

-35TRACT (MAXImum 2iO woids)
This technical report presents the Department of Defense (DoD) World Geodetic System 1984 (WGS 84) developed as a replacement for WGS 72. The development of WGS 84 was initiated for the purpose of providing the more accurate geodetic and gravitational data required by DOD navigation and weapon systems. The new system represents the Defense Mapping Agency's modeling of the earth from a geometric, geodetic, and gravitational standpoint using data, techniques, and technology available trrough early 1984.

Additional Doppler and GPS survey information has since been used to update the datum transformation tables.

14. SUBJECT TERMS

Angular Velocity of the Earth, Coordinate Systems, Datums, Datum Shifts, Datum Transformations, Datum Transformation Multiple Regression Equations, Earth Gravitational Constant, Earth Gravitational Model, Ellipsoid Constants, Ellipsoid Flattening, Ellipsoidal Gravity Formula, Ellipsoid Parameters, Ellipsoid Semimajor Axis, Flattening, Geodesy, Geodetic, Geodetic Heights, Geodetic Systems, Geoids, Geoid Heights, Geoid Undulations, Gravitation, Gravitational Coefficients, Gravitational Model, Gravitational Potential, Gravity, Gravity Formula, Gravicy Potential, Local Datums, Local Geodetic Datums, Molodensky Datum Transformation Formulas, Multiple Regression Equations, Reference Frames, Reference Systems, World Geodetic System, World Geodetic System 1984, WGS 84.

DEFENSE MAPPING AGENCY

The Defense Mapping Agency provides support to the Office of the Secretary of Defense (OSD); the Military Departments; the Chairman, Joint Chiefs of Staff and Joint Staff; the Unified and Specified Commands; and the Defense Agencies and other Federal Government Departments and Agencies on matters concerning mapping, charting, and geodesy (MC\&G).

This page is intentionally blank:

ACKNOWLEDGMENTS

Responsibility for the development of WGS 84 was vested in a DMA WGS 84 Development Committee operating initially under the guidance of Dr. Mark M. Macomber, HQ DMA (DH), and later, Dr. Kenneth I. Daugherty, DMA Systems Center. The Committee was composed of Dr. Richard J. Anderle, Mr. Ralph L. Kulp, and Mr. Mark G. Tannenbaum, Naval Surface Warfare Center (NSWC); Dr. Thomas M. Davis, Naval Oceanographic Office (NAVOCEANO); Dr. Patrick J. Fell, Dr. Benny L. Klock, Dr. Muneendra Kumar, and Mr. Fran B. Varnum, Defense Mapping Agency Hydrographic/ Topographic Center (DMisuc); and Mr. Clyde R. Greenwalt and Mr. Haschal L. White, Defense Mapping Agency Aerospace Center (DMAAC). Mr. B. Louis Decker (DMAAC) was Chairman of the Committee.

The Committee expresses its appreciation to Mrs. Carol A. Malyevac and Mr. C. Harris Seay, NSWC, and Mr. Louis Abramovitz, Mr. L. Thomas Appelbaum, Mr. John A. Bangert, Mr. James M. Barth, Mr. Archie E. Carlson, Mr. Robert E. Catulle, Mrs. Inez J. Dimitrijevich, Mr. Carl E. Draper, Mrs. Mary S. Ealum, Mrs. Joyce E. Fox, Mr. David M. Gleason, Mr. John L. Goodwin, Mr. John Hopkins, Mr. Donovan N. Huber, Miss Beatrice Jernigan, Miss Martha R. Lahr, Mrs. Mary M. Martie, Mr. Kenneth Nelson, Mr. Robert M. Perlman, Mr. Donald A. Richardson, Mr. Melvin E. Shultz, Mr. Neil J. Simmons, Dr. Randall W. Smith, Dr. William L. Stein, Dr. William H. Wooden, Mr. Robert E. Ziegler, Mr. Gary R. Weigel, Mr. George T. Stentz, Mr. Balfour R. Sutton, Mr. Robert W. Valska, Mr. Dennis H. Van Hee, and Mr. James F. Vines of DMA for their assistance. The many contributions of other supporting personnel of DMA and NSWC are also gratefully acknowledged. In addition, a special thanks is extended to the many organizations and individuals in the United States and abroad who provided data and technical expertise in support of the WGS 84 development effort. In particular, Mr. John A. Gergen, Mrs. Elizabeth B. Wade, and Mr. Larry D. Hothem, of the National Geodetic Survey (NGS), and Dr. Dennis D. McCarthy, of the United States Naval Observatory (USNO), are cited for their support.

This page is intentionally blank

DMA TR 8350.2 Second Edition 4 June 1992

Department of Defense
World Geodetic System 1984

Its Definition and Relationships with Local Geodetic Systems

FOREWORD

1. This technical report presents the Department of Defense (DOD) World Geodetic System 1984 (WGS 84). The development of WGS 84 was initiated for the purpose of providing the more accurate and updaced geodetic and gravitational data required by DOD weapon and navigation systems. The present WGS represents the Defense Mapping Agency (DMA) modeling of the earth from geometric, geodetic, and gravitational standpoints using data, techniques, and technology available through early 1984. However, the datum transformation relationships with geodetic datums/systems have been updated and revised based on information available through early 1991.
2. DMA TR 8350.2 contains no copyrighted material, nor is a copyright pending. Disuribution is unlimited. Copies may be requested from DMA as indicated in the PREFACE.

This page is intentionally blank

PREFACE

This technical report presents the Department of Defense (DoD) World Geodetic System 1984 (WGS 84). The major additions and modifications to the second edition inciude new transformation constants for geodetic datums and reference systems, deletion of multiple regression equations for small and isolated areas, and changes in symbols for the ellipsoidal and orthometric heights. In an effort to make this report a complete entity on its own, the most important and frequently used information from its supplements has been merged and included in the second edition. Thus, this modification has made it possible to eliminate the Supplement Part II (DMA TR 8350.2-B) and, henceforth, there will be only two supplements to this report.

Supplement Part I (DMA TR 8350.2-A) discusses WGS 84 and the methods, techniques, and data used in developing the parameters and products defining it. Considerable space is devoted in Part I to the discussion of the WGS 84 Reference Frame, Ellipsoid, Ellipsoidal Gravity Formula, Earth Gravitational Model, Geoid, and methods and procedures for obtaining WGS 84 coordinates. There is no change to this supplement.

Supplement Part III (DMA TR 8350.2-C) comprises the classified information for WGS 84. However, the associated Earth Gravitational Model coefficients above degree (n) and order (m) 18 and the corresponding geoid, previously classified, have now been declassified. This supplement, which is still classified, will be renumbered as Part II when reprinted in the future.

Also distributed with the technical report is a software program for datum transformation and coordinate conversions called MADTRANedition 2. The MADTRAN program (for Mapping Datum Transformation) is provided on 5.25 inch floppy disc (double density) for IBM compatible
personal computers. The program allows input from geodetic, Universal Transverse Mercator (UTM), or the Military Grid Reference System (MGRS) coordinates. Over 100 datums are available for transformation to or from WGS 84. Output is automatically presented as geodetic, UTM, and MGRS coordinates.

Users requiiing any specific information, or any clarification, or data, should contact:

```
Director
Defense Mapping Agency
ATTN: PR, ST A-13
8613 Lee Highway
Fairfax, VA 22031-2137 (USA)
```

Similarly, requesters requiring the positioning of sites of interest directly in wGS 84 via satellite point positioning should contact the above address. Other WGS 84 related requests and/or questions may also be referred there.

Since WGS 84 is comprised of a consistent set of parameters, other DoD organizations should not make a substitution for any of the WGS 84 related parameters/equations in an attempt to improve the accuracy. Such a substitution may lead to less accurate wGS 84 products and may have adverse effects.

PREFACE (cont'd)

Copies* of this technical report may be requested from:

Director
Defense Mapping Agency
Combat Support Center
ATTN: PMSR, ST D-17
6001 MacArthur Boulevard
Eethesda, MD 20816-5001 (USA)
Phone: (301) 227-2534
1-800-826-0342

* Note: Non-DoD users can obtain copies of this report at cost. Call the above number for further information.

TABIE OF CONTENTS

PAGE
ACKNOWLEDGMENTS v
FOREWORD vii
PREFACE ix
TABLE OF CONTENTS xii

1. INTRODUCTION 1-1
2. WGS 84 COORDINATE SYSTEM 2-1
2.1 General 2-1
2.2 Mathematical Relationship Between the CIS: ITS, and the wGS 84 Coordinate System $2-2$
3. WGS 84 EIIIPSOID 3-1
3.1 General 3-1
3.2 Defining Parameters 3-1
3.2.1 Semimajor Axis (a) 3-1
3.2.2 Earth's Gravitational Constant (GM) 3-2
3.2.2.1 GM With Earth's Atmosphere Included. (GM) $3-2$
3.2.2.2 GM of the Earih's Atmosphere. $\left(G M_{A}\right)$. 3-3
3.2.2.3 GM With Earth's Atmosphere Excluded. (GM') 3-3
3.2.3 Normalized Second Degree Zonal Gravitational Coefficient C_{20} 3-4
3.2.4 Angular Velocity of the Earth (ω) 3-5
3.3 Derived Geometric and Physical Constants $3-6$
3.3.1 General 3-6
3.3.2 Relevant Miscellaneous Constants/Conversion Factors 3-7

TABLE OF CONTENTS (Cont'd)

PAGE
3.4 Comments $3-8$
4. WGS 84 ELLIPSOIDAL GRAVITY FORMULA 4-1
4.1 General 4-1
4.2 Analytical and Numerical Forms 4-2
5. WGS 84 GRAVITY MODELING 5-1
5.1 Earth Gravitational Model (EGM) 5-1
5.2 Gravity Potential (W) 5-2
6. WGS 84 GEOID 6-1
6.1 General 6-1
6.2 Formulas and Representations/Analysis 6-2
6.2.1. Formulas 6-2
6.2.2 Representations/Analysis 6-3
6.3 Availability of WGS 84 Geoid Height Data. 6-3
7. WGS 84 RELATIONSHIPS WITH OTHER GEODETIC SYSTEMS 7-1
7.1 General 7-1
7.2 WGS 72-to-WGS 84 Transformation $7-1$
7.3 Local Geodetic Datum-to-WGS 84 Datum Transformations $7-3$
7.3.1 General 7-3
7.3.2 The Standard Molodensky Datum Transformation Formulas 7-4
7.3.3 Datum Transformation Multiple Regression Equations 7-5
8. ACCURACY OF WGS 84 COORDINATES 8-1
9. CONCLUSIONS / SUMMARY 9-1
REFERENCES R-I

TABLE OE CONTENTS (Cont'd)

PAGE
APPENDIX A: LIST OF REFERENCE ELLIPSOID NAMES AND PARAMETERS (USED FOR GENERATING DATUM TRANSFORMATIONS) A-1
APPENDIX B: DATUM TRANSFORMATTONS DERIVED USING SATELLITE TIES WITH GEODETIC DATUMS/SYSTEMS.. B-1
APPENDIX C: DATUM TRANSFORMATIONS DERIVED USING NON-SATELIITE INFORMATION C-1
APPENDIX D: MULTIPLE REGRESSION EQUATIONS FOR SPECIAL CONTINENTAL SIZE LOCAL GEODETIC DATUMS D-1
APPENDIX E: ACRONYMS E-1

The Defense Mapping Agency (DMA) produces numerous mapping, charting, geodetic, gravimetric, and digital products in support of the Department of Defense (DOD). It is advantageous to refer these products to a single geocentric coordinate system for many reasons other than ease of working with a large number and variety of systems. Such a system is needed due to accuracy and user interface considerations, the need for a product to support the widest possible range of applications (local. worldwide), the need to relate information from one product to data obtained from another source (e.g., map/chart positions to coordinates obtained from inertial navigation systems in real time), and the need to ensure a smooth transition in product use from one part of the world to another.

In accomplishing the preceding, such a geocentric system, termed a world geodetic system, provides the basic reference frame and geometric figure for the earth, models the earth gravimetrically, and provides the means for relating positions on various geodetic datums and systems to an Earth-Centered, Earth-Fixed (ECEF) coordinate system. In brief, a world geodetic system serves as the framework for DMA products and worldwide DoD operations.

Previously, three such systems, World Geodetic System 1960 (WGS 60), WGS 66, and WGS 72 , each successively more accurate, have supported DoD activities. Although WGS 72 has aged gracefully and is still adequate for sme DoD applications, it has several shortcomings which negate its continued use. For example, the wGS 72 Earth Gravitational Model (EGM) and Geoid are obsolete and local geodetic datum-to-WGS datum shifts of improved accuracy and greater geographic coverage are needed than are available from WGS 72. In addition, relatively minor orientation and scale errors also affect WGS 72 . Other factors contributing to the desirability of replacing wGS 72 with an improved system are:

- Such an updaie and replacement occurs at a time when other geodetic system changes are either underway or contemplated; e.g., the up-dating, readjustment, and replacement of North American Datum 1927 (NAD 27) by NAD 83, the readjustment and analysis activities invol.ving European Datum 1950 (ED 50), and the availability of the new Australian Geodetic Datum 1984 (AGD 84).
- An extensive increase in the data and types of data needed to develop an improved WGS.
- The availability of new theory and techniques to support a WGS improvement effort.

WGS 84 has been developed as a replacement for WGS 72 and represents DMA's modeling of the earth from a geometric, geodetic, and gravitational standpoint using data, techniques, and technology available through early 1984. It is an improvement over WGS 72 in several respects. New and more extensive data sets and improved computer software were used in the development. A more extensive file of Doppler-derived station coordinates was available, and for many more local geodetic datums; improved sets of ground-based Doppler and laser satellite tracking data and surface gravity were available; and geoid heights deduced from satellite radar altimetry (a new data type) were available for oceanic regions between 70 degrees north and south latitude (approximately).

The purpose of this publication is to provide a detailed report on WGS 84 and its updates/revisions which occurred since the first edition. An important feature of the current edition includes the use of additional Doppler and GPS survey information to update the datum transformation constants.

2. WGS 84 COORDINATE SYSTEM

2.1 General

The WGS 84 Coordinate System is a Conventional Terrestrial System (CTS), realized by modifyil.y the Navy Navigation Satellite System (NNSS), or TRANSIT, Doppler Reference Frame (NSWC 9Z-2) in origin and scale, and rotating it to bring its reference meridian into coincidence with the Bureau International de l'Heure (BIH)-defined zero Meridian.

From analyses discussed in [1], it was concluded that the NSWC 9Z-2 Coordinate System should be modified by:

- Shifting the NSWC 9Z-2 origin by 4.5 meters in the negative direction along the z -axis.
- Rotating the NSWC 9Z-2 Reference Meridian (about the z axis) westward by 0.814 arc second to the BIH-defined Zero Meridian of 1984.0.
- Changing the NSWC $9 \mathrm{Z-2}$ scale by -0.6×10^{-6}.

The NSWC 9Z-2 Coordinate System, modified in this manner (Table 2.1), becomes (forms) the WGS 84 Coordinate System. The origin and longitude modifications are illustrated in Figures 2.1 and 2.2, respectively, as differences between NSWC 9Z-2 and WGS 84. Use of these modifications (Table 2.1) with the Molodensky Datum Transformation Formulas, after modifying the formulas slightly and setting $\Delta X=\Delta Y=0$, provided the $\Delta \phi, \Delta \lambda, \Delta h$ formulas (Table 2.2) that produced the Doppler Station WGS 84 coordinates used to develop sucal Geodetic Datum-to-WGS 84 Datum Transformations (Chapter 7).

Thus, analogous to the BIH-defined CTS, or BIH Terrestrial System (BTS), the origin of the WGS 84 Coordinate System is the center
of mass of the earth; the WGS 84 Z-axis is in the direction of the Conventional Terrestrial Pole (CTP) for polar motion, as defined by the BIH for epoch 1984.0 on the basis of the coordinates adopted for the EIH stations; the X-axis is the intersection of the WGS 84 reference meridian plane and the plane of the CTP's equator, the reference meridian being the Zero Meridian defined by the BIH for epoch 1984.0 on the basis of the coordinates adopted for the BIH stations; and, the Yaxis completes a right-handed, earth-fixed orthogonal coordinate system measured in the plane of the above equator, 90° east of the X-axis (Figure 2.3).

The WGS 84 Coordinate System origin and axes also serve as the geometric center and the X, Y and Z axes of the WGS 84 Ellipsoid. (Thus, the WGS 84 Coordinate System z-axis is the rotational axis of the WGS 84 Ellipsoid.)

The WGS 84 Coordinate System (reference frame) is the frame of a standard earth rotating at a constant rate around an average astronomic pole (the CTP). However, the universe is in motion, the earth is nonstandard, and events occur in an instantaneous world. Therefore, the WGS 84 Coordinate System (CTS) must be related mathematically to an Instantaneous Terrestrial System (ITS) and to a Conventional Inertial System (CIS).

2. 2 Matuematical Relationshin Between the CIS, ITS, and the
 WGS 84 Coordinate System

The mathematical relationship between the Conventional Inertial System, the Instantaneous Terrestrial System, and the WGS 84 Coordinate System, which is identical to the BIH-defined CTS in its definition [1], can be expressed as:

$$
\begin{equation*}
\operatorname{CTS}=[A][B][\because][D] \text { CIS } \tag{2-1}
\end{equation*}
$$

In Equation (2-1), the rotation matrices for polar motion [A], sidereal time [B], astronomic nutation [C], and precession [D] provide the relationship between the CIS, defined by the Fundamental Katlog 5 (FK5) System referenced to Epoch J2000.0 [1], and the WGS 84 Coordinate System. Proceeding from right-to-left in Equation (2-1) through matricos D, C, and B establishes the relationship between the CIS and the ITS. Mairix A provides the relationship between the Celestial Ephemeris Pole (CEP), which approximates the instantaneous pole of the instantaneous earth, and the CTP, or average pole of the standard earth associated with the WGS 84 Coordinate System. Therefore, the application of Matrix A completes the matheratical connection between the WGS 84 Coordinate System, an ECEF Ccordinate System, and the CIS, an Earth-Centered Inertial (ECI) Cuordinate System. For detalied discussion on this subject, refer to [1].

