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1. INTRODUCTION

For quasi-brittle materials a significant amount of research has been conducted
under the assumption that a process zone develops ahead of a crack tip. Here, a crack
process zone is defined to be a zone of distributed microcracks developing prior to a
macrocrack in a region both above and below the plane of the macrocrack. The very
existence of such a zone has been the subject of major inquiry (Mindess, 1990].
Experimental evidence [Wang, Schreyer and Rutland, 1990; van Mier, 1990] indicates that
such a zone is extremely hard to identify or is nonexistent. A theoretical investigation
[Horii and Nirmalendran, 1990] shows that even if a zone of microcracks develops prior to
the formation of a macrocrack, the influence of the zone is a relatively insimiﬁa:smof
the response of the structure. Load-deflection curves obtained in the laboratory and post-
limit sectioning of samples indicate that there is a significant amount of activity prior to the
formation of a macrocrack but not in the form of a crack process zone. Instead,
microcracks open prior to the macrocrack with the result that certain elements such as
inclusions in ceramics maintain contact longer than the surrounding matrix. This is called
the crack bridging effect or "wake" effect which is interpreted as shielding the crack tip
from applied stress [Reichl and Steinbrech, 1988). Furthermore, aggregates or inclusions
cause the resulting crack surface to be strongly nonplanar or "tortuous,” also called crack
deflection [Faber and Evans, 1983]. The development of crack bridging [Kobayashi and
Shochey, 1987; Li, 1990}, tortuosity and a nonlinear crack front formed by the presence of
inclusions causes a specimen to appear less brittle than an identical geometrical specimen
composed of the parent matrix material. Such materials are called quasi-brittle because
classical linear elastic fracture mechanics cannot be applied without modifications to
account for the apparent ductility which is developed prior to failure.

The most straightforward experimental examples involve Mode 1 cracks as
developed, for ¢ le, in tension or -point and four-point bending tests. In addition
to the apparent ductility displayed prior to the peak load, a softening branch is exhibited in
the post-peak regime of the load-deflection curve if the specimen is small enough. This
softening is another manifestation of apparent ductility. Under certain combinations of
material and geometrical properties, cracks will propagate in a continuous but slow rate
under cg:&lacement control [Maji et al., 1990]. This suggests that the crack driving "force"
is just cient to overcome the crack "resistance” and that the process is not necessarily
unstable as is commonly claimed. Suppose that cracks may grow at a rate governed by an
inherent material property and the crack driving force. Then if a specimen is loaded
dynamically, the average stress could significantly exceed the static stress necessary to
cause failure, and any number of pre-existing flaws could serve to initiate cracks.
However, most dynamic loads are impulsive in nature so the growth of these cracks is
soon arrested because of the lack of a driving force. The result is the potential existence of
a region of microcracks. Therefore, for dynamic situations, the evolution of a macrocrack
must be understood when considering a microcrack process zone. For quasi-static
processes, which are the subject of this research, there is little imental evidence that
displays a crack process zone in the form of a region of distributed microcracks prior to the
macrocrack. The subject is one of considerable controversy.

2. RESEARCH OBJECTIVE

Existing experimental results indicate that crack branching occurs, and existing
cracks sustain a significant amount of load carrying capacity. This feature has been
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demonstrated in an alumina ceramic: "Active grain bridges were observed along the entire
crack trace and over the entire ation distance. No indication of a microcrack-cloud
zone was observed, ..."[Rodel, 1 . To capture the feature of support along the entire
crack trace, the damage crack concept is proposed in this research in which the traction on
the crack face is related to the discontinuity in displacement through a crack modulus.
Damage, and hence the modulus, also vary with the discontinuity in displacement across
the crack. The model used in this project yielded a problem somewhat analogous to a
spring foundation but with a nonlinear spring. From conventional damage concepts, the
stffness coefficients were related to the amount of ligament area still intact in comparison to
the total area of the crack. As the crack evolved, the stiffness of the complete specimen was
correlated with the degree of damage in the crack. There was no assumption that
distributed microcracks exist with this approach. The predictions of stiffness for the
specimen, or a part of the specimen, and the strength of the specimen were correlated with
experimental data in the literature to provide an initial indication of the magnitude of the
crack stiffness.

Numerical solutions were obtained for the case of a compact tension specimen. The
interface was modeled as a damage crack with a small amount of initial damage. The
change in response of the specimen due to the crack propagation provided an indirect
measure of the odrli%‘nal strength of the bond. Problems involving softening and localization
are notoriously difficult to solve because the tangent stiffness matrix becomes singular at
the peak load, and multiple solution paths exist for displacement beyond those at peak load.
Existing numerical algorithms were attempted, but even the simplest situation of a two-
dimensional mode for uniaxial tension required an inordinate amount of computer time.
One of the more important achievements of this research was the develoyment of a robust
and efficient algorithm for solving problems involving softening and localization.

The issue of crack branching was addressed by introducing inclusions to cause
multiple interruptions. The reason why a microcrack ceases to grow in preference to an
alternative path was addressed numerically by investigating alternative arrangements of
inclusions. Specifically, angular shape inclusions were considered and an attempt was
made to show how inclusions can rotate to cause bridging by interrupting the crack paths.

The following are objectives of the numerical phase of this study:

1. By an indirect process of comparing experimental data on tensile failure with predictions
based on a spectrum of grain boundary material parameters, we will be able to determine
the mechanical properties of the grain boundary itself.

2. We will be able to show how crack branching occurs. These results will be important for
constructing nonlocal continuum models for representing the ceramic. ‘

3. We will be able to demonstrate that a microstructural analysis can be performed so that
the effects of additional features such as porosity and anisotropy can be incorporated.

4. The basis will be establisifed for looking at toughening mechanisms provided by fibers
and particles in a systematic manner rather than by empirical methods currently in use
[Pezzotti et al. 1990a, 1990b].

5. The ultimate advantage of the numerical approach will be the capability for identifying
quantitatively those individual features that will have the greatest potential for enhancing
strength and ductility.

It would be useful for analysts if a ceramic could be modeled as a continuum,

s zone mechanism varying from one ceramic to the other, as exhibited, for example,

g; toughening in which fracture resistance systematically increases with crack extension.
Such features appear if mechanisms such as phase transformations, grain bridging and
whisker reinforcements are present [Evans, 1990]. These features can be captured in a
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continuum mode! only if softeninliand nonlocal aspects are included. The nonlocal part of
a constitutive equation controls the size of the predicted process zone and maintains the
mathematical well-posedness of the governing equilibrium equation, i.e., the original
elliptic nature of the equation remains elliptic as a crack process zone is established.

The compact-tension tests of alumina ceramic were performed on large specimens

using the Instron Testing Machine, and on a much smaller scale inside the chamber of a

Scanning Electron Microscope (SEM). The small in-situ tests involving the SEM provided

the phenomenon of microfracturing both for scientific understanding and for practical

application. In this case, the special loading stage, which can be mounted in the SEM
amber, was designed, including the closed-loop feedback to the loading device.

In summary, the objectives of the experimental phase were:

(i) to determine the mechanics of bridging

(ii) to provide a real-time description of macrocrack interaction with microcracks

(iii) to provide those measurements useful for verifying the theoretical approach such as
cracking-opening displacements, loads, displacements at the point of application of the
load, crack lengths and locations of cracks

(iv) to continue the development of the in-situ testing device to include a displacement
closed-loop control feature.

3. SUMMARY OF RESEARCH
3.1 Experimental

It is generally recognized that the nature of grain boundaries and microstructures
affects the properties and behavior of ceramics. It is important to understand the ceramic
processing characteristics which affect the nature of grain boundaries. Different processing
techniques have been attempted to produce the desired microstructure of alumina in the
laboratory (See progress report, Nov. 1, 1992). Because the size of a ceramic sample
cannot be augmented to perform mechanical tests, and because the ceramic is not fully
dense, an alumina bar measuring 30 mm X 30 mm X 250 mm was obtained from the
Coors Technical Ceramics Co. The relative density of the alumina is 99.5%. (see
Appendix 1 for the processing and properties of alumina).

Ceramic compact tension tests were conducted on an Instron. Since the stiffness
difference between the load frame of Instron and the compact tension i is large, A
reasonable load-deflection curve could not be obtained. The Scanning Electron
Microscope (SEM) is widely used as an analytical tool in the field of failure and fracture
analysis, primarily because of its combination of good field depth and high resolution.
For the studying of the micrafracture process of the ceramic, the closed-loop control in-
situ loading stage, which can be mounted inside the SEM chamber, was designed to
perform a real time fracture test.

Compared with most metallic materials, the mechanical properties of engineering
ceramics are much more sensitive to factors such as size, shape and surface finish. When
tests are conducted, machining of some of the surface is required to remove surface flaws.
Ceramic materials are difficult and expensive to machine due to their high hardness and
brittle nature. The tool must have a higher hardness than the ceramic being machined, and
must be of a configuration that removes surface stock without overstressing the
component. For these reasons, several special machines were purchased to prepare the
specimen.
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Examination of fracture surfaces with SEM can provide useful information on such
aspects as local fracture mechanisms and fracture gation direction. After the test, the
fracture surface is examined by the SEM. Since ceramic samples lack sufficient
conductivity for analysis in SEM, to produce a conductive layer, carbon, gold, or
aluminum is evaporated onto the specimen surface. Fractographies show the fracture of
alumina is intergranular. Intergranular fracture is usually the most easily recognizable
mode of fracture, but determining the cause may be quite difficult.

3.2 Theoretical

Inclusions in ceramics provide a toughening effect by rotating and impeding crack
openings thronﬁ: what is called "crack bridging.” A major objective of this research is to
investigate in il the mechanisms that occur in crack bridging; however, a study of
micrographs available in the literature indicate that the same phenomenon appears with
grains, only at a smaller scale. In particular, crack branching occurs around grains with
one of these microcracks, ultimately evolving to a marocrack, with large grains appearing
as "inclusions" which rotate as rigid bodies. Based on this observation, the theoretical
phase involved an investigation of fundamental properties of grain boundaries. Such an
analysis can be closely guided by in-situ testing in a scanning electron microscope (SEM),
and theoretical results can provide insight into how the mechanical properties of ceramics
can be improved.

Continuous damage mechanics is concerned only with the description of
progressive weakening of solids due to the development of microcracks and microvoids;
therefore, continuum damage mechanics is the most appropriate approach for analyzing the
nonlinear behavior of quasi-brittle materials. Based on microstructural analysis, it was
proposed to numerically model in two dimensions a small region composed of a set of
grains and grain boundaries, as shown in Fig. 1. Each grain was modeled as an elastic
material while the grain boundary was considered to be a thin region of elastic damaging
material. An initial assumption was that each grain is scalar isotropic but at a later stage, a
two-parameter isotropic model was introduced.

In our finite element codes, dynamic relaxation (DR), an explicit incremental
iterative method, was used to obtain preliminary numerical results. The DR method is
based on the fact that the static solution is the steady state part of the transient response for
a temporal-step load [Underwood, 1983). This method is especially attractive for problems
with highly nonlinear geometric and material behaviors, which include limit points and
regions of very soft stiffness characteristics, like the issue in our research. Crack
nucleation and propagation along the grain boundary are shown in the numerical results.
The effects of microcracks, voids and inclusions are also observed.

Numerical investigations are difficult because of the ill-conditioning inherent in the
large difference between the characteristic dimension of the grain and the thickness of the
grain boundary. One way to reduce the condition number is to model each grain with finite
elements of dimension similar to the thickness of the grain boundary. The result would be
an inordinate number of elements that could not be handled by the work stations available
for this research. Another approach is to invoke constraints to remove the largest
eigenvalues which, in turn, would reduce the condition number and allow for a possible
numerical solution for a sufficiently large domain so that meaningful results could be
obtained [Hueck and Schreyer, 1992). A method for efficiently incorporating constraints
resulted in & paper submitted for publication [Schreyer and Parsons, 1994).




