for an Erlang-k conditioned on being less than A, we
approximate the arrival time density function of an arbitrary generation i message as the
mixture / + E'.- 2 ai,(

Table 1 summarizes our notation. All random quantities are LP-oriented, rather than

system-oriented.

It remains to determine weighting factors {aik} and the distributions for W, Gi, and

R,. The approach is to condition on S + .1 = k, and determine distributions for G6, Ri,

and W suitably conditioned, call them Gi(k), and Ri(k), and W(k). Assuming that all

arrival messages are independent of each other, we compute W(k) = Eio Ri(k), because

the individual random variables in the convolution will be independent. It is straightforward
then to lincondition on S + .1 (since S and J are independent and Poisson). The values for

E[6Gj] and {ji,kl can be built up with increasing i, as will be shown.
Let us first consider E[G,]. A generation I message arises whenever a service-entry event

in [i, t + A) sends an arrival message with time-stamp less than t. + A (all other arrival events

were sent by service entry events in previous windows). If we condition on S = k service-

7

W Total events processed in a window

S Service entry events in a window

J .Job arrival events

As Service rate for queue server

Gj Generation i arrival messages received

R; Events reprocessed by all generation i arrivals

I'i Events reprocessed by single generation i arrival

aij Fraction of generation i arrivals with rank j

fj(s) Density function of Erlang-j conditioned on s < A

Fj(s) Cummulative distribution function for Erlang-j

B(n, p) A binomial random variable with parameters n. and p

Hj (s) Cummulative distribution function of Erlang-j conditioned

on sum of first (j - 1) stages being less than A

Table 1: Summary of Notation

entry events in [t, t + A), the joint distribution of their times in [t, t + A) is identical to that

of k independent [t, t + A] ,niform random variables (Ross 1983, pg. 37). Choosing one of

these k uniformly at random, the probability that its arrival message lies outside of [t, t + A)

is given by

Pr{Arrival message time for service entry event > t + A I S = k} = j -e"' dv

1.0-

A

This leads to the observation that the mean number of arrival messages generated in [t, t +A)

that fall outside of [t, t + A) is 1.0 - e-t A. Since the mean total number of arrival messages

generated in [t, f - A) is uA, we obtain

E[G,] = liA - (1.0 _ e-u'A).

Values for the {ai,k} are also easily derived. For an arrival message to be of rank j it

is necessary that the Erlang associated with its arrival time t + a be less than t + A. From

Bayes Theorem we obtain

al,j = Pr{A generation I arrival message in [t, t + A) has rank j > 2}

= Pr{ a - Erlang-j I a < }
F (A) for j > 2,

Zk='2 Fk.(A)

8

where F-. is the cumulative distribution of all Erlang-k with rate parameter P,

We now turn to the analysis for higher generations. Suppose E[Gi] and the values f a,,}

are known for generation i: condition on S + .1 = k and consider the distribution of R,(k).
U nder our assumptions. an arrival at time t + I' E [t.t + A) will cause the reprocessing of

very known arrival event anid service-entry event with time-stamp between t + I' and I + A.

(Given S + .1= k we view the placement in time of events on [t. t + A) as that of k uniforms

on [It. / + A] (Ross 1983. !)g.37). As ai consequence. the number of events reprocessed by a

rollhack-inmucing arrival at time t + , has the dist ribution of a Binomial H(/k. (A - o)/A.).

representing the sum of k' Bernoullis with success probability (A - v)/A. (Coupling this fact

withi the assinned (list ril)t ional form of generation imessages we compute

Pr{ n events reprocessed by generation /message jJ =/,} =

E ai(,fj(i') Pr{ B(k. (A - ?,)/,4) = 71 }dv.()
J=2

Equation (I) approximates tihe (list ribution of random variable rii(k), the random number

of events reprocessed by a single generation i message, conditioned on S + .1 = V. \We

ignore here the fact that the arrival message is itself an arrival event, and that the set of

known arrival events is continuouslv in flux through successive generations. Accepting this

we compute the distribution of Ri(k) as tihe random convolution of .l independent intstances

of "i(A). .1 being Poisson with rate E[G6].