Although tremendous progress has been inade in the last decade in understanding and more precisely defining che ITS, the CTS, and the CIS, and the mathematical relationships between them [2], much work remains to be done. In particuiar, efforts to develop a precise mathematical connection betwon stellar loptical) and radio (Very Long Baseline Interferometry, or $V L I T$ systems and maintain the BIH-defined CIS and CTS with respect to a designated epoch, ne=d to contin:e.
Table 2.1

Quantities	Explanation	
$\Delta Z=4.5 \mathrm{~m}$	Shift in the Origin (Z-Axis Bias)	Equatorial Plane of Doppler Coordinate System is Offset North of BIH-Defined Coordinate System Equatoriai Plane
$\Delta \lambda=0.814^{\prime \prime}$	Rotation in Longitude	Zero Meridian (X-Axis) of the Dopp) er Coordinate System is East of the BIH- Defined Zero Meridian (WGS 84 X-Axis)
$\Delta S=-0.6 \times 10^{-6}$	Scale Change	Distances Derived in Doppler Coordinate System are Longer than Distances Determined via Very Long Baseline Interferometry

* Also, see Table 2.2
* Navy Navigatior Satellite Coordinate Systern


```
Origin = Earth's center of mass
Z-Axis = The direction of the Conventional Terrestrial Pole (CTP) for
    polar motion, as defined by the Bureau International de
    1'Heure (BIH) on the basis of the coordinates adopted for
        the BIH stations.
X-Axis = Intersection of the WGS 84 Reference Meridian Plane and the
        plane of the CTP's Equator, the Reference Meridian being
        the Zero Meridian defined by the BIH on the basis of the
        coordinates adopted for the BIH stations.
Y-Axis = Completes a right-handed, Earth Centered, Earth Fixed (ECEF)
        orthogonal coordinate system, measured in the plane of the CTP
        Equator, }9\mp@subsup{0}{}{\circ}\mathrm{ East of the X-Axis.
```


Figure 2.3. The WGS 84 Coordinate System* Definition

* Analogous to the BIR Defined Conventional Terrestrial System (CTS), or BTS, 1984.0.

3. WGS 84 ELIIPSOID

3.1 General

In geodetic applications, three different surfaces or earth figures are normally involved. In addition to the earth's natural or physical surface, these include a geometric or mathematical reference surface, the ellipsoid, and an equipotential surface called the geoid (Chapter 6). In determining the WGS 84 Ellipsoid and associated parameters, the WGS 84 Development Committee, in keeping with DMA guidance, decided quite early to closely adhere to the thoughts and approach used by the International Union of Geodesy and Geophysics (IUGG) when the latter established and adopted Geodetic Reference System 1980 (GRS 80) ["]. Accordingly, a geocentric equipotential ellipsoid of revolution was taken as the form for the WGS 84 Ellipsoid. The parameters selected to define the WGS 84 Ellipsoid are the semimajor axis (a), the earth's gravitational constant (GM), the normalized second degree zonal gravitational coefficient (C_{20}) and the angular velocity (ω) of the earth (Table 3.1). These parameters are identical to those of the GRS 80 Ellipsoid with one minor exception. The coefficient form used for the second degree zonal is that of the WGS 84 Earth Gravitational Model rather than the notation J_{2} used with GRS 80. Accuracy estimates (one sigma) are also included in Table 3.1 for the defining parameters.

3.2 Defining Parameters

3.2.1 Semimajer Axis (a)

The semimajor axis (a) was selected as one of the defining parameters of the WGS 84 Ellipsoid. Its adopted value and estimated accuracy (one sigma) are:

$$
\begin{equation*}
a=6378137 \pm 2 \text { meters. } \tag{3-1}
\end{equation*}
$$

This value, which is the same as that of the GRS 80 Ellipsoid, is two meters (m) largex than the value of 6378135 m adopted for the WGS 72 Ellipsoid [4]. As stated in [5], the GRS 80 , and thus the WGS 84, avalue is based on estimates from the 1976-1979 time period, determined using laser, Doppler, radar altimeter, laser plus radar altimeter, and Doppler plus radar altimeter data/techniques. These efforts yielded values from 6378134.5 m to 6378140 m . The best estimate was considered to lie between 6378135 m and 6378140 m .

3.2.2 Earth's Gravitational Constant (GM)

3.2.2.1 GM With Earth's Atmosphere Included (GM)

The value of the earth's gravitational constant, adopted as one of the four defining parameters of the WGS 84 Ellipsoid, and its one-sigma accuracy estimate are:

$$
\begin{equation*}
\mathrm{GM}=(3986005 \pm 0.6) \times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2} \tag{3-2}
\end{equation*}
$$

This value includes the mass of the atmosphere and is based on several types of space measurements. These measurement types and the associated estimates for GM are [3]:

Spacecraft radio tracking(3986005.0 ± 0.5) $\times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
Lunar laser data analysis (3986004.6 ± 0.3) $\times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
Satellite laser range measurements(3986004.4 ± 0.2) $\times 10^{3} \mathrm{~m}^{3} \mathrm{~s}^{-2}$

From these results, the representative value in Equation (3-2) for $G M$, consistent with the data used, was then adopted.

3.2.2.2 GM of the Earth's Atmosphere $\left(\mathrm{GM}_{\mathrm{A}}\right)$

For some applications, it is necessary to either have a GM value for the earth which does not include the mass of the earth's atmosphere, or have a GM value for the earth's atmosphere itself. For this, it is necessary to krow both the mass of the earth's atmosphere, M_{A}, and the universal gravitational constant, G.

Using the value reconmended for G [6] by the International Association of Geodesy (IAG), and the more recent value for $M_{A}[7]$, the product G_{A} to two significant digits yields the value currently recommended by the IAG for this constant [6]. This value, with an assigned accuracy estimate, was adopted for use with WGS 84 :

$$
\begin{equation*}
G M_{A}=(3.5 \pm 0.1) \times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2} \tag{3-3}
\end{equation*}
$$

3.2.2.3 GM With Earth's Atmosphere Excluded (GM')

The earth's gravitational constant with the mass of the earth's atmosphere excluded (GM'), was obtained by subtracting GM_{A}, Equation (3-3), from GM, Equation (3-2)

$$
\begin{equation*}
\mathrm{GM}^{\prime}=(3986001.5 \pm 0.6) \times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2} \tag{3-4}
\end{equation*}
$$

The fact that the WGS 84 value for $G M$ ', Equation (3-4), is given to one more digit than the WGS 84 value for $G M$, Equation (3-2), does not imply that GM' is known more accurately than GM. The additional digit used with $G M$ ' only reflects a desire to maintain consistency between the various WGS 84 parameters and correction terms. In fact, GM' is known less well, due to the uncertainty introduced via $G M_{\Lambda}$. The lack of a more realistic accuracy value for GM_{A} prevents acknowledgment of this in the abore one-sigma accuracy estimate for GM'.

3.2.3 Normalized Second Degree Zonal Gravitational coefficient C_{20}

Ancther defining parameter of the WGS 84 Ellipsoid is the normalized second degree zonal gravitational coefficient, $C 20$, which has the following value and assigned accuracy (one sigma):

$$
\begin{equation*}
\overline{\mathrm{C}}_{20}=(-484.16685 \pm 0.00130) \times 10^{-6} \tag{3-5}
\end{equation*}
$$

This \bar{C}_{20} value was obtained from the adopted GRS 80 value for J_{2} [3], $\left(J_{2}=J_{20}\right)$,

$$
\begin{equation*}
J_{2}=108263 \times 10^{-8} \tag{3-6}
\end{equation*}
$$

by using the mathematical relationship

$$
\begin{equation*}
\bar{C}_{20}=-J_{2} /(5)^{1 / 2} \tag{3-7}
\end{equation*}
$$

and truncating the result to eight significant digits.

In keeping with the GRS 80 value for J_{2}, the \bar{C}_{20} value for the WGS 84 Ellipsoid also dues not include the permanent tidal deformation. This effect, usually represented by δJ_{2}, is due to the attraction of the earth by the sun and moon. It has the magnitude [8]:

$$
\begin{equation*}
\delta J_{z}=9.3 \times 10^{-9} \tag{3-8}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
\overline{\delta C}_{20}=-4.16 \times 10^{-9} \tag{3-9}
\end{equation*}
$$

This quantity would be added to \bar{C}_{20}, Equation (3-5), if it were desired to have \bar{C}_{20} inclucie the permanent tidal deformation.

3.2.4 Angular Velocity of the Earth (0)

The value of ω used as one of the defining parameters of the WGS 84 (and GRS 80) Ellipsoid and its accuracy estimate cone sigma) are:

$$
\omega=(7292115 \pm 0.1500) \times 10^{-11} \text { radians } / \text { second }(3-10
$$

This value, for a standard earth rotating with a constant angular velocity, is an IAG adopted value for the true angular velocity of the earth which fluctuates with time. However, for most geodetic applications which require angular velocity, these fluctuations do not have to be considered.

Although ω is suitable for use with a standard earth and the WGS 84 Ellipsoid, it is the International Astronomical Union (IAU), or the GRS 67, version of this value (ω^{\prime})

$$
\begin{equation*}
\omega^{\prime}=7292115.1467 \times 10^{-11} \text { radians/second } \tag{3-11}
\end{equation*}
$$

that was used with the new definition of time [9].

For consistent satellite applications, the value of the earth's angular velocity (ω^{\prime}) from Equation (3-11), rather than ω, should be used in the formula

$$
\begin{equation*}
\omega^{\star}=\omega^{\prime}+m \tag{3-12}
\end{equation*}
$$

to obtain the angular velocity of the earth in a precessing reference frame (ω^{\star}). In the above equation [9] [10]:

$$
\begin{align*}
& m=\text { precession rate in right ascension } \\
& m=\left(7.086 \times 10^{-12}+4.3 \times 10^{-15} \mathrm{~T}_{\mathrm{U}}\right) \text { radians/second } \tag{3-13}
\end{align*}
$$

```
Tu = Julian Centuries from Epoch J2000.0
Tu}=\mp@subsup{d}{U}{}/3652
du}=\mathrm{ Number of days of Universal Time (UT) from Julian
    Date (JD) 2451545.0 UT1, taking on values of }\pm0.5\mathrm{ ,
        \pm1.5, 士 2.5,...
dU = JD - 2451545.
```

Therefore, the angular velocity of the earth in a precessing reference frame, for satellite applications, is given by:

$$
\begin{align*}
\omega^{\star}= & \left(7292115.8553 \times 10^{-11}+4.3 \times 10^{-15} \mathrm{~T}_{11}\right) \\
& \text { radians/second } \tag{3-14}
\end{align*}
$$

3.3 Derived Ceometric and Physical Constants

3.3.1 General

Many parameters associated with the WGS 84 Ellipsoid, other than the four defining parameters (Table 3.1), are needed for geodetic and gravimetric applications. Using the four defining parameters, it is possible to derive these associated constants. The more commonly used geometric and physical constants associated with the WGS 84 Ellipsoid are listed in Tables 3.2 and 3.3. The formulas used in the calculation of these constants are primarily from [3] ard [11].

The defining parameters are considered to be exact. On the other hand, the other constants are derived. Users are reminded that the derived constants must retain the listed significant digits if consistency between the magnitudes of the various parameters is to be maintained. These constants should always be calculated to, and used
with, the number of digits required to maintain the consistency needed for each specific application.

3.3.2 Belevant_Miscellaneous Constants/Conversion Factors

In addition to the four defining parameters of the WGS 84 Ellipsoid (Table 3.1), necessary for describing (representing) the ellipsoid geometrically and gravimetrically, and the derived sets of commonly used geometric and physical constants associated with the WGS 84 Ellipsoid (Tables 3.2 and 3.3), two other important constants are an integral part of the definition of WGS 84. These constants are the velocity of light (c) and the dynamical ellipticity (H).

The currently accepted value for the velocity of light in a vacuum (c) is [12]:

$$
\begin{equation*}
c=(299792458 \pm 1.2) \mathrm{m} \mathrm{~s}^{-1} \tag{3-15}
\end{equation*}
$$

This value is officially recognized by both the IAG [6] and IAU [10], and has been adopted for use with wGS 84.

> The dynamical ellipticity (H) is necessary for determining the earth's principal moments of inertia, A, B, and C. In the literature, H is variously referred to as dynamical ellipticity, mechanical ellipticity, or the precessional constant. It is a factor in the theoretical value of the rate of precession of the equinoxes, which is well known from observation. In a recent IAG report on fundamental geodetic constants [8], the following value for the reciprocal of H was given in the discussion of moments of inertia:

$$
\begin{equation*}
1 / H=305.4413 \pm 0.0005 . \tag{3-16}
\end{equation*}
$$

For consistency, this value has been adopted for use with WGS 84.

Values of the velocity of light in a vacuum and the dynamical ellipticity adopted for use with WGS 84 are listed in Table 3.4 along with other WGS 84 associated constants used in special applications. F'actors for effecting a conversion between meters, feet, and/or nautical and statute miles are also given in the table.

3.4 Comments

The four defining parameters ($a, \bar{C}_{20}, \omega, G M$) of the WGS 84 Ellipsoid were used to calculate the more commonly used geometric and physical constants associated with the WGS 84 Ellipsoid. As a result of the use of C_{20} in the form described, the derived WGS 84 Ellipsoid parameters are slightly different from their GRS 80 Ellipsoid counterparts. Although these minute parameter differences and the conversion of the GRS $80 \quad J_{2}$-value to \bar{C}_{20} are insignificant from a practical standpoint, it has been more appropriate to refer to the ellipsoid used with $W G S 84$ as the $W G S 84$ Ellipsold.

- In contrast, since NAD 83 does not have an associated EGM, the J_{2} to $\overline{\mathrm{C}}_{20}$ conversion does not arise and the ellipsoid used with NAD 83 by the National Geodetic Survey (NGS) is, in name and in both defined and derived parameters, the GRS 80 Ellipsoid. Although it is important to know that these small undesirable inconsistencies exist between the WGS 84 and GRS 80 Ellipsoids, from a practical application standpoint they are insignificant. This is especially true with respect to the defining parameters. Therefore, as long as the preceding is recognized, it can be stated that WGS 84 and NAD 83 are based on the same ellipsoid.
Table 3.1

WGS 84 Ellipsoid

Parameters	Notation	Magnitude	Accuracy (10)
Semimajor Axis Normalized Second Degree Zonal Harmonic Coefficient of the Gravitational Potential Angular Velocity of the Earth The Earth's Gravitational Constant (Mass of Earth's Atmosphere Included)	$\begin{gathered} \overline{\mathbf{a}} \\ \overline{\mathrm{C}}_{20} \\ \omega \\ \mathrm{GM} \end{gathered}$	$\begin{aligned} & 6378137 \mathrm{~m} \\ & -484.16685 \times 10^{-6} \\ & 7292115 \times 10^{-11} \mathrm{rad} \mathrm{~s} \\ & 3986005 \times 10^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2} \end{aligned}$	$\begin{gathered} \pm 2 \mathrm{~m} \\ \pm 1.30 \times 10^{-9} \\ \pm 0.1500 \times 10^{-11} \mathrm{xad} \mathrm{~s} \\ \pm 0.6 \times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2} \end{gathered}$
Parameter Values for Special Applications			
The Earth's Gravitational Constant (Mass of Earth's Atmosphere Not Included) Angular Velocity of the Earth (In a Precessing Reference Frame)	GM' $\boldsymbol{\omega}^{\star}$	$\begin{aligned} & 3986001.5 \times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2} \\ & \left(7292115.8553 \times 10^{-1 i}\right. \\ & \left.+4.3 \times 10^{-15} \mathrm{~T}_{U}\right) \mathrm{rad} \mathrm{~s} \end{aligned}$	$\begin{gathered} \pm 0.6 \times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2} \\ \pm 0.1500 \times 10^{-11} \mathrm{rad} \mathrm{~s} \mathrm{~s}^{-2} \end{gathered}$

$\mathrm{T}_{\mathrm{U}}=$ Julian Centuries From Epoch J2000.0
Table 3.2
WGS 84 Ellipsoid

- Derived Geometric Constants -

Constant	Notation	Value
Flattening (Ellipticity)	f	$\begin{aligned} & 1 / 298.257223563 \\ & (0.00335281066474) \end{aligned}$
Semiminor Axis	b	6356752.3142 m
First Eccentricity	e	0.0818191908426
First Eccentricity Squared	e^{2}	0.00669437999013
Second Eccentricity	e^{\prime}	0.0820944379496
Second Eccentricity Squared	$e^{\text {2 }}$	0.00673949674227
Linear Eccentricity	E	521854.0084 m
Polar Radius of Curvature	c	6399593.6258 m
Axis Ratio	b / a	0.996647189335
Mean Radius of Semiaxes	R_{1}	6371008.7714 m
Kadius of Sphere With Equal Area	R_{2}	6371007.1809 m
Raciius of Sphere With Equal Voiume	R_{3}	6371000.7900 m

Table 3.3
WGS 84 Ellipsoid
Derived Physical Constants -

Constants	Notation	Value
Theoretical (Normal) Gravity Potential of the Ellipsoid Theoretical (Normal) Gravity at the Equator (on the Ellipsoid) Theoretical (Normal) Gravity at the Poles (on the Ellipsoid) Mean Value of Theoretical (Normal) Gravity Theoretical (Normal) Gravity Formula Constant Mass of Earth (Includes the Atmosphere) $m=\omega^{2} a^{2} b / G M$	U_{0} γ_{e} γ_{p}	$\begin{aligned} & 62636860.8497 \mathrm{~m}^{2} \mathrm{~s}^{-2} \\ & 9.7803267714 \mathrm{~m} \mathrm{~s}^{-2} \\ & 9.8321863685 \mathrm{~m} \mathrm{~s}^{-2} \\ & 9.7976446561 \mathrm{~m} \mathrm{~s}^{-2} \\ & 0.00193185138639 \\ & 5.9733328 \times 10^{24} \mathrm{~kg} \\ & 0.00344978600313 \end{aligned}$

