Best
Available

copy

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A280 415
AR

PTIC QUALITY INSPECTED &

THESIS

THE COMPARISON OF SQL, QBE, AND DFQL
AS QUERY LANGUAGES
FOR
RELATIONAL DATABASES
by
Paruntungan Girsang

March 1994

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

94 6 20 18941
08 Al

[—

REPORT DOCUMENTATION PAGE Pirigiiio N

Public reporting burden for this coliection of information is sstmated 1o average 1 hour per respanse, including the time ') MStruchions. Searching exsting data SOU0es
gathering and maintaining the deta needed, and cormpisting and reviewing the colladtion of information. Send comments regardmng this burden estirnate or any other aspect of this
colisction of inlormation, including suggestions for reducing this burden 1 Washington Hesdquanen Services, Ok ate for Ik Op and Reports, 1215 Jellerson
Davis Mighway, Sulle 1204, Arlingion, VA 222024302, and 10 the Offics of Management and Budget, Papsrwork Reduction Project (0704-0188), Washington, OC 20603.

. GENCY USE ONLY "h] 2. REPORT D i REPOR LMD DA 5 COVENH

4. TITLE AND SUBTITLE - e DING WUWBERS
The Comparison of SQL, DFQL, and DFQL as Query Languages
for Relational Databases

[e-AUTRORG)

Girsang, Paruntungan

m
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

" AGENCY REPORT NUMBER

[11. SUPPLEMENTARY NOTES . . . - - . .
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Governme..t.

(125 OISTRIBUTION / AVAILABILITY STATEMENT . 125, DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

; m—(‘mmm; .
Structure Query Language (SQL) and Query By Example (QBE) are the most widely used query
languages for Relational Database Management Systems (RDBMS’s). However, both of them have
problems concerning ease-of-usc issues, especially in expressing universal quantification, specifying
complex nested queries, and flexibility and consistency in specifying queries with respect to data retrieval.
To allgate these problems, a new query language called “DataFlow Query Language” (DFQL) was
proposed. .
This thesis investigates the relative strengths and weaknesses of these three languages. We divide
queries into four categories: single-value, set-value, statistical resuit, and set-count value. In each
category, a tative set of queries from each language is specified and compared. Some of the
queries specll?l:ﬁ?e‘ logical extensions of the other (already defined) queries, which are used to analyze
the query languages’ flexibility and consistency in formulating logically related queries. We perform a
simple experiment of asking NPS CS students to write a small set of queries in all three languages.
Based on the analysis, we conclude that DFQL eliminates the problems of SQL and QBE mentioned
above. The relative strengths of DFQL comes mainly from its strict adherence to relational algebra and

dataflow-based visuality.
[14. SUBCT TERMS 16. NUMBER OF PAGES
SQL, QBE, DFQL, Relational Model, Database Management Systems, 142 °

Flexibility, Ease-of-use, Consistency. Rt

Approved for public release; distribution is unlimited

THE COMPARISON OF SQL, QBE, AND DFQL
AS QUERY LANGUAGES
FOR RELATIONAL DATABASES

by
Paruntungan Girsang
Lieutenant, Indonesian Navy

B.S., University of North Sumatera, Indonesia, 1981
Ir., University of North Sumatera, Indonesia, 1983

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL
March 1994

Author: ‘ 'Z

R et e—
Paruntungan Girsang

Approved By: m

C. Thomas W&/ Thesis Advisor

S. Falby, Second

Ted Lewis, Chairman,
Department of Computer Science

ABSTRACT

Structure Query Language (SQL) and Query By Example (QBE) are the most widf:ly
used query languages for Relational Database Management Systems (RDB'MS s.).
However, both of them have problems concerning ease-of-use issues, espec'u.xlly in
expressing universal quantification, specifying complex nested queries, and flexibility and
consistency in specifying queries with respect to data retrieval. To alleviate these problems,
a new query language called “DataFlow Query Language” (DFQL) was proposed.

This thesis investigates the relative strengths and weaknesses of these three languages.
We divide queries into four categories: single-value, set-value, statistical resuit, and se.t-
count value. In each category, a representative set of queries from each language is
specified and compared. Some of the queries specified are logical extensions of the other
(already defined) queries, which are used to analyze the query languages’ ﬂemb.xhty and
consistency in formulating logically related queries. We perform a simple experiment of
asking NPS CS students to write a small set of queries in all three languages.

Based on the analysis, we conclude that DFQL eliminates the problems of SQL and
QBE mentioned above. The relative strengths of DFQL comes mainly from its strict
adherence to relational algebra and dataflow-based visuality.

Accession Por
| MTIS GRARI Cd
DIIC TAB
Unannounced

Justification

By :
| Distributions ¢
Avatllabili{ty Codes

Aveil and/op
Diat Special

i ﬁ,‘ ‘ "

e

TABLE OF CONTENTS

INTRODUCTION . ceasasasasasasasasasssasasasrers s s as s s s e sane

A. BACKGROUND......ccocecvemsunmessrssssnsasessssssarsasssassssnsssssssssssssansasesses

MOTIVATION

B.
C. OBJECTIVE
D. CHAPTER SUMMARY

DESCRIPTION OF THE RELATIONAL MODEL AND QUERY LANGUAGES

FOR RDBMS’s 5
A. THE RELATIONAL MODEL CONCEPTS 5
1. Formal Terminology 6

2. Properties of Relation 8

B. TEXT-BASED QUERY LANGUAGES 8
1. TheRelational Algebra 8

2. The Relational Calculus. 10

3. Structure Query Language (SQL) 10

a. Data Definition in SQL 11

b. Data Manipulation 11

c. Logical Operators of SQL 13

d. The Problems with SQL 13

(1) Declarative Nature 14

(2) Universal Quantification 15

(3) Lack of Orthogonality 17

(4) Nesting Construct 17

C. VISUAL-BASED QUERY LANGUAGES 18
1. QBE, a Form-based Query Language 18

a. Data Retrieval 19

b. Built-in functions, Grouping and other Operators 20

¢. The Problems with QBE

21

2. DataFlow Query Language (DFQL) 21
A& DFQL OPEIALOrSccccovvenmnerrrerersessassesesassasessassasasssssassascrssasseses 22
(1) BasiC OPETRLOLScoccceeerruererescnseesssescssenssenssesassssssoneans 23
(2) Other Primitives Operatorsccceeveueencecncaemsssenccsensens 26
(3) Display Operatorsccceeeureserinsaresssessnsascessesensosssessssans 29
(4) User-defined Operators . .29
() DFQL Query Construction 29
(6) Incremental QUETIESccccoreresesnsecsrsasaesensesssssassesassanses 30
(7 Universal Quantification 30
(8) Nesting and Functional Notation . 31
(9) Graph Structure of DFQL Query .31
3. Entity-Relationship Model INEIFACEceveuserrscrenramersassnsssssrnssanees 31
. THE COMPARISON OF SQL, QBE, AND DFQL WITH RESPECT TO
DATA RETRIEVAL CAPABILITIES 34
A. CATEGORIES OF QUERY 35
1. Single-Value 35
a. Queryl: Simple retrieval 36
b. Query2: Qualified retrieval 38
¢. Query3: Retrieval involves more than two tables 40
d. Query4: Retrieval involving universal quantification42
. Query S: Retrieval involving a negation statement 44
2. Set-Value 47
a. Query6: Retrieval involving existential and universal
quantification 47
b. Query7: Retrieval involving explicit sets 49
¢. Query8: Retrieval involving explicit sets 51
d. Query9: Retrieval involving universal quantification 54
¢. Query 10: Retrieval involving existential and universal
quantification 57
f. Query 11: Retrieval involving set operation 59

3. Statistical Result .. 62
a. Query 12: Retrieval involving aggregate AVG function 62
b. Query 13: Retrieval involving AVG and Groupnig function64
¢. Query 14: Retrieval involving Count, AVG, and Grouping

function .. 66
d. Query 15: Retrieval involving Count and AVG function 68
¢. Query 16: Retrieval involving Max and Grouping function70
f. Query 17: Retrieval involving Max and Grouping function72

g. Query 18: Retrieval involving Avg, Max, Sum, and Grouping
function 74
h. Query 19: Retrieval involving Count and Grouping function ...76
4. Set-Count Value 79
a. Query 20: Retrieval involving existential quantification 79
b. Query 21: Retrieval involving Count and Grouping function ...81
¢. Query 22: Retrieval involving Count and Grouping function ...84
d. Query 23: Retrieval involving Count function 87
¢. Query 24: Retrieval involving universal quantification 89
f. Query25: Retrieval involving universal quantification 91
B. ANALYSIS ... 93
1. Ease-of-use 93
a. Queries involving existential or universal quantification94
1 sQL 94
(2> QBE 95
(3) DFQL 95
b. Queries involving nested queries 96
1 sQL 96
(2 QBE 96
(3) DFQL 96
2. Flexibility 98
a SQL 98
b. QBE 98
DFQL 99

3. CODSISIENCYcoovrremveenassnsesssssssaneresenssesssssasssnssstsssessassssesssesssssssenssssens 99

B SQL. e ceeeereereenenaneesnessersesnesssensasasersassasonsassenas e srnesasacasasnes 100

D, QBE. ettt sssssesnsssnsasasnsnssinan s ssses 100

c. DFQL resessetsannresssannrattsenasasren bt e ersat tssssensanasns 100

4. Relative Strengths and Weaknessesccocuveenensmviieesisnsscscsiresssesens 101

IV. HUMAN FACTORS EXPERIMENTccciorriinemirnereusirmmemsissssessesscsessesssasens 111
A. HUMAN FACTORS ANALYSIS OF QUERY LANGUAGES 111

B. EXPERIMENTAL COMPARISON OF SQL, QBE, AND DFQL ...111

L Assesment of the EXperimenteveienevecnincnnncnnsennescsssesninans 111

a. Subjects 112

b. Teaching Methodccocvueuereunuirenueereninerenssnsesersnssassnssssssnnnne 112

c. Test Queries 112

d. Evaluation Method ..113

2. Experiment Results 114

3. Experiment Conclusion 117

a. Query (QD) 117

b. Query(Q2) 117

c. Query(Q3) 117

d. Query(Q4) 118

d Query(QS) 118

V. CONCLUSIONS 120
LIST OF REFERENCES 122
APPENDIX A 125
INITIAL DISTRIBUTION LIST 128

TABLE 2.1
TABLE 2.2

TABLE 5.1

TABLE 4.1
TABLE 4.2

TABLE 4.3

LIST OF TABLES

BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS23
NON-BASIC DFQL OPERATORS AND THEIR SQL EQUIVA-

LENTS , 26

RELATIVE STRENGTHS AND WEAKNESSES OF SQL, QBE,

AND DFQL ..102

EXPERIMENT RESULT 115

PERCENT CORRECT OF SUBJECT CLASSIFICATION FOR

Ql, Q2, AND Q3 116

PERCENT CORRECT OF SUBJECT CLASSIFICATION FOR Q1

THROUGH QS 116
vili

Figure 2.1
Figure 2.2
Figure 2.3

LIST OF FIGURES
A Relation STUDENT SChEMAccccereresencnnsenssosucssnnsnsnsanssnessassasssseses 7
OPErator CONSIUCHONcccoeerrerseoseasasnsssscssssssereseresasaesesasassensassessssssses 22
ER-Diagram of the COMPANY databasecceccorererreeraneanssssscsassenas 32
ix

™

Query 2.1
Query 2.2
Query 2.3
Query 2.4

LIST OF QUERIES
Example of Relational Algebra Query cresesntaresesnsssans 9
Example of Relational Calculus QUETYcccececeeremrurueesecsenrencnssencones 10
Example of SQL QUETYcucuerrcemvenrineenmrsscsssinssssssssssscsasnssessssessessens 16
Example of QBE Query cevesnereessesaeserasanserasnane 19
X

ACKNOWLEDGEMENTS

I would like to thank the Indonesian Navy for the opportunity to study at the Naval
Postgraduate School (NPS) in Monterey, California.

I would like to thank Dr. C. Thomas Wu for his continued support, enthusiasm,
patience, and guidance. These were invaluable assets for the completion of this work. I
would also like to thank LCDR John S. Falby for his help and support in editing. His
assistance and direction were both enlightening and timely.

I wish to thank to Computer Science students at NPS who participated in a human
factors experiment. These support was instrumental in the completion of this thesis.

I'am very grateful to my parents for their support and faith. Most importantly, I am
indebted to my wife Ediana, my daughter Jean Liatri Augustine and my son John Samuel
Sebastian, for their constant love, patience and understanding.

L INTRODUCTION

A. BACKGROUND

The Relational model is used most often in current commercial Database
Management Systems (DBMS’s) compared to hierarchical and network models, since it is
the simplest and most uniform data structure and is the most formal in nature with respect
to mathematical logic [Elma89]. The theory was introduced by E. F. Codd in 1969
[Codd90). Today, numerous companies and institutions use Relational Database
Management Systems (RDBMS’s) in many different kinds of software packages that are
equipped with several manipulation languages (database languages or query languages).
The query languages that have been implemented and are available on commercial
DBMS’s include Structure Query Language (SQL) and Query By Example (QBE).

SQL is the best known text-based (line oriented) query language. Originally, SQL
was known as SEQUEL, and was introduced in 1974 (Cham74]. The carliest version of
SQL was implemented in the system R project at IBM Research Laboratory in San Jose,
California [Astr76). In 1986, the American National Standard Institute (ANSI) approved a
standard (function and syntax) for SQL [ANSI86], which was accepted by the International
Organization for Standardization (ISO) in 1987 [Date90a].

QBE was developed by IBM in 1976 at the IBM Yorktown Heights Research
Laboratory, NY. [Zloo77]. It is the ancestor of todéy’s form-based interfaces (visual
oriented query language). In QBE the query is specified by filling in a proper column in
form of tables (relations) displayed on the screen, instead of writing linear or text
statements.

B. MOTIVATION
SQL and QBE are two commonly used query languages and exist together in several
DBMS products (e.g., DB2!, SQL/DSZ, Oraclc3, dBase IV4, etc.). However, neither of

these query languages have succeeded in alleviating the problems concerning ease-of-use
issues, especially in expressing universal quantification, specifying complex nested
queries, flexibility and consistency in specifying queries with respect to data retrieval. As
discussed in [Date87], SQL does not posses a simple, clean, and consistent structure, in
cither its syntax and semantics. Codd points out that SQL permits duplicate rows in
relations, it supports an inadequately defined kind of nesting of a query and does not
adequately support three-valued logic {Codd88a} [Codd90). In {Negr89] SQL constructs
are very complex, in particular Universal quantification, which are full of pitfalls for the
inexperienced user. In contrast, QBE is much more intuitive. But QBE still falls short,
providing no support for existential or universal quantification [Elma89] [Date90a}.

In order to alleviate the problems at issue above, a new language called “Data Flow
Query Language” (DFQL)’ was proposed. DFQL is a graphical database interface based
on the data flow paradigm. DFQL retains all the power of current query languages and is
equipped with an easy to use facility for extending the language with advanced operators,
thus providing query facilities beyond the benchmark of first-order predicate logic.
Although, these three languages are all relationally completeS [Date82] [Date84] [Clar91]
[Fran88], thus expressive powers are equivalent. However, they are not necessarily equally

1. DB2 (IBM DATABASE 2) is a trademark of International Business Machines Corporation.

2. SQL/Data System is a trademark of International Business Machines Corporation.

3. Oracle is a trademark of Oracle Corporation.

4. dBase IV is a trademark of Ashton-Tate,
S.DPQLimplanentedbyLLGldJ.Chrkaslﬁsmesiswotk(seeChmH.CJ) under the
supervission of Dr. C. Thomas Wu, Computer Science Department, at Naval Postgraduate School
(NPS). It is implemented in Prograph.

6. Relational Completeness means that a language is at least as powerful as relational algebra

useful. For example, a simple query is more easily specified in QBE than SQL. A number
of comparative studies of two or three query languages have been performed [Reis75]
[Reis81]. However, no direct comparison has been made of SQL, QBE, and DFQL, with
respect to the above mentioned problems. Also, a simple experiment regarding ease-of-use
in query writing for these three languages needs to be accomplished.

C. OBJECTIVE

The focus of this research is to evaluate whether DFQL can alleviate the problems at
issue faced by SQL and QBE by investigating the relative strengths and weaknesses
concemning ease-of-use, especially in expressing universal quantification and specifying
complex nested queries. A Category-based approach of comparing query languages is
developed. With this approach, queries are divided into four categories: single-value, set-
value, statistical result, set-count value. In each category, a representative set of queries
from each language is specified and compared. Some of the queries specified are logical
extensions of other (already defined) queries, and we used such extension types of queries
are used to analyze the query languages’s flexibility and consistency in formulating a
logically related queries. In addition, a simple experiment of asking Naval Postgraduate
School (NPS) Computer Science (CS) students to write a small set of queries in all three
languages are performed.

Our finding in this thesis work should serve as a basis for developing/improving the
query language. In addition, by having a higher level of understanding on the relative
strengths and weaknesses of each language in respective query categories, we will be able
to provide or recommend a suitable query language depending on the intended users.

D. CHAPTER SUMMARY

Chapter II presents a description of the Relational Model concept, SQL, QBE, and
DFQL and discusses the problems faced by SQL and QBE. In Chapter IIl, the numerous
queries are presented by each category and composed in these three languages: SQL, QBE,
and DFQL. The relative strengths and weaknesses with respect to data retrieval capabilities
concemning ease-of-use, and flexibility and consistency in specifying the queries are
discussed. The relational schema database is provided in Appendix A. Chapter III also
provides an analysis of these three query languages.

Chapter IV provides a discussion and analysis of a simple experiment of asking NPS
CS students to write a small set of queries in all three query languages. Chapter V provides

a conclusion.

IL. DESCRIPTION OF THE RELATIONAL MODEL AND QUERY
LANGUAGES FOR RDBMS’s

As mentioned previously, the Relational Model was introduced by Codd in 1969. The
basic concepts of the Relational Model are needed as fundamental knowledge for providing
a better understanding of high-level data manipulation languages or query languages with
respect to query specification for relational database retrieval operation.

Query languages for RDBMS’s can be classified into two categories: text-base.
languages and visual-based languages. This chapter presents the Relational Model
concepts, text-based query languages and visual-based (or graphical) query languages.
Within the discussion of text-based query languages, in addition to discussion of relational
algebra and relational calculus, we particularly focus on SQL. The visual or graphical query
languages discussion specifically emphasizes QBE and DFQL rather than the Entity
Relationships (ER) model.

A. THE RELATIONAL MODEL CONCEPTS

The relational model represents the data in a database as a collection of relations. A
relation is a mathematical term which represents a simple two-dimensional table structure,
consisting of n-rows and m-columns that contain data values. In other words, a relational
database is a collection of related information, or data values, stored in two-dimensional
tables.

To explain the relational data structure, we use the STUDENT relation (table) in
Figure 2.1. In the STUDENT table, data is logically ordered by values of NAME, SSN
(stands for Social Security_Number), PHONE_NO, ADDRESS, and GPA, for each
student data. Each student has a unique identification number, represented by SSN.