Values {a,1. } are compited in a similar fashion. If we condition on a generation i arrival

at timne I +v and(condition on there being ni service-entry events in [P. I + A). then the number
of these falling between / + v and I + A is binomial. The probability that a generation i + 1

message of rank j is generated by this arrival is zero if there arenit enough service-entry

events. i.e., if j - I > m. Otherwise it is the probability that the (j- 1)"' service-entry event

occurs after v'. and that the message it generates falls within [I. + ,A). This giwVs

h ,+j.(m) = Pr{generation i message creates a rank j generation 1 + I message I t)= }

= H.,(.A) x a,..,.j,)(,) Pr{ B(m. v/A) > j - 1}du, (2)

where we recall that 11) is the citmulat iw y dist ribbt ion function of all Erlang-j conditioned on

tie suml of its first j - I exponential stages being less than A. 1Ha(A) gives us the probability

that a reprocessed rank-(j - I) service-entry event produices a message iin the next generation.

Figure 2 helps to explain tiese ideas. A situation wiit hi = 5 is shown. where all arrival

message at time t + I' falls ahead of thlie first three service entry eveents. The service entry

events ahead of the arrival have ranks -1 and 5 respectively. Arcs illustrate the seil/receiwy

time difference bet ween the messages sent by the reprocessed events: the rank .1 event message

t+V

= 12 3 4," 5,-

S = 5 t+A

Figure 2: Reprocessing of a rank 4 service-entry event generates a rank 5 message for the

next generation.

falls within the window, the rank 5 event message does not. In order for there to le a rank

5 message generated, the 4th ranked service event must lie to the right of v, as must the
receive time of its message. The distribution of that receive time is an exponential added to

the distribution of 4"h service event, the latter of which is a conditional Erlang-4.

For each rank j let bi+1 ,j I)e the result of unconditioning equation (2) on S. Then, recalling

thIit each reprocessed service-entry event generates two messages (assumed to have the same

time-stamp), the mean number of generation i + I messages with rank j is 2 x E[(xi] x bi+±,j,
and the coefficients {(i+lj} are given Iy

bk 2i+,,jO
=k k[)]

Finally. the mean number of arrival messages in the n,'xt generation is simpify

S= 2 b
k=2

U sing these recursions ,ne may, for every ,+./= k, compute the distribultion of Hi(k), for

all generations i = 1,2 ('onditioned on S+.J = k, the random variables H0(k), Ri (k),••.

may be taken to be indlepen(lent (because the processes driving them are highly randomized

arrivals from elsewhere), whence we may compute the distribution of the convolution W(k) =

E"=-1 Hj(A'). Finally, knowing this distrilbition for each +'+J = k, we comlpute the distril)uition
of W by uinconditioning on ,; + .1 (known to b)e Poisson).

Of course, any compiter program calculating these distributions must truncate the in-

finite sums. Taking p, = 1, we have found that summing over the first twelve generations

yields accurate numimbers whien A E (0, 2 p,).

The distribution of W describes the workload of a single LP, in terms of the numbers of

events processeI. With large numnlbers of LPs and the randomizing message routing, we may

treat the LP workloads as being independent random variables. Ulnder this assumption it. is

I0

straightforward to express the expected maximum workload among N LPs. Letting MN(A)

be the maxinmum workload, we know that for every non-negative integer w

Pr{MN(A) < w} = Pr{W < w}N

so that

E[MN(A)j = Pr{MN(A)>w)

= (1.0-Pr{W < w}N).
w=O

Niunerical problems may arise comp)uting yJ when y is small and x is large; a good

approximation for E[MA(A)] is the so-called charactcristic maximum, used for instance in

ELick ,t al. (1993). Given N. the characteristic maximum of W is the smallest value w, such

that Pr{ 11' > w,.} < I/N. Since W is discrete, we further refine the estimate with linear

interpolation of 14"s cumulative distribution function between w, and w, - 1, in essence
creating a continuous version 14' and solving for tbi such that Pr{fW > b.} = I/N. tb-

estimates E[MN(A)].
The uilitt y of our model is illustrated by Figure 3, where we compare model predictions of

E[Mf; 4(A)] and E[N1, 024(A)] with measurements (from simulation of our model) for varying

values of A. Each measurement point is estimated from one hundred window replications.