Table 3.4
Relevant Miscellaneous Constants
and Conversion Fastors

Constant	Symbol	Numerical Value
Velocity of Light (in a Vacuum)	c	$299792458 \mathrm{~m} \mathrm{~s}^{-1}$
Dynamical Ellipticity	H	1/305.4413
Earth's Angular Velocity [for Satellite Applications; see Equation (3-14)]	ω^{*}	$\begin{aligned} & \left(7292115.8553 \times 10^{-11}\right. \\ & \left.+4.3 \times 10^{-15} \mathrm{~T}_{\mathrm{U}}\right) \mathrm{rad}^{-1} \end{aligned}$
Universal Constant of Gravitation	G	$6.673 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~s}^{-2} \mathrm{~kg}^{-1}$
GM of the Earth's Atmosphere	$\mathrm{GM}_{\text {A }}$	$3.5 \times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
Earth's Gravitational Constant (Excluding the Mass of the Earth's Atmosphere)	GM '	$3986001.5 \times 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
Earth's Principal	A	$8.0091029 \times 10^{37} \mathrm{~kg} \mathrm{~m}{ }^{2}$
Moments of Inertia (Dynamic Solution)	B	$\begin{aligned} & 8.0092559 \times 10^{37} \mathrm{~kg} \mathrm{~m}{ }^{2} \\ & 8.0354872 \times 10^{37} \mathrm{~kg} \mathrm{~m} \end{aligned}$
Conversion Factors		
1 Meter 1 Meter 1 International Foot 1 US Survey Foot 1 US Survey Foot.	$\begin{aligned} & =3.28083333333 \text { US Survey Feet } \\ & =3.28083989501 \text { International Eeet } \\ & =0.3048 \text { Meter (Exact) } \\ & =1200 / 3937 \text { Meter (Exact) } \\ & =0.30480060960 \text { Meter } \end{aligned}$	
1 International Nautical Mile	$\begin{aligned} & =1852 \text { Meters (Exact) } \\ & =6076.10333333 \text { US Survey Feet } \\ & =6076.11548556 \text { International Feet } \end{aligned}$	
1 International Statute Mile	$\begin{aligned} & =1609.344 \text { Meters (Exact) } \\ & =5280 \text { International Feet (Exact) } \end{aligned}$	

$T_{U}=$ Julian Centuries from Epoch J2000.0
4. WGS 84 EIIIPGOIDAL GRAVITY FORMUIA

4.1 General

In Section 3.1, the WGS 84 Ellipsoid is identified as being a geocentric equipotential ellipsoid of revolution. An equipotential ellipsoid is simply an ellipsoid defined to be an equipotential surface, i.e., a surface on which all values of the gravity potential are equal. Given an ellipsoid of revolution, it can be made an equipotential surface of a certain potential function, the theoretical (normal) gravity potential (U). This theoretical gravity potential can be uniquely determined, independent of the density distribution within the ellipsoid, by using any system of four independent constants as the defining parameters of the ellipsoid. As noted earlier for the wGS 84 Ellipsoid (Chapter 3), these are the semimajor axis (a), the normalized second degree zonal gravitational coefficient (C_{20}) , the earth's angular velocity (ω), and the earth's gravitational constant (GM).

Theoretical gravity (γ), the gradient of U, is given on (at) the surface of the ellipsoid by the closed formula of Somigliana [13]:

$$
\begin{equation*}
\left.\gamma=\left(a \gamma_{e} \cos ^{2} \phi+b \gamma_{p} \sin ^{2} \phi\right)\right) /\left(a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi\right)^{1 / 2} \tag{4-1}
\end{equation*}
$$

where

$$
\begin{aligned}
a, b= & \text { semimajor and semiminor axes of the ellipsoid, } \\
& \text { respectively } \\
\gamma_{\mathrm{e}}, \gamma_{\mathrm{p}}= & \text { theoretical gravity at the equator and poles, } \\
& \text { respectively } \\
\phi= & \text { geodetic latitude. }
\end{aligned}
$$

Thus, the equipotential ellipsoid serves not only as the reference surface or geometric figure of the earth, but leads to a closed formula for theoretical gravity at the ellipsoidal surface.

4.2 Analytical and Numerical Forms

The closed gravity formula of Somigliana in the form [3]

$$
\gamma=\gamma_{e}\left(1+k \sin ^{2} \phi\right) /\left(1-e^{2} \sin ^{2} \phi\right)^{1 / 2}
$$

has been selected as the official WGS 84 Ellipsoidal Gravity Formula. In Equation (4-2):

$$
\begin{equation*}
k=\left(b \gamma_{p} / a \gamma_{e}\right)-1 \tag{4-3}
\end{equation*}
$$

$e^{2}=$ square of the first eccentricity of the ellipsoid.

Equation (4-2) was selected for use with wGS 84 in preference to Equation (4-1) since it is more convenient for numerical computations and explicitly contains only γ_{e} as the first factor in the equation.

The analytical and numerical forms of the WGS 84 Ellipsoidal Gravity Formula are provided in lable 4.1.

Table 4.1

WGS 84
Ellipsoidal Gravity Formula

Provides Gravity Values at (on) the Surface of the WGS 84 Ellipsoid

Notation

$\boldsymbol{\gamma}=$ Acceleration of a unit test mass due to theoretical gravity.
$\gamma_{0}=$ Acceleration at the equator (on the WGS 84 Ellipsoid) of a unit test mass due to theoretical gravity.
$k=$ Cons:ant $=\left(b \gamma_{p} / a \gamma_{e}\right)-1$
$a=$ Semimajor axis (WGS 84 Ellipsoid)
$\mathrm{b}=$ Semiminor axis (WGS 84 Ellipsoid)
$\gamma_{p}=$ Theoretical gravity at the poles (on the WGS 84 Ellipsoid)
$\phi=$ Geodetic latitude
$e^{2}=$ First eccentricity squared (WGS 84 Ellipsoid).

Analytical Form

$$
\gamma=\gamma_{e}\left(1+k \sin ^{2} \phi\right) /\left(1-e^{2} \sin ^{2} \phi\right)^{1 / 2}
$$

Numerical Form

$\gamma=978032.67714\left(1+0.00193185138639 \sin ^{2} \phi\right) /$

$$
\left(1-0.00669437999013 \sin ^{2} \phi\right)^{1 / 2} \times 10^{-5} \mathrm{~m} / \operatorname{second}{ }^{2}(\mathrm{mgal})
$$

An acceleration due to gravity of $1 \times 10^{-5} \mathrm{~m} / \mathrm{second}^{2}=1 \mathrm{mgal}$

This page is intentionally blank

5. WGS 84 GRAVITY MODEIING

5.1 Earth Gravitational Model (EGM)

The form of the WGS 84 EGM is a spherical harmonic expansion (Table 5.1) of the gravitational potential (V). The WGS 84 EGM, complete through degree (n) and order (m) 180, is comprised of 32755 coefficients.

The coefficients through $n=m=41$ were obtained from a weighted least squares solution of a normal equation matrix developed by combining individual normal equation matrices formed from Doppler satellite tracking data, satellite laser ranging data, surface gravity data, oceanic geoid heights deduced from satellite radar altimeter data, Navstar Global Positioning System (GPS) data, and "lumped coefficients". The effect (contribution) of coefficients through $n=m=41$ was removed from a worldwide $1^{\circ} \times 1^{\circ}$ mean gravity anomaly field leaving a worldwide residual $1^{\circ} \times 1^{\circ}$ mean gravity anomaly field. The wGS 84 EGM coefficients from $n=42, m=0$ through $n=m=180$ were then determined independently via harmonic analysis using the residual field. The coefficients through $n=m=41$ from the weighted least squares solution and the coefficients above $n=m=41$ from the independent harmonic analysis comprise the $n=m=180$ WGS 84 EGM.

The WGS 84 EGM through $n=n=180$ is to be used when calculating WGS 84 Geoid Heights, WGS 84 gravity disturbance components (or deflection of the vertical components), and WGS $841^{\circ} \times 1^{\circ}$ mean gravity anomalies via spherical harmonic expansions. Expansions to this degree and order ($n=m=180$) are needed to accurately model variations in the earth's gravitational field on or near the earth's surface.

The WGS 84 EGM through $n=m=41$ is more appropriate for satellite orbit calculation and prediction purposes. The use of higher degree and order models for such applications is not recommended at
this time. However, if required for a special application, DMA and other DoD users will need to conduct orbital analyses and ascertain the EGM truncation level that is "best" suited for the satellite project involved.

The WGS 84 EGM through $n=m=180$ is available on magnetic tape in normalized form. The WGS 84 EGM through $n=m=41$ is available on a separate magnetic tape in both normalized and conventional form. However, the WGS 84 EGM coefficients through $n=r n=18$ are provided in Table 5.2 in normalized form.

Accuracy values are not available for all of the WGS 84 EGM coefficients. However, an error covariance matrix is available for those coefficients through $n=m=41$ determined from the weighted least squares solution. Gravity anomaly degree variances are given in Table 5.3 for the WGS 84 EGM ($\mathrm{n}=\mathrm{m}=180$). Requesters having a need for the ful. WGS 84 EGM and/or its error data should forward their correspondence to the address listed in the PREFACE.

5.2 Gravity Potential (W)

Using the WGS 84 EGM model (Table 5.1), the earth's total gravity potential (W) is then defined as

$$
\begin{equation*}
\mathrm{w}=\mathrm{V}+\Phi \tag{5-1}
\end{equation*}
$$

where Φ is the centrifugal potential due to the earth's rotation. If ω is the angular velocity [Equation (3-10)], then

$$
\begin{equation*}
\Phi=\frac{1}{2} \omega^{2}\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right) \tag{5-2}
\end{equation*}
$$

where X and Y are the geocentric coordinates of the rotating mass in the WGS 84 reference frame (See Figure 2.3).

Table 5.1
Form of the WGS 84 Earth Gravitational Model

* See next page.
** Latitude is positive north and longitude is positive east $\left(0^{\circ}\right.$ to 180°)

Table 5.1 (Cont'd)
Form of the WGS 84
Earth Gravitational Model

Parameter	Definition
$P_{n m}\left(\sin \phi^{\prime}\right)$	$=\left(\cos \phi^{\prime}\right)^{m} \frac{d^{m}}{d\left(\sin \phi^{\prime}\right)^{m}}\left[P_{n}\left(\sin \phi^{\prime}\right)\right]$
$P_{n}\left(\sin \phi^{\prime}\right)$	$=$ Legendre poiynomial
$P_{n}\left(\sin \phi^{\prime}\right)$	$=\frac{1}{2^{n} n!} \frac{d^{n}}{d\left(\sin \phi^{\prime}\right)^{n}}\left(\sin ^{2} \phi^{\prime}-1\right)^{n}$

*Note:

where

$$
\begin{gathered}
C_{n m} S_{n m}=\text { Conventional gravitational coefficients } \\
\text { For } m=0, k=1 ; \\
m \geq 1, k=2
\end{gathered}
$$

Table 5.2

WGS 84

Earth Gravitational Model (Truncated at $n=m=18$)*

$\begin{array}{cc}B & 0 \\ 0 & 0 \\ 0 & 0 \\ 2 & -1 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \\ & 0 \\ & 0\end{array}$	$\mid \circlearrowright$	
	E ω	
0 0 0 0 $0-1$ 0 -1 0 4 0 4.1 0 0 0 0 $r-1$ 0	\| 0	
	$10^{!}$	 Mrmbrbuntoonrontinonco
$\begin{array}{lll} 0 & \\ \oplus & & 4 \\ 4 & 0 & 0 \\ 0 & E & 0 \\ 1 & 0 & 4 \\ 0 & & 0 \end{array}$	E E	OHNOHNMOHNM,OHNMWNOMN

[^0]Table 5.2 (Cont'd)

Degree and Order	Gravitation	ized	Degree and Order		ized Coefficients
n m	$\bar{C}_{n m}$	\bar{S}_{nm}	n m	$\overline{\mathrm{C}}_{\mathrm{nm}}$	S_{nm}
90	$0.33173231 \mathrm{E}-07$		112	0.21716225E-07	-0.10224810E-06
91	$0.14747969 \mathrm{E}-06$	$0.23894354 \mathrm{E}-07$	113	-0.30023695E-07	-0.13422019E-06
92	0.22052093E-07	-0.26876665E-07	114	-0.30407161E-07	-0.69823333E-07
93	-0.16256047E-06	-0.85928431E-07	115	$0.35104609 \mathrm{E}-07$	$0.49175170 \mathrm{E}-07$
94	-0.17193827E-07	$0.26077030 \mathrm{E}-07$	116	-0.37911105E-08	$0.36848522 \mathrm{E}-07$
95	-0.16902791E-07	-0.50337365E-07	117	$0.25774039 \mathrm{E}-08$	-0.88658395E-07
96	$0.65717910 \mathrm{E}-07$	$0.22275858 \mathrm{E}-06$	118	-0.71396627E-08	0.23243077E-07
97	-0.11648016E-06	-0.97298769E-07	119	-0.30246313E-07	$0.41776400 \mathrm{E}-07$
98	$0.18896045 \mathrm{E}-06$	-0.31026222E-08	1110	-0.53424279E-J7	-0.18716766E-07
99	-0.48275744E-07	$0.96381072 \mathrm{E}-07$	1111	$0.47514858 \mathrm{E}-07$	-0.70415796E-07
100	$0.50931575 E-07$		120	$0.34073235 E-07$	
101	$0.88706517 \mathrm{E}-07$	-0.12536457E-06	121	-0.60609926E-07	-0.38189082E-07
102	-0.82375203E-07	-0.38280049E-07	122	$0.74200188 \mathrm{E}-08$	0.24640620E-07
103	-0.13137371E-07	-0.15553732E-06	123	$0.42149817 \mathrm{E}-07$	$0.32189594 \mathrm{E}-07$
104	-0.87424319E-07	-0.79215732E-07	124	-0.64346831E-07	-0.25364931E-08
105	-0.53980821E-07	-0.46294947E-07	125	$0.33126200 \mathrm{E}-07$	-0.40658586E-09
106	-0.42371448E-07	-0.79680607E-07	126	$0.86981502 \mathrm{E}-08$	$0.36711094 \mathrm{E}-07$
107	$0.83736045 \mathrm{E}-08$	-0.25636582E-08	127	-0.16598048E-07	$0.34475954 \mathrm{E}-07$
108	$0.41239589 \mathrm{E}-07$	-0.92269095E-07	128	-0.26843700E-07	$0.17838309 \mathrm{E}-07$
109	$0.12539514 \mathrm{E}-06$	-0.37687117E-07	129	$0.42293015 \mathrm{E}-07$	$0.27107811 \mathrm{E}-07$
1010	$0.10124370 \mathrm{E}-06$	-0.24874984E-07	1210	-0.44237357E-08	$0.30823394 \mathrm{E}-\mathrm{C7}$
110	-0.58114696E-07		1211	$0.96462514 \mathrm{E}-08$	-0.60711291E-08
111	$0.95375839 E-08$	-0.22094828E-07	1212	-0.30878714E-08	-0.10932316E-07

[^1]Table 5.2 (Cont'd)

	ω_{0}^{E}	
	$\mid 0^{g}$	 mos mmmmriminnrrinmon untrym $00000000_{1}^{0000000000000}$
	E E	
	$10{ }^{\text {E }}$	 rmon in on onn minme 耳 M Now © - ió ói íoíioo oióió
	$\left\lvert\, U^{\frac{E}{2}}\right.$	
	E E	

Table 5.2 (Cont'd)

WGS 84 Earth Gravitational Model (Truncated at $\mathrm{n}=\mathrm{m}=18$)*						
Degree and Order	Normalized Gravitational Coefficients		$\begin{aligned} & \text { Degree } \\ & \text { and } \\ & \text { Order } \end{aligned}$			zed Coefficients
n m	\bar{C}_{\sim}^{\sim}	S \ldots		m	$\overline{C o m}_{\text {n }}$	$\bar{S}_{\text {nm }}$
1513	-0.27865470E-07	-0.51124016E-08	17	0	$0.27418160 \mathrm{E}-07$	
1514	0.58007239E-08	-0.24830947E-07	17	1	-0.17492372E-07	-0.29004434E-07
1515	-0.18756974E-07	-0.53745848E-08	17	2	-0.24972136E-07	$0.52345300 \mathrm{E}-08$
160	$0.96352958 \mathrm{E}-08$		17	3	$0.75958226 \mathrm{E}-08$	$0.13161951 \mathrm{E}-07$
161	0.16657011E-07	$0.32088971 \mathrm{E}-07$	17	4	-0.35567936E-08	$0.29108859 \mathrm{E}-07$
162	-0.22051986E-07	$0.26286204 \mathrm{E}-07$	17	5	-0.16440517E-07	$0.15666155 \mathrm{E}-07$
163	-0.29514849E-07	-0.95827659E-08	17	6	-0.29053420E-08	-0.41239945E-07
164	$0.37621131 \mathrm{E}-07$	0.55477548E-07	17	7	$0.30327591 \mathrm{E}-07$	-0.54652615E-08
165	-0.10479239E-07	-0.27382338E-08	17	8	$0.26828952 \mathrm{E}-07$	-0.69634040E-08
166	$0.97407454 \mathrm{E}-08$	-0.43087957E-07	17	9	-0.74685923E-09	-0.31300568E-07
167	-0.12168169E-07	-0.56636996E-08	17	10	-0.10536220E-08	0.18628074E-07
168	-0.25034024E-07	$0.22855737 \mathrm{E}-08$	17	11	-0.13049234E-07	$0.13662390 \mathrm{E}-07$
169	-0.17908785E-07	-0.29938908E-07	17	12	$0.32820228 \mathrm{E}-07$	$0.17654374 \mathrm{E}-07$
1610	-0.10129689E-07	$0.12404473 E-07$	17	1 1?	$0.17049873 \mathrm{E}-07$	$0.19279770 \mathrm{E}-07$
1611	$0.19053980 \mathrm{E}-07$	-0.17354590E-08	17	14	-0.14027974E-07	$0.11214602 \mathrm{E}-07$
1612	$0.18888013 \mathrm{E}-07$	$0.45949615 \mathrm{E}-08$	17	15	$0.56624501 \mathrm{E}-08$	$0.56527252 \mathrm{E}-08$
1613	$0.15158142 \mathrm{E}-07$	-0.17410596E-09	17	16	-0.32153542E-07	$0.33341657 \mathrm{E}-08$
$16 \quad 14$	-0.19416172E-07	-0.38724225E-07	17	17	-0.37961677E-07	-0.17192537E-07
1615	-0.14400649E-07	-0.33151819E-07	18	0	$0.10196218 \mathrm{E}-07$	
$16 \quad 16$	-0.40920912E-07	$0.23449430 \mathrm{E}-08$	18	I	$0.85717760 \mathrm{E}-08$	$-0.32887288 \mathrm{E}-07$