1. Formal Terminology
The relational database has its own terminology which is usually used in RDBMS
applications. Examples include the terms relation, attribute, tuple, domain, degree,
cardinality, primary key, candidate keys and foreign key. Consider the following brief
explanation of these terms:
* A relation corresponds to what we have generally been calling a table.

« A tuple corresponds to a row in such a table, and an astribute corresponds to a table
column.

e Cardinality represents a number of tuples, and the number of attributes is called the
degree.

« The primary key is a unique identifier for a table — that is, a column or column
combination with the property that, at any given time, no two rows of the table contain
the same value in that column or column combination.

« Candidate keys are sets of attributes in a relation that could be chosen as a key.

o A foreign key is a set of attributes in one relation that constitute a primary key of
another relation’s (or possibly the same) table.

¢ A domain is a pool of values, from which one or more attributes (columns) draw their
actual values [Date90a]. For example, the domain of SSN in Figure 2.1, written
dom(SSN), is the set of all legal STUDENT SSNs. The set of values appearing in the
attribute SSN of the STUDENT relation at any time is a subset of the domain.

Using the terms above, and Figure 2.1, the relation schema for the STUDENT
relation has degree 6, which is: STUDENT (NAME, SSN, PHONE_NO, ADDRESS, SEX,
GPA). The attributes have the following domains: dom(NAME) = Names, dom(SSN) =
Social_Security_Numbers, dom(PHONE_NO) = Local_Phone_Number,
dom(ADDRESS) = Addresses, dom(Sex) = Male/Female, dom(GPA) =
Grade_Point_Averages. A relation r of the relation schema R (Al, A2,, An), also
denoted by r(R), is a set of n-tuples r = (t1,12,, tm}. Each n tuple t is an ordered list of
nvaluest=<V1,V2,...., Vn>, where each value Vi, 1< =i <=n, is an element of dom(A1)
or is a special mull value. Each tuple in the relation represents a particular student entity,

-

where an entity is an object that is represented in the database. Null values represent

attributes whose values are unknown or do not exist for some individual STUDENT tuples

[(Elma89]. In mathematical terms, a relation r(R) is a subset of the cartesian product of the
domains that define R.

(R) < (dom(Al) X dom(A2) X X dom(An)).

Therefore, all possible combinations of values from the underlying domains can

be specified by the cartesian product.
NAME SSN PHONENO ADDRESS SEX GPA
................... 3.9

ooooooooo

oooooooooo

34

Domain

DS ON N N N

Super key hS
N 5\ Ny
STUDENT NAME SSN PHONE_NO | ADDRESS sEx | GeA
R Bruce Bull L1111 | 3733726 | 1250FisSe#8 |M |39 |
fé’l\lpla Bob Tobey 20222222 | 5452589 | 3008PasonCiz. | M | 34
a Donna Brown | 333-33-3333 | null 1335 Third St #9 |F |35 | >
t
i JemLiariG | 604-524982 | 6468928 | 398 ERickeusRd. |[F | 39
g \ John Samuel G | 604-52-2042 | 649-1756 | 3020cean Av.#3 |M | 40)
Attributes
Degree
- -

Figure 2.1: A Relation STUDENT Schema

e D s pt)

2. Properties of Relations
Relations possess certain properties, all of them immediate consequences of the

definition of “relation”. There are four properties, as follow [Date 90a}:

« There are no duplicate tuples; it follows the fact that the relation is a mathematical set

(i.e. a set of tuples), and sets in mathematics by definition do not include duplicate
elements. An important carollary is that there always exists a primary key in a relation.
Since each tuple is unique, it follows that at least the combination of all attributes of
the relation has the uniqueness property.

Tuples are unordered within a relation (top to bottom) which follow s the fact that sets
in mathematics are not ordered.

All attribute values are atomic. At every row-and-column position within the table,
there always exists precisely one value, never a list of values. However, a special value
“null” is used as a column value of a particular tuple which is either “unknown”,
“attribute does not apply”, or “has no value” in it.

Attribmesmunordued(lefttoﬁght),whichfollowsthcfactmattheheedingofa
relation is also defined as a set (i.e., a set of attributes, or more accurately attribute-
domain pairs).

TEXT-BASED QUERY LANGUAGES
The nature of text- based query languages is that queries are written in normal text

editors (text-based). This category can be divided into three subclasses: relational algebra
based, relational calculus based, and the combination of both. This section will focus on
SQL. However, the general concept of the relational algebra and relational calculus is also
covered.

1. The Relational Algebra
The Relational algebra is a technique for combining mathematical sets that have

theptopertyofbeingmlaﬁons(ubles);itwaspmposedbyCodd[Codd‘70].ltissaidmbe
a “procedural” language, which means that the user must not only know what he wants
whenpufaminsopeaﬁmonrehﬁms,bmdsoknowhowmgetitﬂwmmspecify

R A T T

R S e T T
p.

a sequence (step by step) of relational operations to be performed on the tables of the
schema to produce a desired result. The result of each operation forms a new relation,
which can be further manipulated. In other words, relational operators can be nested. The
operations included in the Relational Model are: UNION, INTERSECTION,
DIFFERENCE, CARTESIAN PRODUCT, SELECT, PROJECT, and JOIN. Consider the
query example in Query 2.1, which is specified using relational algebra. The English
translation of the query is: “Retrieve the first name, last name, and salary of employees who
work in project Computerization”. Notice that all query examples in this chapter are
matched to a relational database instance of the COMPANY schema in Appendix A.

COMPU_PROJ «~0C PNAME = “ Computerization” (PROJECT)
COMPU_PROJ_EMPS « (COMPU_PROJ X pno = pNum EMPLOYEE)
RESULT ¢ T pNAME, LNAME, SALARY (COMPU_PROJ_EMPS)

Query 2.1: Exampie of Relational Aigebra Query

From the query above, we can determine that:
« There are three lines executed in sequence to give the desired result.

o The user is allowed to use a temporary name to store the result of a line and then use
that name as an input to subsequent lines.

» The query is written in a procedural language.

2. The Relational Calculus

The Relational Calculus was also proposed by Codd [Codd71]. In relational
calculus, a query is specified in a single step; which is why it is known as a “non-
procedural” language. However, Codd showed that relational calculus and relational
algebra are logically equivalent, where any query specified in relational calculus can be
specified in relational algebra as well, and vice versa.

In this type of query hnguage, a predicate calculus expression is used to specify
the tuples desired. If Query 2.1 is specified using relational calculus, the structure is
formulated like Query 2.2. Here, the free tuple variables “c” and “p” are used to make the
logical connections between the EMPLOYEE (¢) and PROJECT (p) relations, according to
the join conditionand selection condition specified by p. DNUM = ¢.DNO and p. PNAME
= ‘Computerization’ respectively. The free tuple variables . FNAME, e. LNAME, e.
SALARY are the attributes in which their tuples are considered to be retrieved, as long as
its tuples the condition specified is satisfiied.

{e. FNAME, e. LNAME, ¢. SALARY | EMPLOYEE (¢) and (3 p)(PROJECT (p)
and p. PNAME = ‘Computerization’ and p. DNUM = e. DNO)}

Query 2.2: Example of Relational Calculus Query

3. Structure Query Language (SQL)

The carliest version was designed and implemented by IBM Research as an
interface for a relational database system known as SYSTEM R. It was the earliest of the
high-level database language (non-procedural languages). Today SQL exists in several
commercial RDBMS’s products such as IBM’s DB2, SQL/DS, and Oracle.

10

TR Y i

SQL is a comprehensive database language; it has statements (text-based) for data
definition language (DDL) and data manipulation language (DML). SQL also provides
facilities for defining views on a database, for creating and dropping indexes on the files
that represent relations, and for embedding SQL statements into a general purpose language
such as PL/I or Pascal [EIma89].

a. Data Definition in SOL
As a SYSTEM R database language, SQL implements the terms table
(relation), row (tuple), and column (attribute). The SQL commands for data definition are
CREATE TABLE, ALTER TABLE, and DROP TABLE. These commands are used to
specify the attributes of a relation, to add an attribute to a relation, and to delete a relation,
respectively.
b. Data Manipulation
SQL contain a wide variety of data manipulation capabilities, both for
querying and updating the database. However, this chapter will emphasize the features of
qneryingl that are related to the discussion in previous chapter. SQL is a relationally
complete language. Its statements directly or indirectly contain some basic operators of
both reiational algebra and relational calculus. However, the “SELECT™ statement has no
relationship to the “SELECT” operation of relational algebra. SQL allows a relation to have
two or more tuples that are identical in their attribute values. To eliminate the duplicate
tuples, SQL provides the keyword “DISTINCT” to be used in the SELECT-clause; it means
that only distinct tuples should remain in the result. The general syntax to be used for
retrieving data in SQL consists of up to six clauses:

1. Query in DBMS is used o0 describe data retrieval, not update.

11

;5{’ PRI T

SELECT <auribute list>

FROM <relation list>

(WHERE <condition>]

[GROUP BY <grouping attribute(s)>]
[HAVING <grouping condition>]
[ORDER BY <attribute list>]

SELECT-clause; <attribute list> is a list of attribute names whose values are to be
retrieved by the query.

FROM-clause; <relation list> is a list of the relation names required in the query, but
not those needed in nested queries level.

WHERE-clause: <condition> is a conditional (Boolean) expression that identifies the
tuples to be retrieved by the query from the relation(s) listed in the FROM-clause.

GROUP BY-clause; <grouping attribute(s)> specifies grouping according to each
value of the attribute(s).

HAVING-clause; <grouping condition> specifies a condition on the groups being
selected rather than on the individual tuples.

ORDER BY-clause; <attribute list> specifies an order for displaying the result of a
query (Elma89].

Notice, if the SELECT-clause and FROM-clause contain more than one

attribute name or relation name respectively, they should be separated by commas. All
attribute names listed in the SELECT or WHERE clauses must be found in one of the
relations of the FROM-clause. The basic form of the SELECT statement sometimes calls a
mapping or a SELECT FROM WHERE block. Which looks like:

SELECT <attribute list>
FROM <relation list>
WHERE <condition>
However, only the first two clauses, SELECT and FROM are mandatory. SQL

provides five statistical functions, called built-in functions, which arc COUNT, SUM, MIN,
MAX and AVG. These functions examine a set of tuples in a relation and produce a single

12

value. For example, the COUNT function will return the number of tuples satisfying the
query. On the other hand, the functions SUM, MAX, MIN, and AVG, usually specified in
the SELECT-clause or the HAVING-clause, are applied to a sct or multi-set of numeric
values and perform the indicated operation on the values.

¢. Logical Operators of SQL
The logical operators normally used while specifying the query are:
» Comparison operators: =, <>, <, >, <=, >=,
* Boolean connectives: any of the logical connectives AND, OR, NOT.

* IN uses in nested queries, the expression evaluates to TRUE if there is included at least
a tuple in a sub-query; this operator corresponds to the set operator “is @ member of’
which is symbolized by “e ”.

* EXISTS and NOT EXISTS always precede a sub-query. EXISTS evaluates to TRUE if
the set resulting from a sub-query is not empty, and FALSE otherwise. This operator
corresponds to the mathematical existential quantifier “3”. The NOT EXISTS is the
reverse evaluating to TRUE if the resulting set is empty, and FALSE otherwise. This
operator corresponds to the “every” quantifier in the condition; the mathematical

* LIKE allows the user to obtain around the fact that matching to each value which is
considered atomic and indivisible.

The first two logical operators are normally used in the WHERE-clause. The
comparison operators are used to specify the selection conditions desired, and the equality
(“=") operator is used to specify the join condition between the relations. On the other hand,
Boolean connectives are used to create compound condition or to negate a condition
[Elma89] [Fran88] [Hans92].

d. The Problems with SQL

SQL is implemented as a mixture of both relational calculus and relational
algebra by including the nesting capability and block structure feature. However, SQL
tends more towards the relational calculus approach; it is primarily declarative in nature

13

rather than a procedural language. The user specifies what the result should be in one
statement rather than in a sequence of statements. Date comments: “When the language
(SQL) was first designed, it was specifically intended to differ from the relational calculus
(and, I believe, from the relational algebra).... As time went by, however, it turned out that
certain algebraic and calculus features were necessary after all, and the language grew to
accommodate them” [Date87]. As a result, it is a strict implementation of neither relational
algeura nor relational calculus.

(1) Declarative Nature. As mentioned above, SQL is primarily a
declarative query language. As a matter of fact, the user is intended to construct the query
based on relational calculus or first-order predicate calculus logic. So, all of the conditions
are specified in a single statement. For a simple query, this is straight-forward approach;
for more complex query however, the logical expression required to specify the conditions
to be met can become quite complicated. This problem is compounded when the complex
query involves universal quantification (discussed later). This approach may not always
present the clearest representation of the query :o the user. From the user point of view, we
consider that it’s related to human nature to think of a complex problem in a sequential
fashion rather than in a declarative fashion of the entire the problem at once.

In addition, ease-of-use issues for database query languages relating
to improving the human factors aspect have become evident [Schn78]. Subsequently,
human factors studies have been done regarding the declarative versus procedural
implementations of query languages. The result of these studies show that, for complex or
difficult queries, the users perform correctly more often in specifying queries when using
a procedural query language than a declarative language such as SQL [Welt81]. However,
the complexity of the declarative nature of SQL is compensated for by embedding SQL
queries into a procedural third generation programming language such as PL/I, PASCAL,
or COBOL. Here, most embedded query languages give the user the ability to use the query

14

e

language in a procedural manner if desired. In this way, the user is allowed to obtain
advantage of the features of the host language to accomplish operations that are very
difficult to code in the query language.

(2) Universal Quantification. In English query, the idea of universal
quantification is phrased “for all”. This kind of query is supported indirectly in SQL, which

occurs due to the lack of a specific “for all” operator. In the case of the above mentioned,
SQL forces the user to use a “NOT EXIST™ operator as a “negative logic” in order to achieve
the effect of universal quantification and “EXIST” for existential quantification in a nesting
SELECT statement. As a matter of fact, the logical meaning of these operations is not
completely intuitive, especially to the inexperienced user who is not accustomed to using
predicate logic. When using the logical ideas presented by these operators, most individuals
(of users) fall into error; it has been shown to be difficult to use them correctly even when
the user has experience in this area [Negr89].

The following example is presented to show how SQL expresses the
idea of universal quantification in a query; in fact, it is somewhat complicated. If the
complexity of querics increases, then the difficulty of specifying or understanding it
increases rapidly. Consider the following relation as a subset of a database schema that is
presented in Appendix A (key attributes are underlined).

EMPLOYEE (FNAME, MINIT, LNAME, SSN, BDATE,
ADDRESS, SEX,
SALARY, SUPERSSN, DNO)

DEPARTMENT (DNAME, DNUMBER, MGRSSN,
MGRSTARTDATE)

DEPENDENT (ESSN, DEPENDENT NAME. SEX, BDATE,
RELATIONSHIP)

15

u The English query is: “Retrieve the department names in which all of
its employees who have a salary more than $40,000 also have at least one male dependent”.
The SQL query is given in Query 2.3. |

SELECT DNAME
FROM DEPARTMENT
WHERE NOT EXISTS (SELECT *
FROM EMPLOYEE
WHERE DNUMBER =DNO
AND SALARY < = 40000
AND EXISTS
(SELECT *
FROM DEPENDENT
WHERE SSN = ESSN
AND SEX <> ‘M"))

Query 2.3; Example of SQL Query

The query implements a NOT EXISTS operator in the WHERE-
clause (in the third line) of the query as a negative logic in order to express the universal
quantification. The attribute SALARY is compared as “less than or equal to” instead of
“greater than” in the “outer” nested query and the attribute SEX is also compared as “not
equal” rather than “cqual” in the “inner” nested query where the logic of “there exists” is
used for the dependents. Therefore, a direct English translation of the SQL query above is:
“Select the names of departments such that there does not exist any employee whose salary
is less than or equal to $40,000, and there exists at least one dependent that is not “male”.

16

The specification required to form the query above is not straight forward at all; the query
formulation involves negative logic that is extremely easy to mix-up, even for the
experienced user. In addition, it is difficult to read and know what is actually being
specified. So, if it is difficult to understand what the query is going to do, it means the
language lacks case of comprehension and will affect not only query readability but also
the ability of the user to specify the correct query.

(3) Lack of Orthogonality. “Orthogonality in a programming language
means that there is a relatively small set of primitives that can be combined in a relatively
small number of ways to build the control and data structures of the language.” [Sebe89]
[Date87]. SQL does not provide the user with a simple, clean, and consistent structure. In
SQL, there are numerous examples of “arbitrary restrictions, exceptions, and special rules.”
[Date90b]. An example of an unorthogonal construct in SQL is allowing only a single
DISINCT keyword in a SELECT statement at any level of nesting.

(4) Nesting Construct. SQL permits a nesting structure of the form:

SELECT <attribute list>
FROM <relation list>
WHERE attribute IN

This format allows for a block structure type of construct. The original purpose of
this nesting construct was to allow the specification of certain types of queries without
resorting to the use of relational algebra or relational calculus. According to Codd, the
nesting construct is a part of the “psychological mix-up” in SQL. While all queries that are
specified using the nesting construct should be directly translatable into queries using an
equi-join instead, Codd shows that if allowing for the existence of duplicate rows in tables
(as SQL does), one will come up with a different result when performing the equi-join

17

version of the query than when performing the nested version [Codd90]. For detailed
descriptions of SQL problems, see [Clar91] [Wu9l1].

C. VISUAL-BASED QUERY LANGUAGES

T

Visual query languages allow the user to visually specify a query on the screen by
using special graphical editors. Here, visual means not purely textual. This kind of language

is also know as a graphical language. We can classify these languages into three categories
of visual-based query languages. The first category includes those which use a form-based

representation, the second is based on the entity-relationship2 model’s [Chen76]
representation, and the third includes data flow query languages. In this section we
examine QBE as an example of a form-based query language, DFQL as a data flow query
language, and the ER model.

1. QBE, a Form-based Query Language
QBE was developed roughly at the same time as SQL during the seventics at
IBM’s Laboratory Research Center [Zloo77]. Today, both languages are available and

supported in the Query Management Facility (QMF)? offered by IBM. QBE has a user-
‘friendly interface. While specifying the query, the user does not have to specify a structured
query or text statement explicitly as in SQL. Instead, the query is formulated by filling/
placing “variables” in the proper columns in forms of tables (relations) that are displayed
on the terminal screen. This means that the user does not have to remember the name of
attributes or relations. Since operations are specified in the tabular from of tables, it can be
said that QBE has a “two-dimensional syntax” [Date82] [Elma89). In addition, in QBE

2. Entity-relationship Model is introduced by Chen, P. in 1976 as a pictorial conceptual design
methodology for the relation model.

3, The dialect of QBE supported in QMF is slightly different from that proposed by Zloof, the orig-
hﬂdedmonBB[Zloom.bemeQMFﬁnplemeBBbyﬁmmulﬁnsthQL
[Date90). QMF is a separate product from DB2 and acts as a query language and repost writer
[Bima89}.