As our Iurpose is only to ensure that the model captures general trends we omit confidence

intervals. We see that the model predicts performance tolerably well over a range where the
predictions span a factor of ten between smallest, and largest, although there is a breakdown

at the larger end.

It is also instructive to consider how the fraction of committed events (those events that

are not later reprocessed) behaves as a function of A. This is illustrated in Figure 4, where we

plot the ratio of the expectedI maximum committed workload on a processor to the expected

maximum total workload, for 64 and 1024 LPs. For both curves shown, the fraction of useful

work decreases linearly in A after a certain point. This suggests that under the assumptions

of our model, it does not make sense to increase A indefinitely. This is explained in the

section to follow.

4 Comparison with YAWNS

It is instruictive to consider how E[MN(A)] behaves as a function of A. E[MN(A)] is basically

the pro(utct of three terms, (i) the number of message generations required until all LPs have

finished the window, (ii) the average miniber of rollbacks per generation, (iii) the average

II

40.0

* K Observed N = 1024
+-+ Predicted N - 1024

-B-0 - Observed N = 64
Cc30.0 - Predicted N - 64

> 20.0

Ez

E 10.0

0.0
0.0 0.5 1.0 1.5 2.0

Size of Window / mean service time

Figure 3: Comparison of observed and predicted mean maximunm events processed in a
window by any LP.

number of messages reprocessed per rollback. Our simulations have suggested that the
number of generations grows linearly in A, an observation that agrees with the analysis of
Eick et al. (1993). The number of messages reprocessed each rollback also increases linearly

in A, for the simple reason that increasing the window size introduces new events at the top
of the window to be rolled back along with the ones which were rolled back with smaller
windows. The average number of rollbacks per generation is also linear in A, because each
arrival message is assumed to cause the re-evaluation of all later messages. E[MN(A)] is at
least a cubic function of A, so that the cost per simulation time unit E[MN(A)]/A (whose
units are execution time per simulation timte unit) is at least quadratic in A. This suggests
that there may be some A* minimizing this cost. Figure 5 confirms this intuition. In fact, it
-is interesting to note that A* appears to be slightly less than u, = 1. This too is in agreement

with the model of Eick ct al., even though the models and costs are different. We conclude
that A = y, is an excellent choice, and in the remainder presume this equality.

It turns out that the behavior of E[MN(P,)]/1,q in N is an almost perfectly linear function
of log N in the range considered, with E[MN(/s,)]/lp8 ; log N+2.9. To incorporate the effects
of state-saving, we'll assume that the per-event cost of state-saving is a factor of a, so that
the cost of executing n events with attendant state-saving is ao. Note that this model does

12

1.00

----- 1024 LPsS64 LPs

0.80

JUi

E 0.608

0.40

0.20 0
0.0 0.5 1,0 1.5 2.0

Size of Window / mean service time

Figure 4: Fraction of committed events as a function of A, for 64 and 1024 LPs.

not presume that state is saved each event; it only presumes that the aggregate state-saving
overhead amortized over events is a.

E[MN(A)] does not incorporate the cost of synchronization. To include these costs we
must consider how synchronization is performed in a computation of this type. A software
solution described by Nicol (1993a) has every LP engaging in synchronization activity once it
finds itself apparently at the synchronization point. We could assume some synchronization
cost for each and every straggler message, however this seems-excessive. Instead we'll assume
that the number of synchronizations are those one would incur by synchronizing at the end of
each generation; empirical evidence (Nicol, 1993a) suggests that each such synchronization
costs roughly twice that of a conventional synchronization. Our simulation studies show that
a window of width A = u, requires 2.5 generations on average, a figure that is relatively
insensitive to the number of LPs. Taking B as the execution cost of a conventional barrier
synchronization the overall execution cost per unit simulation time given N LPs is

(7op,,,,(N) ; oa(0og 2 N + 2.9) + 5B. (3)

Note that our assumed synchronization cost structure does not affect the optimality of
A* = i, since synchronization costs then grow linearly in A. Also note that B shows

13

40.0

-N -1024 LPs

---- N =64 LPs

E 30.0

.12
M

Uj

10.0
0.0 0.5 1.0 1.5 2.0

Size of Window / mean service time

Figure 5: E[MN(A)I/A as a function of A, for 64 and 1024 LPs.

no dependence on N. Asymptotically it must grow with log, N, however we presume that
the cost of executing an event is large enough to overshadow this dependence before N
b~ecomes extremely large..

