
THE EFFEFCT OF CROSSFLO
ON GRhRVOTC

DTICý

S. R. Otto
James P. Deniler

March P,19948

ntttefor Comu~ter Appicaf~i-s j. sw. nd E~wt

NAA agkey Research Cent&loc
Hamptoft, VA 2368FO~ 

O

co

op~totd by Und-ivt'ie Space Researh MssocistiOln

94 6.15 092



ICASE Fluid Mechanics

Due to increasing research being conducted at ICASE in the field of fluid mechanics,
future ICASE reports in this area of research will be printed with a green cover. Applied

and numerical mathematics reports will have the familiar blue cover, while computer science

reports will have yellow covers. In all other aspects the reports will remain the same; in

particular, they will continue to be submitted to the appropriate journals or conferences for

formal publication.



THE EFFECT OF CROSSFLOW ON GORTLER VORTICES

S. R. Otto1

School of Mathematics and Statistics Accesion or,
University of Birmingham NTIS CRA&I

Edgbaston DT4rC IoAB QUr;aimoo nced []

Birmingham, B15 2TT Justification

United Kingdom By
and Distribution j

James P. Denier2 Availability Coties

School of Mathematics Avail aod I or

University of New South Wales Dist Special

P.O. Box 1 A4
Kensington, NSW 2033

Australia

ABSTRACT

It is well known that the boundary layer flow over a surface with a region of concave

curvature is susceptible to centrifugal instabilities in the form of G6rtler vortices. In the limit

of large Girtler number (a parameter which is a measure of the curvature of the surface)

the effect of a crossflow component in the underlying basic flow has been shown to stabilises

these modes and thus render the G5rtler vortex mechanism inoperable in these situations.

Here we consider the effect of crossflow when the G~rtler number (and the scaled spanwise

wavenumber of the vortex) are both order one quantities. The parabolic partial differential

equations governing the linear evolution of a G~rtler vortex in a three-dimensional boundary

layer are solved numerically. Our results suggest that, at least for small magnitude crossflows,

the G5rtler vortex instability mechanism is still operable. In addition we consider the effect
of an applied pressure gradient within the boundary layer on the instability mechanism and

demonstrate that a favourable pressure gradient renders the boundary layer more susceptible
to the G~rtler vortex instability; this is in stark contrast to the case of Tollmien-Schlichting

waves where a favourable pressure gradient stabilises the flow.

'This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASI-19480 while the first author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA.

2This research was supported by the Australian Research Council.
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§1 Introduction

There are many mechanisms which can promote transition in a boundary layer and

as such it is important to be able to predict how a given physical characteristic will

effect the breakdown of the flow. Our concern is with the problem of how two such

features will compete to change the transition characteristics of the flow. The two

features considered here are crossflow and the concave curvature of the plate.

Many physical situations have flow components in more than one direction, one

example being the boundary layer flow over a swept wing. In such a geometry there

is a flow parallel to the leading edge as well as along the wings chord. In flight experi-

ments Gray (1952) noted that a swept wing boundary layer reaches a transition stage

far earlier than its two-dimensional counterpart. The explanation of this was given

by Gregory, Stuart, & Walker (1955), who studied the archetypical three-dimensional

boundary layer above a rotating disc. By considering this problem from both a the-

oretical and experimental standpoint they were able to demonstrate the existence of,

what are now known as, crossflow vortices. In addition to crossflow the boundary layer

flow over a swept wing also brings forward the question of how an applied pressure

gradient will affect the flows stability.

In the seminal work of Taylor (1923) it was shown that centrifugal forces could

support a toroidal vortex state in the fluid filled gap between two concentric cylinders.

Those ideas were extended by G6rtler (1940) and applied to the case of an external

boundary layer flow. The results of this study demonstrated that the flow over a

concave plate perpendicular to its generator is susceptible to a longitudinal vortex

state. Such instabilities are due to the centrifugal forces present in situations where

wall curvature is present. Since the initial work of Taylor (1923) and G6rtler (1940)

the centrifugal instability problem has attracted much attention, and has been studied

both experimentally and theoretically, using mixture of asymptotic and numerical

techniques.

It is now known that the G6rtler vortex instability mechanism is a truly non-parallel

phenomena, in that it is not possible to predict a growth rate locally independent of

the upstream history of the disturbance. The modes initial form and the position at

which it is imposed both play a significant role in the evolution of the mode. The work

of Hall (1983) represents the first attempt at solving the correct equations governing

this vortex state. A G6rtler vortex varies over commensurate scales in the wall normal

and spanwise directions, but evolves on the same scale as the underlying boundary

layer evolves in the streamwise coordinate. Thus in the limit of large Reynolds the
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streamwise derivative of the pressure and the streamwise diffusion terms do not enter

into the governing equations. However, the streamwise derivatives in the convective

terms cannot be neglected as they are the same order of magnitude as the wall normal

and spanwise terms, due to the size of the convective velocities in these directions.

Thus the terms that can legitimately be removed render the system parabolic in the

streamwise coordinate, and hence enable its solution by a relatively cheap marching

procedure from some given streamwise location with some prescribed initial form. This

initial form must be consistent with the governing equations which impose conditions

on the normal structure of the disturbance; these conditions are derived in a similar

way to those given in Goldstein's (1948) study of a flow near a point of separation.