18

there are no rigid syntax rules that should be followed by the user while specifying the
query specification. Instead, the user enters the “variables” as “constans” and “example”
values in the proper columns of the forms to construct an “example” of the data for the
retricval or update query. Like in SQL, this part also emphasizes data retrieval queries.
QBE is related to the domain relational calculus, and its original specification has been
shown to be relationally complete [Elma89].

a. Data Retrieval

As mentioned above, in order to specify the query for data retrieval, the
user should eater “example” or “constant” values into the proper columns in the form of
tables (relations). In QBE, the entering of “example” values, usually preceded by “_”
(underscore) character, means the example value does not have to match specific values of
tuples in the database, so it really represents the “free domain variable”. On the other hand,
“constant” values must be matched by corresponding tuple values in the database. If the
user is interested in particular tuple values, the user types the prefix “P.” in that particular
column (attribute). “P.” is used to retrieve a desired attribute value from a tuple which
satisfies the query, “P” standing for “prins”.

EMPLOYEE | FNAME | MINIT | LNAME | SSN | BDATE | ADDRESS | SEX | SALARY | SUPERSNN | DNO

) P P.UNQ. Dx
PROJET PNAME PNUMBER | PLOCATION DNUM
Computerization P. Dx

Query 2.4: Example of QBE Query

Similar to SQL, QBE also allows relations to have duplicate tuples. To
climinate the duplicate tuples in the result of a query, QBE uses the prefix “UNQ.” which

19

means keep only unique tuples in a query result. See the query examplie in Query 2.4. The
English translation of the query is: “Retrieve the first name, last name, and distinct salary
of employees who works in projects “computerization”.
From the example QBE query, it can be determined that:
o “_Dx" is an “example” value to join the two tables by using “Dno” as a foreign key
 “Computerization” is an actual “constant” value. In other words, the selection
condition using the equality (=) comparison is specified by entering directly a constant
value under a proper column.
« “P” means to retrieve the attribute value for tuples satisfying the query.

b. Built-in functions, Grouping and other Operators

Like SQL, QBE is also equipped with built-functions, such as CNT. (for
count), SUM., MAX., MIN., and AVG. However, in QBE the functions SUM., CNT., and
AVG. are applied to “distinct” values. If the user wants these function to apply to all values
desired, it should be entered by using the prefix “ ALL” 4. QBE provides a “G.” operator as
a grouping aggregate function. It is analogous to the SQL GROUP BY-clause, and the
“condition box” in QBE is used in the same manner as the HAVING-clause in SQL. QBE
also uses the same comparison operators as SQL except equality (=). Therefore, the user
explicitly enters the >, 2, <, Sbefore typing a constant value. QBE also has a negation
symbol (—), which is used in a manner similar to the NOT EXISTS in SQL, but the same
effect can also be obtained by using the “#” operator. In addition, QBE also has prefixes
“A0.” (for ascending order), and “DO.”(for descending order), in order to get an ordered
list of tuples.

4. In QBE under QMF “ ALL” is unrelated to the universal quantifier (Elma89].

20

v ‘
.

;E c. The Problems with QBE

As mentioned above, QBE is very intuitive, even for novice users. It allows
the relatively inexperienced users to get started in specifying simple queries, even though
they have no prior knowledge of programming languages. Unfortunately, it becomes less
and less useful as the complexity of the queries increases and has problems with more
] complex queries [0z3093].
| The expression of universal quantification in QBE as originally proposed
i by Zloof [Z10077] did include support for “NOT EXISTS™, but it was difficult and always
' somewhat troublesome [Date90a]. However, today’s QBE that has been released as a
commercial product cannot implement universal quantification. In fact, the QBE that we
discuss here (QBE under IBM’s QMF) provides no support for universal or existential
quantification of the form of “V* or “3”. Thus, queries which involve universal
quantification cannot be specified [Date90a] [Elma89] [Ozs089]). Therefore, it is not
relationally complete.

2. DataFlow Query Language (DFQL)

DFQL is a visual/graphical interface to relational algebra based on the dataflow
paradigm. It retains all the capabilities of current query languages and is provided with an
easy to use facility which extends the query language. This extension allows the users to
create new operators from existing primitive or user-defined operators. DFQL includes
aggregate functions in addition to the operators of relationally complete query language. It
has the power of expression beyond the benchmark of first order predicate calculus by
providing the user with the capabilities to specify universal and existential quantification.
Queries are specified by the user connecting the desired DFQL operators graphically on the
computer screen. The arguments for the operator flow from the bottom or “output node” of
the operator to the top or “input node” of the next operator.

21

a. DFQL Operators

All DFQL operators have the same basic appearance to enhance the
orthogonality’ of the language. In Figure 2.2. is a sample operator (with no name). It is
made up of three types of components; the input nodes, the body, and the output node.

In DFQL, the functional paradigm is fully supported by the DFQL notation.
The input to each operator, or function, arrives at the input nodes of the operator and the
result leaves from the output node. Therefore, all of the operators of DFQL implement
operational closure. This means that the inputs to the operators are relations and associated
textual instructions, and the output from each operator is always a relation.

wo [

N oupuenae

Figure 2.2: Operator Construction

In fact, DFQL operators can be grouped into two basic categories: primitive
and user-defined operators. Each primitive has a one-to-one correspondence with an actoal
method in the implementation language of the interpreter. User-defined operators are
created from primitive operators and possibly other user-defined operators which have been
previously created . Next, primitive operators can be broken down into basic, other
primitives, and display operators.

5. Orthogonality in a programming language means there is a relatively small set of primitives that
can be combined in a relatively smail number of ways 10 build the control and data structures of the
Imnguage [Sabe89).

(1) Basic Operators. DFQL provides six basic operators derived from the
requirement for relational completeness and also the requirement to provide a form of
grouping or aggregation. Thus, DFQL has the expressive power of first-order predicate
f calculus. To be relationally complete, at least five relational operators must be
implemented, namely select, project, union, join, and difference. See Table 2.1, which
illustrates the basic DFQL operators and their corresponding translation in SQL.

TABLE 2.1: BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS

Implements the relational algebra | SELECT DISTINCT *
. - selection operator. The algebraic | FROM relation
relation condition | tion is: WHERE condition
O <condition> (<relation>).
It retrieves tuples from the relation
which fits the specified condition. There
SELECT are no duplicate tuples in the resuit.

Implements the relational algebra | SELECT DISTINCT
projection operator. The algebraic | attribute list

notation is: FROM relation
R<atribute lisr>(<relation>).

The attributes list, separated by commas
contains the names of attributes to be
PROJECT retrieved from the relation . The project
operator eliminates duplicate tuples from
the result.

(TABLE 2.1: (Continued).

| ovot [peebin T souEquimen |

Implements the relational algebra theta- | SELECT DISTINCT *
Jjoin operator. The algebraic notationis: | FROM relationl ri,
<xelation]> Xeopndition> <tclation2>, | relation2r2

The tuples satisfying the condition are a | WHERE condition
subset of the tuples of the cartesian
product. If there is no condition input,
the join operator is “cartesian product”.
If both relations have the same name for
an auribute which must be used in the
condition, use left to right order of
relations coming into the operator (e.g.
rl.ssn = r2.essn), where ssn and essn are
primary keys or foreign keys of relationl
and relation2 respectively.

Implements the relational algebra, | SELECT DISTINCT *
difference operation. The algebraic | FROM rclationl

1 notation is:
. . SELECT DISTINCT *

Relational difference returns as a result a
relation that contains all the tuples that
occur in <relationl> but not in
DIFFERENCE <relation2>. diff requires that both
relations be union compatible.

TABLE 2.1: (Continued).

Implements the relational algebra union
operation. The algebraic notation is:
<relation 1> U <relation2>.

This operator takes all the tuples from
both relations and combines them,
duplicate tuples being eliminated. Union
requires both relations to be union
compatible. This restriction is necessary
since union does not create additional
columns for the output relation.

SELECT DISTINCT *
FROM relational 1
UNION

SELECT DISTINCT *
FROM relational2

GROUP CNT

GroupCnt (a short hand for group count)
is defined as a basic operator in order to
provide the user with some simple
aggregation capabilities. It provides the
user a means to formulate queries that
involve universal quantification.
GroupCnt requires a relation, a list of
grouping attributes, and an alias name
for the result. Grouping attributes can be
more than one attribute, separated by
commas. The count result is an integer
which gives the total number of tuples in

that grouping.

SELECT DISTINCT
grouping attributes,
COUNT(*) count attr.
FROM relation
GROUP BY

grouping astributes

(2) Other Primitives Operators. DFQL provides several other primitive
operators to perform special operations on relations. Most of these additional primitives
perform operations at such a low level that the user would not be able to specify them as a
user-defined operator. However, all of these additional operators could also be specified as
user-defined operators as well. To illustrate, see Table 2.2. which lists these other primitive
f operators and their corresponding transiation into SQL.

TABLE 2.2: NON-BASIC DFQL OPERATORS AND THEIR SQL EQUIVALENTS

s | Deoidm | SOL Equvmien |

Implements relational algebra | SELECT DISTINCT *

intersection operation. The algebraic
notation is:

<relation1> M <relation2>.

It returns the tuples which exist in both
relations, as a result out relation.
Intersect requires both relations to be
union compatible. The implementation
of intersect is identical to union and diff
operators.

FROM relationl
INTERSECT
SELECT DISTINCT *
FROM relation2

Finds the minimum value of the
specified attribute in separated sections
according to the grouping attributes. It
gives the grouping attributes and
produces the minimum values of each
group in a column named with the given
alias name as a result of relation.

SELECT DISTINCT
grouping attributes,
MIN (aggr. attr)
FROM relation
GROUP BY

grouping attributes

gl;oume trributes

TABLE 2.2: (Continued).

Similar to groupMin except it finds the
maximum value of the aggregate
attributes according to the grouping
attribute.

T T T

SELECT DISTINCT
grouping attributes,
MAX(aggr. attr.)
FROM reiation
GROUP BY group attr.

Similar to the previous operator, except
it finds the total value of all the aggregate

. | attribute’s values according to the

grouping attributes.

SELECT DISTINCT
grouping attributes,
SUM (aggr. attr.)
FROM relation
GROUP BY
grouping attributes.

GROUP AVG

As previou:s operators, except it finds the
average value of the aggregate attributes

according to the grouping attributes.

SELECT DISTINCT
grouping attributes,
AVG (aggr. attr)
FROM relation
GROUP BY
groaping attributes.

TABLE 2.2: (Continued).

It is a simple way of introducing
universal quantification. It takes a
relation and splits the tuples according to
the grouping attribute list and then
checks all tuples in individual groups
according to the condition specified. If
all the tuples satisfy the condition then
an output tuple value is generated
consisting of the grouping attribute list.
So, it means that this group satisfies the
condition in all their tuples.

It can be translated into
a sequence of SQL
statements.

This operator is the opposite of
groupAllSatisfy operator. It gives the
grouping attributes only if none of the
tuples satisfies the condition.

It can be translated into

a sequence of SQL
statements.

GROUP N SATISFY

It is closely related to groupAllSatisfy.
The only difference is that groupNSatisfy
takes an extra input which allows the
user to specify exactly how many of the
tuples in the group need to satisfy the
given condition in order for that group to
be included in the resulting relation. So,
the fourth argument (number), must
consist of one of the operators (<, >, =<
=, > =, |=) and a number.

It can be translated into
a sequence of SQL
statements.

(3) Display Operators. The display operators are provided to allow the
user to print the contents of a relation on the computer screen. The most common usage is
to print out the final result of a query. There are two display operators:

o display. It takes as inputs a relation and a text string to be used as a title. The tide
makes it easy to differentiate between printed results when more than one display
operator is used in a query.

» sdisplay. It is used to produce a sorted printout of a relation. Each zttribute in the list
may be followed by “ASC” (ascending) or “DESC” (descending).

(4) User-defined Operators. These kinds of operators give the flexibility
to the user to define his/her own style of operator and extend the capability of the language
according to his/her desires. With user-defined operators, the user can construct his own
operaturs that look and behave exactly like the primitive operators provided in DFQL. The
user can create opexators for situations that are unique to his query needs. This kind of
flexibility is gained without a loss of the power of orthogonality, since user-defined
operators are constructed by combining the available primitives with previously defined
user operators as well. ,

(5) DFQL Query Construction. General ideas behind DFQL construction
have been implicitly discussed. Query constructions will be presented in Chapter IIL All
DFQL queries exist as data flow programs in which text objects and operators are
connected to each other by lines called data flow paths and all of the information traverse
these paths during execution. DFQL objects, except operations, do not have any input
nodes and can be executed anytime. They pass the relation object, attribute list, or condition
in order to be used by an operator. As soon as all the input nodes have the information, the
operator can be executed and produces a relation at its output node. Since a DFQL query

does not permit iteration and recursion, however, execution of the query can be visualized

as flowing from the top the diagram to the bottom. There is no restriction on how operators
are placed on the screen; top-down placement is recommended for readability.
(6) Incremental Queries.This is the most important feature provided by
DFQL. It allows the user to specify or create his/her queries incrementally. In other words,
the user can formulate one portion of the query, and then check the Results (returns back if
needed), and continue to build/create other portions of the query one by one. This capability
gives more flexibility to the user during his/her work, especially when creating a complex
query. It helps the user prevent losing track of what he/she is doing and provides
intermediate results to help in query construction. Specifically, this feature can be divided
into two sections, namely incremental construction and incremental execution.
» Incremental Construction. This provides the user with the capability to specify/create
fhe query part by part, which is ncreasingly helpful as the complexity of the query
increases.

« Incremental Execution.This feature is helpful during the debugging of complex
queries. If a complete query does not produce a desired result, it allows the user to
check level by level in order to find the erroneous part and fix it. Therefore, the user
can see the intermediate result at any level by executing the query incrementally.

(7) Universal Quantification. The problem of expressing universal
quantification in existing query languages has been discussed in previous section. DFQL
provides a unique solution to this problem, by implementing simple counting logic to
achieve the result that fulfill the requirements of universal quantification. The basic idea
employed is that if all tuples in a relation or a group must satisfy some criteria, the number
of tuples that meet the criteria are counted and then compared to the total number of tuples
under consideration. If these two numbers are equal, then the universal quantifier has been
satisfied. In DFQL, the operators that can implement universal quantification are:
groupAllSatisfy, groupNoneSatisfy, and groupNSatisfy operators. However, the users can

achieve universal quantification as well by building their own quantifications as a user-
defined operator using the primitive operators.

(8) Nesting and Functional Notation. The nesting feature of SQL exists
naturally in DFQL. As discussed before, one by one execution of operators to supply input
data to other operator is like block structured execution in SQL from the “inside” to the
“outside” of nesting queries. The lack of specific nesting structures in DFQL improves the
readability and orthogonality of the language. The use of functional notation for all of the
DFQL operators greatly enhances orthogonality. Relational operational closure is
implemented by the functional paradigm. The use of operators that may take more than one
input but produce only one output allows for their easy combination into user-defined
operators as discussed before.

(9) Graphical Structure of DFQL Query. DFQL'’s visual representation of
the query is a data flow graph consisting of DFQL objects which are connected together
by lines of data flow paths. As such, the graphical structure represents the relational
algebra structure for execution of the query. By using a graphical relational algebra
approach to query formulation, it provides a much more consistent and straight forward
interface to the databases.

3. Entity-Relationship Model Interface
The Entity- Relationship (ER) model was introduced in {Chen76). The ER model
has been used extensively as a high-level conceptual data model. The main idea behind this
model is to illustrate the concepts of entity types and relationships between entity types in
a graphical way in order to enhance understanding of the structure desire for a database. An
example of visual representation of the ER model is shown in Figure 2.3.

3

1 Number
WORKS_FOR CP
CLoaion

"N'mnbaofﬂmployee\

EMPLOYEE

! supERVISION S N WORKS_ON PROJECT

DEPENDENT

Figure 2.3: ER schema diagram of the COMPANY database [EIma89]

From the ER diagram we can illustrate that:

* The entity types such as EMPLOYEEE, DEPARTMENT, and PROJECT are
represented as rectangular boxes.

* Relationship types such as WORKS_FOR, MANAGES, CONTROLS, and
WORKS_ON are represented as diamond-shape boxes that are attached to the
participating entity types with straight lines.

+ Both entity types and relationship types have attributes which are represented by the
oval circles where each attribute is attached to its entity type or relationship type by
a straight line.

32

» “Name” is an attribute of EMPLOYEE and has composite attributes such as Fname,
Minit, and Lname.

» Location in double ovals represents multivalued attributes, and dotted ovals represent
derived attributes.

» Key attributes have their names underlined

« Double rectangles represent a weak entity, where the weak entity means an entity type
which may not have any key attributes, and the double diamond as the identifying

relationship.
« The partial key of the weak entity type is underlined with dotted line.

« The participation constraint is specified by a single line for partial participation, with
the cardinality ratio is attached; a double line illustrates total participation. For
example, the participation of EMPLOYEE in WORKS_FOR is total (every employee
must work for a department), while the participation of EMPLOYEE in MANAGES
is partial (not every employee manages a department). [Elma89]

The idea of using the ER diagram as a query language is to let the user not worry
about the particular join conditions between entity types, however, it tends to force the user
to rely on the specified relationships. These relationships are all displayed to the user. This
can be a benefit to a novice user, who does not really understand how the data in the
database fits together; but it seems somewhat fatal, to write queries which depend on
relationships that the user may not fully understand. The ability to use a relationship
without knowing how it is actually set up increases the chance of syntactically correct
queries that will produce the wrong resuit. The ER model as mentioned above docs not
affect our next discussion. It is presented in order to illustrate features of another visual-
based query language that are also available for RDBMS’s.

33

Il. THE COMPARISON OF SQL, QBE AND DFQL WITH RESPECT
TO DATA RETRIEVAL CAPABILITIES

First of all, we consider that the notion of a query language as a high level language
means it is intended to be used by a non-programmer or a user without specialized training.
However, as mentioned in two previous chapters, the user faces some difficulties in
specifying correct queries, especially as they relate to universal quantification and nesting
in SQL, and universal quantification in QBE. Then, we attempt to observe how DFQL
overcomes the problems that are encountered by SQL and QBE.

This chapter focuses on the comparison of SQL, QBE, and DFQL. In order to
accomplish the comparison of these three languages, numerous queries are composed by
category, in which each language is specified and compared. Some of the queries are stand-
alone, but some others specified are logical extensions (or the complexity is increased)
from one query to the next. Such extension types of queries are chosen to analyze the query
language’s ease-of-use, flexibility, and consistency in formulating logically related queries
with respect to data retrieval for RDBMS's. Consider the following, brief explanation:

* Ease-of-use particularly emphasizes how easy the query language is to learn and
express queries in.
* Flexibility means more than one way of expressing a single query.

¢ Consistency means similar thinking in a mental model can be expressed in a similar
structure in the language.

All the representative set of queries presented are matched to the tables of a relational
database instance of the COMPANY schema which are provided in Appendix A. Some of
the queries are related to queries that are presented in [Elma89]. Based on the above, this
chapter is divided into two sections: first the categories of the queries, and second is the

analysis of the strengths and weaknesses of the comparison of all three languages.

