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The design of a system or circuit in which stability is a key constraint frequently leads to an optimization
problem over the space of functions analytic on the right half plane (R.H.P.) Mathematical techniques for solving
such optimization problems for mean square error (L 2 error) criteria have been widespread in engineering since
the time of Wiener. Much of this research goes to developing techniques for handling worst case error (LOO error)
criteria. These occur naturally in design of control systems and amplifiers. Practically speaking there is evidence
that fr.equency domain L' criteria control system designs have desirable robustness properties. The ultimate
objectiVe is to develop a new CAD approach to MIMO control design which has the flavor of classical control as
well as a systematic approach to worst case frequency domain design as it occurs in many areas. The promise of
this approach is sufficient to have attracted many investigators and it is currently the focus of much attention.

This research addresses many aspects of the problem. They range from the development of computer al-
gorithms of a radically different type to the discovery of theoretical methods for understanding computational
design. Also considerable progress was made in extending existing HI control to nonlinear plants.

Another major effort involves computer algebra for systems research. The objective is to treat (on a computer)
systems formulas of the type an investigator would manipulate by hand. Considerable software was developed
along these lines.
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FINAL REPORT

The research concerns HO control but focuses on substantially different parts of
the subject, namely, nonlinear systems, optimization theory and algorithms for fre-
quency domain design, and computer algebra tailored to systems and control research.

Nonlinear systems

The modern approach to worst case design in the frequency domain arose from
studies of amplifier design the "dual" problem of making a circuit dissipative using
feedback. For linear systems key cases of this were solved in 1965 (SISO) by Youla and
Saito and (MIMO) in 1976 by Helton. In the early 80's Zames and Francis formulated
Hm control and solved the math problem by drawing on the earlier solutions to this
circuits problem. In the beginning the subject of H' control evolved quickly in
significant part because key math problems were already reasonably understood by
operator theorists. I participated in this earlier work (e.g. solved the MIMO HOO
control problem with Zames and Francis, also Pearson and Chang) but at the same
time begin pushing in new directions: nonlinear plants and an HOO approach to
classical control.
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Of the various solutions to CTRL one which is easy to implement and numeri-
cally sound is the Doyle-Glover-Kargonekar-Francis DGKF two Riccati equation solu-
tion. Consequently extending this to nonlinear plants is of considerable importance.
Through the last 3 years there has been considerable progress by Isidori and coworkers
and by our group (Ball Helton Walker Zhan). Isidori et al find local sufficient condi-
tions and compute (with Krener's software) power series solutions to model problems.
All of these approaches assume something like the dimension of the compensator's
state-space equals that of the controller state-space.

Our results [BHW] say:

Result 1 The DGKF equations are 2 equations each in n dimensional space. These
generalize to the nonlinear case as one Riccati P.D.E. in 2n variables. A positive
solution to it is necessary for CTRL to have a solution. In the linear case the 2n
dimensional Riccati P.D.E. easily yields the two DGKF equations.

There is a surprisingly strong yet general separation theorem which limits the type
of controller you can effectively use.

There is a formula which is reasonable to try for the controller. Only the input
term for the controller is a compromise.

Wei Zhan and I analyzed completely those compensators whose state-space have
the same dimension as the plant's state-space:

Result 2 There is a strange type of equation which is a mixture of a first order
P.D.E. and best approzimation operators which we call a Tchebychev Riccati PDE.
Existence of a positive solution to this equation is equivalent to a type of solution to
CTRL.

It is extremely unlikely that Tchebychev Riccati PDE will ever be solved exactly.
However, now we know the enemy and this should help organize compromises in a
systematic fashion.

Also there is progress on evaluating performance of piecewise linear systems. We
took a typical architecture (a Ia Campo Morari) for a system with saturation and .- r -

extracted one of the key computational difficulties. These systems are piecewise 1
linear and continuous. Work in progress with Ball shows that a key object for a
dissipative system , called a storage function, must be continuous. We then made a ,d r"

natural compromise. The continuity of the storage function forces constraints which on
make analyzing such systems not a Linear Matrix Inequality. We found a sequence
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of steps which extracted the non LMI part and allowed one to solve the problem of
determining performance of such systems by doing first an LMI check, then a side
test then an LMI, etc.