The parabolic equations can then be marched forward and the magnitude of the mode

monitored; when the streamwise derivative of some suitable norm of the mode becomes

zero the mode is said to be at its neutral location. The concave curvature of the wall

is allowed to vary with the distance from the leading edge, and the magnitude of

the curvature is chosen so that the Giortler mechanism is operable. In Hall (1983)

it was shown that as Gbrtler vortices progress downstream in order for them to be
'maintained' the wall must have curvature proportional to the square root of the

distance from the leading edge. It was observed that as the calculation progresses

the growth rate curves coalesce, as was noted and exploited in Hall (1982).

In an asymptotic study, assuming large G6rtler number (corresponding to the be-

haviour far downstream) Hall (1985) showed that a crossflow will stabilise these modes.

In that study far larger crossflows can be described, for instance Hall (1985) makes pre-

dictions concerning the effect of increasing the crossflow beyond the O(R,-,/2) bound,

which will be imposed in the current study. (Here R, is the, large, Reynolds number of

the flow). In Hall (1985) an eigenvalue problem was derived which allowed the Gortler

number required for neutrality to be found. As the degree of crossflow increases the

G6rtler number is modified and the vortex activity is driven to a thin wall layer, until

it is ultimately extinguished. This behaviour has also been found theoretically in the

narrow gap Taylor problem by Otto & Bassom (1994a). It was found that a smaller

crossflow component is required to stabilise the most unstable Taylor vortex mode than

the most unstable Gortler modes, so it was conjectured that the Gortler mechanism

would be more prevalent in a mixed situation.

In a preliminary report Otto & Denier (1993a), (henceforth referred to as OD),

we have shown that crossflow modifies the stability characteristics of G6rtler vortices.

In that study several assumptions were made in order to reduce the dimension of

the parameter space. It will be shown that the results obtained in OD can be in
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agreement with the earlier asymptotic results of Hall (1985), depending on the choice

of the frequency of the modes, even for the small crossflows considered here.

The physical problem that we shall consider herein is the flow over a yawed cylinder

where the surface of the body possesses a degree of concave curvature. The problem is

non-dimensionalised in the normal manner, using the dimensional values U., (a char-
acteristic free-stream velocity), L (a characteristic lengthscale) and v (the kinematic

viscosity). There are two key non-dimensional parameters,

R, = UL G = 2Re6, (1.1)
V

the former being the Reynolds number which is assumed to be large, and the latter

the Gbrtler number which is assumed to be an order one quantity. The value of 6, a

curvature parameter, is chosen to tend to zero as Re -. oo such that the G remains of

order one, this ensures that the G6rtler mechanism is operational. For a comprehensive

review of the work on Gortler vortices the reader is referred to Hall (1990). In Bassom

& Hall (1991) a study was made of the connection between crossflow and G6rtler

vortices within the high G6rtler number regimes. The problem concerning the effect

of crossflow on the Taylor modes was discussed by DiPrima & Pridor (1979).

In the work of Hall (1983) the growth of G6rtler vortices within a Blasius boundary

layer were considered. It is well known that the flow over a flat plate is self similar in

the downstream coordinate, x; at least for large values of x or the Reynolds number.

In the case of the flow over a swept wing there is a natural pressure gradient present

and it is for this reason we shall consider first the effect of this pressure gradient on

the stability characteristics of G6rtler vortices. In OD it was shown that a favourable

pressure gradient promotes the instability mechanism and is was conjectured that

this is connected with the convective nature of the G6rtler modes. We will assume

that the pressure gradient takes the form x2n, so that in the free stream the scaled

streamwise velocity takes the form xn. This form of the pressure gradient leads to

the Falkner-Skan family of velocity profiles (Falkner & Skan (1930)). It is, of course,

possible for other forms of pressure gradient to be used but these would only serve

to complicate the problem so as to cloud the pertinent issues. In the work of Cooke

(1950) the effect of yawing on this problem was considered and it was found that the

spanwise momentum equation could be solved after obtaining the streamwise profile.

The degree of crossflow has a direct correspondence with the angle of sweep.
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After the momentum equations have been linearized about the basic state we have
four coupled partial differential equations to solve. It is not clear how to impose bound-

ary conditions on the perturbation pressure in this primitive formulation, so it is found

to be convenient to eliminate the vortex spanwise velocity and pressure components.

We first Fourier decompose in the spanwise direction (where the spanwise wavelength

has been scaled on the boundary layer thickness) and assume that the modes are har-

monic in the temporal variable (we note that it is beyond the scope of the calculations

to be presented here to consider modes which evolve both temporally and spatially).

The resulting equations then form a coupled system of partial differential equations for

the velocity components as functions of the normal and streamwise variables. These

equations are then discretized using a second order accurate finite difference scheme

in the normal variable and a Crank-Nicholson scheme in the streamwise coordinate.

A stretched grid is employed in the normal coordinate so as to retain adequate resolu-

tion near the wall without using prohibitively many points to obtain a sufficiently large

outer bound for the calculations. The resulting discretized system is in the form of a

coupled penta- and tri-diagonal system which was inverted directly at each stream-
wise location by using a modified form of a Davis Coupled scheme. This scheme has

the advantage of directly inverting the system (thus yielding a true implicit scheme)

without incurring the extra computational costs in inverting a full block system. This

method was developed for a weakly nonlinear calculation, Bassom & Otto (1993), and

has been shown to be efficient in other more complex calculations. The additional

work involved in implementing the Crank-Nicholson scheme for the streamwise coor-

dinate was minimal and did lead to improved accuracy when compared to the results

obtained using a Backward Euler discretisation in the streamwise direction. As a test,

consistency was demonstrated between the Euler results with a smaller step-size and

the Crank-Nicholson results. The method used to invert the system is totally implicit;

as such the streamwise step is restricted to be Ay rather than Ay 2 as it would be

in an explicit scheme. However since both the Euler and Crank-Nicholson schemes

are unconditionally stable, it is possible to use a larger streamwise steplength without

invalidating our results.