A. CATEGORIES OF QUERY

In order to compare these three languages, numerous queries are composed by
category. The queries are divided into four categories: single-value, set-value, statistical
result, and set-count value. In each category SQL, QBE, and DFQL. are specified and
compered.

1. Single-Value

In this category the user (end user) attempts to obtain a proper relation of a
relation (table), based on a single-value expression. As a result of the single value
expression in the queries, the user can expect to obtain a table, a single column, a single
row, or a single scalar value. These correspond to a constant value of table-expression,
column-expression, row-expression and scalar-expression, respectively, in a relation. A
scalar-expression is a special case of a row-expression and a special case of a column-
expression [Date83). The null value in this case is also presented as single value (see
Chapter IL.A).

In this category, the operators such as “=", “<*, “<=", “>", “>=", and “like” , are
generally used in the relation-operation, but we can also perform the standard arithmetic
operators “+”, “-”, “*” and “/”. In addition, if we are concerned with a single scalar value,
a set of special aggregate functions such as COUNT, SUM, AVG, MIN and MAX can also
be applied. In this research these aggregate functions fall under the stafistical-result
category. Consider the following queries:

a. Query 1: Simple retrieval
List the salary of every employee.

() SQL
SELECT SALARY = SELECT SALARY
FROM EMPLOYEE FROM EMPLOYEE

WHERE TRUE = TRUE

Since in the WHERE-clause we can specify TRUE = TRUE, the
above query can be considered single value. It yields a single column to be a new relation.
If there are multiple employees with the same salary, that salary will be displayed multiple
times as redundant duplicate tuples in the result of the query. If we are concerned with
distinct values, SQL allows us to use the keyword DISTINCT in the SELECT-clause:

SELECT DISTINCT SALARY

FROM EMPLOYEE

The results of these two alternative queries are:

Without keyword DISTINCT With keyword DISTINCT
SALARY SALARY
30000 30000
40000 40000
25000 25000
43000 43000
38000 38000
25000 55000

25000
55000
36

P._Sx

Since we are interested in retrieving the SALARY values, in QBE
“P._Sx"” is placed in the column of the SALARY attribute. As discussed in Chapter II, the
prefix “P” is used to indicate that the values of the SALARY column are to be retrieved.
General speaking, QBE allows the user just to specify “P.” instead of “P._Sx”. In other

words, QBE retrieves the same thing. This seems very simple io specify. However, in some
cases QBE also allows redundant duplicate tuples to exist in the result. In order to avoid
redundant tuples, the prefix “UNQ.” is needed as an operator since it keeps only unique
tuples in a query result. Therefore, if we are concerned with distinct values, the “P._Sx”
from the above query can be replaced by “P. UNQ._Sx”. The results are the same as for the
SQL query above.

® DRQL
EMPLOYEE Sal

leo

G

The attribute list Salary is to be retrieved from the EMPLOYEE
relation. The result of the projection is displayed on the screen by display operator. The

result is a proper relation which contains only the values from the column of the specified
attribute Salary. Here, the project operator eliminates the redundant duplicate tuples of the
attribute. The result is the same as the SQL query using the DISTINCT operator in “a.(1)”
u above.

b. Query 2: Qualified retrieval
List all employees whose salary is more than $50,000.

(1) SQL

SELECT *

FROM EMPLOYEE

WHERE SALARY >50000

The asterisk (*) in the SELECT-clause is shorthand for retrieving all
the attribute values, in order, of tuples satisfying the query. The tuple selected must satisfy
the condition “SALARY >50000". Since the query is asking for the list of all employees
who fulfil the condition, the asterisk character should be used in SELECT-clause. The
SELECT-clause retrieves all the employee attributes of tuples from the EMPLOYEE
relation that satisfy the condition specified. There are no redundant tuples in the result.

(2 QBE

The “>50000" is specified in order to get the tuples that satisfy the
condition “> 50000”, where “S0000” is as an actual constant value. Placing the “P.” below

the relation name means to retrieve all the attribute values of tuples of the relation which

match the condition specified. Since the key attribute is included in all tuples returned,

there are no duplicate tuples in the resuit.

3) DRQL

EMPLOYEE y > S0000

By using the select operator, the query retrieves tuples from the
EMPLOYEE relation which meet the specific condition Salary >50000. There is no
alteration in the structure of the relation, so there are no redundant tuples in the query result.

The result of the Query 2 is:
EMPLOYEE | FNAME | MINIT | LNAME SN BDATE ADDRESS SEX | SALARY | SUPERSSN } DNO
* James E Borg | 88866555 | 10-Nov-27 | 450 Stone, Houston, TX | M 55000 nul} 1

39

¢. Query 3: Retrieval involves more than two tables

For every project located in Houston, list the project name, the
controlling department number, and department manager’s last name, ssn, and sex.
() sSQL
SELECT PNAME, DNUM, LNAME, SSN, SEX
FROM EMPLOYEE, DEPARTMENT, PROJECT
WHERE MGRSSN = SSN AND DNUM = DNUMBER
AND PLOCATION = ‘Houston’

This query is select-project-join with two join conditions. The join
condition is specified according to the key and the foreign key of the relations. Here we
specify DNUM = DNUMBER as the join condition regarding the controlling department
of a project, while the MGRSSN = SSN joins the controlling department to the employee
who manages the department. PLOCATION = ‘Houston’ specifically specifies projects

that are located in Houston.
(2 QBE
EMPLOYEE | FNAME | MINIT | LNAME SN BDATE | ADDRESS | SEX | SALARY | SUPERSSN | DNO
P P_Sx P

DEPARTMENT | DNAME DNUMBER | MORSSN | MGRSTARTDATE

Dx Sx
PROJECT PNAME ENUMBER | PLOCATION DNUM
P Houston P._Dx

In this query an example variable “_Sx” is used to join relations

EMPLOYEE and the DEPARTMENT at the key and foreign key. “_Dx" is used to relate

40

the key and foreign key of the joined relations DEPARTMENT and PROJECT. “P.” is used
to retrieve the attribute values of joined tuples that fulfil the condition

PROJECT PLOCATION = “Houston”.

3) DFQL

PROJECT Plocation = Houston

DEPARTMENT

The select operator will select the projects that are located in Houston
from the PROJECT relation. The result at the select operator output retains all the attributes
of each selected project tuple, assuming it is as a new relation rl (a subset of PROJECT
relation). The rl is joined with the DEPARTMENT relation by employing the join operator
with the equi-join condition rl. Dnum = r2. Dnumber in order to get the controiling
department. The result is used by the next join operator, with the equi-join condition
mgrssn = ssn relating the employee who manages the department. Each join operator
produces a cartesian product of all the possible tuples of both incoming relations based on
the join condition. This result is then used by the following operator. Finally the project
operator produces the desired relation result with values from the attribute list.

41

The result of Query 3 is:

PNAME DNUM | LNAME SSN SEX

W
ProductZ 5 | Wong | 333445555 | M

Reorganization 1 Borg | 888665555 | M

d. Query 4: Retrieval involving universa! quantification

Retrieve the department number where all of its employees have salaries of
more than $40,000.

(1) sQL
SELECT DNO
FROM EMPLOYEEE
WHERE NOT EXISTS
SELECT *
FROM EMPLOYEEEIl
WHERE E. DNO = E1. DNO
AND SALARY = 40000)
This query involves one nested query which selects all the
EMPLOYEE tuples related to an EMPLOYEE relation itself. SQL in this case implements
a NOT EXISTS operator in order to express universal quantifier in the WHERE-clause by
use of a negative logic. The nested query checks all the EMPLOYEE (E1) tuples according
to the condition specified, such that none of the employee tuples satisfies the condition,
then the EMPLOYEE (E) tuple is selected. If we rephrase the query, it becomes “retrieve
the department number if there does not exist any employee with the department number
who has a salary less than $40,000”. Notice the use of “E” and “E1” as aliases for the
EMPLOYEE relation. In this case “E” and “E1” represent two different copies of

4

copies of EMPLOY EE relations. Each DNO will be duplicated if the department has more
than one employee. This can be avoided by using DISTINCT.

(2 QBE. As discussed in Chapter Ii, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified.

(3) DFQL

EMPLOVEE Salary > 40000

N

Baroupansatisty2

As discussed in chapter II, DFQL provides the user some group
aggregate functions that can be used to express the query that contains universal
quantification. One possibility is specified just by employing the groupAllSatisfy. It takes
the EMPLOYEE relation and checks all the tuples in each group of department number
“Dno” that satisfies the condition Salary > 40000.

The result of Query 4 is: none

-

e. Query S: Retrieval involving a negation statement
For each department retrieve the first names and the last names of employees

who have no dependents.

() SQL
SELECT DNO FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *
FROM DEPENDENT
WHER SSN =ESSN)

GROUP BY DNO

The nested query retrieves all DEPENDENT tuples related to the
EMPLOYEE tuple. As in Query 4, this query also uses the NOT EXISTS operator.The
nested query checks all the DEPENDENT tuples to see if the ESSN is the same as the SSN
of the current EMPLOYEE tuple. If none match the nested query returns an empty relation
since there are no dependents associated with the current employee. Therefore, the desired

attributes of the tuple are selected.
(@ QBE
EMPLOYEE | FNAME | MINIT | LNAME | SN BDATE | ADDRESS | SEX | SALARY | SUPERSSN
P P. _Sx
DEPENDENT ESSN DEPENDENT NAME | SEx BDATE RELATIONSHIP
- Sx

By looking at this query, we notice that QBE has a negation symbol
(). In this case the negation symbol “~“ is used in a way similar to the NOT EXIST
function of SQL. It will join tuples of relations EMPLOYEE and DEPENDENT if their
values of “_Sx” do not match each other. However, the query can also be specified by

placing a “=_Sx” in the ESSN column, producing the same result [Elmag89].

(3) DFQL

DEPENDENT

DFQL provides the groupNoneSatisfy operator which can be used to
specify this kind of query. First, we join both relations EMPLOY EE and DEPARTMENT,
which results in the cartesian product as an input to the groupNoneSatisfy operator. The
groupNoneSatisfy takes the tuples according to the grouping attribute essn and checks to
see if none of the tuples satisfies the condition ssn = essn. If so, the project operator will

project the first name and last name of the employee.

In DFQL this query can also be specified by using the diff operator. In
the following query, the inputs to the diff operator are the results of two project operators,
say left and right side. The left side result holds the ssn all of the employee in rl, while the

right side holds the ssn of employees who have dependents in result r2. The diff operator
checks these two relations r1 and r2, and returns any ssn(s) which do not appear in both rl

and 12 as the result, i.e., the ssn of employees who do not have dependents.

DEPENDENT

EMPLOYEE
. SSh = eSSN

The result of Query Sis:
Fname Lname
Alicia Zelaya
Ramesh Narayan
Joyce English
Ahmad Jabbar
Jamesh Borg
46

2. Set-Value

In this category the user (end user) tries to obtain a proper relation from one or

more relation based on the set-value-expression that correspond to a constant-set of query

specifications. In this category, the set operations such as union, difference (minus), and

intersection can also be applied. Consider the following queries:

a. Query 6: Retrieval involving existential and universal quantification

Retrieve the department names, first names, and last names where all of its

employees have salaries of more than $40,000 and have no dependents.

(1) sQL
SELECT DNAME, FNAME, LNAME
FROM DEPARTMENT D, EMPLOYEEEI
WHERE D. NUMBER = E. DNO
AND NOT EXISTS (SELECT *
FROM EMPLOYEEE2
WHERE D.DNUMBER = E2. DNO
AND (SALARY = 40000
OR EXISTS
(SELECT *
FROM DEPENDENT
WHERE SSN = ESSN)))
GROUP BY DNAME
This query is an extension of Query 4 or like a combination of Query
4 and Query 5. SQL specifies this query by employing the EXISTS and NOT EXISTS
operators with two nested queries. The existential quantification is specified by the

EXISTS operator in the nested select statement and universal quantification is expressed

47

]

LE by using the NOT EXISTS operator. Therefore, a rephrasing would be “retrieve the name
| of departments together with their employee’s first and last names such that there does not

exist any employee whose salary is less than or equal to $40,000 or who has at least one
dependent”. In order to specify this query, in SQL we cannot combine Query 4 and Query

5 without rewriting or specifying a new query structure.

(2) QBE. As discussed in Chapter II, QBE lacks the existential and
universal quantification expressions. Therefore, this kind of query cannot be specified.

(3) DRQL

\ ~ Salary > 40000

By looking at this query, we recognize this query as a combination of
Query 4 as the “X” part of the query and “Y™ as the main part of Query S. The intersect

operator takes two relations which are union compatible (r1 and r2) and returns as a result
(13) the tuples which are in both. Then, by employing the join operator, we join r3 with the
DEPARTMENT relation (r4) based on the aqui-join condition 13. Dnum = r4. Dnumber.
The result is a subset of the cartesian product of r3 and r4 and becomes an input to the

project operator.
The result of Query 6 is:
Dname Fname Lname
Headquarter James Borg

b. Query 7: Retrieval involving explicit sets
Retrieve the Social Security Numbers of employees who worked on project
numbers 1, 3, and 10 (or maybe more).

(1) sQL
SELECT DISTINCT ESSN
FROM WORKS_ON W1 W2W3
WHERE WI1.ESSN =W2.ESSN AND W1.ESSN = W3.ESSN
AND W1.PNO=1
AND W2 PNO =3
AND W3.PNO= 10
This query is retrieving the distinct ESSN attribute of an employee whose
PNO include all values 1, 3, 10 or more. This can be done if the tuples satisfy the condition
which are specified in the WHERE-clause.

(2) QBE
WORKS_ON ESSN po | Hours
P.UNQ._X1 1
UNQ._X2 3
UNQ..X3 10
Condition

X1=_X2AND _X2=_X3

In this case, “P.UNQ._X1", “UNQ._X2", and “UNQ._X3" retrieve
the unique ESSN of an employee whose PNO values include all the constant values 1, 3,
and 10. All of the tupies retricved must satisfy the condition which is specified in the
condition box.

(3) DFQL

This query shows that a result (2) of another query make_relation

which contains the set values (1 3 10) is an input to the groupContain!

50

operator. ThegroupContain operator takes the WGFXS_ON relation (r1) and the second
relation (r2) and groups the tuples according to the grouping attribute essn. Itmcncappam
attribute Pno to see if one essn has all the Pno values contained in 2. If so, the essn is
selected.

The result of Query 7 is: none

¢. Query 8: Retrieval involving explicit sets

Retrieve the social security numbers of employees who worked on project

number 1, 3, and 10 exactly.

(1) sQL
SELECT DISTINCT ESSN
FROM WORKS_ONW1W2W3
WHERE W1.ESSN = W2.ESSN AND W1.ESSN = W3.ESSN
AND W1PNO=1
AND W2PNO =3
AND W3.PNO= 10
AND NOT EXISTS
(SELECT *
FROM WORKS_ON W4
WHERE W1. ESSN = W4. ESSN
AND W4.PNO = 1
OR W4.PNO=3
OR W4.PNO = 10)

1. GroupContain operator is a part of Group Set Comparation. GroupSet Comparation also pro-
vides GroupEqual sad GroupContainBy operators. These operators are discussed in class notes of
Dr. C. Thomas Wu, Computer Science Department, Naval Postgraduate School, Monterey, CA.

51

This query is similar to Query 7. We can use the NOT EXISTS
operator with an included nested query that checks the explicit set. Therefore, a rephrasing
would be “retrieve the social security numbers where there are not exists any employees
who worked not on project number 1, 3 and 10™. So, it selects exactly the social security
numbers of employees who worked on project number 1, 3, 10.

(2 QBE
WORKS_ON ESSN. BNO | HOURS
PUNQ._X1 1
UNQ._X2 3
UNQ._X3 10
- X4 Px
Condition

X1=_X2AND _X2=_X3 AND X3=X4

In QBE, the query is specified according to actual constant values 1,
3 and 10 which satisfy the condition in the condition box. This query keeps a similar
structure to the Query 7. “P.UNQ._X1", “UNQ._X2, “UNQ._X3", and “~ _X4" are used
to retrieve the tuples which satisfy the condition specified. Notice that the “~ _X4” couple
with the condition “X3 = X4” specifies set equality. An essn is selected only if it has PNO
values of 1, 3, and 10 and no other values.

(3) DFQL

(1 3 10)

@a&oehtionz

This query also presents the same structure as query 7. Since the query
is asking to retrieve the Social Security Numbers of employees who worked on project
number 1, 3, and 10 exactly, this query uses the groupEqual operator instead of
groupContain operator. It selects the tuples of employees Social Security Numbers only if
the set of Pno values associated with the essn is exactly equal to (1, 3, 10).

The resuit of Query 8 is: none

d. Query 9: Retrieval involving universal quantification
Retrieve the first name and last name of each employee who works on all the
projects managed by department number 5.
() sqQL
;L SELECT FNAME, LNAME
' FROM EMPLOYEE
WHERE (SELECT PNO
FROM WORKS_ON
WHERE SSN = ESSN)
CONTAINS
(SELECT PNUMBER
FROM PROJECT
WHERE DNUM = ‘5°)
There are two nested queries. If the set of PNO values from the first

nested query contains all projects that are controlled by department S, then the employee
tuple is selected. Notice that the CONTAINS comparison operator in this query is similar
in function to the DIVISION operation of the relational algebra [Elma 89].

However, for SQL systems which do not have the CONTAINS
comparison operator, the user must specify by using EXIST and NOT EXIST functions, as
in the query below: |

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE NOT EXISTS

(SELECT *

FROM WORKS_ONB

WHERE (B.PNO IN(SELECT PNUMBER
FROM PROJECT
WHERE DNUM = 5))

AND
NOT EXIST (SELECT *
FROM WORKS_ONC
WHERE C.ESSN =SSN
AND C.PNO =B. PNO))
Notice this query involves two level-nested queries. Thus this
formulation is quite a bit more complex than the prior query with the CONTAINS operator.
Consider the first nested query which selects WORKS-ON (B) tuples whose PNO is a
project controlled by department S in the IN operator nested query, and there does not exist
a tuple with the same PNO and SSN in WORKS-ON (C) relation which is related to the
EMPLOYEE tuple in the outer query. Since the outer WHERE-clause uses the NOT
EXISTS operator, negative logic is reflected. If the nested query returns the empty tuple,
the EMPLOYEE tuple should be selected. For a detailed description see [Elma89].

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

universal quantiﬁéation expressions. Therefore this kind of query cannot be specified.

(3) DFQL

First we use the select operator to retrieve PROJECT tuples into rl
that match the condition department number equals 5, then we project the project numbers
from the result into r2. Concurrently, we use the join operator in order to join the
EMPLOYEE and WORKS_ON relations according to equality of the keys and foreign
keys essn and ssn into a relation, say r3. By applying the groupContain function operator,
it will compare the tuples of the Pno attributes and splits the group of tuples desired by ssn.
Finally, by using the project operator, we retrieve the desired result. Next, the
groupContain function operator groups 13 by essn. Then groupContain checks to sce if an
essn group’s set of Pno values contains all the values in 2. If so, all the tuples in the essn

group are selected. The result (r4) flows to the project function operator where the desired
attribute values are obtained for display.

