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Propagation of Radius-Tailored Laser Pulses Over
Extended Distances in a Uniform Plasma

I. Introduction

The physics of intense laser pulse propagation in an underdense plasma is a problem

of recent interest for a variety of applications,1' 2 including radiation generation (laser

harmonics, x-ray sources) and advanced accelerators (laser wake-field accelerator, plasma

beat-wave accelerator). Some applications, particularly the laser wake-field accelerator

(LWFA), require laser propagation over several laser diffraction lengths at ultra-high laser

intensities. In the LWFA,3- 8 a short (7'L < 1 ps), high power (P > 1 TW) laser pulse

propagates in plasma to generate a large amplitude (E. > 1 GV/m) wake field, which can

trap and accelerate a trailing electron bunch.

Ultra-high-intensity laser pulses require a tight focus and are characterized by an

intensity high enough that relativistic effects become significant (ao = 1) and a vacuum

diffaction length, or Rayleigh length ZR, that is is relatively short (ZR < 1 cm). Here,

a. = eAo/m€c2 is the peak amplitude of the normalized vector potential of the laser

pulse, ZR = irr2/A, "o is the laser spot size at focus, A is the laser wavelength, mn is

the electron mass, and a Gaussian radial profile has been assumed. In terms of the peak

laser intensity I, Go t 8.5 x 1O-X°jsm]l1l2[W/cm2] for linear polarization, which will be

assumed throughout this paper.

Computer simulations of such laser pulses can be problematical because of the dis-

parate time and length scales involved. Typically, A < L < ZR, where the laser pulse

length L = Crz is defined as the full-width-at-half-maximum of the laser intensity. A

numerical code, LEM (Laser-ElectroMagneuc), has been developed to simulate laser prop-

agation in an underdense plasma for arbitrarily high values of ao. It is based on the

cold-fluid model equations given in Refs. 7 and 8. In developing this code, the model equa-

tions for the plasma response to a given laser field were recast in a numerically tractable

form. In this paper, the numerical equations are presented and, as an example, the code

is applied to the propagation of radius-tailored laser pulses. Theoretical model equations

vesrnng the choice of radius tailoring are also given.

Iw.u ftWevsd Monk 16, 19. 1



Radius-tailored laser pulses, which were discussed briefly in Ref. 7, have a unique prop-

erty in that they can propagate over extended distances (> 1OZR) in a uniform underdense

plasma. While previous simulations of such pulsesT were performed in the context of the

parau•al approximation, which gives a constant laser group velocity v, = c, the present

study shows that, for cases of interest, variations in the group velocity of the laser pulse

over the length of the pulse can have a significant effect. In the present study, theoreti-

cal model equations governing the choice of the axial pulse profile for radius tailoring are

discussed and parameter requirements and tolerances are given for such pulses and for the

injection of these pulses into a plasma. Also, the construction of a radius-tailored laser

pulse from from a series ultra-short Gaussian pulses is considered.
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II. Model Equations

These simulations were based on the laser-plasma fluid model described in Refs. 7

and 8, which utilises (r, = z - d,Tr = t) coordinates. The laser pulse moves in the

positive z direction such that the front of the laser pulse remains near =0. The physical

region of interest extends from C = 0, where the plasma is unperturbed, to < 0. The

model, which takes advantage of the separation between the fast (A) and slow (ZR, A,)

time and space scales, is valid when Zi > L, ZR > Ap, A 4- ro, and A < A,, where

)AV = 2we/w. is the plasma wavelength, w. = (4ire2no/m.) 1 /2 is the electron plasma

frequency, no - n(=)(r = 0) and 0(S)(r) is the initial electron density profile (in the

simulations shown below, an initially uniform plasma radial density profile is assumed).

Laser pulse evolution is described by the wave equation

( vr+ -c 2 ) = kp (1)

To include variations in the laser group velocity, the &2/D0Cr term is retained in Eq.

(1), in contrast to Ref. 7. In Eq. (1), ay = eA 1/m.,9 is normalised vector potential of

the lawer pulse, if is the slowly varying amplitude (a! = &! exp(ikoC)/2 + c.c, where c.c.

denotes complex conjugate), k, - w= p/, p = no/7y.no, n, is the plasma density, 7, is the

relativistic factor of the plasma, and the subscript a denotes a slowly-varying component.

The plamna response to a given laser field &i is given bye,s

Las= p.. - #I (2a)

-S2 V p(e)), (2b)

(u. - a.) = v -(2c)

and
+ , ,. + 1&1,'/2 + ,6:

2(1+0a.) • (2)

whe the Coulomb pup has been used (V- a. = 0) and 0. = - ,.. In Eqs. (2&-

d), as = eA./n and 0. = e./mne are the normalised vector and scalar potentials,
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respectively, u. p./mc is the normalized momentum, p(O) = p.({ = 0), and the plasma

ions are assumed to be immobile.

