Best
Available

Copy

AD-A280 434
ADSTITR 94003281 MBI

ADVANCED DISTRIBUTED
SIMULATION TECHNOLOGY
ADVANCED ROTARY WING
AIRCRAFT

SOFTWARE REUSABILITY

REPORT
DTIC

ELECTE
Loral Systems Company JUN 1 41984
12151-A Research Parkway

Orlando, Florida 32826-3283

April 8, 1994

Contract No. N61339-91-D-0001

ARWA - Delivery Order No. 0048 oD ®
CDRL A002 e ~ 13
PLEd
| This document kas beep
. for public rels QPP roved
Prepared for: disthie relsase u:d.d" e |

Simulation Training and Instrumentation Command
Naval Air Warfare Center

Training Systems Division

12350 Research Parkway

Orlando, FL. 32826-3224

<5 94-1

_ 18198
94 6 13 cCco ﬂlllflll!lll’lﬁlf LT

ADST/TR 94-003281 April 8, 1994

REPORT DOCUMENTATION PAGE OWB e 07040168

Pubiic reporing burden for this callecsion of inbrmstion i estimstsd 15 averege 1 s per responss, inchuding $e time S reviswing Mstrucions, seerching @istng dets sources,
gehering and maintsining the date Assded, and compieling and reviewing e colectan of information. send commants regerding his turden eslimate or sy othwr sspect o
s coliection of infrmelion, inchuding suggestions for educing fis burden, ' Waeshington Headquartens Services, Direciarste for informetion Operations and Raparte, 1215

Jeflarson Owda Highwey, Sulls 1204, Arfingion, VA 222024302, and 1o the Ofice of Manegament and Budget Project (0704-018¢), Weshington, OC 20603
1. AGENCY USE ONLY (Laave blank) 7. REPORT DATE
08 April 1934
=2 TTLE AND SUBTITLE S FUNDING NUNBERS
iif Contract No. N61339-91-D-0001
ADST ARWA Software Reusability Report Delivery No. 0048
& AUTHORES) Karen Bourgeois
Paul Kelly
Robert Anschuetz
Roger Branson
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)
Loral Systems Company REPORTNUNBER.
ADST Program Office .
12151-A Research Parkway ADST/TR-94-003281
Oriando, FL 32826
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING ORGANZATION
Simulation, Training and Instrumentation Command (STRICOM) REPORT NUMBER
¢clo Naval Air Warfare Center, Training Systems Division
12350 Research Parkway A002
Orlando, FL 32826-3224
—
11. SUPPLEMENTARY NOTES
1a. IBUTIONAVAILABILITY STATEMENT 125. ORTRI CODE

Approved for public release; distribution is unlimited.

12, ABSTRACT (Mavimum 200 words)
£

The ADST ARWA Software Reusability Report provides a pradiction of the eliects on reusability of the scftwars for the ARWA
test bed and the ARWA Simulation System devices. The following thres questions are addressed:

- How reusable is the software when using the current development process?

- What is the predicted effect on reusability of implementing the IDAJCECOM/GA Tech recommendations?

- WHat is the predicted effect on reusability of incorporating Ada style guidelines?
Rosults of searchs of source code and documentation libraries are included.

14, SUBICCT TERMS e 15 NUMBER OF PAGES
55
FTE PRCECOOE. |
11. SECI'RITY CLASSIFICATION 17. SECURITY CLASSFICATION 17. SECURITY CLASSIFICATION 20. MITATION OF ABSTRACT
OF REPORF OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED uL
NSN 7540-01-280-5500 Standard Form 298 (Rav. 2-85)

-ij-

G G U U an B OGN U OE GE B R OB O O an oS on o

ADST/TR 94-003281 April 8, 1994
TABLE OF CONTENTS

1.0 11 o SRR 1
1.1 08, vveenenrnrancacnsassncesstancassssssssasnsetssonentsesassssesrsesrsisassaces 1
1.2. BackBround......cccoooviuiininiioiuiincninteiiieeieinncasinimieiersecrcieaseiencas 1
1.3. DOCUMENE OVEIVIEW.vuineniieieieeactienenensesesscsrotssasesssossssscsansons 2
2.0 Referenced dOCUMENLS.couvuiriiiieieiinrnneererurueeernsierenetsneaenencnss 2
3.0 PrOCEAUIES......coviereinrecnerenrarareoecscesanenrsissssesssscssssssonsssasasnsscnns 3
3.1. Description of current reuse efforts.........cccoeeveniiiiiiiiniiiiiiiiiniiane. 3
3.2. Description Of reuse OPHONS.cuvureriuiurrnriiuruiererniereriensnesiuanes 11
3.2.1. Independent study SUZEESHONS.......ccccevrerviiisiirnnerereineiirecissrsrnnnes 11
3.2.2. Ada style guidelines.ccovuiininiiiiininiiiiiniiiiii e 13
3.2.3. POrt 10 Ada...ccconiiiniieiiinniiinriiiietiriieenisisiseniesennenusssnsensnens 14
3.2.4. Domain analysSiS.....cccoiiieeiiniiiiiiiiiiirerci et e 14
3.2.5. Object-Oricnted design cONVErSION.vveveeeniiiiiiiiinieniniinennnnan. 14
3.3. Reuse level analysis.ocooeieiiiiiiiiiiiiiiiiiiiniriieecnirerinneeanens 15
3.3.1. ASSUMPLIONS...coviiininieiiiniiieiierttttreriiraresssrsserssssssssssnsennsasans 15
3.3.2. Reuse level moOdel....cccooirurniiieiiiiiiniietenenieennceetsneereneecennncennes 16
3.3.3. PrOCEAUIES.cctineirinrneretrarensensesooaonrasascncnassnanracsansancerenssnses 16
3.4. Reuse quality analysis.......cccoeeiiinininiiiainieinieieiirirereirerncrecnsnes 16
34.1. ASSUMPLIONS..cciuiiinieiiiriieiniieiettietrercessstneecscaceossnnsrsssansocenns 17
3.4.2. Reuse quality mOdel.cceeeieieiiiiiiiiiiiiiniiiiiiiniiiierieeniiacanans 17
3.43. PrOCEAUILS.cccitiniiinierntiiinnnistceciiearsesossressnnssssacnseroscncannns 18
3.5. Reuse cost impact analysis.......ccccccccccccccrsirccinenencerenenenecnnanennnns 18
3.5.1. ASSUMPLIONS...euneiuieiiiiiitiiiiniinitieiiacsectrcnstacaresasseressasassoses 18
3.5.2. Reuse cost model.coooiiiiiiiiiiiiiiiireieiienriiieinitaeneeateroncanes 19
3.5.3. Procedures.covveieiieiiiiiiinieieiiiiircecesesttasneesnscnsnsascnsnnes 20
3.6. Reuse schedule impact analysis.ccoueueverierneiaineeeenenreaeneanenees 21
3.6.1. ASSUMPLIONS...cuiiiiiiiiiiiiiiiiiiiiiiinreiieireetrrretesncassssessesssssses 21
3.6.2. Reuse schedule impact model.ccccvvuiiiiiiiiiiiiiiieieinierseencnnnnas 21
3.6.3. Procedures......cccoiuiniiieiiiiniiiiiitiirreetccnstnenresencaseraancasans 21
4.0 ReSULLS. ..ot e e 21
4.1. Reuse level analysis. ..ooeeeeiiiiiiiiiiiiiiiiieiiieieitiernerneerenrenaenenns 21
4.2. Reuse quality analysis........ccoeeeieieieeiiiuinrirernricrmreceeiecessacecsaanas 22
4.3. Reuse cost impact analysis........c.ccoceeemericriereniaenciseniensecsiecnennense 23
4.4, Recuse schedule impact analysis.covveeininven i 25
4.5 SUMIMATY . .oiviiiit it r et e tensatnenanesensnaneesnenas 26
5.0 Conclusions and recommendations......o.oeeiveevieiinineiiennnerereenenss 26
5.1 Summary of conclusions and recommendations.c.o.oeeeneieeninnne 26
5.2 Lessons Learned.couveieieiiiiieinininiiierereceesiinieesenrniecennenenes 27
6.0 NOLES. . iineiiiiiieiiiiiieeecerteneeseecsrneanaacasesansnseransasassnsnsseansnnans 27
6.1 €] (1117 | o P U OO 27
6.2 ACTONYM LiSt. ..ot rrre et e s e sten s ca s raes 29

Accesion For

NTIS CRA&I K

OTIC TAB O

Uiannounced O

Justification

By P—»m
Distfibution |

Availability Codes

[reT s |

. Avail aig jor
Dist Special

A

ADST/TR 94-003281

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Table 1.
Table 2.
Table 3.
"Tabic 3.1
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

April 8, 1994

LIST OF FIGURES
ARWA and ModSIM ATrChiteCtures.........ccccceereerrrnnenerrecesennenencnnes 5
ADST Software Engineering Process Model............ccccovninieieneninene. 10
Sample Kiviat Diagram..........ccccooiiiiiiiinieenienernnnnnnseecsssseeenennes 18
Quality Results Kiviat Diagrams.........cccceeieviiiiiinriiinrniereccnrinnanes 24

LIST OF TABLES
Reuse LOC Estimates for Common ARWA SS.....vieiieeennneeeenns 6
Reuse LOC Estimates for RAH-66 Kit.......ccococveevemrveenvceeerecrinnnnne 8
Reuse LOC Estimates for AH-64D Kit........ccooovvivenrvvevvcveeeerennnnens 8
Reuse LOC Estimates for Basc and Kit...........ccoeeiviiiiiiiiniieninnl 9
Segments With Existing Reusable Software.........cccvvveeceeernerannenn. i3
Example Loral Reuse Cost Schema..................... etversensessanenasesans 19
Reuse Cost and Productivity Staleeeenvieiiieiiniieiniiiiiieieiineiinnens 20
Reuse Quality AnalysiS ReSUltScocvuvuieieieieieneniiniiiiieerennreenens 23
Reuse Cost Impact Analysis........ccceeerereeeneiecracenneeuieenncnneeneannns 25
Summary of Reuse Analyses.........ccccceeiueuneirecenenennnenninarrneneeenn. 26

-iv ~

ADST/TR 94-003281

Pach et ponet b
'-‘—"—O
¢« o o

b

BN = RO~ RLON= BWN= RO~ AL AW

R N T N N N e A I ot
W —

.o.c'cca . . .

[N S S I e N Tl o T T o N Y o e T O I P e e N e el ol
£ LN -

Pt oot pumd pumt Pued foud fomt pumd pond pumd pwet fumd b prack et Pt funcd fomd jh ot pess pumb pued b jumed pumb fuet pumd b fet sk Pt pd s fovet Jumd e et put pd fumd pub pumd Jond
.