The output of Query 9 is:

INAME INAME

(John | Smith
| Ramesh Naravan
| Joice English

[Franklin | Wong |

e. Query 10: Retrieval involving existential and universal quantification

List the first name and last name of employees who worked exactly 10 hours

on each of the projects they worked on.

(1) SQL
SELECT FNAME, LNAME
FROM EMPLOYEE E
WHERE NOT EXIST
(SELECT ESSN
FROM WORKS_ON W
WHERE W.ESSN =E. SSN
AND EXIST
(SELECT *
FROM WORKS_ON W1
WHERE W1. ESSN = ESSN
AND HOURS <> ‘10"))

AND

EXISTS (SELECT *
FROM WORKS_ON W2
WHERE W2.esn = E.essn)

This query involves NOT EXISTS and EXISTS operators with two
nested queries. It selects the tuples of EMPLOYEE relation if there does not exist any

employees in the WORKS_ON (W) relation and there exists an employee in WORKS-ON

(W1) who does not work 10 hours for all projects.

(2) QBE. As discussed in Chapter II, QBE lacks the existential and

universal quantification expressions. Therefore this kind of query cannot be specified.

(3) DFQL

WORKS_ON

[—

%g‘guhls:tyjﬂ

Fname, Lname

First we join the EMPLOYEE and WORKS_ON relations. In DFQL
we are allowed not to declare specifically the condition according to the key and foreign
key ssn and essn, as equi-join, however, it works similarly, automatically matching the
tuples of both relations. Then applying the groupAllSatisfy operator takes care of the
universal quantification. Thus, it simply takes a relation r1 and splits the tuples according

to the grouping attribute list, essn in this case, and then checks all the tuples in the

individual group related to the condition Hours = 10. If all the tuples satisfy the condition

specified then the values of that grouping attribute list are passed out. It means that these
groups satisfy the condition by all their tuples. Finally, by using project operator, we
project the desired tuples.

The result of Query 10 is:

FNAME LNAME
Franklin Wong
Alicia Zelaya

J Query 11: Retrieval involving Set Operation
List of all project numbers and project names for projects that involve an

employee whose last name is ‘Smith’ as a worker or as a manager of the department that

controls the project.

(1) SQL
SELECT DISTINCT PNAME, PNUMBER
FROM PROJECT
WHERE PNUMBER IN (SELECT PNUMBER
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM = DNUMBER
AND MGRSSN =SSN
AND LNAME = ‘Smith’)
OR
PNUMBER IN (SELECT PNO
- FROM WORKS _ ON, EMPLOYEE
WHERE ESSN =SSN AND LNAME = ‘Smith’)

This query uses IN operators and includes nested queries in the

SELECT query. The first nested query selects the PNUMBER of projects that have a
‘Smith’ as a manager, while the second selects the project numbers of projects that have a
‘Smith’ as a worker. In this query, the comparison operator IN compares the value
PNUMBER in the outer WHERE-clause and evaluates to true if and only if at least one
value of the sets result from the nested queries matches it. For a detailed description of the

above mentioned and another way to specify this query using the UNION operator, see

In QBE, any number of joins can be specified in a single query

{Elma89]. When we specify a join, we can also specify a result table to display the result
of the query, as in the query above. This is required if the result includes attributes from

[Elma89).
(2 QBE
EMPLOYEE | FNAME | MINIT | LNAME SN BDATE | ADDRESS | SEX | SALARY | SUPERSSN [DNO
Smith Sx
DEPARTMENT DNAME DNUMBER MGRSSN MGRSTARTDATE
Dx Sx
WORKS_ON ESSN PO | HOURS
Sx Px
PROJECT PNAME PNUMBER | PLOCATION | DNUM
P P_Px _Dx
RESULT PNAME PNUMBER
PUNQ. Px o

two or more relations. Sometimes, if there is no result table specified, the system provides
the query result in the columns of the various relation. This tends to be difficult to interpret

and become meaningless in most cases.

(3) DFQL

EMPLOVEE Laame = Smith

DEPARTMENT

Mgrssn = ssh

Dnum = Dnumber

Since the query involves more than three relations, we make use
several join operators. First we select the last name “Smith” as an employee, then the tuple
result flows to two join operators. One part joins with the WORKS_ON relation on the left
side (we marked as “j1”) and checks to see if the employee is a worker, and on the right

61

side (we marked as “j2") joins with the DEPARTMENT relation to check the tuple to see
if the employee is a manager. Since we want to obtain the tuples that relate to Pno and
Pname, we need to join the tuples resuits of both sides. Then we use the union operator
which takes all the tuples from both sides and combines them (as they are union

compatible). Finally, by employing the project operator, we retrieve the Pno and the Pname

that involve ‘Smith’ as a worker and as a manager of a department who controls that
project.
The result of Query 11 is: none

3. Statistical Resuit

In this category the user (end user) attempts to obtain a proper relation from one
or more relations based on a special case of statistical r=sult. This category involves
aggregate function operators such as MIN, MAX, A VG, COUNT. Consider the following

queries:

a. Query 12: Retrieval involving aggregate AVG function

Retrieve the average hours of working load for project number 3.

(1) SQL
SELECT AVG (HOURS)
FROM WORKS_ON
WHERE PNO='3
The average function is used to calculate the average of the values in

the HOURS column from the WORKS _ON relation. The values to be calculated must
satisfy the specified condition PNO = ‘3’ in the WHERE-clause.

62

(@ QBE

WORKS_ON EsSN | po HOURS
3 PAVG. ALL

In QBE, we place “3” as an actual value which represent an equality
condition in the PNO column. And “P.AVG.” is used to retrieve the average of the values
that match the condition.

(3) DFQL

W AVG (Hours): average hours..

The select operator selects the tuples from the WORKS_ON relation
that match the condition specified “Pno = 3”. The result is used by next project operator,
which projects the average value of the result according to “AVG (Hours): average
houwrs...”. In this case, an alias name is needed afier the colon to indicate clearly what the
result is [Turg93). The select and project operators are very often used together. So, DFQL

allows the user to define a'new operator by giving a related name selproj as a combine

63

T

operator. It is used to select the tuples that satisfy the condition and directly project the
desired attribute as a result.
The result of Query 12 is:

Average Hours
25

¢. Query 13: Retrieval involving AVG and Grouping function

Retrieve the average hours of working load for each project.

() SQL

SELECT PNO, AVG (HOURS)

FROM WORKS_ON

GROUP BY PNO

Since we are interested in the average hours of each project, in SQL we have

to apply the GROUP BY-clause. Here the GROUP BY-clause is used in order to divide
WORKS-ON tuples into groups by their PNO values. Then, the AVG function is used to
calculate the average of the HOURS values of tuples according to the PNO grouping

attribute separately.

(2) QBE

WORKS_ON ESSN | O | HOURs
G. PAVG. ALL

QBE keeps the same structure as Query 12 except in the PNO attribute
where we have to place “G.” in order to group the tuples which have the same value in

PNO. Then, “P. AVG.ALL” retrieves the average of the values according to each group.

3) DRQL

DFQL provides several grouping aggregate function operators for
statistical results. One of them is the groupAvg operator. It gets the tuples of WORKS_ON
relation and splits the tuples according to grouping attribute PNO, then produces the
average of the values of each group of aggregate attribute Hours. The result value is given

an alias name “Average hours”.
The result of Query 13 is:
Pno Average Hours

1 26.25

2 1875

25.00

10 27.50

20 1250

30 27.50

d. Query 14: Retrieval involving Count, AVG and Grouping function
For each project retrieve the project number, the number of employees in the
project, and their average hours.

(1) SQL
SELECT PNO, COUNT (*), AVG (HOURS)
FROM WORKS_ON
GROUP BY PNO
In this query, the GROUP BY-clause is needed in order to group
tuples by the project number. Then, the AVG and COUNT (*) operators calculate the

average hours and counted the number of employees respectively for each PNO grouping
from the WORKS_ON relation.

(2 QBE

WORKS_ON ESSN BNO | HOURS
PONTALL | PG. | PAVGALL

QBE uses a similar structure to Query 13. Since Query 13 is
expanded by asking the project number and the number of employees involved in each
project, it can be specified by adding “P.” beside “G.” in the PNO attribute and placing
“P.CNT.ALL” in the ESSN attribute.

(3) DFQL

This query is an extension of Query 13. The “X” part is exactly the
same as Query 13 and we add the groupCnt function part “Y™ that counts the number of
tuples in each Pno group. Here, we need to join the tuples as a result of part “X” and “Y”
which match according to the Pno. Finally the project operator retrieves the desired

attributes from tuples.
The result of Query 14 is:
Pno The number of employees Average Hours
1| 2 | 262
2 3 18.75
3 2 25.00
10 3 27.50
20 3 12.50
30 3 27.50

d. Query 15: Retrieval involving Count and AVG function

Retrieve the number of employees and their average hours who worked on
project 3.
() sQL

SELECT PNO, COUNT (*), AVG (HOURS)
FROM WORKS_ON
WHERE PNO='3

This query is an extension of Query 12 in which we can count the
number of employees by applying the function COUNT (*). Since we are concerned with
a particularly project, it is specified as a condition in the WHERE-clause.

(2 QBE

WORKS_ON ESSN Bo HOURS

PCNT.ALL 3 PAVG.AL

The only different with Query 12 is the “P.CNT.ALL”. It retrieves the
number of employees that match the condition specified under the PNO column.

(3) DFQL

Average hours..

In this query, the “X” part is the same as Query 12, and we add the
groupCnt operator “Y™ part in order to count the number of employees who participate in
project number 3. Next we need to join the tuples as a result of both sides “X” and “Y”.
Then, the project operator is used to retrieve the desired attribute values.

The result of Query 15 is:

Average Hours The number of employees

¢. Query 16: Retrieval involving Max and Grouping function

For each department retrieve the employee’s social security number who has
the highest salary.

(1) SQL

SELECT DNO, SSN, MAX (SALARY)

FROM EMPLOYEE

GROUP BY DNO

The employment of the MAX aggregate function is used in order to
obtain the maximum (or highest) value of the SALARY attribute from the EMPLOYEE
relation. We select the tuples with the max salary from each group according to DNO in the
GROUP BY-clause. Based on DNO and highest pay we also retrieve from the tuple the
SSNis attribute value.

(2 QBE

EMPLOYEE | FNAME] MINIT | LNAME SN, BDATE | ADDRESS | SEX SALARY SUPERSSN

In QBE we just need to specify “G.” in the DNO attribute in order to
separate into each group. The “P.MAX. ALL" is specified to get the tuple with highest
salary in the SALARY attribute from all tuples in each group of DNO. And the other “P.”
is used to retrieve the SSNs.

(3) DFGL

EMPLOYEE Dno Salary

Dno, max salary]

Dno, ssn, max pay..

The structure which is specified for this query is similar to the

previous queries that involve the groupAvg operator. The only different is we have o use

the groupMax operator. The result of groupMax is the tuple of each Dno group with the

highest pay. Since we are also interested in the ssn of selected employees, we join the

EMPLOYEE relation to the result mentioned above. Then, by using the project operator

we retrieve the attributes desired.

The result of Query 16 is:
Dno 3SN Max pay
S
5 333445555 40000
4 987654321 43000
1 888665555 55000
n

who has the highest pay.

() SQL
SELECT DNO, SSN, DEPENDENT_NAME, MAX (SALARY)

[Query 17: Retrieval involving Max and Grouping function

FROM EMPLOYEEE, DEPENDENT D
WHERE E.SSN = D. ESSN

GROUP BY DNO

For each department retrieve employee (SSNs) and their dependent name,

The above query is extended from Query 15 in which the

DEPENDENT relation is involved. In this query we select the tuples from EMPLOYEE
and DEPENDENT relation according to the attributes list in SELECT- clause which satisfy
the join condition specified according to the keys SSN and ESSN in E. SSN = D. ESSN.
The DNO which is specified in GROUP BY -clause is used to separate the tuples of DNO

in each group.
(2 QBE
SUPERS
EMPLOYEE | FNAME | MINIT | INAME | SSN | BDATE | ADDRESS | SEX | SALARY N DNO
P_Sx PMAX.ALL G
DEPENDENT ESSN DEPENDENT NAME | SEX BDATE RELATIONSHIP

Here we need to join the two relations EMPLOYEE and

T2

DEPENDENT by using the “_Sx” as an example variable that we place in the key attribute

of SSN and ESSN. The “G.” is used to separate the tuples in each group according to the
DNO. Then, “P.MAX. ALL”, “P.”, and “P._Sx" are used to retrieve the values of the
attributes desired.

(3) DFQL

[Dno, ssn, max, salary]

rl
DEPENDENT

ri.ssn = r2. essn

Since Query 17 is an extension of Query 16, we see relation r; is a
result of Query 16 which holds the tuples of [dno, ssn, max pay..]. Then we need a join
operator for the purpose of joining with the DEPENDENT relation r, according to the keys
ssn and essn of both relations. The tuples as a result of the cartesian product that we
obtained from the join operator above are used by the project operator in order to retrieve

the values of ssn(s) and the Dependent_name.

The result of Query 17 is:

SSN Dependent-name

|55 | Dependenvame |

333445555 Alice
987654321 Abnar
888665555 -

g Query 18: Retrieval involving AVG, Max, Sum, and Grouping function
Retrieve the average, maximum and sum of the salaries of each department’s

highest paid employee.

(1) sSQL

SELECT AVG (SALARY), MAX (SALARY), SUM (SALARY)

FROM EMPLOYEEE

WHERE ESALARY IN (SELECT DNO, MAX (SALARY)

FROM EMPLOYEE El
GROUP BY DNO)

Again if we increase the complexity of Query 16 to Query 18 as
above, SQL presents a structure which is quite different from the query 16. Here the
GROUP BY concens DNO in the nested queries in order to separate the tuples and
calculate the highest paid employees. Then, the outer query specifically calculates the
AVG, MAX, and SUM values of the highest paid of all groups in the department.

74

(2 QBE
EMPALOYEE | ANAME | MINIT | LNAME | SN | BDATE | ADDRESS | sEx SALARY SUPRSSN | DNO
PMAXALL G.
Resuit Dept. top pay
P MAX ALLAVG.ALL.SUMALL

In QBE, this type of query can be specified into two steps, where first
we attempt to retrieve the highest paid according to each group of the DNO. Then we
retrieve the attribute values of selected tuples by placing the "P.” under the Resuit column
and “MAX.ALLLAVG.ALL.SUM.ALL” under the Dept. top pay column.

(3) DFQL

%mlt of 01: dept. top pa%

max (max salary)

sum (max salary)

: ighest paid
avarage of all sum of all :lmgg:‘g al:l'?l dept.
dept. top pay dept. top pay top pay.

75

m

Again, in this query the results of Query 16 can be used as a source or

as an input to the other group operators. In the case of this query groupStat! operators are

used to perform the calculation of avg (max salary), sum (max salary), and max (max
salary). Here, each of these operators produces the values we are concerned with.

The result of Query 18 is:

Avg (max pay) Sum (max pay) Max (max pay)
—_—— o ————
46000 138000 55000

I. Query 19: Retrieval involving Count and Grouping function
For each department retrieve the department name and the total number of
employees who are paid more than $40,000.
(1) SQL
SELECT DNO, DNAME, COUNT (*)

FROM EMPLOYEE, DEPARTMENT
WHERE DNUMBER = DNO AND SALARY > 40000

GROUP BY DNO
Like the previous queries, the GROUP BY -clause is used to separate

the tuples into groups by DNO attribute value. Then, the values of the attributes listed in
SELECT-clause are selected from EMPLOYEE and DEPARTMENT relation in the

FROM-clause which satisfy the conditions specified in the WHERE-clause.

1. Groupstat operator is discussed in notes of Dr. C. Thomas Wu, Computer Science Department,
Naval Postgraduate School, Monterey.

76

(2 QBE

DEPARTMENT DNAME DNUMBER | MGRSSN | MGRSTARTDATE

EMPLOYEE | FNAME | MINIT | INAME | SSN | BDATE | AIDRESS | SEX | SALARY | SUPERSN DNO

> 40000 PG.ONT.ALL._Dx

In this query the “P.G.CNT.ALL._Dx" is specified in order to retrieve
(“P.”) the tuples based on the grouping “G.” of DNO attribute, and CNT. ALL is used to

count DNO in each group to represent the number of employees. All of these can be
performed if the tuples match &. - join condition specified by “_Dx” according to the key
and foreign key DNUMBER and DNO.

First we select the tuples of the EMPLOYEE relation that fulfill the
condition Salary > 40000. Theﬁ we join the result of the select operator with the
DEPARTMENT relation by equality of the key and foreign key Dnumber and Dno. Then,
the result is used by #he groupCnt operator which splits the tuples according to Dno groups.
Finally, by using the project operaior, we retrieve the values of the dname and dno, and also

the number of employees.
The result of Query 19 is:
Dname Dno The number of Employees
Headquarter 1 1
78

4. Set-Count Value

In this category the user (end user) is interested in obtaining a proper relation from
one or more relations based on a special case of set-count testing. Consider the following

queries:
a. Query 20: Retrieval involving existential quantification

Retrieve the first name and the last name of managers who have at least one
female as a dependent.

(1) sSQL

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE EXISTS(SELECT *

FROM DEPENDENT
WHERE SSN = ESSN
AND SEX=°‘F)
AND EXISTS (SELECT *
FROM DEPARTMENT
WHERE SSN =MGRSSN)

One way to specify this query as shown above involves two nested
queries. The first nested query selects all DEPENDENT tuples, and the second selects the
DEPARTMENT tuples managed by the EMPLOY EE. Therefore, if there exists at least one
tuple dependent with SEX equal to female in the first nested query, and at least one tuple
of the employee who managed the department; then the EMPLOYEE tuple is selected
according to the FNAME and LNAME of the employees.

(2) QBE. As discussed in Chapter 11, QBE lacks the existential and
universal quantification expression. Therefore this kind of query cannot be specified.

(3) DFQL

DEPENDENT

ri{.ssa = r2.essn

First we join the EMPLOYEE and DEPARTMENT relation by using
the equi-join based on their key and foreign key, in this case ssn = mgrssn. Then, the tuples
as a result of the equi-join, say as r1 flows to the next join operator. At this point r1 contains
the tuples of employees who manage a department joined with DEPENDENT relation, say
12, according to the key and foreign key join condition rl.ssn = r2. essn. Then, by applying
selproj operator, we select the tuples desired which satisfy the condition specified “Sex =
F” and directly project or retrieve the values of Fname and Lname of the manager.

The result of Query 20 is:

Fname Lname

Franklin Wong

b. Query 21: Retrieval involving Count and Grouping function
Retrieve the total number of employees with salaries more than $40,000 who
worked in each department, but only for those departments where more than four
employees work.