Many of the conclusions found here have also been observed in a concurrent study

by Zurigat & Malik (1993). That work concerns steady modes in situations with

favourable pressure gradients. The study exploits a parallel flow approximation, which

although erroneous, shows the link between G6rtler modes and crossflow modes in

three-dimensional boundary layers. In the context of our calculation it is not possible

to describe the crossflow modes (Gregory, Stuart & Walker (1955)) due to the fact that
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the streamwise derivatives that have been removed will become significant in such a

problem.

The paper is organized as follows: in section 2 we derive the governing equations

and discuss the conditions used to derive the initial conditions for the calculation. In

section 3 we discuss the numerical techniques used to advance the solution. Section

4 contains a summary of the results, section 5 includes some conclusions and possible

future extensions to this work and in an appendix we present some asymptotic results

concerning the effect of pressure gradient on the Gbrtler instability mechanism.

§2 Formulation

We consider the flow over a yawed cylinder as described in Hall (1985) in which

the body is assumed to have concave curvature perpendicular to its generator. Such

a flow can support centrifugal instabilities and we wish to consider the effect of the

angle of sweep, which has a direct correspondence to the amount of crossflow present

in the unperturbed flow field, on the instability. We assume that the pressure gradient

present in the flow is of a form which is conducive to a self similar calculation, namely

X2. Since 3 x 2", the scaled velocity at the extreme edge of the boundary layer is

given by fi, x", (from the balance Uei.ez - ). The viscous boundary layer then
l--n 1--n

grows as x -', and we introduce the similarity variable q = y/x 2 , where y is the

usual scaled boundary layer normal variable. Within the boundary layer the flow then

takes the form

1t ) = (-f 1-) ,R4)" (2.1)

where the functions of q, f and g satisfy,
l+n 2l+n
I,,,, + -- ff,,, = n (f, -1) , g,.,l + 2 f g,l = 0, (2.2a, b)

together with the boundary conditions

f=f =9-0 at 7=0, f,7 ,g---9A as -- oo.

If A = 0 these equations give the standard Falkner-Skan boundary layer profile. In the

case n = 0 we revert to the Blasius profile in which case g is a linear multiple of f

and the Gi5rtler vortex instability mechanism reverts to that for the two dimensional

boundary layer flow over a curved plate (the reader is referred to Hall (1985) for a

discussion of this case).
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We assume that the bounding surface has curvature distribution of the form X(x),

where X is a positive quantity for a concave wall. Hall (1982) noted that, for the case

of a Blasius boundary layer, in order to support G6rtler vortices far downstream of

the leading edge we have the requirement that X -" x2. In the current problem thisI -- Sn

condition is now modified to be X _ X-'L, which is readily deduced from the balances

required near the right-hand branch of the neutral curve.

In this paper we restrict our attention to linear disturbances to the three-dimensional

boundary layer. We perturb the basic state (2.1) with a small amplitude wave so that

the total flow is now written as

q= Re 2 3,Re wp+ A(U,Re 2 V V ReWRiP).

Substituting the above expansion into the incompressible, unsteady Navier-Stokes

equations fitted to the plate, taking first the limit A --+ 0 and then the limit Re --+ 00

we obtain the following system of viscous equations governing the evolution of a small

amplitude disturbance:
£UUW+V° •,o, (2.3a)

£ = 0O'O + o' ac 05 (2.3b)

- OW - Otb apIC+ = U 5 - i- + , (2.3c)

ao aV 09W
5X + W + -8z = 0. (2.3d)

Here the differential operator C is given by

0y2  0Z2  Ox - y o o5

and, anticipating the well known result that the vortex wavelength scales on the bound-

ary layer thickness, we have introduced the uondimensional variable z = RV ~zIL.

The boundary conditions appropriate to (2.3) are

U=V=Wf =o at y= 0 ,oo, (2.4)

corresponding to the requirement of no-slip at the wall and that the vortex is confined

to the boundary layer.
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At this juncture we note there is no streamwise derivative of the perturbation pres-

sure and no streamwise diffusion in the perturbations equations (2.3) thus rendering

the system parabolic in the streamwise coordinate x. As such the system (2.3) can

be marched downstream with some suitable initial conditions imposed at x = x (say).

However, as noted by Hall (1983) it is not sufficient to choose an initial form for the

perturbation velocity fields which solely satisfies the boundary conditions (2.4); such

a choice necessarily introduces singularities at x = x. Indeed, the initial perturbation

quantities must satisfy conditions stronger than (2.4) which can readily be derived

by following the method outlined in Goldstein (1948) and expanding both C and V

in Taylor series about x = t. Such a procedure yields the result that the initial

perturbations U = U(y) and V = V(y) must satisfy

Uo(o)=o, U1Y (0) = (a + iQ) U1 (0), V (0) = (2a + ) (0), (2.5)

in addition to the boundary conditions (2.4). Hall (1983) derives the condition that

& must satisfy as Y -- oo, which when modified to account for the presence of the

pressure gradient becomes

e y 4 1 )+ (2.6)( ~ xp I-" 4 )"

As noted by Hall (1983) a parallel-flow approximation, in which the term tl0. is

neglected, yields the large y structure

U - exp(-ay),

thus predicting an incorrect decay in the far field for the perturbation quantities. It

is for precisely this reason that the parallel flow approximation is erroneous in the

context of the Girtler vortex problem.