In the axisymmetric case, Eqs. (2a-d), along with V. a. = 0, can be combined to yield

a single equation7 ,s of the form 820./8O = G(O., li 12). This equation can be written as

ý, = (kMp. - V'•") + (V.u±.), (3a)

where u,,, = 1p- - 1,
= 1 O (3b)

and
(s (P(o) + k;2V2 0.). (3c)

A form of equation (3a) is solved numerically to obtain the plasma response. Both the

derivation of Eqs. (3a-c) and the details of the numerical solution are discussed in the

Appendix.

The LEM code has been used to simulate the effects of several instabilities of recent

interest, such as the forward Raman scattering (FRS) instability9 and the self-modulation

instability,8•.~ Certain instabilities, however, cannot be adequately described using the

mlation given here. In particular, the growth large-angle Raman scattering, also called

Raman side-scatter (RSS), 1e,1 1 is suppressed by the numerical scheme, which includes a

radial smoothing algorithm. This smoothing algorithm is required to suppress a numerical

instability and is discussed in the Appendix.

It is reasonable to neglect the effect of RSS on the simulation results given below

because of the short pulse duration (kL = 12) and because the intensity varies over the

length of the pulse. Specifically, Ref. 10 indicates that the growth of RSS over the length

of the pulse is ninimal for short pulses with•,L < 10- 20. Furthermore, additional

simulations of radius-tailored pulses, with kL 1• 0, showed that the growth of the FRS

and self-modulation instabilities were strongly suppressed by the radius tailoring. This

suggests that radius tailoring may also suppress large-angle Raman scattering.
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III. Radius-Tkilored Laser Pulses

A radius-tailored laser pulse is a pulse configuration which is designed to to propagate

over a long distance by the mechanism of relativistic optical guiding.1"' 13 Relativistic opti-

cal guiding, which generally occurs when the laser power PO = 21.5(aoro/A) 2 GW exceeds

the critical power P. =, 17(A,/A) 2 GW, where Po/Pc = (kproao) 2 /32, is problematical be-

cause the leading portion of a laser pulse (ICI < A,) tends to diffract as if in vacuumS,T and

because long pulses (L > A,) tend to undergo self-modulationA 1 0 With radius tailoring,

the laser spot size at focus is tapered from a large value at the pulse front to a small value

over the length of the laser pulse while keeping P/PC = 1 throughout the pulse. This

condition is met when aL(C)rL(C) = 0.0A,, where rL is the laser spot size and aL = l= I&-.
Radius tailoring is designed to relativistically guide the high intensity portion of the laser

pulse while allowing the leading portion of the pulse to simply diffract. The tapered radius

produces a locally large diffraction length at the pulse front, ZR,o(C = 0)> ZR,o(C•= -L),

where Zn,, = w1"L,(, T" = 0)/A. Hence, the pulse can remain focused over large distances

c- > Za,o(C = -L). Furthermore, self-modulation is suppressed for L < 2AX, because the

increasing laser intensity over the length of the pulse does not excite a strong wake field

within the pulse. Note that while the spot sise at focus varies along the length of the pulse,

each point along the pulse must reach its focus simultaneously.

The selection of a pulse profile is motivated by considering the envelope equation of

ReE. 9, which describes the evolution of the laser spot size rL(C, T) of a pulse with an

pr MA y Gaussian radial profile in the limits a' -C 1, rk>1. Assuming an

initially uniform plasma, the envelope equation can be written as

{I - 4R4k j dC'sin[k,(C' - C)] =P()/P j 0 (4)

[W2(C) + Wr(C')] 2

where R = rL(C,Tr)/re, 't is now defined to be a constant equal to the minimum spot

iseat focus (corresponding to the peak value of laI = s.) and ZR = wrrO/A. The

ecoand term in Eq. (4) represents vacuum diffraction whereas the third term represents

the ocusing/diffractive effects of the plasma.

niilly, for ci < lZnt,*, -R R(r 0)[I + (C-/Zjt,.,,)2•1/2l, where the inverse of
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the effective diffraction length 2 = 1/Z 2 ,€ is

2 _ 1 J1 - 0 - P(C-)/P, (5)

it 0( 4i' [R2(C) + R2(C')](

In this notation, x = l/ZR,o corresponds to vacuum diffiraction, K = 0 indicates a

"matched" C-slice (focusing and diffraction forces are balanced) and r 2 < 0 corresponds

to net focusing. The choice of initial pulse profile, specified as P(C) and aL,(C, 7- = 0), is

motivated by the desire to have r vary smoothly from K = I/ZR,o(C = 0) at the leading

edge of thc. pulse to x ! 0 at the tail of the pulse.