(1) SQL

SELECT DNAME, COUNT (*)

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER = DNO AND SALARY > 40000

AND DNO IN (SELECT DNO

FROM EMPLOYEE
GROUP BY DNO
HAVING COUNT (*)> 4)

GROUP BY DNAME

While reading Query 21, it can lead to misunderstanding the point in
specifying the SQL query. It may lead us to specify the query as follows:

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER = DNO AND SALARY > 40000

GROUP BY DNAME

HAVING COUNT (*)>4

This is an incorrect query since it will retrieve only departments that
have more than five employees who each earn more than $40,000. For a more detailed
description of the above queries see [Elma89).

Query 21 is expanded from Query 19 in the previous Section “3. h.”,
but they are very different in structure. Query 21 is specified by using the nested query.
While specifying this kind of query we must be careful, especially when we have to apply

81

two different conditions like the query above; where “SALARY > 40000” is applied to the
COUNT function in the SELECT -clause and the other in the HA VING-clause. And for the

GROUP-BY function, Elmasri comments “Some SQL implementations may not allow a

GROUP BY-clause without a function in the SELECT-clause. Hence, the nested query in

this example (Query 21 (1) SQL) cannot be permitted in such SQL implementations™.

(@) QBE
DEPARTMENT DNUMBER, MGRSSN MGRSTARIDATE
_Dx
EMPLOYEE | FNAME | MINIT | LNAME BDATE | ADDRESS | SEX | SALARY | SUPERSSN DNO
>40000 P.G.CNTALL._Dx
Condition
ONT.ALL. Dx>4

Here, QBE really keeps a structure similar to Query 19. Here we need

to specify in the condition box “CNT.ALL._Dx > 4” in order to retrieve the total number

of employees if it is more than four members in each department according to the value of

DNO.

(3) DFQL

EMPLOYEE

r1.Dnum = r2 Daumber

’/. -, Dune

YarespCnt7] Dme, Dname, cat

Since it is expanded from Query 19, we can use all of Query 19 and
connect it with the new part of the query. The “X” is the whole part of Query 19 and “Y”
is related to groupCnt and select operators, which specifically count the tuples according
to Dno in order to represent the total number of employees as a specified condition.
The result of Query 21 is: none

»’W

c. Query 22: Retrieval involving Count and Grouping JSunction

For each project on which there are three or more employees working,

retrieve the project number, project name, and number of employees who work on that

project.

(1) SQL

SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER =PNO

GROUP BY PNUMBER, PNAME

HAVING COUNT (*)>3

This query involves two relations PROJECT and WORKS-ON. Here,
the GROUP BY -clause is used in order to separate the project in each group and selection
of tuples is used to satisfy the join condition in WHERE-clause. The HAVING-clause in
this case uses whole groups of projects, and specifically sp?cifm the number of employees

which satisfies the groups themselves.

(2 QBE
PROJECT PNAME PNUMBER | PLOCATION | DNUM
P Px
WORKS_ON ESSN BNO HOURS
PG.CNTALL _Px
Condition
CONT.ALIL Pxz23

Here, P.G.CNT.ALL._Px" is specified in order to retrieve the tuples
of the grouping attribute of PNO which satisfied the join condition related to the key of
PNUMBER and PNO. But, it must satisfy the condition box “CNT. ALL._Px > 3". Here
the use of the condition box is similar to the HAVING-clause in SQL..

(3) DFQL

PROJECT YORKS.ON Ppumber = Pno

We join the two relations PROJECT and WORKS-ON according to
the join condition Pnumber = Pno. The tuples of the cartesian product is flowed to
groupCnt operator, and it splits Pno into each group. Then, it selects the tuples that fulfil
the condition specified “cnt = 3“as counting the number of employees. Through the project
operator we retrieve the tuples needed according to the attribute list.

The result of Query 22 is:
Pname
ProductY
Computerization 10 3
Reorganization 20 3
Newbenefit 30 3

d. Query 23: Retrieval involving Count function

Retrieve project name, where there are three or more employees.

(1) SQL
SELECT PNAME
FROM PROJECT
WHERE (SELECT COUNT (*)
FROM WORKS_ON
WHERE PNUMBER =PNO) =3
By modifying Query 22 just a little bit, we get Query 23. One way to
specify the SQL query is shown above involving a nested query. The nested query counts
the tuples (representing the number of employees) involved in the project in the
WORKS_ON relation. If it is greater than or equal to three, the PROJECT tuple is then
selected. In some implementations of SQL. the above query may not be permitted [Elma89].

> QBE
PROJECT PNAME PNUMBER | PLOCATION { DNUM
P Px
WORKS_ON ESSN RO HOURS
CNTALL._Px 23

In this query “CNT. ALL._Px = 3” counts the tuples concering the
number of employees. If it is greater than or equal to three then the tuples of Pname are
retrieved by “P.” according to key as specified by an example value “_Px".

(3) DFQL

PROJECT WYORKS_ON Paumber = Pno

ent >= 3

In order to get the counting result, DFQL in this case applies the
groupCnt operator in all kind of queries that relate to set count query. That's why Query 22
and Query 23 are specified with exactly the same structure, just slightly different in the

attribute list of the tuples desired.
The result of Query 23 is:

By looking at the results of Query 22 and 23, we notice that the tuples
results of PNAME and the total number of employees retrieved are absolutely equal. In
short, we can say that both Query 22 and 23 are really the same in the structure.

e. Query 24: Retrieval involving universal quantification

Retrieve project name, where there are three or more employees, and all of

them has a work load of 20 hours.

(1) SQL
SELECT PNAME
FROM PROJECT P, WORKS_ON W
WHERE P.PNUMBER = W.PNO

AND PNO IN (SELECT PNO
FROM WORKS_ON
WHERE HOURS =20
GROUP BY PNO
HAVING COUNT (*) 23)
Query 24 above is an extension of Query 23. In the SQL query above,
the GROUP BY -clause and HA VING-clause are particularly related to PNO in the nested

query. If each group of PNO tuples satisfies the condition “HOURS = 20", and also if in
each PNO there are three or more employees as a worker, then the PROJECT tuple will be

selected. However, it must satisfy the join condition specified in the WHERE-clause.

(2) QBE. As discussed in Chapter II, QBE lacks the existential and
universal quantification expressions. Therefore this kind of query cannot be specified.

(3) DFQL

Paumber = Pano

Consider the DFQL. query above. Part “X” is Query 23, and it can be
directly used as a relation to be an input to the groupAllSatisfy operator. It takes the tuples
and splits the tuples according to the PNO as a grouping attribute, and the tuples in each
group must satisfy the condition specified “Hours =20". Then, we retrieve the tuple result
of the attribute desired by using the project operator.

The result of Query 24 is: none

J Query 25: Retrieval involving universal quantification
Retrieve the department names which offer two or more projects where there

are three or more employees who worked on it, and all of them has a work load of 20 hours.

(1) SQL
SELECT DNAME
FROM DEPARTMENT D, WORKS_ON W, PROJECT P

WHERE D.DNUMBER = P.DNUM
AND P.PNUMBER = W.PNO
AND PNO IN (SELECT PNO
FROM WORKS-ON
WHERE HOURS =20
GROUP BY PNO
HAVING COUNT (*) 23)
GROUPBY DNUM
HAVING COUNT (*) 22
Query 25 is expanded from Query 24, and the complexity of the query

has increased. This query involves three relations and nested query. A GROUP BY -clause
and HA VING-clause are used specifically for the nested query, and another GROUP BY -
clause and HA VING-clause are used for the whole groups. Even though this query is just
slightly different from previous Query 24, we have to rewrite while specifying this query.

91

(2) QBE. As discussed in Chapter I, QBE lacks the existential and
universal quantification expressions. Therefore this kind of query cannot be specified.

(3) DFQL

PROJECT _ yorKS_ON

Paumber = Pne

Notice that the “X” part is Query 24. The tuple result is directly used
as a relation to be joined with the DEPARTMENT relation according to the key and foreign
key Dnumber and Dnum. The result of the cartesian product which is produced by the join

operator flows to the groupCnt operator which groups according to the grouping attribute
of Dnum. Then, by employing the selproj operator we can count specifically the tuples
which satisfy the condition specified, and directly project the values desired of the attribute
list.

The result of Query 25 is: none

B. ANALYSIS

In the previous section, we observed how SQL, QBE, and DFQL specify all of the
query examples which are composed in categories. Queries range from simple ones to
queries which involve existential or universal quantifications, and complex nested queries
in SQL. Some of the queries are stand-alone, but some others specified are logical
extensions in complexity from one query to the next. By examining these queries the
relative strengths and weaknesses related to ease-of-use, especially in expressing universal
quantification, specifying the complex nested queries, and flexibility and consistency in

formulating the queries with respect to data retrieval for RDBMS’s are investigated.

1. Ease-of-use

Ease-of-use of query languages is part of the human factor aspect. In this research
we emphasize the leaming and writing of the query, as well as attempting to retrieve the
output result. However, we have to keep in mind that query languages are high level
languages that are also intended to be used by non programmers. Related to Ease-of-use,
some researchers described that:

 The SQL language has been designed and intended to be easily learned and used by
inexperienced user without specialized computer training [Reis75].

* The result of various psychological studies of language (QBE) show that it requires
less than three hours of instruction for non programmers to acquire the skill to make
fairly complicated queries {Z10077]. People will write queries in QBE between two or
three times faster than in SQL [Reis81].

* DFQL is proposed and implemented to mitigate problems that are encountered by the
current query languages, SQL in particular. It requires about half an hour in a database
class at NPS to acquire the concept and make more cotrect queries than SQL [Clar91].

According to our research through the previous Section “A.” of this chapter, the
above comments and results are absolutely valid for QBE and DFQL but not for SQL.
Consider the representative sets of queries that we have in each category or from one
category to the other categories. Here ease-of-use of each language can be pointed out
clearly, where “once we learn a general construct from a sample query, if the way of
thinking can be applied in a new query” we can say that there is certain degree of ease-of-
use. For example, when we leam the technique to drive a car for 500 yards, then we could
most likely can drive for another 1000 yards. Now, let’s take a [ook at some of the queries

that we have.

a. Queries involying existential or universal quantification

In the following discussions we covers several queries that are composed in
single-value, set-value, and set-count value categories. Consider the queries below:

* Query 4: Retrieve the department number where all of its employees have salaries of
more than $40,000.

* Query 5: For each department retrieve the first name and the last name of employees
who have no dependents.

* Query 6: Retrieve the first name, last name and department names where all of its
employees have salaries of more than $40,000 and have no dependents.

By looking at these three queries we realize that Query 6 is virtually the
combination of Query 4 and 5. Now let’s consider how do SQL, QBE, and DFQL construct

all of these queries.

(1) SQL. See the construct of the structure of Query 4 and Query 5, where
both queries contain NOT EXISTS operators that interpret the queries in a negative logic
approach. Generally, these kind of query structures are not easy to understand, especially

Query 4. Assume, we understand the construct of both queries, however we cannot apply
this similar thinking to specify the structure of Query 6. In this case, we do have to think
very carefully since we have to specify a new query that may be very differem» in the
structure. Therefore, these types of queries are difficult to specify even for the experienced

users.

(2) QBE. QBE lacks universal quantification expressions. Therefore we
cannot express these types of queries.

(3) DFQL. By learning the construct of Query 4 and Query 5, we can use
the similar thinking of Query 4 and Query 5 in order to form a new Query 6. Once we know
the construct of Query 4 and Query 5 we can use them in the other new query easily. Notice
in Query 6 that the “X” part retrieves the tuples of employees who have salaries of more
than $40,000, as Query 4, and that the “Y” part retrieves employees who do not have
dependents. We can logically combine these two constructs by using the intersect operator
that combines union compatible tuples so that we have the tuples of all employees who
have salaries of more than $40,000 and have no dependents. Since we are interested in the
department name also, we can easily join the tuples result above as new relation (13) with
the DEPARTMENT relation (r4) which match according to the key and foreign key of both
relations, 3. Dno = r4. Dnumber. Finally, by employing the project operator we retrieve
from the tuples the first name, last name, and department names of those employees.

By investigating the above queries, once we leam how to specify
Query 4 and Query 5, we can generalize them in a straight forward manner to specify Query
6. We can say that this language is easy to learn (and thus easy to use). Consider the
following queries that are similar to the above discussions:

* See Query 9, 10, which are difficult to specify in SQL, cannot be specified in QBE
(see QBE description in Chapter I1.C.1.c.), but are very easy in DFQL since we can
apply the construct concept of Query 4.

* Query 20 also shows that in SQL it is not easy to learn or understand the structure, and
in QBE it cannot be expressed. (See QBE description in Chapter I1.C.1.c.). But in
DFQL the data flows from one part to another are easy to follow and one can

95

understand what’s going on.
b. Queries involving nested queries
In this section, we analyze queries which involve the IV operator in the nested
query. In addition, we also examine several queries which contain the universal quantifier
in the nested queries. Consider the following queries in the set-count value category:

* Query 21: Retrieve the total number of employees with salaries more than $40,000
who worked in each department, but only for those departments where more than four
employees work.

However, before going into any detail in Query 21, see first Query 19 in the
set-value category. By examining these two queries we realize that Query 19 is expanded
to Query 21.

* Query 19: For each department retrieve the department name and the total number of
employees who are paid more than $40,000.

Similar to the above description “1.a.” we attempt to learn the construct from
one sample query and extend it to create another new query. Consider how SQL, QBE and
DFQL. construct both queries:

(1) SQL. When we learn Query 19 and understand the construct, we are
still not confident of how to specify the structure for Query 21 (or an incorrect query can
be specified, see SQL query below Query 21). In other words, in SQL we cannot use the
construct of a sample query to build a new query in a straight forward manner.

(2) QBE. In QBE we realize that the same thinking of the construct in
Query 19 can also be used to specify Query 21. QBE in this case presents a simple and very
intuitive extension.

(3) DFQL. When we leamn the construct of Query 19, it is easy to

understand Query 21. Here, the construct of Query 19 can be used as a part of Query 21.
To build Query 21 we know that we need two parts; first the employees with salaries more

than $40,000 and second, tuples of those department with more than four employees. See
Query 21 of DFQL for details.

We aiso look at several queries which are similar to the above
discussion. These types of queries are composed in the set-value, statistical-result, and set-
count categories. Consider the queries below:

* Query 7 is extended to Query 8.

* Query 16 is extended to Query 18.
* Query 22 is modified to Query 23.
* Query 23 is extended to Query 23.
* Query 24 is extended to Query 25.

In addition to discussion in “1.a” and “1.b” above, see Query 1 in the single-
value category. If we are interested in the distinct value, in SQL we have to use the keyword
“DISTINCT™ in the SELECT-clause, and in QBE the prefix “UNQ.”. On the contrary,
DFQL implements the primitive operators which have a similar capabilities to the
relational algebra operators, so the duplicate tuples in the query result are eliminated. In this
case, we consider that DFQL is easy to use, since we do not need to worry when and where
we have to eliminate the duplicate tuples. For detailed problems concerning the duplicate
tuples see [Codd90).

Next we examine the query that involves select-project-join with two-join
conditions. See Query 3. In SQL it is not easy to comprehend what is going on in the query.
QBE in this case presents a simple construct in which it is easy to follow the joining
between relations and we know what's going on. Furthermore, in DFQL we can easily

follow how the data flows from one part to the other part. It is understandable.

2. Flexibility

The flexibility which is offered by each language, is considered very useful in
specifying queries. Therefore, we feel free to choose the techniques which are most
comfortable and confident in order to specify the correct query. However, by having
numerous ways of specifying the single query, it may introduce confusion about which

technique to use to specify particular types of queries [Elma89).

a. SQL

SQL supports join conditions that can be used to specify many Jueries or use
nested queries with or without the IN operator in it. See Query 9. Instead of using the
CONTAINS operator we can use NOT EXISTS and the IN operator with a nested query.
Also Query 11 that uses IN and OR operators can be specified using the UNION operator.
Sometimes, queries in which are involved NOT EXISTS may be specified using the IN
operator with nested query or vice versa. Query 8 is an exampie. It can be specified without
the IN operator. Generally speaking, there are numerous ways to specify the same query in
SQL [Elma89]. However, in some cases we have no confidence that our query writing is

well specified or correct.

b. OBE
QBE provides less syntax than SQL and DFQL, therefore it does not have the
flexibility like SQL does. However, the tuples result that are existed in several relations can
be formed in one result relation. This flexibility makes the query result more meaningful.
See Queries 11 and 18.

¢. DFQL

DFQL provides primitive operators as described in Chapter II and also we
have been demonstrated in Section “A” of this chapter. DFQL in this case, offers the
flexibility to the user to use the combination or stand alone of the primitive operators with
respect to the query concern. In queries which involved universal quantifier, like Query 4,
instead of using the groupAllSatisfy operator we can apply the select and groupCnt
operators. In Query 5, instead of using the groupNoneSatisfy operator we can also apply the
diff operator in the main part of the query. In addition, DFQL allows the user to define their
own user-defined operator such as the selproj operator of Queries 9, 10, 22, and 25.
Furthermore, the output of one query can be used as an input or as a part of another new
query. In fact, once we know the concept of each operator, we can use it in query
construction easily. In DFQL, we feel more confident that our query is correct, since we

can trace or check the flow to the result part by part.

3. Consistency

As described before, our investigation here is focused on the structure of queries
specified in each language. If a mental model that we have for one sample query can be
built or continued to another new query, where the new query keeps the same mental model
of structure with the prior query, we can say that the language is consistent in structure.
Consider the queries in the single-value, set-value, statistical-result, and set-count value
categories:

* Query 6 is extended or combined from Query 4 and 5. All of these queries involve
universal quantification.

¢ Query 7 and 8 involve explicit set.
¢ Queries 12, 13, 14, 15 relate to AVG function.
¢ Queries 16, 17, and 18 relate to MAX function.

m

¢ Query 19 is extended to Query 21.

* Query 22 is modified to Query 23, then Query 23 is extended to Query 24. Finally
Query 24 is extended to Query 25.

By using the various query examples above, we can examine the structure of

SQL, QBE, and DFQL.. For detail, see and compare the structure of each query. Consider

the following brief explanation:

a. SQL
SQL is not consistent in structure. If we attempt to extend the queries
(complexity increases) as the queries above, so far we cannot apply our mental model of
one construct of query structure to the next new query. In fact, we have to rewrite a new
query from the beginning, which will often be very different in structure (incc. ..istent) with
the prior queries. Therefore, inconsistency in specifying queries in SQL, exists and is

confusing to the user.

b. QBE
QBE is very intuitive. In specifying the queries which are presented above
QBE is very consistent in structure. The mental models that are formed in one query can be
continued to other new queries easily, except for queries that involve universal
quantification. Since QBE lacks existential and universal quantification expressions, this

kind of query cannot be expressed.

¢. DFQL
DFQL exhibits consistency in structure. If the queries are extended, we can
use the output of a query result, whether a portion or the whole of a previous query, to be
a part of other new queries. This flexibility is not exhibited in SQL, nor in QBE. Even

though the queries are extended (complex 'y increases), DFQL remains consistent in its

structure of query.