4. DETAILS OF RESEARCH
4.1 Ceramic Properties (Alumina)

Ceramic materials include oxides, carbides, sulfides, and intermetallic compounds,
which are joined either by covalent or ionic bonds. Ceramic moduli are generally much
larger than those of reflecting greater stiffness of bonds. And since ceramics are
largely composed of light atoms (oxygen, carbon, aluminum) and their structures are

uently not closely-packed, their densities are low. Most ceramics are crystalline, but
unlike metals, they do not have closely-packed planes on which dislocation motion can
occur. Therefore, ceramic materials to be very brittle compared to metals. Typical
ceramics have very high melting temperatures (like alumina, 2050°C), which explains their
good creep properties. Also, many these materials have superior wear resistance, and
have been used for bearings and machine tools. Most ceramics, however, are too brittle for
critical loading-bearing applications. Consequently, a vast amount of research has been
devoted to improving the toughness of ceramics.

Mos! traditional ceramics are monolithic (single phase) and have very low fracture
toughness. Our research was concentrated on monolithic ceramics, in particular aluminum
oxide (i.e. alumina), which is widely used in industry.

4.2 Microstructural study (alumina)

Ceramics are formed by the application of a powder to high temperatures perhaps
with the assistance of pressure and additives. The particles sinter together into a
microstructure consisting of individual crystals or polycrystals, i.e., grains (made up of
millions of small crystals [Ashby, 1986]) separated by grain boundaries and residual
porosity (see Fig. 2). Each grain is more or less a perfect crystal. The grain boundary is
obviously complicated, and can be considered as a thin region of atomic disarray where the
density of atoms is slightly less than normal. Impurity and second phases are located at
grain boundaries [Davidge, 1979). The structure of the grain boundary in alumina was
studied by Carter, et al. (1980) using electron diffraction and weak-beam (or dark field)
imaging techniques in a Transmission Electron Microscope (TEM). The diffraction
patterns and images show that the structure of the grain boundaries is periodic and the
:_hickness of the grain boundaries is about 6-9 nm, which consists of dislocation arrays and
acets.

4.3 Real-Time Fracture Study of Ceramics

In order to perform the real-time fracture study of ceramic materials, a closed-loop
control system for the in-situ loading stage of the Scanning Electron Microscope (SEM) is
needed. simpﬁdty,thelondingwdesipwdmtﬁdethesmmwwmits
ability and will be mounted inside the chamber in the future.

Closed-Loop Control Loading Stage

Fig. 3 (a) shows the tension-compression (T-C) stage which can be mounted to the
SEM position stage. A single sliding brass block moves in a machined aluminum body
assembly. To implement rotation of the lead-screw, a worm and ring gear(40:1 ratio) set-
up is utilized. is set-up greatly reduces reverse rotation and provides a smooth
application of lead-screw torque. A square shaft slides in a keyed slot running through the
worm gear, and a 90 degree bevel gear system with another square free-sliding shaft
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connects thmugthelnnm U-joint to a vacuum rotational-feed-through shaft. This shaft
can be rotated by the geared stepper motor for precise feed-back control.

The closed loop design must have several rties, including, but not limited to,
accurate load or displacement increments. Therefore, the objective is to create an integrated
environment between all of the hardware elements necessary to perform tests. See Fig. 3
(b) for a schematic representation of the operating environment.

To give an overview of operating principles, knowledge of the involved
components and hardware is needed including:
: Scanning Electron Microscope
: Loading stage le of tension and compression testing
: Step Motor and Controller from American Precision Industry
Qackh(d)pe col;l;’ll — (COD) from MTS

nin acement gage

: 1000 Ib. Load Cell from Seasotech
: 2-channel DC amplifier from Ectron
. Microsoft's Virtual Basic

The Galil Motion Control card is the interface between the computer program to
close the control loop and the step motor controller, which controls the motor, and puts
load and displacement on the specimen. The card also receives two transducer signals from
the loading stage. The COD gage returns the displacement between loading platforms and
the load cell returns the approximate load on the specimen (see Fig. 3). The actual closed-
loop program in the Galil card language has been completed. Microsoft's Virtual Basic is
being used to create a driver program which is more visual and convenient. A detail
dlscu:s:;lon3on the development of tension-compression loading stage is addressed in
Appendix 3.

Compact Tension Specimen Preparation

Because sample preparation plays an important role in the ceramic test [Rice, 1993},
the steps of sample preparation include the following:

1. The alumina bar was cut into small pieces by the diamond saw, and then the
Isomet Low Speed Saw (made by Buehler Ltd.) was used to section the small piece into 1-
4 mm thickness samples 30 mm X 30 mm, sectioned by using a low concentration
diamond wafering blade.

2. The Ecomet Grinder and Polisher was used to grind and polish the surface. The
dmmond t disc and diamond lapping film from 40 micron, 15 micron, 6 micron, 3
S micron were used to the shiny surface.

3. The holes on the specimen were drilled by an Ultrasonic Disc Cutter (made by
Gatan Inc.). The disc cutter vibrates a tubular tool at a of about 26 Kz against the
sample. The tool is immersed in a drop of water-based hard grit (usually SiC 320 grit
powder) slurry placed on the specimen. This cwcles in the slurry to impact the
sample under the vibrating tool and erode away a impression.

4. Notches were sawed by an Isomet Low Speed Diamond Saw with a thin diamond
wafering blade. Usually the chevron notch is cut.




S. After machining the specimens, the specimens were heated to 600 ©C for 2 hours
by a Thermolyne temperature-controlled fumnace to release the residual stress caused by the

machining. The heating and cooling rate was 2°C/min.

6. Aluminum was evaporated on the specimen surface by a Denton Vacuum DV-
515 to produce a thin conductive layer.

Experimental Results

Grain boundaries in ceramic polycrystals frequently constitute planes of reduced
fracture resistance; consequently, crack propagation often occurs along grain ies.
Almwghpdnbounduyaimagnnuhrﬁwmdoesnmmessuﬂg;fiveﬁsewmuw
weaker than materials that fail by transgranular fracture, the preferential failure along grain
boundaries can, in some cases, enhance toughness. To provide insight into the toughness-
determining mechanisms, both fracture s and fracture surface were examined during
load application.

Fig. 4 and Fig. 11 show the area around the notch tip before and after the specimen
was broken, respectively. Load was applied carefully by constantly detectin%the notch tip
at high magnification. A crack started to propagate from the notch tip (see Fig. 5) after a
certain load. It can barely be seen in low magnification. The profiles of the crack while
holding the applied load are shown in Fig. 6 (a), (b), (¢), (d), (¢). The micrographs show

that the crack started to propagate from the notch tip to 1100 pum in length. The width of the

crack was 1-2 um. It demonstrated significant crack deflection with the tortuosity of the
crack path (Fig. 7 (a) and (b)).

Specific examples of SEM observations in alumina are shown in Fig. 8 (a) and (b).

Fig. 8 (a) shows a bridging site in the crack wake some 950 um behind the crack tip (also
shown in Fig. 5 (a)); Fig. 8 (b) shows another bridging site in the crack wake some 1000

pum behind the crack tip (also shown in Fig. 5 (a)). Other bridging sites were also observed
along the profile of the crack.

The fracture mode was predominantly intergranular, and it also was observed on
the fracture surface (Fig. 9). No indication of a microcrack-cloud zone (also known as
frontal-zone mucrocracking) was observed by SEM (see Fig. 10).

Summary of experimental results:

1. Crack-deflection processes operate when a crack interacts with microstructurally related
features (e.g., weak interfaces or residual stress fields) that reduce deviation from
planarity. As the crack deflects out of the plane normal to the applied stress, the stress
intensity attheﬁ_gdimirﬁsh&s.reducingﬂxecnckdﬁvingforeeand improving the fracture
wughness. K. T. Faber and Anthony G. Evans found intergranular crack-deflection
toughening in silicon carbide [Faber, 1983].
%gmnm-mmawr’cﬁhngmngtogm:fd&mmddnﬁum:u&ﬁ

. Since no energy was dispersed in front crack tip, crack interface grain bridging in
the wake of the crack might be another cause of fracture toughening {Rodel, 1992].
4. The failure mode was predominantly intergranular.




4.4 Numerical Simulation of Microfracture

Based on the microstructural study of ceramic, it was proposed to numerically
mode! in two dimensions a small specimen composed of a set of grains and grain
boundaries, as shown in Fig. 1. Each grain can be roughly pictured as a homogeneous,
anisotropic material with a multifaceted surface consisting of several planes. When a
ceramic is loaded statically in tension, micrographs show that a dominant response
mechanism is the appearance of cracks along grain boundaries while the individual grains
remain intact. Therefore the mechanical features of the grain boundary itself must have a
significant impact on the mechanical behavior of the ceramic. It is surprising that (to our
knowledge) no attempt has been made to characterize the mechanical features of the grai
boundary itself since it is the grain boundary that appears to provide the dominant
characteristics of the mechanical behavior of ceramics. It is generally recognized that the
nature of grain boundaries and microstructure affect the properties and behavior of
ceramics. It is equally important to understand ceramic processing characteristics which
affect the nature of the grain boundaries. In general, the mechanical properties of ceramics
depend on the strength at grain boundaries, intergranular fracture due to weak grain
boundaries and transgranular fracture due to strong grain boundaries.

Grain boundaries are considered as thin regions of elastic damaging material. An
initial assumption is that each grain is isotropic. The grain boundary is supposed to be
restricted to mode I behavior in the direction perpendicular to the face of the grain. This
response is accomplished by utilizing a continuum model with a high shear modulus to
preclude grain boundary sliding, a continually increasing modulus for compressive
deformation, and a decreasing stiffness modulus as a damage model to simulate the mode 1
response for a tensile stress normal to the face of the grain.

Continuum Damage Mechanics

The nonlinear behavior of brittle materials is more accurately represented as the
evolution of distributed microcracks rather than plastic deformation; therefore, continuum
damage mechanics is the most appropriate approach. A phenomenological model [Yazdani
and Schreyer, 1988] has been developed based on perceived modes of crack evolution. The
value of this work is in its establishment of a firm thermodynamical foundation for the
approach, and when combined with plasticity [Yazdani and Schreyer, 1990], the model
provides excellent qualitative and quantitative results for a variety of load paths. Some
theoretical implications of the use of continuum damage mechanics have been explored
[Schreyer and Wang, 1990] as a precursor to the incorporation of essential aspects of
microstructural approaches [Ju, 1990; Krajcinovic, et al., 1990] in a sufficiently simple
manner to retain the feasibility of performing numerical simulations.

Conventional damage consists of the creation of voids and microcracks which
consequently reduce the mechanical properties of a material, such as bulk modulus and
shear modulus. Although damage is an anisotropic phenomenon, the initial approach will
be to assume isotropy and consider the part of the damage reflected through the bulk
modulus. A preliminary theory consistent with thermodynamics suggests that volumetric
strain is a suitable measure of damage.

If the thermal effects are ignored, the internal energy, U, is assumed to be a
function of the total strain tensor, e, the "internal" variable consisting of the permanent
strain tensor, eP, and the fourth-order elasticity tensor, E. With the assumption of linear
elasticity, U is taken to be




U= % (e-eP):E:(e-¢P)

the application of the first and second (Clausius-Duhem inequality) laws of
lhemojynamics leads to the constitutive relation for stress, s,

§= g%- E:(e-eP)
and the dissipation inequality

~aa-g-::l'-:-%:.e°z 0 or s:eP- %(e-ep):ﬁ: (e-eP) 20

Suppose the damage process is parameterized through the use of a parameter, ©, which is
monotonically increasing (w2 0). The evolution equations for damage can be given as
follows:

E=-GR(E,e,eP) eP= )y m(E, ¢, eP)
in which the dependence of the response functions, R and m, is shown. Since w2 0, the
dissipation inequality becomes

D= % (e-eP):R:(e-eP) +ssm 20

which is satisfied if R is positive definite (conventional definition of damage) and if m
forms an acute angle with s.