-
P

- . .
pomse Dumd s

APPENDIX A
INtrOAUCHION. ... ittt iicrieiarine e irnrertceetasneaasntesncasenes Al
REUSE SOUICES...cciiiiiuieeiinraririienenrecrrtiessroeressssesasesessrancenses Ad
Asset Source for Software Engineering Technology (ASSET) Ad
DeSCHPION...cciiviriiiiiiiiiiiiiriiier i reierrc e st rraeaaas A4
Data Search........cociiiiiiiiiiiiiiiiiiii it e e A4
Findings....ccoiiiuiiiiiiiiii ittt en e A7
RAtNG ...ouiniiiiiiiiiiiiiiiii ettt ertes e rer e ere s aenes A7
Defense Software Repository System (DSRS)........ccovviviivensncnnns A7
91114 1 114111 | DO R A7
Data Search.......cooiiiiiiiiiiiiiiiiiiiiicititti ettt rrr e ees A7
FINAingsS.couvinieiiii i A8
RAING .ot e e e A8
Modeling and Simulation Information System (MSIS) Al
DeSCTIPLION. .iuiiiiiiiiiiiiiinic et A8
Data Search.......cccovviniiiiiiiiiiiiiiiiiiieiiininerieneie i reserasacereienaes A8
Findings . .oeeiin i AS
Document Cataloging System (DOCATS)....ccccvvveieiieinininieieninenns A9
[D113 411410« DU PPN A9
Datit SCarCh ..e it ettt e e e A9
Findings....ccoiiiniiiiiiiiiiiiiiiiiiiiiiiiiiieii e A9
%1717 s A9
Army Reuse Center (ARC)......ccvvenviiniiiiiiiiiiiiiiiiiiiciiieninne. Al0
19 1743 ¢ 113101 | VO PON AlQ
Data Search.......ccoiiiiiiieiiiiiiiniiiiriiieiriitiariiretieirreitacenanas AlQ
| ST T 1 - N Al0
RAtNE o.ouvniiiiiiiiiieiiiiiiiii it ciearecci s reesas e tan e senaeneas Al0
Sherikon, INC....ocoiiviniiiiiiii e Al0
DeSCHPLON. it e AlQ
Data SCaICh ...vcviniiiiiiiiii it ea e Al0
Findings...ccoiuiiiuiiiiiiiiiiiiiiiiiiiiiriiriniiecrcani e casenes Al0
RAUNG ..vieiiiiiiiiiiiiiiiiiiii et tireetceeatesasscessonsasnnsscsssnnenres Al0
SPARTA, INC. ottt e var s e e e All
I DI-1 o3 4111510} « OO PP PO All
Dala Search......ocviviiiiiiiiiiiiiiiiii Ail
FindingsS...ocooviiiiiiiiiiiiiiiiii it All
1411 17 TN All
Public Ada Library (PAL) (Ada Software Repository)........cceeeereenune Al2
DeaCriplion. .o Al2
Data Search........cvuiuiiiiiiiiiiiiiiiiei e Al2
| 2T e F 1 Al2
RALIE oottt e et trre e e eeaes A2
Ada Joint Pregram Office (AJPO) and AdalC.........cceovrrvnvinennenn. Al2
|5 111+ §1 118101 | DU RN Al2
D L T (o S Al2
FIRAINES.cue ittt creasaeaae Al2
L& N Al2
National Technical Information Services (NTIS)cceeeeveerrenranenns Al3
| T1.743 311131+ | OO PPRN Al3
Data Search.....ccociriiiiiiiiiiiiiciiiircrirer e eees Al3
| ST § T PN Al3
RAUNG ...ooviniiiiiiiiiiiii it Al3
X F:1.0) 23 Ot Al3
191271 61118 o] | PP Al3
- v -

April 8, 1994

ADST/TR 94-003281 April 8, 1994

11.11.2 DAt SCAICNciiiiiiieiiiererreinerereeneesseseresasenseenaanssnssessansnees Al4

11.11.3 FINAINES. ..ottt inerterunsresastosassessscansassns Al4

11.11.4 RAtNG ...oouinniiniiiiiiiiiii ittt recrestaeseresasesssaecansassenes Al4

12. CONCIUSIONS .ouvreeieirreneeiereersecescessenecessssssnsesssassassacasossannes Al4

13. Bibliography....ccoiciiiiiiuiiinimniiiiiiiiiicenirieenisesninceannencenes Al4
LIST OF TABLES

Table Al. List of ARWA Models and Dataccceviieieriniiniieerinrennenneenerenenns Al

-vi-

ADST/TR 94-003281 April 8, 1994

APPENDIX B
20. INtrodUCHION. ... cueiiiiiiitiiitiiiiinicet et eees Bl
21. Design Guidelinescooevienieiiuiiniiiieeiiiiiiieieeeiianieieecenaess Bl
22. Coding Guidelines........c.ccooveuiniinieiieiiniiniiiiiiiiiieiiienieiireaennes B2
22.1 GeNETAL.......oeviiniiiiiiiiiiitiii ettt s aae e B2
22.2 AdaLanguage........cocoiuieinriiiiiiiiiiiiiiii e s e ra e saasenn B3
23. Bibliography....cccccviriiieniiimniiiiiiiieiniiiiii e caeseees B4

- vii -

ADST/TR 94-003281 April 8, 1994

1.0 Scope.

This software reusability study technical report is delivered under contract no. N61319-91-
D-0001, Delivery Order Number 0048, for the Simulation, Training and Instrumentation
Command (STRICOM), Naval Air Warfare Center, Training Systems Division, Orlando,
FL. This study addresses the potential reusability of the Advanced Rotary Wing Aircraft
(ARWA) test bed software in the Aviation Combined Arms Tactical Trainer (AVCATT)
environment. Ground vehicles, other types of aircraft, or other types of military training
simulators are not part of the scope of this study. However, it would be expected that any
system with similar architecture could reuse significant portions of the software.

1.1. Purpose.

The purpose of this study is to provide the customer with enough information to make
ARWA development decisions which may impact future development efforts in the
ARWAJAVCATT rcalm. For iastance, in futerc contracts STRICCM will be able to
request a particular level or percentage of reuse when adding ARWAS (o tiie Aviation Test
Bed (AVTB) and be knowledgeable about the best approach toward reaching that level of
reuse and productivity. To support this goal, this study contains quantitative data on the
level of reusability potential of the ARWA system, including: costs, savings, and schedule
impact.

In addition, the findings in this study shall also provide explicit information that will boost
the level of software reusability in the ARWA system, especially during Phase II.

1.2. Background.

STRICOM requested that this study be pertormed during Phase I of the ARWA delivery
order in parallel with the requirements and preliminary design phases of the effort. The
Statement of Work (SOW) asked that this study "determine how reusable the ARWA
software will be if developed in accordance with:"

a. Existing ModSIM architecture

b. Recommendations from the Institute for Defense Analyses (IDA), U.S. Army
Communications-Electronics Command (CECOM), Georgia Institute of
Technoiogy (GIT), and Software Engineering Institute (SEI) studies (NOTE:
The SEI study occurred after the SOW was written.)

c. The Software Productivity Consortium’s (SPC’s) Ada Style Guide (SPC-
01061-CMC).

NOTE: It is assumed in this rcporti that "how reusable” refers to the quality (maturity level)
and percentage of the product which will be reusable within the same domain it cartaiu
actions are taken, and that "easc of rcuse" will translate into labor hours saved, i.e.,
productivity. Even though only software is mentioned, it is also assumed that the term
“rcusable” refers to any software workproduct, tool, or process that can be used again in
ailoiher situation (i.e., software sysiem, context, etc.) with 0 10 25 percent modification
madc to the existing object/idea that is going to be reused.

The second item to be addressed is the cost and schedule impact when implementing (a)
and {u) above, plus the cost and schicdule impact to reach highcr levels of reuse via other
reuse activities.

ADST/TR 94-003281 April 8, 1994
1.3. Document overview.
Scope. This section covers the purpose, scope, and background of this study.

Referenced documents. Several industrial publications and internal Loral documents are
listed in this section as key references cited in the paper.

Procedures. The current and suggested reuse implementation plans are delineated in detail.
The assumptions and procedures for analyzing the reuse level, resulting quality, cost, and
schedule impact of each of these implementation activities are described.

Results. The resuits from analyzing each implementation activity is summarized in this
section.

Conclusions and recommendations. This section summarizes the key conclusions and
recommendations regarding the most cost effective approach for achieving the most reuse
in the ARWA domain.

Notes. An acronym list and a short glossary of critical terms used in this paper are
included in this section. v

Appendices, These include detailed information on reuse guidelines, reuse tools, and
models used for Verification & Validation (V&YV) that will be used during subsequent
phases of this project.

Appendix A describes the model/data searches for validating the two ARWA
simulations, including the selection criteria.

Appendix B contains general reuse guidelines for design and coding in Ada. These
are stored in the programmer’s notebooks and have been shared with the designers.

2.0 Referenced documents.

The following documents are referenced within this report.

[Alexandris 86] Alexandris, N. February 1986. ‘“Adaptable Software and
Hardware Problems and Solutions.” Computer. Vol. 18. No. 2.
Pp. 29-39.

[Boeing 93| Boeing. 1993. "DARTS: A Domain Architecture for Reuse in

Training Systems.” Huntsville, Alabama.

[CECOM 93] CECOM. April 1993. "White Paper for thc Advanced Rotary Wing
Aircraft Software Design Review.” Leavenworth, Kansas.

[Gaffney 89] ‘ Gaffney, J., An Economics Foundation for Software Reuse,
SW_REUSE_ECONM-89040-N, SPC, July 1989

[GIT 93] GIT. April 1993. "Independent Assessment of the Advanced
Rotary Wing Aircraft (RWA) Software Design for STRICOM."
Atlanta, Georgia.

-2-

ADST/TR 94-003281 April 8, 1994

[Hooten 89] Hooten, M. 1989. Software Reuse Methodology and Checklists.
FACC-TR-1113. Ford Aerospace/Space Information Systems
Division. (Now Loral Space Information Systems.) Houston,
Texas.

[IDA 93] Brykczynski, B. and D. Robert Worley. April 1993. "An
Evaluation of the ModSIM Architecture and RWA Design."
Institute for Defense Analyses. Alexandria, Virginia.

[Lea93] Lea, D. November 1993. WISR’93 Design-for-Reuse Working
Group Report. Workshop on Institutionalizing Software Reuse held
on November 1 - 4, 1993. IBM. Owego, New York.

[Ogush 93] Ogush, M. 1993. “C Design and Coding Guidelines for Reuse.”
Hewlett-Packard. Palo Alto, California.

[Pamas et. al. 89] Parnas, D., P. Clements, and D. Weiss. 1989. “Enhancing
Reusability with Information Hiding.” Software Reusability Vol. I -

Concepts and Models. Association for Computing Machinery
Press. pp. 141-157.

[Pamas 72] Parnas, D. December 1972. “On the Criteria to be Used in
Decomposing Systems into Modules.” Communications of the
ACM. Vol. 15.

[SEI 93] SEL July 1993. "Review of the Advanced Rotary Wing Aircraft

Software Specification.” Pittsburgh, Pennsylvania.

[SPL 90] SPL. November 1990. Corporate Productivity Lab Standards and
Methods Document, Ada Standards, Volume 6. SPL_Ada_STDS-
90023-M. Version 1.0. Loral Software Productivity Laboratory.
San Jose, California. section 1, p. 127-175. Section 2, pp. 45-55.

3.0 Procedures

‘This study was performicd by software engincers with rcusc cxpertise, cocrdinating inp1ts
from cognizant Advanced Distributed Simulation Technology (ADST) software managers
and designers, and {rom publishcd data produced from in-housc and industry reuse efforts.
The first step was to establish a basclinc of current reusc within the system being delivercd
by the Loral team and then define the additional reuse aclivity oplions that STRICOM
should consider. These options stem from the SOW and current reuse philosophy. The
next step was to evaluate the baselinc and each option according to the resulting reuse
maturity level, quality, cost, and schedule impact, if implemented. Numerical rating
schemes were used to rate each option so that the best choice(s) would be easily identified
by the highest total.

3.1. Description of current reuse efforts.

The Loral team is applying six reuse techniques so that the delivered systems will contain
fairly robust reuse features without affecting the current cost and schedule. These
techniques are:

-3-

ADST/TR 94-003281 April 8, 1994

a. Geperic architecture. Conform to the generic Modular Simulation
System (ModSIM) architecture as much as possible.

b. External reuse. Search existing libraries for off-the-shelf software
models/algorithms, specifications, test scenarios, database mapping
data, etc. that could be reused in the ARWA Simulator System.

c. Internal reuse. Reuse existing in-house designs and software from
related simulation projects.

d. S_mnam_pxms Provide subcontractors with the same process and
tool scripts used to count non-commented source lines of code (LOC).

e. Uniform standards. Establish reuse design and coding principles to be
used by the development team.

f. Tool checker. Use software tools to check adherence to the Ada style
guidelines.

i . ModSIM is a generic simulator architecture which
defines a standard functional breakdown of a simulator system into 12 segments and
defines standard interfaces betwecn those segments. The 12 segments are as follows:
Flight Station, Flight Controls, Flight Dynamics, Propulsion, Navigation/Communication,
Weapons, Radar, Sensors, Physical Cues, Visual, Aircraft Survivability Equipment,
Control, and Environment. One or more segments may be grouped on the same
computational platform to form a modvle. Intersegment communication in ModSIM is
accomplished by means of a mcssage based architecture. Each scgment communicates over
a virtual network (VNET), which can be either through shared memory or over a physical
network. By conforming to the ModSIM architecture, this simulator will be more easily
maintainable in that those familiar with ModSIM's generic architecture will understand its
design. The modular nature of the system facilitates accurate updates to the system,
especially since the modules are highly cohesive and loosely coupled (i.e., have few
intermodular interfaces).

Status of (a). According to the organizations that performed an independent evaluation of
the ARWA architecture last year, the ARWA design conforms to the ModSIM architecture
with some minor variations in the grouping of segments. The ARWA architecture
separates the Visual and Flight Station scgments into distinct modulcs - the Visual System
Module (VSM) and the Flight Station Module (FSM), respectively - and groups the
remaining ModSIM segments into the Simulator System Module (SSM). Figure 1 depicts
both thc ARWA architccture and the generic ModSIM architecture.