4. Relative Strengths and Weaknesses

In this section we present the relative strengths and weakness of these three
languages. The following result is presented by referring to our previous discussion plus
some general descriptions of each language. The relative strengths and weaknesses of SQL,
QBE, and DFQL are summarized in Table 3.1.

101

-Jnsas £1onb i woly parsumAN(d
Aqreonewoine axe sopdm Neondngg *

*S3NSI
[eonspels 10y suopouny ul-ifing
pue Suidnoi3 ‘yos Suipnjoumr o18cf
reapaud 19pi10 181y JO samiiqedes
Py spuAaxd pue ‘siojerado
BIGO3[E [EUONBI AP JO [[B SBY I
198} uj “opdwod Areuoneror st 1 *

YoIeasal

1
£1nd) 905 “ymsaz A1onb uy 151x9
01 sopdm omeondnp smopy °

108§ Ut 95ME-DNIAVH
oy se owes AP ST YAYM
X0q UORIpuOd SBY puUB NS
[eoRSHEIS JOj UOROUN} Ul-)ing
‘uonouny 3urdnoid o sapajou
i awdwod Ajeuonea
jJ0U SI 9AOQR PISSNISIP
st JWO mpun HED PAIMOH
‘opdwos Apuuonsjx se
joorz 4q pasodoxd sem HEO °

*SUEISAS [BIOIMUNKIOD

1 Ao
908 sz Lionb o ul 3519
0 sodm eoydnp smoqry °

‘pustpoxduiod pue
Ayi0ads 01 IMOYFP IBYMIWOS
1ms are sauonb jo adf) reroass
‘I9AIMOH ‘ssned YHAIO
pus DNIAVH ‘A9 dNO¥D
op osE ‘vonouny u-ymqQ
oY) UO PasEq IMSA [EINSTIMS
10} soniqedes o sopraoxd
W ‘uomippe U] ‘UMONNS
SNNOEd [BUONE[aI 8 UO PIseq
osfe pue ‘suopesado eiqadpe
[euonIelor o [[® SEY 3t 98]
uj ‘a9(dwoo Afrevonejal st Jj °

*SUINNSAS [RIOIIWWIOD U PIsN
Auownwos pue prepuvrs OS]

102

-paruawydut Jou
s1 98en3ue; Surunuerdord ssodoid
[e10U93 B URPIM JURUPIQUID Y],

"STPUB YT ‘1T
‘0T ‘01 ‘6 ‘9 ‘v $9UINY g “Apised
Aonb pogpnuenb Apesivarun
30 Afrenuxsixd ue ssaudxo uvd Jy *

*(pouupuo)) :1°¢ TTAVL

"paryuowrajduy Jou st 93enSueg
SurunuesSoid ssodmd esdudd
e UMPIA juwpqud YL °

ST PUR ‘pZ ‘12 ‘0T ‘01 '6
‘9 ‘p soUIND) 39§ PogIoads aq
SAOAUL oM saRnd

‘pIsoqd
PR ‘Irld ‘O 70800 Ss®
yons ‘(a8enSuej 1s0y) 98enuey
SurunuresBoixd osodmd [eouds
® UNIM POPPIquUd 3q Ued 3f °

"ST PUR ‘pT ‘1T ‘0T ‘01 ‘6
‘9 ‘p SoLINY) 98 ‘pudyRIdwod
o1 pmy st (SLSIXH LON)
afo; oeopand oaneSou
Jo osn 9yj ‘uoneognuenb
[BRISATUN JO [ENUANSIXI JAJOAUT
wqp souonb op ssaadxo

103

"CT pue ‘7T ‘81 ‘LI ‘T ‘6 S9uAND
99s uonduosap Ja0qe Y} Aensnjjl
OL ‘PAp3du §1 UONIRNSqR JO [9AJ]
0AEYM t8 poplacid 3q ued JIsn
uaA13 Aue 10j suonuiado UOWIWIOD
‘sioerado pauyap-sasn 8ursn
Ag -ApeuoSoquo jo romod 33 jo
$30] ® Jnoynm poured st ANpIqIXay
syl ‘(ioerodo foudjas o
"21) si0re19do pauyop-4asn paugop
£snotaaad umo I3y/sIY woj Jo/pue
siopezado 2apnuid jo s Suusixd
ap woy sioexado pauyap-umo 134
sy Surugop £q 98enSus; L1onb o
puNxo Aew 18n AP os ‘10pwaado
uussvcs ap sopraoad 10HA

Go..ﬂ_ugv ﬁ.n H‘—HS—.

104

ST
$T-€2-CT PuB ‘1Z-61 ‘81-91 ‘8-L°9
-G-p souINQ) 39S PIUOHUINU JA0q8
ap ensnq]l of, *A19nb mdou 1opoue
Jo ued Jo indut ue se Lpoanp (N jo
ared 10) £19nb Suo jo indino oy asn
ued am 1040 U 18y uRy IO
‘K1onb mou ® Sui10ads 103 n Ajdde
‘JouuBWw premioj 1y3rexns v ul ‘ued
am ‘Kionb opdures ® jo jonnsuod
P urd| M MUQ 10§ uey
saxmb 1501109 a10ul 3ONNSUOD pus
1dasuos o annboe o3 ssep Iseq
I8P 10J IN0Y jrey € ynoqe sarmbos
‘pouonuaws A[snotaazd sy

‘pusyaadwod
01 Ased st ‘Yo Ap 0y Joyerado
suo wony SJumopy ‘ydes3 ALionb
sfis mopeiep oyl udwddun
0] pue PqUIUI 0} Ased
$1 31 ‘poure9] St IPNNSUOD AP UQ °

“IOUURW JANIMUL Ue Ul pIy1dads
B usd swajqoxd xo—m&oo 5>m

"€T-TT Pue ‘81-L1-91
‘SI-VI-€1-T1 ‘8-L souond s
POUONUIW 9A0QE Y1 ANENSN[I
of, ‘Aionb mou oy Suifproads
10} Iouuew premioj ySrens
8 U1 Suppumy Swes oY) IS Uvd
om ‘A1onb oydures € jJo 1nnsuod
U ured| am uQ "gdod 8n o)
1oys oy axmboe 03 swuresSosd
uonannsuy

sammbaa

wu ® 10§
jo smoy samp

*| 1 ‘pouonusws Lsnoirad sy °

“(vone[oi)
Jqw AP w (suwmjod) ded
12doid o w1 spuvunuoos so/pus
‘olqeueA ojdwexd uv ‘onfeA
jemor ue ouyd o3 108n sanmboy
‘xejuks pifu ssof sosn 3 °

“10S pue 10dd
unp ARIMUE oW ‘NPINUY

»Eggcﬂm.

"STYT-ET-TTPUR ‘1T
-61 ‘81-91 ‘8-L ‘9-S-p souand
998 ‘pauonuawu 9AOQE A
arensnyy of, ‘souonb mou 1xpo
A0eds 0y 1ouuew premioj
wSrens © w Supunp owres o
Ajdde jJouues om ‘K1onb oydures
€ JO 319NISU0D [RIAUS uIed| om
%0uQ "104d pue GO uep
ydozu0d o ammboe 0y sps0
mw own 3o8uo] sammbar jf °

“xejuds remonred ¢ osn
0) 9ABY 9M JIYM pu® UIYM
Apoexe puwmszopun SN
"X®uAs pue sons prdu sey i °

*20R1UT A[pusysy
o8 ® 8: st .35 xL

9sn-Jo-o6sy Anv

:8-.5289 —.n H.—HS—.

108

-1red 1oypoue o3 K3anb
AP jJo wred Suo wioxy MOy BIep
moy dse1d 0y Ased pue Kem opduns
® juosaud souonb woq “1OJA
ul 67 ‘pT "1 souend 95 1108
u1 Jojeaado NI s Kronb patsou
104 ST ‘$T ‘01 6 ‘9 ‘p S9N 2§
‘KfSuypgauondnou8 ‘uuo)Hdno.s
‘Kfuvsiydnosd 58 yons
Jorexodo aannund suo snf asn uBd
am wed urew o1 8 ‘uoneoynuenb
[esIoAlIn saajoawr Azonb o n
‘spdurexs 10 ‘HEO 10 JOS Ul UeR
704 W £P2aLI09 30U (SI5BAIOUL
Lonb jo Lidpdwods P uoym
Aje1oadss) soponb Suijioods

m .83:8 Aow [N M °

"TT 1T '8 ‘L 391N 208
‘|njosn SS9| pue $89] ugcoo.—
n $95BI0U Kyxopdwios
B ng €T ‘61 ‘81 ‘L1 ‘91 ‘¥i
‘€1 ‘T1 S ‘€ souan :9§ *(A[uo
souonb orduns 103) JOJQ e
m188) pue ‘souanb Jo spury [ye
103 -JOS uewp s8] 813] “JOS W
uey souonb 103100 Suwilpoods
Up JUIpYUCD oW [33) oM °

"ST ‘YT ‘€T ‘1T $ILINY 0§
“10S Jo uvonmuNwjdun o ut
payunad 9q 10u Kew pausad
ore e souonb pasou I
30 SwIos ‘QounINYMN,] ‘souanb
wouoom Suikpoads w pue
dn-poxnus 9q 01 sn pedj Ansed
pue ‘puagaidwos pue £j0ods
01 }nOYJIPp osfe v Jojerado NI
AR 2A[0AUT J8 s3LInb pAIsou
L ‘01 ‘6 ‘8 ‘9 ‘S ‘v souND
998 ‘oanmyur Apg9pdwod
tou st souonb op wr ordoj
omeorpaud aanedsu Jo Isn o
‘SpIOM IO U ‘uoneognuenb
[es32AN SAJOAWT
o souwonb w Apemonred
‘$98RA10U] fKrxapdwod
NP UM $IN000 STY], ‘soponb
o Suikyoads JIYM JuIPYwod
tou am m 8.5888 .

: Go._saaenvv ﬁ.n ﬁdﬂ(.—.

(ponunuo)
n-Jo-os%H AQ

106

STYTIT 8 LY
‘ST ‘p1 ‘9 sauand) 33s ‘Qensny[i oL,
‘A19nb mdu 190 2y 03 Indur ue se
31 350 pue ‘Aensdeouds 01 pansIp Ju
Jo1e39do pauifop-4asn © se pauydp
2q uwo L1onbqus y ‘K1onb xordwos
¢ asow wioj 0) 1ojerado ustpoue
PIM POUIqUIOD 3q UBD 18YY UOTIR[L
€ st 10je12do ue jo yndino Ay ‘udy g
‘ponsap se sioeiado urendd jo
JNS3I BVIPAULINUI YY) UTBIQO pue
‘Apises sauanb Ajipows 30 IsBAOW
ued o 'HAO pue 0§ woy
tounsip 1040 SIYBW P UIMEd)
mpour st ssuanb mENWIdU] °

"'V, UOTIOOG UT pAjuasasd
are jep souanb oy e Sururwexs
Aq peziea 2q ued 3] ‘sioeiado
o 03 indur ue se pasn aq ued
18y} UONIR[II MIU ® se Jojerado Aue
JO 3NS31 Y} ISN UBD IM ‘AmMSO[D
[euonounj jeuonejes sossassod
n oomg c-siogerdo o Suisn
ul ssoufpameu pue £5USISUOD
sopiaoad 3] osm 01 19188D
Areonuswias pus L[reonoejuds si
pue ‘reuoSoyuio st o8enuey snyy, *

81
‘11 seuand) Ay 98 ‘ensn(yl
o] nsa onbun e wWwiqo
0} 1pi10o ur pordde Ajensn
ST 31 INQ ‘UONBII MU INJIO NN}
198 03 I0pIO UI SpUBWIWIOD JYI0
o Ap0ods ues am uap ‘A1onb
sures Y} Ul UONRIAL ISYI0 WO
PONSIP INSII SB UOLBIDI MU ©
axew 03 pomofre are I HEO Ul
‘K3onb mou soypoue ut L3onb suo
JO JNS3I A} ISNAT JOU UWBD I °

o:c<=
uonsds ur payussard ame jey

souenb ggd op e Supumwrexs
£q pezifear 9q ued I ‘AUMONNS
ul Aouxssuod sopiaoxd
3] ‘osn 01 191589 A[feonuewias
pue Ajeonowiuds ypoq si pue
‘fevoSoyuo st a3endus] u::.

‘soudnb
Sunsou W sIN200 ‘PO AN
03 yred Suo Jo ynsa1 o sessed
10 sumas saf OS -Aonb
mou youe up Aionb suo
JO INSAI Y} ISNAI J0U UBI IM °

‘Supsou
JO [9A9] Aue 3B JUNUNEIS
l0F1as ® W piomdoy

JONLLSIA 98uis ® Aquo
aBo__a 108 °9'1 ‘AnpevoSoyuo
oma:m.a— a==. .

:.o_.......ouv —.n Nﬂﬂﬁ—.

107

‘w108 19ndwod ay uo L1onb
104a 2y sdiusw Aj2anseiul
0) 1950 ap Swwid amedy S|y °

‘Axonb o
21B[NULIOJ 03 1OPIO U SPUDULUO)D
pue ‘SpuDIsu0I joniop
‘S2)qv14pA 31dwpxa NP [908)d
pue ‘s9qe) uonvial MNP WEIQO
0) J9sN) SJURIY IR ST °

"104d W Jo ‘H90 Jo spiuans
stpduans o e wopad ued ey | p e umoyd wes B -38enSuv] £19nb poseq ovpIu]
2INIES) JUO) ST 0VLIANUY [ENSIA ° | 2:Mged) o ST vvpANUI [BASIA ° | 11X} Ul papiacad jou st 3| ° | ensip *(9)
-:~n-<= o:on.<3 -:omo<3
ul uonduosop Ja0qe P 9§ ° | Ul uonduosIp A0qe NP RS ° | Ul UoRdUOEIP IA0qe A 39§ ° | LouNSIFUOD) *(S)
TV TV TV
ul uonduosop dAaoqe AP RS ° | ur uondussep saoqe NP NG | W gu.—noaoe 9A0QE O} 929G ° bﬁaﬁuﬁ 5

A-B-S-_BOV m n H‘-n#—.

108

*9[qepeal 210U 3q
M 1 os ‘suoniod IO oy PIm
suiquiod pue sioerdo pauyfop
-12sn oyu1 Kionb oy jo suoniod
swos epnsdesud s1 ‘wojqosd sup

onpar ued JOJQ ey Lem duQ *

109

‘K1onb o ut uo 8ujo3 sy jeym

*90u0 38 K19nD S[OyM 1) 395 10U | MOUY IO UIIMINQ UOLIRUUOD
URd M INQ ‘Teq [[015S A Isn I | dyp AJioads 01 prey st} duIs
*PAIANN]O W029q SUIMRID JO PIOY | YUSIUIAUOIUT SAWOIAG I U
P ur $199{q0 P U ‘sISBIAISUL | ‘IJUO I8 SUOHBIAI [BISAIS PAJU
souonb op jo Anxopdwod | om pue ‘sasearour Lrxojduios

ap J1 -suoneondde ooepyur | oy j ‘suopeondde Soejvul N P wpqoxd
fensiA ap £q pomjunooud S | ensia ap soow) Apressudd jey | ou sey O ‘PovINUl [eNSIA wiqoxd
ey wafqosd uourwod i st s, * | wojqoid uounuod o st SIYL, * | Pim paddinbo jou st 31 Sowms ¢ | sovpu (L)

| 10 | s [ws [wewo |

"(ponunwo)) :1°¢ ATAVL

"SIEQ [euonej Jukpopun
Y uo satfa1 Inq (Faq) FenSuw)
UOHIIUYSP BIEP UMO SJ1 JARY jou
soop uoneiuawd[dun yuaumd Y|,

"parusuo mopelep st JOAA Ym
‘fempaoord Ajamd st 98enSue|
jsoy o dous wdqosd © oq
[ms [31 ‘wesSoxd Kb o jo
1X9JU09 Y} Ul 3p0d JOId P 28
J0U URd IM IFAIMOY ‘suondunj se
swerdoid [ermxa} ojul popIsul pue
ponidwos 2q ued souanb T0IA °

“(1Qq) 93enduse]
uonIuySp BIEP UMO S SBy °

10§ a1
o3en3uw] 150y ® Ul PIPPAQUI 3q

Jou ued I ‘Suope spuws g4god °

(71aQ) 98enduv)

SUORIUYOP BIBp UMO 8,31 SBH °
“(Juaysisuoour)

amonns JusIp pue

Aem judIogIp Ul pagads oq
m Lonb owes P ‘s109pep
[eroAds sey ‘JOS oouly °

*(9A0qe pauonud
sg) oSenSuy; 10y Ym

poppaqud widjqod ou sey °

‘(pInupuo)) :1°¢ ATAVL

umnjqoxd
ofenSue] °(g)

110

IV. HUMAN FACTORS EXPERIMENT

A. HUMAN FACTORS ANALYSIS OF QUERY LANGUAGES

There are several query languages commercially available, and there is a need to
examine a variety of different query languages in order to measure the notion of “ease-of-
use” of query languages. The most common approach in capturing what is the query
writing, in which subjects are given questions in English and asked to write the

corresponding query language statement [Reis81].

B. EXPERIMENTAL COMPARISON OF SQL, QBE, AND DFQL

In this section, we review a very simple human factors experiment for comparing
SQL, QBE, and DFQL. A general assessment of the experiment is provided. Since we
know that QBE cannot express universal quantification (sce Chapter II. C. 1. ¢), the tasks
are divided into two parts:

« First part consists of five queries which can be specified in SQL and DFQL. In this
group universal quantification is required.

 Second part consists three queries which can be specified by all three languages
SQL,QBE, and DFQL. Universal quantification is not included.

This experiment is not intended to be a rigorous comparison of SQL, QBE, and DFQL.

1. Assessment of the Experiment
In this experiment 15 subjects were given five tasks of query in English on the
relational database schema of Appendix A. The subjects coded or specified each of the
query task. Three query tasks were applied to all three query languages, and two query tasks
just applied to SQL and DFQL. Each response was then graded as either correct or

incorrect.

11

_-

a. Subjects
The experiment was conducted on 15 students enrolled in *“Advance
Database” and “Database Seminar” courses at the Naval Postgraduate School (NPS) in
Monterey, California. The students at NPS are primarily U.S. military officers; foreign
military officers and Department of Defense civilian employees are also represented. The

composition of the student are recorded based on their academic backgrounds, which are
broken down based on their bachelor degree which is classified as “technical” or “non-
technical”. In addition, subjects are also characterized by their programming experience.
For analysis purposes, subjects with programming experience more than 1 year are
classified as “experienced”.

b. Teaching Method

All the subjects have already taken the introductory database system course
for one quarter, so all of them have a background in relational algebra, relational calculus,
SQL and QBE. A 30 minute presentation of DFQL concept was given at the beginning of
the experiment. A handout describing the DFQL operators was given to the subjects.

¢. Test Queries
The five test queries were based on the relational database schema in
Appendix A. They are:

» Query Ql: “List the name and location of the projects whose member (at least one)
carns more than $40,000.” The first query (Q1) involved only selection, projection,
and joining to achieve the correct answer.

