
Best
Available

Copy

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A280 415
SDTI C

ELL,ýc-r~zfl

V QUALITY INSPEDS

THESIS

THE COMPARISON OF SQL, QBE, AND DFQL
AS QUERY LANGUAGES

FOR
RELATIONAL DATABASES

by

Panmtungan Girsang

March 1994

Thesis Advisor. C. Thomas Wu

Approved for public release; distribution is unlimited.

94 6 20 008 94-18941

Form Appme

REPORT DOCUMENTATION PAGE oUB No. 070"IU

PWPubbo eum1hed. o -u -ds atm "dna. isues to IQ 1 how W pet"W"gn. Miom"li doe 1Wf reWAWig Isbmwo, SdIi snaw" do Smawa=
g A a mm do.I di d ied, ad amaher addta m . O e.W oofa moorn~mo. Swe comed. i #ws' eawnwe or aw adi mp" o fts

ain i immed, maggeasm d d em t W Heewt quut $emom, Overa. tr h & Oprapsm.wwaidAegm. 1215 sd....
Osis N w, Sub. t 5 Aiboimm, VA 0 aid i lme�d � �Ma d ,d bidgi, Pe l Aeduaame Pr i (O7I.o1N, Wa , aqi.n. C

1. AE[NY USE ONLY (Leve @Ink) P. REPORT DATE I REPNT AM DATES COVENFO

i March 1994 Master's Thesi
:.TIPTLE AND SUBTITLE L. FUNDING NUMBERS

The Comparison of SQL, DFQL, and DFQL as Query Languages
for Relational Databases

L AUTHOR(S)

Girsang, Paruntungan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSMS) It PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

IL SPONSORONG MONITORING AGENCY NAMEMS AND ADDRESSWE) IQ. SPONSORING MONITORISG
AGENCY REOfrT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Govemmtt.

12L. DISTRIUTION I AVAWLAUTY STATEMENT m DTRBUTICODE
Approved for public release; distribution is unlimited.

1& ABSTRACT (Phxhrn 2 ad mns)
Structure Query Language (SQL) and Query By Example (QBE) are the most widely used query

languages for Relational Database Management Systems (RDBMS's). However, both of them have
problems concerning ease-of-use issues, especially in expressing universal quantification, specifying
complex nested queries, and flexibility and consistency in specifying queries with respect to data retrieval.
To alleviate these problems, a new query language called "'Datalow Query Language" (DFQL) was
proposed.

This thesis investigates dhe relative strengths and weaknesses of these three languages. We divide
queries into four categories: single-value, set-value, statistical result, and set-count value. In each
category, a representative set of queries from each language is specified and compared. Some of the
queries specified are logical extensions of the other (already defined) queries, which are used to analyze
the query languages' flexibility and consistency in formulating logically related queries. We perform a
simple experiment of asking NPS CS students to write a small set of queries in all three languages.

Based on the analysis, we conclude that DFQL eliminates the problems of SQL and QBE mentioned
above. The relative strengths of DFQL comes mainly from its strict adherence to relational algebra and
dataflow-based visuality.

14. SUBJECT TERMS 1. NMt"BER OF PAGES
SQL, QBE, DFQL, Relational Model, Database Management Systems, 142
Flexibility, Ease-of-use, Consistency. s. "iA

.URITYQLAGTIO 1. IU SECIRITTVLABI.NFAIM It SECURITY CLASUCATM 2L. UMMATION OF ABSTRACTOF liPlRT OPTMNPAGE OF ASRCUOnPssified Unclassified lUnclassified UL
UnclassicledsifieU

NSN 7540.01-280-5500 Stuidad Farm 298 (Rav. 2-89)
i mmabo by AMRSI. 239-LI

Approved for public release; distribution is unlimited

THE COMPARISON OF SQLj, QBE, AND DFQL
AS QUERY LANGUAGES

FOR RELATIONAL DATABASES

by

Paruntungan Girsang
Lieutenantý Indonesian Navy

B.S., University of North Sumnatera, Indonesia, 1981
Ir., University of North Sumatera, Indonesia, 1983

Submitted in partial. fulfillment of the

requremntsfor the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1994

Author.____

Prnmgan Girsang

Approved By:

Department of Computer Science

ti

ABSTRACT

Structure Query Language (SQL) and Query By Example (QBE) are the most widely

used query languages for Relational Database Management Systems (RDBMS's).

However, both of them have problems concerning ease-of-use issues, especially in

expressing universal quantification, specifying complex nested queries, and flexibility and

consistency in specifying queries with respect to data retrieval. To alleviate these problems,

a new query language called "DataFlow Query Language" (DFQL) was proposed.

This thesis investigates the relative strengths and weaknesses of these three languages.

We divide queries into four categories: single-value, set-value, statistical result, and set-

count value. In each category, a representative set of queries from each language is

specified and compared. Some of the queries specified are logical extensions of the other
(already defined) queres, which are used to analyze the query languages' flexibility and

consistency in formulating logically related queries. We perform a simple experiment of

asking NPS CS students to write a small set of queres in all three languages.

Based on the analysis, we conclude that DFQL eliminates the problems of SQL and

QBE mentioned above. The relative strengths of DFQL comes mainly from its strict

adherence to relational algebra and dataflow-based visuality.

Aoession For

OTIS GA&I 1
DTIC TAB 0
Utla"nunoced 03 Wu3t ifiation

By
Avo tiability Codes

A 6SD4W/6b

Din

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. BACKGROUND .. 1
B. MOTIVATION .. 2

C. OBJECTIVE .. 3
D. CHAPrER SUMMARY 4

IL DESCRIPTON OF THE RELATIONAL MODEL AND QUERY LANGUAGES

FOR RDBMS's .. 5

A. THE RELATIONAL MODEL CONCEPTS ... 5

I. Fornal Terminology 6

2. Propertes of Relation 8
B. TEXT-BASED QUERY LANGUAGES ... 8

1. The Relational Algebra 8
2. The Relational Calculus ... 10

3. Szuctuzr Query Language (SQL) 10

a. Data Definition in SQL 11

b. Data aa..... 1..... 1

C. Logical Operators of SQL 13

d. The Problms withSQL ... 13
(1) Declarative N ..at=............................... 14

(2) Universal Quantification o 15

(3) Lack of Orthogonality ... 17
(4) Nesting c onstuct... 17

C. VISUAL-BASED QUERY LANGUAGES 18

I. QBE, a Fonn-based Quey Language .. 18

. Data Recieval19

b. Built-in functions, Grouping and other Operators 20

c. The Problems with QBE E................................ 21

iv

2. Datalow Query Language (DFQL) 21
a. DFQL Operators ... 22

(1) Basic Operators ... 23
(2) Other Primitives Operators 26

(3) Display Operators ... 29
(4) User-defined Operators ... 29
(5) DFQL Query Construction 29

(6) Incremental Queries ... 30
(7) Universal Quantification .. 30
(8) Nesting and Functional Notation 31
(9) Graph Structure of DFQL Query 31

3. Entity-Relationship Model Interface ... 31

IlL THE COMPARISON OF SQL, QBE, AND DFQL WITH RESPECT TO
DATA RETRIEVAL CAPABILXIIES .. 34

A. CATEGORIES OF QUERY ... 35

I. Single-Value ... 35
a. Query 1: Simple retrieval .. 36

b. Query 2: Qualified retrieval .. 38

C. Query 3: Retrieval involves more than two tables 40
d. Query 4: Retrieval involving universal quantification 42

e. Query 5: Retrieval involving a negation statement 44
2. Set-Value .. 47

a. Query 6: Retrieval involving existential and universal

uantification... 47
b. Query 7: Retrieval involving explicit sets 49

C. Query 8: Retrieval involving explicit sets 51
d. Query 9: Retrieval involving universal quantification 54
e. Query 10: Retrieval involving existential and universal

quantification.. 57
f. Query 11: Retrieval involving set operation 59

V

3. Statistical Result ... 62
a. Query 12: Retrieval involving aggregate AVG function 62

b. Query 13: Retrieval involving AVG and Groupnig function 64

C. Query 14: Retrieval involving Count, AVG, and Grouping

function .. 66
d. Query 15: Retrieval involving Count and AVG function 68

e. Query 16: Retrieval involving Max and Grouping function 70

f. Query 17: Retrieval involving Max and Grouping function 72

g. Query 18: Retrieval involving Avg, Max, Sum, and Grouping

function .. 74
h. Query 19: Retrieval involving Count and Grouping function ...76

4. Set-Count Value ... 79
a. Query 20: Retrieval involving existential quantification 79
b. Query 21: Retrieval involving Count and Grouping function ...81
c. Query 22: Retrieval involving Count and Grouping function ...84

d. Query 23: Retrieval involving Count function 87

e. Query 24: Retrieval involving universal quantification 89
f. Query 25: Retrieval involving universal quantification 91

B. ANALYSL S ... 93
I. Ease-of-use ... 93

a. Queries involving existential or universal quantification 94

(1) SQL ... 94
(2) QBE ... 95

(3) DFQL . .. 95
b. Queries involving nested queries .. 96

(1) SQL ... 96

(2) QBE ... 96

(3) DFQL .. 96

2 i .. 9

a. SQL .. 98
b. QBE 98

c. DFQL .. 99

3. Consistency .. 99

a. SQ L .. 100

b. Q BE ... 100

c. DFQL ... 100
4. Relative Strengths and Weaknesses ... 101

IV. HUMAN FACTORS EXPERIMENT 11
A. HUMAN FACTORS ANALYSIS OF QUERY LANGUAGES 111

B. EXPERIMENTAL COMPARISON OF SQL, QBE, AND DFQL ... 111

1. Assesment of the Experiment .. 111

a. Subjects 112

b. Teaching Method .. 112

C. Test Queries .. 112

d. Evaluation Method ... 113
2. Experiment Results ... 114

3. Experiment Conclusion .. 117

a. Query (Q1) .. 117

b. Query (Q2) 117

c. Query (Q3) ... 117

d. Query (Q4) 118

d. Query (QS) .. 118

V. CONCLUSIONS ... 120

LIST OF REFERENCES ... 122

APPENDIX A ... 125

INrTIAL DISTRIBUTION LIST .. 128

vii

LIST OF TABLES

TABLE 2.1 BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS 23

TABLE 2.2 NON-BASIC DFQL OPERATORS AND THEIR SQL EQU1BA-

LENTS .. 26

TABLE 3.1 RELATIVE STRENGTHS AND WEAKNESSES OF SQL, QBE,

AND DFQL ... 102

TABLE 4.1 EXPERIMENT RESULT ... 115

TABLE 4.2 PERCENT CORRECT OF SUBJECT CLASSIFICATION FOR

QI, Q2, AND Q3 .. 116

TABLE 4.3 PERCENT CORRECT OF SUBJECT CLASSIFICATION FOR Qi

THROUGH Q5 .. 116

'Mii

LIST OF FIGURES

Figure 2.1 A Relation STUDENT Schema ... 7

Figure 2.2 Operator Construction .. 22

Figure 2.3 ER-Diagram of the COMPANY database 32

ix

LIST OF QUERIES

Query 2.1 Example of Relational Algebra Query ... 9
Query 2.2 Example of Relational Calculus Query .. 10

Query 2.3 Example of SQL Query .. 16

Query 2.4 Example of QBE Query ... 19

x

ACKNOWLEDGEMENTS

I would like to thank the Indonesian Navy for the opportunity to study at the Naval

Postgraduate School (NPS) in Monterey, California.

I would like to thank Dr. C. Thomas Wu for his continued support, enthusiasm,

patience, and guidance. These were invaluable assets for the completion of this work. I

would also like to thank LCDR John S. Falby for his help and support in editing. His

assistance and direction were both enlightening and timely.

I wish to thank to Computer Science students at NPS who participated in a human

factors experiment. These support was instrumental in the completion of this thesis.

I am very grateful to my parents for their support and faith. Most importantly, I am

indebted to my wife Ediana, my daughter Jean Liatri Augustine and my son John Samuel

Sebastian, for their constant love, patience and understanding.

,ci

L INTRODUCTION

A. BACKGROUND

The Relational model is used most often in current commercial Database

Management Systems (DBMS's) compared to hierarchical and network models, since it is

the simplest and most uniform data structure and is the most formal in nature with respect

to mathematical logic [Elma89]. The theory was introduced by E. F. Codd in 1969

[Codd90]. Today, numerous companies and institutions use Relational Database

Management Systems (RDBMS's) in many different kinds of software packages that are

equipped with several manipulation languages (database languages or query languages).

The query languages that have been implemented and are available on commercial

DBMS's include Structure Query Language (SQL) and Query By Example (QBE).

SQL is the best known text-based (line oriented) query language. Originally, SQL

was known as SEQUEL, and was introduced in 1974 [Cham74J. The earliest version of

SQL was implemented in the system R project at IBM Research Laboratory in San Jose,

California [Astr76]. In 1986, the American National Standard Institute (ANSI) approved a

standard (function and syntax) for SQL (ANS186], which was accepted by the International

Organization for Standardization (ISO) in 1987 [Date90a].

QBE was developed by IBM in 1976 at the IBM Yorktown Heights Research

Laboratory, NY. [71oo77J. It is the ancestor of today's form-based interfaces (visual

oriented query language). In QBE the query is specified by filling in a proper column in

form of tables (relations) displayed on the screen, instead of writing linear or text

statements.

' 1

B. MOTIVATION

SQL and QBE are two commonly used query languages and exist together in several

DBMS products (e.g., DB2 1, SQL/DS2, Oracle3, dBase IV4, etc.). However, neither of

these query languages have succeeded in alleviating the problems concerning ease-of-use

issues, especially in expressing universal quantification, specifying complex nested

queries, flexibility and consistency in specifying queries with respect to data retrieval. As

discussed in (Date87J, SQL does not posses a simple, clean, and consistent structure, in

either its syntax and semantics. Codd points out that SQL permits duplicate rows in

relations, it supports an inadequately defined kind of nesting of a query and does not

adequately support three-valued logic (Codd88a] [Codd90]. In (Negr89] SQL constructs

ar very complex, in particular Universal quantification, which are full of pitfalls for the

inexperienced user. In contrast, QBE is much more intuitive. But QBE still falls short,

providing no support for existential or universal quantification [Elma89] [DateW9a].

In order to alleviate the problems at issue above, a new language called "Data Flow

Query Language" (DFQL)5 was proposed. DFQL is a graphical database interface based

on the data flow paradigm. DFQL retains all the power of current query languages and is

equipped with an easy to use facility for extending the language with advanced operators,

thus providing query facilities beyond the benchmark of first-order predicate logic.

Although, these three languages are all relationally complete6 [Date82] [Date84] [Clar9I]

[Fran88], thus expressive powers are equivalent. However, they are not necessarily equally

L DB2 (IBM DATABASE 2) is a trademnark of n at l Business Macdhnes Corpoation.
2. SQLDa Symmt is a madmunwk of hImatona Business Macdnes Corpation.
3. O(le is a krdemmak of Orac Corpolaeon.
4. dBe IV is a tademuk of Adamu-Tme.
S. DPQL mplemented by ±Lt. Gad . Cl•rk as his thesis work (see Chaper ILC.2) mdr the

of P " bin of Dr. C. Ilmas Wu, Compuwr Scien Deparam t, at Naval Postadut School
MNPS). It bs binpmenamd In P1omh

6. Reiviomu Completeness ueam that a laMgupa is at least amspef as relonial algeta

2

useful. For example, a simple query is more easily specified in QBE than SQL. A number

of comparative studies of two or three query languages have been performed (Reis75]

[Reis81]. However, no direct comparison has been made of SQL, QBE, and DFQL, with

respect to the above mentioned problems. Also, a simple experiment regarding ease-of-use

in query writing for these three languages needs to be accomplished.

C. OBJECTIVE

The focus of this research is to evaluate whether DFQL can alleviate the problems at

issue faced by SQL and QBE by investigating the relative strengths and weaknesses

concerning ease-of-use, especially in expressing universal quantification and specifying

complex nested queries. A Category-based approach of comparing query languages is

developed. With this approach, queries are divided into four categories: single-value, set-

value, statistical result, set-count value. In each category, a representative set of queries

from each language is specified and compared. Some of the queries specified are logical

extensions of other (already defined) queries, and we used such extension types of queries

are used to analyze the query languages's flexibility and consistency in formulating a

logically related queries. In addition, a simple experiment of asking Naval Postgraduate

School (NPS) Computer Science (CS) students to write a small set of queries in all three

languages are performed.

Our finding in this thesis work should serve as a basis for developing/improving the

query language. In addition, by having a higher level of understanding on the relative

strengths and weaknesses of each language in respective query categories, we will be able

to provide or recommend a suitable query language depending on the intended users.

t3

D. CHAPTER SUMMARY

Chapter II presents a description of the Relational Model concept, SQL, QBE, and

DFQL and discusses the problems faced by SQL and QBE. In Chapter MI, the numerous

queries are presented by each category and composed in these three languages: SQL, QBE,

and DFQL. The relative strengths and weaknesses with respect to data retrieval capabilities

concerning ease-of-use, and flexibility and consistency in specifying the queries are

discussed. The relational schema database is provided in Appendix A. Chapter mI also

provides an analysis of these three query languages.

Chapter IV provides a discussion and analysis of a simple experiment of asking NPS

CS students to write a small set of queries in all three query languages. Chapter V provides

a conclusion.