ADST/TR 94-003281 April 8, 1994

ARWA SS DIS CELL

r S]

:

3
%@

S

EERYLAITONATED
rences
SUBS Vel W

D% WGT0<0L
-
baust worocoL

PHONE <——-I ROUTER J-—mm e 10 SMNET SMULATORS

ROUTER J
osucss
L= l A
TO DEFENSE SIMURLATION INTERNET
ARWA System Architecture

Visual Z:::“"' Proputsio g"""m ASE
ModSIM Architecture

Figure 1. ARWA and ModSIM Architectures

ADST/TR 94-003281 April 8, 1994

Reasoning for external reuse (b). The assumption is that reused assets will be reusable in
future applications of the simulator. This is true if the reused artifacts fulfill requirements
that are not likely to change across ARWAS or over a long period of time within the
aviation simulator training world.

Status of (b). The Loral team identified a list of software models which would be usable in
the ARWA simulation system, as well as those needed to validate the accuracy of the
simulation software. Refer to Appendix A for a listing of repositories searched and the
results of those searches.

Reasoning for internal reuse (¢). Internal reuse is defined as reusing software, data, and
documentation from existing Loral, Boeing, and McDonnell Douglas Helicopter Systems
(MDHS) efforts, as opposed to obtaining this information from external repositories.
These systems were not necessarily designed for reuse, but reuse is relatively simple
because the developers are already familiar with the architecture and software.

Status of (¢). Boeing and MDHS have already identified much software which can be
applied to the ARWA project, such as the Fly Real-Time (FLYRT) flight model and the
Bus Interface Unit (VNET segment interface). Much of Boeing's reusable software has
been obtained from Boeing Helicopter's Comanche Engineering Development Simulator.
Much of MDHS's reusablc softwarc has been obtained from MDHS's Apache Enginecring
Simulator. Tablcs 1-3 identily the lines of code estimates as wcll as the amount of reusable
software expected for the ARWA simulator system.

Reasoning for standard processes (d). In a multi-developer team environment, it is
important that all parties follow the same processes in order to ensure that the delivered
system's progress can be tracked and communicated in the same way.

Status of (d). One critical example, is the way LOC estimates were being made and
reported. Loral provided a standard methodology for counting and reporting their progress
using estimated and actual LOC data. One way to ensure accurate counts was to supply all
of the subcontractors with the same in-house code counter scripts for Ada, FORTRAN,
and C. This was very successful.

The Loral development process has also been communicated to the team via the process
chart shown in figure 2. More is accomplished, more quickly when all of the team
members use the same spiral development strategy.

Total Code | % Reused

VSM VSM Network Interface 0 2,000 0%
VSM User Interface 0 6,000 0%
VSM Hardware Interface 0 10,000 0%
_| Process Scheduler 0
0 %

Table 1. Reuse LOC Estimates for Common ARWA SS
-6-

' ADST/TR 94-003281 April 8, 1994
|
Segment Subsystem Name Reused | Total Code | % Reused
l Name | 1Cude@OO) QOO |
FSM FSM Control 0 2,500 0%
' Support Functions | 0 4,500 0%
Aircraft Systems 0 250 0%
' Real-Time : 0 800 0%
l VO Linkage | o 920 0%
Control Load Linkage { 0 460 0%
l Flight Station Display Sys 1 0 l,SOL 0 L/o==
' TOTAL 0 24,430 0 %
SSM Control | Sim. Mod. & State [275 1,000 27 %
l Parameter Mod. :t 0 450 0%
Simulation Synchronization & | 0 660 0%
H Timing |
' Executive) 1,500 0%
SSMTNE | Control L o 2,595 0%

Intervisibilitity 7500 | 25000 30 %
Weapons 4,060 1,000 80 %

TOTALY 16,615 | 41,045 | 40 %

Support Session Manager [0 5,438 0%
Subsystems

|
Operational & Logistic Support § 3,168 5,280 60 %

' Mission Planning | 2,900 5,800 50 %
)
|
1

ModSAF | 250,000 250,000 100 %
After Action Review 7,000 10,000 70 %
ARWALAN 1 o | 7% 0%

i
TOTAL| 263,068 | 281,179 | 94 %

‘ ' 1

GRAND TOTAL} 279,683 | 410,654 68 %

Table 1. Reuse LOC Estimates for Common ARWA SS [Continued]
-7-

ADST/TR

94-003281

April 8, 1994

Segment Name

Nav/Comm
ASE

Physical Cues
Sensors

Flight Controls
Weapons

Flight Dynamics

Propulsion

(LOC)

Reused Code

Total Code (LOC)

2,125

725
2,815
1,550
2,000
5,170

17,085

% Reused

0%
0%
0%
50 %
25%
85 %

33 %

Table 2. Reuse LOC Estimates for RAH-66 Kit

Segment Name
Nav/Comm
ASE
Physical Cues
Sensors
Flight Controls
Weapons
Flight Dynamics

Total Code (LOC)

50 %
75 %
S50 %
50 %
25%

I

Table 3. Reuse LOC Estimates for AH-04D Xit

ADST/TR 94-003281

April 8, 1994

Module/Sub- Reused Code Total Code % Reused
System Name (LOC) (LOC)
1§ Base | Kit | Base | Kit | _XKit_
SSM Base Code | 16,615 41,045 40 %
SSMKitCodel | 7,200 17,365 41 %
FSMBaseCode | © 20,760 0%
FSMKitCode! | 0 3,670 0% |
VSMBaseCode || O 60,800 0%
vsmkicoee2 | | 0 | 30| [0% |
DIS Support Sub- | 263,068 281,179 94 %
Systems Base Code 1
DIS Support Sub- | 225 1,100 25%
_Celt Sub-Totats| 279,683 | 7425 [410654] 25335 | 68 | 20
GRAND TOTAL 287,108 435,989 66 %

Notes:

1 Average of the AH-64D and RAH-66 software kits.

2 Kit specific code estimated at 5 % of total VSM code.

Table 3.1 Reuse LOC Estimates for Base and Kit

Table 3.1 summarizes the reused line of code for the common software of the bases and the
aircraft specific software code of the aircraft kits. The common software of the bases and
some of the aircraft specific kit code is reusable for future experiments and aircraft

implementations.

April 8, 1994

ADST/TR 94-003281

«JAN Y 18313 ULUT VY QUNE.
NOLLYLANSWI WM TVUHIDS ¥V HUM LINSNDO 12430 TVLNINIHONVINIUHNONOD
)
: S
7= " : TR
=t g] R
== ==
o S .I\Icl -g g " u iﬁ
\‘dl"llw e p— m —iETL TS
- ‘llm — — » n WD P 1NED PRSSLY A W) \ \ — ﬂ
Alll! “\ \.-Uﬂli'oi”..l l-clll M / / — —
‘.Ilrl\ ng vy v; LT H \ \ _ —
— | - = 4 /
X s’ il B N Iy
P e _— ey ™ =" e —— m - \
m WH S rouieg "
AI ?‘ ' 39 wapong meie0 pans. A 3 —
—gipgee tl\u“ —_— o—— . m _
e = AT — i e
» ey yl wora \1‘\
] 22 ~
LY ;Y |==
e

-10-

Figure 2. ADST Software Engineering Process Model

ADST/TR 94-003281 April 8, 1994

Reasoning for uniform standards (e). Standards ensure that a system will look and act in
accordance with the requirements supported by the standard. In this case, a uniform set of
reuse design and code standards will ensure that portions of the delivered system will be
reusable and easily maintainable.

Status of (e). Each developer in the Loral team received a set of reuse design and code
guidelines such as those contained in appendix B.

Reasoning for tool checker (). A tool checker saves time in verifying code adherence to
standards.

Status of (f). The Loral team plans to use the SPC's Ada Style Guidelines as contained in
Loral's corporate Ada Style Guidelines [SPL 90]. Loral also has several software tools
that automatically check the conformity of Ada source code to most of the Ada Style
Guidelines.

3.2. Description of reuse options.

The models used in this study focus on the effects of reuse on productivity to produce the
system. This study also extends the model to estimate future productivity resulting from
specific rcuse activities bcyond the events mentioned in the SOW. Other factors considered
in this study include the level of reuse maturity and the number of times something is
reused.

Reuse implementation is more than just a technical issue, i.e., knowledge of the domain.
Successful reuse entails proper management, guidelines, standard processes, training,
tools, configuration management, and handling of legal issues.

3.2.1. Independent study suggestions.

Four independent studies were funded by STRICOM and conducted by the following
agencies: (1) Institute for Defense Analyses (IDA), Alexandria, VA [IDA 93], (2)
Communications-Electronics Command (CECOM), Research, Dcvelopment and
Enginccring Center, Softwarc Enginecring Directorate, Training & Mancuver Systems,
Leavenworth, KS [CECOM 93], (3) Georgia Institute of Technology (GIT), Atlanta, GA
[GIT 93], and (4) Software Engineering Institute (SEI), Carnegie Mellon University,
Pittsburgh, PA [SEI 93). Thesc agencies addressed the same set of qucstions regarding the
generic ModSIM System/Segment Specification (SSS) and ARWA designs. These
questions dealt with the degree of design conformity to the ModSIM SSS, modularity, and
adherence to object-oriented principles by the ARWA S8 architecture in its incomplete state
as of February 1993. Each independcnt evaluator was given a 22 volumc set of documcnts
which included Rotary Wing Aircraft (RWA) design data, unit development folders
(UDFs), preliminary design review (PDR) slides, and preliminary design materials.

The first question asked “Is the System/Segment Specification for the Generic Modular
Simulator - Specification #5495-10400C truly modular, reusable, and object-oriented in the
design architecture presenied?’ The SEI report stated “The Generic Modular Simulator
System (MSS), as presented in the System/Segmentation Specification js indeed
modular.”, "The RWA Step 1 specification is a proof by existence that the specification for
Generic MSS js reusable.”, and "The MSS specification_js modular and has somc attributes
of the identity and classification obj i istics.” The IDA report stated "We
found the ModSIM architecture to be reasonably modular.” The CECOM report stated “"To
the level of detail which was addressed in the System/Segment Specification, the design
architecture_is modular.”, “The design architecture outlined by the System/Segment
Specification presents an architecture which could be gagily tailored to particular flight
simulator applications.”, and "The design architecture partitioned the system along

-11-

ADST/TR 94-003281 April 8, 1994

functional lines.” The GIT reported stated "The System/Segment Specification for the
Generic Modular Simulator - Spec. # S495-10400C jis truly Modular, Reusable and Object
QOriepted in the design architecture presented.”

The second question asked “Does the design described in the RWA Step 1 report comply
with the MODSIM guidelines/approach (defined in the System Segment Specifications for
the Generic Modular Simulator - Specification #S495-10400C)7" The SEI report stated
"The speclﬁcauon in the RWA Step 1 documentation complies, for the most part, with that
presented in the MSS Generic specification.” and "It is clear that RWA does adhere (both in
spirit and in actuality, to the extent possible) to the MSS concepts/guidelines.” The IDA
report stated "The RWA design showed a high degree of compliance with the MODSIM
architecture.” The CECOM report stated "The Flight Station and Visual modules map
closely to the modules defined in the MODSIM. However, the RWA SS creation of the
Simulator System Module with 10 application segments deviates from the MODSIM
guidelines.” The GIT report stated "The design described in the RWA Step 1 report

complics, in spirit, with thc MODSIM guideline/approach.”