There are still basic theoretical issues. In the last year James and Baras have
necessary and sufficient conditions on the HI control problem when one allows an
infinite dimensional state-space. Under a saddle point assumption these reduce to
one due to van der Schaft. Krener has results of a similar tone. James will visit here
for most of the spring quarter.

A main open issue in the subject is finding compromise solutions to the equations
produced above. Ultimately I see much of the field as consisting of sensible ways of
finding conservative solutions to the equations which arise in the theoretical studies
above.

Optimization over H'

Much of my effort goes to studying a basic question of worst case frequency domain
design where stability of the system is the key constraint. This is the H' optimization
problem which is crucial in several branches of engineering.

The fundamental HOO problem of control.

First we state the core mathematics problem graphically. At each frequency w we
are given a set S,,(c) C CN, called the specification set. The objective is to find a
function T with no poles in the R.H.P. so that each T(jw) belongs to S,(c). In fact
there is a simple picture to think of in connection with a design

Figure 1

Typically there is a nested family of target sets S,,(c) parameterized by a perfor-
mance level c; the smaller the sets the better the performance. For the optimal c a
solution T exists but no solution exists for tighter specs.

The Horowitz templates of control can be transformed into this type of picture.
When each S•(c) is a "disk" this problem is solved by transformations of "classical
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pure" mathematics done in the late 1970's by Helton. Many different solutions to
this problem in many different coordinates were worked out by engineers in the last
15 years since it is the subject of H' control. Competing constraints and plant
uncertainty lead immediately to spec sets which are not disks.

The graphical problem of Fig2 can be formulated analytically in terms of a per-
formance function r as

(OPT) Given a positive valued function r on R x C' (which is a performance mea-
sure), find -" -> 0 and f" in AN which solve

-" = inf sup r(w, f(jw)).
fEAHv w

and this of course is what one puts in a computer. Collaborators and I have a very

broad based attack on the problem which addresses most aspects of it.

From qualitative theory to numerical algorithms and diagnostics.

While little was known about this problem 10 years ago there has been a lot of
progress, and now we have tubstantial theory. In progress is an elementary book
with Merino on control system design which gives our methodology for setting design
problems as formal optimization problems. Then our software solves the problems.
The software runs under Mathematica and can be obtained from anoptOucsd.edu.

We shall not sketch all that is known about OPT but mention one dramatic
qualitative result (with D. Marshall )

Result 3 For a "properly formulated" SISO control problem the optimal compensator
is unique.

Here no convexity is assumed.
Ironically one of the most practical results on an optimization problem is charac-

terization of the optimum, since this is the basis for numerics. Our result is easier
to state on the unit disk A and the unit circle T rather than on the R.H.P. and
the jw-axis. Also we state it only for the N=2 MIMO case. Roughly the optimality
condition for solutions to OPT is

Result 4 Given r a smooth function. Necessary an sufficient for a smooth function
T" in HI satisfying a(ei) = K (e", T.(e0 )) is never 0 on T to be a local solution to
OPT is
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i r(e., T*(ei')) is constant in ei'.
II There ezist F, and F2 analytic on the disk and A a positive function on the

circle such that for all eo E T,

ai (e', T"(e")) = e'A(e')F2(e')
OZ2

III A condition on second derivatives of r.

A typical computational strategy is to apply Newton's method to (I) and (II) above
to solve them thereby solving OPT. Even when the spec sets were disks, subcases of
which have been studied for 80 years, Newton's method was never successflly applied
directly to this problem. The difficulty is that the problem is highly degenerate.
However, recently 0. Merino, T. Walker and I obtained

Result 5 There is a functional analysis transform of (I) and (II) which yields nonde-
generate equations and so Newton's method applied to them is second order convergent.

Consequently we are finally obtaining satisfactory computational methods for solv-
ing OPT. In order to show this we give an example and optimize it using Newton
iteration (Table 1) and the Disk iteration (Table 2).