4

UL DESCRIPTION OF THE RELATIONAL MODEL AND QUERY

LANGUAGES FOR RDBMS's

As mentioned previously, the Relational Model was introduced by Codd in 1969. The

basic concepts of the Relational Model are needed as fundamental knowledge for providing

a better understanding of high-level data manipulation languages or query languages with

respect to query specification for relational database retrieval operation.

Query languages for RDBMS's can be classified into two categories: txt-base.

languages and visual-based languages. This chapter presents the Relational Model

concepts, text-based query languages and visual-based (or graphical) query languages.

Within the discussion of text-based query languages, in addition to discussion of relational

algebra and relational calculus, we particularly focus on SQL The visual or graphical query

languages discussion specifically emphasizes QBE and DFQL rather than the Entity

Relationships (ER) modeL

A. THE RELATIONAL MODEL CONCEPTS

The relational model represents the data in a database as a collection of relations. A

relation is a m term which represents a simple two-dimensional table structure,

consisting of n-rows and m-columns that contain data values. In other words, a relational

database is a collection of related information, or data values, stored in two-dimensional

tables.

To explain the relational data sucture, we use the STUDENT relation (table) in

Figure 2.1. In the STUDENT table, data is logically ordered by values of NAME, SSN

(stands for Social-Security.Number), PHONE-NO, ADDRESS, and GPA, for each

student data. Each student has a unique identification number, represented by SSN.

r.S

L Farimi Teumhiolog

The relational database has its own terminology which is usually used in RDBMS

applications. Examples include the terms relation, attrbute, tuple, domain, degree,

COrdiflality, prbmary key, candidate keys and foreign key. Consider the following brief

explanation of these terms:

- A relaton corresponds to what we have generally been calling a table.

* A tzql corresponds to a row in such a table., and an awriute corresponds to a table
coluuiL

- Cardinality represents a number of tuples, and the number of attributes is called the
degree.

- The primary key is a unique identfier for a table - that is, a column or column
combIin-ation with the property that, at any given time, no two rows of the table contain

the same value in that colunm or columnzcminain

* Candidate keys are sets of attribuotes in a relation that could be chosen as a key.

* A foyWign key is a set of attributes in one relaion that constitute a primary key of
another relation's (or possibly the samne) table.

A domain is a pool of values, from which one or more atatribtes (columns) draw their
actual values (Dawte9]. For example, the domain of SSN in Figure 2.1, written
dom(SSN), is the aet of all legal STUDENT SSNs. The set of values apearing in the
attribute SSN of the STUDENT relation at any time is a subset of the domain.

Using the Mmnu above, and Figure 2.1, the relation schma for the STUDENT

relation has degree 6, which is: STUDENT (NAME, SSN, PHONE.YO, ADDRESS, SEX,

(IPA). The attrbutes have the following domains: dom(NAME) = Names, dom(SSN)

Social-Sccurity-.Nutnbers, dom(PHONE-NO) = LocalPhone-.Number,

dom(ADDRESS) = Addresses, dom(Sex) - MleFemal, domn(GPA)=

Ors&deloint-Averages. A relation r of the relation schema R (Al, A2 . ,... An), also

denoted by r(R), is a set of n-tuplies r = (tl~t2 . ,... tin . Each n tuple t is an ordered list: of

n values t =< V1V2 Vn>, where each value Vi, 1< = i<umn, isan element of doif(A1)

or is a special null value Each tuple in the relation represents a particular student entity,

6

where an entity is an object that is represented in the database. Null values represent

attributes whose values are unknown or do not exist for some individual STUDENT tuples

[ElmaS93. In mathematical terms, a relation r(R) is a subset of the cartesian product of the

domains that define R.

r(R) a (dom(A1) X doma(A2) X X dom(An)).

Therefore, all possible combinations of values from the underlying domains can

be specified by the cartesian product.

NAME SSN PHONEO ADDRESS SEX GPA

...... 3.9......i.. Domain
SI I .I........ .. .3

. etc.

Superkey-

NC

a Due Brow 373--3-723 12350 1ftd St. # 8 M 3.5 a.MSTE DENT NAM E A . PHONE_ O ADDR ESS SEX OPA

'a,t em Bull 11-16 111 37-3726 1230 FBs SLe #8. M 3.9 r

F4%, n

Mu~ . 22 5528 C~ ua i 3.45
a D~amuah" 333-33-3333 mal 133SlbkdSt#9 IF 3.
t h=uadrzG 604-524982 646.892 398 E RicbmU Rd. F 3.9
0 JalWSuielOG 604-52-2942 649-1756 302 Ocem Av. # 3 M 4.0 t
n ___'_Y

Attributes
Degree

Figure 2.1: A Relation STUDENT Schema

7

2. Proper"l of Relations

Relations possess certain properties, all of them immediate consequences% of the

definition of "relation". There are four properties, as follow [Date 90a]:

• There are no duplicate mples; it follows the fact that the relation is a mathematical set
(Le. a set of tuples), and sets in mathematics by definition do not include duplicate
elemmts. An important corollary is that there always exists a primary key in a relation.
Since each tuple is unique, it follows that at least the combination of all attributes of
the relation has the uniqueness property.

* Tuples are unordered within a relation (top to bottom) which follo ,., the fact that sets
in mathematics are not ordered

• All attribute values are atomic. At every row-and-column position within the table,
there always exists precisely one value, never a list of values. However, a special value
"null" is used as a column value of a particular tuple which is either "unknown",
"attribute does not apply", or "has no value" in it.

SAttributes are unordered (left to right), which follows the fact that the heading of a

relation is also defined as a set (i.e., a set of attributes, or more accurately attribute-
domain pairs).

B. TEXT-BASED QUERY LANGUAGES

The nature of text- based query languages is that queries are written in normal text

eitors (text-based). This catgory can be divided into three subclasses: relational algebra

based, relational calculus based, and the combination of both. This section will focus on

SQL However, the general concept of the relational algebra and relationa calculus is also

covered.

L The Relational Algebra

The Readonal algebra is a technique for combining mhemacal ss that have

the property of being relations (tables); it was proposed by Codd (Codd7O]. It is said to be

a "procedural" language, which means that the user must not only know what he wants

when performing operations on relations, but also know how to get it. The use can specf

8

a sequence (step by step) of relational operations to be performed on the tables of the

schema to produce a desired result. The result of each operation forms a new relation,

which can be further manipulated. In other words, relational operators can be nested. The

operations included in the Relational Model are: UNION, INTERSECTION,

DIFFERENCE, CARTESIAN PRODUCT, SELECT, PROJECT, and JOIN. Consider the

query example in Query 2.1, which is specified using relational algebra. The English

translation of the query is: "Retrieve the first name, last name, and salary of employees who

work in project Computerization". Notice that all query examples in this chapter are

matched to a relational database instance of the COMPANY schema in Appendix A.

COMPUPROJ +-- 0 PNAM• =" CoI M 1Fto-" ((PR OJECT

COMPUPRO1_EMPS +- (COMPUPROJ X DNO a DNUM MPOYE)

RESULT -x FNAmE, wANE, SAL4RY (COMPUPROEMPS)

Query 2.1: Ezampe of Relational Algebra Query

From the query above, we can determine that:

- There are three lines executed in sequence to give the desired result.

S1The user is allowed to use a temporary name to store the result of a line and then use
that name as an input to subsequent lines.

- The query is written in a procedural language.

9

2. The Reladona Caldus

The Relational Calculus was also proposed by Codd [Codd71]. In relational
calculus, a query is specified in a single step; which is why it is known as a "non-

proce&dv language. However, Codd showed that relational calculus and relational

algebra are logically equivalent, where any query specified in relational calculus can be

specified in relational algebra as well, and vice versa.

In this type of query language, a predicate calculus expression is used to specify

the tuples desired. If Query 2.1 is specified using relational calculus, the structure is

forulated Hik Query 2.2. Hem, the free tuple variables "e" and "p" are used to make the

logical connections bween the EMPLOYEE (e) and PROJECr (p) relations, according to
the join condition and selection condition specified by p. DNUM = e.DNO and p. PNAME

= 'Computerization' respectively. The free tuple variables e. FNAME, e. LNAME, e.

SALARY we the atUibutes in which their tuples are considered to be retrieved, as long as
its tuples the condition specified is satisfied.

{e. FNAME, e. LNAME, e. SALARY I EMPLOYEE (e) and (3 p)(PROJECT (p)

and p. PNAME = 'Computerization' and p. DNUM = e. DNO) I

Query 2-2: Exnmoe of Relatioal Calcul Query

3. Stlcture Qury Ungae (SQL)

We earlieft version was designed and impemented by IBM Research as an

intace for a relational database system known as SYSTEM R. It was the earliest of the

hgh-level database language (non-procedural languages). Today SQL exists in several
coMmeca RDBMS's products such as IBM's DB2, SQLjDS, and Oracle.

10

SQL is a comprehensive database language; it has statements (text-based) for data

definition language (DDL) and data manipulation language (DML). SQL also provides

facilities for defining views on a database, for creating and dropping indexes on the files

that represent relations, and for embedding SQL statements into a general purpose language

such as PL4 or Pascal (Elma89].

a. Data Definiion in SQL

As a SYSTEM R database language, SQL implements the terms table

(relation), row (tuple), and column (attribute). The SQL commands for data definition are

CREATE TABLE, ALTER TABLE, and DROP TABLE. These commands are used to

specify the attributes of a relation, to add an attribute to a relation, and to delete a relation,

respectively.

b. Daft Mai a

SQL contain a wide variety of data manipulation capabilities, both for

querying and updating the database. However, this chapter will emphasize the features of

querying that are related to the discussion in previous chapter. SQL is a relationally

complete language. Its statements directly or indirectly contain some basic operators of

both reiational algebra and relational calculus. However, the "SELECT" statement has no

relationship to the "SELECT" operation of relational algebra. SQL allows a relation to have

two or mmre tuples that are identical in their attribute values. To eliminate the duplicate

tuples, SQL provides the keyword "DISTINCT' to be used in the SELECT-clause; it means

that only distinct tuples should remain in the result. The general syntax to be used for

retrieving data in SQL consists of up to six clauses:

1. Q•my in DBMS is ueed Io descibe dm mrival, not updaw.

• 11

SELECT <auribute list>

FROM <relaion list>

(WHERE <condition>]

[GROUP BY <grouping attribute(s)>]

(HAVING <grouping condition>]

(ORDER BY <attribute list>]

0 SELECT-clause; <attribute list> is a list of attribute names whose values are to be
retrieved by the query.

* FROM-clause; <relation list> is a list of the relation names required in the query, but
not those needed in nested queries level.

- WHERE-clause: <condition> is a conditional (Boolean) expression that identifies the
tuples to be retrieved by the query from the relation(s) listed in the FROM-clause.

- GROUP BY-clause; <grouping attribute(s)> specifies grouping according to each
value of the attribute(s).

* HAVING-clause; <grouping condition> specifies a condition on the groups being
selected rather than on the individual tuples.

* ORDER BY-clause; <attribute list> specifies an order for displaying the result of a
query (MEla9j.

Notice, if the SELECT-clause and FROM-clauw contain more than one

attribute name or relation name respectively, they should be separated by commas. All

attribute names listed in the SELECT or WHERE clauses must be found in one of the

relations of the FROM-clause. The basic form of the SELECT statement sometimes calls a

mapping or a SELECT FROM WHERE block. Which looks like:

SELECT <attribute list>

FROM <relation list>

WHERE <condition>

However, only the first two clauses, SELECT and FROM are mandatory. SQL

provides five statistical functions, called built-in functions, which are COUNT, SUM, MIN,

MAX and AVG. These functions examine a set of tuples in a relation and produce a single

12

value. For example,, the COUNT function will return the number of tuples satisfying the

query. On the other hand, the functions SUM, MAX, MIN, and AVG, usually specified in

the SELECr-clause or the HAVING-clause, are applied to a set or multi-set of numeric

values and perform the indicated operation on the values.

C. Losgal Opertors of SOL

The logical operators normally used while specifying the query are:

"* Comparison operators: =, < >, <, >, < =, > =.

"* Boolean connectives: any of the logical connectives AND, OR, NOT.

"* IN uses in nested queries, the expression evaluates to TRUE if there is included at least
a tuple in a sub-query; this operator corresponds to the set operator "is a member of'
which is symbolized by "e ".

"• EU.STS and NOT EXISTS always precede a sub-query. EXISTS evaluates to TRUE if
the set resulting from a sub-query is not empty, and FALSE otherwise. This operator
corresponds to the mathematical stential quantifier "3'. The NOT EXISTS is the
reverse evaluating to TRUE if the resulting set is empty, and FALSE otherwise. This
operator corresponds to the "every' quantifier in the condition; the mathematical
universal quantifer Cl").

"* LiKE allows the user to obtain around the fact that matching to each value which is
considered atomic and indivisible.

The first two logical operators are normally used in the WHERE-clause. The

comparison operators are used to specify the selection conditions desired, and the equality

("-") operator is used to specify the join condition between the relations. On the other hand,

Boolean connectives are used to create compound condition or to negate a condition

[EMaS9J [Fran88J [Hans92J.

d. The Problems with SQL

SQL is impl as a mixture of both relational calculus and relational

algebra by including the nesting capability and block structure feature. However, SQL

tmds nmn towards the relational calculus approach; it is primarily declarative in nature

13

rather than a procedural language. The user specifies what the result should be in one

statement rather than in a sequence of statements. Date comments: "When the language

(SQL) was first designed, it was specifically intended to differ from the relational calculus

(and, I believe, from the relational algebra).... As time went by, however, it turned out that

certain algebraic and calculus features were necessary after all, and the language grew to

accommodate them" [Date87]. As a result, it is a strict implementation of neither relational

3lge-ra nor relational calculus.

(1) Declarative Nature. As mentioned above, SQL is primarily a

declarative query language. As a matter of fact, the user is intended to construct the query

based on relational calculus or first-order predicate calculus logic. So, all of the conditions

are specified in a single statement. For a simple query, this is straight-forward approach;

for more complex query however, the logical expression required to specify the conditions

to be met can become quite complicated. This problem is compounded when the complex

query involves universa quantification (discussed later). This approach may not always

present the clearest representation of the query to the user. From the user point of view, we

consider that it's related to human nature to think of a complex problem in a sequential

fashion rather than in a declarative fashion of the entire the problem at once.

In addition, ease-of-use issues for database query languages relating

to improving the human factors aspect have become evident [Schn78]. Subsequently,

human factors studies have been done regarding the declarative versus procedural
implementations of query languages. The result of these studies show that, for complex or

difficult queries, the users perform correctly more often in specifying queries when using

a procedural query language than a declarative language such as SQL [Welt8 1]. However,

the complexity of the declarative nature of SQL is compensated for by embedding SQL

queries into a procedural third generation programming language such as PAl, PASCAL,

or COBOL Here, most embedded query languages give the user the ability to use the query

14

language in a procedural manner if desired. In this way, the user is allowed to obtain

advantage of the features of the host language to accomplish operations that are very

difficult to code in the query language.

(2) Universal Quantification. In English query, the idea of universal

quantification is phrased "for all". This kind of query is supported indirectly in SQL, which

occurs due to the lack of a specific "for all" operator. In the case of the above mentioned,

SQL forces the user to use a "NOT EXIST' operator as a "negative logic" in order to achieve

the effect of universal quantification and "EXIST" for existential quantification in a nesting

SELECT statement. As a matter of fact, the logical meaning of these operations is not

completely intuitive, especially to the inexperienced user who is not accustomed to using

predicate logic. When using the logical ideas presented by these operators, most individuals

(of users) fall into error, it has been shown to be difficult to use them correctly even when

the user has experience in this area (Negr89].

The following example is presented to show how SQL expresses the

idea of universal quantification in a query; in fact, it is somewhat complicated. If the

complexity of queries increases, then the difficulty of specifying or understanding it

increases rapidly. Consider the following relation as a subset of a database schema that is

presented in Appendix A (key attributes are mdrn•d).

EMPLOYEE (FNAME, MINIT, LNAME, = BDATE,

ADDRESS, SEX,

SALARY, SUPERSSN, DNO)

DEPARTMENT (DNAME, DUMBL MGRSSN,

MGRSTARTDATE)

DEPENDENT (ESSN, DEPENDENT NAME, SEX, BDATE,

RELATIONSHIP)

15

The English query is: "Retrieve the department names in which all of

its employees who have a salary more than $40,000 also have at least one male dependent".

The SQL query is given in Query 2.3.

SELECT DNAME

FROM DEPARTMENT

WHERE NOT EXISTS (SELECT *

FROM EMPLOYEE

WHERE DNUMBER = DNO

AND SALARY < = 40000

AND EXISTS

(SELECT *

FROM DEPENDENT

WHERE SSN = ESSN

AND SEX <> 'M'))

Query 2.3: Ewxmple of SQL Query

The query implements a NOT EXISTS operator in the WHERE-

clause (in the third line) of the query as a negative logic in order to express the universal

quantification. The attribute SALARY is compared as "less than or equal to" instead of

"greater than" in the "outer" nested query and the attribute SEX is also compared as "not

equal" rather than "equal" in the "inner" nested query where the logic of "there exit" is

used for the dependents. Therefore, a direct English translation of the SQL query above is:

"Select the names of departments such that there does not exist any employee whose salary

is less than or equal to $40,000, and there exists at least one dependent that is not "male".