Now consider YAWNS. Nicol (1993) established that the. average width of the conservative
window is at least q.,Vir/(C2N) ;zt 1 .25p./V'W-. In windows this small, the. average maximum
numb~er of events processed by any LP is no larger than 2, for large N it is much closer to 1.
Including the barrier synchronization, YAWN's cost per unit simulation time is no greater
than

CyL ()_ (2 +B) VAN 4
(7 3 jaws(N) - 1.25()

One consequence of A* ;:ý , is that for large N there is relatively little advantage to avoid
state-saving within the YAWNS conservative window, because the optimistic whindow is so
much larger. For instance, if N = 100, then only about 12% of a window avoids state-saving.
It costs very little to compute the conservative window, and so if convenient ought to be
(lone. However, the performance bene-fits from doing so are not large.

We may use equations (3) and (4) to compare the approaches, given values for overhead
costs. At a higher level we observe that YOW has an O(log 2 N) cost while YAWNS has an

14

40.0

- B - 0
0--* B - 0.1
)-4-< B B 1.0

30.0 B 10.0
-0 Alpha = 2

.g. 20.0

10.0

0.0 .
4.0 6.0 8.0 10.0 12.0

Log (base 2) N

Figure 6: Function specifying LP threshold N* after which YOW is better than YAWNS.

O(v"-NV) cost. For sufficiently large N, the optimistic approach will always achieve a lower
cost. How large must that N be'? We depict this graphically in Figure 6, plotting the solution
(to a) of equation (,opti,,, - 6ya,,s - 0, as a function of log 2 N and for various values of B.
Solutions a = a(N, B) < I are plotted as 1, since state-saving can never accelerate the cost
of executing an event. For any given value of a* and known value B, one can determine
the N* for which a* = a(N*, B), and determine that YOW is better than YAWNS for all
N > N*. Imagine that state-saving doubles the cost of executing an event. Plotting the
line a = 2 we look for its intersection with the various synchronization cost curves; N's
associated with the intersection define N*. For instance, if B = 0 then YOW is better for
N > 128. If B = 1.0 however, then YOW needs only N > 100, and if B = 10.0 it needs only
N > 40. YAWNS is clearly impacted more strongly by increasing synchronization costs, as
it synchronizes on the order of viN times more often than YOW.

The assumptions under which we've analyzed YAWNS show that if simulation time ad-
vances by exponentially distributed amounts and if only one LP is assigned to each processor,
then YAWNS has a relatively high cost. However, YAWNS performance is sensitive to both
of these assumptions. If an LP's service time is bounded below by -' > 0, then the size of a
YAWNS window at least 3'. This seemingly minor change of assumptions defeats the assured

15

asymptotic superiority of YOW, because it changes YAWNS O(,-N) cost to O(1/Y). The
relative performance of YAWNS and YOW depend primarily then oil a, B, and Y.

Next we show that by considering the effects of aggregating LPs onto processors, YAWNS

again circumvents YOW's assured superiority, even if service times are exponentially dis-

tributed. The reasoning is straightforward. Let N denote the number of LPs, P denote the

number of processors, and presume that each processor simulates N/P LPs. Tile average

size of a YAWNS window is y(N) = 1.25y.8/vWi; the number of events each LP executes

in a window is Poisson with rate 2y(N). Since LPs are independent, the number of events

a processor executes each window is Poisson with rate A(N) = 2.5v'/NIP. If Mp(A) is the

mean expected maximum of P Poissons with rate A, then YAWNS' cost per unit simulation

time per co-resident LP is

Dyawns (N) x Mp(A(N)) + B
1.25 N/P

Eick et al. study the asymptotics of Mp('), showing that Mp(r) log P/log log P for small

r, and Mp(r) - 2r for r = f2(log P). A(N) increases unboundedly in N, implying that for
sufficiently large N