EXAMPLE The problem is to solve OPT for the performance function

r(ei,, zi, z2) = Iz, 12+ Iz2 12+ll00+eizl+.l(zl+z 2+zlz2)12+ll00+ei'z 2+.l (z1+z2+z iz2 ) 2

The (absolute) optimal value is y" = 3800, attained at two different points in function
space: the constant functions fl = (30,-30) and f2; = (-30,30). There are no other
local solutions to OPT.

The meaning of each column in Table I is as follows: It (Iteration number), Value
(Current value of sup# F(-,f)), II f - f* II (The true error, f* is the solution) , OTI
(checks for equation I of Result 4), OT2 (checks for equation II of Result 4), NED (
A measure of numerical error).

The discretization of the problem is carried out by sampling functions on a grid
of 256 equally spaced points on the unit circle. The Newton iteration is initialized at
fo(e'*) = (29.6 + .lei, -30.4 - .0001ei* + .001(e') 2 ), which is near a local solution.
Observe how the diagnostics OTI and OT2 tend to zero at essentially quadratic rate.
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The same holds for the true error jj f -_ fI.. Compare Table 1 (Newton's method
- quadratic rate of convergence) with Table 2 (previous method Disk iteration - linear
rate).

Table 1: Newton iteration run

It : Value :IIfk-f*sI: Optimality Tests Error
SupGamia : OT1 0"2 : NED

0 : 3.81652687715111.03 : 6.7E-01 : 8.3E-03 : 1.61*00 : N/1

1 : 3.8009177903975E+03 : 5.3E-02 : 4.9E-04 : 3.9E-01 : 8. E-13
2 : 3.8000812563274E+03 : 2.7E-03 : 4. E-06 : 1.SE-02D: 1.1E-11
3 : 3.8000001798719E+03 : 4.4-06 : 6.3E-08 : 2. E-06C: 1.9E-11
4 : 3.8000000000006E+03 : 1.5E-11 : 2.4-13 : 3.6E-lOD: 5.31-10

Table 2: Disk iteration method run

It : Value :11fk-fe*l: Optinality Tests Error
SupGaa : : OTI 0T2 NED

0 : 3.8165268771511E+03 : 5.71E-01 : 8.3E-03 : 1.6E+00 : I/A
1 : 3.8014192462609E+03 : 1.41-01 : 5.6E-04 : 1.1E+00D: 3.11.00
2 : 3.8004689130398E+03 : 1.3E-02 : 3. E-04 : .41[-02D: 1.1E-02
3 : 3.8001160653124E103 : 4.6E-03 : 6.2E-OS : 4. E-02C: 1.11-03
4 : 3.80000222369431+03 : 3. 1-03 : 9.81-07 : 3.31-02D: 8.4E-05
S : 3.80000079868851+03 : 1.11-03 : 4.51-07 : I.11-02C: 3.31-06
6 : 3.8000001592016E103 : 7.11-04 : 1.2E-07 : 7.6E-03D: 1.51-06
7 : 3.8000000629256E+03 : 1.31-04 : 3.7E-08 : 1.4E-03D: 8.7E-07
8 : 3.8000000028481E+03 : 1.11-04 : 1.91-09 : 1.2E-03C: 4.91-05

Time domain constraints

Recently we were able to add time domain constraints to (OPT) and obtain optimality
conditions extending Result 4 to this case. We consider a constrained optimization problem,
named Constr-OPT, where the minimization is done over analytic functions (fl, f2) that
satisfy a given set of constraints

fj 2lj +9-Ž _ 0, I= n

where the functions Gij are analytic. We obtained,

6



Result 6 Given r a smooth function and constraints as above. Necessary an sufficient for
a smooth function T° in H' satiufying a(eif) = i (e'*,T°(es)) is never 0 on T to be a
local solution to Constr-OPT is

I r(ei', T*(e•')) is constant in e'e.
II There ezist F, and F2 analytic on the disk, A a poritive function on the circle, and

nonnegative constants P. 2! 0,..., ic, such that for all e't E T,

orL (e', T'(e')) A(e') (e")+ F+... +
oz,

orS(e'e, T'(e'*)) = A(e") (e'*F2 (e) + r-17 2,1 + "". +

III A condition on second derivatives of r.