16

The specification required to form the query above is not straight forward at all; the query

formulation involves negative logic that is extremely easy to mix-up, even for the

experienced user. In addition, it is difficult to read and know what is actually being

specified. So, if it is difficult to understand what the query is going to do, it means the

language lacks ease of comprehension and will affect not only query readability but also

the ability of the user to specify the correct query.

(3) Lack of Orthogonality. "Orthogonality in a programming language

means that there is a relatively small set of primitives that can be combined in a relatively

small number of ways to build the control and data structures of the language." (Sebe89]

[Date87]. SQL does not provide the user with a simple, clean, and consistent structure. In

SQL, there are numerous examples of "arbitrary restrictions, exceptions, and special rules."

[Date9Ob]. An example of an unorthogonal construct in SQL is allowing only a single

DISINCT keyword in a SELECT statement at any level of nesting.

(4) Nesting Construct. SQL permits a nesting structure of the form:

SELECT <attribute list>

FROM <relation list>

WHERE attribute IN

(SELECT)

This format allows for a block structure type of construct. The original purpose of

this nesting construct was to allow the specification of certain types of queries without

resorting to the use of relational algebra or relational calculus. According to Codd, the

nesting construct is a part of the "psychological mix-up" in SQL. While all queries that are

specified using the nesting construct should be directly translatable into queries using an

equi-join instead, Codd shows that if allowing for the existence of duplicate rows in tables

(as SQL does), one will come up with a different result when performing the equi-join

17

version of the query than when performing the nested version [Codd9O]. For detailed

descriptions of SQL problems, see [Clar9l] [Wu91].

C. VISUAL-BASED QUERY LANGUAGES

VisMu query languages allow the user to visually specify a query on the screen by

using special graphical editors. Here, visual means not purely textual This kind of language

is also know as a graphical language. We can classify these languages into three categories

of visual-based query languages. The first category includes those which use aform-based

representation, the second is based on the entity-relationship 2 model's (Chen76J

r s ion, and the third includes data flow query languages. In this section we

exanmne QBH as an example of a form-based query language, DFQL as a data flow query

language, and the ER model

L QBE, a Form-based Query Langug

QBE was developed roughly at the same time as SQL during the seventies at

IBM's Laboratory Resoch C (Zloo77]. Today, both languages are available and

supported in the Query Management Facility (QMF)3 offered by IBM. QBE has a user-

friendly interface. While specifying the query, the user does not have to specify a structured

query or tex statement explicitly as in SQL. Instead, the query is formulated by filling/

placing 'Viables" in the proper columns in forms of tables (relations) that are displayed

on the terminal screen. This means that the user does not have to remember the name of

attributes or relatons. Since operations are specified in the tabular from of tables, it can be

said that QBE has a "tvwo-dleional synt,•" [Daw82 [Blma89]. In addition, in QBE

2. Bhuty.iUeouap Model is inooduced by Chen, P. in 1976 5 apkaidal cocueptu desipn
medwddloy for thehadou model
3. T7% diaect of QBB suppore in QlF is slihgWy diffemzt from duh proposed by zloof. the orig-
Wil ded of QBE [Zloo77], bcm. QlF implemes QBE by fir tum ting it to SQL
[DaIM. QMF is a Iein product fora DB2 md act a query lague md report writer

18

there re no rigid syntax rules that should be followed by the user while specifying the

query specification. Instead, the user enters the "variables" as "constant" and "exanpWe"

values in the proper columns of the forms to construct an "exanple" of the data for the

retrieval or update query. Like in SQL, this part also emphasizes data retrieval queries.

QBE is related to the domain relational calculus, and its original specification has been

shown to be relationally complete [Elma89].

a Data Retieval

As mentioned above, in order to specify the query for data retrieval, the

user should enter "example" or "constant" values into the proper columns in the form of

tables (relations). In QBE, the entering of "exanWpe" values, usually preceded by "2-

(underscore) character, means the example value does not have to match specific values of

tuples in the database, so it really represents the "free domain variable". On the other hand,

"constant" values must be matched by corresponding tuple values in the database. If the

user is interested in particular tuple values, the user types the prefix "P." in that particular

column (attribute). "P." is used to retrieve a desired attribute value from a tuple which

satisfies the query, "P" standing for "prin'".

BebWYEE FNAME~ NMrI LNAME W DDATE ADDRESS SEX SALARY SUPERSNN DNO

RP. P.UNQ.

F~r PNME K=M~iPOCTON MNUM
P. x

Query 2.4: Example of QBE Query

Similar to SQL, QBE also allows relations to have duplicate tUples. To

eliminate the duplicate tuples in the result of a query, QBE uses the prefix "UNQ." which

19

means keep only unique tuples in a query result. See the query example in Query 2.4. The

English translation of the query is: "Retrieve the first name, last name, and distinct salary

of employees who works in projects "computerization".

From the example QBE query, it can be determined that:

•"Dx" is an "example" value to join the two tables by using "Dno" as aforeign key

* "Computerization" is an actual "constant" value. In other words, the selecdon
condition using the equality (=) comparison is specified by entering directly a constant
value under a proper colunm.

S'"P" means to retrieve the attribute value for tuples satisfying the query.

b. Builtin uaniion,., Grouping an" oee Opealn

Like SQL, QBE is also equipped with built-functions, such as CNT. (for

count), SUM., MAX., MIN., and AVG. However, in QBE the functions SUM., CNT., and

AVG. are applied to "diUincg" values. V the user wants these function to apply to all values

desired, it should be entered by using the prefix."ALL" 4. QBE provides a "G." operator as

a grouping aggregate function. It is analogous to the SQL GROUP BY-clause, and the

"condition box" in QBE is used in the same manner as the HAVING-clause in SQL QBE

also uses the same comparison operators as SQL except equality (H). Therefore, the user

explicitly enters the >, >, < , -before typing a constant value. QBE also has a negation

symbol (-,), which is used in a manner similar to the NOT EXISTS in SQL, but the same

effect can also be obtained by using the "-" operator. In addition, QBE also has prefixes

"AO." (for ascending order), and "DO."(for descending order), in order to get an ordered

list of tuples.

4. Ia aQ daer QMF "A,," is umilmd to die kvual qumiAier tE•uMS9.

20

C. Th Proebnl w*k UQE

As mentioned above, QBE is very intuitive, even for novice users. It allows

the relatively inexperiene users to get started in specifying simple queries, even though

they have no prior knowledge of programming languages. Unfortunately, it becomes less

and less useful as the complexity of the queries uicreases and has problems with more

complex queries [Ozso93].

The expression of universal quantification in QBE as originally proposed

by Zloof [Zloo77J did include support for "NOT WE7STS", but it was difficult and always

somewhat troublesome (DwtegOa]. However, today's QBE that has been released as a

commercial product cannot implement universal quantification. In fact, the QBE that we

discuss here (QBE under IBM's QMF) provides no support for universal or existential

quantification of the form of "V" or "3". Thus, queries which involve universal

quantifctdio cannot be specified [Daw]aJ [Elma89J [Ozso89J. The'efore, it is not

Mkgonay compkft

2. DataFlow Query Lmaga (DFQL)

DFQL is a visual/raphical inteface to relational algebra based on the dataflow

paradigm. It retains all the capabilities of curent query languages and is provided with an

easy to use facility which extends the query language. This extension allows the users to

create new operators from existing primitive or user-defined operators DFQL includes

aggregate functions in addition to the operators of relationally complete query language. It

has the power of expression beyond the benchmark of first order predicate calculus by

providing the user with the capabilties to specify universal and existential quanticaion.

Queries are specified by the user connecting the desired DFQL operators graphically on the

compner screen. The arguments for the operator flow from the bottom or "output node" of

the operator to the top or "input node" of the next operator.

21

a DFQL Op.IIraeI

All DFQL operators have the same basic appearance to enhance the

orthogonality5 of the language. In Figure 2.2. is a sample operator (with no name). It is

made up of three types of components; the input nodes, the body, and the output node.

In DFQL, the functional paradigm is fully supported by the DFQL notation.

The input to each operator, or function, arrives at the input nodes of the operator and the

result leaves from the output node. Thefore, all of the operators of DFQL implement

opetwonal closure. This mean that the inputs to the operators are relations and associated

textual instructions, and the output from each operator is always a relation.

Utnodes

Figre2.2:Operator Cmotu itrdo

In fact, DFQL operators can be grouped into two basic categories: primitive

and user-dflmnd operators. Each priitve has a one-to-one corespodece with an actual

method in the inle-ment1aton language of h interpreter. User-defined opemtors are

creamed from prMve opertors and possibly other user-dfbe operators which have been

previously created. Next, prinitive operators can be brken down into basic, other

prnimives, and display operators.

5. AhoVmdkyaapnV=manalnu r then s ardx iive1y sma tw olpdivs dt
-m be scminld in akdy sml s mier aways i bld b e oiui d data wddM s to thie

22

(1) Basic Operators. DFQL provides six basic operators derived from the

requirement for relational completeness and also the requirement to provide a form of

grouping or aggregation. Thus, DFQL has the expressive power of first-order predicate

calculus. To be relationally complete, at least five relational operators must be

implemented, namely select, project, union, join, and diference. See Table 2.1, which

illustrates the basic DFQL operators and their corresponding translation in SQL.

TABLE 2.1: BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS

ISQL Desucition SQL Equivalent

Tmplements the relational algebra SELECT DISTINCT
, conlio slecdon opeator The algebraic FROM relatio

notation is: WHERE condition
G c0NW04> (<relaion>).

eIt rrieves topics from the relation
which fits the specified condition. Ther

SELc mare no duplicate toples in the result.

ml n the relational algebra SELECT DISTINCT
projection operator. The algebraic atrbute list

!k is notation is: FROM relation
X<wrfft 4>(<re•lmion>).
The atibutes list, separate by commas
contains the names of attibutes to be

FftIEC retrieved from the relation . The project
operator -elintes duplicate topics from
the result.

"23

TABLE 2.1: (Continued).

DFQL Description SQL Equivalent

Implemnents the relational algebra theta- SELECT DISTINCT
join ope= r mtr h algebraic notation is: FROM relationi ri,

relstion2 <relation 1> x~~djn <relation2>. tiatioii2 r2
I" r Thetuples satisfying the condition are a WHERE condition

lulUonl codtionl sbset of the tuples of the cartesian

teJoin operator is "cartesian produce'.
Nf both relations have the same name for

JOIN an atiuewchmust beusdith
condition, use left to right order of
relations coming into the operator (e.g.
rL~sma = r2.ess), where ssn and esan are

piaykeys or foreign keys of relationi
and relation2 respectively.

ImplementsM the relational alerSELF=T DISMICr
dpM=e opefatim 7Ue algebraic FRMw~d

I 7 a.i2 notation is:-
<relationl> - < jriSELET DIFINC

FROM ielmion2
Relational differene returns as a resulta
relation that contains all the tuples that
occur in <relationi> but not in

-~~ <reation2>. dif requires tha both
relation be union compatible.

24

TABLE 2.1: (Continued).

DFQL JjDescription jJ SQL Equivalent

Implements the relational algebra union SELECT DISTINCT *
operation. The algebraic notation is: FROM ItflaonallI
<r o 1> u < tion2>. UNION

wbfion2 SELECT DISTINCT *This operator takes all the tuples from FtOM 2
both relations and combines them,

duplicate tuples being eliminated. Union
union requirs both relations to be union

"compatible. This restriction is necessary
UNION since union does not create additional

columns for the output relation.

GroupCnt (a short hand for group count) SELECT DISTINCT
goupingattributes is defined as a basic operator in order to stupioo attributes

rlation - proidle th user with some s"pl COUNT(4 count attir
count attrib aggregation capabilities. It provides the FROM relation

user a mns to formujate quetieshat GROUPBY
involve universal quantification. o mibufs
GroupCnt requires a relation, a list of
grouping attributes, and an alias name

GROUP CNT for the result. Grouping attributes can be
more than one attribute, separated by
commas. The count result is an integer
which gives the total number of tuples in
that grouping.

25

(2) Other Primitives Opeamtors DFQL provides several other primitive

operators to perform special operations on relations. Most of these additional primitives

perform operations at such a low level that the user would not be able to specify them as a

usser-defined operator. However, all of these additional operators could also be specified as

user-defined operators as well. To illustrate, see Table 2.2. which lists these other primitive

operators and their corresponding translation into SQL.

TABLE 2.2: NON-BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS

SQL Description j~SQL Equivalent

Implements relational algebra SELECT DISTINCT *

=W7 on intersection operation The algebraic FROM relationl
notaltion is: EW1iSECT
<rltonI <relation2>. SELECT DISTINCT*

intersct Itreturs thetuples which exist in both M Mridn
relatons, as a result out relation.

wrzaswcr Intersect requires both relations to be,
union compatible. The i mplementation
of intersect is identical to union and diff
operators

Finds the minimumin value of the SELECT DISTINCT

attribtems specifiedj attribute in separated sections gnoupinig attributes,
Iaccording to the grouping attributes. It MIN (Upr attr)

anrlate atimr. gesthe grouping atftrites and FROM relation
produces the minimum values of each GROUP bute
group in a column named with the given WouPin M iue
alias name as a result Of relation.

GROUP MIN

26

TABLE 2.2: (Continued).

DFQL Description, SQL Equivalent

Sinilar to groupMin except it finds the SELECT DISTINCT
es maximum value of the aggregate gOuping attributes,

attributes according to the grouping MAX(aggr. attr.)
relation! aa. attribute. FROM relation

GROUP BY group attr.

GROUP MAX

Similar to the previous operator, except SELECT DISTINCT

g attributes it finds the total value of all the aggregate grouping attributes,
"relaion agReate attr. attribute's values according to the SUM (aggr. a=.)

grouping attributes. FROM relation
GROUP BY
grouping attributes.

GROUP SUM

As previous operators, except it finds the SELECT DISTINCT
grommina attributes average value of the aggregate attributes grouping attributes,

according to the grouping attributes. AVG (aggr attr.)
a aFROM relation

GROUP BY
grr'ping attributes.

GROUP AVG

27

TABLE 2.2: (Continued).

DFQL Description SQL Equivalent

It is a simple way of introducing It can be trNIslated into

attributes unversal quantification. It takes a a sequence of SQL

reia c %l cndition relation and splits the tup ies according to
o the grouping attribute list and then

checks all tuples in individual groups
according to the condition specified. If

oupASatisfy, all the tuples satisfy the condition then
an output tuple value is generated
consisting of the grouping attribute list.

GROUP ALL SATISFY So, it means that this group satisfies the
condition in all their tuples.

This operator is the opposite of It can be translated into
grupin aMibute's groupALSatsfy operator. It gives the a sequence of SQL

retion grouping attributes only if none of the statements-
- tiK tuples satisfies the condition.

(eoupNoneSatisfy)

GROUP NONE SATISFY

It is closely related to groupAllSatitj'. It can be taslated into

grouping attriutes The only difference is that groupNSatisfy a sequence of SQL
takes an extra input which allows the StatemeM.

"relation condition user to specify exactly how many of the
tuples in the group need to sadsf the
given condition in order for that group to
be included in the resulting relation. So,
the fourth argument (number), must

GROUP N SATISFY consist of one of the operators (< >, =
-,> !-) and a number.

28

(3) Display Operators. The display operators are provided to allow the

user to print the contents of a relation on the computer screen. The most common usage is

to print out the final result of a query. There are two display operators:

"• display. It takes as inputs a relation and a text string to be used as a title. The title
makes it easy to differentiate between printed results when more than one display
operator is used in a query.

"* sdisplay. It is used to produce a sorted printout of a relation. Each attribute in the list
may be followed by "ASC" (ascending) or "DESC" (descending).

(4) User-defined Operators. These kinds of operators give the flexibility

to the user to define his/her own style of operator and extend the capability of the language

azcording to his/her desires. With user-defined operators, the user can construct his own

operaturs that look and behave exactly like the primitive operators provided in DFQL The

user can cremae opators for situations that are unique to his query needs. This kind of

flexibility is gained without a loss of the power of orthogonality, since user-defined

operators are constructed by combining the available primitives with previously defined

user operators as well.

(5) DFQL Query Construction. General ideas behind DFQL construction

have been implicitly discussed. Query constructions will be presented in Chapter iM All

DFQL queries exist as data flow programs in which text objects and operators are

connected to each other by lines called data flow paths and all of the information traverse

these paths during execution. DFQL objects, except operations, do not have any input

nodes and can be executed anytime. They pass the relation object, attribute list, or condition

in order to be used by an operator. As soon as all the input nodes have the information, the

operator can be executed and produces a relation at its output node. Since a DFQL query

does not permit iteration and recursion, however, execution of the query can be visualized

29

as flowing from the top the diagram to the bottom. There is no restriction on how operators

are placed on the screen; top-down placement is recommended for readability.

(6) Incremental Queries.This is the most important feature provided by

DFQL. It allows the user to specify or create his/her queries incrementally. In other words,

the user can formulate one portion of the query, and then check the Results (returns back if

needed), and continue to build/create other portions of the query one by one. This capability

gives more flexibility to the user during his/her work, especially when creating a complex

query. It helps the user prevent losing track of what he/she is doing and provides

intermediate results to help in query construction. Specifically, this feature can be div'.-ed

into two sections, namely incremental construction and incremental execution.