The third question asked “Does the documentation provided, which represents the RWA
design as accomplished by Loral/Boeing (i.e., unit development folders and other design
documentation), comply with the MODSIM guidelines/approach? Is the RWA design
modular, reusable and object-oriented?”’ The SEI report stated “The RWA specification
closely follows the Generic MSS specification with respect to modularity. reusability, and
use of an gm_qngnmpnmagh, and the comments made about the MSS specification
with respect to these properties also hold for the RWA specification.” The IDA report
stated “We found the RWA design, like the MODSIM architecture, to be

modular but not based upon an object-oriented design.” The CECOM report stated "In
general, the UDFs were not at a point where an assessment of the code modularity could be
performed.”, ”If indeed the code being imported is usable, the code should remain reusable
for other apphcauons The design was not far enough into the details to determine if any
new code generated would be reusable.”, and This approach does not map cleanly into
object-oriented concepts.” The GIT report stated “The documentation provided which
represents the RWA design as accomplished by Loral/Boeing (i.e., Unit Development
Folders and other design documentation) generally complies thh thc MODSIM
guidclines/approach.” and "The RWA design j

The fourth question asked “Does the System/Segment Specification for the Generic
Modular Simulator - Specification #495-10400C, and consequently the RWA
implcmentation of MODSIM, have adcquate interface definitions to be implemented
successfully in future simulator programs?” The SEI report stated "The requirements for
future STRICOM simulator programs are not known by this review team, so the team
cannot say specifically if the RWA approach will be adequate for thesc programs.” The
IDA report stated ..., we were unable to cvalvate whether the MODSIM architecture
provides adequate interface definitions to be implemented successfully in future simulator
programs.” The CECOM report stated The interface definition is only at the top level.
This does not provide the detaiied information required to ensure successful implementation
in cither the RWA or futurc simulation modcls.” The GIT rcport stated "The
System/Segment Specification for the Generic Modular Simulator - Spec. #5495-10400C
and consequently the RWA implementation of MODSIM provides a fairly detailed
description of the system level requirements.” and ..., the RWA design does indeed have
a significant level of definition in its intertace design.”

Most of the agencies concluded that the ARWA SS architecture matched the generic
ModSIM architecture, except that 10 independent segments have been grouped together as
the SSM module. All of the agencies concluded that the architecture was indeed modular,
but pointed out that the design did not fully adhere to some of the attributes of an object-
oriented design.

-12-

ADST/TR 94-003281 April 8, 1994

Reusability of the ARWA was also addressed by the studies. The agencies generally came
to the conclusion that if total software reuse is to be achieved by the ARWA project,
STRICOM must include reuse requirements in the specification and Loral must provide
more maintenance documentation to make reuse easier in the future.

Some segments have legacy code available from Loral, Boeing, and MDHS which can be
reused in the ARWA program in their current state. The most reusable ARWA modules as
determined by these studies and Loral's internal reuse estimates (tables 1 - 3) are listed in
table 4 from the most reusable (listed first) to the least reusable (listed last). Those modules
with close to no current reusable value in their current state are not shown.

ARWA Module Name
Weapons)
Flight Dynamics | |) |
Sensor Control) ‘J v)
ASE) v "))
TNE (Environment)) v
Flight Control Q) \J
BIU |
Nav/Comm Q)
Visual Systems Module)]
Propulsion Q)

NOTE: A parenthesized check mark (‘J) denotes that the module is only partially rensable.

Table 4. Segments With Existing Reusable Software

If, on the other hand, the Army is willing to switch to a more object-oriented architecture
which is more conducive to reuse and maintenance, then the agencies suggested that the
specification be modified to include reuse and object-oriented requirements. This would
change the flavor of the contract from straight development into a reuse development
project.

Since conversion to an object-oriented design is a separate option, the analyses will refer
only to the structured design suggestions by these studies.

3.2.2. Ada style guidelines.

One of the options to consider is the use of the SPC'’s Ada Quality and Style Guidelines for
Professional Programmers. Loral's software expertise provided some of the reusability
and portability guidelines which were incorporated in the September 1991 version of this
book. These guidelines have been in the Corporate Standards and Methods Documents
since November 1990 and have been in use on Ada projects since then. Reusability is
ensured by these guidelines because they address ways to handle Ada to promote

-13-

ADST/TR 94-003281 April 8, 1994

understanding and clarity, robustness, adaptability, independence, and key portability
issues.

This option would ensure that Loral and subcontractors will use the guidelines during
design and coding phases. The Grammatech Ada-Assured tool could be used to
automatically check consistency with those guidelines, especially in the areas of portability
and reusability.

3.2.3. Port to Ada.

Since Ada is the language of choice by the Government, and it has some desired features
which support reuse, it would be valuable to port the entire simulator system to Ada. The
Support Subsystems of the ARWA project, including ModSAF, includes 263,000 lines of
reused 'C' code. The SSM common softwarc contains 16,615 lines of reused FORTRAN
code. The RAH-66 kit contains 25,770 lines of reused FORTRAN code. Systems
requiring one type of compilcr also reduce the cost of maintcnance and improve system
performance.

3.2.4, Domain analysis.

In order to achieve higher levels of productivity from reuse, one must work at higher levels
of abstractions, such at the preliminary and detailed design levels.

Domain analysis of the ARWA is being performed to establish the common features among
both the RAH-66 and AH-64D kits in order to determine both the static and variable aspects
of each kit. From this information and the architectures of the ARWA Kkits for the RAH-66
and AH-64D, a generic architecture and data set for an ARWA is being created. The
current designs, in some cases, use different models to accomplish the same result. Each
commonalty needs to be evalvated for genericity, testability, performance, and
extensability. The current schedule and funding permits this to some degree. The result is
a design and data set template that contains the core set of features that are common to both
the RAH-66 and AH-64D, with an optional set to accommodate unique features. Such
templates would facilitate adding other rotary wing aircraft (such as the OH-58D) to the
simulator structure.

Other domains such as U. S. Army training simulators that include ground-based vehicles
and simulators could be explored in order to expand the distributed simulator network to
interface with the ARWA SS and to accommodate combined arms military training.

3.2.5. Object-Oriented design conversion.

The structurcd ModSIM architccture constraing object-oricnted design and reusability to a
degree. Inheritance and intormation hiding are some of the features that would facilitate
swapping of reusable building blocks that would fit into the architectural frameworks
(system and database designs) of the simulator domain. These frameworks would easily
be used in automatic simulator generators, like those on the market today, i.e., G2 made by
Microsoft. The number of object-oriented methodologies with tool support is rapidly
increasing. The technology is improving rapidly. Two acceptable methodologies are:
Real-Time Object-Oriented Methodology (ROOM) aad Schiaer-Mellor. Both have tool
support, i.e., ObjectTime and Cadre, respectively.

One option would be to establish a parallel effort to convert the entire ARWA design and
database into a totally object-oriented architecture. The alternative which is being pursued
is to convert key portions of the design and database into an object-oriented structure. This
is feasible if the portion was isolated enough from the rest of the design so as not to cause
interface problems. For example, the VSM is essentially being defined from the ground

-14 -

ADST/TR 94-003281 April 8, 1994

up, which affords an excellent opportunity to explore an object-oriented design. In this
report, while discussing object-oriented conversion, the total conversion option is being
addressed.

Another option would be to start implementing Ada 9X features in the design of the ARWA
software in anticipation of its release. According to the Memorandum for Secretaries of the
Military Departments Directors of the Defense Agencies conceming Early Use of Ada9X,
dated March 9, 1994, the "revision of ANSI/MIL-STD-1815A (Ada83) has progressed to
the point that it is nearly certain that the new version, referred to as Ada9X, will be
approved by national and international standards bodies during 1994." The memorandum
goes on to say that "early use of Ada9X provides access to the language's many
enhancements, including full support for object-oriented programming, enhancements for
real-time programming, and interfacing to other languages.” Since validated versions of
Ada9X will probably be available by the time the ARWA project is completed, conversion
to a fully object-oriented design using Ada is a possibility for the ARWA program. In the
meanwhile, steps can be made to design the ARW A software to increase the possibility of
conformance to the Ada9X standard.

3.3. Recuse level analysis.

Each reuse option mentioned in sections 3.1 and 3.2 has been evaluated according to its
reuse maturity level. Three levels are: opportunistic, systematic, and automatic generation.

The opportunistic level is the least mature level that yields the least amount of reusable
products for the effort it involves. The user searches for reusable parts in an ad hoc
manner, mainly at the lowest level of abstraction, i.e., code. There may or may not be a
central reuse repository in which to find these parts. The ones that exist usually contain
parts that are not relevant to the project, are not tailored for reusability, are not thoroughly
tested, and do not follow the same standards. The user usually relies on past experience,
private libraries, and notes to perform design and development activities.

The systematic level involves a well-defined and repeatable process with organizational
commitmeats for funding, staffing, and incentives for production and use of reusable
workproducts. Clear certification of parts and configuration management procedures are
byproducts of systematic level reuse. In systematic reuse, the project schedules have more
time allotted to the requirements and design activities, but shorter development times to
accommodate more rapid prototyping at the framework level. Sophisticated library tools
arc not required, just logical directory structures with high quality parts relevant to the
domain.

The automatic generation level cannot happen without the foundation of the systematic
level. Systems arc literally built while in the requirements and design phases with the aid
of application gencrators. The most basic gencrators include 4GLs and User Interface
Gencrators. The Cadre Teamwork CASE tool provides some basic code generation
capabilities. More complex generation tools operate at higher-levels in order to hide the
manual interconncction of components via a problem-oriented language, template, option
filler, or visual programming environments (such as in the G2 tool, made by Microsoft).
Internal domain expertise is needed to set up the application-specific parts and relate them to
framework designs and specific requirements. Tihe output is usually code and/or
procedural calls in a higher order language.

3.3.1. Assumptions.

The assumptions in this analysis are:

-15-

ADST/TR 94-003281 April 8, 1994

a. There is a natural progression of mature reuse processes that involve increasing
organizational commitment and more effective usage of the application experts'
skills.

b. The Government may become involved to incentivize such activities in order to
make the producers more willing to produce reusable software.

3.3.2. Reuse level model.

The reuse level model focuses on the maturity of the reuse process. Three distinct levels
(opportunistic, systematic, and automatic generation) are described in 3.3. If viewed on a
continuum from least mature (opportunistic) to most mature (automatic generation), the
following characteristics would apply:

Least Mature Most Mature

No standards : Many standards

Manually search and use _ Automatic assistance search

Small artifacts Large artifacts

Low level of abstraction, e.g., code High level of abstraction, e.g.,

: frameworks

Nonrepeatable usage Highly repeated usage

Different vocabulary Same vocabulary

No metrics Reuse metrics

Short-term reuse Long-term reuse

Unplanned Planned

Disjointed semi-reusable artifacts Relational groupings artifacts

Low quality artifacts High quality artifacts

No training Training

Domain knowledge not recorded Domain knowledge recorded

Little management support Management commitment

No reuse organization Reuse organization

Scattered focus on reuse applications Well-defined reuse areas

Savings/costs not tracked Savings/costs tracked

Poor communication about reuse Good communication about
resgurces reuse resources

With this continuum in mind, each reuse option was rated according to the following scale:

Reuse Level Rating Scale
1 =Low (Opportunistic)
2 = Avcrage (Ad hoc with some systematic activities)
3 = Above Average (Systematic)
4 = Excellent ' (Systematic with some automatic generaticn)
5 = Superior (Automatic generation)
3.3.3. Procedures.

An expert assesses the reuse level of each option using the ranking values described above.
The results are tabulated in a summary tabie.

3.4. Reuse quality analysis.
Each reuse option mentioned in sections 3.1 and 3.2 is evaluated according to the resulting
quality of reuse.

-16-

ADST/TR 94-003281 April 8, 1994
3.4.1. Assumptions.
The assumptions during this analysis are:

a. Quality parameters that affect reusability are:

- Correctness

- Usability

- Adaptability

- Robustness

- Independence

- Understandability
- Portability

- Testability

- Accessability

- Performance

Correctness is the degree a product fulfills its requirements in a consistent manner. This
parameter is cnsured by inspections, thorough testing, number of prior reuses, or
some other certification process.

Usability is the extent to which the product will need to be modified to fit into another
contcxt. Minimal modification is desircd.

Adaptrability is the speed and ease in which a product may be tailored to fit into another
context.

Robustmess is the length of time a product is valuable as a reusable product, e.g., 5
years, 20 years, etc.

Independence is the degree to which the product is self-contained, i.e., is standalone and
docs not depend upon other artifacts for inputs.

Understandability is the level of clarity inherent in the product. The product is structured
logically with complete documentation.

Portability is the ease in which a product is ported to another hardware platform or
soltware language.

Testability is the easc in which a product is tested in a standalone or integrated sitvation.

Accessability is the ease of acquiring the product for reuse. For example, a product has
{‘ili}:\l agcessibility when located within the project's local file system that is clearly

abeled.

Performance is the amount of effect the product has on the system's performance when
included in the system's framework.