Suppose a damage function, f, is defined such that damage occurs when the state falls on
the damage surface, f = 0, and for which the dissipation inequality is satisfied
automatically. The inequality is met if

f=D - g2(E, e, eP)
Then when f < 0 damage is not occurring, and f > 0 is not a physical state.

Let I and i denote the fourth order and second order identity tensors, respectively. Define
the spherical and deviatoric projections to be

P‘P-%iai Pd=]-psP
Then PSP : PSP = PSP pd;pd.pd PSP:Pd =0
- pdsg ed - pdie
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s’P = PSP:s = -Pi eSP = PSP:e = % eyl

in which P = -(izs)/3 is the mean pressure, ¢, =e, :i is the volumetric strain, and s9 and ed
denote the stress and strain deviators, respectively. With the use of the projection
operators, the isotropic elasticity tensor is E = 3KPSP+2GP4 in which K is the bulk
modulus and G is the shear modulus. Both parameters may change with damage.

For the initial numerical investigation performed for this study we chose g to be a
constant, and R 1o be the initial isotropic elastic tensor E,, and m to be the spherical part of
the stress tensor (tensile). The result is a simple scalar isotropic damage model in which
the bulk and shear moduli decay simultaneously with @ which is directly related to the
volumetric strain (positive). A slightly more Ig eral model was then introduced in which
R is an isotropic tensor not proportional to E,. The result is a two parameter isotropic
damage model in which the bulk and shear moduli deteriorate at different rates with an
increase in volumetric strain.

Damage Model

For the 3-D problem, the material stiffness matrix [E] is 6 by 6. In the most
general case of anisotropy, [E] contains 21 independent coefficients. A!l coefficients
change as the damage parameter o changes. That is why continuum damage mechanics is
so complicated even for the 2-D problem. In the engineering sense, many situations can
be si?liﬁed or idealized. For an orthotropic material, the material displays extreme values
of stiffness in mutually perpendicular directions, and [E] contains 9 independent
coefficients; for an isotropic material, the material behavior is the same in all directions,
and material properties are commonly expressed as two independent coefficients, Eand 1 ,
or K and G.

In the 2-D problem, two different situations should be considered: the plane strain
and the plane stress problem. For the plane strain isotropic problem, [E] can be expressed

. -
31-w)K 3K
1- 0
. u“ 1:1 0 (+) A+
(E] = —E—o 3uk  3(-p)K
1+1)(1-2 1-2 0
(1+p)(1-21) 0 0 —{E (1+p) (1+p)

and the volumetric strain is

& =Exx * Eyy
For plane stress,
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" 301-20K 3u(1-20)K 0
10 0 2 2
E fur0| | M 1-p

(E}=— ] 3u(1-2mK 3(1-20)K
12| 00 22 7 1 °
L 0 0 G
and the volumetric strain is
ey =Exx* Eyy* &z
.l.zu(exx'l-eyy)

I-p
where E and 1 are Young's modulus and Poisson'’s ratio, respectively, and K and G are
bulk modulus and the shear modulus, respectively.

It is assumed that the damaging regions are confined to the grain boundaries, and

the grains are elastic. For simplicity, the grains are assumed to be isotropic elastic, and
the proportional scalar isotropic damage was used in the grain boundaries, i.c., the bulk

KOB and shear modulus G®B of the grain boundaries decreased when their volumetric
strains reach a certain volume. The superscript GB denotes the grain boundary. A

damage parameter  is introduced:

G =(1-0)G3"
If ©=0, nodamage has occurred; if @ =1, complete damage has occurred. KCP and
GCP are initial values of KB and GOB, respectively. KB (and GO®) reduces from
Kgn (and GGB ) t0 0 as @ goes from 0 to 1.

The evolution of the damage parameter @ under tension is proposed to be (Fig. 12)

Q= m(eogevok)
{ o ev < eo

Cy-¢€
k) ey 2 e,

1-exp (- ( %

where e, is volumetric strain, and ¢, and k are parameters which can be determined from
experimental data.

‘The Young's modulus E GB
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and the Poisson’s ratio U is a constant:

uGB. 3x05 . 2603
2 (3KB 4 gOB )
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Dynamic Relaxation

Nonlinear structural analyses include materially nonlinear problems such as
nonlinear constitutive equations with small deformations, geometrically nonlinear
problems normally associated with buckling or a combination of both s of
nonlinearities [Chen, and Schreyer, 1990). The nonlinear analysis in the finite element
method can be expressed as

K] {U}={F}

where [K]is the structure stiffness matrix,

{U} is the vector of nodal degree of freedom, and

(F} is the vector of nodal loads.
(K] and {F) are regarded as dependenton {U}. The schemes for nonlines roblems are
based on step-by-step load incrementation and an iteration procedure to correct the

In our finite element code, dynamic relaxation (DR) is used as an explicit
incremental method for solving static problems. The DR method is based on the fact that
the static solution is the steady state part of the transient response for a temporal-step load.
This method is especially attractive for problems with highly nonlinear geometric and
material behaviors, which includes limit points and regions of very soft stiffness. Use of
the dynamic relaxation method makes the software simple. Since the method is explicit, it is
unnecessary to form a global stiffness matrix; ore, much less computer storage is
needed than with implicit procedures such as Newton-type methods [Underwood, 1983,
Gerstle, and Xie, 1992). See Appendix 1 for the DR algonthm.

CoMeT

The whole modeling process was accomplished by coupling the nonlinear dynamic
relaxation analysis program with the Egmn CoMeT (Computational Mechanics Toolkit),
and an interactive graphical shell for integrated computational mechanics. For each
iteration, the new damage values of K and G were calculated in terms of the current volume
strain in each Gaussian point and compared with the former damage. After one step was
finished, a data-base file was output that could be processed by CoMeT.




Mesh

Based on crystal structure and micrographs of the alumina, the shape of each grain
was hypothesized as hexagonal and modeled with six three-node triangular elements; the
uniform grain boundaries are distributed between the grains, which was represent with a
small three-node triangular element and a four-node quadratic element ( Fig. 1). For
simplicity, a small mesh with a grain size of 10 mm was generated, and the thickness of
the grain boundaries was 0.5 mm (Fig. 1). The aspect ratio of the grain boundary element
was 10:1. An element performs best if its shape is compact and regular. According to
Cook [1989], an element tends to stiffen and lose accuracy as its aspect ratio increases,
although specific details are not given. Here, we show that good results are achieved even
with a large aspect ratio.

Numerical Results

To illustrate the proposed damage model, two sample problems were considered;
onc was a small problem with 19 elements, another was a large problem with 161
elements. The moclel problems consist of a specimen in which the d::tplaoemcnt on one
boundary is applied uniformly in the y direction under the assumption of plane stress. One
boundary was traction free and the other two boundaries had fixed displacement in the x
and y directions, respectively. In the grain regime, the material is assumed to be isotropic
as defined through Young's modulus, EG, and Poisson's ratio, pC. Material parameters,
which are considered to be representative of alumina ceramic, were chosen as follows: EC

=372 GPa, and p C =0.22. Equivalently, bulk modulus KG= 228 GPa, shear modulus

GG = 152 GPa, were used for the grain. The initial material properties of grain boundaries
affect the computational results.

Small Mesh Model Problem

The finite element mesh and the boundary conditions used in the analysis are shown
in Fig. 13. First, the initial material propertics of grain boundaries used in the numerical

analysis were assumed as the same values as that for the grains, i.c., KGg = KC = 228
GPa, GOP =GO = 152 GPa; equivalenty, EC® =372 GPa, and u §® = 0.22. The

undeformed mesh is show.  in Fig. 13. The deformed meshes at the 20th step and 3pth
step are shown in Fig. 14(.) and 14(b ). The larger deformation that occurred in the
shadow elements showed that the microcrack started to nucleate and propagate along the
grain boundaries.

Fig. 14 (a) shows the crack nucleating at the central grain boundary (marked),
and crack propagation along the nd‘:n‘m boundaries is shown in Fig. 14 (b). The
displacement and the total corresponding nodal force curve is illustrated in Fig. 14 (c).
The nonlinear behaviors (hardening and softening) of ceramics under uniaxial tension can
be seen. The filled circles indicate the loading steps.

Large Mesh Sample Problem

The large mesh sample problem includes 12 grains and the number of elements is
161. The mesh is shown in Fig. 15 (a). The features of the proposed model are shown
below:
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1. Microcrack nucleation:

The undeformed mesh with 161 elements is shown in Fig. 15 (2). With EOP =

EC, the deformed mesh at the 23" step is shown in Fig. 15 (b). It can be seen (Fig. 15
(b)) that the grain boundaries (in shadow) show a larger deformation than the other
clements, i.c., the microcracks have been created on the grain boundaries. Fig. 15 (c) gives

medisplwmundwnupmdipgmmnoddfaumfaﬂwwndiﬁmofﬁgnnﬁc.

zwm:

As the displacement is continuously the deformed mesh shows that the
microcracks connect together and propagate. 16 (a), (b), (c) and (d) show results at
the 25th, 26th, 27th and 29h Joad steps. From the deformed mesh, crack nucleation and
propagation along the grain boundary can be seen clearly.

3. Microcrack and void effects:

The program could also simulate elements as microcracks and voids when the initial
- mechanical properties of grain boundaries, like E?,B. were given as very small. One
element was simulated as a microcrack as shown in Fig. 17 (a) (marked elements). The
deformed mesh is shown in Fig. 17 (b) and (c). Compared with Fig. 15 (b), Fig. 17
(b) shows that the crack starts to propagate from the weakened element (marked element),
i.e., the crack propagates from the microcracks. Fig. 17 (c) shows the difference
between the force vs. displacement curves with and without existing microcracks. The
existing microcrack reduced the strength of the ceramic and exhibited more brittle material
properties than the ceramic without microcracks.

4. Inclusion effect:

Fig. 16 (d) shows that the main crack propagates along the grain boundaries in the
upper part of the imen. The inclusion was introduced in the marked element, i.c., a
larger value of sti wasusedinthemarkedelemem(l-‘ig. 18(a)). From the deformed
mesh, the position of the main crack was changed due to the introduced inclusion element,
as can be seen in Fig. 18 (b) and (c). Compuedwithl?i;. 16, the inclusion deterred the
crack nucleation and propagation which would otherwwise run through it before. Fig. 18
(d) shows the difference between the force vs. displacement curves with and without an
inclusion. The strength of the ceramic was enhanced by introducing an inclusion, but
ductility was decreased.

5. Effects of mechanical properties of the grain boundary on macro-behavior:

In the above computations, the initial mechanical of the grain boundary
was assumed to be the same as the grai My.&p%kmmm
grain fainmnluﬁwm%ﬁmmedispwmmdeampmdingw
mddfawmefcdnmof!?-ﬁcmdﬁgn-OJSEo. Mechanical properties of
the grain boundary have a significant effect on the macroscopic behaviors. The weaker the
pﬁgmbounduies.thelessthemgthmdducﬁlityofmmic. The failure mode is the
same as that shown in Fig. 16.
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Voronoi diagram

One of the major obstacles in numerical modeling of ceramic is the geometrical
complexity in grain microstructure. Since many properties of ceramics are determined by
their grain microstructure, prediction and control of microstructural characteristics are
important. So far, a number of ter simulations have been made for microstructures
[Anderson, et al, 1984, 1989, Wejc 1986].

One of the methods for simulating the grain geometry and topography is the model
known as the Voronoi diagram. Given a number of points in the plane, the Voronoi
diaglmdividesthephnemdingtothenemt-nei bor rule: Each point is associated
with the region of the plane closest to it; (Fig. 20 (a)) [Aurenhammer, 1991).

A program for generating the Voronoi diagram written in C language is available in

the public domain. The program was run and displayed by Silicon Graphic (which is in the

t of Computer Science at UNM). The output file, which included the coordinates

of the vertices of polygons and line connections was transferred to the Sun Station, then the
Voronoi diagram was redisplayed by CoMeT as shown in Fig. 20 (b).