"* Incremental Construction. This provides the user with the capability to specify/create
the query part by part, which is ncreasingly helpful as the complexity of the query
increases

"* Iincreental Execution.This feature is helpful during the debugging of complex
queries. If a complete query does not produce a desired result, it allows the user to
check level by level in order to find the erroneous part and fix it. Therefore, the user
can see the intermediate result at any level by executing the query incrementally.

(7) Universal Quantification. The problem of expressing universal

quantification in existing query languages has been discussed in previous section. DFQL

provides a unique solution to this problem, by implementing simple counting logic to

achieve the result that fulfill the requirements of universal quantification. The basic idea

employed is that if all tuples in a relation or a group must satisfy some criteria, the number

of tuples that meet the criteria are counted and then compared to the total number of tuples

under consideration. If these two numbers are equal, then the universal quantifier has been

satisfied. In DFQL, the operators that can implement universal quantfication are:

groupAUSadtsfy, groupNoneSadsfy, and groupNSatisfy operators. However, the users can

30

achieve universal quantification as well by building their own quantifications as a user-

defined operator using the primitive operators.

(8) Nesting and Functional Notation. The nesting feature of SQL exists

naturally in DFQL As discussed before, one by one execution of operators to supply input

data to other operator is like block structured execution in SQL from the "inside" to the

"outside" of nesting queries. The lack of specific nesting structures in DFQL improves the

readability and orthogonality of the language. The use of functional notation for all of the

DFQL operators greatly enhances orthogonality. Relational operational closure is

implemented by the functional paradigm. The use of operators that may take more than one

input but produce only one output allows for their easy combination into user-defined

operators as discussed before.

(9) Graphical Structure of DFQL Query. DFQL's visual representation of

the query is a data flow graph consisting of DFQL objects which are connected together

by lines of data flow paths. As such, the graphical structure represents the relational

algebra structure for execution of the query. By using a graphical relational algebra

approach to query formulation, it provides a much more consistent and straight forward

interface to the databases.

3. Entity.Relationship Model Interface

The Entity- Relatonship (ER) model was introduced in [Chen76]. The ER model

has been used extensively as a high-level conceptual data model The main idea behind this

model is to illustrate the concepts of entity types and relationships between entity types in

a graphical way in order to enhance undestanding of the structure desire for a database. An

example of visual representation of the ER model is shown in Figure 2.3.

31

Figure 2.3: ER schema diagram of the COMPANY database [inuaS9]

From the ER diagram we can illustraKe that

• The entty types such as EMPLOYEEE, DEPARTMENT, and PROJECT are

represeted as rectangular boxes.
* RationMhip types such as WORKS_FOR, MANAGES, CONTROLS, and

WORKSON are represented as diamond-shape boxes that are attached to the
patiiatn entity types with straight lines.

* Both entity types and relationship types have attributes which are repesnted by the
oval/cules where each attribute is attached to its entity type or relationship type by
a straight line.

32

" "Name" is an attribute of EMPLOYEE and has composite attributes such as Fname,
Minit, and Liname.

"* Location in double ovals represents multivalued attributes, and dotted ovals represent
derived attributes.

"• Key attributes have their names underlined

"* Double rectangles represent a weak entiy, where the weak entity means an entity type
which may not have any key attributes, and the double diamond as the identifying
relationship.

" The partial key of the weak entity type is underlined with dotted line.

"* The participation constraint is specified by a single line for partial participation, with
the cardinality ratio is attached; a double line illustrates total participation. For
example, the participation of EMPLOYEE in WORKS-FOR is total (every employee
must work for a department), while the participation of EMPLOYEE in MANAGES
is partial (not every employee manages a department). MElma89]

The idea of using the ER diagram as a query language is to let the user not worry

about the particularjoin conditions between entity types, however, it tends to force the user

to rely on the specified relationships These relationships are all displayed to the user. This

can be a benefit to a novice user, who does not really understand how the data in the

database fits together, but it seems somewhat fatal, to write queries which depend on

relationships that the user may not fully understand. The ability to use a relationship

without knowing how it is actually set up increases the chance of syntactically correct

queries that will produce the wrong result. The ER model as mentioned above does not

affect our next discussion. It is presented in order to illustrate features of another visual-

based query language that are also available for RDBMS's.

33

HIL THE COMPARISON OF SQI, QBE AND DFQL WITH RESPECT

TO DATA RETRIEVAL CAPABILITIES

First of all, we consider that the notion of a query language as a high level language

means it is intended to be used by a non-programmer or a user without specialized training.

However, as mentioned in two previous chapters, the user faces some difficulties in

specifying correct queries, especially as they relate to universal quantification and nesting

in SQL, and universal quantification in QBE. Then, we attempt to observe how DFQL

overcomes the problems that are encountered by SQL and QBE

This chapter focuses on the comparison of SQL, QBE, and DFQL In order to

accomplish the comparison of these three languages, numerous queries are composed by

category, in which each language is specified and compared. Some of the queries are stand-

alone, but some others specified are logical extensions (or the complexity is increased)

from one query to the next. Such extension types of queries are chosen to analyze the query

language's ease-of-use, flexibility, and consistency in formulating logically related queries

with respect to data retrieval for RDBMS's. Consider the following, brief explanation:

"* Ease-of-use particularly emphasizes how easy the query language is to learn and
express queries in.

"* Fxibility means more than one way of expressing a single query.

• Consistency means similar thinking in a mental model can be expressed in a similar
structure in the language.

All the representative set of queries presented are matched to the tables of a relational

database instance of the COMPANY schema which are provided in Appendix A. Some of

the queries are related to queries that are presented in [Elma89]. Based on the above, this

chapter is divided into two sections: first the categories of the queries, and second is the

analysis of the strengths and weaknesses of the comparison of all three languages.

34

4• " ' --

A. CATEGORIES OF QUERY

In order to compare these three languages, numerous queries are composed by

category. The queries are divided into four categories: single-value, set-value, statistical

result, and set-count value. In each category SQL, QBF, and DFQL are specified and

compare&

1. Single-Value

In this category the user (end user) attempts to obtain a proper relation of a

relation (table), based on a single-value expression. As a result of the single value

expression in the queries, the user can expect to obtain a table, a single column, a single

row, or a single scalar value. These correspond to a constant value of table-expression,

column-expression, row-expression and scalar-expression, respectively, in a relation. A

scalar-expression is a special case of a row-expression and a special cae of a column-

expression [Date83]. The null value in this case is also presented as single value (see

Chapter ILA).

In this category, the operators such as "=e,"<" "<=", ">", ">=", and "like", are

generally used in the relation-operation, but we can also perform the standard arithmetic

operators"+" "-", "*" and "r". In addition, if we are concerned with a single scalar value,

a set of special aggregate functions such as COUNT, SUM, AVG, MIN and MAX can also

be applied. In this research these aggregate functions fall under the statistical-result

category. Consider the following queries:

35

AL Qmuy 1: Sbxpl rebfvW

List the salary of every employee.

(1) SQL

SELECT SALARY " SELECT SALARY

FROM EMPLOYEE FROM EMPLOYEE

WHERE TRUE = TRUE

Since in the WHERE-clause we can specify TRUE = TRUE. the

above query can be considered single value. It yields a single column to be a new relation.

If there are multiple employees with the same salary, that salary will be displayed multiple

times as redundant duplicate tuples in the result of the query. If we are concerned with

distinct values, SQL allows us to use the keyword DISTINCT in the SELECT-clause:

SELECT DISTINCT SALARY

FROM EMPLOYEE

The results of these two alternative queries are:

Without keyword DISTINCT With keyword DISTINCT

SALARY SALARY

30000 30000

4000D 40000

2M00 2000

430) 43000

38000 3800O

200 55000

25000

5500O

36

(2) QBE

""LUG M r M •A W ADDRESS s SALARY SUPS

P._Sx

Since we are interested in retrieving the SALARY values, in QBE
"P...k" is placed in the column of the SALARY attribute. As discussed in Chapter II, the

prefix "P" is used to indicate that the values of the SALARY column are to be retrieved.

General speaking, QBE allows the user just to specify "P." instead of "P._Sx". In other

words, QBE retrieves the same thing. This seems very simple to specify. However, in some

cases QBE also allows redundant duplicate tuples to exist in the result. In order to avoid

redundant tuples, the prefix "UNQ." is needed as an operator since it keeps only unique

tuples in a query result. Therefore, if we are concerned with distinct values, the "P._Sx"

from the above query can be replaced by "P. UNQ._Sx". The results are the same as for the

SQL query above.

(3) DIFQL

DIPMOYEE Salin_

The attribute list Salary is to be retrieved from the EMPLOYEE

relation. The result of the projection is displayed on the screen by di.play operator. The

37

result is a proper relation which contains only the values from the column of the specified

attribute Salary. Here, the project operator eliminates the redundant duplicate tuples of the

attribute. The result is the same as the SQL query using the DISTINCT operator in "a.(l)"

above.

b. Qury 2: QuaUfied re&b l

List all employees whose salary is more than $50,000.

(1) SQL

SELECT *

FROM EMPLOYEE

WHERE SALARY >50000

The asterisk (*) in the SELECT-clause is shorthand for retrieving all

the attribute values, in order, of uples satisfying the query. The tuple selected must satisfy

the condition "SALARY >50000". Since the query is asking for the list of all employees

who fulfil the condition, the asterisk character should be used in SELECT-clause. The

SELECT-clause retrieves all the employee attributes of tuples from the EMPLOYEE

relation that satisfy the condition specified. There are no redundant tuples in the result.

(2) QBE

MFAWE MWfr F NAM § L S)E ADDESS SEX SAIA SUUSO 1240

1 j >50000

The ">50000" is specified in order to get the tuples that satisfy the

condition "> 50000", where "50000" is as an actual constant value. Placing the "P." below

the relation name means to retrieve all the attribute values of tuples of the relation which

38

match the condition specified. Since the key attribute is included in all tuples returned,

there are no duplicate tuples in the result.

(3) DFQL

EMPLOYEE Sa • 50000

By using the select operator, the query retrieves tuples from the

EMPLOYEE relation which meet the specific condition Salary >50000. There is no

alteration in the structure of the relation, so there are no redundant tuples in the query result

The result of the Query 2 is:

EMLYE NAME Ir Wf LAl SW WDAN ADDRESS SEX SALARY SUPERSSN DNO

Jmu E Barg 89966555 10.Nov-27 450 So.on, 7 TX M 55000 U I

39

c. Query 3: Rebieval involves more dsaw two tables

For every project located in Houston, list the project name, the
controlling department number, and department manager's last name, ssn, and sex.

(1) SQL

SELECT PNAME, DNUM, LNAME, SSN, SEX

FROM EMPLOYEE, DEPARTMENT, PROJECT

WHERE MORSSN = SSN AND DNUM = DNUMBER

AND PLOCATION = 'Houston'

This query is select-project-join with two join conditions. The join

condition is specified according to the key and the foreign key of the relations. Here we

specify DNUM = DNUMBER as the join condition regarding the controlling department

of a project, while the MGRSSN = SSN joins the controlling department to the employee

who manages the department. PLOCATION = 'Houston' specifically specifies projects

that are located in Houston.

(2) QBE

EMPLOYU FNAII MM '1 I~m zi W- -U E SLR MS
P. P._sx P.

DWRM~ DNAME 3If MORSSN M4RSTARFDA2

PROJECr PNM PNULMBER PLOCA77N I)NVMj

S P. Houston P.J)x

In this query an example variable "_Sx" is used to join relations

EMPLOYEE and the DEPARTMENT at the key and foreign key. "_Dx" is used to relate

40

the key and foreign key of the joined relations DEPARTMENT and PROJECT. "P." is used

to retrieve the attribute values of joined tuples that fulfil the condition

PROJECT.PLOCATION = "Houston".

(3) DFQL

PROJECT Plocatlm - Houston

reltin) Te i s oiedwih heDEPARTMENTrlainbemoygthjinprar

wh0 1h rco.Dnu m r2.Doembor

sEMPLO YEE the dprmn E ji

,m~ DanLmsu o

p ue sealcartesianlproduct ofeall rthe possle tue ofebot hat amigrelated in Houston

from the PROJECo rndaiiot The result at the select operator output retains all the attributes

of each selected project tuple, assuming it is as a new relation rl (a subset of PROJECT

relation). The rl, is joined with the DEPARTMENT relation by employing the join operator

with the equi-Join condition rl. Dnumn = r2. Dnumber in order to get the controlling

department. The result is used by the next join operator, with the equi-join condition

mgran = ssn relating the employee who manages the department. Each join operator

produces a cartesian product of all the possible tuples of both incoming relations based on

the join condition. This result is then used by the following operator. Finally the project

operator produces the desired relation result with values from the attribute list.

41

The result of Query 3 is:

PNAME DNUM LUAME S4 SEX

ProductZ 5 Wong 333445555 M

Reorganization 1 Borg 888665555 M

d. Query 4: Rerieval Involving univerml quantification

Retrieve the department number where all of its employees have salaries of

more than $40,000.

(1) SQL

SELECT DNO

FROM EMPLOYEE E

WHERE NOT EXISTS

SELECT *

FROM EMPLOYEE El

WHERE F. DNO = El. DNO

AND SALARY s 40000)

This query involves one nested query which selects all the

EMPLOYEE tuples related to an EMPLOYEE relation itself. SQL in this case implements

a NOT EXISTS operator in order to express universal quantifier in the WHERE-clause by

use of a negative logic. The nested query checks all the EMPLOYEE (El) tuples according

to the condition specified, such that none of the employee tuples satisfies the condition,

then the EMPLOYEE (E) tuple is selected. If we rephrase the query, it becomes "retrieve

the department number if there does not exist any employee with the department number

who has a salary less than $40,000". Notice the use of "E" and "El" as aliases for the

EMPLOYEE relation. In this case "E" and "El" represent two different copies of

42

copies of EMPLOYEE relations. Each DNO will be duplicated if the department has more

than one employee. This can be avoided by using DISTINCT.

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified.

(3) DFQL

Dne Salary o 40000

As discussed in chapter II, DF'QL provides the user some group

aggregate functions that can be used to express the query that contains universal

quantification. One possibility is specified just by employing the groupAllSadsfy. It takes

the EMPLOYEE relation and checks all the tuples in each group of department number

"Dno" that satisfies the condition Salary > 40000.

The result of Query 4 is: none

43

e. Query 5: Retreval Invaolng a negation statement

For each department retrieve the first names and the last names of employees

who have no dependents.

(1) SQL

SELECT DNO FNAME, LNAME

FROM EMPLOYEE

WHERE NOT EXISTS (SELECT *

FROM DEPENDENT

WHER SSN = ESSN)

GROUP BY DNO

The nested query retrieves all DEPENDENT tuples related to the

EMPLOYEE tuple. As in Query 4, this query also uses the NOT EXISTS operator.The

nested query checks all the DEPENDENT tuples to see if the ESSN is the same as the SSN

of the current EMPLOYEE tuple. If none match the nested query returns an empty relation

since there are no dependents associated with the current employee. Therefore, the desired

attributes of the tuple are selected.

(2) QBE

NMO MIM LKM UL DDATEI ADDM S SEX SALARY SUPELSS DNO

P. _Sx G.

DEEDE• EmN DPb)NAM SEX BDAIM RM.ATONSHIP

_S44

By looking at this query, we notice that QBE has a negation symbol

(-). In this case the negation symbol "- " is used in a way similar to the NOT EXIST

function of SQL. It will join tuples of relations EMPLOYEE and DEPENDENT if their

values of "_Sx" do not match each other. However, the query can also be specified by

placing a ",,Sx" in the ESSN column, producing the same result [Elma89].

(3) DFQL

EMILOYIE E

70 Dnol $$1t -ssR

•lkee~a• Fn amewI~m

DFQL provides the groupNoneSatisfy operator which can be used to

specify this kind of query. First, we join both relations EMPLOYEE and DEPARTMENT,

which results in the cartesian product as an input to the groupNoneSatisfy operator. The

groupNoneSatisfy takes the tuples according to the grouping attribute essn and checks to

see if none of the tuples satisfies the condition ssn = essn. If so, the project operator will

project the first name and last name of the employee.

45

In DFQL this query can also be specified by using the diff operator. In

the following query, the inputs to the diff operator are the results of two project operators,

say left and right side. The left side result holds the ssn all of the employee in rl, while the

right side holds the ssn of employees who have dependents in result r2. The di{ operator

checks these two relations rl and r2, and returns any ssn(s) which do not appear in both rl

and r2 as the result, i.e., the ssn of employees who do not have dependents.

EMPLOYEEDEPENDENT

oaoLoam*

The result of Query 5 is:

Fname Lname

Alicia Zelaya

Ramesh Namyan

Joyce English

Abmad Jabbar

Jamesh Borg

46

2. Set-Value

In this category the user (end user) tries to obtain a proper relation from one or

more relation based on the set-value-expression that correspond to a constant-set of query

specifications. In this category, the set operations such as union, difference (minus), and

intersection can also be applied. Consider the following queries:

a Query 6: Refrmval involving existendtal and wiversal quantification

Retrieve the department names, first names, and last names where all of its

employees have salaries of more than $40,000 and have no dependents.