In order to reduce the system (2.3) to a form which is more convenient from a

computational standpoint we first Fourier decompose in the spanwise and temporal

variable such that a, -- ia and Ot -+ -iQ, where both a and f2 are real quantities,

and eliminate the perturbation pressure and spanwise velocity perturbation to give
('2)•'72 0aoy02 O a2 i

V-a2  +V Ga2 xi+U - a2 4- 2 x-
8x 9" y ax X ay

0 &u aTrO2il a7 a2 g
OX20y Ox Oy2  Oy OxOy (2.7)

+ 03 oa U O 2 . 02 jz- (2. 7
+ V _ 4-2ia-UT + 2ia-

,g•ay2 aX ~ 0 a2490•9 2 9 ~ 9Y
&af + iaV a2 "7 + a 4"f a 2w av Oay O2 y 9Ox o5=y
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together with equation (2.3a), where the differential operator C is now given by

&82 2 a 8.a£C = a fy T - ab+M

-y2 - u--v-Y iaw+i.

The problem now reduces to the numerical solution of the governing equations (2.3a)

and (2.7) subject to the boundary conditions

U=9= F==O at y=O,
y Y (2.7)- -V

U,V,-5-0 as y--+00.

given some initial perturbation at x = t, consistent with the conditions (2.5) and

(2.6), marching downstream in x. In the next section we present such a numerical

procedure.

§3 Numerical Methods

The method used to numerically integrate the governing equations (2.3a) and (2.7)

parallels that used by Hall (1983), however as there are some significant differences we
now give an indication of the pertinent points regarding our numerical scheme.

Following Hall (1983) we elect to solve the system in terms of the similarity variable
S= y/x '. We then write CU = UT(x, 77), together with similar expressions for the ver-

tical component of the perturbation velocity field, and take our underlying boundary

layer flow to be described by (2.2a,b). The system can then be transformed from the

(x, y)-space to the (x, i7)-space by using the fact that

9 a 1+n77 9 a 1 a
Tx x 2 x dj' y x"-2n-5,

the higher order derivatives transform in a similar way as

0 1 0•, 0yy 1

S1-n 17-77 Y1'

82 X 2 2 (o1 1 i _

-2 03 ,iz,

2 x 2 -n 7 1 V 177 -n 'xx

Such a transformation allows the calculation to spread in the normal extent with the

growth of the boundary layer. In order to achieve adequate resolution at the wall,
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whilst still retaining a sufficiently large outer bound for the calculations and without

using a prohibitively large number of normal grid-points, an algebraic stretching of

the form introduced by Macaraeg, Streett & Hussaini (1988) was used L'or the 27 grid.

In the majority of the calculations presented herein 150 points were used in the normal

coordinate, with an outer bound at q = 20. The basic flow quantities ii, v and tD were

obtained a priori by using a standard fourth order Runge-Kutta technique, coupled to

a two-dimensional real secant method, to integrate the similar equations (2.2); these

were then projected onto the similarity grid at each downstream station.

In order to march the equations downstream from an initial position x = • a,

formally second order accurate, Crank-Nicholson scheme was used in the downstream

coordinate. If we compare this scheme with a Backward-Euler scheme, this being the

method used by Hall (1983) and others, we find that in using the two schemes for
_0 + -0 = 0, we are required to solve

Backward-Euler:
~+ -9~ -

Crank-Nicholson:

S2 ayP f 2 O yP '

for 0+ as a function of y. Here the superscripts + and - denote evaluation at the

current and previous x-position respectively, and e is the streamwise step-length. We

note that although the system which requires inversion to determine 0+ is of the same

form in both case, the extra accuracy comes from evaluating the a_ 0 at the mid-pointalp

and hence the streamwise derivative then becomes a centred difference. The only

additional computation that results is involved in computing the term a5 which is

outweighed by the additional accuracy obtained. In all the calculations reported here

a streamwise step-length of 0.1 was used.

The system is now discretized using a second order accurate (for the fourth deriva-

tive, this requires five points) finite difference scheme in the normal T coordinate which

when combined with the Crank-Nicholson discretisation for the streamwise derivatives

allows the system to be written in the form

anvn+2 + bnvn+l + Cnvn + dnvn- 1 + en--2 "+ fnUn+l + gnUn + hnun-I = R(v), (3.1a)

and

dnUn+l + bnUn + ZnUn-- + dnvn = R(u). (3.1b)
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Here the index n denotes evaluation at the nth normal grid-point, the terms on the

left-hand-sides of these expression are evaluated at x = x + e and the R(nu) and Rv)

denotes terms evaluated at the previous streamwise position. (For the sake of brevity

the form of the coefficients in (3.1a,b) are not presented here; they can be obtained on

application to the authors).

Here we highlight the major difference between the present scheme and that used in

Hall (1983) (apart from the additional accuracy obtained in the present calculations

due to the Crank-Nicholson discretisation of the streamwise derivatives). The method

used in Hall (1983) is to move the terms in (3.1a) associated with u to the right hand

side, hence evaluating them at the previous point, and then invert the penta-diagonal

system for v. Using this solution it is then possible to solve the tri-diagonal system

(3.1b) for u. Here we choose to invert the entire system in one calculation, thus

preserving the structure of the system and rendering our scheme truly second order

accurate in the streamwise coordinate. The method used for this inversion represents

a modified form of a Davis Coupled Scheme and has been outlined in Otto & Bassom

(1993) (the reader is referred to that paper for full details).

To monitor the growth (or decay) of an initial disturbance as the calculation pro-

ceeds downstream we define the energy as

1700

E(17) = J 2 d77.