For finite element modeling, a thin layer between grains waus‘genmted as a grain
boundary. The grain was meshed with 3-node triangular elements, and the grain
was meshed with 4-node quadratic elements and 3-node triangular elements (Fig. 21).

Scalar isotropic damage mechanics

For simplicity, isotropic damage mechanics was used first. As we mentioned
before, the microcracks started to nucleate at the grain boundaries, and then propagated
along the grain boundary, i.c., an intergranular fracture as shown in Fig. 22 (a), (b), (¢),
and (d). The grain's rotation can be observed in the deformed mesh.

Two-parameter isotropic damage mechanics

The grain boundary is restricted to mode I behavior, perpendicular to the face of the
grain. This response is accomplished by utilizing a continuum model with a higher shear
modulus to preclude grain-boundary sliding, a continually increasing modulus for
compressive deformation, and a decreasing stiffness modulus as a damage model to
simulate the mode I response for a tensile stress normal to the face of the grain.

The material stiffness matrix [E] can be expressed as

[ 31K 3uK
(I+)  (I+p)
[E] = 3K 30-wK (for plane strain)
(1+4) (+)
. 0 0 G-
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" 30-20K mn-zmx 0 |

(El=] 3u(1-2u0)K ul-zu)x
1-uz .RT 0

0 0 GJd
wbaexandomduhﬂkmoduhnundshwmoduln&mpecdvelyinmﬂmm
material stiffness matrix [E] changes as K and G change, and Poisson’s ratio 4 remains

coastant for alumina: g = 0.22 - 0.23.
Two damage parameters ; and ) were introduced:
K= (1-0))KS?
GB
G%Ba=(1-w,)G
and @; > W, (see Fig. 23).

(for plane stress)

Using the two-parameter isotropic damage model, the computational results are
shown in Fig. 24 (a), (b), (), and (d). The microcracks started to nucleate at the grain
?oundmes, and propagated along the grain boundary until finally a macrocrack was

Fig. 25 shows the difference of the load and displacement curves between the two
types of damage modes. The grain boundaries with a higher shear modulus prevented the
rotation of s, but the strength and ductility of ceramics were reduced.

Summary of numerical investigation:

1. Based on the continuum mechanical model, microcrack nucleation, crack
gation, microcrack and void effect, and inclusion effect were simulated numerically
mﬂspeumencomposedofamcfmm grain boundaries in two dimensions.

2. The grain size can be n.mmadbytheVomanumsolhnthe

computational mesh can be more The tortousity of the crack path and crack

bridging were observed by the numerical results.

3. Because of the computational limitation of the work station, the size of mesh cannot be

generated large enough to compare the actual size of specimens, but many fracture

mechanisms can still be observed in numerical investigations.

4.5 Summary and Conclusion
Experimental
that the nature of grain boundaries and microstructures

aﬁmmmmmwaﬁm It is important to understand ceramic
w«mmmm«mmm Different

procusin Invebaen nee denndmmucnmsfor
'mw ues e ex produced the desired
microstructure of alumina. ltwasfonndﬂm Stage lndMgO-dopedAl203
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can be combined to produce a high performance alumina. The result is better alumina with

an improved, more uniform and enous microstructure.
Examination of microstructures has indicated that mechanical ies depend on
the population and location of pores and grain size distribution. The resistance of

ceramics can be affected by microstructural variables such as porosity and grain size
distribution. Larger grain-size ceramics are usually more prone to microfracture. Porosity
located as grain boundaries degrades the fracture resistance in proportion to the volume
concentration of voids; however, voids within grains can enhance toughness during
transgranular fracture.

An i&age uulyz;ru lngu an ilg;‘g: editor (NhlsH T%AGB 1.41)hswere used for
quantifying the grain size distribution micrographs. micrographs were redrawn
using a transparent material so that the grains and grain boundaries could be clearly
identified. The image was obtained by scanning the redrawn micrographs into a .
A digital readout displayed the area for each grain from the images. Using a ruler, the
multiplying factor was obtained by converting the picture-point units to units of square
micrometers. From this area, the diameter(lum) of the equiarea circle was computed. The
diameter is used as the grain size measure.

In each micrograph, different magnifications were used. Using the statistical
program as developed through this research, we obtained the final result of the frequency
grain size distribution for each specimen using different sintering processes. The grain size
distributions are given in Fig. 26. The numbers of grains for each grain size distribution
were 100, 250, 124, 166, 222, and 215 corresponding to sintering processes #1 through
#6, respectively. The frequency grain size distribution shifts toward the coarse end of the
size spectrum as a function of sintering time and . Similar conclusions can also
be made for void size distribution where average void size shifted to larger void size as a
function of sintering time and temperature as shown in Figure 27. It is known that, during
sintering, very high temperatures and long periods of time lead to exaggerated grain
growth. The grain size distribution can be approximately fitted to a Lognormal Distribution.

The X-ray diffraction method was used to determine the shape and size of
alumina's unit cell. The data demonstrate that the alumina has a hexagonal crystalline
structure. In addition to the X-ray diffraction scan, the Back-Reflection Laue method was
used in qualitative texture analysis to determine the distribution of grain orientation in the
sintered alumina. Crystal sizes of more than 10 pm were found to be present and the
alumina crystals were randomly oriented.

One of the objectives of this research is to study the fracture process of the ceramic
in real time and to measure the strain field in the vicinity of the crack including the bridging
zones. A fast-scanning electron microscope(FSEM) for dynamic microscopy applications
was used to capture the fracture events in the ceramic. This equipment is particularly
suitable for microstructural studies for dynamically loaded materials, as it captures images
at a high speed. The SEM chamber was also modified to accommodate an in-situ tension-
compression loading device to fracture ceramics. Several problems have arise including the
inadequacy of force 1o achieve ceramic fracturing and excessive noise that was produced by
step motor instrumentation. Many improvements have been made such as apphcation of an
adequate force driven by a microstepper motor and closed-loop control ility by using
filtering techniques.

Numerical
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Continuous damage mechanics is an appropriate approach for analyzing the
nonlinear behavior of quasi-brittle materials. It was proposed to numerically model in two
dimensions a small region composed of a set of grains and grain boundaries. Each grain
was modeled as an elastic material while the grain boundary was considered to be a thin
region of elastic damaging material. The randomly distributed grain geometry was
simulated by a computer program which produced the Voronoi diagram. Both scalar and
two-parameter isotropic damage models were used in the computation.

Microcrack nucleation, crack propagation, microcrack and void effect, and
inclusion effect were simulated numerically on a small specimen composed of a set of
grains and grain boundaries in two dimensions. The tortuosity of the crack path and crack
bridging were observed through the numerical results.

Numerical examples have also demonstrated the following observations:
Microcracks always started to nucleate on the grain boundary first if the grain boundary
was weaker than the grain. If a microcrack y existed, then the crack started to
propagate from the microcrack along the grain boundary. The existing microcracks
weakened the ceramic and exhibited a more brittle failure mode as shown in Fig. 17(d).
When an inclusion existed in the grain boundary, it deterred the crack propagation through
it, and the crack initiated from the other weaker site. Inclusions enhanced the strength of
ceramic, but reduced its ductility (Fig. 18(d)). Mechanical properties of the grain
boundary have a great effect on macroscopic behaviors. The strength and ductility of
brittle ceramic decreased as the strength of the grain boundary decreased.

5. Proposed Extension
Experimental

Most traditional ceramics are monolithic (single phase), such as alumina, and have
very low fracture toughness. Because they do not yield to loading pressure, monolithic
ceramics behave as ideally brittle materials, and a propagating crack needs only to
overcome the surface energy of the material. The new generation of ceramics, however,
includes multiphase materials and ceramic composites that have vastly improved toughness.
The micromechanisms that lead to improved fracture resistance in modern ceramics include
microcrack toughening, transformation toughening, ductile phase toughening, fiber
toughening, and whisker toughening. Modern ceramics also display much larger ductility
than monolithic ceramics. :

and Ceramx::ll composites a:d considered an enabling technologg'i for advanced aircraft
space sion engines and space power systems. Catastrophic fracture remains an
issue. Ourp'e'gons are toward the in-depth understanding of the toughening mechanism
under both static and dynamic loading of ceramic composites.

In particular, our unique experimental capabilities include a Fast Scanning Electron
Microscope (FSEM), for which Dr. Wang, the co-ancx investigator, received a patent
in October, 1993. Specification and capabilities of the FSEM is described in Appendix 4.
Through this research we have also developed an in-situ dynamic closed-loop controlled
tension-compression loading device. This allows one to observe in real-time the fracture
and toughening mechanisms of reinforced ceramic-matrix composites materials subjected
to static, cyclic dynamic loading.

Future research will include the study of toughening mechanisms of compact
tension specimens of alumina and SiC-whisker-reinforced alumina using FSEM and an in-
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situ loading device inside the FSEM chamber. Measurements will include load, fracture
opening displacement, crack extension, crack-growth rate for cyclic loading, number of
cycles to failure and stress intensity factor. Microstructure observation will include real-
time fracture propagation micrographs in a video set-up. From the micrographs one
should be able to distinguish the fracture mode (inmnular or transgranular) and
toughening mechanisms due to static and cyclic fatigue loading.

Theoretical
A detailed understanding of ceramics requires constitutive models for grains and
grain boundaries, and numerical simulations of the failure of grain boundaries; the

resultant evolution of microcracks can be seen as crack branching and the ultimate
development of a macrocrack. This research has provided a good initial analysis which
shows that a combination of continuum damage as a means for simulating material failure,
the use of Voronoi diagrams to construct realistic grain topologies, and a robust solution
algorithm for computations beyond the peak force can begin to show essential aspects of
the failure process.

Verification of the constitutive equation used for the grain boundary, and even the
grains, remains a difficult problem. Since the behavior is highly inhomogenous, and
because of the small size of a typical grain, it is hard to imagine that direct correlation with
experimental behavior will ever be possible. A much more realistic approach is to
postulate reasonable constitutive equations for grains and grain boundaries, and then
determine the response of a specimen subjected to boundary conditions analogous to those
applied experimentally. Comparisons of predicted load-displacement curves and failure
modes with experimental data can then provide a means for an indirect verification of
constitutive equations.

If quantitative predictions are to made, a significant enhancement to the
computational approach is required. For example, three-dimensional simulations must be
performed on specimens containing a significantly larger number of grains if the effects of
artificial constraints imposed by boundary conditions is not to dominate the solution. Even
with powerful computers, three-dimensional simulations must be limited in scope if
solutions are to be obtained at reasonable cost. Every effort must be made to reduce the
complexity of the problem if such simulations are to be feasible.

Since the current finite element study involving grain boundaries in ceramics is
meant to be only a first step to show that the approach is plausible, no attempt was made to
incorporate features which might be required for larger two-dimensional and three-
dimensional simulations. An important procedure would be to constrain out modes that are
not essential for the problem at hand, but that can cause ill conditioning or excessively
small steps for dynamic relaxation. For example, it is highly unlikely that bending modes in
the four-node quadrilateral element are important for the grain boundary. Furthermore, one
might want t?h:tutgy the extreme case of rigid gl'tn:;:l (m&delled tlu'ougltx’etrh‘e,f use of
constraints) so that the grain boundary response associated with a larger num grains
could be analyzed, especially in three dimensions.

In light of its importance, it is surprising that efficient algorithms for the routine
incorporation of constraints in linear algebraic equations is not a subject widely studied. As
part of this project a step was taken to show that multiple constraints could be invoked
directly without a major modification to the governing matrix, and both static and dynamic
examples were given for one-dimensional problems [Schreyer an Parsons, 1994]. The
results are given in Appendix 5.