(1) SQL

SELECT DNAME, FNAME, LNAME

FROM DEPARTMENT D, EMPLOYEE El

WHERE D. NUMBER = E. DNO

AND NOT EXISTS (SELECTS

FROM EMPLOYEE E2

WHERE D.DNUMBER = E2. DNO

AND (SALARY :s 40000

OR EXISTS

(SELECT *

FROM DEPENDENT

WHERE SSN = ESSN)))

GROUP BY DNAME

This query is an extension of Query 4 or like a combination of Query

4 and Query 5. SQL specifies this query by employing the EXISTS and NOT EXISTS

operators with two nested queries. The existential quantification is specified by the

EXISTS operator in the nested select statement and universal quantification is expressed

47

by using the NOT EXISTS operator. Therefore, a rephrasing would be "retrieve the name

of departments together with their employee's riot and last names such that there does not

exist any employee whose salary is less than or equal to $40,000 or who has at least one

dependent". In order to specify this query, in SQL we cannot combine Query 4 and Query

5 without rewriting or specifying a new query structure.

(2) QBE. As discussed in Chapter 1I, QBE lacks the existential and

universal quantification expressions. Therefore, this kind of query cannot be specified.

(3) DFQL

48 40000

vA- W- -f

12[X

By looking at this query, we recognize this query as a combination of

Query 4 as the "X" part of the query and Y" as the main part of Query 5. The intersect

operator takes two relations which are union compatible (rl and r2) and returns as a result

(r3) the tuples which are in both. Then, by employing the join operator, we join r3 with the

DEPARTMENT relation (r4) based on the aqui-join condition r3. Dnum = r4. Dnumber.

The result is a subset of the cartesian product of r3 and r4 and becomes an input to the

project operator.

The result of Query 6 is:

Dname F-mune Laame

Headquarter James Borg

b. Query 7: RetieMl involving explicit sets

Retrieve the Social Security Numbers of employees who worked on project

numbers 1, 3, and 10 (or maybe more).

(1) SQL

SELECT DISTINCT ESSN

FROM WORKS-ON W1 W2 W3

WHERE WL.ESSN =W2.ESSN AND WI.ESSN = W3.ESSN

AND WI.PNO = 1

AND W2.PNO = 3

AND W3.PNO = 10

This query is retrieving the distinct ESSN attribute of an employee whose

PNO include all values 1, 3, 10 or more. This can be done if the tuples satisfy the condition

which are specified in the WHERE-clause.

49

(2) QBE

WOW-C HWRS

P. UtQ.-XI I
UNQ..Y 3
U?1k.X,3 10

Condition

I L I
In this case, "P.UNQ._XC", "UNQ.X2", and "UNQ._X3" retrieve

the unique ESSN of an employee whose PNO values include all the constant values 1, 3,

and 10. All of the tuples retrieved must satisfy the condition which is specified in the

condition box.

(3) DFQL

(13S10)

This query shows that a result (r2) of another query makerelaton

which contains the set values (1 3 10) is an input to the groupContainl

50

operato.ThegroaapContain opetator takes the WGRIKS..ON relation Wr) and the second

relaton (42) and groups the tuples according to the grouping attibute essn. It then compares

attribute Poo to see if one essn has all the Pno values contained in r2. If so, the essn is

selected.

The result of Query 7 is: none

c. Q2 ,y 8: Rek nvolWg enxplcitSet

Retrieve the social security numbers of employees who worked on project

number 1, 3, and 10 exactly.

(1) SQL

SELECT DISTINCT ESSN

FROM WORKS-ON Wl W2 W3

WHERE WI.ESSN = W2ESSN AND WI.ESSN = W3.ESSN

AND WI.PNO = I

AND W2.PNO = 3

AND W3.PNO-= 10

AND NOT EXISTS

(SELECT*

FROM WORKS-ON W4

WHERE Wi. ESSN = W4. ESSN

AND W4. PNO o I

OR W4. PNOP3

OR W4. PNO P 10)

I. GroaqContaft opersior is a pat of Groip Set Comparation. GroaqSet Comparoion also pro-
vid GmOspgq mad GvopComainBy opmrs. Then opemaor am discussed in clas oes of
Dr. C Tlbnes Wu, Coqazier Science Dqluimxnmt Naval Pogadue Scho•, Mtermy, CA.

$i

This query is similar to Query 7. We can use the NOT EXISTS

operator with an included nested query that checks the explicit set Therefore, a rephrasing

would be "retrieve the social security numbers where there are not exists any employees

who worked not on project number 1, 3 and 10". So, it selects exactly the social security

numbers of employees who worked on project number 1, 3, 10.

(2) QBE

SWORON HOURS
RUNQ.-XI 1

UNQ._X2 3
UNQ._.X3 10

" X4 Px

Condition

XI J~= 2CAND JO JCAND X3-X4I

In QBE, the query is specified according to actual constant values 1.

3 and 10 which satisfy the condition in the condition box. This query keeps a similar

structure to the Query 7. "P.UNQ._XI1, "UNQ.J2, "UNQ._.,3", and "- XC4" are used

to retrieve the tuples which satisfy the condition specified. Notice that the "- .XC4" couple

with the condition "X3 = X4" specifies set equality. An es is selected only if it has PNO

values of 1, 3, and 10 and no other values.

52

(3) DFQL

This query also presents the same structure as query 7. Since the query

is asking to ret'ieve the Social Security Numbers of employees who worked on project

number 1, 3, and 10 exactly, this query uses the groupEqual operator instead of

groupconti operator. It selects the tupies of employees Social Security Numbers only if

the set of no values associated with the essn is exactly equal to (1,3,10).

The result of Query 8 is: noneVORKS53

d. Query 9: Retel involving universal quantifdiaon

Retrieve the first name and last name of each employee who works on all the

projects managed by department number 5.

(1) SQL

SELECT FNAME, LNAME

FROM EMRPOYEE

VCWHERE (SELECT PNO

FROM WORKS-ON

WHERE SSN = ESSN)

CONTAINS

(SELECT PNUMBER

FROM PROJECT

WHERE DNUM = '5)

There are two nested queries. If the set of PNO values from the first

nested query contains all projects that are controlled by department 5, then the employee

tuple is selected. Notice that the CONTAINS comparison operator in this query is similar

in function to the DIVISION operation of the relational algebra [Elma 89].

54

However, for SQL systems which do not have the CONTAINS

comparison operator, the user must specify by using EXIST and NOT EXIST functions, as

in the query below:

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE NOT EXISTS

(SELECT *

FROM WORKS-ON B

WHERE (B.PNO IN(SELECT PNUMBER

FROM PROJECT

WHERE DNUM = 5))

AND

NOT EXIST (SELECT *

FROM WORKS-ON C

WHERE C. ESSN = SSN

AND C. PNO = B. PNO))

Notice this query involves two level-nested queries. Thus this

formulation is quite a bit more complex than the prior query with the CONTAINS operator.

Consider the first nested query which selects WORKS-ON (B) tuples whose PNO is a

project controlled by department 5 in the IN operator nested query, and there does not exist

a tuple with the same PNO and SSN in WORKS-ON (C) relation which is related to the

EMPLOYEE tuple in the outer query. Since the outer WHERE-clause uses the NOT

EXISTS operator, negative logic is reflected. If the nested query returns the empty tuple,

the EMPLOYEE tuple should be selected. For a detailed description see [Elma89].

55

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified.

(3) DFQL

PROJECT Dgtm - 5

EMPLOYEE VORKS-OR.

that match the condition department number equals 5, then we project the project numbers

from the result into r2. Concurrently, we use the join operator in order to join the

EMIPLOYEE and WORKSON relations according to equality of the keys and foreign

keys esin and ssn into a relation, say r3. By applying the groupContain function operator,

it will compare the tuples of the Pno attributes and splits the group of tuples desired by ssn.

Finally, by using the project operator, we retrieve the desired result. Next, the

groupContain function operator groups r3 by essn. Then groupContain checks to see if an

essn group's set of Pno values contains all the values in r2. If so, all the tuples in the essn

56

group are selected. The result (r4) flows to the project function operator where the desired

attribute values are obtained for display.

The output of Query 9 is:

FNAME LNAME
John Smith

.Ramesh &Narvn
Joice English
Franklin Wong

e. Query 10: Retrieval involving existential and universal quantifiation

List the first name and last name of employees who worked exactly 10 hours

on each of the projects they worked on.

(1) SQL
SELECT FNAME, LNAME

FROM EbAPLOYEE E

WHERE NOT EXIST

(SELECT ESSN

FROM WORKS-ON W

WHERE W. ESSN =E,. SSN

AND EXIST

(SELECT

FROM WORKS-ON Wl

WHERE W1. ESSN = E.SSN

AND HOURS < > '10'))

AND

EXISTS (SELECT

FROM WORKS-ON W2

WHERE W2.esn = E-essn)

57

:i I I I l i II I II I

This query involves NOT EXISTS and EXISTS operators with two

nested queries. It selects the tuples of EMPLOYEE relation if there does not exist any

employees in the WORKS-ON (W) relation and there exists an employee in WORKS-ON

(WI) who does not work 10 hours for all projects.

(2) QBE. As discussed in Chapter I1, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified.

(3) DFQL

VORKS..ON

~essa Hemws -: 10

First we join the EMPLOYEE and WORKS-ON relations. In DFQL

we are allowed not to declare specifically the condition according to the key and foreign

key ssn and essn, as equi-join, however, it works similarly, automatically matching the

tuples of both relations. Then applying the groupAlISatisfy operator takes care of the

universal quantification. Thus, it simply takes a relation ri and splits the tuples according

to the grouping attribute list, essn in this case, and then checks all the tuples in the

58

individual group related to the condition Hours = 10. If all the tuples satisfy the condition

specified then the values of that grouping attribute list are passed out. It means that these

groups satisfy the condition by all their tuples. Finally, by using project operator, we

project the desired tuples.

The result of Query 10 is:

FNAME LNAME
II I II

Franklin Woang

Alicia Zelaya

f. Qnery 11: Retrieval involving Set Operation

List of all project numbers and project names for projects that involve an

employee whose last name is 'Smith' as a worker or as a manager of the department that

controls the project.

(1) SQL

SELECT DISTINCT PNAME, PNUMBER

FROM PROJECT

WHERE PNUMBER IN (SELECT PNUMBER

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM = DNUMBER

AND MGRSSN = SSN

AND LNAME= 'Smith')

OR

PNUMBER IN (SELECT PNO

FROM WORKS - ON, EMPLOYEE

WHERE ESSN = SSN AND LNAME = 'Smith')

59

This query uses IN operators and includes nested queries in the

SELECT query. The first nested query selects the PNUMBER of projects that have a

'Smith' as a manager, while the second selects the project numbers of projects that have a

'Smith' as a worker. In this query, the comparison operator BV compares the value

PNUMBER in the outer WHERE-clause and evaluates to true if and only if at least one

value of the sets result from the nested queries matches it. For a detailed description of the

above mentioned and another way to specify this query using the UNION operator, see

[Elma89].

(2) QBE

I MPLOYM MAM t MMNF LNAMd BM DAT AJ)DRES SMC SALMU SUPERSS WNO

S I Smi _Sx I

MAMMMM MOE a~hm MRSSN MGRSAKTDAT

I _ . Sx _sI

J _Sx

PUM -f f

In QBE, any number of joins can be specified in a single query

[Elma89]. When we specify a join, we can also specify a result table to display the result

of the query, as in the query above. This is required if the result includes attributes from

60

two or more relations. Sometimes, if there is no result table specified, the system provides

the query result in the columns of the various relation. This tends to be difficult to interpret

and become meaningless in most cases.

(3) DFQL

Since the query involves more than three relations, we make use
several join operators. Frst we select the last name "Smith" as an employee, then the tuple

result flows to two join operators. One part joins with the WORKSM ON relation on the left

side (we marked as "j 1") and checks to see if the employee is a worker, and on the right

61

•~qrs , ssII I

side (we marked as "j2") joins with the DEPARTMENT relation to check the tuple to see

if the employee is a manager. Since we want to obtain the tuples that relate to Pno and

Pname, we need to join the tuples results of both sides. Then we use the union operator

which takes all the tuples from both sides and combines them (as they are union

compatible). Finally, by employing the project operator, we retrieve the Pno and the Pname

that involve 'Smith' as a worker and as a manager of a department who controls that

project.

The result of Query I Iis: none

3. Statistical Result

In this category the user (end user) attempts to obtain a proper relation from one

or more relations based an a special case of statistical -sultL This category involves

aggregate function operators such as MIN, MAX, AVG, COUNT. Consider the following

queries:

a. Query12: Rekval involving aggregate AVG functon

Retrieve the average hours of working load for project number 3.

(1) SQL

SELECT AVG (HOURS)

FROM WORKS-ON

WHERE PNO = '3'

The average function is used to calculate the average of the values in

the HOURS column from the WORKS _ON relation. The values to be calculated must

satisfy the specified condition PNO = '3' in the WHERE-clause.

62

(2) QBE

WORKS-ON • j. HOURS

3 PAVG. ALL

In QBE, we place "3" as an actual value which represent an equality

condition in the PNO column. And "P.AVG." is used to retrieve the average of the values

that match the condition.

(3) DFQL

- AV 6 (How s): av r " hours.. _

M MG ._(Hou~rs): aierq hours..

The select operator selects the tuples from the WORKS_ON relation

that match the condition specified "Pno = 3". The result is used by next project operator,

which projects the average value of the result according to "AVG (Hours): average

hours...". In this case, an alias name is needed after the colon to indicate clearly what the

result is [Turg93]. The select and project operators are very often used together. So, DFQL

allows the user to define a'new operator by giving a related name selproj as a combine

63

operator. It is used to select the tuples that satisfy the condition and directly project the

desired attribute as a result

The result of Query 12 is:

Average Hours

25

c. Query 13: Rebieml inolving AVG and GroupIng function

Retrieve the average hours of working load for each project.

(1) SQL

SELECT PNO, AVG (HOURS)

FROM WORKS-ON

GROUP BY PNO

Since we are interested in the average hours of each project, in SQL we have

to apply the GROUP BY-clause. Here the GROUP BY-clause is used in order to divide

WORKS-ON tuples into groups by their PNO values. Then, the AVG function is used to

calculate the average of the HOURS values of tuples according to the PNO grouping

attribute separately.

(2) QBE

WORKS..ON fM MQ HOURS

I. PAVG. AML

QBE keeps the same structure as Query 12 except in the PNO attribute

where we have to place "G." in order to group the tuples which have the same value in

PNO. Then, "P. AVG.ALL" retrieves the average of the values according to each group.

64

(3) DFQL

VORKSON PRO lifrs -Awweam bowrs..

DFQL provides several grouping aggregate function operators for

statistical results. One of them is the groupAvg operator. It gets the tuples of WORIKON

relation and splits the tuples according to grouping attribute PNO, then produces the

average of the values of each group of aggregate attribute Hours. The result value is given

an alias name "Average hours".

"Te result of Query 13 is:

Pho Average Hours

1 2625

2 M75

3 25.00

10 27.50

20 12.50

30 27.50

65

d Query 14: Rebieva involving Count, A VG and Groupingfunction

For each project retrieve the project number, the number of employees in the

project, and their average hours.

(1) SQL

SELECT PNO, COUNT (), AVG (HOURS)

FROM WORKS- ON

GROUP BY PNO

In this query, the GROUP BY-clause is needed in order to group

tuples by the project number. Then, the AVG and COUNT (*) operators calculate the

average hours and counted the number of employees respectively for each PNO grouping

from the WORKS-ON relation.

(2) QBE

WORKS-ON Lw M HOURS

RC'.IXALL PG P.AVG.ALL

QBE uses a similar structure to Query 13. Since Query 13 is

expanded by asking the project number and the number of employees involved in each

project, it can be specified by adding "P." beside "G." in the PNO attribute and placing

"P.CNT.ALL" in the ESSN attribute.

66

(3) DFQL

Pmo, ant, AVG (Hours):avorage hours..

This query is an extension of Query 13. The "X" part is exactly the

same as Query 13 and we add the groupCnt function part -Y" that counts the number of

tuples in each Pno group. Here, we need to join the tuples as a result of part "X" and "Y"

which match according to the Pno. Finally the project operator retrieves the desired

attributes from tuples.

The result of Query 14 is:

Pno The number of employees Average Hours

1 2 26.25
2 3 18M75

3 2 25.00
10 3 77.50
20 3 12.50
30 3 27.50

67

d. Qury IS. Rebridel involving Count andA VOfunction

Retrieve the number of employees and their average hours who worked on

project 3.

(1) SQL

SELECT PNO, COUNT (*), AVG (HOURS)

FROM WORKS-ON

WHERE PNO ='3 6

This query is an extension of Query 12 in which we can count the

number of employees by applying the function COUNT (*). Since we are concerned with

a particularly project, it is specified as a condition in the WHERE-clause.

(2) QBE

WOW-SON 9Mf HOMR

P.CNT.ALL 3 PAVG.AL

The only different with Query 12 is the "P.CNT.ALL". It retrieves the

number of employees that match the condition specified under the PNO column.

68

(3) DFQL

be Avora hours.. X

PRO, "t, AVG (Heurs):average hours....n

In this query, the "X" part is the same as Query 12, and we add the

proupCnt operator "Y" part in order to count the number of employees who participate in

project number 3. Next we need to join the tuples as a result of both sides "X" and "Y".