0

If we define the growth rate as

1 1 1-n
a EF + 2 (3.2)

then a neutral point is the x-station where the real part of the quantity a, defined in

(3.2), changes sign. The imaginary part of a gives us the wavespeed in the streamwise

coordinate. It should be noted that for the steady Girtler problem, Q =- 0, we have

Imag (a) - 0.

§4 Results and Discussion

In a preliminary report (Otto & Denier (1993a)) we presented some limited re-

sults concerning the effect of crossflow on the G6rtler instability mechanism at 0(1)

wavelengths; however several choices of various parameters were made which limits the
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applicability of that study. Here we shall now endeavour to provide a fuller description

of the effect of crossflow on the G6rtler vortex instability mechanism.

In order to decrease the number of parameters in our study we will, throughout the

calculations reported, fix the G6rtler number and note that for larger Gortler numbers

the results will be quantitatively similar to those presented here (keeping in mind
that for larger Gbrtler numbers the flow becomes unstable at a smaller value of the

streamwise variable x). The value chosen for the Gbrtler number is G = 0.05, this

value is taken solely for convenience. The work of Hall (1983) clearly demonstrates,

in the case of G6rtler vortices in two-dimensional boundary layers, that the initial
form of the perturbation, and the position at which it is imposed, are key factors in

determining the stability characteristics of flow field. Not surprisingly such is the case

in the present problem, however as we are predominantly concerned with the effect of
both an imposed pressure gradient and crossflow we choose to ignore this effect and

consider only the case when the initial perturbation is of the form

(C, V) = (6 e-172/-ext , 0),

(note that this is precisely the form used by Hall (1983)). Here %.ext is a measure of
the normal extent of the initial perturbation; for the sake of definiteness we choose

7,ext = 4 for all the calculations reported here. This condition is now imposed at t = 20

and the numerical scheme described above is used to march the solution in x at each
stage monitoring the growth rate a of the disturbance. We note in passing that the

value at which the initial perturbation is imposed was varied (t = 30 and X = 40);
in all case the growth rate curves coalesce into the unique right-hand branch of the

neutral curve far downstream. It is in this regime that the parallel flow approximation

achieves validity, however as demonstrated by Hall (1982) this asymptotic regime can

readily be described without recourse to this ad hoc approximation technique.
One of the major differences between this work and OD is that here we shall retain

the variation of X with x. Thus for each pressure gradient two forms of wall curvature

will be considered; (i) x = 1 (OD), and (ii) X = x 2 /x±'- (this being the wall

curvature required to support G6rtler vortices far downstream).
We consider first the effect that the modification of the basic flow due to the presence

of the pressure gradient has upon the stability characteristics in the absence of the

crossflow component of the basic flow. As was demonstrated by OD, in this case the

most unstable mode is found to be steady; we therefore set QZ = 0. In figure 1 we show

three neutral curves for the cases n = 1/20, n = 0 and n = -1/20 for the choice (i) of
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constant curvature; these correspond to a favourable-, no-, and an adverse-pressure

gradients respectively. The results are presented in terms of the local G6rtler number

and local wavenumber which are defined as
3--3n 1--n

G= GxT, a. = -- ax3-n (4.1)

and have been derived with respect to the local boundary layer thickness. The neutral

curves were generated by fixing the G~rtler number G = 0.05 (see the discussion

above), choosing a spanwise wavenumber a and marching the solution to (2.3a,2.7)

downstream until such point at which the growth rate o (given by (3.2)) changes sign.

At this point the local G6rtler number and local wavenumber can be calculated from
(4.1). This procedure is then repeated for different values of spanwise wavenumber a

to produce a curve of the form given in Figure 1.
In figure 2 we present the neutral curves for the curvature distribution (ii), again

with G = 0.05. In both cases it is readily seen that for the case of a favourable pressure

gradient the range of local wavenumber over which the flow is unstable is increased

and, additionally, the minimum value of the local Gbrtler number G, is decreased
with increasing n. We note that this thickening of the neutral curve corresponds to

an increase in the streamwise extent over which a disturbance of given wavenumber

a is unstable. Thus, for the two representative curvature distributions considered

here, it is the case of boundary layer with a favourable pressure gradient that is most
susceptible to Gbrtler vortices. In the limit of large spanwise wavenumber a and large

G6rtler number G it is possible to describe, in a self consistent asymptotic setting, the

structure of the G~rtler vortex in the vicinity of the right-hand branch of the neutral

curve. The details of the calculation relevant to the right-hand-branch of the neutral

curve are given in the appendix at the end of this paper.

In figure 3 we present plots of the (scaled) growth rate, #*, and the position of

vortex activity, q*, as a function of the scaled wavenumber a* for various values of 71

(see the appendix for the precise definition of these scaled quantities). From figure 3

we note, as found by Denier et al (1991), that f* _ 1/*. 2 as o * -+ 0; this fact can

then be used to determine the most unstable G~rtler vortex mode as in Denier et al.