It is proposed that this approach be extended to two and three dimensions for
application to the study of grains and grain boundaries. Another natural application would
be to the study of fibers in ceramics where the fibers could be initially modeled as
inextensible constraints. Fiber breakage could then be simulated as a release of the
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constraint. There are other potential uses for such an algorithm in connection with
constitutive e?uations in which constraints of zero values for certain components of stress
after material failure could be imposed.

In summary, rapid advances in the use of a fast-scanning electron microscope are
providing unique expenimental data. If these results are to be utilized to their greatest extent,
numerical simulations are necessary to provide informatio:: at the level of grains and grain
boundaries. Three-dimensional simulations are the only realistic approach, but this will
require innovative numerical ures to obtain solutions. The efficient use of constraints
in conjunction with constitutive equations based on continuum damage mechanics will be
an impontant aspect of such a study.
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‘Figure 2 (a) Schematic of the microstructure of the ceramic.

Figure 2 (b) Micrograph of Alumina after polished and thermally etched.
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Figure 3 (a) Schematic of the loading stage
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Figure 3 (b) Schematic illustration of close-loop control of loading device.
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Figure 4 Micrograph of the notch tip before loading

Figure 5 A crack propagated from the notch tip (upper white arch).
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Figure 6 (a) The profile of the crack (crack propagated from upper part).
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Figure 6 (b) The profile of the crack (crack propagated from upper pan).
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Figure 6 (c) The profile of the crack (crack propagated from upper part).
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Figure 6 (d) The profile of the crack (crack propagated from upper part).




Figure 6 (¢) The profile of the crack (crack propagated from upper part).
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Figure 7 (a) The tortuousity of the crack in the wake of the crack.

Figure 7 (b) The tortuousity of the crack in the wake of the crack.
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Figure 8 (a) The grain-bridging site 950 mm behind the crack tip.

Figure 8 (b) The grain-bridging site 1000 mm behind the crack tip.
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Figure 10 The crack tip at higher magnification.
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after crack propagation.

Micrograph of the notch tip

Figure 11

.
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Figure 13 The finite element mesh and the boundary conditions
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Figure 14 (a) The deformed mesh at the 20P Joading step

L

Figure 14 (b) The deformed mesh at the 30t loading step
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Figure 14 (c) The displacement and the total corresponding nodal force curve
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Figure 15 (a) The finite clement mesh and boundary conditions
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Figure 15 (b) The deformed mesh at the 237 loading step
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Figure 17 (a) The finite element mesh with the microcrack (marked element)
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Figure 18 (a) The finite element mesh with the inclusion (marked element)
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Figure 20 (a) The nearest-neighbor rule in the Voronoi diagram (after Preparata, 1985)

Figure 20 (b) The Voronoi diagram (displayed by COMET)
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Figure 21 The finite element mesh (based on the Voronoi diagram) and boundary
conditions
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Figure 22 (c) The deformed mesh at the 227 loading step; (d) the deformed mesh at the 30th loading step
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Appendix 1 The processing and properties of alumina

An alumina bar measuring 1.15 in. X 1.15 in. X 1 ft. was purchased from the
Coors Technical Ceramics Co. Alumina’s relative density is 99.5%.

The aluminum oxide (or alumina) is prepared by bot-pressing fine powder (nominal
%l:iclesiuo..‘)m).witbouuddiﬁm.nlGS@CbShmuSSMP&mduavmum.
ptessedmwﬁdiswsb”.%m).mdm final microstructure of
alumina is equiaxed with different grain sizes from S to SOmm, which depends on the
sintering temperature, time, and pressure. The specimens are ground to the desired
thickness and the prospective viewing surface is polished with diamond paste.

The properties of the alumina bar are listed below (provided by Coors Technical
Ceramics Co.):

Density 3.88 (g/cm?)
Surface finish 0.9 (mm)
Grain size range S - 50 (mm)
Water absorption 0

Gas perm. 0

Color Ivory
Flexural strength .

(MOR) 20°C 379 MPa
Elastic modulus 20°C 372 GPa
Shear modulus 20°C - 152 GPa
Poisson's ratio 20°C 0.22
Compressive strength  20°C 2620 MPa
Hardness 14.1 GPa
Tensile Strength 25°C 262 MPa

Fracture Toughness 4.5 MPa m!1?2
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Appendix 2 Dynamic Relaxation

Nonlinear structural analyses include materially nonlinear problems such as
nonlinear constitutive equations with small deformations, geometrically nonlinear
problems normally associated with buckling or a combination of both s of
nonlinearitics (Chen, and Schreyer, 1990). The nonlinear analysis in the finite element
method can be expressed as

K] {U}=(F} ¢))
where [K]is the stucture stiffness matrix,
{U]} is the vector of nodal degree of freedom,
(F} is the vector of nodal .
[K] and {F) are regarded as dependenton {U}. The schemes for nonlinear problems are

based on step-by-step load incrementation and an iteration procedure to correct the
linearization.

The equation governing the structural behavior is considered to be in the form
(F(U)}lnt = {Flcxt #)

where {F(U)};p, is the vector of internal nodal force, which depends on {U}, and {F} .y,
is the vector of the external (applied) nodal force.

Equation (2) is another expression of Equation (1), i.e., {F(U)};5, = [K}{U}, and
(Flext = (F).

Since the DR method is based on structural dynamic response, the governing

equation is the appropriate equation for developing the DR method. For the nth time
increment the equation is given by

M] (0) P+ [C] (U}" + (K] (U)" = (F(™) e 3)

i.e.,
M] (U) ™+ [C){U)" + (FAU™)iq = (FE))exq 4)

where [M] is the mass matrix, C is the damping matrix, t is time, n indicates the ntb time
increment, a superimposed dot indicates a temporal derivative, and other terms are as
previously defined. To obtain the DR algorithm, the following central difference
expressions are used for the temporal derivatives:

(U)™12 U™+ (U))/n

(U) P =(- (U)™124 ()12 )y, (S)
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®

w‘llaerc h is a fixed time increment. The expression for (U} " is obtained by the average
value:

(U =0.5 ((U)™12, (u)»*12, 6)

Substitutin . (5) and (6) into (4) gives the pair of equations used to obtain next time
velocltym:dsxgplmmas d prroled

NA+H2 _ -0.5) nn-12 “F}ext u=’mt)
(U = damsosicn (V7 + “paeIIC)

(U™ = Ut +n ()12 m
whén ‘F):xt = {F(tn)’exp and 'F)i.;n = ‘F(Un)]im'

To preserve the explicit form of Eg. (7), [M] must be diagonal and to obtain the
form used for DR, [C] has the form

(Cl=c[M] 8
Substtuting Eq. (8) into (7) gives

()12 EB (212 oy () - (FI )/ @4 ),

(UI™*! = (U? +h (U)P+12 )

where [M] is the inverse of [M]. Since [M] is diagonal, Eq (9) is algebraic. That is, each
solution vector component may be computed individually fro:

n+1/2 _ (2-ch) 12
U = BSR U5 + 20 oy - Fipe )/ mi o],
Up+l U +h Un+1/2 10

1

where the subscript i indicates the it vector component and m;; is the i dngonal element
of [M].

In order to start the integration, the velocity at t*1/2 | and 1© must be known. For
the DR algorithm, the starting conditions are of the form

(U)° = 0; {U)%=0 (1)
Using Eq. (6) and the second of Eq. (11) gives
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()12 .. )12 (12)
For the first time increment, the first expression of Eq. (9) becomes

(U)12 «n M1 (F)Qy, - (F1Gp ) /2 (13)

The central difference time integrator is therefore given by

ifn=G  (U)12 =My (FIGy, - (FIG) /2,
ifne0;  (U)™122 88 )12 oMyl ((FIG,, - (Fiy )/ @+ ch),

foralln:  {U)"™*! = (U)? +n (U)**12 (14)
To obtain the static solution from the transient response equation, the damping

coefficient, ¢, the time increment, h, and the mass matrix, {M], are selected to obtain the
fastest convergence. Note that only (F}.x; and {F};,, must represent the physical

blem, and ¢ and [M] need not represent the physical structure. Also, k is dependent on
(Underwood, 1983).

Formally, the DR algorithm may be written as:

(a) choose v (v =ch)and [M); (U)° given ; {U}°=0,
(b) residual (r}" = (F),, - (F)j,, .

(c) if {r}® = {0} stop, otherwise continue,

@n =0 (U}12 =uMr! (%2,

net  (U)™12-80 )12 M 10/ 4w,
© {U)™! = (U +n (O)™12
(f) n=n+1; return to (b).
The difference between the central difference time integrator and the DR method is
that v and [M) are fictitious values chosen so that the static solution {r} = {0} is obtained

in a minimum number of steps. Also h is a pseudo-time increment which must be chosen to
ensure stability and accuracy of the iterations.

‘The internal nodal force (F(U))§,, in an element is:
(FU))},, = [KI° (U)®
where [K] = I,, (B)T[EJ(BIdV . and the superscript ¢ defines the element.

Matnx [B] relates the strain and nodal displacements:
[e) =[B] {U}®
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where [e] is the total strain vector.

So, (FU)}5, = L[an[mmlde)‘
'Iv (B)T(E)(B)(U)dV
-j:, (B)T[E)(elav
- [uBiTis1av

where [s] is the total stress vector. In the DR method, the stiffness matrix [K] does not
need 1o be formed and stored.
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Appendix 3
®
Tension-Compression Loading Stage for FSEM
Introduction
® For real-time fracture study, a closed-loop control tension-compression loading stage inside a

Fast-Scanning Electron Microscope (FSEM) is required. The FSEM is basically a modified SEM

with modified tools for rapid scan rates. Thus it is able to observe specimen activity at greater than

1 kHz framing rate, allowing for TV time observations. For the FSEM project, specimens of
o _ ceramic were tested in the FSEM chamber. Image scanning was performed with a digital data
acquisition system, and the resulting micrographs were later examined in an observable time frame.
The major drawbacks of FSEM microscopy include sacrificed depth-of-field and submicron
resolution, resulting in a snowier picture than conventional SEM micrographs.

Objectives
The following list outlines the objectives of this project.

1. Assess use of pre-existing equipment and ideas

2. Achieve open-loop control of the loading stage, complete with sensor data acquisition
3. Advance the system to a closed-loop status by using a selected motion control sequence
4. Install the completed in-situ device for use inside the SEM chamber

S. Perform tests with the alumina ceramic specimen to observe effects of the work

General Principle and System Elements

General Principle

The whole experimental system is controlled by the Galil Motion Controller DMC-1010 which
. plugs into the PC bus. It sends designated commands to the step-motor set, which drives the
" worm-gear assembly and screw shaft to move the specimen platform. While the specimen is being
dragged, a clip-on gage, which is held between knife edges attached to the specimen, moves
simultaneously to sense the crack opening displacements. A load cell is also engaged to test the
changing teasion on the specimen. The data from the click-on gage and load cell are amplified and
filtered and then collected by the motion controller. In a closed-loop control test, the sample data
are analyzed by the controller and an error signal is sent out to adjust the system's movement. The
Visual Basic system is introduced to establish the testing data file and to paternally control the

testing system. The working system is shown in Figure 3-1.
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System Elements

The Galil Motion Controller DMC-1010 is designed for maximum system flexibility, and is
available for one, two, three, or four axes. It can be interfaced to a variety of motors and drives
including full-step, micro-stepping and servo-motor. Its main processing unit is a specialized 32-
bit Motorola 68331 Series Microcomputer with 64 K RAM, 64 K EPROM and 256 bytes EPROM.
It provides interface circuitry for 8 outputs, 8 inputs and 7 analog inputs. The analog input is a 12-
bit ADC with a range of 10 V, which is 0.488 mV/bit.

The step-motor set, which is an American Precision Industries model P261-M232, includes a
drive controller and a step motor. It combines an integral power section and the bipolar chopper
drive technique. This technique involves over-driving the windings with high voltages to decrease
the current by high frequency current chopping. The number of steps per revolution of the motor
can be set with dip switches on the controller. The current setting is 50800 step/revolution.