Then, the project operator is used to retrieve the desired attribute values.

The result of Query 15 is:

Average Hours The number of employees

25 2

69

e. Query 16: Re#riel Involving Max and Grouping function

For each department retrieve the employee's social security number who has

the highest salary.

(1) SQL

SELECT DNO, SSN, MAX (SALARY)

FROM EMPLOYEE

GROUP BY DNO

The employment of the MAX aggregate function is used in order to

obtain the maximum (or highest) value of the SALARY attribute from the EMPLOYEE

relation. We select the tuples with the max salary from each group according to DNO in the

GROUP BY-clause. Based on DNO and highest pay we also retrieve from the tuple the

SSNs attribute value.

(2) QBE

EMPWYE FWAM4 ?dNTf LNAME * BA- ADDRESS SEX SALA"Y SUPE355N O40

P. PM4X.ALL G.

In QBE we just need to specify "G." in the DNO attribute in order to

separate into each group. The "P.MAX. ALL" is specified to get the tuple with highest

salary in the SALARY attribute from all tuples in each group of DNO. And the other "P."

is used to retrieve the SSNs.

70

(3) DFQL

EMPLOYEE Dne Salar.•.

ampay..

I"Tno, max salary]

ioýn De s'mxpay..

The structure which is specified for this query is similar to the

previous queries that involve the groupAvg operator. The only different is we have La use

the groupMax operator. The result of groupMax is the tuple of each Dno group with the

highest pay. Since we are also interested in the ssn of selected employees, we join the

EMPLOYEE relation to the result mentioned above. Then, by using the project operator

we retrieve the attributes desired.

The result of Query 16 is:

Dno SSN Max pay

5 333445555 40000

4 987654321 43000

1 888665555 55000

71

f Quey 17: Retrevl involving Max and Grouping function

For each department retrieve employee (SSNs) and their dependent name,

who has the highest pay.

(1) SQL

SELECT DNO, SSN, DEPENDENT-NAME, MAX (SALARY)

FROM EMPLOYEE E, DEPENDENT D

WHERE E.SSN = D. ESSN

GROUP BY DNO

The above query is extended from Query 15 in which the

DEPENDENT relation is involved. In this query we select the tuples from EMPLOYEE

and DEPENDENT relation according to the attributes list in SELECT- clause which satisfy

the join condition specified according to the keys SSN and ESSN in E. SSN = D. ESSN.

The DNO which is specified in GROUP BY-clause is used to separate the tuples of DNO

in each group.

(2) QBE

F MPIMI FNAMj M LNAME BDATh ADDRESS SE SAUM SUFS DNO

- -I

DEEDEr FMM M AE SEX UDATE RflATONSH[P

_SX P.

Here we need to join the two relations EMPLOYEE and

DEPENDENT by using the "-Sx" as an example variable that we place in the key attribute

72

of SSN and ESSN. The "G." is used to separate the tuples in each group according to the

DNO. Then, "P.MAX. ALL", "P.", and "P._Sx" are used to retrieve the values of the

attributes desired.

(3) DFQL

W tf 016:d dt. top .a.

(Dno, ssn, max, salary]
ri DEPENDENT

r"2 r l.ssn - r2. essn

SSU emdent-.naune

Since Query 17 is an extension of Query 16, we see relation r, is a

result of Query 16 which holds the tuples of [dno, ssn, max pay..]. Then we need a join

operator for the purpose of joining with the DEPENDENT relation r2 according to the keys

ssn and essn of both relations. The tuples as a result of the cartesian product that we

obtained from the Jown operator above are used by the project operator in order to retrieve

the values of ssn(s) and the Dependentjname.

73

The result of Query 17 is:

SSN Dependent-name

333445555 Alice

987654321 Abnar

888665555

g. Query 18: Retrieval involving AVG, Max, Sum, and Grouping funcwon

Retrieve the average, maximum and sum of the salaries of each department's

highest paid employee.

(1) SQL

SELECT AVG (SALARY), MAX (SALARY), SUM (SALARY)

FROM EMPLOYEE E

WHERE E.SALARY IN (SELECT DNO, MAX (SALARY)

FROM EMPLOYEE El

GROUP BY DNO)

Again if we increase the complexity of Query 16 to Query 18 as

above, SQL presents a structure which is quite different from the query 16. Here the

GROUP BY concerns DNO in the nested queries in order to separate the tuples and

calculate the highest paid employees. Then, the outer query specifically calculates the

AVG, MAX, and SUM values of the highest paid of all groups in the department.

74

(2) QBE

BM~Y !FNAWJ MMINIT LNME W BDAIE ADDRESS SEX SALARY UM M DNO

PAMAX.ALL G.

Resu 1 Dept. top pay
P MAXAUAVG.ALLSUM.AL

In QBE, this type of query can be specified into two steps, where first

we attempt to retrieve the highest paid according to each group of the DNO. Then we

retrieve the attribute values of selected tuples by placing the "P." under the Result column

and "MAX.ALLAVG.ALL.SUM.ALL" under the Dept. top pay column.

(3) DFQL

OR ii of dept. top paY aon pa .

'75

'~a (ma II I I I I

Again, in this query the results of Query 16 can be used as a source or

as an input to the other group operators. In the case of this query groupStati operators are

used to perform the calculation of avg (max salary), sum (max salary), and max (max

salary). Here, each of these operators produces the values we are concerned with.

The result of Query 18 is:

Avg (max pay) Sum (max pay) Max (max pay)

46000 138000 55000

& Query 19. Rehievl involving Count and Groupingfincion

For each department retrieve the department name and the total number of

employees who are paid more than $40,000.

(1) SQL

SELECT DNO, DNAME, COUNT (*)

FROM EMPLOYEE., DEPARTMENT

WHERE DNUMBER = DNO AND SALARY > 40000

GROUP BY DNO

Like the previous queries, the GROUP BY-clause is used to separate

the tuples into groups by DNO attribute value. Then, the values of the attributes listed in

SELECT-clause are selected from EMPLOYEE and DEPARTMENT relation in the

FROM-clause which satisfy the conditions specified in the WHERE-clause.

I. Group" opematr is digmssed in now of Dr. C. Thoa Wu, Compuut Science Deparment

76

(2) QBE

DEARflv4B'1 LtAME QftUflE. MORSSN MORSTARDMAM

EMFWYEE PHAMS MD1T LNAM UL BDATE AMS SEE SALARY SUtBI DNO

l i ii I >40000 PO.CNT.ALL._Dx

In this query the "P.G.CNT.ALL-Dx" is specified in order to retrieve

("P.") the tuples based on the grouping "G." of DNO attribute, and CNT. ALL is used to

count DNO in each group to represent the number of employees. All of these can be

performed if the tuples match ý -join condition specified by "..Dx" according to the key

and foreign key DNUMBER and DNO.

77

(3) DFQL

EsPLOYEE se t 40000

DlqEPARTMENT
the num2 rl ber ofeploee

D" ome, oult

First we select the tuples of the EMPLOYEE relation that fulill the

condition Salary > 40000. Then we join the result of the se:ct operator with the
DEPARTMENT relation by equality of the key and foreign key Dnumber and Dno. Then,

the result is used by the gromp~ht operaw which splits the tuples according to Dno groups.

RnalBy, by using the project opertowr, we retrieve the values of the dname and dno, and also

the number of employees.

The result of Query 19 is:

Dname Dno The number of Employees

Administiutionr 1

A74

4L S*-Comt Value

In this category the user (end user) is interested in obtaining a proper relation from

one or more relations based on a special cas of set-count testing. Consider the following

queries:

a. Query 20: Retriwal involving eziuttial quantification

Retrieve the first name and the last name of managers who have at least one

female as a dependent

(1) SQL

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE EXISTS(SELECT

FROM DEPENDENT

WHERE SSN = ESSN

AND SEX ='F')

AND EXISTS (SELECT *

FROM DEPARTMENT

WHERE SSN =MGRSSN)

One way to specify this query as shown above involves two nested

queries. The first nested query selects all DEPENDENT tuples, and the second selects the

DEPARTMENT tuples managed by the EMPLOYEE Therefore, if there exists at least one

tuple dependent with SEX equal to female in the first nested query, and at least one tuple

of the employee who managed the department; then the EMPLOYEE tuple is selected

according to the FNAME and LNAME of the employees.

"79

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

universal quantification expression. Therefore this kind of query cannot be specified.

(3) DFQL

DEmP RTIH MI

F j EaPLO rEE joi t E Y dTr o u

W DEPENrDEN----'•'-"r I.ssn =- r2.ess

SSox- F ,-*cLn ,

First we join the EMPLOYEE and DEPARTM4ENT relation by using

the equi-join based on their key and foreign key, in this case ssn = migrssn. Then, the tuples

as a result of the eqsd-join, say as rl flows to the next join operator. At this point r I contains

the tuples of employees who manage a department joined with DEPENDENT relation. say

r2, according to the key and foreign key join condition rl.ssn = r2. essn. Then, by applying

selproj operator, we select the tuples desired which satisfy the condition specified "Sex =

F" and directly project or retrieve the values of Fname and Lname of the manager.

The result of Query 20 is:

Fname Lname
Franklin Wong

b. Quay 21: Rekw~ l involing Cout and Grouping funtion

Retrieve the total number of employees with salaries more than $40,000 who

worked in each department, but only for those departments where more than four

employees work.

(1) SQL

SELECT DNAME, COUNT (*)

FROM DEPARTMENT, EMPLOYEE

WHEIRE DNUMBER = DNO AND SALARY > 40000

AND DNO IN (SELECT DNO

FROM EMPFLYEE

GROUP BY DNO

HAVING COUNT (*) > 4)

GROUP BY DNAME

While reading Query 21, it can lead to misunderstanding the point in

specifying the SQL query. It may lead us to specify the query as follows:

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER = DNO AND SALARY > 40000

GROUP BY DNAME

HAVING COUNT (*) > 4

This is an incorrect query since it will retrieve only departments that

have more than five employees who each earn more than $40,000. For a more detailed

description of the above queries see [Elma89].

Query 21 is expanded from Query 19 in the previous Section "3. h.",

but they are very different in structure. Query 21 is specified by using the nested query.

While specifying this kind of query we must be careful, especially when we have to apply

81

two different conditions like the query above; where "SALARY > 40000" is applied to the

COUNT function in the SELECT-clause and the other in the HAVING-clause. And for the

GROUP-BY function, Elmasri comments "Some SQL implementations may not allow a

GROUP BY-clause without a function in the SELECT-clause. Hence, the nested query in

this example (Query 21 (1) SQL) cannot be permitted in such SQL implementations".

(2) QBE

DWARTMF DNAME M E MGRSSN MGRSTAIJrDATE

P. Dx I

EMPLOYES PAME 1Dm LNAMM UL BDATE ADDRESS SEX SALARY SUPESN DNO

>4OO00 P.G.CNT.ALL._Dx

Condition
SCM4TALL._Dxk> 4

Here, QBE really keeps a structure similar to Query 19. Here we need

to specify in the condition box "CNT.ALL.._Dx > 4" in order to retrieve the total number

of employees if it is more than four members in each department according to the value of

DNO.

82

-k ' " mr • • mm

(3) DFQL

Sine tisexandd romQulwy 19, we4nue0l0o0uey0~

Th result of uera21is:non

Aft

e. Query 22: Retrieval involving Count and Grouping function

For each project on which there are three or more employees working,

retrieve the project number, project name, and number of employees who work on that

project.

(1) SQL

SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKSON

WHERE PNUMBER = PNO

GROUP BY PNUMBER, PNAME

HAVING COUNT (*) > 3

This query involves two relations PROJECT and WORKS-ON. Here,

the GROUP BY-clause is used in order to separate the project in each group and selection

of tuples is used to satisfy the join condition in WHERE-clause. The HAVING-clause in

this case uses whole groups of projects, and specifically specifies the number of employees

which satisfies the groups themselves.

84

(2) QBE

PROJECT PNAME R PLOCATION DNUM

P J11~

WORKSON E E HOURS

PG.CNrALLJIX

Condition

[LJ
a

Here, P.G.CNT.ALL.Px" is specified in order to retrieve the tuples

of the grouping attribute of PNO which satisfied the join condition related to the key of

PNUMBER and PNO. But, it must satisfy the condition box "CNT. ALL_Px > 3". Here

the use of the condition box is similar to the HAVING-clause in SQL

85

(3) DFQL

PROJECT VORKS.ON Paumber PRO

Sc~~nt ,3

Pname, Pnumber, ct

We join the two relations PROJECT and WORKS-ON according to

the join condition Pnumber = Pno. The tuples of the cartesian product is flowed to

groupCnt operator, and it splits Pno into each group. Then, it selects the tuples that fulfil

the condition specified "cnt a 3"as counting the number of employees. Through the project

operator we retrieve the tuples needed according to the attribute list.

The result of Query 22 is:

Pname Pnumber The number of employees

ProductY 2 3

Computerization 10 3

Reorganization 20 3

Newbenefit 30 3

86

d Queay 23: Retkva involving Countwfnion

Retrieve project name, where there are three or more employees.

(1) SQL

SELECT PNAME

FROM PROJECT

WHERE (SELECT COUNT (*)

FROM WORKS-ON

WHERE PNUMBER = PNO) at 3

By modifying Query 22 just a little bit, we get Query 23. One way to

specify the SQL query is shown above involving a nested query. The nested query counts

the tuples (representing the number of employees) involved in the project in the

WORKS-ON relation. If it is greater than or equal to three, the PROJECT tuple is then

selected. In some implementations of SQL the above query may not be permitted [Eima89].

(2) QBE

PROJ:c- PIAME Fa1X PLOCATION DNUM

P Y

WORKSON HOURS

I AT.Au._JPxa a3

In this query "CNT. ALL._Px a 3" counts the tuples concerning the

number of employees. If it is greater than or equal to three then the tuples of Pname are
retrieved by "P." according to key as specified by an example value ".Px".

87

(3) DFQL

PROJECT VORKS-ON Pnumber - Pne

Sout 3- 3

&lo Pname

isplayl

In order to get the counting result, DFQL in this case applies the

groupCnt operator in all kind of queries that relate to set count query. That's why Query 22

and Query 23 are specified with exactly the same structure, just slightly different in the

attribute list of the tuples desired.

The result of Query 23 is:

Pname The number of employees

ProductY 3

Computerization 3

Reorganization 3__

Newbenefit 3

By looking at the results of Query 22 and 23, we notice that the tuples

results of PNAME and the total number of employees retrieved are absolutely equal. In

short, we can say that both Query 22 and 23 are really the same in the structure.

88

e. Query 24: Retieval involving universal quantification

Retrieve project name, where there are three or more employees, and all of

them has a work load of 20 hours.

(1) SQL

SELECT PNAME

FROM PROJECT P, WORKS-ON W

WHERE P.PNUMBER = W.PNO

AND PNO IN (SELECT PNO

FROM WORKS-ON

WHERE HOURS = 20

GROUP BY PNO

HAVING COUNT (M) z3)

Query 24 above is an extension of Query 23. In the SQL query above,

the GROUP BY-clause and HAVING-clause are particularly related to PNO in the nested

query. If each group of PNO tuples satisfies the condition "HOURS = 20", and also if in

each PNO there are three or more employees as a worker, then the PROJECT tuple will be

selected. However, it must satisfy the join condition specified in the WHERE-clause.

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified.

89

(3) DFQL

PROJECT VORKSON Pn.r P,, o e

eat),,

*1--'Pao Hours -- 20

Consider the DFQL query above. Part "X" is Query 23, and it can be

directly used as a relation to be an input to the groupAiLSalisfy operator. It takes the tuples

and splits the tuples according to the PNO as a grouping attribute, and the tuples in each

group must satisfy the condition specified "Hours =20". Then, we retrieve the tuple result

of the attribute desired by using the project operator.

The result of Query 24 is: none

90

f Query 25: Retkral Involving universal quantification

Retrieve the department names which offer two or more projects where there

are three or mom employees who worked on it, and all of them has a work load of 20 hours.

(1) SQL

SELECT DNAME

FROM DEPARTMENT D, WORKS-ON W, PROJECT P

WHERE D.DNUMBER = P.DNUM

AND P.PNUMBER = W.PNO

AND PNO IN (SELECT PNO

FROM WORKS-ON

WHERE HOURS = 20

GROUP BY PNO

HAVING COUNT () a:3)

GROUP BY DNUM

HAVING COUNT (*)a 2

Query 25 is expanded from Query 24, and the complexity of the query

has increased. This query involves three relations and nested query. A GROUP BY-clause

and HAVING-clause are used specifically for the nested query, and another GROUP BY-

clause and HAVING-clause are used for the whole groups. Even though this query is just

slightly different from previous Query 24, we have to rewrite while specifying this query.

91

(2) QBE. As discussed in Chapter 11, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified.

(3) DFQL

PROJECT WORKS..DN

mt 3= X

I"t PoeHos - 20

------ ------ -- DEP RT M E N

Notice that the "X" part is Query 24. The tuple result is directly used

as a relation to beoirhed• with the DEPARTMENT relation accordling to the key and foreign

key Dnumber and Dnum. The result of the cartesian pnvduct which is produced by the join

92I

operator flows to the groupCnt operator which groups according to the grouping attribute

of Dnum. Then, by employing the selproj operator we can count specifically the tuples

which satisfy the condition specified, and directly project the values desired of the attribute

list.