To clearly see the effect of changing the pressure gradient (by varying the parameter
n) on the right-hand-branch of the neutral curve we present, in figure 4, a plot of

the scaled neutral wavenumber a*, at which /* = 0, together with the position of

vortex activity q*. As n decreases the scaled wavenumber o* decreases; thus a less

favourable pressure gradient moves the right-hand-branch of the neutral curve to the
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left. In this sense a boundary layer flow with a favourable pressure is more unstable

to G6rtler vortices. Similarly, for decreasing n, the position t7* at which the neutral
vortex resides increases. Combining the results of our numerical calculations with the

large wavenumber asymptotics which appear in the appendix we can clearly see that

the range of local wavenumbers over which the disturbance is growing is increased and
also the critical local G6rtler number is decreased. This result is in stark contrast

to the case of Tollmien-Schlichting waves in an external boundary layer where it has
been demonstrated that an adverse pressure gradient is destabilizing (see Rosenhead

(1963), Ch. IX). We conjecture that such a destabilization due to a favourable pressure

gradient is due to the convective nature of the G6rtler vortex instability. However,

since the question of whether the G6rtler vortex instability is convective or absolute

is still undecided, although experimental observations do support the commonly held
belief that it is in fact a convective instability, we believe that this point warrants

further investigation, the results of which we hope to report in a forthcoming article.
We note, from figure 1 and 2, the apparent absence of a left-hand branch of the

neutral curves. This arises due to the computational difficulty in obtain neutral values

relevant to this branch due to the fact that exceptionally small . & es of the wavenum-

ber a are required in such a calculation. At this point we emphasize that the evolution

of a single mode of fixed spanwise wavenumber a the local wavenumber varies accord-

ing to (4.1) as the calculation proceeds downstream. In this case the loci of local
wavenumber is given by the dashed line in figure 2 and as such there is a finite interval

in the streamwise direction for which a,. is positive and the mode is growing in am-

plitude. In this interval we would then expect nonlinear terms to come into play and

the results of Hall (1988), Otto & Bassom (1994b) and Denier & Hall (1993) become

relevant. The loci shown in figure 2 is for the representative case a = 0.185; the solid

block shows the position at which ar first changes sign and we note that this trajectory

does not cross the right hand branch with the range of the current calculation (4000

steps of length 0.1 in x).
We now turn our attention to the effect of cross flow on the G6rtler instability. In

the asymptotic regime relevant to the right-hand branch of the neutral curve (ie large
wavenumber a and large G6rtler number G) Hall (1985) demonstrated that the effect

of crossflow is to shift the right-hand branch of the neutral curve to the left. We will

show that such an effect can be achieved even with the modest values of crossflow.

In our earlier study, Otto & Denier (1993a), the effect of crossflow was considered

for the three forms of pressure gradients given above and it was shown that all cases

were affected in a similar manner For this reason we choose to consider only the
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case of the favourable pressure gradient here as this is the most unstable in the sense

described above. In figure 5 we show a different form of neutral curve, where we fix

the wavenumber at a = 0.195 (with the other parameters as n = 1/20, G = 1/5 and

X = 1). These choices were made so that the calculation is in a parameter regime
which is relevant to the right-hand branch of the neutral curve. In this case the
"stability bubbles"are actually closed. Here we present results for increasing values

of the crossflow parameter A, the curves shown are for A = 0,0.1,0.2. The triangular

symbols depict the points at which the disturbance begins to grow, ar first becomes

positive, and the circular symbols where it first begins to decay, ar becomes negative.
We notice that the effect of increasing the crossflow parameter A is to shift these -ves

rather than compressing them as might be expected from the earlier asymptoti( ls

of Hall (1985) and Otto & Bassom (1993).

In order to explain this apparent discrepancy we revert to the other form of neutral

curve, that is where we fix Q and vary the wavenumber. One of the difficulties in

comparing our results with the asymptotic predictions of previous authors is that we

must, necessarily, fix the frequency of the disturbance at the outset for our numerical

calculation. In figure 6 we show the calculation for 11 = 1/20 with A = 1 and fl = A = 0

for G = 1/20, X = 1 and n = 1/20. In this case the right-hand branch for the case with

crossflow has been moved to the left, and now lies inside the neutral curve for the two-

dimensional boundary layer case. However, we note that the critical neutral G6rtler

number is only slightly modified by the presence of the crossflow. Thus, although

crossflow has an appreciable effect of the right-hand branch structure, a result that is

apparent from the asymptotic results of Hall (1985) and Otto & Bassom (1993), it does

not appear, on the basis of our calculations, to completely destroy unstable G6rtler

vortices. In particult,-" for a given flow situation conclusions concerning the instability

of a curved boundary layer in the presence of crossflow can only be determined by

solving the full governing equations (2.3) starting from some suitable initial condition.

To complete our discussion, in figure 7, we present the streamwise variation of the

growth rate o, for the particular choice of parameters A = 0.2, a = 0.195, G = 0.05,

n = 1/20 and X = 1, from which we can readily see that the growth rate oa. is positive

over a large streamwise interval. Finally in figure 8 we show the contours of the real

part of the normal perturbation velocity component f7 at z = 0, and in figure 9 we

shown the contours of the real part of V at q = 1. Figure 8 clearly demonstrates the

growth of the vortex motion as the calculation proceeds downstream and also highlights

the presence of the imaginary part of the growth rate ar on the vortex motion while
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from figure 9 we see the vortices migrate in the x-z plane as expected in the presence

of crossflow.

§5 Conclusions

In this study we considered the effect of crossflow on the G6rtler vortex instability

mechanism. Perhaps just as important as the conclusions concerning crossflow, is the

finding that the favourable pressure gradient flows lead to far more unstable G6rtler

modes, a fact that we contribute to the convective nature of the G6rtler instabilities.

We have limited ourselves to calculations in which the crossflow is small, this is nec-

essary so that waves with spanwise wavelength comparable with the boundary layer

thickness can be considered. It is found that the dominant effect of crossflow is to

re-orientate the modes and change the streamwise extent over which they grow. In

the conventional G6rtler problem it is well known that the modes are steady, however

in this three-dimensional case the 'most unstable' mode is not necessarily steady. We

note that as the crossflow is further increased the modes start to grow after shorter

streamwise distances, until the terms 8! and a//ax become significant. The modes

characteristics can then be determined only by solving the full linearized equations. In

this case these modes can be thought of as crossflow modes modified by curvature. It is

now accepted that good approximations to these equations can be found using a form

of the, so called, Parabolised Stability Equations (PSE), see for example Bertolotti

(1991). It is worth emphasising that the PSE are exact for the two-dimensional G6rtler

problem, since in this case the streamwise wavenumber is zero.