Controlling the motor requires three basic inputs to the controller. The first input is the step
input. The motor will step on the trailing edge of each incoming pulse up to a rate of 1 MHz. The

- pulse width is set in DMC-1010 software to 1920 NS. The second input directs motor rotation. In
this test, voltage is taken low corresponding to the counterclockwise (CCW) rotation. The third
input to the controller is an OPTP input which requires + 5§ VDC to operate the optical isolation
feature. These three inputs are controlled and provided by DMC-1010.

The specimen test set includes the worm-gear assembly, the specimen mounting stage, the
specimen platforms, the clip-on displacement gages and the load cell. The platforms are moved
inward or outward by the worm-gear and the treaded screw. The screw and the platforms are
mounted on the stage. The specimen is 30 mm square and 1 io 3 mm thick with two 3-mm
diameter holes drilled about 14 mm apart to fit over the loading pins which are screwed into the
platforms (see Figures 3-2 and 3-3).

The Clip-On Displacement (COD) Gage is a product of MTS Systems Corporation (MTS
model 632.03B-30). Itis designed to sense crack opening displacements and is typically used to
monitor crack growth in a specimen during fracture mechanics testing. It uses precision resistance-
type strain gages bonded to a metallic element to form a whetstone bridge circuit. The calibration
of COD is 0.007131 in./mV, or 0.18 mm/mV, on a 4 mm scale. The excitation voltage is $.99 V.

The Load Cell (LC) is a product of Sensotec, Inc., part no. 11/2335-07 and serial no. 353700.
The LC's full-scale capacity is 1000 Ibs under tension. The calibration factor is 2.4602 mV/V.
Because the excitation is 5.0 V, the calibration is 2.4602 mV/V x 5.0 V = 12.3 V for 1000 lbs, or
81.3 Ibs/mV.

The amplifiers are transducer conditioning amplifiers manufactured by the Ectron Corporation.
The two Model 563 FN amplifiers are included in the Model E513-20 Enclosure. They are wide
band, true differential DC instrumentation amplifiers with built-in transducer signal conditioning




functions. The output of the basic amplifier is + 10 V at 10 mA. The maximum gain is 1 K. The
amplifiers used in this test were for COD and LC signal amplifying and for the supply of excitation
power.

The filter is a Krohn-Hite Model 3988 Butterworth/Bessel dual channel filter. It provides a
tunable frequency range form 0.03 Hz to 1 MHz in low-pass mode and 0.03 Hz to 300 kHz in
high-pass mode. Each channel of the 3988 is an 8-pole, wide range, low-pass/high-pass filter or
an amplifier providing gains to 70 dB in 0.1 dB steps. The 3988 will accept input signals of + 10
V peak at 0 dB gain and has selectable ac or dc coupling. The two channels of the filter are used
for COD and LC signals in this test.

System Noise and Noise Solving

Noise is the main problem in this micro-displacement test. The noise in the system is more
distinguishable than the useful signals. Three kinds of noise were found to exist using an
oscilloscope and FFT equipment to analyze the system noise.

One type of noise was caused by the discrimination of the Galil Controller. The lowest limit
for the ADC of DMC-1010 is 0.488 mV; therefore, the sampling signals should be much higher.
This problem can be effectively eliminated by amplifying the useful signals before they are sampled
by the ADC. Considering the highest limit ( 10 V) of the ADC, the gain for the displacement
signals was set to 500 and the gain for load signals to 1000. Thereafier, the useful signals were in
the range of voltage and the ADC noise was suppressed.

The second kind of noise was caused by electricity. The sources of this noise-causing
electricity included the computer, the step-motor, the motor controller, and the power supply
source. By using FFT equipment, two powerful noise signals were found. One signal was
around 60 Hz and the other was around 1.5 kHz. They were tested when the step motor was
turned off.

When the step motor was on, the third kind of noise appeared. The strongest AC noise signal
was 12.5 Hz with a magnitude of 0.076 mV. Another AC noise signal was around 1 Hz, or 0.016
mV. These noise signals were tested without amplifying. They were probably mechanical noise.

An attempt was made to eliminate the noise by shielding the step-motor controller bar and
covering the motor set and line with tin foil. The best results were obtained after using a low-pass
filter. The filter was set for a low-pass filter of 0.5 Hz and for DC signals. Although a lower
frequency noise signal exists with a maximum of 0.02 mV, 0.5 Hz is still an ideal cutoff frequency
because any lower filter cutoff frequency causes the system response to delay severely in open-
loop and closed-loop control tests.

70




Open-Loop Control

In the open-loop control test, specimens were made using both glass-plastic materials and
aluminum ceramic material. Because the glass-plastic specimens are easier to make, they were
used in the first period of test. In the test, the step motor was set to rotate at 3500 counts per
second. At that rotation rate, the specimen was dragged by a speed of 0.002 mm/sec, which is
0.0112 mV/s to the COD correspondingly. The sampling period was decided by the characteristics
of glass-plastic and the limitation of the DMC-1010.

The glass-plastic had a relatively large strain. The size of the specimen was 30 x 30 x 2.5 mm.
It was made in the same way as the ceramic specimen was made. It would not break until the total
strain was above 0.25 mm. The DMC-1010 supplied an array for a total of 1600 elements.
Therefore, if the COD signals and LC signals were sampled simultaneously, a maximum of 800
data samples could be collected for each. To record the data of all the periods of a test, 1 second
was chosen as the sampling period. The load-displacement graph is shown in Figure 3-4. The
alumina ceramic material was more brittle than the glass-plastic material. ¥hen the specimens
measured 30 x 30 mm with a thickness of 0.9~1.96, they sustained a strain amount of about
0.04~0.06 mm in a range of 0.2208~0.3324 mV of COD.

Several step motor speeds were chosen for the tests. One speed was designated to be 500
counts/second. Thus the specimens were loaded at a constant load-point displacement of 0.43 um
per second, corresponding to 0.0024 mV/s of COD. Another speed was set at 1000 counts/sec, or
0.0048 mV/s. The load-displacement graphs are shown in Figures 3-5 and 3-6. From the load-
displacement curve, it can be observed that the higher the step motor speed, the more linear the
curve. This feature occurred because the stiffness of the test system was not hard enough,
especially the two pins which held the specimens. Since the speed of the test is still relatively high,
it is difficult 1 obtain an ideal characteristic curve of load-displacement for alumina ceramic
material.

Closed-Loop Control

The principle of closed-loop control is shown in Figure 3-1. The output signals were obtained
from the COD and LC, and then the error signals were fed back into the system. Because the
rotating speed of the step-motor was constant in the test, the distance between two sample points
was chosen for reference. On this basis, the average velocity between every two sample points
was assumed to be the same. If there was any difference, the error was fed back into the step-
motor to increase or decrease the rotation speed of the motor. For the glass-plastic specimens,
when the motor rotated at a speed of 3500 c/s, the change of COD was 0.0112 mV/s as mentioned
before. Because the noise was about 0.02 mV, the sample period was set to be 2.5 seconds. Thus
the displacement changes were 0.028 mV for COD in each sampling interval. Then the range to be
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controlled was from 0.028 - 0.01 mV 1o 0.028 + 0.01 mV. Figure 3-7 shows the load-
displacement curve used in this control range. Compared with the results from the open-loop test,
the maximum tension and maximum strain displacement are almost the same; however, the curve
from the closed-loop control system is much more linear.

Difficulties arise when using the existing test equipment to perform closed-loop control tests on
ceramic samples. As analyzed previously, the maximum strain of ceramic is about 0.04~0.06 mm,
or 0.2208~0.3324 of COD, but the noise signal is 0.02 mV. Therefore, the noise signal
overwhelms the useful signal in micro-displacement movement.

Conclusion

The system is suitable to perform open-loop tests for the micro-displacement test. The noise in
the system is still a significant problem. It may be caused by the mechanical equipment. The test
system has difficulty performing more precise testing, especially closed-loop control tests.
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APPENDIX 4

Product Specification

Timothy J. Ross and Ming L. Wang, University of New Mexico

"FSEM: FAST SCANNING ELECTRON MICROSCOPY"
U.S. Pat. No. 5,254,857 Oct. 1993

whx ngh.Smﬂ SEM"

Transmission, reflection and scanning electron microscopes offer spatial resolution
superior to that of light microscopes. Transmission and reflection electron microscopes also
provide temporal resolution of ~20 ns/frame, rivaling the temporal resolution of light microscopes.
 SEM, however, is the only type of electron microscope which offers both high spatial resolution
and large depth of focus surface imaging, even for rough surfaces, of particular value for surface
studies of material responses to dynamic loads at high magnifications, for example. Based on
experiments with the high-imaging speed (FSEM: Fast SEM) now under development at the
University of New Mexico (UNM) under a collaboration with industry, we expect that state-of-the-
an components will soon permit SEM dynamic microscopy at 0.1 pm spatial resolution and 2
us/frame at 64 pixels X 64 pixels per frame, with acceptable signal-to-noise ratios in final images.

lems of High- i M

To obtain high-imaging speed operation in the SEM, four task areas must be addressed:
illumination, detection, deflection and recording. The specimen must be jlluminated with an
electron beam of sufficient intensity to provide a detectable signal of sufficient quality to provide a
good image of the specimen. And, such an image must be obtained at framing speeds of interest
with scan beam deflection providing suitable speed and proper deflection waveform, without
degrading scan beam quality. The fourth task is 10 record the imaging signal synchronously with
the scan for later playback in a "movie” format. To address these four problems and to illustrate
the FSEM technology, we modified an SX-40A SEM manufactured by International Scientific
Instruments, Inc. The unmodified SEM had a tungsten hairpin cathode electron gun, two stages of
condenser optics, two-stage magnetic deflection and an objective lens.

Humination ion

Hlumination and detection are intimately related. 1If the detector detects all imaging radiation
produced by the scan beam without introducing noise or frequency errors, further image quality
improvements can only be had by increasing illumination. Though our detector is not this perfect,
" “we believe its deficiencies have far less impact 6n image quality than those of the illumination
system we have at present. In any case, illumination ultimately determines obtainable image
quality. In the case of secondary electron imaging, for example, and typical scan beam (primary
clectron) energies, one secondary electron is produced for every 1-10 primary electrons. Clearly,
improving primary beam current can dramatically improve image quality.
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Deflection

The other major problem area we have encountered in obtaining high-imaging speed SEM
operation is in deflection of the scan beam at high rates with minimal distortion of the desired
deflection waveform (non-linearity) or degradation of scan beam quality (deflection aberrations).
Several improvements to scan generator/scan coil driver electronics were performed. Problems due
to the quiescent state of the scan generator producing a constant DC input to the scan coil drivers
between scans, resulting in image shift and unnecessary power dissipation in the scan coil drivers
and scan coil termination resistors have been resolved. Lower magnification was required to
properly center specimens in the microscope field of view for dynamic imaging, but the lower
magnification requires higher deflection currents causing significant heating in the scan coil
termination resistors. These problems were also resolved. Another modification which makes the
microscope easier to use is a switch box permitting simple switching between analog data
acquisition and digital data acquisition. The specimen is first positioned in the microscope ficld of
view in analog mode, then switched to digital mode to take a digital movie.

Recording
The imaging signal output is input to a digital data acquisition system , which consists of a
fast digitizer, a digitizer controller (via GPIB bus), fast memory modules and a chassis containing
appropniate power supplies. The digitizer we are using at present is the LeCroy 8828D, capable of
a 200 MHz digitizing rate, 8-bit measurement and 1 Mbyte of fast memory storage (expandable to
2 Mbyte). At 256 pixels X 256 pixels per frame this allows for storage of 16 frames of data. At

128 X 128 pixels per frame, 64 frames of data may be stored. The digitizer also provides a clock
pulse used to generate scan deflection signals so that data-taking and scanning are synchronized.