3.4.2. Reuse quality model.

Sincc rcusc quality has many facets, a Kiviat Diagram is used to visually show the
differcnces in quality by showing whether a rcuse activity would produce a certain reuse
quality in the developed product. Each "spoke” in the diagram represcnts one of ten
paramcters and exhibits a quality rating. The quality rating scale for how well the rcuse
candidate fulfills the quality parameter is as follows:

(> li
1 =None
2 =Below average
3 = Satisfactory
4 = Above average
5 = Superior

The ratings are connccted by a line and the resultinig shape shows the quality profile. The
larger the enclosed area, the higher the quality. An example of this diagram is shown in

-17-

ADST/TR 94-003281 April 8, 1994

figure 3. For ease of comparison with the other analyses, an average of the 10 parameters
will be used to represent a particular reuse option.

3.4.3. Procedures.

An expert assesses the reuse quality of each option using the ranking values described
above. The results are first tabulated in a Kiviat Diagram and then averaged for display in
the summary table.

3.5. Reuse cost impact analysis.

Each reuse option mentioned in sections 3.1 and 3.2 is evaluated according to the resulting
initial cost impact and future savings related to each option.

Reuse cost implementation depends upon the producer-user scenario. For example, there
is a cost to making something more reusable and a cost for reusing something. The cost
decreases when more mature levels of reuse arc implemented and when artifacts are reused
more than once.

3.5.1. Assumptions.

The assumptions used in this analysis are:

a. There are different productivity ratios for those who only produce reusable artifacts,
produce and use once, use once, produce and use many times, and use many times.

Sample Kiviat Diagram

Correctness
Performance At Usability
Accessability Adaptability
Testability Robustness
Portability Independence

Understandability

Figure 3. Sample Kiviat Diagram

-18-

ADST/TR 94-003281 April 8, 1994

b. There is an initial cost impact to create a reusable artifact.

c. The cost to use a reusable artifact may be greater or less than the cost to build it,
depending upon the quality of the artifact and the skill of the user.

d. Actual cost estimates cannot be calculated because the labor rates and processes are
different for the producers and the consumers.

3.5.2. Reuse cost model.

The in-house cost model is similar to the commercial System Evaluation and Estimation of
Resources (SEER) model. Part of the in-house costing process uses the SEER model
results as a sanity check on the results. At the beginning of a project, the delivered product
size is estimated and each LOC is associated with a productivity rate depending upon what
type it is. The productivity ratio is defined as the ratio of hours per line of code. Higher
productivity is associated with the lower values. Table S contains an example of this
classification schema:

Productivity Ratio

Code Type

Code Subtyne

§ New application code 95

} Non-delivered code 35

Reused LOC Added code 32

| Changed code .09

| Deleted code 05

| Unmodified code .03

i Ported code 08

COTS integration code 25

Table 5. Example Reuse Cost Schema

To use this model would require data in smaller granularity than is availabie at this time.
Therefore, for this study, a simpler approach is used that entails assessing the initial cost
impact to implement a particular reuse option, estimating the productivity increase using the
SPC's scale, and averaging the two rates.

-19-

ADST/TR 94-003281

April 8, 1994

Process or Tool Productivity Increase| Magnitude of
Cost

Compiler Library 1(10 %)

Operating System 1(10 %) 2
Scavenge 1 (10 %) 1
Junk Yard 1 (10 %) 1
Re-Engineering 3 (30 %) 1
Parts Library 3 @0 %) 2
Extensible Framework (based on Domain 5(120 %) 2
Analysis)

Synthesis (Automatic Generation + Domain 5 (250 %) 3
Analysis)

Table 6. Reuse Cost and Productivity Scale

Table 6 shows the relative productivity increases and cost impacts for various types of
reuse processes/tools based on data from the SPC [Durek 89] according to the following

rating scales:

1 = Extremely High
2= ngh

3 = Medium

4 =Low

5=Very Low

I atin
1 = Very Low
2 =Low
3 = Medium
4 = High
5 = Very High

3.5.3. Procedures.

(more than 24 labor months)
(12 - 24 1abor months)

(6 - 12 labor months)

(1 - 6 labor months)

(0 - 1 labor month)

(0-10%)

(11-30 %)
(31-50 %)

(51- 100 %) .
(greater than 100 %)

An cxpert assesses the reuse levcl of each option using the ranking valucs described above.
The results are tabulated in a summary table.

N
1y 3
- :

ADST/TR 94-003281 April 8, 1994
3.6. Reuse schedule impact analysis.
This high level analysis indicates the impact on the project schedule for

phase 2 of the ARWA project for each reuse option implementation mentioned in sections
3.1 and 3.2.

3.6.1. Assumptions.
The assumptions in this analysis are that:
a. Estimates are based on preliminary design information.
b. Task dependencies that are logical.
c. The schedule is impacted less if the activity is on a non-critical path.

d. These are generic situations tacked on to current project schedules that may become
a standalone project.

3.6.2. Reuse schedule impact model.

In a more detailed analysis, each reuse option would have a skeleton work breakdown
structure and a sample schedule would be plotted into PERT charts. The inputs would be
validated by actual developers from the Loral team. For the sake of time, expert estimates
are used to assess the amount of time and labor involved to implement each option and rank
their impacts based on the following scale:

1 = Extremely high (more than 1 year)

2 = Somcwhat high (6 months - 1 ycar)

3 = Medium (3 - 5 months)

4= Low (2 weeks - 2 months)

5 = None (0 - 2 wecks)
3.6.3. Procedures.

An expert assesses the reuse level of each option using the ranking values described above.
The results are tabulated in a summary table.

4.0 Resuits.

This sections contains the results of each of the four analyses used to evaluate the rcusc
implementation optivns describxed in section 3.2. The summary of the analysis results is
contained in table 9. Equal weighting is assumed for each analysis. The option(s) with the
highest averagc rating is the most optimal choice.

4.1. Reuse level analysis.

The reuse level rating scale is as follows:

Reuse Level Rating Scalc

1=Low (Opportunistic)

2 = Average (Ad hoc with some systematic activities)

3 = Above Average (Systematic)

4 = Excellent (Systematic with some automatic generation)

-21-

- A
i
i

ADST/TR 94-003281 April 8, 1994

5 = Superior (Automatic generation)

Option 1 (current reuse activities) is ranked as a 2.5. This approach is more than just ad
hoc because several systematic activities are happening such as, internal reuse from past
projects, coordination of common software among the team, tracking the amount of reuse
via LOC metrics, and following a generic simulator architecture. With the addition of some
more reuse activities, this option would become a 3 (systematic level).

Option 2 (independent study suggestions) is ranked as a 2. The suggestions are a gentle
push towards systematic reuse, but are not enough to achieve that level.

Option 3 (Ada style guidelines) is ranked as a 2. Incorporating standards for the code is
just one activity out of many towards achieving systematic reuse.

Option 4 (port to Ada) is ranked as a 2. This small step has a positive impact on not only
the current project, but future reuse opportunities in that the code will be incorporated more
easily because it is in the same language. Performance will not degrade because of multiple
compilers and so forth.

Option 5 (domain analysis) ranks as a 3. This is the core activity of systematic reuse.
Domain expertise gets captured and efforts may be focused on products that bring the
greatest return on investment.

Option 6 (object-oriented design conversion) is ranked as a 4. This conversion is a
systematic activity that requires training and may involve software tools for quicker
documentation. Object-oriented testing involves a different approach than testing structured
code. More scenarios and a wider variety of tests are required.

4.2. Reuse quality analysis.

The numerical results are contained in table 7. These results are graphically displayed via
Kiviat Diagrams shown in figure 4. The quality gradually improves from option 1 to
option 6. Options 3 and 4 are closely related. It is assumed that the port to Ada involves
conformance to thc Ada Style Guidelines. The quality rating is expressed in table 7
according to the following rating scale:

Reuse Quality Rating Scale
1 = None

2 = Below average

3 = Satisfactory

4 = Above average

5 = Superior

ADST/TR 94-003281 April 8, 1994
Parameters Opt3: | Opt.4: | Opt.5: | OpL6:

Ada Portto | Domain | OOD
Correctness 4 3 3 5 5
Usability 4 4 5 5 5
Adaptability 4 5 5 5 5
Robustness 3 5 5 5 5
Independence 3 5 5 5 5
Understandability 4 5 5 5 5
Portability 3 5 5 3 5
Testability 4 3 4 4 4
3 3 3 4 4
Performance 3 3 4 3 4

4.4 4.4 4.7

Table 7. Reuse Quality Analysis Results

4.3. Reuse cost impact analysis.

Cost impact was taken to be an average of the initial labor cost and the predicted reuse
level. A summary of the reuse cost impact analysis is shown in Table 8 according to the

following rating scales:

Initi .
1 = Extremely High
2 = High
3 = Mcdium
4 =Low
5= Very Low

(more than 24 labor months)
(12 - 24 1abor months)

(6 - 12 labor months)
(1 - 6 labor months)
(0 - 1 labor month)

Figure 4. Quality Results Kiviat Diagrams

1l =Low (bpportunistic)

' ADST/TR 94-003281 April 8, 1994
. Option 1 - Current Activities Option 4 - Port to Ada
Corvactness Comectnesa
. Perfarmance Usability Parformance Usabiity
Accessabiity Aduptaniity Accessabilty Adeptability
' Tessbility Robustness Testablity Ronswness
Portanility independence Portability independence
. Understandebility Understandability
. Option 2 - Independent Studies 0pt|on 5 - Domain Ana'ysis
. Corractness Correctness
Performancs Usability Porformance Usability
' Acoassability Adsptabiity Accessability Adwpabiity
- Testability Robustness Testability foustness
' Portadiity hdependence Portabitty Independence
l Understandabiity Understandshbility
' Oation 3 - Ada Style Guide Option 6 - Object-Oriented
Correctrness
Performance Usability
Accessatility Adaptabiity
. Testability Robustness
Poreaniity independenns
' Understandability
2 = Average (Ad hoc with some systematic activities)
l 3 = Above Average (Systematic)
4 = Excellent (Systematic with some automatic generation)
5 = Superior (Automatic generation)
. -24-

ADST/TR 94-003281 April 8, 1994

Average Cost

Reuse Option
Input Rating

. Current Reuse
Activities

2. Independent Study
Suggestions

. Ada Style Guidelines

. Port to Ada

. Domain Analysis

ANl HE W

. Object-Oriented Design
Conversion

Table 8. Reuse Cost Impact Analysis

4.4. Reuse schedule impact analysis.

As a reminder, the rating scale for the reuse schedule impact analysis is as follows:

ing Scale
1 = Extremely high (more than 1 year)
2 = Somewhat high (6 months - 1 year)
3 = Medium (3 - 5 months)
4= Low (2 weeks - 2 months)
5 = None (0 - 2 weeks)

Option 1 (current reuse activities) is ranked as a 4. All of the activities are short tasks.

Option 2 (independent study suggestions) is ranked as a 4. The analysis of the functions
requires the most amount of time.

Option 3 (Ada style guidelines) is ranked as a 4. Verification of following the guidelines
takes the most time.

Option 4 (port to Ada) is ranked as a 1. Translation of more than 100K LOC requires a
substantial effort.

Option 5 (domain analysis) ranked as a 3. Much of the functional analysis has already been
done

Option 6 (object-oriented design conversion) is ranked as a 2. Much of the domain
analysis and functional analyses can be used as a foundation and timesaver for this task.
Also, in-house object-oriented experts may act as consultants to make this analysis go even
more quickly. Designer/developer object-oriented training still needs to occur and this is
what drives out the schedule. Training takes one week, but productivity would be initially
slower until the concepts take hold; thus, the lower ranking.

-25-

ADST/TR 94-003281 April 8, 1994

4.5 Summary.

A summary of all four analyses is shown in table 9.

Reuse Option

. Current Reuse
Activities
2. Independent Study 3.25
Suggestions
3. Ada Style Guidelines 3.40
4. Port to Ada 2.60
5. Domain Analysis 3.35
6. Object-Oriented Design 3.43
Conversion

Table 9. Summary of Reuse Analyses

5.0 Conclusions and recommendations.

5.1 Summary of conclusions and recommendations.

There are two views of reuse in this study: 1) using reusable artifacts to build and test the
system being developed and 2) ensuring that a portion of the system will be reusable in the
future. The Loral team must act both as a consumer and a producer in the reuse world.
The reusc analyscs performed in this study provide some guidance for accomplishing the
most reusc (short-tcrm and long-term) with the Icast impact to cost and schedule.