It would be interesting to determine how the crossflow will affect the receptivity

of a situation to G6rtler vortices. We presume that the 'extra' shear caused by the

presence of the crossflow will increase the receptivity coefficient. In a recent review

article by Bassom & Seddougui (1994), the receptivity coefficient, which is a measure of

the coupling between an external perturbation (for example, in the form of an isolated

surface roughness element) and the resulting flow disturbance, was calculated for the

most unstable G6rtler vortices and it was found to increase with increasing crossflow.

Such a receptivity calculation would in a similar fashion to that presented by Denier,

Hall & Seddougui (1991), using the modifications to the initial conditions recently

proposed by Bassom & Hall (1994).

Another interesting question concerns the effect that the crossflow will have on the

secondary stability of a boundary layer which has been perturbed by the presence of a

G6rtler vortex. In Hall & Horseman (1991) and Otto & Denier (1993b), the temporal
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inviscid stability of two nonlinear vortex states were considered, derived in Hall (1988)

and Otto & Bassom (1994b) respectively. In the present calculation we have only a

linear vortex state however the stability of the boundary layer with this imposed vortex

motion can still be analysed. In the case of a G6rtler vortex in the presence of a small

crossflow the problem of the secondary instability can be posed in an asymptotically

rigorous setting and the resulting three-dimensional Rayleigh equation can be solved

using the methods developed in Otto & Denier (1993b). The results of the study

of Otto & Denier (1993b) have demonstrated the existence of three inviscid modes

which can lead to the flow's breakdown. Firstly there are the even and odd modes,

which give rise to the horseshoe and wavy vortices respectively. There is also a second

even mode which has a larger temporal growth rate avd persists over a larger range of

secondary streamwise wavelengths. This mode has a large second harmonic component

the magnitude of which is actually equal to that of the first harmonic at the wall. A

similar mode has also been observed in stability of the flow in a comer flow by Dhanak

(1993). Studies of both the receptivity and secondary instability problem are currently

underway and we hope to report on the results of these studies in the near future.

References

Bassom, A. P. & Hall P. (1991) Vortex instabilities in three-dimensional boundary
layers: The relationship between G6rtler and Crossflow vortices. J. Fluid Mech 232

647

Bassom, A. P. & Hall P. (1994) The receptivity problem for 0(1) wavelength

G6rtler vortices Proc. Roy. Soc. Lond. A. (in press)

Bassom, A. P. & Otto, S. R. (1993) Weakly nonlinear stability of viscous vortices

in three-dimensional boundary layers. J. Fluid Mech. 249 185

Bassom, A. P. & Seddougui, S. 0. (1994) Receptivity mechanisms for G6rtler

vortex modes. submitted to Theor. Comp. Fluid Dynamics

Bertolotti, F. P. (1991) Linear and Nonlinear Stability of Boundary Layers with

Streamwise Varying Properties. PhD Thesis, The Ohio State University

16



Cooke, J. C. (1950) The boundary layer of a class of infinite yawed cylinders Proc.

Camb. phil. Soc. 46 645

Denier, J.P., Hall, P. & Seddougui, S. (1991) On the receptivity problem for

G6rtler vortices: vortex motion induced by wall roughness Phil. Trans. Roy. Soc.

Lond. A 335 51

Dhanak, M. (1993) Private Communication

DiPrima, R. C. & Pridor A. (1979) The stability of viscous flow between rotating

concentric cylinders with an axial flow Proc. R. Soc. Lond. A 366 555

Falkner, V. M. & Skan, S. W. (1930) Some approximate solutions if the boundary

layer equations Rep. Memor. aero. Res. Coun., Lond. No. 1314

Goldstein, S. (1948) On laminar boundary layer flow near a position of separation.

Q. J. Mech. 1 43

Gortler, H. (1940) On the three dimensional instability of laminar boundary layers

on concave walls NACA Tech. Memo no. 1375

Gray, W. E. (1952) The nature of the boundary layer at the nose of a swept back

wing Unpublished work Min. Aviation Lond.

Gregory, N., Stuart, J. T. & Walker, W. S. (1955) On the stability of three-

dimensional boundary layers with application to the flow due to a rotating disk Phil.

Trans. R. Soc. Lond. A 248 155

Hall, P. (1982) Taylor-Girtler vortices in fully developed or boundary layer flows.

J. Fluid Mech. 124 475

Hall, P. (1983) The linear development of G6rtler vortices in growing boundary

layers. J. Fluid Mech. 130 597

Hall, P. (1985) The G6rtler vortex instability mechanism in three-dimensional

boundary layers. Proc. Roy. Soc. Lond. A 399 135

Hall, P. (1988) The nonlinear development of G6rtler vortices in growing boundary

layers J. Fluid Mech. 193 247

Hall, P. (1990) Gortler vortices in growing boundary layers: the leading edge recep-

tivity problem, linear growth and the nonlinear breakdown stage Mathematika 37

151

Hall, P. & Horseman, N. J. (1991) The inviscid secondary instability of fully

nonlinear longitudinal vortex structures in growing boundary layers J. Fluid Mech

232 357

Hall, P. & Morris, H. (1991) On the stability of boundary layers on heated flat

plates J. Fluid Mech 245 367

17



Macaraeg, M. G., Streett, C. L. & Hussaini, M. Y. (1988) A Spectral Collo-

cation Solution to the Compressible Stability Eigenvalue Problem. NASA technical

Paper 2858

Otto, S. R. & Bassom, A. P. (1993) An Algorithm for Solving the Viscous Equa-

tions Arising in the Stability of Three-Dimensional Centrifugal Instabilities ICASE

Internal Report, 38

Otto, S. R. & Bassom, A. P. (1994a) The effect of crossflow on Taylor vortices.