[^2]Table 5.2 ，Cont＇d）
WGS 84
Earth Gravitational Model （Truncated at $n=m=i 8$ ）＊

	10^{E}	 $-\sigma^{-1} m$ N N N NTOM6HOD －0000000
	10^{E}	 Tn anormnmr OOOQOOOO
	E E	
	$10{ }^{E}$	 ómonomon N N © No のrmNHHHNサ 000000000
	10^{E}	Norosínoro oomrmaNvin Hr nmmmmNo 00000000
	E	NMJル6に 0 or

$\mathrm{E}-03=\mathrm{X} 10^{-3} ; \mathrm{E}-05=\mathrm{X} 10^{-5}$ ；Etc．

＊See Section 5.1

Table 5.3

WGS 84 EGM
Gravity Anomaly Degree Variances $\left(c_{n}\right)$ *

Degree	Degree Variances	Degree	Degree Variances	Degree	Degree Variances
2	7.6	41	2.8	80	2.3
3	33.9	42	2.7	81	2.6
4	19.2	43	2.4	82	2.8
5	21.0	44	2.8	83	2.7
6	19.4	45	2.7	84	2.4
7	19.3	46	2.7	85	2.2
8	10.9	47	3.1	86	2.7
9	11.5	48	2.5	87	2.4
10	9.7	49	2.5	88	2.2
11	6.4	50	2.8	89	2.0
12	2.6	51	2.8	90	2.0
13	7.4	52	2.6	91	2.3
14	3.2	53	3.1	92	2.0
15	3.4	54	2.8	93	2.2
16	3.9	55	3.0	94	2.0
17	3.6	56	3.0	95	1.8
18	3.6	57	3.0	96	2.0
19	3.3	58	2.6	97	1.9
20	3.1	59	3.0	98	2.1
21	3.2	60	2.6	99	1.7
22	3.6	61	2.5	100	1.8
23	2.7	62	2.9	101	1.7
24	2.6	63	2.5	102	2.1
25	2.9	64	2.7	103	2.3
26	2.4	65	2.1	104	1.8
27	1.9	66	2.6	105	1.8
28	2.4	67	2.5	106	1.7
29	2.4	68	2.6	10%	1.8
30	2.8	69	2.9	108	1.9
31	2.9	70	2.3	109	2.0
32	4.1	71	2.3	110	2.0
33	3.4	72	2.7	111	1.7
34	5.0	73	2.4	112	1.6
35	4.4	74	2.6	113	1.8
36	3.6	75	2.2	114	1.6
37	3.4	76	2.3	115	1.9
38	2.8	77	2.3	116	1.7
39	3.5	78	2.4	117	1.7
40	3.6	79	2.2	118	1.6

Units $=\left(1 \times 10^{-5} \mathrm{~m} / \text { second }^{2}\right)^{2}$ or mgal ${ }^{2}$

[^3]Table 5.3 (Cont'd)

WGS 84 EGM
Gravity Anomaly Degree Variances $\left(\mathrm{c}_{\mathrm{n}}\right)$ *

Degree	Degree Variances	Degree	Degree Variances	(Degree	Degree Variances
119	1.6	140	1.3	161	0.9
120	1.6	141	1.1	162	0.8
121	1.5	142	1.0	163	0.9
122	1.3	143	1.1	164	1.0
123	1.6	144	1.1	165	0.9
124	1.6	145	1.0	166	0.8
125	1.5	146	1.0	167	0.9
126	1.3	147	1.0	168	0.8
127	1.5	148	1.2	169	0.8
128	1.2	149	1.0	170	0.8
129	1.4	150	1.0	171	0.9
130	1.3	151	1.0	172	0.7
131	1.3	152	1.0	173	0.8
132	1.4	153	1.0	174	0.8
133	1.4	154	1.0	175	0.8
134	1.2	155	0.9	176	0.8
135	1.2	156	1.0	177	0.6
136	1.2	157	0.8	178	0.7
137	1.3	158	0.8	179	0.8
138	1.3	159	0.8	180	0.8
139	1.2	160	0.9		

Units $=\left(1 \times 10^{-5} \mathrm{~m} / \text { second }^{2}\right)^{2}$ or mgal ${ }^{2}$
*Formula for computing gravity anomaly degree variances (c_{n})

$$
c_{n}=\bar{\gamma}^{2}(n-1)^{2} \sum_{m=0}^{n} \quad\left(\bar{C}_{n m}^{2}+\bar{S}_{n m}^{2}\right)
$$

$c_{n}=$ Gravity anomaly degree variance in mgal ${ }^{2}$
for degree n

- \quad for
$\underline{\gamma}=$ Average value of theoretical gravity
$\gamma=979764.46561 \mathrm{mgal}$ (based on WGS 84
Ellipsoidal Gravity Formula)

6. WGS 84 GEOTD

6.1 General

In geodetic applications, three different surfaces or earth figures are normally involved. In addition to the earth's natural or actual surface, the other two include a geometric or mathematical figure taken to be an equipotential ellipsoid of revolution (Chapter 3), and a physical figure defined as an equipotential surface in the earth's gravity field, or the geoid.

The equation

$$
\begin{equation*}
W(X, Y, Z)=\text { constant } \tag{6-1}
\end{equation*}
$$

defines a family of equipotential surfaces (GEOPS) of the earth's gravity field. The geoid is that particular equipotential GEOP for which the constant in Equation $(6-1)$ is equal to W_{0} (or the ellipsoidal potential U_{0}) defined in Table 3.3.

For some practical applications, the geoid, defined as above, is approximated by the mean sea level (msl) over the oceans (or its hypothetical extension under the land masses). It may be necessary to clarify that the msl is not an equipotential surface and in its simplest definition would comprise a mean of sea level surfaces approximated and observed over 18.67 years.

In a mathematical sense, the geoid is also defined (or realized) as so many meters above ($+N$) or below ($-N$) the ellipsoid, the geometric figure.

In the definition of the geoid, a great practical importance exists: the geoid can serve as the approximation for the vertical datum reference surface for mean sea level heights (H)*. In areas where

* Note the other usage of this symbol in Equation (3-16) and Table 3.4.
general elevation data is not available from conventional leveling, the "approximate" determination of the H-values can be achieved using the equation

$$
\begin{align*}
& h \simeq N+H \tag{6-2}\\
& H \simeq h-N \tag{6-3}
\end{align*}
$$

where:
$\mathrm{h}=$ geodetic height $=$ height relative to the ellipsoid
$\mathrm{N}=$ geoid height
$H=$ orthometric height relative to the geoid (or, approximately, mean sea level height)

Equation (6-3) illustrates the use of geoid heights in the determination of H-values from geodetic heights derived using satellite positions (e.g., TRANSIT or Navstar Global Positioning System) located on the earth's physical surface or aboard a vehicle operating near the earth's surface.

6.2 Eormulas and Representations/Analysis

6.2.1 Eormulas

The wGS 84 Geoid Heights were calculated using a spherical harmonic expansion and the WGS 84 EGM coefficients through $\mathrm{n}=\mathrm{m}=180$. The formula for calculating WGS 84 Geoid Heights has the form:

$$
N=\frac{G M}{r \gamma}\left[\sum_{n=2}^{n_{\max }} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n}\left(\bar{C}_{n m} \cos m \lambda+\bar{S}_{n m} \sin m \lambda\right) \bar{p}_{n m}\left(\sin \phi^{\prime}\right)\right] \quad(6-4)
$$

where N is the geoid height in meters, γ is theoretical gravity calculated using the WGS 84 Ellipsoidal Gravi.ty Formula (Table 4.1), and all other quantities are defined as for $t \cdots$ WGS 84 EGM with one exception. In Equation (6-4), the even degree zonal coefficients of subscripts 2 through 10 are coefficient differences between the WGS 84 EGM minus normalized gravity. (See Sections 6.2.1 and 6.2.2 in [1]).

6.2.2 Representations/Analysis

The geoid can be depicted as a con*our chart which shows the deviations of the geoid from the ellipsoid selected as the mathematical figure of the earth. Figure 6.1 is a worldwide WGS 84 Geoid Height Contour Chart developed from a worldwide $1^{\circ} \times 1^{\circ}$ grid of geoid heights calculated by using WGS 84 numerical data and the WGS 84 EGM coefficients through $n=m=18$ in Equation (6-4).

Table 6.1 contains a worldwide $10^{\circ} \times 10^{\circ}$ grid of WGS 84 Geoid Heights calculated using wGS 84 EGM coefficients through $n=m=180$.

A worldwide $1^{\circ} \times 1^{\circ}$ grid of WGS 84 Geoid Heights was computed and compared with a similar grid of wGS 72 Geoid Heights referenced to the $W G S 72$ Ellipsoid. The root-mean-square (RMS) difference was ± 4.6 meters, with the largest positive and negative differences being 24 and -23.5 meters, respectively. Of the 64,800 geoid height differences, 21.36 percent (13.841 differences) were larger then 5 meters.

The RMS WGS 84 Geoid Height, taken worldwide on the basis of a $1^{\circ} \times 1^{\circ}$ grid, is 30.5 meters. This RMS value indicates how well the WGS 84 Ellipsoid, taken as the mathematical figure of the earth, fits the earth's geoidal surface.

The WGS 84 Geoid Heights have an error range of ± 2 to ± 6 meters (one sigma), and are known to accuracies of ± 2 to ± 3 meters over approximately 55 percent of the earth. Approximately 93 percent of the earth has WGS 84 Geoid Heights of accuracy better than ± 4 meters.

6.3 Ayailabildty of WGS 84 Geoid_Height Data

I'le WGS 84 Geoid Heights, the related data, and products, which can be provided to requesters (see PREFACE), are:

- A worldwide WGS 84 Geoid Height Contour Chart with 5 meters
contour interval. If needed, contour charts of other physical sizes, geographic areas, contour intervals and scales can be provided.
- A magnetic tape containing the worldwide $1^{\circ} \times 1^{\circ}$ or $30^{\prime} \times 30^{\prime}$ grid of WGS 84 Geoid Heights.
- A Bi-Linear Interpolation program (Table 6.2) for interpolation of WGS 84 Geoid Heights at random points. Users are advised to check interpolation error(s) pertaining to application(s).
- A Computer program for computation of WGS 84 Geoid Heights at a specified grid interval or at random points with associated documentation and appropriate test cases.
I•9 əTqет

Longitude (Degrees)
(səәォбәव) әрп7т7ет
Tabie 6.1 (Cont'd)
WGS 84 Geoid Heights

$$
\begin{aligned}
& \text { (} n=m=180,10^{\circ} \times 10^{\circ} \text { Grid, Units }=\text { Meters) }
\end{aligned}
$$

$$
\begin{aligned}
& -30
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{n}-\underset{\sim}{\sim} \underset{1}{\sim} \quad \underset{1}{\infty} \underset{1}{N} \underset{\sim}{N}
\end{aligned}
$$

$$
\begin{aligned}
& 230^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\circ \\
\circ \\
\circ \\
-1
\end{array}
\end{aligned}
$$

Table 6.2
Interpolation of WGS 84 Geoid Heights

Note: Use of consistent units is necessary.

This page is intentionally blank
7. WGS 84 RELATIONSHIPS WITH OTHER GEODETIC SYSTEMS

7.1 General

One of the principal purposes of a world geodetic system is to provıde the means whereby local geodetic datums can be referenced to a single geocentric system. The number of local geodetic datums, or local horizontal datums, requiring such referencing is extensive. Counting island and/or astronomic-based datums, the number exceeds several hundred. To accomplish the conversion, local geodetic datum and WGS coordinates are both required at one or more sites within the local datum area so that local geodetic datum-to-WGS datum shifts can be formed. Satellite stations positioned within WGS 84, and with known local geodetic datum coordinates, were the basic ingredients in the development of local geodetic datum-to-WGS 84 datum shifts.

The most accurate approach for obtaining WGS 84 coordinates is to acquire satellite tracking data at the site of interest and position it directly in WGS 84 using the Satellite Point Positioning technique [1]. However, it is unrealistic to presume that use of this technique will always be possible. In such cases, the transformation from WGS 72 to WGS 84 or from local geodetic datums to WGS 84 should be used (sections 7.2 and 7.3).

7.2 WGS 72-to-WGS 84 Transformation

Situations arise where only WGS 72 coordinates are available for a site. In such instances, the WGS 72-to-WGS 84 Transformation listed in Table 7.1 can be used with the following equations to obtain WGS 84 coordinates for the sites:

$$
\begin{align*}
& \phi_{\text {WGS } 84}=\phi_{\text {WGS } 72}+\Delta \phi \\
& \lambda_{\text {WGS } 84}=\lambda_{\text {WGS } 72}+\Delta \lambda \tag{7-1}\\
& \mathrm{h}_{\text {WGS } 84}=h_{\text {WGS } 72}+\Delta h
\end{align*}
$$

As indicated from Table 7.1, when proceeding directly from WGS 72 coordinates to obtain WGS 84 values, the WGS 84 coordinates will differ from the WGS 72 coordinates due to a shift in the coordinate system origin, a change in the longitude reference, a scale change (treated through Δr), and changes in the size and shape of the ellipsoid. In addition, it is important to be aware that $\Delta \phi, \Delta \lambda, \Delta h$ valnos calculated using Table 7.1 do not reflect the effect of differences between the WGS 72 and WGS 84 EGMs and Geoids. The following cases are important to note:
a. Table 7.1 equations are to be used for direct transformation of Doppler-derived WGS 72 coordinates. These transformed coordinates should agree to within approximately ± 2 meters with the directly surveyed WGS 84 coordinates using TRANSIT or GPS point positioning.
b. Table 7.1 should not be used for satellite local geodetic stations whose WGS 72 coordinates were determined using datum shifts from [4]. The preferred approach is to transform such WGS 72 coordinates, using datum shifts from [4], back to their respective local datums, and then transform the local datum coordinates to WGS 84 using Appendices B and C.

Table 7.1 should be used only when no other approach is applicable.

7.3 Local Geodetic Datum-to-WGS 84 Datum Transformations

7.3.1 General

Most WGS 84 coordinates needed for applications and DoD operations in Mapping, Charting, and Geodesy (MC\&G) will be obtained from a Local Geodetic Datum-to-WGS 84 Datum Transformation. This transformation can be performed either in curvilinear (geodetic) coordinates:

$$
\begin{align*}
& \phi_{\text {WGS } 84}=\phi_{\text {Local }}+\Delta \phi \\
& \lambda_{\text {WGS } 84}=\lambda_{\text {Local }}+\Delta \lambda \tag{7-2}\\
& h_{\text {WGS } 84}=h_{\text {Local }}+\Delta h
\end{align*}
$$

or, in rectangular coordinates [14]:
where ΔS and $(\varepsilon, \psi, \omega)$ represent changes in local geodetic datum scale and reference frame orjentation, respectively, and (X_{0}, Y_{0}, Z_{0}) are the coordinates of the "initial" (defining) point of the local geodetic datum.

There are several datum transformation formulas for accomplishing the preceding. The most common techniques are, in the curvilinear case, the Standard Molodensky, and in the rectangular case, the 3-, 4-, or 7-parameter transformations depending on the availability (and/or reliability) of the transformation parameters. It may be noted that the 3 -parameter rectangular case is embedded
mathematically in the Molodensky Formulas to eliminate the conversion from geodetic to rectangular coordinates.

In addition, the curvilinear and rectangular coordinate datum transformations can be accomplished using a Multiple Regression Equation (MRE) technique which accounts for the non-linear distortion in the local geodetic datum [15]. The above methods are discussed separately in [1]. Only the Standard Molodensky Formula and MRE technique are discussed here.

7.3.2 The Standard Molodensky Datum Transformation Formulas

The Standard Molodensky Datum Transformation Formulas [4][16], along with definitions of the terms, are listed in Table 7.2. As the Molodensky Formulas do not provide satisfactory results near the poles, the following three-step transformation is recommended:

Appendix A lists the reference ellipsoid names and parameters (semimajor axis and flattening) for local datums currently tied to WGS 84 and used for generating datum transformations.

Appendix B contains transformation parameters for the geodetic datums/systems which have been generated from satellite ties to the respective geodetic control. Due to the errors and distortion that affect most local geodetic datums, use of mean datum shifts (Δx, $\Delta Y, \Delta Z$) in the Stanciard Molodensky Datum Transformation Formulas may produce results with poor quality of "fit". Improved fit between the local datim and WGS 84 may result only with better and more dense ties with local or regional control points.

Daturn transformation shifts derived from non-satellite information are available in Appendix C.

DMA-developed local geodetic datum geoid heights were used in Lorming the Local Geodetic Datum-to-WGS 84 Datum Shifts [17]. An example of such a geoid for NAD 27 is included in contour chart form (Figure 7.1) for the Contiguous United States (CONUS).

7.3.3 Datum Transformation Multiple Reqression Equations

The development of Local Geodetic Datum-to-WGS 84 Datum Transformation Multiple Regression Equations [15] was initiated to obtain better fits over continental size land areas than could be achieved using the Standard Molodensky Formula with datum shifts (Δx, $\Delta Y, \Delta Z)$.