The result of Query 25 is: none

B. ANALYSIS

In the previous section, we observed how SQL, QBE, and DFQL specify all of the

query examples which are composed in categories. Queries range from simple ones to

queries which involve existential or universal quantifications, and complex nested queries

in SQL. Some of the queries are stand-alone, but some others specified are logical

extensions in complexity from one query to the next. By examining these queries the

relative strengths and weaknesses related to ease-of-use, especially in expressing universal

quantification, specifying the complex nested queries, and flexibility and consistency in

formulating the queries with respect to data retrieval for RDBMS's are investigated.

1. Ease-of-use

Ease-of-use of query languages is part of the human factor aspect. In this research

we emphasize the learning and writing of the query, as well as attempting to retrieve the

output result. However, we have to keep in mind that query languages are high level

languages that are also intended to be used by non programmers. Related to Ease-of-use,

some researchers described that:

" The SQL language has been designed and intended to be easily learned and used by
inexperienced user without specialized computer training [Reis75].

"* The result of various psychological studies of language (QBE) show that it requires
less than three hours of instruction for non programmers to acquire the skill to make
fairly complicated queries [Zloo77]. People will write queries in QBE between two or
three times faster than in SQL [Reis8lJ.

93

* DFQL is proposed and implemented to mitigate problems that are encountered by the
current query languages, SQL in particular. It requires about half an hour in a database
class at NPS to acquire the concept and make more correct queries than SQL [Clar9l].

According to our research through the previous Section "A." of this chapter, the

above comments and results are absolutely valid for QBE and DFQL but not for SQL

Consider the representative sets of queries that we have in each category or from one

category to the other categories. Here ease-of-use of each language can be pointed out

clearly, where "once we learn a general construct from a sample query, if the way of

thinking can be applied in a new query" we can say that there is certain degree of ease-of-

use. For example, when we learn the technique to drive a car for 500 yards, then we could

most likely can drive for another 1000 yards. Now, let' s take a look at some of the queries

that we have.

a. Qucrks involving existmntial or unversal quantfiaion

In the following discussions we covers several queries that are composed in

single-value, set-value, and set-count value categories. Consider the queries below:

* Query 4: Retrieve the department number where all of its employees have salaries of
more than $40,000.

* Query 5: For each department retrieve the first name and the last name of employees
who have no dependents.

* Query 6: Retrieve the first name, last name and department names where all of its
employees have salaries of more than $40,000 and have no dependents.

By looking at these three queries we realize that Query 6 is virtually the

combination of Query 4 and 5. Now let's consider how do SQL, QBE, and DFQL construct

all of these queries.

(1) SQL See the construct of the structure of Query 4 and Query 5, where

both queries contain NOT EXISTS operators that interpret the queries in a negative logic

approach. Generally, these kind of query structures are not easy to understand, especially

94

Query 4. Assume, we understand the construct of both queries, however we cannot apply

this similar thinking to specify the structure of Query 6. In this case, we do have to think

very carefully since we have to specify a new query that may be very different in the

structure. Therefore, these types of queries are difficult to specify even for the experienced

users.

(2) QBE. QBE lacks universal quantification expressions. Therefore we

cannot express these types of queries.

(3) DFQL By learning the construct of Query 4 and Query 5, we can use

the similar thinking of Query 4 and Query 5 in order to form a new Query 6. Once we know

the construct of Query 4 and Query 5 we can use them in the other new query easily. Notice
in Query 6 that the "X" part retrieves the tuples of employees who have salaries of more
than $40,000, as Query 4, and that the "Y" part retrieves employees who do not have
dependents. We can logically combine these two constructs by using the intersect operator

that combines union compatible tuples so that we have the tuples of all employees who

have salaries of more than $40,000 and have no dependents. Since we are interested in the

department name also, we can easily join the tuples result above as new relation (63) with
the DEPARTMENT relation (r4) which match according to the key and foreign key of both

relations, r3. Dno = r4. Dnumber. Finally, by employing the project operator we retrieve

from the tuples the first name, last name, and department names of those employees.

By investigating the above queries, once we learn how to specify

Query 4 and Query 5, we can generalize them in a straight forward manner to specify Query

6. We can say that this language is easy to learn (and thus easy to use). Consider the

following queries that are similar to the above discussions:

See Query 9, 10, which are difficult to specify in SQL, cannot be specified in QBE
(see QBE description in Chapter II.C. 1.c.), but are very easy in DFQL since we can
apply the construct concept of Query 4.

* Query 20 also shows that in SQL it is not easy to learn or understand the structure, and
in QBE it cannot be expressed. (See QBE description in Chapter II.C. 1.c.). But in
DFQL the data flows from one part to another are easy to follow and one can

95

undestad what's going on.

b. Queries involving neted queries

In this section, we analyze queries which involve the BN operator in the nested

query. In addition, we also examine several queries which contain the universal quantifier

in the nested queries. Consider the following queries in the set-count value category:

Query 21: Retrieve the total number of employees with salaries more than $40,000
who worked in each department, but only for those departments where more than four
employees work.

However, before going into any detail in Query 21, see first Query 19 in the

set-value category. By examining these two queries we realize that Query 19 is expanded

to Query 21.

* Query 19:. For each department retrieve the department name and the total number of
employees who are paid more than $40,000.

Similar to the above description "l.a." we attempt to learn the construct from

one sample query and extend it to create another new query. Consider how SQL., QBE and

DFQL construct both queries:

(1) SQL When we learn Query 19 and understand the construct, we are
still not confident of how to specify the structure for Query 21 (or an incorrect query can

be specified, see SQL query below Query 21). In other words, in SQL we cannot use the

construct of a sample query to build a new query in a straight forward manner.

(2) QBE In QBE we realize that the same thinking of the construct in

Query 19 can also be used to specify Query 21. QBE in this case presents a simple and very

intuitive extension.

(3) DFQL When we learn the construct of Query 19, it is easy to

understand Query 21. Here, the construct of Query 19 can be used as a part of Query 21.

To build Query 21 we know that we need two parts; first the employees with salaries more

96

than $40,000 and second, tuples of those department with more than four employees. See

Query 21 of DFQL for details.

We also look at several queries which are similar to the above
discussion. These types of queries are composed in the set-value, statistical-result, and set-

count categories. Consider the queries below:

"* Query 7 is extended to Query 8.

"* Query 16 is extended to Query 18.

"* Query 22 is modified to Query 23.

• Query 23 is extended to Query 23.

* Query 24 is extended to Query 25.

In addition to discussion in "l.a" and "I.b" above, see Query I in the single-

value category. If we are interested in the di"tinct value, in SQL we have to use the keyword

"DISTINCT" in the SELECT-clause, and in QBE the prefix "UNQ.". On the contrary,

DFQL implements the primitive operators which have a similar capabilities to the

relational algebra operators, so the duplicate tuples in the query result are eliminated. In this

case, we consider that DFQL is easy to use, since we do not need to worry when and where

we have to eliminate the duplicate tuples. For detailed problems concerning the duplicate

tuples see [Codd9OJ.

Next we examine the query that involves select-project-join with two-join

conditions. See Query 3. In SQL it is not easy to comprehend what is going on in the query.

QBE in this case presents a simple construct in which it is easy to follow the joining

between relations and we know what's going on. Furthermore, in DFQL we can easily

follow how the data flows from one part to the other part. It is understandable.

97

2. Fleldbility

The flexibility which is offered by each language, is considered very useful in

specifying queries. Therefore, we feel free to choose the techniques which are most

comfortable and confident in order to specify the correct query. However, by having

numerous ways of specifying the single query, it may introduce confusion about which

technique to use to specify particular types of queries [Elma89].

a. SQL

SQL supports join conditions that can be used to specify many queries or use

nested queries with or without the IN operator in it. See Query 9. Instead of using the

CONTAINS operator we can use NOT EXISTS and the IN operator with a nested query.

Also Query 11 that uses IN and OR operators can be specified using the UNION operator.

Sometimes, queries in which are involved NOT EXISTS may be specified using the IN

operator with nested query or vice versa. Query 8 is an example. It can be specified without

the IN operator. Generally speaking, there are numerous ways to specify the same query in

SQL (Elma89]. However, in some cases we have no confidence that our query writing is

well specified or correct.

b. QOB

QBE provides less syntax than SQL and DF;QL, therefore it does not have the

flexibility like SQL does. However, the tuples result that are existed in several relations can

be formed in one result relation. This flexibility makes the query result more meaningful.

See Queries 11 and 18

96

c. DFQL

DFQL provides primitive operators as described in Chapter II and also we

have been demonstrated in Section "A" of this chapter. DFQL in this case, offers the

flexibility to the user to use the combination or stand alone of the primitive operators with

respect to the query concern. In queries which involved universal quantifier, like Query 4,

instead of using the groupAIUSatisfy operator we can apply the select and groupCnt

operators. In Query 5, instead of using the groupNoneSatisfy operator we can also apply the

diff operator in the main part of the query. In addition, DFQL allows the user to define their

own user-defined operator such as the selproj operator of Queries 9, 10, 22, and 25.

Furthermore, the output of one query can be used as an input or as a part of another new

query. In fact, once we know the concept of each operator, we can use it in query

construction easily. In DF-Q.., we feel more confident that our query is correct, since we

can trace or check the flow to the result part by part.

3. Consistency

As described before, our investigation here is focused on the structure of queries

specified in each language. If a mental model that we have for one sample query can be

built or continued to another new query, where the new query keeps the same mental model

of structure with the prior query, we can say that the language is consistent in structure.

Consider the queries in the single-value, set-value, statistical-result, and set-count value

categories:

"* Query 6 is extended or combined from Query 4 and 5. All of these queries involve
universal quantification.

"• Query 7 and 8 involve explicit set.

"* Queries 12, 13, 14, 15 relate to AVG function.

"* Queries 16, 17, and 18 relate to MAX function.

99

* Query 19 is extended to Query 21.

* Query 22 is modified to Query 23, then Query 23 is extended to Query 24. Finally
Query 24 is extended to Query 25.

By using the various query examples above, we can examine the structure of

SQL, QBF, and DFQL For detail, see and compare the structure of each query. Consider

the following brief explanation:

a. SQL

SQL is not consistent in structure. If we attempt to extend the queries

(complexity increases) as the queries above, so far we cannot apply our mental model of

one construct of query structure to the next new query. In fact, we have to rewrite a new

query from the beginning, which will often be very different in structure (inCo- ,istent) with

the prior queries. Therefore, inconsistency in specifying queries in SQL, exists and is

confusing to the user.

b.QNE

QBE is very intuitive. In specifying the queries which are presented above

QBE is very consistent in structure. The mental models that are formed in one query can be

continued to other new queries easily, except for queries that involve universal

quantification. Since QBE lacks existential and universal quantification expressions, this

kind of query cannot be expressed.

c. DPQL

DFQL exhibits consistency in structure. If the queries are extended, we can

use the output of a query result, whether a portion or the whole of a previous query, to be

a part of other new queries. This flexibility is not exhibited in SQL, nor in QBE. Even

though the queries are extended (complex ty increases), DFQL remains consistent in its

structure of query.

100

4. Relative Strengths and Weaknesses

In this section we present the relative strengths and weakness of these three

languages. The following result is presented by referring to our previous discussion plus

some general descriptions of each language. The relative strengths and weaknesses of SQL,

QBE, and DFQL are summarized in Table 3.1.

101

I Al.

A Ai

4~ 18

80
E-10

*1102

S!1!.

i• 11Ii
ii:Iii

V -j

,i,..jig

'II

N..

tow, C

104

IA!
.~ r* ~84

Si R~ Ss ;.

I! AKSS 0Ioi j6 &'~I~

- a 320Sie.04

P as
I- 0 1~q

%]g

9 1 0 .Q

eiia

105

:1 . Nj 00

4Q cai~r*

Cjg
w

I %w

0 O0r

91.
-6 .cy . 9 a 'S.

VA S 0
a 9

'IC

.s1

010

slI I *11
r~icr

E.1 .9

0 0 108

a71oi c
00

0.

8~ V

'00 C:

Js

109

*� E �
O� 0

*d �0

�!��iII1
o.J� .�2 :;�

U
a'.

� *0 �

ii 0

A- a'
U

ij�, e.
.- bO

- Wau, a

C

Uit I
a�c#2� i�i �,

*� -a'

a �

� �

I

110

IV. HUMAN FACTORS EXPERIMENT

A. HUMAN FACTORS ANALYSIS OF QUERY LANGUAGES

There are several query languages commercially available, and there is a need to

examine a variety of different query languages in order to measure the notion of "ease-of-

use" of query languages. The most common approach in capturing what is the query

writing, in which subjects are given questions in English and asked to write the

correspotlding query language statement (Reis8 1].

B. EXPERIMENTAL COMPARISON OF SQL, QBE, AND DFQL

In this section, we review a very simple human factors experiment for comparing

SQL, QBE, and DFQL A general assessment of the experiment is provided. Since we

know that QBE cannot express universal quantification (see Chapter H. C. 1. c), the tasks

are divided into two parts:

" First part consists of five queries which can be specified in SQL and DFQL. In this
group universal quantification is required.

" Second part consists three queries which can be specified by all three languages
SQL, QBE, and DFQL Universal quantification is not included.

This experiment is not intended to be a rigorous comparison of SQL, QBE, and DFQL

1. Amuement of the Experiment

In this experiment 15 subjects were given five tasks of query in English on the

relational database schema of Appendix A. The subjects coded or specified each of the

query task. Three query tasks were applied to all three query languages, and two query tasks

just applied to SQL and DFQL. Each response was then graded as either correct or

Incorrect.

!' I11

a Subjects

The experiment was conducted on 15 students enrolled in "Advance

Database" and "Database Seminar" courses at the Naval Postgraduate School (NPS) in

Monterey, California. The students at NPS are primarily U.S. military officers; foreign

military officers and Department of Defense civilian employees are also represented. The

composition of the student are recorded based on their academic backgrounds, which are

broken down based on their bachelor degree which is classified as "technical" or "non-

technical". In addition, subjects are also characterized by their programming experience.

For analysis purposes, subjects with programming experience more than 1 year are

classified as "experienced".

b. Teaching Method

All the subjects have already taken the introductory database system course

for one quarter, so all of them have a background in relational algebra, relational calculus,

SQL and QBE. A 30 minute presentation of DFQL concept was given at the beginning of

the experiment A handout describing the DFQL operators was given to the subjects.

a Test Queri

The five test queries were based on the relational database schema in

Appendix A. They are:

" Query Ql: 'List the name and location of the projects whose member (at least one)
earns more than $40,000." The first query (QI) involved only selection, projection,
and joining to achieve the correct answer.

" Query Q2: "For each project, list the number of employees working on that project."
"The second query required grouping and counting. Here the comprehension is
somewhat more complex than Q1.

"* Query Q3: "Retieve the total number of employees who worked more than or equal
to 20 hours in each project, with more than two employees working." The third query,
in addition to gouping and counting operadons, also required special condition that
needed another grouping and counting; in SQL, it is specified by HAVING-clause.

112

"• Query Q4: "Retrieve the name of each employee who works on all projects that are
located in Houston." The fourth query required the DIVISION operation of relational
algebra, in SQL it could be specified wether using CONTAINS comparison or NOT
EXITS operators. In DFQL, it can be specified using groupContain operator.
However, since QBE lacks universal quantifier, this type of query can not be
expressed.

" The question QS: "List the first name and last name of all employees who have only
female dependents." The fifth query required the use of the universal quantifier and
was subjectively viewed more difficult than the first three queries, but almost the same
with query Q4. Here, SQL applied NOT EXISTS operator in the WHERE-clause, and
in DFQL specified by the groupAllSatirfy operator. Similar to the fourth query, it
cannot be expressed by QBE.

By providing five queries which were of increasing complexity, it was

intended to see if DFQL perform better than SQL and QBE in more difficult queries.

Subjects were given one week to complete the experiment.

A Evaluation MethWd

The tests were collected and hand-graded by the researcher. The criterion

evaluated by this experiment was graded as either correct or incorrect queries. Correct

included responses that were either completely correct or contained a minor !anguage or

minor operand error. The following taxonomy of minor language error and minor operand

eror were given by Welty and Stemple [WeltSl]. A minor language error is a basically

correct solution with a small error that would be found by a reasonably good translator. A

minor operand error is a solution with a minor error in its data specification, such as a

misspelled column name. However, a transposition of column names (or simple use of the

wrong colmnn name) was classified as an incorrect answer because there is no way for the

grader, or computer to determine the subject's intent.

113

2. Experiment Results

In this section we present a general discussion of the results derived from the data

taken. The primary measurements of this experiment were made based on the entire sample

population. The primary metric used was the number of questions answered correctly. This

was calculated for each individual question and also for each language as a whole, the result

are summarized in Table 4.1. In addition we also provided the results based on subject

bac ounds (technical/non-technical and programming experience). However, since the

percentage differences between SQL, QBE, and DFQL for all queries were nearly similar

and the number of subjects in individual classification was small (due to small overall

population size), the detailed statistical analysis was performed only on the total sample,

see Table 4.2 and Table 4.3.