Project Status

In the last year we have obtained images at a 25 MHz pixel rate, which translates, for 256
pixels X 128 pixels per frame, to 381 frames per second. This is ~10 times TV-rate (nominally
30-50 Hz), the maximum framing rate available in any commercial SEM. Further, to our
knowledge, 25 MHz pixel rate is ~2-3 times faster than anyone else has obtained for secondary
electron or any other sort of SEM imaging. We have developed a design which will allow us to
obtain images at the 200 MHz pixel rate specification of our digital data acquisition system and at
higher rates using a faster digital data acquisition system. A 200 MHz pixel rate translates to a
12.2 kHz framing rate at 128 pixels X 128 pixels per frame. A 2 GHz pixel rate (state-of-the-art in

8-bit, long record length digitizers) results in a 488-kHz framing rate at 64 pixels X 64 pixels. Our
images have acceptable signal-to-noise ratios, i.e. S/N > 6.

We have obtained images at a 381 Hz framing rate, a beam voltage of 10 kV and
magnification of > 1,000X. We believe, however, that we are at the limit of the image quality that
can be obtained with the electron source we have at present, and at the stated operating parameters.
Some brightness improvement is possible by choosing different operating parameters. However,
by using high brightness cathodes, which may be 2-3 orders of magnitude brighter than the source
we have at present, we believe that image quality may be greatly improved. We have also obtained
time-integraied photographs taken at various horizontal line tirnes w examine high-speed linearity
and aberrations of the deflection coils, as well as the time resolution of the high-speed secondary
electron detector. If we assume 128 pixels per horizontal line, a horizontal line time of 7.5 ps
represents a time resolution of 60 ns. Also assuming 128 vertical pixels per frame, the
cormresponding framing rate would then be ~ 1 kHz. Table 1 shows the relationship of effective
framing rates for various horizontal line times.
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frame
10 us 256 2.56 ms 391 Hz
128 1.28 ms 781 Hz
Sus 256 1.28 ms 781 Hz
128 640 ps 1.56 kHz
2us 256 512 us 1.95 kHz
128 256 us 391 kHz
1us 256 256 ps 3.91 kHz
128 128 ps 7.8 kHz
0.5 ps 256 128 us 7.8 kHz
128 64 us 15.6 kHz
D ic Specimen Loadine for ESEM

With the FSEM capabilities discussed above, a variety of dynamic microscopic studies
become possible. Chief among these is microstructural response of structural matenals to transient
loads, such as mechanical, thermal and magnetic loads. We have developed a magnetically-
induced stress wave (MISW) device for producing mechanical loads in specimens. This device
has fractured DSP concrete cement in dynamic tension loading. The pressure pulse-width of this
device is ~1 ps, with pressure pulse peaks of 2 10,000 psi. This magnetically-induced stress
wave concept using ~1 mm radius rod specimens allows for various combinations of dynamic
loading--single- or double-ended, compression or tension--and does permit fracture to be localized
within the SEM field of view and to time fracture with scanning. However, these advantages can
only be realized for specimen materials which are homogeneous (on the scale of the pressure pulse

length) and (i) can transmit a ~1 s wide pressure pulse without dissipation, (ii) are weak enough
to break at pressure peaks in the 3,000-30,000 psi range (the present limits of-our device--- -
extrapolated to the 35 kV maximum capacitor charge voltage) and (iii) exhibit crack nucleanon and

growth and macroscopic fracture within ~1 gs. The FSEM imaging is synchronized with the
initiation of fracture in the specimen.
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Summary of Progress

During the research effort, the concept of using a high-speed scanning electron microscope
(SEM) to observe real-time microstructural response of dynamically loaded structural materials was
verified experimentally at a maximum framing rate of 381 Hz (256 horizontal pixels X 128 vertical
pixels), about an order of magnitude higher than previously possible with conventional SEM's.
This experimental accomplishment proved the soundness of several key concepts:

* That a tungsten hairpin cathode is bright enough to obtain useful digital images at
the framing rate listed above,

* That a secondary electron detector can be built and operated at high enough count
rates to obtain such images,

* That the scan coil assembly standard on an ISI SX-40A SEM can be replaced to
allow imaging at such rates with spatial resolution approaching 100 nm,

* That signal acquisition and scan generation can be synchronized to obtain a
succession of well-defined frames in a "movie" format at pixel rates far in excess of
conventional TV-rate SEM video bandwidths (Table 2 lists the events for which we
have made movies), and

* That a magnetically-induced stress wave device can be used to obtain dynamic
fracture within the SEM chamber and field of view, with scanning timed to coincide
with fracture.

Based on the progress made during this research effort and the promise that the FSEM device has
for the new area of dynamic microscopy a patent has been filed on the technology.

Tabie 2
Dynamic Events Imaged

» Glass beads excited by piezoelectric transducer
* Thomel fiber excited by piezoelectric transducer
* Fuse rupture under excess current pulse

* Rosin fracture under shock loading

* Concrete fracture under tensile load

* Watch gear moving periodic~"'y
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Potential Applications of the FSEM

Table 3 shows the technology areas that we have reviewed over the last 2 years that could
benefit from the utility of our FSEM device. Certain modifications, such as thermal stages or a
gaseous environment, to the stages would be necessary, but the FSEM technology could be readily
adapted to these situations.

“Table 3
Potential Applications of ESEM

* monolayer studies (Langmuir-Blodgett)--may require ESEM

* recrystallization of silicon films and semiconductors

* real-time dynamic fracture

* In situ SEM- or microprobe-observed fracture

* TEM video microscopy (TV-rate)

» solid phase transitions (see high T¢ superconductor listings below)
* atomic motion within crystals

* Pulsed electron microscopy--non-scanned (~25 ns/frame)

* TEM studies of laser-pulse-induced processes

* reflection electron microscope surface studies

* High T¢ superconductor studies

* phase transitions during fabrication--SEM

* flux creep, magnetic contrast imaging--SEM

* flux creep, decoration imaging--SEM

* Domain growth/transition of polymers

* Integrated circuit inspection and metrology

 E-beam testing of integrated circuits (strobed voltage contrast in SEM)
* E-beam specimen damage reduction
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APPENDIX 5

@
DIRECT APPLICATION OF CONSTRAINTS
TO SYMMETRIC ALGEBRAIC SYSTEMS
@
H. L. Schreyer! and D. A. Parsons?
®
December, 1993
ABSTRACT

Constraints arise naturally in the context of rigid inclusions,
incompressibility, inextensible fibers and deformed finite elements. Typical
methods for handling constraints in the governing matrix equation include
Lagrange multipliers, penalty weights, and elimination of variables. Each has a
particular undesirable feature. Proposed here is a procedure in which each
constraint is handled directly and sequentially through a modification of the rows
and columns of the governing matrix and force vector. Positive definiteness,
symmetry and the dimensions of the matrix remain unchanged. Elementary
examples involving both the static and dynamic response of a bar are given to
illustrate the procedure.

Key Words: constraints, rigid inclusions, incompressibility, dynamic response

12Professor and Graduate Student, respectively, Department of Mechanical
Engineering, The University of New Mexico, Albuquerque, NM 87131.
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INTRODUCTION

There are numerous engineering situations in which constraints are a
natural of the system. amples are rigid inclusions, incompressibility,
inextensible fibers, floors in plane frames, boundary conditions, and mesh
distortion. The usual methods for handling constraints require either a
modification to the dimension of the algebraic problem, or good numerical
intuition. On the other hand, the implementation of a one-point constraint is
often done directly by merely adjusting rows and columns so that the original
dimension and symmetry of the matrix remain unchanged. A corresponding
procedure for a multipoint constraint of arbitrary dimension is not generally
available, at least in most textbooks on the finite element method. Here, such an
algorithm is given with simple examples for static and dynamic problems.

If multipoint constraints are given explicitly, conventional methods for
handling the constraints are the Lagrange multiplier technique, the penalty
method, and partitioning of variables with the subseﬁuent need for adjustments
to the governing matrix (Barlow, 1982; Cook et al, 1989). The Lagrange-
multiplier method requires the development of an augmented matrix which means
the problem must be redimensioned. The penalty method involves an adroit
choice of a parameter to provide a balance between ill conditioning and loss of
accuracy.  Partitioning of variables requires a considerable amount of
manipulation and the inverse of a submatrix which can be of a significant size if
there are a large number of constraints.

Sometimes governing systems become ill-conditioned as a parameter
describing a matenal prope%, the dimension of a body, or element distortion
approaches a critical value. Various techniques involving under integration with
hourglass control, other modifications to the element stiffness matrix, and
remeshing are often used to prevent the ill conditioning. For many cases, these
techniques can be interpreted as zgproximate methods for applying a constraint
which should be applied based on fundamental mathematical arguments.

Webb (1990§ uses a projection operator to elegantly derive a rather
general algorithm for handling constraints without modifying the structure or the
symmetry of the governing matrix. However, nothing is said about how the

rojection is generated. Hueck and Schreyer (1993) provide an explicit method
or constructing the projection matrices. The result is a general method for
exactly handling multipoint constraints without altering the number of algebraic
equations. As an example, the incomlpressibli constraint is invoked for the
quadrilateral element with plane-strain elasticity. With this approach, the problem
normally associated with the usual method of letting Poisson’s ratio approach 0.5
is avoided. Also, severe mesh distortion is not a significant factor. Although the
apglimtion to a beam problem provides good results, the projection method
suffers from the fact that a matrix as large as the original one and the inverse of a
smaller matrix have to be obtained. erefore, the potential usefulness of the
approach for large-scale problems is limited.

To maintain the advantage of the direct application of multipoint
constraints, an algorithm is proposed that is closely related to one given by Abel
and Shephard (1979), a contribution which has not received the attention it
deserves. The attractive features of the method presented here include the fact
that the symmetry and the dimension of the governing matrix is maintained, there
is no reordering of variables, and with some care, any number of constraints can
be apslied sequentially with the one algorithm. A complete description of the
procedure is given together with static and dynamic examples.
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BASIC EQUATIONS
Suppose the objective is to solve for x the algebraic equation
Ax= b (1

in which the symmetric matrix A is n x n and b is given. The system is restricted by
the constraint

cTx=d )
An alternative way of viewing the problem is to define the residual
r=Ax-b 3)

Consider a weighting vector w. Frequently the governing equation (1) is obtained
from the requirement that

wir=0 4)
for arbitrary w. Whenever a component of x is prescribed, the corresponding

component of w must be zero. Simularly, if the constraint (2) exists, then w is not
arbitrary but must satisfy the corresponding constraint

cTw=0 ()

The formulation given by (4) and (5) is the one that provides insight into how the
matrix A should be modified so as to maintain symmetry. If A is not initially
symmetric, then the modified matrix is also not symmetric.

For convenience, let {A;} and <A;> denote the i’th column and row of A,
respectively. Then an alternative form of (4) is

n
Swir, =0 1 = <Ai>{x}-b; i=1,.n (6)
F1

The next section illustrates the gforithm for a three-point constraint to
show that the approach is simply a generalization of a common algorithm used to
handle the on:a-})oint constraint normally associated with boundary conditions.
Then the general algorithm is given.