For $\Delta \phi$, the general form of the Multiple Regression Equation is (also see [1]):

$$
\Delta \phi=A_{0}+A_{1} U+A_{2} V+A_{3} U^{2}+A_{4} U V+A_{5} V^{2}+\ldots+A_{99} U^{9} V^{9} \quad(7-4)
$$

where

$$
\begin{aligned}
\mathrm{A}_{0}= & \text { constant } \\
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots= & \text { coefficients determined in the development } \\
\mathrm{U}= & \mathrm{k}\left(\phi-\phi_{\mathrm{m}}\right)=\text { normalized geodetic latitude of the } \\
& \text { computation point } \\
\mathrm{V}= & k\left(\lambda-\lambda_{\mathrm{m}}\right)=\text { normalized geodetic longitude of the } \\
& \text { computation point } \\
\mathrm{k}= & \text { scale factor, and degree-to-radian conversion }
\end{aligned}
$$

$$
\begin{aligned}
& \phi, \lambda=\text { local geodetic latitude and iocal geodetic longitude } \\
& \text { (in degrees), respectively, of the computation point } \\
& \phi_{m}, \lambda_{m}=\text { mid-latitude and mid-longitude values, respectively, } \\
& \text { of the local geodetic datum area (in degrees). } \\
& \text { Similiar equations are obtained for } \Delta \lambda \text { and } \Delta h \text { by replacing } \Delta \phi \text { in the } \\
& \text { left portion of Equation (7-4) by } \Delta \lambda \text { and } \Delta h \text {, respectively. } \\
& \text { Local Geodetic Datum-to-WGS } 84 \text { Datum Transformation } \\
& \text { Multiple Regression Equations for seven major continental size datums, } \\
& \text { covering contiguous continental size land areas with large distortion, } \\
& \text { are provided in Appendix } D \text {. The main advantage of MRE's lies in } \\
& \text { modeling of distortion for better fit in geodetic applications. }
\end{aligned}
$$

Table 7.1

Formulas	$\begin{aligned} & \Delta \phi^{\prime \prime}=(4.5 \cos \phi) /\left(a \sin 1^{\prime \prime}\right)+(\Delta f \sin 2 \phi) /\left(\sin 1^{\prime \prime}\right) \\ & \Delta \lambda^{\prime \prime}=0.554 \\ & \Delta h=4.5 \sin \phi+a \Delta f \sin ^{2} \phi-\Delta a+\Delta r \quad \text { (Units = Meters) } \end{aligned}$
Parameters	$\begin{aligned} \Delta \mathrm{f} & =0.3121057 \times 10^{-7} \\ \mathrm{a} & =6378135 \mathrm{~m} \\ \Delta \mathrm{a} & =2.0 \mathrm{~m} \\ \Delta \mathrm{r} & =1.4 \mathrm{~m} \end{aligned}$
Instructions	To Obtain WGS 84 Ccordinates, Add the $\Delta \phi, \Delta \lambda, \Delta h$ Changes Calculated Using WGS 72 Coordinates to the WGS 72 Coordinates (ϕ, λ, and h, Respectively). Latitude is Positive North and Longitude is Positive East (0° to 180°).

```
Standard Molodensky Datum Transformation Formulas*
    - Local Geodetic Datum to WGS 84 -
```

1. The Standard Molodensky Formulas

$$
\begin{aligned}
\Delta \phi^{\prime \prime}= & \{-\Delta X \sin \phi \cos \lambda-\Delta Y \sin \phi \sin \lambda+\Delta z \cos \phi \\
& \left.+\Delta a\left(R_{N} e^{2} \sin \phi \cos \phi\right) / a+\Delta f\left[R_{M}(a / b)+R_{N}(b / a)\right] \sin \phi \cos \phi\right\} \\
& \cdot\left[\left(R_{M}+h\right) \sin 1^{\prime \prime}\right]^{-1} \\
\Delta \lambda^{\prime \prime}= & {[-\Delta X \sin \lambda+\Delta Y \cos \lambda] \cdot\left[\left(R_{N}+h\right) \cos \phi \sin 1^{\prime \prime}\right]^{-1} } \\
\Delta h= & \Delta X \cos \phi \cos \lambda+\Delta Y \cos \phi \sin \lambda+\Delta Z \sin \phi \\
& -\Delta a\left(a / R_{N}\right)+\Delta f(b / a) R_{N} \sin ^{2} \phi
\end{aligned}
$$

2. Definition of Terms in the Melodensky Formulas
$\phi, \lambda, h=$ geodetic coordinates (old ellipsoid)
$\phi=$ geodetic latitude. The angle between the plane of the geodetic equator and the ellipsoidal normal at a point (measured positive north from the geodetic equator, negative south).
$\lambda=$ geodetic longitude. The angle between the plane of the Zero Meridian and the plane of the geodetic meridian of the point (measured in the plane of the geodetic equator, positive from 0° to $180^{\circ} \mathrm{E}$, and negative from 0° to 18.' W).
$h=$ geodetic height (ellipsoidal height). The distance of a point from the ellipsoid measured from the surface of the ellipsoid along the ellipsoidal normal to the point.
$h \simeq N+H$
$N=$ ellipsoid to geoid separation. The distance of the geoid above $(+N)$ or below $(-N)$ the ellipsoid.
$H=$ distance of a point from the geoid (or, approximately, elevation of the point above/below mean sea level); positive above mean sea level, negative below mean sea level.

* Not to be used between 89° Latitude and the pole (see Section 7.3.2).

```
Table 7.2 (Cont'd)
Standard Molodensky Datum Transformation Formulas - Local Geodetic Datum to WGS 84 -
```

$\Delta \phi, \Delta \lambda, \Delta h=$ corrections to transform local geodetic datum coordinates to WGS $84 \phi, \lambda, h$ values. The units of $\Delta \phi$ and $\Delta \lambda$ are arc seconds ("); the units of Δh are meters (m).

```
NOTE: AS "h's" ARE NOT AVAIIABIE FOR LOCAL GEODETIC
DATUMS, THE \triangleh CORRECTION WILL NOT BE APPIICABLE
WHEN TRANSFORMING TO WGS84.
```

$\Delta X, \Delta Y, \Delta Z=$ shifts between centers of the local geodetic datum and WGS 84 Ellipsoids; corrections to transform local geodetic system-related rectangular coordinates (X, Y, Z) to WGS 84-related X, Y, Z values.
$a=s e m i m a j o r ~ a x i s ~ o f ~ t h e ~ l o c a l ~ g e o d e t i c ~ d a t u m ~ e l l i p s o i d . ~$
$b=$ semiminor axis of the local geodetic datum ellipsoid.
$\mathrm{b} / \mathrm{a}=1-\mathrm{f}$
$f=f l a t t e n i n g$ of the local geodetic datum ellipsoid.
$\Delta a, \Delta f=$ differences between the semimajor axis and flattening of the local geodetic datum ellipsoid and the WGS 84 Ellipsoid, respectively (WGS 84 minus Local).
$\mathrm{e}=$ first eccentricity.
$e^{2}=2 f-f^{2}$
$R_{N}=$ radius of curvature in the prime vertical.
$R_{N}=a /\left(1-e^{2} \sin ^{2} \phi\right)^{1 / 2}$
$R_{M}=$ radius of curvature in the meridian.
$R_{M}=a\left(1-e^{2}\right) /\left(1-e^{2} \sin ^{2} \phi\right)^{3 / 2}$

NQTE: All Δ-quantities are formed by subtracting local geodetic datum ellipsoid values from WGS 84 Ellipsoid values.

8. ACCURACY OF WGS 84 COORDINATES

The accuracy of the WGS 84 coordinates of a site is significantly influenced by the method used to determine the coordinates. Depending on the data available, the $W G S 84$ coordinates of a site can be determined:

- Directly in WGS 84 via a satellite point positioning solution using ground-based Doppler or GPS satellite tracking data and broadcast or precise satellite ephemerides.
- By a WGS 72-to-WGS 84 Coordinate Transformation.
- By a Local Geodetic Datum-to-WGS 84 Datum Transformation.

However, the situation is even more complicated since there are several techniques for accomplishing a Local Geodetic Datum-to-WGS 84 Datum Transformation. In addition, the accuracy of the WGS 84 coordinates of a site is different depending on whether it is a satellite station or a non-satellite geodetic network station, or whether the WGS 84 coordinates weie determined by a receiver operated in a dynamic or static mode.

The accuracy (one sigma) of WGS 84 coordinates directly determined in WGS 84 by Doppler or GPS Satellite Point Positioning, their respective precise ephemerides and ground-based satellite tracking data acquired in the static mode, is in geodetic latitude, geodetj.c longitude, and geodetic height:

$$
\begin{align*}
& \sigma_{\phi}=\sigma_{\lambda}= \pm 1 \mathrm{~m} \tag{8-1}\\
& \sigma_{\mathrm{h}}= \pm 1 \text { to } \pm 2 \mathrm{~m} \tag{8-2}
\end{align*}
$$

The Doppler stations used in the development of WGS 84 were surveyed prior to 1 January 1987 in the NSWC 92-2 system. As such, the indirectly obtained WGS 84 coordinates (through corrections of biases given in Chapter 2) for these Doppler stations have been established at lower accuracies compared to Doppler stations directly surveyed in the WGS 84 reference frame. 'Thus, the absolute accuracy (one sigma) of these Doppler station WGS 84 coordinates was assumed to be:

$$
\begin{align*}
& \sigma_{\phi}=\sigma_{\lambda}= \pm 2 \mathrm{~m} \tag{8-3}\\
& \sigma_{\mathrm{h}}= \pm 2 \text { to } \pm 3 \mathrm{~m} . \tag{8-4}
\end{align*}
$$

The WGS 84 coordinates for 1591 Doppler stations, surveyed up to 31 December 1986 and used as an integral part of the WGS 84 development, and additional stations, surveyed after 1 January 1987, have been used to develop Local Geodetic Datum-to-WGS 84 Datum Transformations (Chapter 7).

The WGS 84 coordinate accuracies in the two paragraphs immediately above are absolute accuracies in that they incorporate not only the "observational" or solution error, but the errors associated with placing the origin of the WGS 84 Coordinate System at the earth's center of mass and determining the correct scale for the WGS 84 Coordinate System. The error estimates do not include the uncertainty associated with the attempt to bring the WGS 84 zerc meridian into coincidence with the BIH-defined Zero Meridian for the epoch 1984.0. This is not necessary since the location of the WGS 84 longitude reference or zero meridian is arbitrary. These absolute accuracy values should not be confused with the sub-meter precision:

- Of a Doppler or GPS coordinate solution (the "observitional" error).
- Of a Doppler or GPS coordinate solution which has been repeated independently at the same site.

The WGS 84 coordinates of a non-satellite derived local geodetic network station will be less accurate than the WGS 84 coordinates of a Doppler or GPS station. This is due to the distortions and surveying errors present in local geodetic datum networks, the lack (in general) of a sufficient number of properly placed Doppler or GPS stations colocated with local geodetic datum stations for use in forming the Local Geodetic Datum-to-WGS 84 Datum Shifts, and the uncertainty introduced by the datum transformation.

This page is intentionally blank

9. CONCIUSIONS/SUMMARY

World Geodetic System 1984 is based on the use of data, techniques, and technology available in early 1984. As a result, WGS 84 is more accurate than WGS 72 and replaces the latter as the geocentric system officially authorized for DoD use.

The origin and orientation of the WGS 84 Reference Frame are more accurately defined than they were for $W G S 72 n$ In addition, Doppler and GPS-Cerived Local Geodetic Datum-to-WGS 84 Datum Shifts are more accurate than analogous WGS 72 values, and are available for many more datums for WGS 84 as compared to WGS 72. Further, the WGS 84 EGM and geoid are considerably more accurate than their wGS 72 counterparts, and minor scale errors inherent in WGS 72 are reduced in WGS 84 . These improvements translate into:

- More accurate maps and charts of scale 1:50,000 and larger.
- More accurate geodetic courdinates, geoid heights, heights above the geoid (approximately mean sea level), and distances.
- An improved capability for satellite orbit detexmination and prediction.
- The capability to place many more local geodetic datums on a world geodetic system, and do it more accurately.

The latter is particularly important for those local geodetic datums affected by large distortions. Placement of such local datums on WGS 84, using the variable datum shifts made possible by a well dispersed set of Doppler or GPS sites, effectively removes these distortions.

The value of WGS 84 will become increasingly evident in the early 1990s when Navstar GPS will be fully operational. Since the reference system for Navstar GPS is WGS 84, high quality geocentric coordinates can be provided automatically by Navstar GPS User Equipment. For those using Navstar GPS but still utilizing local geodetic datums and products, the availability of the more accurate $W G S$ 84-to-Local Geodetic Datum Shifts will lead to an improved recovery of local coordinates. Again, the value of having all MC\&G products and navigational activities referenced to WGS 84 is noted. But if local geodetic datums are in use, requiring a WGS 84-to-Local Geodetic Datum Transformation, then the value of having improved datum shifts (made possible by a well dispersed set of Doppler or GPS sites throughout the region) is apparent.

Efforts have been initiated to enhance/refine WGS 84 to satisfy anticipated future requirements for $M C \& G$ products and data of increased accuracy.

REEERENCES

1. Supplement to Department of Defense World Geodetic System 1984_DMA Technical Repert: Part I - Methods, Techniques, and Data Used in WGS 84 Development; DMA TR 8350.2-A; Headquarters, Defense Mapping Agency; Washington, DC; 1 December 1987.
2. Moritz, H. and I.I. Mueller; Earth Rotation-Theory and Observation; Ungar Publishing Company; New York, New York; 1987.
3. Moritz, H.; "Geodetic Reference System 1980"; Bulletin Geodesigue; Vol. 54, No. 3; Paris, France; 1980.
4. Seppelin, T. 0.; The Department of Defense World Geodetic System 1972; Technical Paper; Headquarters, Defense Mapping Agency; Washington, DC; May 1974.
5. Moritz H.; "Fundamental Geodetic Constants"; Report of Special Study Group No. 5.39 of the International Association of Geodesy (IAG); XVII General Assembly of the International Union of Geodesy and Geophysics (IUGG); Canberra, Australia; December 1979.
6. International Association of Geodesy; "The Geodesist's Handbook 1984"; Bulletin Geodesique; Vol. 58, No. 3; Paris, France; 1984.
7. Moritz, H., "Fundamental Geodetic Constants"; Report of Special Study Group No. 5.39 of the International Association of Geodesy (IAG); XVI General Assembly of the International Union of Geodesy and Geophysics (IUGG); Grenoble, France; August-September 1975.
8. Rapp, R.H.; "Fundamental Geodetic Constants"; Report of Special Study Group No. 5.39 of the International Association of Geodesy (IAG); XVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG); Hamburg, Federal Republic of Germany; August 1983.
9. Aoki, S.; Guinot, B.; Kaplan, G.H.; Kinoshita, H.; McCarthy, D.D; and P. K. Seidelmann; "The New Definition of Universal Time"; Astronomy and Astrophysics; Vol. 105; 1982.
10. Kaplan, G.H.; The IAU Resolutions on Astronomical Constants, Time Scales, and the Fundamental Reference Frame; Circular No. 163; United States Naval Observatory; Washington, DC; 10 December 1981.
11. Geodetic Reference System 1967; Special Publication No. 3; International Association of Geodesy; Paris, France; 1971.
12. Price, W.F.; "The New Definition of the Metre"; Survey Reyiew; Vol. 28, No. 219; January 1986.

REEERENCES (Cont'd)

13. Heiskanen, W. A. and H. Moritz; Rhysical Geodesy; W. H. Freeman and Company; San Francisco, California and London, UK; 1967.
14. Mueller, I.I. and M. Kumar; The OSU 275 System of Satelifite Tracking Station coordinates; Department of Geodetic Science and Surveying Report No. 228; The Ohio State University; Columbus, Ohio: August 1975.
15. Appelbaum, L.T.; "Geodetic Datum Transformation By Multiple Regression Equations"; Ereceedings of the Third International Geodetic. Sympesium on Satellite Doppler Rositioning; New Mexico State University; Physical Science Laboratory; Las Cruces, New Mexico; 8-12 February 1982.
16. Molodensky, M.S.; Eremeev, V.F.; and M.I. Yurkina; Methods for Study of the External Gravitational Eield and Eigure of the Earth; Israel Program for Scientific Translations; Jerusalem, Israel; 1962. (Available from the National Technical Information Service; United States Department of Commerce; Washington, DC).
17. Kumar, M.; "A Practical Method to Compute Geoidal Heights for Local/Regional Datums"; Marine_Geodesy ; Vol. 13, London, UK; 1989.

APPENDIX A

IIST OF REFERENCE ELLIPSOID NAMES AND PARAMETERS (USED FOR GENERATING DATUM TRANSFORMATIONS)

This page is intentionally blank

REFERENCE ELLIPSOIDS
 FOR
 LOCAL GEODETIC DATUMS

1. GENERAL

This appendix lists the reference ellipsoids and their constants (a,f) associated with the local geodetic datums which are tied to WGS 84 through datum transformation constants and/or MRE's (Appendices B, C, and D).

2. CONSTANT CHARACTERSTICS

In Appendix A.1, the list of ellipsoids includes a new feature. Some of the reference ellipsoids have more than one semimajor axis (a) associated with them. These different values of axis (a) vary from one region or country to another or from one year to another within the same region or country.

A typical example of such an ellipsoid is Everest whose semi-major axis (a) was originally defined in yards. Here, changes in the yard to meter conversion ratio over the years have resulted in five different values for the constant (a), as identified in Appendix A.1.

To facilitate correct referencing, a standardized two letter code is also included to identify the different ellipsoids and/or their "versions" pertaining to the different values of the semi-major axis (a).

This page is intentionally blank.
Reference Ellipsoid Names and Constants Used for Datum Transformations*

Reference Ellipsoid Name	ID Code	a (Meters)	f^{-1}
Airy 1830	AA	6377563.396	299.3249646
Australian National	AN	6378160	298.25
Bessel 1841			
Ethiopia, Indonesia, Japan, and Korea	BR	6377397.155	299.1528128
Namibia	BN	6377483.865	299.1528128
Clarke 1866	CC	6378206.4	294.9786982
Clarke 1880**	$C D$	6378249.145	293.465
Everest			
Brunei and E. Malaysia (Sabah and Sarawak)	EB	6377298.556	300.8017
India 1830	EA	6377276.345	300.8017
India 1956***	EC	6377301.243	300.8017
W. Malaysia and Singapore 1948	EE	6377304.063	300.8017
W. Malaysia 1969***	ED	6377295.664	300.8017
Geodetic Reference System 1980	RE	6378137	298.257222101
Helmert 1906	HE	6378200	298.3
Hough 1960	HO	6378270	297
International 1924	IN	6378388	297
Krassovsky 1940	KA	6378245	298.3
Modified Airy	AM	6377340.189	299.3249046
Modified Fissher 1960	FA	6378155	298.3
South American 1969	SA	6378160	298.25
WGS 1972	WD	6378135	298.26
WGS 1984	WE	6378137	298.257223563

Refer to Appendices B,C, and D.
*** Thrcugh adoption of a new yard to meter conversion factor in the referenced country.
A. 1-1

This page is intentionally blank
A. 1-2

APPENDIX B

DATUM TRANSFORMATIONS DERIVED USING SATELLITE TIES TO GEODETIC DATUMS/SYSTEMS

This page is intentionally blank

DATUM TRANSFORMATION CONSTANTS

- GEODETIC DATUMS/SYSTEMS TO WGS 84 (THROUGH SATELLITE TIES)

1. GENERAL

This appendix provides the details about the reference ellipsoids (Appendix A) which are used as defining parameters for the geodetic datums and systems.