To illustrate, consider four radius-tailored pulse configurations, each at constant

power: (a) a,& = ao sin(-C7r/4A,), 0 S -C 2AUp, P = P,; (b) Case (a) with P = 1.2P,;

(c) a4 = -C/2Ap, 0 <_ -C _< 2Ap, P = P.; (d) Case (c) with P = 1.14P,. Plots of

(rZR)3 versus C are shown for each case in Fig. 1. Here, (KZRR)/ is a

measure of the initial rates of diffraction/focusing throughout the pulse relative to the

vacuum diffraction rate associated with the back of the pulse. For comparison (iZR)2 for

a rectangular pulse with al, = ao, 0:< -C < 2A,, and P = P., is shown in Fig. 2. Figures

1 and 2 illustrate key phenomena that have been observed in LEM simulations of tailored

and non-tailored laser pulses.

The most significant diffraction in Fig. 1 is observed at the peak of (KZR) 2 near the

beam head (ICI < ½p/2), where the laser is everywhere slowly diffracting. For example,

the peak diffraction in case (a) occurs at C -- -0.65A.,, where (KZR) 2 = 0.015. This

corresponds to Zx,.f1 = 8.2ZR. The peak diffraction near the beam head can be reduced

by increasing the laser power in this region. In case (b), the peak diffraction corresponds

to ZR,.1! = 10.5ZA. This suggests that a carefully designed tailored pulse might have

peak power somewhat greater than P. at and near the pulse head, tapering to P t_ P, at

the tail of the pulse.

For constaut P/PC, there is a trade-off between diffraction near the head and over-

focusing in the body of the pulse. Simulations show that, at r" = A,, the allowable range

is 1 :5 P/P. <5 1.5, with optimum results at P/PC = 1.2. While a detailed study has not

been performed, it is clear that this tolerance will vary with ro0. In particular, for rg > A,

and P > P&, simulations have verified that the relativistically-focused tail portion of the

6



pulse is far from radial equilibrium. For P > P,, a laser pulse in a transverse equilibrium

state12 ,13 has a characteristic radius .. ,, <A•p.

The tendency of non-tailored laser pulses to erode5 ,' is illustrated in Fig. 2, which

indicates diffraction over a region of length A./4 near the head of the rectangular pulse

(ZR,ef! = ZR at the pulse head). Figure 2 also shows regions of focusing and defocusing

which lead to the self-modulation instability of Refs. 6-10. These periodic regions are due

to the plasma wave generated by the rise time L,.I/c of the pulse (for a square pulse,

k2L2 . < 1). Figure 1 shows that radius-tailored pulses also have this tendency, but to a

lesser degree (the characteristic defocusing lengths are smaller by approximately an order

of magnitude). Simulations show that for L> A, self-modulation can be a significant

effect, even for radius-tailored laser pulses.

7
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IV. Simulations

As an example of radius-tailored laser pulse propagation, consider a laser pulse with

radius tailoring over the region 0 < -C • 2AP, where P = 1.14P, and a2 = -Ca2/2AP as

in case (c) above, and decreasing power over the region 2,p < -C < 5\p,/2, where rL -- r

and 4L = -2a:(C + 2Up)/Ap. With ao = 0.96 and plasma density no = 5.5 x 10• cm-,

we have ro = \P = 45 ,rm, P, = 35TW, Po = 40TW, and ZR = 457rAP = 0.64cm.

The simulation begins at r = 0 with the laser pulse outside the plasma, one ZR away

from the focal point. The transition from vacuum to full plasma density occurs over a

distance of 0.3 ZR such that full density is reached at the focal point. Simulations show

that with a longer transition region, the laser over-focuses and the effectiveness of radius

tailoring is reduced. The simulation continues until c7- = 16ZR.

Figure 3 shows plots of the normalized laser intensity I&I2 at cr = ZR, as the pulse

enters the plasma with a minimum spot size rL,,,•i, = \,, and at cr = 16ZR, where the

mwiTnimum spot size is 0L,WIS - 0.59\,. In this code, the rL is the radius enclosing 86.5%

of the laser power (for a Gaussian pulse, a - e-

Several interesting effects have been observed in this and in other LEM simulations.

Firstly, the laser pulse deviates from its initial Gaussian profile, becoming highly peaked

on axis. As a result, the quantity &L?,L does not remain constant. Secondly, because

vy < c, there is a noticeable degree of slippage in the C-position of the pulse versus time.