2A(N) + BDyawn,,s (N) N/PNIP
B

= 4+ B
A(N)'

The second term vanishes as N grows, showing that YAWNS' normalized execution cost per

LP is asymptotically constant.
The result above does not imply that YAWNS' normalized cost is asymptotically 4 be-

cause constants in the asymptotic analysis are missing from our expressions. However, Fig-

ure 7 plots the predicted cost (not asymptotic) as a function of log(N/P), assuming P = 16

and B = 0. It also plots the predicted performance of YOW, again assuming A = Ps, under

the same values of N and P. State-saving overhead factors of a = 1, 1.2 and 1.5 are shown.

These figures are obtained by computing appropriate convolutions of W, and finding the

expected maximum convolved processor load. Since aggregation may change the relative

optimality for YOW of A = #,u we also computed costs assuming other window sizes. Differ-

ences from the presented data were small. Assuming that synchronization costs contribute

little to the overhead cost under high loads, it is clear now that YAWNs can do better than

YOW under high degrees of aggregation, or when state-saving overhead is significant.

It should also be noted that our model assumptions work against YOW in the aggregated

case. When LPs tend to communicate with other LPs on the same processor one may expect

advantages due to significantly reduced communication costs. This is especially true in our

16

10.0

SYawns
,*--*Alpha - 1.0
Ca-- Alpha - 1.2

E 8.0 Alpha - 1.5

05.' 6.0

3 4.0

2.01
0.0 2.0 4.0 6.0 8.0 10.0

Log (base 2) LPs per Processor

Figure 7: YAWNS and YOW normalized cost per unit simulation time under aggregation as

a function of log(N/P).

model because the recomputation cost due to delayed stragglers is consequential. However,
the assumption that messages are routed uniformly at random means that no such locality

is present in the model. Our costing assumptions remain valid in the aggregated case so

long as event processing costs are of the same order as communication and the window size

is small.

5 Conclusions

We have analyzed a simple model of parallel simulation, to assess the benefit of adding

optimism to an existing conservative synchronization protocol, YAWNS. Our approach is

novel to the the problem area, and is relatively simple. We show how to compute approximate

probal)ility distributions of processor workload. To these distributions we add overheads due

to state-saving, and synchronization. In addition, we consider the effects on performance

(hie to aggregating many LPs onto a processor.

The extension, YOW, remains window-based; our analysis predicts that there is some

optimally-size window, a prediction borne out by experiments. The window is relatively large

compared to YAWNS', but is still so small that on average a logical processor executes only

two events within it. Using this window size we construct equations predicting YOW's and

17

YAWNS' execution cost per unit simulation time, and observe that under the assumption
of one LP per processor, YOW is asymptotically better than YAWNS, as the number of

LPs grows. However, when we analyze performance allowing many LPs per processor we

find that YAWNS does better than YOW under moderate levels of aggregation, or when

state-saving costs are non-negligible.

Far-reaching quantitive conclusions are questionable for a model of this type. For both
YAWNS and YOW small changes in model assumptions will significantly affect quantitative

results. Qualitatively though we may infer that if actual reprocessing costs resemble those

in our model and global synchronization costs aren't high, then it is likely that limiting
optimism is a good thing in a window-based framework. We also conclude that if probability

distributions driving simulation time advance have no lower support, then YAWNS will not

do well when the problem is sparse relative to the architecture. However, this prol)lem

disappears for large problems where LPs are highly aggregated onto processors. Perhaps the

strongest conclusion we offer is that performance of parallel simulations is more strongly a

function of state-saving, synchronization/communication costs, problem size, and degree of

aggregation than it is for the specific synchronization protocols. Synchronization methods

ought to be chosen after the problem is known, and to take advantage of the problem's

characteristics.

An open and important question remains, whether a window-based framework offers

better performance than a completely asynchronous one. While we have not addressed this

problem, we believe that extension of our analytic approach to the Cupta ct al. model

assumptions may lead to the desired comparison. We also believe a more precise treatment
of the effects of communication delay is possible, which will lead to better understanding of

the effect the underlying architecture has synchronization behavior.