There are 99 local geodetic datums which are currently related to WGS 84 through satellite ties.

2. LOCAL DATUM ELLIPSOIDS

Appendix B. 1 lists, alphabetically, the local geodetic datums and the Soviet Geodetic system 1985 (SGS 85) with their associated ellipsoids. Two letter ellipsoidal codes (Appendix A) have also been included to clearly indicate which "version" of the ellipsoid was used in determining the transformation constants.

3. TRANSFORMATION CONSTANTS

Appendices B. 2 through B. 7 list the constants for local datums for continental areas. The continents and the local geodetic datums are arranged alphabetically.

Appendices E .8 through B. 10 list the constants for local datums which fall within the ocean areas. The ocean areas and the geodetic datums are also arranged alphabetically.

4. ERROR ESTIMATES

The 1σ error estimates for the datum transformation constants $(\Delta X, \Delta Y, \Delta Z)$, obtained from the computed solutions, are also tabulated. These estimates do not include the errors of the common control station coordinates which were used to compute the shift constants.

For datums having four or less common control stations, the 1σ errors for shift constants are non-computed estimates.

The current set of error estimates have been revaluated and revised after careful consideration of the datum transformation solutions and the related geodetic information; the intent has been to assign estimates as realistic as possible.

This page is intentionally blank.
Appendix B. 1
Geodetic Datums/Reference Systems Related to World Geodetic System 1984 ('rhrough Satellite Ties)

Local Geodetic Datum

Adindan
Afgooye
Air el Abd 1970
Anna 1 Astro 1965
Antigua Island Astro 1943
Arc 1950
Arc 1960
Ascension Island 1958
Astro Beacon "E" 1945
Astro DOS 71/4
Astro Tern Island (FRIG) 1961
Astronomical Station 1952
Australian Geodetic 1966
Australian Geodetic 1984
Ayabelle Lighthouse
Bellevue (IGN)
Bermuda 1957
Bissau
Bogota Observatory
Campo Inchauspe
Canton Astro 1966
Cape
Cape Canaveral
Carthage
Chatham Island Astro 1971
Chua Astro
Corrego Alegre
Dabola
Djakarta (Batavia)
DOS 1968

Associated*
Reference Ellipsoid Code
Clarke $1880 \quad$ CD
Krassovsky 1940 KA
International 1924 IN
Australian National AN
Clarke 1880 CD
Clarke $1880 \quad$ CD
Clarke $1880 \quad$ CD
Internationai 1924 IN
International 1924 IN
Internatior.al 1924 IN
International 1924 IN
International 1924 IN
Australian National AN
Australian National AN
Clarke 1880 CD
International 1924 IN
Clarke 1866 CC
International 1924 IN
International 1924 IN
International 1924 IN
International 1924 IN
Clarke 1880 CD
Clarke 1866 CC
Clarke 1880 CD
International 1924 IN
Internationa」 1924 IN
International 1924 IN
Clarke $1880 \quad$ CD
Bessel 1841 BR
International 1924 IN

* See Appendix A. 1 for associated constants a,f.

> Appendix B. 1 (Cont'd)
> Geodetic Datums/Reference Systems Related to World Geodetic System 1984 (Through Satellite Ties)

Local Geodetic Datum

Easter Island 1967
European 1950
European 1979
Eort Thomas 1955
Gan 1970
Geodetic Datum 1949
Graciosa Base SW 1948
Guam 1963
GUX 1 Astro
Hjorsey 1955
Hong Kong 1963
Hu-Tzu-Shan
Indian
Indian 1954
Indian 1975
Ireland 1965
ISTS 061. Astro 1968
ISTS 073 Astro 1969
Johnston Island 1961
Kandawala
Kerguelen Island 1949
Kertau 1948
Kusaie Astro 1951
L. C. 5 Astro 1961

Leigon
Liberia 1964
Luzon
Mahe 1971
Massawa Merchich

Associated*
Reference Ellipsoid Code
International 1924 IN
International 1924 IN
International 1924 IN
Clarke 1880
CD
International 1924 IN
International 1924 IN
International 1924 IN
Clarke 1866
International 1924 IN
International 1924 IN
International 1924 IN
International 1924 IN
Everest
EA/EC**
Everest EA
Everest EA
Modified Airy AM
International 1924 IN
International 1924 IN
International 1924 IN
Everest EA
International 1924 IN
Everest EE
International 1924 IN
Clarke 1866 CC
Clarke $1880 \quad$ CD
Clarke $1880 \quad$ CD
Clarke 1866 CC
Clarke 1880 CD
Bessel 1841 BR
Clarke $1880 \quad C D$

* See Appendix A. 1 for associated constants a,f.
** Due to different semi-major axes. See Appendix A.I.

Appendix B. 1 (Cont'd)
Geodetic Datums/Reference Systems Related to World Geodetic System 1984
(Through Satellite Ties)

Local Geodetic Datum	Associated* Reference Ellipsoid	ここde
Midway Astro 1961	International 1924	IN
Minna	Clarke 1880	CD
Montserrat Island Astro 1958	Clarke 1880	CD
M'Poraloko	Clarke 1880	CD
Nahrwan	Clarke 1880	CD
Naparima, BWI	International 1924	IN
North American 1927	Clarke 1866	CC
North American 1983	GRS 80***	RF
Observatorio Meteorologico 1939	International 1.924	IN
Old Egyptian 1907	Helmert 1906	HE
Old Hawaiian	Clarke 1866	CC
Oman	Clarke 1880	CD
Ordnance Survey of Great Britain 1936	Airy 1830	AA
Pico de las Nieves	International 1924	IN
Pitcairn Astro 1967	International 1924	IN
Point 58	Clarke 1880	$C D$
Pointe Noire 1948	Clarke 1880	$C D$
Porto Santo 1936	International 1924	IN
Provisional South American 1956	International 1924	IN
Provisional South Chilean 1963****	International 1924	IN
Puerto Rico	Clarke 1866	CO
Qatar National	International 1924	IN
Qornog	International 1924	IN
Reunion	International 1924	IN
Rome 1940	International 1924	IN
Santo (DOS) 1965	International 1924	IN
Sao Braz	International 1924	IN
Sapper Hill 1943	International 1924	IN
Schwarzeck	Bessel 1841	BN
Selvagem Giande 1938	International 1924	IN

[^4]
Appendix B. 1 (Cont'd)
 Geodetic Datums/Reference Systems Related to World Geodetic System 1984
 (Through Satellite Ties)

Local Geodetic Datum

South American 1969
South Asia
Timbalai 1948
Tokyo
Tristan Astro 1968
Viti Levu 1916
Wake-Eniwetok 1960
Wake isiand Astro 1952
zanderij

Reference Ellipsoid ${ }^{\text {Associated* }}$ Code
South American 1969 SA
Modified Fischer 1960 FA
Everest EB
Bessel 1841 BR
International 1924 IN
Clarke 1880
CD
Hough 1960 HO
International 1924 IN
International 1924 IN

- See Appendix A. 1 tor associated constants a,f. て・を xTpuəddy
sมヲ7əurexed uotqeuxofsuext

Local Geodetic Datums＊		```Reference Ellipsoids and Parameter Differences**```			No．of Doppler Stations Used	Transformation Paramecers＊＊		
Name	Code＊＊＊	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \pm \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{m})$
ADINDAN Mean Solution （Ethiopia and Sudan）	$\begin{gathered} \mathrm{ADI} \\ \mathrm{ADI}-\mathrm{M} \end{gathered}$	Clarke 1880	-112.145	-0.54750714	22	-166 ± 5	-15 ± 5	204 ± 3
Burkina Faso	$A D I-E$				1	-118 ± 25	-14 ± 25	218 ± 25
Cameroon	$A D I-F$				1	-134 ± 25	-2 ± 25	210 ± 25
Ethiopia	$A D I-A$				8	-165 ± 3	-11 ± 3	206 ± 3
Mali	$A D I-C$				1	-123 ± 25	-20 ± 25	220 ± 25
Senegal	$A D I-D$				2	-128 ± 25	-18 ± 25	224 ± 25
Surdan	$A D I-B$				14	-161 ± 3	-14 ± 5	205 ± 3

＊Geoid heights computed using spherical hammonic expansion and WGS 84 EGM coefficient set（ $n=m=180$ ）， then referenced to the elimpsoid and orientation associated with each of the local geodetic datums．

$$
\text { ** WGS } 84 \text { minus local geodetic datum }
$$

＊＊＊Identifies datum codes to be used in software applications．

B．2－1
Z•g x
Transformation Parameters

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{E} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta \mathrm{Y}(\mathrm{m})$	$\Delta z(\mathrm{~m})$
AFGOOYE Somalia	AFG	Írassovsky	-108	0.00480795	1	-43 ± 25	-163 ± 25	$45 \cdot 25$
ARC 1950 Mean Silution	$\begin{gathered} \mathrm{ARF} \\ \mathrm{ARF}-\mathrm{M} \end{gathered}$	Clarke 1880	-112.145	-0.54750714	41	-143 ± 20	-90 ± 33	-294 ± 20
Botswana	ARF-A				9	-138 ± 3	-105 ± 5	-289 ± 3
Birundi	$\therefore R E-E$				3	-153 ± 20	-5 ± 20	-292 ± 20
Lesotho	ARF-B				5	-125 ± 3	-108 ± 3	-295 ± 8

 then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

$$
\text { ** WGS } 84 \text { minus local geodetic datur }
$$

*** Identifies datum codes to be used in software applications.
B. 2-2
Continent: AFRICA

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			ivo. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{ma})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{HI})$
ARC 1950 (Cont ${ }^{\text {d }}$ d)	ARF	Clarke 1880	-112.145	-0.54750714				
Malawi	ARE-C				6	-161 ± 9	-73 ± 24	-317 ± 8
Swaziland	ARF-D				4	-134 ± 15	-105 ± 15	-295 ± 15
Zaire	ARF-E				2	-169 ± 25	-19 ± 25	-278 ± 25
Zambia	ARF-F				5	-147 ± 21	-74 ± 21	-283 ± 27
Zimbabwe	ARF-G				10	-142 ± 5	-96 ± 8	-293 ± 11
ARC 1960 Mean Solution (Kenya and Tanzania)	ARS	Clarke 1880	-112.145	-0.54750714	25	-160 ± 20	-6 ± 20	-302 ± 20

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficiert set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums. ** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 2-3
Appendix B. 2
Transformation Parameters
Local Geodetic Datums to WGS 84 -
Continent: AFRICA

Local Geodetic Datums		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Paramecers**		
Name	Code ${ }^{\text {* * }}$	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}$ (m)
AYARELLE LIGETHOUSE Djibouti	Pha	Clarke 1880	-112.145	-0.54750714	1	-19 ± 25	-129 ± 25	145 ± 25
BISSAU Guinea-Bissau	BID	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	2	-173 ± 25	253 ± 25	27 ± 25
CAPE South Africa	CAP	Clarke 1880	-112.145	-0.54750714	5	-136 ± 3	-108 ± 6	-292 ± 6
CARTHAGE Tunisia	CGE	Clarke 1880	-112.145	-0.54750714	5	-263 ± 6	6 ± 9	431 ± 8
DABOLA Guinea	DAL	Clarke i380	-112.145	-0.54750714	4	-83 ± 15	37 ± 15	124 ± 15
EUROPEAN 1950 Egypt	$\begin{aligned} & \text { EUR } \\ & \text { EUR-F } \end{aligned}$	International 1924	-251	-0.14192702	14	-130 ± 6	-117 ± 8	-151 ± 8

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($\mathrm{n}=\mathrm{m}=180$),
 ** NGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
Appendix B. 2
 Local Geodetic Datums to WGS 84 -

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(m)$	$\Delta \mathrm{Z}(\mathrm{m})$
LEIGON Ghana	LEH	Clarke 1880	-112.145	-0.54750714	8	-130 ± 2	29 ± 3	364 ± 2
LIBERIA 1964 Liberia	LIB	Clarke 1880	-112.145	-0.54750714	4	-90 ± 15	40 ± 15	88 ± 15
MASSAWA Eritrea (Ethiopia)	MAS	Bessel 1841	739.845	0.10037483	1	639 ± 25	405 ± 25	60 ± 25
MERCHICH Morocco	MER	Clarke 1880	-112.145	-0.54750714	9	31 ± 5	146 ± 3	47 ± 3
MINNA	MIN	Clarke 1880	-112.145	-0.54750714				
Cameroon	MIN-A				2	-81 ± 25	-84 ± 25	115 ± 25
Nigeria	MIN-B				6	-92 ± 3	-93 ± 6	122 ± 5

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 2-5

Local Gecdetic Datums*		$\begin{gathered} \text { Reference Ellipsoids } \\ \text { and } \\ \text { Parameter Differences** } \end{gathered}$			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta X(m)$	$\Delta Y(m)$	$\Delta \mathrm{Z}(\mathrm{m})$
M'PORALOKO Gabon	MPO	Clarke 1880	-112.145	-0.54750714	1	-74 ± 25	-130 ± 25	42 ± 25
$\begin{aligned} & \text { OLD EGYPTIAN } \\ & 1907 \\ & \text { Egypt } \end{aligned}$	OEG	Helmert 1906	-63	0.00480795	14	-130 ± 3	110 ± 6	-13 ± 8
POINT 58 Mean Solution (Burkina Faso and Niger)	PTB	Clarke 1880	-112.145	-0.54750714	2	-106 ± 25	-129 ± 25	165 ± 25
$\begin{aligned} & \text { POINTE NOIRE } \\ & 1948 \\ & \text { Congo } \end{aligned}$	PTN	C. 2 arke 1880	-112.145	-0.54750714	1	-148 ± 25	51 ± 25	-291 ± 25
SCHMARZECK Namibia	SCK	Bessel 1841	653.135\#	0.10037483	3	616 ± 20	97 ± 20	-251 ± 20

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set (n=m=180), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
\# This Δ a value reflects an a-value of $63: ; 483.865$ meters for the Bessel 1841 Ellipsoid in Namibia.
Appendix B. 3 sxə7วurexed Uot7euxofsuexi
- 78 SפM of sum7ea otfopoəy TEDOT

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums. ** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
\# Using GPS stations.
B. 3-1
Appendix B. 3
Transformation Para
- 78 SפM 07 sumfed 5 T7əpoəs tejot

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}$ (m)
INDIAN	IND	Everest						
Bangladesh	IND-B	(1830)	860.655\#	0.28361368	6	282 ± 10	726 ± 8	254 ± 12
India and Nepal	IND-I	(1956)	835.757\#	0.28361368	7	295 ± 12	736 ± 10	257 ± 15
INDIAN 1954 Thailand and Vietnam	$\begin{gathered} \text { INF } \\ \text { INF-A } \end{gathered}$	Everest (1330)	860.655*	0.28361368	14	218 ± 20	816 ± 20	297 ± 20
INDIAN 1975 Thailand	$\begin{aligned} & \text { INH } \\ & \text { INH-A } \end{aligned}$	Everest (1830)	860.655\#	0.28361368	6	209 ± 12	818 ± 10	290 ± 12
KANDAWALA Sri Lanka	KAN	Everest (1830)	860.655*	0.28361368	3	-97 ± 20	787 ± 20	86 ± 20
KERTAU 1948 West Malaysia and Singapore	KEA	Everest (1.948)	832.937\#	0.28361368	6	-11 ± 10	851 ± 8	5 ± 6

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=n=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datur-:
** WGS 84 minus local geodetic daturn
*** Identifies datum codes to be used in software applications.
\# See Appendix A. 1
B. 3-2
Continent: ASIA

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}$ (m)
NAERWAN	NAH	Clarke 1880	-112.145	-0.54750714				
Masirah Island (Oman)	NAH-A				2	-247 ± 25	-148 ± 25	369 ± 25
United Arab Emirates	NAH-B				2	-249 ± 25	-156 ± 25	381 ± 25
Saudi Arabia	NAH-C				3	-243 ± 20	-192 ± 20	477 ± 20
OMAN Oman	FAH	Clarke 1880	-112.145	-0.54750714	7	-346 ± 3	-1 ± 3	224 ± 9
QATAR NATIONAL Qatar	QAT	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	3	-128 ± 20	-283 ± 20	22 ± 20
SOUTH ASIA Singapore	SOA	```Modified Fischer 1960```	-18	0.00480795	1	7 ± 25	-10 ± 25	-26 ± 25

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($\mathrm{n}=\mathrm{m}=\mathrm{i} 80$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

$$
\text { ** WGS } 84 \text { minus local geodetic datum }
$$

*** Identifies datum codes to be used in software applications.
Appendix B. 3

Lucal Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}$ (m)
TIMBALAI 1948 Brunei and East Malaysia (Sarawak and Sabah)	TIL	Everest	838.444\#	0.28301368	8	-679 ± 10	669 ± 10	-48 ± 12
TORYO Mean Solution (Japan, Korea, and Okinawa)	$\begin{aligned} & \text { TOY } \\ & \text { TOY-M } \end{aligned}$	Bessel 1841	739.845	0.10037483	31	-148 ± 20	507 ± 5	685 ± 20
Japan	TOY-A				16	-148 ± 8	507 ± 5	585 ± 8
Korea	TOY-B				12	-146 ± 8	507 ± 5	687 ± 8
Okinawa	TOY-C				3	-158 ± 20	507 ± 5	676 ± 20

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($\mathrm{n}=\mathrm{m}=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.

$$
\text { \# See Appendix A. } 1
$$

Appendix B. 4
Transformation Para
Transformation Parameters
Local Geodetic Datums to WGS

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta f \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{m})$
AUSTRALIAN GEODETIC 1966	AUA	Australian National	-23	-0.00081204				
AUSTRALIAN GEODETIC 1984	AUG	Australian National	-23	-0.00081204				
fustralia and Tasmania					90	-134 ± 2	-48 ± 2	149 ± 2

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 4-1

This page is intentionally blank

Appendix B. 5
Transformation Para
Local Geodetic Datums to WGS 84 -

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta z(\mathrm{~m})$
EUROPEAN 1950 Mean Solution [Austria, Belgium, Denmark, Finland, France, FRG (Federal Republic of Germany) \#, Gibraltar, Greece, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, and Switzerland]	$\begin{aligned} & \text { EUR } \\ & \text { EUR-M } \end{aligned}$	International 1924	-251	-0.14192702	85	-87 ± 3	-98 ± 8	-121 ± 5

Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coerficient set (n-lach of the local geodetic datums. ** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.

$$
\text { Prior to October, } 1990 .
$$

B. 5-1
Appendix B. 5
Transformation Fara

- Local Geodetic Datums to WGS 84 -
Continent: EUROPE

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$),
then referenced to the ellipsoid and orientation associated with each of the local geodetic datums. ** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.