Further analysis shows that Results 4 and 6 mesh very well for the purpose of construct-
ing computer algorithms. We have worked out such algorithms and began testing.

Of independent interest is that all of this represents a new connection between engineer-
ing and an existing branch of the mathematics area Several Complex Variables.

Computer algebra for systems research

There has been substantial work on computer algebra for engineering problems. For
example, one specifies the systems or circuit components as letters say R, R 2 C, C2 for
resistor and capacitor values and the computer produces the formula for the transfer function
(no matter how formidable). Then one can manipulate it on the computer.

Our approach is quite different. If one reads a typical article on A,B,C,D systems in the
control transactions one finds that most of the algebra involved is non commutative rather
than commutative. Thus for symbolic computing to have much impact on linear systems
research one needs a program which will do noncommuting operations. Mathematica, Mac-
syma and Maple do not (contrary to what a salesman will tell you). For example, the most
basic command

Ezpand[A * *(B + C)]

gives A * B + A * C if A, B, C commute but not if they do not. We have a package
NCAlgebra which runs under Mathematica which does the basic operations, block matrix
manipulations, and other things. The package might be seen as a competitor to a yellow
pad. Like Mathematica the emphasis is on interaction with the program and flexibility.

Mins and maxes of hamiltonians Originally we wrote the package to do linear HO°
control research. In particular, the main object in studying CTRL is the an energy balance
(game theoretic) hamiltonian, For linear plants

H(z, z, W, Ve) = V.E(Z, z)T(Az + B1W + B2cz)
-WTW + IlC+ + D12CZI + D21W) + dZ]
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in the notation of NCAlgebra it is

Ham =tp[GEz[z,z]]**(A**z+Bl**W+B2**c**z)-tp[W]**W
(tp[z] **tp[C1J+tp~z] * * tp[c] **D12) * *(C1 **z+ D12 **c **z)
+tp[GEz[z, z]] * * (b * * (C2 * z + D21 * * W) + a * * z)

One must compute critical points (maxes or mrin) of this in W, a, b, c in various orders which
of course while routine is a tedious process. Also any variation on the problem produces
a new hamiltonian and requires another tedious computation. NCAlgebra automates this.
For example,

critW = Crit[Ham, W]; HnoW = Ham/.critW;
critWc = Crit[HnoW, c]; HnoWc = HnoW/.critWc;

finds the critical point of Ham in W then in c and and evaluates Ham at these critical
points. This same 4 lines applies to hamiltonians which arise in other control problems.

Simplification of messy formulas While NCAlgebra can be used as a yellow pad we
are beginning to add serious automatic simplification commands. Wavrik, Stankus and I
are now doing research in computer simplification for A, B, C, D type linear systems, in a
highly noncommutative setting. The objective is in each particular situation to find a list
of simplifying rules. A complete list of rules (called a Grobner basis GB) has the property
that if it is applied to an expression until nothing changes then the expression is as simple
as possible in a certain sense. Recently, Wavrik and I obtained

Result 7 For the formulas which occur in studying energy conserving (lossless) systems.
The GB while infinite can be summarized as a list of 32 rules some of which depend on an
integer parameter. We give the list. It is a powerful tool for studying a particular class of
systems. The list was discovered last year and actudaly proved (with Stankus) to be a GB
very ruently.

A subset of these rules is now in a function NCSimplifyRational[ expression] inside our
NCAlgebra package. They are very effective on a limited class of expressions but even that
makes them very useful. Now we have some experience in areas which use Lyapunov and
Riccati equations and a line of experiments involving systems theory computations which
explore them. It is becoming clear that this is tricky business and we are developing strate-
gies to use computer algebra to obtain systems theory results. This is P. matter of putting
equations in a simplified canonical form. This area is wide open since in noncommuting
situations the implications for linear systems theory are not explored.

Technology Transfer
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We have two computer programs which run under Mathematica which are publically
available.