Quart. J. Mech. Appl. Math. (in press)

Otto, S. R. & Bassom, A. P. (1994b) Nonlinear development of viscous G6rtler

vortices in a three dimensional boundary layer Stud. Appl. Math, in press

Otto, S. R. & Denier, J. P. (1993a) Concerning the effect of crossflow in the sta-

bility of G6rtler vortices, in the Proceedings of the ICASE, NASA LARC workshop

on Transition, Turbulence and Combustion herein referred to as OD

Otto, S. R. & Denier, J. P. (1993b) On the Secondary Instability of the Most

Dangerous G6rtler Vortex, in the Proceedings of the IUTAM symposium on the

Nonlinear instability of Non-parallel flow, Potsdam, NY, USA

Rosenhead, L., Laminar Boundary Layers, (Dover, New York, 1963)

Taylor, G.I. (1923) Stability of a viscous liquid contained between two rotating

cylinders Phil. Trans. R. Soc. Lond. A 223 289

Zurigat, H. & Malik, M. R. (1993) Effect of Crossflow on Gfrtler instability, in

the Proceedings of the ICASE, NASA LARC workshop on Transition, Turbulence

and Combustion

18



Appendix

Here we present some details concerning the effect of the pressure gradient on the
G6rtler instability mechanism. Noting that the results presented in §3 are relevant to
the case when both the wavenumber a and the Gortler number G are 0(1) quantities
we will restrict our attention to the case of the large Gortler number limit.

To proceed we consider first the asymptotic regime appropriate to the right-hand-
branch of the neutral curve (we will follow closely the work of Denier et al (1991); the

reader is referred to that paper for full details). Thus, setting A = Q = 0 in (2.3a,2.7)

we seek solutions in the limit G --+ oo with a = O(GI/4 ). Thus writing

a = oaG 1 /4 (A.1)

we seek a solution of (2.3a,7) confined to a layer of depth k- 1 /2 _ G-1 /8 centred on

the location y = 9(x). The appropriate expansion is given by

u {uo(x, + k-/ 2 UI(X, ) +... I exp [G1/2 J 1(x)dx]

where o = al/ 2G1 /8 (y - •). The eigenrelation is then found to be given by

[(Up + ,2)2 _ xiV] I,=9 = 0, (A.2)

together with the condition that ensures the vortex is confined to the layer centred on

9 [(Up + 0,2)2 _ xUU;] 1,=P = 0. (A.3)ay

Thus the conditions (A.2) and (A.3) serve to determine both the growth rate 3 and

the position , as a function of the scaled wavenumber a. For the self-similar boundary
layer (2.2a) we have fit = xnf'(7 ), where , y/x~T•- Writing

•~ ~ whr =j =* yl ,,,\,•2 Writing1

P 3/3* ) 7 orl=, , xn, 2 (A.4)

the eigenrelation (A.2) together with (A.3) can be rewritten as

(fIx* + u* 2 )2 = , 2f"/*(fI/3* + a* 2 ) = (fift)' (A.5)

where f' is to be evaluated at some position 77* where (A.5b) holds. We note that

n does not appear explicitly in (A.5); its presence is felt through the effect on the
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boundary later profile f (see (2.2a)). Plots of /* versus a* are given in the text of the

paper.

Here we note that there a a critical value of n = n, < 0 at which the boundary

layer equations (2.2) no longer yield physically relevant solutions; indeed at this point

we have f"(0) -+ 0 as n -- n,. For n < n, the boundary layer equations then predict

solutions which have a finite region of separated flow for all values of the streamwise

coordinate x; such a solution is of no physical relevance.

To complete the description of the wavenumber spectrum for G6rtler vortices in the

large Girtler number limit we can follow Denier et al (1991) and consider the inviscid

G6rtler vortex modes which lie in the parameter regime G > 1 with a = 0(1). In this

case there is an exact solution of the linearized governing equations (see Denier et al

(1991) for full details) in which the growth rate G-'1/ 2I3 is given by

G-1 /2# --- ax

2

which depends only on the curvature and the spanwise wavenumber. Thus the growth

rate of the inviscid Gbrtler vortex is unaffected by the presence of a pressure gradient;

note however, that the normal structure of the inviscid mode is affected due to its

dependence on the basic flow 9 (see Denier et a] (1991)). It is then the inviscid regime

which represents a "turning point" with respect to the effect of pressure gradient

on the G~rtler vortex instability. For a > 1 (with G > 1) a favourable pressure

gradient destabilizes the flow whereas for a < 1 (again with G > 1) a favourable

pressure gradient stabilizes the flow. This last point can be derived from the small
wavenumber asympotitics presented in Hall & Morris (1992) and is left as an exercise

for the interested reader.
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Figure 1: Neutral curves for case (i), with n = 1/20, 0 and n -1/20, they curves appear

in ascending order, that is the highest curve corresponds to n -1/20.
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Figure 2: Neutral curves for case (ii), with n = 1/20, 0 and n -1/20, they curves

appeax in ascending order.
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