[^5]B. 5-2
\#\# European Datum 1950 coordinates developed from Ordnance Survey of Great Britain (OSGB) Scientific Network 1980 (SN 80) coordinates.
B. . $5-3$
s.a xTpuəd ${ }^{-1}$
Local Geodetic Datums to WGS 84 -
Continent: EUROPE

Local Geodetic Datums*		$\begin{gathered} \text { Reference Ellipsoids } \\ \text { and } \\ \text { Parameter Differences** } \end{gathered}$			No. of Roppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(m)$	$\Delta Z(\mathrm{~m})$
EUROPEAN 1950 (Cont'd)	EUR	International 1924	-251	-0.14192702				
Iran	EUR-H				27	-117 ± 9	-132 ± 12	$\left.\right\|^{-164} \pm 11$
Italy								
Sardinia	EUR-I				2	-97 ± 25	-103 ± 25	-120 ± 25
Sicily	EUR-J				3	-97 ± 20	-88 ± 20	-135 ± 20
Malta	EUR-L				1	-107 ± 25	-88 ± 25	-149 ± 25
Norway and Finland	EUR-C				20	-87 ± 3	-95 ± 5	-120 ± 3
Portugal and Spain	EUR-D				18	-84 ± 5	-107 ± 6	-120 ± 3

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set ($n=m=180$),
then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

$$
\text { ** WGS } 84 \text { minus local geocetic datum }
$$

*** Identifies datum codes to be used in software applications.
B. 5-4
Appendix
Transformation Para

Local Geodetic Daturas*		$\begin{gathered} \text { Reference Ellipsoids } \\ \text { and } \\ \text { Parameter Differences** } \end{gathered}$			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}$ (m)	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}$ (m)
EUROPFAN 1979 Mean Solution (Austria, Finland, Netherlands, Norway, Spain, Sweden, and Switzerland)	EUS	International 1924	-251	-0.14192702	22	-86 ± 3	-98 ± 3	-119 ± 3
EJORSEY 1955 Iceland	Hü	International 1924	-251	-0.14192702	6	-73 ± 3	46 ± 3	-86 ± 6
IRELAND 1965 Ireland	IRL	Modified Airy	796.811	0.11960023	7	506 ± 3	-122 ± 3	611 ± 3

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient sei (n=m=180), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 5-5
Appendix B. 5

Local Geodetic Datums*		```Reference EIlipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}$ (m)
ORDNANCE SURVEY OF GREAT BRITAIN 1936	OGB	Airy	573.604	0.11960023				
Mean Solution (England, Isle of Man, Scotland, Shetland Islands, and Wales)	OGB-M				38	375 ± 10	-111 ± 10	431 ± 15
England	OGB-A				21	371 ± 5	-112 ± 5	434 ± 6
England, Isle of Man, and Wales	OGB-B				25	371 ± 10	-111 ± 10	434 ± 15

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datur
*** Identifies datum codes to be used in software applications.
B. 5-6
\cdots
Appendix B. 5
Transformation Para
- Local Geodetic Datums to WGS 84 -
Continent: EUROPE

Local Geodetic Datums*		$\begin{gathered} \text { Reference Ellipsoids } \\ \text { and } \\ \text { Parameter Differences** } \end{gathered}$			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta f \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{m})$
ORDNANCE SURVEY OE GREAT BRITAIN 1936 (Cont'd)	OGB	Airy	573.604	0.11960023				
Scotland and Shetland Isiands	OGB-C				13	384 ± 10	-111 ± 10	425 ± 10
Wales	OGB-D				3	370 ± 20	-108 ± 20	434 ± 20
ROME 1940 Sardinia	MOD	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-25I	-0.14192702	1	-225 ± 25	-65 ± 25	9 ± 25

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 5-7

This page is intentionally blank
Iransformation Parameters
Local Geodetic Datums to WGS $84-$

Local Geodetic Datums*		```E.:ference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m}!$	$\Delta f \times 10^{4}$		$\Delta X(m)$	$\Delta Y(m)$	$\Delta \mathrm{Z}(\mathrm{m})$
CAPE CANAVERAL Hesn Solution (Florida and Bahamas)	CAC	Clarke 1865	-69.4	-0.37264639	19	-2 ± 3	151 ± 3	181 ± 3
NORTH AMERICAN 1927 Mear: Solution (CONUS)	$\begin{gathered} \text { NAS } \\ \text { NAS-C } \end{gathered}$	Clarke 1863	-69.4	-0.37264639	405	-8 ± 5	$\pm 60 \pm 5$	176 ± 6
Western Unjted States (Arizona, Ark ${ }^{\text {nses, }}$ California, Culorado, Idaho, Iowa, Kansas, Montans, Nebraska,	NAS-B				276	-8 ± 5	159 ± 3	175 ± 3

* Geoid heights computed using sphesical harmonic expansion and wGS 84 EGM coefficient set (n=m=180), ther referenced to the ellipsoid and irientation associated with each of the local geodetic datums.

$$
\text { ** WGS } 94 \text { minus local geodetic datarn }
$$

*** Identifies datum codes to be used in software applications.
$9^{\circ} \mathrm{g}$ xب̣puəday

Local Geocietis Dejums*		```Keference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(m)$	$\Delta \mathrm{Z}(\mathrm{m})$
NORTE AMERICAN 1927 (Cont'í) Nevada, New Mexico, North Dakota, Oklahoma, Oreson, South Dakota, Texas, Utah, Weshington, and Wyoming) Eastern United States !Alabama, Connecticut, Delaware, District of Columbia,	NA. NAS-B NAS-A	Clarke 1866	-69.4	-0.37264639	129	-9 ± 5	161 ± 5	179 ± 8

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=r=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
** Identifies datum codes to be used in software applications.
B. 6-2
Appendix B. 6 Transformation Parameters - Local Ceodetic Datums to WGS

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(m)$	$\Delta \mathrm{Z}(\mathrm{m})$
NORTH AMERICAN 1927 (Cont'd) Florida, Georgia, Illinois, Indiana, Kentucky, Louisiana. Maine, Maryland, Massaracosetts, Michige.: Minci-sota. rississinpi, Messouri, New Hampshire,	$\begin{gathered} \text { NAS } \\ \text { NAS-A } \end{gathered}$	Clarke 1866	-69.4	-0.37264639				

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

$$
\text { ** WGS } 84 \text { minus local geodetic datum }
$$

*** Iaentifies datum codes to be used in software applications.
33. 6-3
Appendix B. 6

Local Geodetic Datums*		$\begin{aligned} & \text { Reference Ellipsoids } \\ & \text { and } \\ & \text { Parameter Differences*. } \end{aligned}$			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta f \times 10^{4}$		$\Delta x(m)$	$\Delta Y(m)$	$\Delta \mathrm{Z}(\mathrm{m})$
NORTH AMERICAN 1927 (Cont'd) New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, West Visginia, and Wisconsin) Alaska	NAS NAS-A NAS-D	Clarke 1866	-69.4	-0.37264639	47	-5 ± 5	135 ± 9	172 ± 5

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 6-4
Appendix B. 6
Local Geodetic Datums to WGS 84 -
Continent: NORTH AMERICA

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(m)$	$\Delta \mathrm{Z}(\mathrm{m})$
NORTH AMERICAN 1927 (Cont'd)	NAS	Clarke 9866	-69.4	-0.37264639				
Bahamas (Excluding San Salvador Island)	NAS-Q				11	-4 ± 5	154 ± 3	178 ± 5
San Salvador Island	NAS-R				1	1 ± 25	140 ± 25	165 ± 25
Canada Mean Solution (Including Newfoundland)	NAS-E				112	-10 ± 15	158 ± 11	187 ± 6
Alberta and British Columbia	NAS-E				25	-7 ± 8	162 ± 8	188 ± 6

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums. ** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 6-6
Appendix B. 6 sxəาวurexed votวewx

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set (n=m=180), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

** WGS 84 minus local geodetic datum

*** Identifies datum codes to be used in software applications.
B. 6-7
Appendix B. 6

Lucal Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta z(\mathrm{~m})$
NORTH AMERICAN 1927 (Cont'd)	NAS	Clarke 1866	-69.4	-0.37264639				
Central America (Belize, Costa Rica, El Salvador, Guatemala, Honduras, and Nicaragua)	NAS-N				19	0 ± 8	125 ± 3	194 ± 5
Cuba	NAS-T				1	-9 ± 25	152 ± 25	178 ± 25
Greenland (Hayes Peninsula)	NAS-U				2	11 ± 25	114 ± 25	195 ± 25
Mexico	NAS-L				22	-12 ± 8	130 ± 6	190 ± 6

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 6-8
Appendix B. 6
0 - 78 SפM 07 sumfed эtұәpoəg Teつot

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}$ (m)
$\begin{aligned} & \text { NORTH AMERICAN } \\ & \text { I983 } \end{aligned}$	NAR	GRS 80	0	-0.00000016				
Alaska	NAR-A				42	0 ± 2	0 ± 2	0 ± 2
Canada	NAR-B				96	0 ± 2	0 ± 2	0 ± 2
CONUS	NAR-C				216	0 ± 2	0 ± 2	0 ± 2
Mexico and Central America	NAR-D		,		25	0 ± 2	0 ± 2	0 ± 2

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($\mathrm{n}=\mathrm{m}=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums. ** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 6-9

This page is intentionally blank

$$
\text { Appendix B. } 7
$$

Local Geodetic Datums to WGS 84 -

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Duppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{m})$
BOGOTA OBSERVATORY Col mbia	B0O	International 1924	-251	-0.14192702	7	307 ± 6	304 ± 5	-318 ± 6
CAMFO INCHAUSPE Argentina	CAI	International 1924	-251	-0.14192702	20	-148 ± 5	136 ± 5	90 ± 5
CHOA ASTRO Paraguay	CHU	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	6	-134 ± 6	$2 \% \% \pm 9$	-29 ± 5
CORREGO ALEGRE Brazil	COA	International 1924	-251	-0.14192702	17	-206 ± 5	172 ± 3	-6 ± 5

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the Ioca: geodetic datus.
** WGS 84 minus local geodetic datum
*** Identifies daturn codes to be used in software applications.
B. 7-1

$$
\begin{aligned}
& \text { Append: } \times \mathrm{B} .7 \\
& \text { Transformation Pa-ameters } \\
& \text { Local Geodetic Datums to WGS } 84-
\end{aligned}
$$

 * Geoid heignts computed using sphericai harmonic expansion and $\operatorname{mGS} 84$ EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
*** Identifies datum codes to be used in software applications.
Continsnt: soUTt AMERICA

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set (n=m=180), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
* Also known as Hito XVIII 1963.
B. 7-3
Appendix B. 7

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($\mathrm{n}=\mathrm{m}=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 7-4
Appendix B. 7
Transformation Parameters
- Local Geodetic Datums to WGS 84 -
Continent: SOUTH AMERICA

Local Geodetic Datums*		$\begin{gathered} \text { Reference Eilipsoids } \\ \text { and } \\ \text { Parameter Differences** } \end{gathered}$			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta a(m)$	$\Delta f \times 10^{4}$		$\Delta X(m)$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}$ (m)
SOUTH AMERICAN 1969 (Cont'd)	SAN	South American 1969	-23	-0.00081204				
Brazil	SAN-C				22	-60 ± 3	-2 ± 5	-41 ± 5
Chile	SAN-D				9	-75 ± 15	-1 ± 8	-44 ± 11
Colombia	SAN-E				7	-44 ± 6	6 ± 6	-36 ± 5
Ecuador (Excluding Galapagos Islands)	SAN-F				11	-48 ± 3	3 ± 3	-44 ± 3
Baltra, Galapagos Islands	SAN-J				1	-47 ± 25	25 ± 25	-42 ± 25

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

** WGS 84 minus local geodetic datum

B. 7-5
Appendix B. 7

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta f \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{n})$	$\Delta \mathrm{Z}$ (m)
SOOTH AMERICAN 1969 (Cont'd)	SAN	South American 1969	-23	-0.00081204				
Guyana	SAN-G				5	-53 ± 9	3 ± 5	-47 ± 5
Paraguay	SAN-H				4	-61 ± 15	2 ± 15	-33 ± 15
Peru	SAN-I				6	-58 ± 5	0 ± 5	-44 ± 5
Trinidad and Tobago	SAN-K				1	-45 ± 25	12 ± 25	-33 ± 25
Venezuela	SAN-L				5	-45 ± 3	8 ± 6	-33 ± 3
ZANDERIJ Suriname	ZAN	International 1924	-251	-0.14192702	5	-265 ± 5	120 ± 5	-358 ± 8

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

$$
\text { ** WGS } 84 \text { minus local geodetic datum }
$$

*** Identifies datum codes to be used in software applications.
B. 7-6
Appendix B. 8

Continent: ATLANTIC OCEAN

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=-m=180$), then referenced to the eilipsoid and orientation associated with each of the local geodetic datums.

[^6]*** Identifies datum codes to be used in software applications.
B. 8-1
Appendix B. 8

Local Geodetic Datums to WGS 84 -								
Continent: ATLANTIC OCEAN								
Local Geodet Datums*		$\begin{gathered} \text { Reference Eliipsoids } \\ \text { and } \\ \text { Parameter Differences** } \end{gathered}$			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{z}(\mathrm{m})$
CAPE CANAVERAL Mean Solution (Bahamas and Florida)	CAC	Clarke 1866	-69.4	$-0.372646 こ:$	19	-2 ± 3	- ± 3	181 ± 3
FORT THOMAS 1955 Nevis, St. Kitts, Leeward Islands	EOT	Clarke 1880	-112.145	-0.54750714	2	-7 ± 25	215 ± 25	225 ± 25
GRACIOSA BASE SW 1948 Faial, Graciosa. Pico, Sao Jorge, and Terceira Islands (Azores)	GRA	Internationai 1924	-251	-0.14192702	5	-104 ± 3	167 ± 3	-38 ± 3

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($\mathrm{n}=\mathrm{m}=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

$$
\text { ** WGS } 84 \text { minus local geodetic datum }
$$

*** Identifies datum codes to be used in software applications.
B. 8-2
8^{*} g x

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(m)$	$\Delta \mathrm{Z}(\mathrm{m})$
$\begin{aligned} & \text { HJORSEY } 1955 \\ & \text { Iceland } \end{aligned}$	HJO	International 1924	-251	-0.14192702	6	-73 ± 3	46 ± 3	-86 ± 6
ISTS 061 ASTRO 1968 South Georgia Islands	ISG	International 1924	-251	-0.14192702	1	-794 ± 25	119 ± 25	-298 ± 25
```工.C. 5 ASTRO 1961 Cayman Brac Island```	LCE	Clarke 1866	$-69.4$	$-0.37264639$	1	$42 \pm 25$	$124 \pm 25$	$147 \pm 25$
MONTSERRATI   ISLAND ASTRO 1958   Montserrat, Leet.ard Islands	ASM	Clarke 1880	$-1.12 .145$	$-0.54750714$	1	$174 \pm 25$	$359 \pm 25$	$365 \pm 25$

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set (n=m=180), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
B. 8-3
Appendix B. 8
Transformation Parameters $\quad$ Local Geodetic Datums to WGS 84 -
- Local Geodetic Datums to WGS 84 -
Continent: ATLANTIC OCEAN

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation   Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta f \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{m})$
NAPARIMA, BWI Trinidad and Tobago	NAP	International $1924$	-251	-0.14192702	4	$-10 \pm 15$	$375 \pm 15$	$165 \pm 15$
OBSERVATORIO METEOROLOGICO 1939 Corvo and Flores Islands (Azores)	FLO	International $1924$	-251	-0.14192702	3	$-425 \pm 20$	$-169 \pm 20$	$81 \pm 20$
PICO DE LAS NIEVES Canary lslands	PLN	International $1924$	-251	-0.14192702	1	$-307 \pm 25$	$-92 \pm 25$	$127 \pm 25$
```PORTO SANTO 1936 Porto Santo and Madeira Islands```	POS	International $1924$	-251	-0.14192702	2	$-499 \pm 25$	$-249 \pm 25$	$314 \pm 25$

 then referenced to the ellipsoid and orientation associated with each of the local geodetic datums. ** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
Appendix B. 8

Local Geodetic Datums*		$\begin{gathered} \text { Reference Ellipsoids } \\ \text { and } \\ \text { Parameter Differences** } \end{gathered}$			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(m)$	$\Delta Z(\mathrm{~m})$
FUERTO RICO Puerto Rico and Virgin Islands	FUR	Clarke 1866	-69.4	-0.37264639	11	11 ± 3	72 ± 3	-101 ± 3
QORNOQ South Greenland	Quo	International 1924	-251	-0.14192702	2	164 ± 25	1.38 ± 25	-189 ± 32
SAO BRAZ Sao Miguel, Santa Maria Islands (Azores)	SAO	International 1924	-251	-0.14192702	2	-203 ± 25	141 ± 25	53 ± 25
SAPPER HIL工 1943 East Falkland Island	SAP	International 1924	-251	-0.14192702	5	-355 ± 1	21 ± 1	72 ± 1

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datura codes to be used in software applications.
Appendix B. 8