NCAlgebra our non commuting algebra package has potential applications in many
fields. Recently Mathematica's mathsource started distributing it and in fact they appear
to be recommending it widely.

OPTDesign our classical control program is available from us (send request to anopt@moirie.ucsd.edu).
We do not intend to start pushing it heavily until our book is finished, since this is the only
account which ties everything together. Recently, we completed a major cleaning of the
most basic version of Anopt,the optimization program underlying OPTDesign. This was to
prepare for porting it to Matlab, which other groups have expressed an interest in doing.

Another level of transfer is from pure to applied mathematics. For example, in the last
decade progress in HOO control was expedited by close connections with operator theorists
who were originally in pure mathematics but who now work the mathematics of engineering
systems. This originated with discoveries by DeWilde, Fuhrmann and I made in the early
1970's.

The work on optimization over analytic functions represents a new connection between
engineering and an existing branch of several complex variables. Now little collaboration ex-
ists between workers in these areas. A bi-product of our development of (OPT) is possiblely
that a new group of pure mathematicians will become interested in engineering.
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V. Professional Talks & Presentation of Papers
1991-1994

Japan - June 1991
Workshop on operator theory.
Speaker and the US organizer.
Sapporo -- Hokiado Univ.

Japan - June 1991
Mathematical Theory of Networks and Systems conference:
Three talks.
Kobe

Israel- March 1992-sponsored by Binational Foundation
Conference on operator theory
Speaker
Beer Shev

Israel- March 1992-sponsored by Binational FoundationConference
on operator theory
Speaker
Tel Aviv

Southern Calif Partial Differential equations Conference.
April 10-12, 1992
Speaker
University of California Santa Barbara

Great Plains Operator Theory Symposium - May 14 - 17, 1992
Pleniary address
University of Iowa

Non linear systems confence - May 29-30, 1992
Speaker



Washington University, St Louis ,Mo.

Tiawan- sponsored by Tiawan Science Foundation - July 8-10, 1992
like a NSF regional conference in the US
7 hour lecture set
Tunghai Univ.

Conference on the Interface of Math and physics - July 12-14, 1992
Academica Sinica
Speaker
Taipei

Chinese University Hong Kong, July 1992
Talk canceled due to hurricane which shut down the city.
Hong Kong, CHINA

SIAM Control Conference On central organizing committee.
September 17 - 19, 1992
Institute Mathematical Applications
Raddison Hotel Minneapolis
Minneapolis, Minnesota

H. Widom's 60th birthday Conference , September 20 - 22, 1992
University of California, Santa Cruz
A principal speaker.
Santa Cruz, CA

In residence at Institute for Mathematical Applications,
October 7 -16, 1992
Special year in control.
Was invited to spend the year but I opted for 2 weeks.
Minneapolis, MN

Harvard Mathematics Department, October 26-29, 1992
Seminar
Harvard, MA

MIT October 26-29, 1992
Seminar
Cambridge, MA

Courant Institute of Mathematical Sciences, November 2, 1992
Colioquim



New York, NY

Virginia Polytechnic Mathematics Department
November 3 - 20, 1994
Seminar Math Dept
Blacksburg Virginia

Conference on Decision and Control, December 14-19, 1992
Presented papers with J. Ball; with T. Walker & 0. Merino;
& with W. Zhan
Tuscon, Arizona

American Mathematical Society Meeting, January 1993
Special Session.
San Antonio, TX

Conference at Free University of Amsterdam July 1993
Speaker
Amsterdam, The Netherlands

Workshop: Operator Theory and Boundary Eigenvalue Problems
July 27 - 30, 1993
Speaker
Vienna Technical University
Wien, Austria

Int'l Symposium: Mathematical Theory of Networks and Systems
August 2 - 6, 1993
Pleniary Address
University of Regensburg

Workshop: Algebra and Networks, August 8 -15, 1993
Speaker
Val-Cenis, FRANCE

Conference on Decision Control, Decembr 1993
Presented papers with W. Zhan; & with 0. Merino
San Antonio, TX

American Mathematical Society, January 1994
Special session speaker
Cincinnati, OH
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