» Query Q2: “For each project, list the number of employees working on that project.”
The second query required grouping and counting. Here the comprehension is
somewhat more complex than Q1.

 Query Q3: “Retrieve the total number of employees who worked more than or equal
to 20 hours in each project, with more than two employees working.” The third query,
in addition to grouping and counting operations, also required special condition that
needed another grouping and counting; in SQL, it is specified by HAVING-clause.

112

M

+ Query Q4: “Retrieve the name of each employee who works on all projects that are
located in Houston.” The fourth query required the DIVISION operation of relational
algebra, in SQL it could be specified wether using CONTAINS comparisen or NOT
EXITS operators. In DFQL, it can be specified using groupContain operator.
However, since QBE lacks universal quantifier, this type of query can not be
expressed.

« The question QS5: “List the first name and last name of all employees who have only
female dependents.” The fifth query required the use of the universal quantifier and
was subjectively viewed more difficult than the first three queries, but almost the same
with query Q4. Here, SQL applied NOT EXISTS operator in the WHERE-clause, and
in DFQL specified by the groupAliSatisfy operator. Similar to the fourth query, it
cannot be expressed by QBE.

By providing five queries which were of increasing complexity, it was
intended to see if DFQL perform better than SQL and QBE in more difficult queries.
Subjects were given one week to complete the experiment.

d. Evaluation Method

The tests were collected and hand-graded by the researcher. The criterion
cvaluated by this experiment was graded as either correct or incorrect queries. Correct
included responses that were either completely correct or contained a minor language or
minor operand error. The following taxonomy of minor language error and minor operand
error were given by Welty and Stemple [Welt81]. A minor language error is a basically
correct solution with a small error that would be found by a reasonably good translator. A
minor operand error is a solution with a minor error in its data specification, such as a
misspelled column name. However, a transposition of column names (or simple use of the
wrong column name) was classified as an incorrect answer because there is no way for the

grader, or computer to determine the subject’s intent.

113

2. Experiment Results

In this section we present a general discussion of the results derived from ihe data
taken. The primary measurements of this experiment were made based on the entire sample
population. The primary metric used was the number of questions answered correctly. This
was calculated for each individual question and also for each language as a whole, the result
are summarized in Table 4.1. In addition we also provided the results based on subject

backgrounds (technical/non-technical and programming experience). However, since the
percentage differeaces between SQL, QBE, and DFQL for all queries were nearly similar
and the number of subjects in individual classification was small (due to small overall
population size), the detailed statistical analysis was performed only on the total sample,
see Table 4.2 and Table 4.3.

From Table 4.1., for the easiest query (Q1), subjects wrote a greater percentage of
correct answers in SQL than in QBE (7%) or in DFQL (20%). But, in Q2 there was a
difference of 53% for correct answer in DFQL compared to SQL and 40% compared to
QBE. In Q3, there was only 7% mare correct answers in DFQL compared to SQL and 0%
compared to QBE. For Q4 the difference was 7% between DFQL and SQL.. In Q5 there was
a difference of 33% for correct answers in of DFQL compared to SQL. In the above
analysis, we always subtract the SQL and QBE percentages of correct answers from DFQL;
a difference of 20% means that DFQL produced 20% more correct answers than SQL or
QBE.

Table 4.2. summarizes the percentage of correct queries for SQL, QBE, and
DEQL for Q1, Q2, and Q3 broken down by technical/non-technical as well as experienced/
non-experienced. We see that the subjects with a non-technical background got a slightly
greater percentage of queries correct in all three languages than those with a technical
background. The difference was 3% more correct for SQL, 2% for QBE, and 9% for DFQL.

114

In classification by experience, there was no difference in percentage of queries correct for
SQL, while the less experienced subjects got 8% more correct for QBE queries, and the
more experienced got 3% more correct for DFQL.

Table 4.3. summarizes the percentage of correct queries for SQL and DFQL for
Q1 through QS5 broken down by technical/non-technical as well as experienced/non-
experienced. We see that the non-technical got a slightly higher percentage correct for both
(3% for SQL and 1% for DFQL). The experienced subjects got 7% more correct than the
less experienced for SQL and 8% more correct for DFQL.

TABLE 4.1: EXPERIMENT RESULT

Overall of the 33 49 50
first? part which
enztains
Q1 through Q5.

w
Overall of the 44 49 58

part
which
contains

Q1, Q2, and Q3.

1. Not Comparable, since QBE lacks of universal quantifier.
2, Overall first part is calculated for all the three languages
SQL, QBE and DFQL.

3. Ovenall second part is calculated just for SQL and DFQL.

115

TABLE 4.2: PERCENT CORRECT OF SUBJECT CLASSIFICATION fOR
Q1,Q2,AND Q3

TABLE 4.3: PERCENT CORRECT OF SUBJECT CLASSIFICATION FOR
Q1 THROUGH Q5

Subject Number

116

3. Experiment Conclusions
Generally speaking, since this human factors experiment was conducted on only
15 subjects, the result is not a rigorous statistical comparison of SQL, QBE, and DFQL.

However, we still can make the following observations:

a. Query(Q1)

SQL is better than QBE and DFQL for a simple query which involves only
selection, projection, and joining, that is a query in the single-value category. Once the user
learns and knows the concept of this type of query, it is easy for the user to build another
query in a single-value category as long as the query requires only project, select, and join
operations. See a representative query (Query 3) in Chapter I A.1.c., which requires a
simple selection and projection without a need of nesting. As long as nesting is not
required, SQL seems to provide a simple and logical query construct.

b. QOuery(Q2)

DFQL is better than SQL and QBE for queries requiring grouping and
counting operations. This kind of query composes statistical result. In DFQL, the idea of
grouping and counting is easy to understand since it requires just one operator (groupCnt).
See Query 14 as one similar to Q2. In SQL, some of the subjects misunderstood how the
COUNT operator works, and they specified GROUP BY followed by an attribute name but
did not specified this attribute in the SELECT-clause. In QBE, some of the subjects mixed-
up the CNT and CNT.ALL operators.

c. Query(Q3)
In this query all three languages had an approximately equal percentage of
correct answers. Query (Q3) requires grouping, counting functions and special condition.
In SQL the special condition is known as HAVING COUNT (*), and in QBE it is normally

specified using condition box. In DFQL, it is formulated by using groupCnt followed by
select operators. A representative of this kind of query is illustrated by Query 21 which is
composed in set-count value, Chapter III. A. 4. b. Since Q3 increases in complexity
compared to Q2, logically Q3 is more difficult. If subjects did not have a good
understanding of the concept of this type of query, normally they come up with incorrect
query. For instance in SQL, this query requires nesting, with GROUP BY and HAVING
COUNT (*) operators in the nested part and another GROUP BY is needed for the whole
query. Therefore, we can say this type of query was more difficuit to formulate in SQL
compared to QBE and DFQL.

d. Query (Q4)

Query (Q4) exhibited no significant difference in percentage of correct
answers between SQL and DFQL. This type of query requires the DIVISION operation of
relational algebra, which is similar to Query 9 (ser-value category, see Chapter IILA. 2. d.).
For SQL, this query is easy if the subject understands the relational division and the SQL
implementation supports the CONTAINS operation. In cases where the CONTAINS
operation is not available, it would be much more difficult because either:

o User has to translate relational division into equivalent relational operations, and then
write the SQL corresponding to the transiated relational operations, or

¢ User has to re-think in SQL using operations such as the NOT EXISTS operator. In
this case, user has to change his/her mental model to negative logic while formulating
the query.

e. Query(QS)

Query (Q5) involves existential or universal quantification. In SQL the NOT
EXISTS and EXISTS operators with two nested queries are required to specify the query.
This kind of query is similar to Query 10 which is composed in ser-value, Chapter IIL A.
2. e. Since the NOT EXISTS is used the user must think in the negative logic, which is more

118

difficult to formulate even for the experienced users. Not one of the subjects formulated a
correct answer in SQL for this query (QS). However, in DFQL, universal quantiﬁcatjon can
be formulated just by using the groupAllSatisfy operator. Therefore, for queries which
involve universal quantification, DFQL offers a more undersiandable approach than SQL.

By examining these five tasks, for a simple query which requires selection
and projection without nesting, SQL seems a simple and logical construct. However, for
queries which require grouping, counting and universal quantification, DFQL seems better
in specifying the query than QBE and SQL..

119

V. CONCLUSIONS

There are some known problems with a widely used query language such as SQL and
QBE. Some of the problems are the lack of expressing universal quantification, specifying
complex nested queries, and flexibility and consistency in specifying queries with respect
to data retrieval. To alleviate these problems, a new query language called “DFQL” was
proposed. We conducted a comparison of three languages: SQL, QBE, and DFQL.

Numerous queries were grouped into four categories: single-value, set-value,
statistical result, and set-count value; specified in SQL, QBE, and DFQL, and compared in
each category. In the queries comparison, queries ranged from the simple ones to queries
which are involved existential or universal quantification and complex nested queries.
Some of the queries are stand-alone, while some others specified are logical extensions of
one query to the next, with the complexity increasing (refer to Query 1 through 25 in
Chapter IIN). These representative sets of queries were chosen in order to investigate the
relative strengths and weaknesses of each language related to ease-of-use issues, especially
in expressing universal quantification, nested queries, and flexibility and consistency in
specifying the queries with respect to data retrieval for RDBMS’s.

In this research, based on the above queries mentioned, and the analysis which are
summarized in Table 3.1., we conclude that DFQL eliminates the problems which are
encountered by SQL and QBE mentioned above. The relative strengths of DFQL comes
mainly from its strict adherence to relational algebra and dataflow-based visuality. Strict
adherence to relational algebra allowed users not to worry about exceptions as was the case
with SQL. Dataflow-based visuality required users only to master a very simple and
intuitive dataflow paradigm to write queries. A simple paradigm of dataflow suffices even
for a very complex query, because the complexity of the query is handled by high-level,
user-defined operations, not by extending the language construct as is the case with the

other two languages. Although the number of subjects in our experiment is too small to
conclude affirmatively that DFQL is better than the other two, the result of the experiment
showed that DFQL’s ease of query writing resulted in a greater percentage of correct
ﬁ querics, especially queries which involved count, grouping functions and universal
quantification (complex queries), than in either SQL or QBE.

121

[ANSIS6]

[Astr76]

({Cham74]

[Chen76)

[Clar91]

[Codd70]

[Codd71]

[Codd88a]

(Codd88b]

[Codd90]

[Date82]

(Date8q)

[Date87]

LIST OF REFERENCES

American National Standards Institute (ANSI), The Database Language
SQL, Document ANSI X3. 135-1986 (1986).

Astrahan, M. M., et al, System R: Relational Approach to Database
Management, ACM Transactions on Database Systems, vol.1, no.2, pp. 97-
137, June 1976.

Chamberlin, D. D., and Boyce, R.F.,, SEQUEL: A Structure English Query
language, Proceedings of the ACM--SIGFIDET Workshop, Ann Arbor,
Michigan, May 74.

Chen, P. P, The Entity-Relationship Model -- Toward a Unified of Data,
ACM transactions on Database System, vol.1, March 1976.

Clark, G., and Wu, C. T.,, Dataflow Query Language for Relational
Database, Department of Computer Science Naval Postgraduate School,

Monterey CA.

Codd, E. F, A Relational Model of Data Large Shared Data Bank,
Communication of the ACM, vol. 13, no.6, pp. 377-397, June 1970.

Codd, E. F, Relational Completness of Data Base Sublanguages, Courant
Computer Science Symposium 6, Data base Systems, pp. 65-98, May 1971.

Codd, E. F,, Fatal Flaws in SQL: Part I, Datamation, vol. 34, pp. 45-48, 15
August 1988.

Codd, E. F., Fatal Flaws in SQL: Part II, Datamation, vol. 34, pp. 71-74, 1
September 1988.

Codd, E. F,, The Relational Model for Database Management: Version 2,
Addison-Wesley, 1990.

Date, C. J., An Introduction to Database Systems, Third Edition Addition-
Wesley, 1982.

Date, C. J., A Critiqgue of The SQL Database Language, ACM Sigmod
Record vol. 14, no. 3 pp. 8-54, November 1984,

Date, C. J., Where SQL Falls Short, Datamation, vol. 33, pp. 83-86, 1 May
1987.

122

? (Date90a] Date, C. ., Relational Database Writings 1985-1989, Addison-Wesley,

1990.

[Date90b] Date, C. J., An Introduction to Database Systems, Fifth Edition, Addition-
Wesley, 1990.

{Elma89] Elmasri, R., and Navathe, S. B., Fundamental of Database Systems,
Benjamin/Cummings, 1989.

[Fran88] Frank, L., Database Theory and Practice, Addison-Wesley, 1988.

(Hans92] Hansen, G. W,, and Hansen, J. W., Database Management and Design,
Prentice Hall, 1992.

[Negr89] Negri, M., Pelagatti, G., and Sbattela, L., Short Notes: Semantics and
Problem of Universal Quantification in SQL, The computer Joumal, vol. 32,
pp. 90, 91, 1989.

[Ozs089] Ozssoyoglu, G., Matos, V., and Ozsoyoglu, Z. M., Query Processing
Techniques in the Summary-Table-by-Example Database Query Language,
ACM Transactions on Database Systems, vol. 14, no. 4, pp. 526-573,
December 1989.

[Ozs093] Ozsoyoglu, G., and Wang, H., Example-Based Graphical Database Query
Languages, Computer, vol. 26, no. 5, May 1993.

[Reis75] Reisner, P, Boyce, R. E, and Chamberlin, D. D., Human factors evaluation
of two data base query languages-square and sequel, AFIPS Proceedings,
vol. 44, pp. 447-452, May 19-22, 1975.

[Reis81] Reisner, P., Human Factors Studies of Database Query Languages: A Suer
and Assessment, Computing Surveys, vol. 13, pp. 13-31, March ;gg;,,/

[Sebe89] Sebesta, R. W., Concept of Programming Ianguages;Béiiiﬁﬁm Cumming,
1989.

[Schn78] Schneiderman, B., Improving the Human Factors Aspect of Database
Interactions, ACM Transactions on Database Systems, vol. 3, pp. 417-439,
December 1978.

[Turg93] Turgay, C., Design and implementation of Amadeus Front-end System which
uses Data Flow Query Language for multiple RDBMS, Department of
Computer Science Naval Postgraduate School, Monterey CA.

[Welt81] Welty, C., and Stemple, D. W., Human Factors Comparison of a Procedural
and a Nonprocedural Query Language, ACM Transactions on Database
Systems, vol. 6, pp. 626-649, December 1981.

123

[Wu9l1) Wu, C. T, and Clark, G., DFQL: Dataflow Query Language for Relational
Databases, Department of Computer Science Naval Postgraduate School,
Monterey CA., 1991.

[Zl0o77) Zloof, M. M., Query-by-Example: A Data Base language, IBM System
Journal, vol. 16, pp. 324-343, 1977.

APPENDIX - A

EXAMPLE DATABASE

Through out this thesis all the query examples are matched the relational schema
database which is called COMPANY database [EIma89].

EMPLOYEE | FNAME | MINIT | LNAME SSN BDATE ADDRESS SEX | SALARY | SUPERSSN | DNO
John B Smith 123456789 | 09-Jan-55 | 731 Fondren, Houston, TX M 30000 333445555 b
Franklin T Woag 333445555 | 08-Dec-45 | 638 Voss, Houston, TX M 40000 888665555 s
Alicia J Zelaya 999887777 19-Jul-58 | 3321 Castle, MTX F 25000 987654321 4
Jennifer S Wallace 987654321 20-Jun-31 | 291 Besvy, Bellsire, TX F 43000 888665555 4
Ramesh K Narayan | 666884444 | 15-Sep-52 | 975 Fire Oak. Humble, TX M 38000 333444555 S
Joice A Bnginh 453453453 31Jul-62 | 5631 Rice, Houston, TX F 25000 333444555 5
Ahmad v Jabbar 987987987 | 29-Mar-59 | 980 Dallas, Houston, TX M 25000 987654321 4
James E Borg 888665555 | 10-Nov-27 | 450 Stone, Houston, TX M 55000 nuoll 1

DEP_LOCATIONS | DNUMBER | DLOCATION
1 Houston
Stafford
5 Bellaire
3 _Houston
DEPARTMENT DNAME DNUMBER MGRSSN MGRSTARTDATE
| Research 5 333445555 2-May-78
Administration 4 987654321 01-Jan-85
| Headquaters 1 888665555 19-Jun-71
PROJECT PNAME PNUMBER | PLOCATION | DNUM
ProductX 1 Bellaire b
ProductY 2 Sugariand s
ProductZ 3 _Houston s
| Computerization 10 Stafford 4
| Reorganization 20 Houston 1
Newbenefits 30 Stafford 4
126

WORKS_ON ESSN ENO | HOURS

123456789 1 325 |

1zas6789 | 2 15

666884444 | 3 40.0

453453453 1 200

453453453 2 20.0

333445555 2 | 100

333445555 3 100

333445555 | 10 100

| 333443555 | 20 100

999887777 | 30 300

999887777 | 10 100

987987987 | 10 350

987987987 | 30 50

987654321 | 30 200

987654321 | 20 150

888665555 | 20 null

DEPENDENT SSN DEPENDENT NAME | SEX BDATR RELATIONSHIP
| 3334455555 | Alice F 05-Ape-76 | DAUGHTER
3334455555 | Theodore M | 250473 | SON
3334435355 | Joy F 03-May48 | SPOUSB
987654321 | Abner M 29-Feb-78 | SPOUSE |
123456789 | Miichael M 01-Js-78 | SON
123456789 | Alice F 31.Dec-78 | DAUGHTER
123456789 | Elizabeth F 05-May-57 | SPOUSE _
127

INITIAL DISTRIBUTION LIST
1. Defense Technical Information Center
Cameron Station
Alexanderia, VA 22304-6145
2. Dudley Knox Library, Code 52
Naval Postgraduate School

Monterey, CA 93943-5002

Dr. Ted Lewis, Code CS/Lt
Chairman, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

& fC Thocm:s Wu, Csode CS/Wq

essor, Computer Science Department
Naval Postgraduate School

Monterey, CA 93943-5000

Head of Education of the Department of Defence and Security
KAPUSDIKLAT Departement Hankam

JL. Pangkalan Jati No. 1

Jakarta - Selatan

Indonesia

Direktorat Pendidikan TNI-AL
Mabesal - Cilangkap

Jakarta - Timur

Indonesia

Office of Defence Attache

Embassy of the Republic of Indonesia
2020 Massachusetts Avenue, N.W.
Washington, D.C., 20036

R
an, ati No.
Jakarta - Selatan
Indonesia

10.

11.

12.

13.

Ka Dispullahta

MABES TNI-AL
Cilangkap-Jakarta Timur
Indonesia

Paruntungan Girsang
J1. Cawang Baru 34-36
Jakarta Timur

Indonesia

Main Library
University of North Sumatera
Medan

Indonesia

Library of the Faculty of Technology
University of North Sumatera
Medan

Indonesia

129