According to the results, the least productive option is to port the system to Ada and the
next to least eftectivc option is to follow the suggestions put forth in the independent study
papers. The top options, beginning with the best choice, are: object-oriented conversion,
adopting the Ada Style Guidelines, performing current reuse activities, and performing a
domain analysis on thc system. The top options improvc the chances for long-term rcusc.
These are intcrmedialc level (Systematic) activities. If domain analysis and object-oriented
design are performed, it will be feasible and cost-effective to perform automatic generation
of training simulators using Commercial-Off-The-Shelf (COTS) tools and domain experts.

The most immediate and feasible activity for performing a domain analysis would be to
start with the ARWA kits for RAH-66 and AH-64D to determine a generic architecture,
modeling equations, and data format. Variable features would be noted for the object-
oriented design.

The most logical means of transitioning to an object-oriented design is to pursue the Boeing
Domain Architecture for Reuse in Training Systems (DARTS) methodology [Boeing 93].
The DARTS architecture is essentially a merging of Boeing's ModSIM architecture with the

-26-

R

ADST/TR 94-003281 April 8, 1994

Software Engineering Institute's Air Vehicle Structural Model (AVSM) architecture. The
ModSIM architecture defines modular segments of a training system and the interfaces
between those segments. The AVSM architecture defines the subsystems within each
segment and the interfaces between those subsystems.

Thus far, the ARWA preliminary design effort has produced a ModSIM design, with
clearly defined segments and interfaces. A transition from the ModSIM architecture to the
DARTS architecture at this point would be relatively smooth since much of the internal
workings of the segments have yet to be defined. Effort spent thus far on defining the
system under the ModSIM architecture could be utilized completely in a transition to the
DARTS architecture.

Transitioning to the DARTS architecture at this point in time makes a great deal of sense for
the ARWA project. In order to keep the intrasegment functionality and interfaces consistent
between MDHS and Boeing, a standard methodology needs to be chosen. Since DARTS
is compatible with ModSIM, it meets the goal of providing standard intrasegment
definitions while retaining the design worked on thus far. The DARTS architecture
produces an object-abstracted design, and DARTS architectured software will allow for
reusable software within segments.

The modulcs of the ARWA SS which utilize existing rcusable software in its current state
includc thc Wecapons, Flight Dynamics. Scnsor Control and ASE modules. The TNE
(environment) and Flight Control modules also have reuse potential. In order to encourage
future reuse of these modules, the customer should require a separate Contract Data
Requirements List (CDRL) item for these modules that contain reuse instructions, e.g.,
what to change or not change. The VSM and FSM have been designed to be reusable
within the constraints of a ModSIM architecture, though no existing code has been
identified to be reused. Reuse will come about through careful design and documentation.

5.2 Lessons Learned.

Appendix A describes the search for models and data to help validate the system. These
resources uncovered some reusable modules for the ARWA project, but not as many as had
becn hoped for.

The best source for reusable artifacts were found within the contractor's software and
documentation from previous related projects. Since therc is a lot of internal reuse
cccurring, the customer should require a CDRL item that captures the reuse successes and
failures.

The current ARW A approach is certainly a viable solution to producing reusable software at
a reasonable cost. Changes to an object-oriented design through domain analysis have
been shown to be cost efficient. The simplest and most effect means to transition to an
object-oriented approach would be to incorporate the DARTS methodology.

6.0 Notes.

This section contains a glossary of key terms and an acronym list.

6.1 Glossary

. Software reuse accomplished via the use of application generators
to build new applications from high level descriptions. Examples include 4GLs and User
Interface Generators.

-27-

ADST/TR 94-003281 April 8, 1994

Domain Analysis. The process of identifying, collecting, organizing, analyzing, and
representing a domain model and software architecture from the study of existing systems
underlying theory, emerging technology, and development theories within the domain of
interest.

External Reuse. Reuse of workproducts produced in one project, consumed by
another. External reuse level is measured by comparing units written against units taken
from an explicit external library at that abstraction level.

EFramework. A set of workproducts or infrastructure that behaves as a skeletal system or
application and implements the common functionality in an architecture. A framework
provides a shell for the systematic development and interconnection of workproducts,
ensuring common appearance and behavior via use of common services.

Generator. A higher-level automatic builder that hides the manual interconnection of
components using a problem-oriented language, templatc or option filler, or a visual
programming environments. The generator enables concise specification of the desired
(piece of the) application, and then generates appropriate code and/or procedure calls in
some other language.

. A customizable’extendible application that captures most of the
interesting, common parts of an application domain. a complete application is built by
adding missing parts, adjusting parameters, or selecting alternative components. It is often
built upon an application framework. It can also be a prototypical or skeletal application,
consisting of the infrastructure, some components, and some preset interconnection
language scripts, to simplify the task of creating complete, conforming applications for
some domain. This may be just a shell, into which additional components should be
plugged to produce an executable application, or may be a trivial, but complete application
that needs to be evolved into the final/desired/customized application via the addition or
replacements of components and changes in interconnection language.

Internal Rcuse. Avoiding redundant implementation of functionality within a single
project by careful design and inspection at early stages such that selected componcnts are
identified for distinct uses within the project system or subsystem.

Opportunistic Reuse. Reuse through identification of previously unplanned-for
opportunities to reusc workproducts.

Reusability. An attribute of software workproducts that measures the degree to which
they can be used in more than one computer program or software system.

. The planned reuse of workproducts with a well-defined process
and lifecycles, with commitments for tunding, staffing, and incentives for production and
use of reusable workproducts.

—— " _g— ———— — —— —— e ——— —— —-———

ADST/TR 94-003281

6.2 Acronym List

ADST
ARWA
AVCATT
CECOM
COTs
CSCI
FSM
GIT

IDA
LOC
ModSAF
ModSIM
PERT
SEER
SEI

SpC

SS

SSM
SSS
STRICOM
Sw

TWSTIAC

VSM
WDL

Advanced Distributed Simulator Training
Advanced Rotary Wing Aircraft

Aviation Combined Amms Tactical Trainer

U.S. Amy Communications-Electronics Command
Commercial-off-the-shelf

Computer Software Component Item

Flight Station Module

The Georgia Institute of Technology

Institute for Defense Analyses

Lines of Code

Modular Semi-Automated Forces

Modular Simulator Systcm

Program Evaluation and Review Technique
System Evaluation and Estimation of Resources
Software Engineering Institute

Software Productivity Consortium

Simulator System

Simulation Software Module

System/Segment Specification

Simulation, Training, and Instrumentation Command
Software

Tactical & Natural Environment Module

April 8, 1994

Tactical Warfare and Simulation Technology Information Analysis

Center
Visual System Module
Loral Wesicrn Development Labs

ADST/TR 94-003281 April 8, 1994

APPENDIX A
REPOSITORIES CHECKED FOR REUSE INFORMATION

10. Introduction

Loral has identified models for potential reuse in the ARWA simulation. From this model
list, repository sites have been searched for availability to make an initial top-level judgment
of reusability. Table 1 contains the list of models and data.

Numerous repositories for reusable data, documentation, and source code for the ARWA
program have been searched. These include:

1) ASSET Source for Software Engineering Technology
2) Defense Software Repository System (DSRS)

3) Modeling and Simulation Information System (MSIS)
4) Document Cataloging System (DOCATS)

5) Army Reuse Center (ARC)

6) Sherikon, Inc.

7) Sparta, Inc.

8) Public Ada Library (PAL) (Ada Software Repository)
9) Ada Joint Program Office (AJPO) and AdalC

10) National Technical Information Services (NTIS)

11) AdaNET

Various categories of inforr.atiun for each source are given as follows:

1) Description - A brief description of the source

2) Data Search - Information about search performed
3) Findings - Results of search

4) Rating - Reusability rating of repository

The general criteria categories for rating the reuse data repositories were:

1) Available relevant software models
2) Available relevant documentation
3) Cost, data rights, and elcctronic access

A score of O (worst) to 10 (best) has been given to each category and a final score has been
tabulatcd for each source.

Segment System RAH-66 | AfH-64D
Flight Control Primary Controls v v
Flight Director v v
Landing Gear Doors %
‘ ing Gear v v
Flight Controls Loading v v
AFCS v v
Velocity Stabilization (4

Table A1l. List of ARWA Models and Data

-Al-

April 8, 1994

ADST/TR 94-003281
Segment ~System RAH-66 | AH-64D
Nav/Comm HARS/AHRS v INU
DNS v Integrated with
GPS
GPS v_ v
ICS v CCP
VHF COMMS ARC-186 ARC-186
ARC-201 ARC-201
HF
UHF COMMS v (2) ARC-164
Air Data v ADS
ATHS EATHS upto | EATHS upto
16K Baud 16K Baud IDM
Line-of-sight and range altentuation v v
models and data
: Moving Map v NAV/TSD
Weapons Area Weapon System 20 o gua M-230E1
30 mm gun
Aerial Rocket System Hydra 70 2.75" RKTS
2.75" RKTS MK-66
MK-66 MPSM
MPSM
Point Target System AGM-114 AGM-14A
Helifire Hellfire
Laser Seeker RF Seeker
Laser Seeker
| Heat Seeking Missiles ATAS ATAS
Hit/Kill Probability, models & data v v
Sensor PNVS NVPS AN/AAQ-11
FLIR
TADS EOTADS AN/ASQ-170
AN/ASQ-170 FLIR
FLIR DTV
D1V DVO
ATD/C LRE/D
LRF/D LSTAAT
LSTAAT
MIADSS HDUJ
SSU
DAP
SEU
DEU
HIDSS v
MMW Radar v FCR
Sensor degradation based on atmospheric v v
| conditions including smoke, fog, and rain
RFI v v
Mutcrial Emissivty Model v v

Table A1l. List of ARWA Models and Data [Continued]

ADST/TR 94-003281 April 8, 1994

Segment System - AH-¢4D
Aircraft Suvivability | Radar Waming APR-39 APR-39
Equipment w1
W2
APR-48
AVR-2

z

N

Laser Waming A

ALQ-136
) 15
ALQ-144
M3
M-130
M-130

Flight Dynamics qua‘;‘;u:;sp:fﬁMOﬁm
es
Main Rotor Aerodynamics
Blade element
‘ Rotor mapped disc
Tail Rotor Aerodynamics
Airframe Aerodynamics
Ground Handling _

g
ALTANAT R L IR AN o

AVANAN

Propulsion Main and Tail Rotor Speeds

Transmission

r_’l_‘Ensmission Oil Temperature

Transmission Qil Pressure

| Gas Generator/Power Turbine

| Engine Qil Temperature
Engine Oil Pressure
Engine Available Torque
Fuel Usage

Turbine Gas Tempcrature

Physical Cues Environmental sounds and vibrations,
|ASE. Ai W losions

Aircraft waming, radar and navigation
system tones

{ Synthetic voice message
Voice communcation

FSM Fuel System
Electrical System
Hydraulic System
Master Caution
/Warning system

<J<l<l<]xl<] < ‘\\\\\5\\\\\\\
Jolclelelel < <l<i<l<l<]<iSl<lxl<l<|<<]<]

Tabie Al. List of ARWA Models and Data [Continued]

ADST/TR 94-003281 April 8, 1994

Segment System

VSM Head tracking prediction algorithms
ing
smoothing
Line of Sight/Ray tracing algorithms
Databases
Moving Model Icons

Intervisibility

TNE Ownship collision detection
Dead Reckoning

{ AOI ing

| Intervisibility

Lascr Range Finding
Aumosphere/Magnetic Variation

»
NALT N AN \g
NANEEREEEE \g

Table Al. List of ARWA Models and Data [Continued]

11. Reuse Sources

The following sources were searched anc the results of the searches are given:

11.1 Asset Source for Software Engineering Technology (ASSET)
11.1.1 Description

ASSET is a software reuse library and reuse information exchange available to software
developers in government, industry, and education. ASSET is sponsored by ARPA's
STARS (Software Technology for Adaptable, Reliable Systems) Program to serve as a
national resource for the advancement of software reuse across the DoD. The ASSET
library, located in Morgantown, WV, is connected to the Internet allowing world-wide
access to reusable software assets.

11.1.2 Data Search

A scries of pattern searches were performed on the ASSETS calalog document using key
words for the ARWA model. The results of these searches is documented below.

Keyword: "navig"

ASSET_A_396 Parser Luilder Software Bundle

ASSET_A_301 Roams Test Report & Lessons Document Learned.
Keyword: “communi”

ASSET_A_247 ADA Composer: ADA Design Tool Software Bundle
using OOD.

ASSET_A_157 ADA Runtime Support for Complex Software Tool
Time Critical Embedded Applications.