Thirdly, because of nonlinear effects, v. varies with the laser intensity.5, 14 The tendency

of the laser to "steepen" and develop a peaked profile versus C can be attributed to this
effect. In fact, the range of validity of these simulations was limited by this tendency:

when &IfS•z/jC- 1 - A, Eqs. (2a)-(2d) no longer hold. Fourthly, a large amplitude wake

field, with BE = 30 GV/m, is generated behind the laser pulse.

Note that the results stated above and in the previous section indicate requirements

on plasma uniformity and on the sharpness of the vacuum-plasma boundary. Because

Pe - 1/n9, the requirement that 1 _ P/P, :5 1.5 indicates that a variation in no as large

as -15% is acceptable for a radius-tailored pulse with uniform power. This was verified

to some degree in simulations of radius-tailored pulses in which the plasma density varied

by 4-10% with 2-4 oscillations per Zi. These density variations produced no discernible

8



change in the results. When the laser power is nonuniform, as in the cases below, this

requirement becomes somewhat more strict. The requirement, stated above, that the

vacuum-plasma interface have a width smaller than 0.3 ZR should not pose a significant

difficulty, since ZR > A, for typical tailored-pulse parameters.

While the ideal laser pulse configuration of Fig. 3 may be difficult to produce in the

laboratory, it may be possible to construct an approximaee radius-tailored pulse through

the superposition of several ultra-short pulses, each with a different spot size. A somewhat
idealized configuration of 5 overlapping laser pulses is shown in Fig. 4. Each pulse has a

Gaussian radial profile and an axial profile given by aL , sin(-Cr/2L), 0 < -C < 2L, with

L = 17 pm (L/c = 57 fs). This configuration is idealized in the sense that the overlapping

pulses are phase-locked, resulting in constructive interference, and the separation between

pulses is 23 Pm such that the variation in power along the pulse is minimized with peak

power P,..,. = Po = 40 TW, as in Fig. 3, and C-averaged power (P) n P.. This simulation

is otherwise identical to that shown in Fig. 3. As in that case, a lauge amplitude wake field

E. -- 25 GV/m is generated behind the laser pulse.

A less ideal configuration of overlapping short pulses is illustrated in Fig. 5. Here, the

idealization of phase-locking is removed, with each pulse having a randomly-chosen phase

shift. Since tailored pulse simulations at ro = A•, show successful guiding for 1 < P/Pa <

1.5, the pulse spacing has been decreased to 20 psm. Thus, in the case of perfect constructive

interference, Ppw. = 1.SP6, where again PA = 40 TW. Because this configuration contains

a random phase-shift for each pulse, the results from au ensemble of simulations must be

considered. For practical reasons, a statistically small ensemble of 20 simulations was used.

Of these, five were deemed "successful", i.e., a wake with E. > 20 GV/m persisted over

a propagation range greater than 10 ZR. Results from one such case are given in Figs.

5 and 6, with Fig. 5 showing the laser intensity plotted at cr = ZR and at c'r = IZR,

and Fig. 6 showing the laser power plotted versus C at r = 0. For comparison, P versus

C is also shown for the ideal phase-locked case of Fig. 3. The results of the remaining 15

simulations were characterised by the axial break-up of the laser pulse. In many of these

cases, one or more of the resulting "beamlets" propagated greater than 10 ZR, but with a

reduced wake amplitude (E. < 15 GV/m).

9



Clearly, experimental confirmation of the results of Figs. 4 and 5 would be difficult.

While it is beyond the scope of this paper to provide an experimental design, it seems

reasonable to speculate that in such an experiment a long laser pulse would be split into

five separate pulses with separate optical paths. The optics would have to be tuned in

such a way that the pulses arrive at focus simultaneously. Only small errors in the relative

timing and focal positions (< 20 im) would be allowed. It is not clear whether or not

such an experiment could be performed using present technology.