REFERENCES

Akyldiz, I.F., L. Chen, S.R. Das, R.M. Fujimoto and R.F. Serfozo 1992. 'erformance Anal-

ysis of Time Warp With Limited Memory. 1992 ACM Sigmetric (on1fercnce

Ayani, Rassul 1989. A Parallel Simulation Scheme Based on Distances Between Objects.

Proceedings of the 1989 ,5C5 Multiconfercncc on Distribut d Simulation, Volume 21 Num-
ber 2, 113-118. Society for Computer Simulation,

R.E. Bryant. Simulation if packet communication architecture computer systems. MIT-

LC5-TR-188, Massachusetts Institute of Technology, 1977.

Ayani, R. and H. Rajaei 1992. Parallel Simulation Using Conservative Time Windows.

Proceedings of the 1992 Winter Simulation (Confercncc, pgs. 709-717, Dec. 1992.

18

('handy, K.M. and J. Misra 1979. A Case Study in the Design and Verification of Distributed
Programs. IEEE Transactions on Software Engineering, SE-5,5 May 1979, 440-452.

('handy, K., and R. Sherman 1989. The Conditional Event Approach to Distributed Sim-
ulation. Proceedings of the 1989 SCS Multiconference on Distributed Simulation, pgs.
93-99, January, 1989.

Dickens, P. and P. Reynolds 1990. SRADS with Local Rollback. Proceedings of the 1990
SC(5 Multiconference on Distributed Simulation, 161-164, January, 1990,

Eick, S., Greenberg, A., Lubachevsky, B. and Alan Weiss, 1993. Synchronous Relaxation for
Parallel Simulations with Applications to Circuit-Switched Networks. A CM Transactions
on Modeling and Computer Simulation, Volume 3 Number 4, pgs. 287-314, Oct. 1993.

Felderman, R. and L. Kleinrock 1991. Bounds and Approximations for Self-Initiating Dis-
tributed Simulation Without Lookahead. ACM Transactions on Modeling and Computer
Simulation, Vol 1, No 4, Oct 1991, pp 386-406.

Fujimoto, R. 1990. Parallel Discrete Event Simulation. Communications of the AC(M, Vol-
mnme 33. Number 10, October 1990, 30-53.

Gupta. A., I. Akyldiz and R. Fujimoto 1991. Performance Analysis of Time Warp With
Multiple Homogeneous Processors. IEEE Transactions on Software Engineering. Volume
17, No. 10 pgs. 1013-1027, Oct. 1991.

.Jefferson, D.R. 1985. Virtual Time. ACM Transactions on Programming Languages and

Systems, 7.3 (1985), 404-425.

Lubachevsky B. 1988. Bounded Lag Distributed Discrete Event Simulation. Proceedings of
the 1988 SC'S Multiconference on Distributed Simulation, pgs. 183-191, January, 1988.

Lubachevsky B., A. Shwartz and A. Weiss 1989. Rollback Sometimes Works... If Filtered.
Proceedings of the 1989 Winter Simulation Conference. 630-639, December, 1989.

Lubachevsky, B. 1989a. Scalability of the Bounded Lag Distributed Event Simulation. Pro-
ceedings of the 1989 SCS Multiconference on Distributed Simulation 100-105, January,
1989.

Madisetti. V., D. Hardaker and R. Fujimoto 1992. The MINDIX Operating System for
Parallel Simulation. Distributed Simulation, SCS Simulation Series, Vol. 24, Num. 3,
pgs. 65-74, .Jan. 1992.

19

Misra, J. 1986. Distributed Discrete-Event Simulation. Computing Survey,,, Vol. 18, pgs.
39 - 64, March 1986.

Nicol, D. 1991. Performance Bounds on Parallel Self-Initiating Discrete Event Simulations.

ACM Transactions on Modeling and Computer Simulation, Volume 1, No.1, 1991.

Nicol, D.M. and R. Fujimoto 1994. Parallel Simulation Today. ICASE Technical Report #
92-62. To Appear in Annals of Operations Research, Nov. 1994.

Nicol, D. 1993. The Cost of Conservative Synchronization in Parallel Discrete Event Simu-

lation. Journal of the ACM, Vol. 40, Num. 7, pgs. 304-333, April, 1993.