ASSET_A_345 ARPC (Augmented Remote Procedure Software
Bundle Call)

-Ad-

ADST/TR 94-003281

ASSET_A_517

ASSET_A_415

ASSET_A_224

Cleanroom Engineering Handbook & Document
Specification Team Practices.

Environmental/Tool Integrator User Software
System Manual.

Information Object Modeling Example Software
Bundle for Air Traffic Control.

*Some potential for applicability to the ARWA program.

ASSET_A_330

ASSET_A_167

ASSET_A_381
ASSET_A_303
48SET_A 319

ASSET_A_324

ASSET_A_503
ASSET_A_227

ASSET_A_175
ASSET_A_481

ASSET_A_301
ASSET_A_232

ASSET_A_323

Keyword: "flight”

ASSET_A_356

Keyword: "controls”

ASSET_A_100
ASSET_A_328

Keyword: "weapons”

Inter-Tool Communications Facility Software
Bundle (ITCF).

Inter-Tool Communications Facility Document
(ITCF) Final Report.

Paradise Document
Process Modeling Document

Process Notation Development: AAA Document-
Mag. Notation Article

Q an ADA/C/Interprocess Document
Communications Support Utility

Quality Function Deployment Software Bundle

Remote Procedure Call Toolkit (RPC) Software
Tool

Requirements Elicitation Process Document

RIG Basic Interoperability Data Model
Document

Secure File Transfer Program (SFTP) Document

SEE Demonstration Report Software Tool
Repoit

Sofiware Engineering Courseware, Document
University of Cincinnati.

ADA/Operating System Interface Software Bundie

GNU SED (Batch Streai.« Editor) Software Tool
UATL (Universal ADA Test Language) Document

-A5-

April 8, 1994

ADST/TR 94-003281

ASSET_A_325

Keyword: "dynamic"

ASSET_A_429
ASSET_A_108
ASSET_A_226
ASSET_A_439

ASSET_A_234

Keyword: "physical"

ASSET_A_475

Software Reuse Case Study (Trillium) Document

Dynamic Array Package Document
Environment/Tool Integrator Software Component
Planning and Optimization Tools Software Tool

Tailorable ADA Runtime Environment Document
(TARTE)

Terminal Interface Package Software Bundle

ROAMS Testbed Report and Lessons Document
Leamed

Keyword: "simulation”

ASSET_A_519

ASSET_A_252

ASSET_A_412

ASSET_A_323

ASSET_A_353
ASSET_A_218

ASSET_A_234

ASSET_A_307

ASSET_A_308

There were no occurrences of the following keywords in the ASSET Catalog:

"sensor”
"aircraft”
"surviv"
"propulsion”
"physical cues"

Cleanroom Engineering Handbook: Document
Organization and Project Formation

in the Cleanroom.

Event Set Manager Package Document

External String Management Package Software-
Component

Software Engineering Courseware, Document
University of Cincinnati.

Software Measurement Guidebook Courseware

Tasking ADA Simulation Kit (TASKIT) Software
Bundle

Terminal Intcrface Package, Building
Software Bundle Biocks

Tools/Notation Evaluation Report: Document
Proto Process Model.

Transparent Distributed ADA Runtime Document
Support

- A6-

April 8, 1994

ADST/TR 94-003281 April 8, 1994

"cues”
" Clle"
”?ueue"
"fuel system"
"electrical system"
"hydraulic"
"caution"
"warmning"

Ilhead mkingll
"line of sight"
"line-of-sight"
"moving model"
"intervisibility"
"atmosphere”
"dead reckoning"”
"range finding"
“collision"”

11.1.3 Findings
Though many documents and software were found for some keywords, most of the
important ARWA keywords led to no information found. Of the documents and software

found, many of it is not applicable to the ARWA program. There is little scftware or
documcntation that the ARWA program can utilize from ASSETS.

11.1.4 Rating

Available relevant software models: 2
Available relevant documentation: 2
Cost, data rights, and electronic access 8
Total score: . 4.00

11.2 Defense Software Repository System (DSRS)
11.2.1 Description

DSRS (formerly RAPID) is an automated library of reusable softwarc developmen
components available to the DoD and other Government agencies, including supporting
contractors.

11.2.2 Data Search

DSRS was searched for the keyword "mass properties” by the Army Aviation Warfighting
Center at Ft. Rucker, AL. The following components were returned:

MAPAC_Ada_Transf_FFT_Radix3 .
MAPAC_Ada_Transf_FFT_Radix8_Lookup_Table
MAPAC_Ada_Transf_FFT_Radix2_Lookup_Table
MAPAC_Ada_Transf_Init_ FFT_Lookup_Table
MAPAC_Ada_Transf_Inverse_FFT_Radix2
MAPAC_Ada_Transf_Inverse_FFI_Radix2_Lookup_Table
MAPAC_Ada_Transf_Inverse_FFT_Radix4
MAPAC_Ada_Transf_Inverse_FFT_Radix4_Lookup_Table
MAPAC_Ada_Transf_Inverse_FFT_Radix8
MAPAC_Ada_Transf_Inverse_FFT_Radix8_Lookup_Table

-A7-

ADST/TR 94-003281 April 8, 1994

MAPAC_Ada_Transf_Scale_Complex_By_Vector_Length
MAPAC_Ada_Transf_Scale_Complex_Vect_To_Abs_Amp
MAPAC_Ada_Transf_Scale_Matrix_By_Rows_X_Columns
MAPAC_Ada_Transform_Pac

MAPAC_ada_Lin_Gen_Decompose
MARC_MATRIX_AUTOMATED_REDUCTION_AND_COUPLING
MASPROP_MASS_PROPERTIES_OF_A_RIGID_STRUCTURE
MATHEMATICAL_ROUTINES_FOR _ENGINEERS_AND_SCIENTISTS
MAXIMUM/MINIMUM_ENVEOPE_PLOTS
MEL21_Pipe_Flexibility_Program_(CDC Version)
MEL21_Pipe_Flexibility_Program_(IBM Version)
MEL21_Pipe_Flexibility_Program_(Univac Version)

11.2.3 Findings

Of the intcgrated models searched for with the keyword "mass propertics”, the MASPROP
MASS PROPERTIES OF A RIGID STRUCTURE component seems to have the most use
for the ARWA program.

11.2.4 Rating

Available relevant software models: 2
Availablc relevant docomentation: 2
Cost, data rights, and electronic access 8
Total score: 4.00

11.3 Modeling and Simulation Information System (MSIS)
11.3.1 Description

The Tactical Warfare and Simulation Technology Information Analysis Center (TWSTIAC)
Modeling and Simulation Information Systems (MSIS) is sponsored by thc Defense
Modeling and Simulation Office (DMSQO). The DMSO MSIS is an on-line service available
to a large audience of subscribers from government, the military services, academia, and
industry, and is designed to serve the Modeling and Simulation (M&S) community by
providing current leading edge information on what is happening in the M&S community.
The Catalogs of Models and Simulations fcatures information to the subscriber on models
and simulations from all the services, the joint staff, and TRANSCOM. The type of data
available in this menu includes the Point of Contact (POC), date, description, parameters,
uses, and computer requirements data for the several hundred models listed.

11.3.2 Data Search

Loral obtained the entire list of models available from MSIS. The sources of these models
are War Games, Training Games & Combat Simulation; J-8 M&S Catalog; MOSAIC
(MOdels & Simulations: Army Integrated Catalog); Navy Catalog of Models and
Simulations; TRANSCOM System Model Catalog; and US Air Force Rome Laboratory
M&S Catalog. Roughly 1000 models exist in these repositories. The AVCATT library
was searched for various models by the Army Aviation Warfighting Center at Ft. Rucker,
AL. The following components were returned:

ARTOAR - Attack Helicopter Air-to-Air Fire Control System
Simulation Model
HPROBI - Hit Probability
- A8-

ADST/TR 94-003281 April 8, 1994
PS-2 - Propulsion System Performance Simulation
HELIPAC - Helicopter Piloted Air Combat Model
HAVDEM - Helicopter Air-to-air Value-Driven Engagement Model
HELSCAM - Helicopter Scenario Assessment Model
HELMATES II - Helicopter Launched Missile Antitank Effectiveness
Simulation

GPS Map System - Global Positioning System Map System
11.3.3 Findings
The AVCATT search proved very useful in locating not only documentation sources, but
also software sources. Many software models from this repository can be utilized in the
ARWA device.
11.3.4 Rating
Available relevant softwarc modcls:

Available relevant documentation:
Cost, data rights, and electronic access

O~ -

Total score: 7.67
11.4 Document Cataloging System (DOCATS)
11.4.1 Description

The Document Cataloging System (DOCATS) is a data base that identifies all documents in
the CCTT library. This data base lists the document name, author name, datc, abstract,
keywords and other pertinent data that help to identify sources of information. In addition
to searches on these fields, searches by weapon system name and use of Boolean operators
(and, or, not) are available to narrow or broaden the search. Once a document is identified,
a copy can be obtained by identifying the unique document number and title.

11.4.2 Data Search

Loral visited Resource Consultants, Inc., the company in charge of the Close Combat
Tactical Trainer (CCTT) library. A search was made on AVSCOM AH-64, RAH-66,
RWA, Sim Models, Missiles, IR/Laser, and Weapon System Performance. Roughly 5 to
10 documents under each category were found.

11.4.3 Findings

Only documentation was available - no software models. DOCATS is not a great source of
ARWA information. The POC at RCI is Judith DeNicola, (407)282-151.

11.4.4 Rating

Available relevant software models: 0

Available relevant documentation: 3

Cost, data rights, and electronic access 6
-A9-

ADST/TR 94-003281 April 8, 1994

Total score: 3.00

11.5 Army Reuse Center (ARC)

11.5.1 Description

The Army Reuse Center (ARC) is a primary focal point for reuse within the Department of
the Army. The ARC was established to support the development and fielding of reliable,
high quality systems while reducing the time and resources required to develop and
maintain those systems. The mission of the Army Reuse Center is to develop, implement,
maintain, and administer a total reuse program that will support the entire software
development life-cycle (SDLC). At the heart of the Army Reuse Center is an automated
library system that provides user access to a wide range of high quality reusable software

components. The library currently contains over 2400 reusable design, code, and
document components and represents over 1.8 million lines of code.

11.5.2 Dalu Search

Loral obtained the Army Reuse Center catalog. A non-disclosure agreement needed to be
signed in order to obtain any of the information in the Army Reuse Center. Loral desired
changes to the non-disclosure agreement to cover legal issues, but the Army Reuse Center
cxplained that a lengthy revicw would be necessary for this to happen. A non-disclosure
agreement was therefore not signed by Loral.

11.5.3 Findings

Since a non-disclosure agreement was not signed by Loral, the Army Reuse Center data is
unattainable at this time.

11.5.4 Rating
Unranked.

11.6 Sherikon, Inc.
11.6.1 Description

Sherikon, Inc. is under contract under PM CATT to catalog documentation for both RAH-
66 and AH-64 aircraft.

11.6.2 Data Search

Loral visited the Sherikon office in Orlando, FL, and asked tc see the library. The library
is still being constructed and no document listing has been produced.

11.6.3 Findings

Only documentation was available - no software models. Sherikon could be a source of
information once the library becomes operational. The POC at STRICOM is Bob Hale,
(407)380-4986.

11.6.4 Rating

Available relevant software models: 0
Available relevant documentation: 1

ADST/TR 94-003281 April 8, 1994
Cost, data rights, and electronic access 5

Total score: 2.00

11.7 SPARTA, Inc.

11.7.1 Description

SPARTA performs the V&YV for the ARWA 'groject. SPARTA has approved data bases
and in-house models which can be used on the ARWA program to validate sensor and
weapon modules. These models were approved by AMSAA, Night Vision ESD, and
ARL. SPARTA has incorporated these models and data bases into ALWSIM and can
exercise that simulation for validation tasks. Standalone versions of some models can also
be used for validation.