10



V. Conclusions

The numerical fluid code LEM, described above and in the Appendix, allows simula-

tion of intense laser pulses over extended distances (cr > ZR). Because the code computes

the evolution of the laser envelope on the plasma time-scale, these simulations are signifi-

cantly faster than those carried out by more conventional means, such as the particle-in-cell

method. Simulations of radius-tailored laser pulses propagating in a uniform underdense

plasma show that such pulses can remain focused over distances greater than 10ZR in

accordance with Eq. (5), which was derived from the laser-plasma envelope equation of

Ref. 9. These simulations show that large amplitude wake fields (E. > 1 GV/m) can be

generated behind the radius-tailored pulse provided that the intensity terminates in less

than a plasma wavelength. Simulations also show that a radius-tailored laser pulse can be

constructed from a series of overlapping ultra-short (Lic , 5Ofa) Gaussian pulses.
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Appendix: Numerical Solution of the Model Equations

The model equations are given as Eqs. (2a-d) in the main text. These equations make

use of the quasi-static approximation, in which it is assumed that the scale length over

which the laser field evolves is long compared to the laser pulse length (ZR > L). In this

limit derivatives with respect to -r are dropped relative to derivatives with respect to C in

the plasma fluid equations, but not in the wave equation. In addition, Eqs. (1) and (2a-d)

have been averaged over the fast (A) laser oscillations. The resulting simulation code,

LEM (Laser-ElectroMagnetic), describes the laser envelope &! and the plasma response

on a spatial grid that resolves A., L and ro, with a time step that resolves the evolution of

the laser intensity (ZR/c) and the phase oscillations, due to plasma dispersion, of the real

and imaginary parts of &y, which have a characteristic period k\,2/rc.

Equations (2a-d) are numerically intractable in the sense that it is not clear which

equation should be solved first, second, etc., or if an iterative method of solving the equa-

tions can be expected to converge to a meaningful solution. This numerical quagmire can

be avoided by recasting the problem into a single equation for the quantity 0., given as

Eq. (3a) in the main text. An outline of the derivation of Eqs. (3a-c) is as follows. The

axial component of Eq. (2c) yields the constant of motion us,,. = -f. - #8, - 1. Substituting

46s = #. + a,,. into the axial component of Eq. (2a) gives

" = kp.p,.,. _ V 2 as.,.. (Al)O2

Subtracting this from Poisson's equation, Eq. (2b), gives Eq. (3c) for p. in terms of #..

Assuming axdsymmetry (8/80 = 0), Eqs. (2c) and (2a) imply e,,s = as,* = 0. Substituting

#5 = #8, + as,, into the transverse component of Eq. (2a) and using V . a, = 0 and

i.,. = ae,, = 0 gives Eq. (3b) for u.L,, in terms of 1,. Operating on Eq. (2c) with (V.L-)

and using the gauge condition and the constant of motion gives

aV.',. = V2_U,,. - (VL.. u,.). (A2)

Equation (3s) fio 0,/8OC2 results from substituting Eq. (A2) into Eq. (Al).

12



Equation (3a) can be written in the following form:

L p

The quantities p. and ux,. can be written as functions of 0. and I&f12 using u,., -- = -0.

along with Eqs. (2d), (3b) and (3c). Equation (A3) can be integrated numerically in C

in a straightforward manner by starting at the C = 0 boundary, where the plasma is

unperturbed and where 16, = V±#., = V2.1=, -= 8./OC = 0 is assumed. For the purposes

of numerical solution, the form of Eq. (A3) is preferable to that of Eq. (3a) because the

second-order derivative 6,O./8C2, which occurs in the last term on the right side of Eq.

(3a), now appears on the left side of Eq. (A3). Radial boundary co,.- ons in Eq. (A3) are

dictated by azisymmetry at r = 0 and by the imposition of a metallic wall at ? = r. > r0.

Equations (1) and (A3), along with the auxiliary Eqs. (2d), (3c) and (3d), provide a

complete description of the laser-plasma interaction on the plumsm time scale.

In numerically integrating Eq. (A3) versus ., care must be taken to avoid a numerical

instability wherein a sufficiently large disturbance in #. with a sufficiently large transverse

wavenumber grows exponentially as a function of C. This can be seen heuristically by

considering a small amplitude electrostatic wake field in a uniform plasma (p(0) = 1) with

,-1 < < 1 and, 0. In this case, Eq. (AI) can be written

-(k• + 2 (A4)

where #a(C,) = f*(fki)e-ka and z is the transverse coordinate. For 2 <

Eq. (A4) produces the usual oscillatory wake field, with wavenumber k4. However, a

numerical instability occurs for any transverse wavenumber that satisfies k2> k>/•.(k.).

In particular, consider the Nyquist wavenumber kN = wl/A (the highest wavenumber

that cam be carried on the numerical grid), where Am is the transverse grid spacing. The

stablity reqzem t is that san numerical "noise" at & = kN must be have a very small

13



amplitude: 4,(kN) < (2Az/AP)2 . From Eq. (3c) it can be shown the instability condition

k. > k214.(k.L) corresponds to a negative plasma electron density, an unphysical situation.

The instability is therefore numerical in nature and is avoided by filtering out the high

transverse wavenumbers (k±L > I/ro) from b.

14
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