From Table 4.1., for the easiest query (QI), subjects wrote a greater percentage of

correct answers in SQL than in QBE C7%) or in DFQL (20%). But, in Q2 there was a

difference of 53% for conrect answer in DFQL compared to SQL and 40% compared to

QBE. In Q3, them was only 7% more correct answers in DFQL compared to SQL and 0%

conmpared to QBE. For Q4 the difference was 7% between DFQL and SQL. In Q5 there was

a difference of 33% for correct answers in of DFQL compared to SQL In the above

analysis, we always subtract the SQL and QBE percentages of correct answers from DFQL4

a difference of 20% means that DFQL produced 20% moe correct answers than SQL or

QBE.

Table 4. summarizes the percentage of correct queries for SQL, QBE, and

DFQL for Q1, Q2, and Q3 broken down by techical/non-technical as well as experienced/

non-experienced. We see that the subjects with a non-technical background got a slightly

greater percentage of queries correct in all three languages than those with a technical

backround. The diffevence was 3% more correct for SQL, 2% for QBE, and 9% for DFQL

114

In classification by experience, there was no difference in percentage of queries correct for

SQL, while the less experienced subjects got 8% more correct for QBE queries, and the

more experienced got 3% more correct for DFQL.

Table 4.3. summarizes the percentage of correct queries for SQL and DFQL for

Q1 through Q5 broken down by technical/non-technical as well as experienced/non-

experienced. We see that the non-technical got a slightly higher percentage correct for both

(3% for SQL and 1% for DFQL). The experienced subjects got 7% more correct than the

less experienced for SQL and 8% more correct for DFQL.

TABLE 4.1: EXPERIMENT RESULT

% OfCorrect
Thas

SQL QBE DFQL

Q1 87 go 67

Q2 40 53 93

Q3 6 13 13
Q4 33 Not1Cowmpua 40

Q5 0 Not Coipa*k 33

Overalof the 33 49 50
first" part which

Q1 tbrOng Q5.

Overal of the 44 49 58
nacm part

which
contains

Ql, Q2, and Q3.
1. Not Com_ -, sie QE lks of univerd quandfi.
2. Overall Atm pao is caculmed for all the tme anguages
SQL. QDE and DIQL
3. Ov=m econd put is cbaued jus for SQL and DFQL

115

TABLE 4.2: PERCENT CORRECT OF SUBJECT CLASSIFICATION FOR
Q1, QZ, AND Q3

Subject Number % Of correct

Chmiaa tiou of Subjects SQL QBE DFQL

Technical 7 43 48 53

Non-Technical 8 46 50 62

Experincel> Yr. 12 44 47 59

Expeiience! <1 Yr. 3 44 55 56

Total Sample 15 44 49 58

TABLE 4.3: PERCENT CORRECT OF SUBJECT CLASSIFICATION FOR
Q1 THROUGH Q5

Subject Number % Of Cormct
Ciauflctio of Subjects SQL DFQL

Technical 7 31 51

Non-Technical 8 34 52
Thpueee1yr. 12 32 45

E Rmesce 1 Yr.. 3 39 53

Total Sample 15 33 50

116

3. Experiment Coautem

Generally speaking, since this human factors experiment was conducted on only

15 subjects, the result is not a rigorous statistical comparison of SQL, QBE, and DFQL

However, we still can make the following observations:

'L Qary (Qi)

SQL is better than QBE and DFQL for a simple query which involves only

selection, projection, and joining, that is a query in the single-value category. Once the user

learns and knows the concept of this type of query, it is easy for the user to build another

query in a single-valmue category as long as the query requires only project, select, and join

operations. See a representative query (Query 3) in Chapter HIL A.l.c., which requires a

simple selection and projection without a need of nesting. As long as nesting is not

require, SQL seems to provide a simple and logical query construct.

b. Qwey (QP)

DFQL is better than SQL and QBE for queries requiring grouping and

counting operations. This kind of query composes statistical result. In DFQL, the idea of

grouping and counting is easy to understand since it requires just one operator (groupCnt).

See Query 14 as one similar to Q2. In SQL, some of the subjects misunderstood how the

COUNT operator works, and they specified GROUP BY followed by an attribute name but

did not specified this attribute in the SELECT-clause. In QBE, some of the subjects mixed-

up the CNT and CNT.ALL operators.

&. Qmuer (Q3)

In this query all three languages had an approximately equal percentage of

correct anwer. Query (Q3) requires grouping, counting functions and special condition.

In SQL the special condition is known as HAVING COUNT (*), and in QBE it is normally

117

specified using condition box. In DFQL, it is formulated by using groupCnt followed by

select operators. A representative of this kind of query is illustrated by Query 21 which is

composed in set-count value, Chapter M. A. 4. b. Since Q3 increases in complexity

compared to Q2, logically Q3 is more difficult. If subjects did not have a good

understanding of the concept of this type of query, normally they come up with incorrect

query. For instance in SQL, this query requires nesting, with GROUP BY and HAVING

COUNT () operators in the nested part and another GROUP BY is needed for the whole

query. Therefore, we can say this type of query was more difficult to formulate in SQL

compared to QBE and DFQL.

A Quay (Q4)

Query (Q4) exhibited no significant difference in percentage of correct

answers between SQL and DPQL. This type of query requires the DIVISION operation of

relational algebr, which is similar to Query 9 (set-value category, see Chapter MLA. 2. d.).

For SQL, this quey is easy if the subject understands the relational division and the SQL

impl suppom the CONTAINS operation. In cases where the CONTAINS

operation is not available, it would be much more difficult because either.

* User has to tansate relational division into equivalent relational operations, and then
write the SQL coresponding to the translated relational operations, or

* User has to re-think in SQL using operations such as the NOT EXISTS operat. In
this case, user has to change his/her mental model to negative logic while formulating
the quay.

Query (QS) involves existential or universal quantification. In SQL the NOT

EXISTS and EXISTS operators with two nested queries are required to specify the query.

This kind of quey is similar to Query 10 which is composed in set-value, Chapter IIL A.

2. e. Since the NOT EXISTS is used the user must think in the negative logic, which is more

Ila

difficult to formulate even for the experienced users. Not one of the subjects formulated a

corect answer in SQL for this query (QS). However, in DFQL, universal quantification can

be formulated just by using the groupAlSatidfy operator. Therefore, for queries which

involve universal quantification, DFQL offers a more understandable approach than SQL.

By examining these five tasks, for a simple query which requires selection

and projection without nesting, SQL seems a simple and logical construct. However, for

queries which require grouping, counting and universal quantification, DFQL seems better

in specifying the query than QBE and SQL

119

V. CONCLUSIONS

There are some known problems with a widely used query language such as SQL and

QBE. Some of the problems are the lack of expressing universal quantification, specifying

complex nested queries, and flexibility and consistency in specifying queries with respect

to data retrieval. To alleviate these problems, a new query language called "DFQL" was

proposed. We conducted a comparison of three languages: SQL, QBE, and DFQL

Numerous queries were grouped into four categories, single-value, set-value,

statidcal result, and set-count value; specified in SQL, QBE, and DFQL, and compared in

each category. In the queries comparison, queries ranged from the simple ones to queries

which are involved existential or universal quantification and complex nested queries

Some of the queries are stad-alone, while some others specified are logical extensions of

owe query to the next, with the complexity increasing (refer to Query 1 through 25 in

C maptrI). Thwe rqiesentative sets of queries were chosen in order to investigate the

relative shuagths and weaknesses of each language related to ease-of-use issues, especially

in apressing universal q fic , nested queries, and flexibility and consistency in

specifying the queries with respect to data retrieval for RDBMS's.

In this research, based on the above queries mentioned, and the analysis which are

smnmrized in Table 3.1., we conclude that DFQL eliminates the problems which are

e PoCnerd by SQL and QBE mentioned above. The relative strengths of DFQL comes

nainly from its strict adherence to relational algebra and dataflow-based visuality. Strict

adherence to relaional algebra allowed users not to worry about exceptions as was the case

with SQL Dataflow-based visuality required users only to master a very simple and

intitive dataflow paradigm to write queries. A simple paradigm of dataflow suffic even

for a very complex query, because the complexity of the query is handled by high-level,

uwer-dqlied operaions, not by extending the language construct as is the case with the

120

other two languages. Although the number of subjects in our experiment is too small to

conclude affirmatively that DFQL is better than the other two, the result of the experiment

showed that DFQL's ease of query writing resulted in a greater percentage of correct

queries, especially queries which involved count, grouping functions and universal

quantification (complex queries), than in either SQL or QBE.

121

LIST OF REFERENCES

(ANSI86J American National Standards Institute (ANSI), The Database Language
SQL, Document ANSI X3. 135-1986 (1986).

[Astr76] Astrahan, M. M., et aL, System R: Relational Approach to Database
Management, ACM Transactions on Database Systems, vol. 1, no.2, pp. 97-
137, June 1976.

(Cham74] Clamberlin, D. D., and Boyce, R.F., SEQUEL: A Structure English Query
language, Proceedings of the ACM-SIGFIDET Workshop, Ann Arbor,
Michigan, May 74.

[Chen76] Chem P. P., The Entity-Relationship Model -- Toward a Unified of Data,
ACM transactions on Database System, vol.1, March 1976.

[Clar9l] Clark, G., and Wu, C. T., Dataftow Query Language for Relational
Database, Department of Computer Science Naval Postgraduate School,
Monterey CA.

[Codd70] Codd, E. R, A Relational Model of Data Large Shared Data Bank,
Comnication of the ACM, voL 13, no.6, pp. 377-397, June 1970.

[Codd7l] Codd, . F., Relational Completness of Data Base Sublanguages, Courant
Computer Science Sypuosium 6, Data base Systems, pp. 65-98, May 1971.

[Codd88a] Codd, E. F., Fatal Flaws in SQL: Part I, Datamation, voL 34, pp. 45-48, 15
Augu s198.

[Codd88b] Codd, E. F, Fatl~ Flaws in SQL: Part II, Datamation, voL 34, pp. 71-74, 1
September 1988.

[Codd90] C ldd, E. F., The Relational Model for Database Management: Version 2,
Addison-Wesley, 1990.

[Date82] Date, C. L., An Inoduction to Database Systems, Third Edition Addition-
Wesley, 1982.

(Datc84] Date, C. L, A Critique of The SIQL Database Language, ACM Simnod
Record vol. 14, no. 3 pp. 8-54, November 1984.

[Date87] Date, C. ., Where SQL Falls Short, Datamation, vol 33, pp. 83-86, 1 May
1987.

122

(Date90a) Date, C. J., Relational Database Writings 1 985-1 989, Addison-Wesley,
1990.

[Date9ObJ Date, C. 3., An Introduction to Database Systems, Fifth Ecditon, Addition-
Wesley, 1990.

[E~ma89l Ehmasri, R., and Navathe, S. B., Fundamental of Database Systems,
Benjamn/VCummings, 1989.

[Fra88J Frank, L, Database Theory and Practice, Addison-Wesley, 1988.

(Hans92J Hansen, G. W., and Hansen, J. W., Database Management and Design,
Prenitice Hfall, 1992.

(Negr89] Negri, M., Pelagatti, 0., and Sbattela, L., Short Notes: Semantics and
Problem of Universal Qatfcion in SQL, The computer Journal, vol. 32,
pp.90,91, 1989.

[Ozso89] Ozssoyoglu, 0., Matos, V., and Ozsoyoglu, Z. M., Query Processing
Techniques in the Summary-Table-by-Eamiple Database Query Language,
ACMI Transactions on Database Systems, vol. 14, no. 4, pp. 526-573,
December 1989.

(0uso93J Ozsoyoglu6 G., and Wang, IL, Example-Based Graphical Database Query
Langguaes, Computer, vol. 26, no. 5, May 1993.

[Rci75] RdIsam~ P., Boyce, KR.F, and Chamberlin, D. D., Human factors evaluation
of two data base query Languages-square and sequel, AFIPS Proceedings,
vol. 44, pp. 447-452, May 19-22, 19175.

[Reis8l] Resime, P., Human Factors Studies ofDatabase Query Languages: A Sure
and Assessmnent, Computing Surveys, vol. 13, pp. 13-3 1, March 18

(Sebe89J Sebesta, R. W., Concept of Programming Languages, Benjamitn Cumming,
1989.

[Sclm78] cniemn B., Imp roving the Human Factors Aspect of Database
Interactions, ACM Transactions on Database Systems, vol. 3, pp. 417-439,
December 1978.

Fnbrg93J flargy, C., Design and implementation of Amadeus Front-end System which
ume Data Flow Query Language for multiple RDBMS, Department of
Computer Science Naval Postgraduate School, Monterey CA.

[Wddlt] Welty, C., and Stemple, D. W, Human Factors Comparison of a Procedural
and a NonpoewWl Query Language, AMN Transactions on Database
Systems, vol. 6, pp. 626-649, Decemrber 1981.

123

[Wu91] Wu, C. T., and Clark, G., DFQL: Dataflow Query Language for Relational
Databases, Department of Computer Science Naval Postgraduate School,
Monterey CA., 1991.

[Zloo77] Zloof, M. M., Query-by-Example: A Data Base language, IBM System
Journal, vol. 16, pp. 324-343, 1977.

124

APPENDIXK - A

EXAMPLE DATABASE

Through out this thesis all the qualy exmpl~es are matched the relational schema

database which is called COMPANY database [E~ma89].

~ilwU PHLIE .UNI LNAE ~ DATEADDRSS S SALARY SUPWS8 M

FDKAmZr r MUM MOM&ID h MOSTARDA

DWIIT m SX BATE RBLTEMSH

125=

_Mon= -im

FNAMB MOTr LNAMB B¶ DATE ADDFESS SX SALARY SUPERSS DNO

John B SEMit 123456789 09-Jan.55 731 Fandron Hammon IX M 30000 333445555 5
Franklin. T Wol 333445555 06-Dec-45 633 Vows Howm. TX M 40000 333665555 5
AM J..... .fl..I 99937777 Mu-5 3321 Castl. Spring. TX F 25000 937654321 4

Jawifer S Wallae 937654321 20-Jun41 291 Dairy. Sa~a. TX F 43000 383665555 4

lameab K Nurpsa 666334444 15-Sep-52 -975 Fins Oak. H.Mn. TX M 33000 333444555 5
Jo..s A B s 453453453 31-Jul-62 5631 Ric. Hoummwn TX F 2500 333444555 5

=Alamad V 2J~abbr M 8793793 29-Mar-59 1930 NDa.. Hammeo. TX M 2500 937654321 4
J7me E fr... 816555 10-Nov-27 1450 Siam, Houstmn TX M 55000 na

LEPt=nOS -~%E D)~O

4 Stafford

5 1Bellaire

DEATMN DNAME DNiIMDBER 16RSSN MGRSTARTDATE

Rmwh5 333445555 22-May-78
Mmusraon4 987654321 01-Jit-85

11 388665555 1 19-Jun-71 I

PROEC PNAME ESW=h~ PLOCATION DINUM

PzuodcUX 1 Edla1ir. 5
fto&,oY 2 SUOIn
Prockmac 3 Houston 5

on logto 10 Stafford 4
RmanM!ado.. 20 Houston 1
Newbeomlits 30 Staffod 4

126

WORKS-ON HOURS
123456789 1 32.5

1234567M 2 7.5
6668844 3 40.0

453453453 1 20.0

453453453 2 20.0

333445555 2 10.0
333445555 3 10.0

333445555 10 10.0
333445555 20 10.0
999M7777 30 30.0
999187rB 1 10 10.0
967917 10 35.0

9979 7, 30 5.0

997654321 30 20.0

967654321 20 15.0
888665555 20 maln

DUKD ~ DPf EN AM SEX DPATS RELATX14SEIP

3334455555 Ales F 05-Atz-76 DAUGHTE

333445555 7 sdm. M 25o3d-73 SON
33344555 Yaw .F 034AikY , SPOUSE
"97005321 Abrw M 29-4Wb-78 SPOUSE
123456789 Ixas M 01-J1-78 SON

123456719 ,tim 1 31-De)-71 DAUGHEM

123456789 ElzabAed F 05-May-57 SPOUSE

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexanderia VA 22304-6145

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Ted Lewis, Code CS/Lt
Chairman, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. C. Thomas Wu, Code CS/Wq 2
Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. LCDR John S. Falby, USN, Code CS/Fa 2
Compute Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Head of Education of the Department of Defence and Security
KAPUSDIK.,AT Departemnt H-ankam
JL Pangkalan Jati No. 1
Jakarta - Selatan
Indonei

7. Direktorat Pendidikan TNI-AL
Mabesal- pangimp
Jakarta - T'mur

8. Office of Defec Attache
Embassy of the Republic of Indonesia
2020 Massachusetts Avenue, N.W.
Washington, D.C., 20036

9. Ka DWitbangal
J Pangkalan Jai No. 1
Jakarta - Selatan
Indonesia

128

4 • • i •••,• I• i , i I I • I

10. Ka Dispullahta
MABES TNI-AL
Cilangkap-Jakarta Timur
Indonesia

11. Parunmungan Girsang 3
Jl. Cawang Baru 34-36
Jakarta Timnur
Indonesia

12. Main Library
University of North Sumatera
Medan
Indonesia

13. Library of the Faculty of Technology
University of North Surnatera
Medan
Indonesia

129