11.7.2 - Data Search
SPARTA Validation Models:

Sensors:

ACQUIRE Search & Target Acquisition

FLIR 90 FLIR performance

IMAGE INT. Imagc Inteasificr Performance/TV Performance
PHI Laser Target Acquisition

TARGET CONTRAST Optical Contrast

Weapons:

INDIRECT FIRE EFFECTS HE/ICM Px
INCURSION AD Effects - Guns & Missiles
GAMES Smart Munition Effects

LEL AWS Laser Weapon Effects

DMEWS HPM Weapon Effects

Environment:
EOSAEL Natural Atmosphere, Smoke, Dust

SPARTA Validation Data Bascs:

Weapons:

DIRECT FIRE Accuracy (Bias, Dispersion)

DIRECT FIRE Vulncrability, P/HIT

DIRECT FIRE Timeliness

DIRECT FIRE Vehicle Characteristics

INDIRECT FIRE Delivery Accuracy (MPI, Precision)
INDIRECT FIRE Lethal Area

Scenarios:
HRS1, HRS29, HRS14

11.7.3 Findings
Only models for performing V&V are available.
11.7.4 Rating

Available relevant software models: 8
-All-

ADST/TR 94-003281 April 8, 1994

Available relevant documentation: 5
Cost, data rights, and electronic access 5

Total score: 6.00
11.8 Public Ada Library (PAL) (Ada Software Repository)
11.8.1 Description

The Public Ada Library (PAL) is a collection of Ada programs, tools, and educational
materials. Source code can be retrieved over the Internet via FTP (wuarchive.wustl.edu).

11.8.2 Data Search
Loral obtained the PAL catalog of reusable software from wuarchive.wustl.edu. The

listing of software components included screen routines, math libraries, and simple
algorithms. The listing of software development tools included many Ada analysis tools.

11.8.3 Findings

The basic software components, though not ARWA specific models, could be used in
some applications for the ARWA program. Software development tools could also be used
to some extent.

11.8.4 Rating

Available relevant software models: 2
Available relevant documentation: 3
Cost, data rights, and electronic access 8
Total score: 4.33

11.9 Ada Joint Program Office (AJPO) and AdaIC

11.9.1 Description

Source code from some AJPO-sponsored projects is available through the Ada Information
Clearinghouse and the AJPO host (ajpo.sei.cmu.edu) on the Internet. Source code may be
retrieved via FTP.

11.9.2 Data Search

Aa :listing of available documentation and software was retrieved from the AJPO Internet
address.

11.9.3 Findings
Very limited software is available. The docdmentation centered around Ada standards.
11.9.4 Rating

Available relevant software models: 1

Availablc relevant documentation: 1

Cost, data rights, and electronic access 7

Total score: 3.00
-Al12-

ADST/TR 94-003281 April 8, 1994

11.10 National Technical Information Services (NTIS)

11.10.1 Description

NTIS is a self-supporting publishing agency for the U.S. Department of Commerce. It
provides a free catalog of the software available from the Federal Computer Products
Center, which is a clearinghouse for over 3500 products from about 100 Federal agencies.
11.10.2 Data Search

Loral obtained the NTIS catalog of software.

11.10.3 Findings

Software has limited rights and has cost involved. An ARWA software search turned up
the following potentially reusable software models:

Communications model: Terrain-Integrated Rough-Earth Modcel (TIREM),
$140, Point-to-point radio transmission loss

Navigation model: Mapping Datum Transformation Software
(MADTRAN), $55, Coordinate conversion program

No ARWA documentation was available.
11.10.4 Rating
Available relevant software models:

Available relevant documentation:
Cost, data rights, and electronic access

N oown

Total score:
11.11 AdaNET
11.11.1 Description

AdaNet is a component of the Repository Based Software Engineering (RBSE) program
sponsored by NASA. RBSE is a research and development program designed to
effectively transfer software engineering technology among U.S. government, industry,
and academia. The purpose of RBSE is to support the adoption of softwarc reuse through
rep-itory-based software cngincering. The program provides a repository that: facilitates
the selection, acquisition, integration, and reuse of softwarc componcats; and promotes
common software engineering practices and standards. The AdaNET Repository currently
contains reusable, public domain software from the following sources:

- Ada Software Repository (Army/ASR) -
- Jet Propulsion Lab (NASA/JPL)

- DoD/STARS

- Educational Institutions.

The following collections are available on AdaNet.

AdaNet Collections:
1. Al/Expert Systems.SF
2. ASV3 Support.SG

-Al3-

ADST/TR 94-003281 April 8, 1994

3. Education.SH

4. Human Rated Systems.SI

5. Image Processing and Analysis.SJ
6. Information Management. SK

7. Language Features and Constructs.SL
8. Legal Issues.SM

9. Library Interfaces and Protocols.SN
10. Lifecycle Methods and Tools.SO
11. Metrics.SP

12. Routines and Algorithms.SQ

13. Standards.SR

14. System Support.SS

15. User Interfaces.ST

16. Samples.SU

11.11.2 Data Search

Loral is a member of AdaNET. The above collections were searched, and there were no
models directly applicable to the ARWA project. There are some generic math algorithms
and some metrics available which may be somewhat useful.

11.11.3 Findings

Not very many models are available for the ARWA project.

11.11.4 Rating

Available relevant software models: 1
Available relevant documentation: 0
Cost, data rights, and electronic access 8
Total score: 3.00
12. Conclusions
The (inal ratings are ordered as follows:
7.67 Modeling and Simulation Information System (MSIS)
6.00 Sparta, Inc.
4.33 Public Ada Library (PAL) (Ada Software Repository)
4.00 Defense Softwarc Repository System (DSRS)
4.00 ASSET Source for Software Engineering Technology
3.00 Ada Joint Program Office (AJPO) and AdaIC
3.00 Document Cataloging System (DOCATS)
3.00 AdaNET
2.67 National Technical Information Services (NTIS)
2.00 Sherikon, Inc.
Unranked Amy Reuse Center (ARC)

These rankings reflect the level of reusability of existing data for the ARWA program.
13. Bibliography

[ReNews 93] ReNews (¢) - The Electronic Software Reuse and Re-engineering
Newsletter. Vol. 3 No. 2 - October 1993

-Al4-

ADST/TR 94-003281 April 8, 1994
(MSIS] The Modeling and Simulation Information System brochure,
Institute of Simulation and Training.
[CATT] CATT Data Base Support Libraries brochure, STRICOM
[ARC] Army Reuse Center brochure, Army Reuse Center
-Al5-

ADST/TR 94-003281 April 8, 1994

APPENDIX B
REUSE DESIGN AND CODING GUIDELINES

20. Introduction

This set of reuse guidelines for designs and code is based on published industry and in-
house reports and documentation. Most of the guidelines are generic and non-language
specific, except where noted. The sequence of guidelines does not imply rank or
importance. This listing is an overview only. Detailed definitions, descriptions, and
examples are provided in the references associated with each guideline. Finally, the
purpose of this list is to provide a standard set of guidelines to be used within Loral and by
its subcontractors for the ARWA project.

21. Design Cuidclincs

1. Component Structure [Lea 93]
a. Identify and encapsulate commonalty and variability.
b. Separate interfaces and implementations.
c. Identify and isolate context and policy from functionality.
d. Link documentation to code.
. Link tests to code.
£

Use tools when target languages do not support sufficient interface, composition,
d/or parameterization constructs.

e
f

2. Interfaces [Lea 93]
a. Minimize the numbcer of names per name space (SCope).
. Minimize implementation-dependence of interfaces.
. Refine interfaces by extending and adding properties.
. Optimize components via specialization.

o o o

3. Composition [Lea 93]

a. Identify and minimize import requirements.

b. Identify and minimize interferencc among helpers.

¢. Use layering to define complex components using simple ones.
d. Implement policy ou top of mechanism.

4. Parameterization [Lea 93]
a. Use parameterization to abstract away contextual variability.
b. Use instantiation to generate components.

5. Isolate the hardware, software, and database management system implementation
functions. [Hooten 89]

This allows minimum impact when enhancing or correcting the system.

-B1-

ADST/TR 94-003281 April 8, 1994

6. Extend the design to encompass the entire set of end users, i.e., software developers,
maintainers, and reusers. [Hooten 89]

7. Isolate all hardware and operating system dependencies. [Hooten 89]

These types of “calls” should be packaged in small software interface routines that
can be tailored to the environment or replaced with equivalent modules in a
subsequent environment.

8. Isolate items which are likely to change. [Hooten 89)

9. Don’t plan to reuse software components that have to be modified more than 30 percent,
but extract design and algorithmic details instead. [Hooten 89]

10. Keep interfaces as simple and application-nonspecific as possible

11. Think in higher levels of abstractions for functions, data, and processes.
[Alexandris 86]

Function abstractions (e.g., subprogram interface specifications) are designs based
on the user only being aware of the input-output specification while the
implementation is hidden from the user. The same function may be reused for a
variety of data.

Data abstractions (e.g., Ada packages) are designs in which the data and several
function implementations are hidden from the user, possibly with superimposed
hierarchical inheritance on data abstractions, facilitating dynamic determination of
the function to be invoked. Data objects may be reused for various operations that
may be applied to them.

Process abstractions (c.g.. Ada lasks) operate like data abstractions, only they have
an independently executing thread of control that determines the order in which
operations become available for execution and include concurrent processes that
may communicate through shared data in global memory and distributed processes
that communicate by message passing.

12. Design more for flexibility, not gencrality. [Parnas et. al. 89]

Allow for casy modifications within thc domain that are reasonable to occur in tic
future, not every possibility. This would make the code too cumbersome and
slow.

22. Coding Guidelines

22.1 General

1. Keep modules small and simple, i.e., minimize the number of functions per module.
[Hooten 89]

2. Each module should contain clear documentation regarding its purpose, capabilities,
constraints, interfaces, and required resources. {Hooten 89]

-B2-

R R R R R R R EE——

ADST/TR 94-003281 April 8, 1994
3. Whenever possible, use a portable, high-order programming language. [Hooten 89]

4. Avoid compiler-specific instructions. [Hooten 89]
5. Adhere to common coding standards, conventions, and styles. [Hooten 89]
6. Don’t assume that a given feature is present or not present in the system. [Parnas 72)

7. Avoid chains of data transforming components. [Parnas 72}

A chain of data transforming components is a sequence of components, each
receiving data from the previous component and then processing the data into
another format for the next component. When the chain is broken, the inputs
become incompatible.

8. Minimize the “uses” structure. [Parnas 72]

One may end up with a system in which nothing works until everything works.
For example, while it may seem wise to have an operating system scheduler use the
file system to store its data rather than use its own disk routines, the result will be
that the file system must be present and working before any task scheduling is
possible.

9. Clearly document all error conditions. [Hooten 89]

10. Isolate machine-dependent operations. [Hooten 89]

11. Isoiate operating system-dependent operations. [Hooten 89]

12. Isolate database management system-dependent operations. [Hooten 89]

13. Use non-exotic algorithms, whenever possible. Otherwise, be sure to fully document
the algorithm in the specification or some other visible place in the code. [Hooten 89]

14. Avoid table size constraints. [Hooten 89]
22.2 Ada Language

1. The specification (portion of code that defines and initializes the program variables) must
be readable and understandable. It must be well documented so as to fully describe each
parameter that it uses and its interfaces to other packages. [Hooten 89]

2. Use information hiding techniques. System details that are likely to change
independently should be hidden in the bodies and assumptions unlikely to change should
be placed in the specification. [Parnas et. al. 89]

For example, every data structure is private to one module; it may be directly
accessed by one or more programs within the module but not by programs outside
the module. Any other program that requires information stored in a module’s data
structures must obtain it by calling programs on the module interface.

-B3-

ADST/TR 94-003281

23. Bibliography

[Alexandris 86)

[Hooten 89]

[Lea 93]

{Ogush 93]

[Parnas et. al. 89]

[Pamas 72)

Alexandris, N. February 1986. “Adaptable Software and
Hardware Problems and Solutions.” Computer. Vol. 18. No. 2.
pp- 29-39.

Hooten, M. 1989. Software Reuse Methodology and Checklists.
FACC-TR-1113. Ford Aerospace/Space Information Systems
Division. (Now Loral Space Information Systems.) Houston,
Texas. Company Proprietary.

Lea. D. November 1993. WISR’93 Design-for-Reuse Working
Group Report. Workshop on Institutionalizing Software Reuse held
on November 1 - 4, 1993. IBM. Owego, New York.

Ogush, M. 1993. “C Design and Coding Guidelines for Reuse.”
Hewlett-Packard. Palo Alto, California.

Parnas, D., P. Clements, and D. Weiss. 1989. “Enhancing
Reusability with Information Hiding.” Software Reusability Vol. I -
Concepts and Models. Association for Computing Machinery
Press. pp. 141-157.

Parnas, D. December 1972. “On the Criteria to be Used in
Decomposing Systems into Modules.” Communications of the
ACM. Vol. 15.

April 8, 1994