Nicol, D.M., 1993a. (Global Synchronization for Optimistic Parallel Discrete Event Simu-
lation. Proceedings of the 7th Workshop on Parallel and Distributed Simulation, pgs.

27-34., May, 1993.

Peacock, J.K, J.W. Wong and E.G. Manning 1979. Distributed Simulation Using a Network
of Processors. Computer Networks (1979), 44-56, North-Holland Publishing.

Reiher, P., R. Fujimoto, S. Bellenot, and D. Jefferson 1990. Cancellation Strategies in Op-
timistic Execution Systems. Proceedings of the 1990 SCS Multiconference on Distributed

Simulation, January, 1990.

Reynolds, P. 1988. A Spectrum of Options for Parallel Simulation. Proceedings of the 1988

Winter Simulation Conference,, pgs. 325-332, Jan. 1988.

Reynolds, P., Pancerella, C. and S. Srinivasan 199:3. Design and Performance Analysis of

Hardware Support for Parallel Simulations. Journal of Parallel and Distributed Comput-
ing, Volume 18, No. 4, August 1993, pgs. 435-453.

Righter, R and J. Walrand 1989. Distributed Simulation of Discrete Event Systems. Pro-

ceedings of the IEEE, Vol. 77, No. 1 Jan. 1989.

Ross, S. 1983. Stochastic Processes. Wiley Series in Probability and Mathematical Statistics.

Published by John Wiley and Sons, Inc., 1983.

Sokol, L., D. Briscoe and A. Wieland 1988. MTW: A Strategy for Scheduling Discrete Sim-

ulation Events for Concurrent Execution. Proceedings of the 1988 S(.S Multiconference

on Distributed Simulation, pgs. 169-173, Jan. 1988.

20

Steinman, J. 1991. SPEEDES: Synchronous Parallel Environment for Emulation and Dis-
crete Event Simulation. Proceedings of the SCS' Western Multiconference on Advances

in Parallel and Distributed Simulation, Volume 23, No. 1, pgs. 95-103.

Steinman, J. 1992. SPEEDES: A Unified Approach to Parallel Simulation. Proceedings of

the 6th Workshop on Parallel and Distributed Simulation, SCS Simulation Series, Vol.

24, No. 3, pgs. 75-84, Jan. 1992.

Turner, S. and M. Xu 1992. Performance Evaluation of the Bounded Time Warp Algorithm.

Distributed Simulation, SCS Simulation Series, Vol. 24, Num. 3, pgs. 117-126, Jan.

1992.

21

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information. including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 12 1h Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington. DC 20S03

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1994 Contractor Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

ANALYSIS OF OPTIMISTIC WIN DOW-BASED
SYNCH RON IZATION C NASI-19480

WU ',05-90-52-01

6. AUTHOR(S)

Phillip M. Dickens, David M. Nicol

Paul F. Reynolds, Jr., and .I.M. Duva

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Institute for Computer Applications in Science REPORT NUMBER

and Engineering WASE Report No. 94-27
Mail Stop 132C, NASA Langley Research ('enter
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA (R-194906

Hampton, VA 23681-0001 W('ASE Report No. 94-27

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
Submitted to ACM Transactions on Modeling and Computer Simulation

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

I' nclassified- Unlimited

Subject ('ategory 59

13. ABSTRACT (Maximum 200 words)
This paper studies an analytic inodel of parallel discrete-event simulation, comparing the costs and benefits
of extending optimistic processing to the YAWNS synchronization protocol. The basic model makes standard

assumptions about workload and routing; we develop methods for computing performance as a function of the degr.e
of optimism allowed, overhead costs of state-saving, rollback, and barrier synchronization, and LPi aggregation. This
allows an approximation-based analysis of the range of situations under which optitnism is a beneficial extension to
YAWNS. We find that limited optimism is beneficial if the processor load is sparse, but that aggregating Li's onto
processors improves YAWNS relative performance.

14. SUBJECT TERMS IS. NUMBER OF PAGES
parallel processing, simulation, analysis ,23

16. PRICE CODE
A03

17. SECURITY CLASSIFICATION IS. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified I I

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Stid ll t 18
298102