THREE-POINT CONSTRAINT

For ease of presentation, the constraint is applied to the first three
eomggnents of x but “he algorithm can be applied equally well to any other
com

ination of components.
Suppose the constraint is

Ci1x; + Cx2 +Cc3x3 = d )
The constraint on w is
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awp + w2 + caw3 =0 (8

which imrlies that wj, w2 and w3 are not arbitrary. Set w3 = -cjwy/c3 - cawz/c3.
The result is that each of the first two equations is really a linear combination of
the original equation and the third equation. Since w3 has been eliminated, the
constraint equation is used for the third equation. At this stage, the governing set
of algebraic equations is:

A*x=Db* ®
in which
{811'%831 812"%832 ﬂu‘%ag 814'-%834 }
-9 -8 -8 -8
A g|*121 331 327 832 837 giazy 837 Tiazg vy (10)
| cl cz c3 .a.I
Il a4 a2 ag3 a4 JI
(b - 9 b;)
b -2 bs
by- by
b* = i (11)
|y, |

Now suppose the constraint is used to replace x3 in every equation but the third.
Then the governing matix and force vector become:

L J L L] ®
[311'%313 a12"-f§2113 0 a14'-:31&34
=L an ayy-2a -5
|3217 5323 3an=gian 0 ay-ay
| q c c3 0
| 41— %3 a3 ag- '3 agg 0 ay

A** = (12)

fb;—-%a;ﬂ
B-din
b** = d (13)
|b4--cga43|

-

in which a®jj and b*; denote the components of A* and b*, respectively. The only
components not symmetric involve the indices (1, 2}, (1,3) and (2, 3). Suppose
the third e&ltxx:tion is multiplied by c1/c3 and the result added to the first equation.
Then the third component in the first row of A®**® is ¢;. Similarly, multiply the
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third equation by cz2/c3 and add the result to the second equation to obtain ¢ as
the third component in the second row of A**. Now the governing matrices are

™ s ( 2 . ]
e T s gase o meFaw
. . . L] (
|821"%azs’-5;:3 azz'-zaza‘-%- ] a24'-‘:"834

. .
. .

A®*** = Cy 14
: cl cz c3 0 vee ( )
l 21~ 326 ap-Jag 0 ay
*daae 8
f‘ 33' ’csd]l
by--dan+2d

beer ={ %4 %} (15)
| by- 3 243 Jl

It can be shown by direct substitution that the (1, 2) and (2, 1) components of the
modified matrix are equal so the resulting system is symmetric. The solution to

Al.txg b‘.‘ (16)

automatically satisfies the three-point constraint equation.

GENERAL ALGORITHM FOR MULTIPOINT CONSTRAINTS

The results for the special case given above suggests the following
approach to handle a general multipoint constraint. The format is chosen to
suggest the form that a subroutine rmght take for invoking a given constraint. Let
ISJC be the set of indices associated with the constraint. Then the constraint is given

y .

2ex =d 17
i€S,

in which the summation is taken over all indices in the constrainea set. Each ¢; is
nonzero. Choose arbitrarily a particular element of Sp, i = I say, with x; labelled
the constraint variable (or master variable). One might wish to choose I so that ¢;
is the one with the maximum absolute value of all ¢;'s in the set. Let S*. be the set
Sc mtt,llx element I excluded, i.e., S® is the set of indices associated with the slave

variables.
For ease of intergretation in the three-point constraint case, different
symbols were used at each step for the modified matrices and vectors (e.g., A®, b*,

etc.). However, there is no need to actually defne new matrices and vectors so in
the following algorithm only one matrix and vector pair are used.

The data required for a subroutine based on this algorithm are ¢;, d, Sc
'l'href first :iask is to *=lect I and S*.. Then the steps given in the following box are
performed.




For each i contained in S*; perform operations 1 through §:

1. Replace the row <A;>inA with <A;> - & <Ap>.

2. Similarly replace b; with b; - 3 (bs -d).
3. In the existing vector, b, replace {b} with {b} - -cﬂl{ A}.

4. In the existing matrix, A, replace the column {A;} with {A;} - -‘:lt {A1).

5. SetAj =, A =G, Al = c'| and b; = d. Place zeros in the remaining
entries of column I and row [ of A.

For each i and j contained in S*, perform the following operation:

6. Replace the component Ajj with A + i(:-l .

The result is a symmetric system whose solution automatically satisfies the
multipoint constraint.

MULTIPLE CONSTRAINTS

If several constraints exist but the constraints contain variables that are not
common, then the constraints can be applied sequentially with no modifications to
the proposed algorithm. '

requently it is necessary to apply multiple constraints with one or more
variables common to more than one constraint. With the proposed approach it is
possible to erase a previous constraint if special precautions are not taken. One
method to circumvent the problem is to scan all constraints to see if, for each
constraint, a variable can be defined which does not appear in subsequent
constraints. = Then the procedure can be applied sequentially with no
modifications.

If it proves to be impossible to identify a unique constraint variable for a
given constraint, then an alternative apgeroach must be used. When this situation
arises, the constrain’ variables must eliminated sequentially using previous
constraint equations until a variable appears that has not been previously
designated a constraint variable. Then the algorithm can be applied as given.

SIMPLE EXAMPLE

Consider a governing matrix and a force vector that typically result from
the use of two-node elements in one dimension:
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[1-10 0 0 0] M
|I-1 2 -1 0 0 0] 10|
fo -1 2 -1 0 ol lol

[Al =)0 6 -1 2 -1 o {b} ={,} (18)
lo 0 0 -1 2 -1l M
[o 0 0 0 -1 1] L1

Suppose the following two constraints are applied:
x1=0 X6-X5 + X4-x3=1 (19)

The resulting matrix, force vector and solution vector are:

[1 0 0 0 0 0] (0] (0]
10 2 -1 0 0 O] 10| | 1]
lo -1 4 -3 1 -1l |-11 | 21
[Al =1y 0 3 & -3 11 Db =ib  {x}={, @0
lo 0 -1 -2 2 -1l =o: :3.5:
loo-l 1 -1 1] 1) L 4]

Note that the governing matrix remains symmetric, although the band width is
larger, and the solution vector satisfies the constraints.

ONE-DIMENSIONAL WAVE PROPAGATION

Formulation . ) . ) ,
The dynamic equation of motion for a bar of unit cross-sectional area is

pa +f* = Eu,p a = u,u (21)
in which x and t are the spatial and temporal independent variables, respectively,
the dependent variable u denotes the displacement, E is Young’s modulus, which

is assumed to be constant, and p the mass density. The wave speed is ¢ = JEP.

The force per unit length is f*. For an element of length h, the element stiffness
and mass matrices for a two-node element are:

E[1 -1] ph[2 1]
KI=Fl-1 1) ™M=y 2 @

The global mass and stiffness matrices are assembled in the usual manner to
obtain the spatially discretized version of (21) as follows:
Ma+Ku=f (23)
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in which M and K denote the system mass and stiffness matrices, respectively, and
f the system force vector. Suppose (23) is discretized in time:

Ma® + Ku? = fu (24)
in which u® and a® denote approximations to u and a, rcspectivcéy, at the time t2 =
ns, n=0, 1, 2,... for a time step of s. Consider a general trapezoidal rule:

vl e v0 4 gjaa”™ 4 (1-04)2") - (25a)

nt+l n ntl n
U o=u +say o+ (1-aj)v) (25b)

in whicha 1 anda are two free parameters chosen to obtain specific integrators.
When (24) and (25) are combined, the resulting system integrator for updating
the velocity vector is

Avi+l = n (26)
in which

A=M+aasK (27a)

r? = Bvo - sKu? +q3sm+1 + (1-aq)sf (27b)

B=M-a;(1-a3)s2K (27¢)

The updated displacement is obtained with the use of (25b). The algorithm is
impliait. It is unconditionally stable if the integration parameters satisfy the
constraints a3 =az2 0.5. There is no numerical dissipation ifa; + @2 = 1. An
explicit integrator is obtained by summing rows of {A] to obtain a diagonal matrix.

Suppose constraints on u are convertcd to constraints on v. Then the
multipoint constraint algorithm need only be applied to the matrix [A] prior to an
LU decomposition, and the implicit integrator is applied in the usual manner.

Static Problem
Consider a bar of length L = 1.28 fixed at the left end, x = 0. At the right
end, suppose a force of magnitude one is applied. Also suppose that the third

quarter of the bar, 05 S x < 0.75, is rigid. If the bar is discretized with 64
uniform elements, then the rigid zone requires 16 constraint equations, namely,
the displacements of the nodes of each element in the rigid zone are equal. For

= 1, the solution for displacement and stress in the bar with and without the
inclusion is shown in Figs. 1a and 1b, respectively. As expected, the strain and
consequently the stress in the rigid inclusion is predicted to be zero although the
stress cannot be zero if equilibrium is to be satistied.

Dynamic Problem

Now consider the bar to be free at the left end and the unit force at the
right end is applied instantaneously at t = 0. The solution is a step wave which
propagates from the right end to the left at the wave velocity of ¢ = 1 forp = 1
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and E = 1. Solutions are shown in Fig. 2 for @; = a2 = 0.5 for various
configurations and s = 0.5h/c where h denotes the length of the element.

Figure 2a gives the numerical solution at a time of L/2c for the
displacement and velocity for 128 elements with no rigid inclusion. Displayed are

ical dispersive features such as overshoot and oscillations which are
characteristic of the numerical algorithm and are nonphysical. A simple way to
handle an inclusion is to use an artificially high stiffness. Figure 2b shows the
solution for the same mesh and wave speed but with a Young’s modulus of E* =
1024 used to simulate a rigid inclusion identical to that used for the static problem.
Figure 2¢ shows the solution to the same rigid inclusion problem but with a time
step of s = 0.5h/c*® where c* is the wave speed based on E*. This small time step
is more typical of those required with an explicit integrator and represents a
severe limitation of the use of an artificial stiffness.

Corre;ponding solutions obtained with the use of the constraint algorithm
are given in Figs. 3a, 3b, and 3¢ for 64, 128 and 512 elements, respectively. When
the wave transits one-quarter of the bar and impinges on the rigid segment,
motion is immediately realized at the other end of the inclusion. Therefore, at a
time of L/2¢ the wave has actually travelled three-quarters of the bar rather than
one-half the length which is the distance travelled for a bar with no inclusion. For
all cases, the velocity and displacement constraint over the inclusion is shown.
Some of the oscillations are reduced with refinement of the mesh and time step.

A small amount of dissipation can be used to remove spurious oscillations.
Results are given in Fig. 4 fora; =aj = 0.52, 128 elements and s = 0.5h/¢c. Note
that the wave shapes are considerably cleaner for both the homogeneous bar (Fig
4a) and the bar with a rigid inclusion (Fig. 4b).

EFFECT ON CONDITION NUMBER

For a constraint equation, if the largest coefficient in absolute value is set
equal to one, then the constraint vector has been scaled so that the infinity norm
is one. For large problems it may be desirable to scale the constraint vectors to
minimize the condition number as defined by the ratio of maximum to minimum
eigenvalues. For model static problems such as that whose solution is shown in
Fig. 1, all constraints were scaled by a factor . The condition number was then
determined for various values of N for a wide range in the number of elements
and in the size of a rigid inclusion. Generally speaking, a scale factor of 0.5/h for a
uniform mesh provided nearly optimal condition numbers for a large number of
cases. However, it is not obvious what the scale factors should be for a set of
arbitrary constraints without actually performing numerical investigations.

CONCLUSIONS

A simple algorithm for handling one or more multipoint constraints has
been presented. The dimension of the governing matrix is retained as is symmetry
and positive definiteness when these properties are present. The change in band
width is dictated only by the span of degrees of freedom in each constraint
equation. The application to both static and dynamic problems is straightforward
and should prove to be a useful computational technique for the numerous
engineering problems in which constraints are important.
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1. Static solution for displacement and stress in a bar:
(a) without a rigid inclusion,
(b) with a rigid inclusion.
) . | | . .
2. Plots of displacement and velocity as a function of x at time t = 0.SL/c:
(a) no inclusion (s = 0.5h/c),
(b) the simulation of the inclusion using an artificially large E and a "large”
° time step of s = 0.5h/c,
(c) the simulation of the inclusion using an artificially large E and a "small”
time step of s = 0.3h/c*.
® 3. Plots of displacement and velocity as a function of x at time t = 0.5L/c obtained
with the constraint algorithm (s = 0.5h/c):
(a) 32 elements,
(b) 128 elements,
PY (c) 256 elements.

4. Plots of displacement and velocity as a function of x at time t = 0.5L/c obtained
with a small amount of numerical damping (128 elements and s = 0.5h/c):
® (a) no inclusion,
(b) constraint algorithm with a rigid inclusion.
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