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameさers**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta f \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{m})$
SELVAGEM GRANDE 1938 Salvage Islands	SGM	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	1	-289 ± 25	-124 ± 25	60 ± 25
```TRISTAN ASTRO 1968 Tristan da Cunha```	TDC	International $1924$	-251	-0.14192702	1	$-632 \pm 25$	$438 \pm 25$	$-609 \pm 25$

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set ( $n=m=180$ ), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.

$$
\text { Appendix B. } 9
$$

Appendix B. 9
Transformation Parameters Local Geodetic Datums to WGS 84

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{E} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{m})$
```ANNA 1 ASTRO 1965 Cocos Islands```	ANO	Australian National	-23	-0.00081204	1	$-491 \pm 25$	$-22 \pm 25$	$435 \pm 25$
GAN 1970 Republic of Maldives	GAA	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	1	-133 ± 25	-321 ± 25	50 ± 25
```ISTS 073 ASTRO 1969 Diego Garcia```	IST	International $1924$	-251	-0.14192702	2	$208 \pm 25$	$-435 \pm 25$	$-229 \pm 25$
KERGUELEN   ISLAND 1949   Kerguelen Island	KEG	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	1	$145 \pm 25$	$-187 \pm 25$	$103 \pm 25$

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ( $\mathrm{n}=\mathrm{m}=180$ ), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

[^7]*** Identifies datum codes to be used in software applications.
B. 9-1
Appendix B. 9


Local Geodetic Datums*		$\begin{gathered} \text { Reference Ellipsoids } \\ \text { and } \\ \text { Earameter Differences** } \end{gathered}$			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{m})$
MAEE 1971   Mahe Island	MIK	Clarke 1880	-112.145	-0.54750714	1	$41 \pm 25$	$-220 \pm 25$	$-134 \pm 25$
REONION   Mascarene Islands	REU	International $1924$	-251	-0.14192702	1	$94 \pm 25$	-948 $\pm 25$	$-1262 \pm 25$

* Geoid heights computed lising spherical harmonic expansion and WGS 84 EGM coefficient set ( $\mathrm{n}=\mathrm{m}=180$ ), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 9-2
Appendix B. 10
sxə7әwexed vot7euriofsuex


Local Geodetic Datums*		```Reference Ellipsoids ard Parameter Differences**```			No. of Doppler Stations Used	Transformation   Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}(\mathrm{m})$
ASTRO BEACON "E" 1945   Iwo Jima	ATF	International $1924$	-251	$-0.14192702$	1	$145 \pm 25$	$75 \pm 25$	$-272 \pm 25$
ASTRO TERN   ISLAND (FRIG)   1961   Tern Island	TRN	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	1	$114 \pm 25$	$-116 \pm 25$	$-333 \pm 25$
ASTRONOMICAL STATION 1952 Marcus Island	ASQ	International $1924$	-251	-0.14192702	1	$124 \pm 25$	$-234 \pm 25$	$-25 \pm 25$
BELLEVUE (IGN)   Efate and Erromango Islands	IBE	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	3	$-127 \pm 20$	$-769 \pm 20$	$472 \pm 20$

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ( $n=m=180$ ), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.

$$
\text { ** WGS } 84 \text { minus local geodetic datum }
$$

*** Identifies datum codes to be used in software applications.
OI'g x

- $\quad 88$ SSM of sumfed stұopoəg Teつot
Continent: PACIFIC OCEAN

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Dopplex Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta f \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta \mathrm{Y}(\mathrm{m})$	$\Delta Z(\mathrm{~m})$
CANTON ASTRO 1966   Phoenix Islands	CAO	International $1924$	-251	-0.14192702	4	$298 \pm 15$	$-304 \pm 15$	$-375 \pm 15$
CHATHAM ISLAND ASTRO 1971 Chatham Island (New Zealand)	CHI	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	4	$175 \pm 15$	$-38 \pm 15$	$113 \pm 15$
DOS 1968   Gizo Island   (New Georgia Islands)	GIZ	International $1924$	-251	-0.14192702	1	$230 \pm 25$	$-199 \pm 25$	$-752 \pm 25$
EASTER ISLAND   1967   Easter Island	EAS	$\begin{aligned} & \text { Internaticnal } \\ & 1924 \end{aligned}$	-251	$-0.14192702$	1	$211 \pm 25$	$147 \pm 25$	$111 \pm 25$

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ( $n=m=180$ ), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
Appendix B. 10 sxə7əurexed पotqeuxajsuex Local Geodetic Datums to $W G S 84$ -

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Usea	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta f \times 10^{4}$		$\Delta \mathrm{x}(\mathrm{m})$	$\Delta Y(m)$	$\Delta Z(m)$
```GEODETIC DATUM 1949 New Zealand```	GEO	International $1924$	-251	-0.14192702	14	$84 \pm 5$	$-22 \pm 3$	$209 \pm 5$
GUAM 1963 Guam	GUA	Clarke 1866	-69.4	-0.37264639	5	-100 ± 3	-248 ± 3	259 ± 3
GUX 1 ASTRO Guadalcanal Island	DOB	International 1924	-251	-0.14192702	1	252 ± 25	-209 ± 25	-751 ± 25
```JOENSTON ISLAND 1961 Jchnston Island```	JOH	International $1924$	-251	-0.14192702	2	$189 \pm 25$	$-79 \pm 25$	$-202 \pm 25$

* Geoid heights computed using spherical harmonic expansion and wGS 84 EGM coefficient set (n=m=180), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 10-3
Appendix B. 10

Appendix B. 10   Transformation Parameters   - Local Geodetic Datums to WGS 84 -								
Continent: PACIFIC OCEAN								
Local Geodet Datums*		$\begin{gathered} \text { Reference Ellipsoids } \\ \text { and } \\ \text { Parameter Differences** } \end{gathered}$			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta \mathrm{Y}(\mathrm{m})$	$\Delta \mathrm{Z}(\mathrm{m})$
KUSAIE ASTRO   1951   Caroline   Islands,   Fed. States of Micronesia	KUS	International $1924$	-251	-0.14192702	1	$647 \pm 25$	$1777 \pm 25$	$-1124 \pm 25$
LUZON   Philippines (Excluding Mindanao Island)	$\begin{gathered} \text { LUZ } \\ \text { LUZ-A } \end{gathered}$	Clarke 1866	-69.4	-0.37264639	6	$-133 \pm 8$	$-77 \pm 11$	$-51 \pm 9$
Mindanao Island	LUZ-E				1	$-133 \pm 25$	$-79 \pm 25$	$-72 \pm 25$
MIDWAY ASTRO   1961   Midway Islands	MID	International $1924$	-251	-0.14192702	1	$912 \pm 25$	$-58 \pm 25$	$1227 \pm 25$

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ( $n=m=180$ ), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 10-4
Appendix B. 10
Continent: PACIFIC OCEAN

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation Parameters**		
Name	Code***	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta f \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(\mathrm{~m})$	$\Delta \mathrm{Z}$ (m)
OLD HAMAIIAN	OHA	Clarke 1866	-69.4	-0.37264639				
Mean Solution	OHA-M				15	$61 \pm 25$	$-285 \pm 20$	$-181 \pm 20$
Hawaii	OHA-A				2	$89 \pm 25$	$-279 \pm 25$	$-183 \pm 25$
Kauai	OHA-B				3	$45 \pm 20$	$-290 \pm 20$	$-172 \pm 20$
Maui	OHA-C				2	$65 \pm 25$	$-290 \pm 25$	$-190 \pm 25$
Oahu	OHA-D				8	$58 \pm 10$	$-283 \pm 6$	$-182 \pm 6$
PITCAIRN ASTRO 1967   Pitcairn Island	PIT	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	1	$185 \pm 25$	$165 \pm 25$	$42 \pm 25$

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ( $\mathrm{n}=\mathrm{m}=180$ ), then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 10-5
OI'g xTpuəddy

Local Geodetic Datums*		```Reference Ellipsoids and Parameter Differences**```			No. of Doppler Stations Used	Transformation   Parameters**		
Name	Code***	Name	$\Delta a(m)$	$\Delta \mathrm{f} \times 10^{4}$		$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y$ (m)	$\Delta \mathrm{Z}$ (m)
```SANTO (DOS) 1965 Espirito Santo Island```	SAE	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	1	$170 \pm 25$	$42 \pm 25$	$84 \pm 25$
VITI LEVU 1916 Viti Levu Island (Fiji Islands)	MVS	Clarke 1880	-112.145	-0.54750714	1	51 ± 25	391 ± 25	-36 ± 25
WAKE-ENIWETOK 1960 Marshall Islands	ENW	Hough	-133	-0.14192702	10	102 ± 3	52 ± 3	-38 ± 3
WARE ISIAND ASTRO 1952 Wake Atoll	WAK	$\begin{aligned} & \text { International } \\ & \text { I924 } \end{aligned}$	-251	-0.1419: 02	2	276 ± 25	-57 ± 25	149 ± 25

* Geoid heights computed using spherical harmonic expansion and WGS 84 EGM coefficient set ($n=m=180$). then referenced to the ellipsoid and orientation associated with each of the local geodetic datums.
** WGS 84 minus local geodetic datum
*** Identifies datum codes to be used in software applications.
B. 10-6

Appendix C. 1

Local Geodetic Datums
Related to World Geodetic System 1984 (Through non-Satellite Ties)

Local Geodetic Datum	Associated*	
	Reference Ellipsoid	Code
Bukit Rimpah		BR
Camp Area Astro	Bessel 1841	IN
European 1950	International 1924	IN
Gunung Segara	International 1924	BR
Herat North	Bessel 1841	IN
Tananarive Observatory 1925	International 1924	IN
Yacare	International 1924	IN

* See Appendix A. 1 for associated constants a,f.

This page is intentionally blank

APPENDIX C

DATUM TRANSFORMATIONS DERIVED
 USING NON-SATELLITE INFORMATION

This page is intentionally blank

DATUM TRANSFORMATION CONSTANTS - LOCAL GEODETIC DATUMS TO WGS 84 (THROUGH NON-SATELLITE TIES)

1. GENERAL

This appendix provides the details about the reference ellipsoids (Appendix A) used as defining parameters for the local geodetic datums which are related to WGS 84 through non-satellite ties to the local control.

There are six such local geodetic datums, and one special area under the European Datum 1950 (ED 50).
2. LOCAL DATUM ELLIPSOIDS

Appendix C.l lists alphabetically the local geodetic datums and their associated ellipsoids. Two letter ellipsoidal codes (Appendix A) have also been included to clearly indicate which "version" of the ellipsoid has been used to determine the transformation constants.
3. TRANSFORMATION CONSTANTS

Appendix C.2 alphabetically lists the local geodetic datums and the special area under ED 50 with the associated shift constants.
4. ERROR ESTIMATES

The error estimates are not available for the datum transformation constants listed in the Appendix C.2.

This page is intentionally blank.
Appendix C. 2
Non-Satellite Derived Transformation Parameters Local Geodetic Datums to WGS 84 -

Local Geodetic Datums		```Reference Ellipsoids and Parameter Differences*```			Transformation Parameters*		
Name	Code**	Name	$\Delta \mathrm{a}(\mathrm{m})$	$\Delta \mathrm{f} \times 10^{4}$	$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(m)$	$\Delta \mathrm{Z}$ (m)
BUKIT RIMPAE Bangka and Belitung Islands (Indonesia)	BUR	Bessel 1841	739.845	0.10037483	-384	664	-48
CAMP AREA ASTRO Camp McMurdo Area, Antarctica	CAZ	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	-104	-129	239
EUROPEAN 1950 Iraq, Israel, Jordan, Kuwait, Lebanon, Saudi Arabia, and Syria	EUR-S	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	-103	-106	-141
GUNUNG SEGARA Kalimantan (Indonesia)	GSE	Bessel 1841	739.845	0.10037483	-403	684	41
HERAT NORTH Afghanistan	HEN	$\begin{aligned} & \text { International } \\ & 1924 \end{aligned}$	-251	-0.14192702	-333	-222	114
TANANARIVE OBSERVATORY 1925 Madagascar	TAN	International 1924	-251	-0.14192702	-189	-242	-91
YACARE Uruguay	YAC	International 1924	-251	-0.14192702	-155	171	37

* WGS 84 minus local geodetic datum
** Identifies datum codes to be used in software applications.
C. 2-1

This page is intentionally blank

Appendix D

MULTIPLE REGRESSION EQUATIONS

FOR

SPECIAL CONTINENTAL SIZE

 LOCAL GEODETIC DATUMSThis page is intentionally blark.

MULTIPLE REGRESSION EQUATIONS

1.

GENERAL

This appendix provides the Multiple Regression Equations (MRE's) parameters for continental size datums and for contiguous large land areas (Table D.1).

Table D. 1

DATUMS WITH MULTIPLE REGRESSION EQUATIONS

DATUM NAME	AREA COVERED
Australian Geodetic 1966	Australian Mainland
Australian Geodetic 1984	Australian Mainland
Campo Inchauspe	Argentina
Corrego Alegre	Brazil
European 1950	Western Europe Austria, Dermark, France, W. Germany*, The Netherlands, and Switzerland.
North American 1927	CONUS
	Canadian Mainland
South American 1969	South American Mainland Argentina, Bolivia, Brazil, Chile, Colombia, E'cuador, Guyana, Peru. Paraguay, Uruguay, and Venezuela.

* Prior to October 1990.

2. APPLICATIONS

The coverage area for MRE's application are defined in detail in Appendices D.1 through D.6. MRE's coverage area should never be extrapolated and are not to be used over islands and/or isolated land areas.

The main advantage of MRE's lies in their modeling of distortions for datums, which cover continental size land areas, to obtain better transformation fit in geodetic applications.

This page is intentionally blank.

Multiple Regression Equations (MRE's)
for Transforming Australian Geodetic Datum 1966 (AUA) to WGS 84

Area of Applicability : Australian Mainland (excluding Tasmania)

MRE coefficients for ϕ and λ are :

$$
\begin{aligned}
\Delta \phi^{\prime \prime}= & 5.19238+0.12666 \mathrm{U}+0.52309 \mathrm{~V}-0.42069 \mathrm{U}^{2} \\
& -0.39326 \mathrm{UV}+0.93484 \mathrm{U}^{2} \mathrm{~V}+0.44249 \mathrm{UV}^{2}-0.30074 \mathrm{UV}^{3} \\
& +1.00092 \mathrm{U}^{5}-0.07565 \mathrm{~V}^{6}-1.42988 \mathrm{U}^{9}-16.06639 \mathrm{U}^{4} \mathrm{~V}^{5} \\
& +0.07428 \mathrm{~V}^{9}+0.24256 \mathrm{UV}^{9}+938.27946 \mathrm{U}^{5} \mathrm{~V}^{7} \\
& -62.06403 \mathrm{U}^{7} \mathrm{~V}^{8}+89.19184 \mathrm{U}^{9} \mathrm{~V}^{8} \\
\Delta \lambda^{\prime \prime}= & 4.69250-0.87138 \mathrm{U}-0.50104 \mathrm{~V}+0.12678 \mathrm{UV} \\
& -0.23076 \mathrm{~V}^{2}-0.61098 \mathrm{U}^{2} \mathrm{~V}^{8}-0.38064 \mathrm{~V}^{3}+2.89189 \mathrm{U}^{6} \\
& +5.26013 \mathrm{U}^{2} \mathrm{~V}^{5}-2.97897 \mathrm{U}^{3}+5.43221 \mathrm{U}^{3} \mathrm{~V}^{5} \\
& -3.40748 \mathrm{U}^{2} \mathrm{~V}^{6}+0.077772 \mathrm{~V}^{8}+1.08514 \mathrm{U}^{8} \mathrm{~V}^{2}+0.71516 \mathrm{UV}^{8} \\
& +0.20185 \mathrm{~V}^{9}+5.18012 \mathrm{U}^{2} \mathrm{~V}^{8}-1.72907 \mathrm{U}^{3} \mathrm{~V}^{\theta}
\end{aligned}
$$

where : $\quad U=K\left(\phi+27^{\circ}\right) ; \quad V=K\left(\lambda-134^{\circ}\right) ; \quad K=0.05235988$

NOTE : Input ϕ as (-) from $90^{\circ} \mathrm{S}$ to $0^{\circ} \mathrm{N}$ in degrees.
Input λ as (-) from $180^{\circ} \mathrm{W}$ to $0^{\circ} \mathrm{E}$ in degrees.

Quality of $\mathrm{fit}= \pm 2.0 \mathrm{~m}$

Test Case :

AUA
$\phi=(-) 17^{\circ} 00^{\prime} 32.78^{\prime \prime} \mathrm{S}$
$\lambda=$
$144^{\circ} 11^{\prime} 37.25^{\prime \prime} \mathrm{E}$

Shift
$\Delta \phi=5.48^{\prime \prime}$
$\Delta \lambda=3.92^{\prime \prime}$

WGS 84
$\phi=(-) 17^{\circ} 00^{\prime} 27.30^{\prime \prime} \mathrm{S}$
$\lambda=\quad 144^{\circ} 11^{\prime} 41.17^{\prime \prime} \mathrm{E}$

Area of Applicability : Australian Mainland (excluding Tasmania)

MRE coefficients for ϕ and λ are :

$$
\begin{aligned}
\Delta \phi^{\prime \prime}= & 5.20604+0.25225 \mathrm{U}+0.58528 \mathrm{~V}-0.41584 \mathrm{U}^{2} \\
& -0.38620 \mathrm{UV}-0.06820 \mathrm{~V}^{2}+0.38699 \mathrm{U}^{2} \mathrm{~V}+0.07934 \mathrm{UV}^{2} \\
& +0.37714 \mathrm{U}^{4}-0.52913 \mathrm{U}^{4} \mathrm{~V}+0.38095 \mathrm{~V}^{7}+0.68776 \mathrm{U}^{2} \mathrm{~V}^{6} \\
& -0.03785 \mathrm{~V}^{8}-0.17891 \mathrm{U}^{9}-4.84581 \mathrm{U}^{2} \mathrm{~V}^{7}-0.35777 \mathrm{~V}^{9} \\
& +4.23859 \mathrm{U}^{2} \mathrm{~V}^{9} \\
\Delta \lambda^{\prime \prime}= & 4.67877-0.73036 \mathrm{U}-0.57942 \mathrm{~V}+0.28840 \mathrm{U}^{2} \\
& +0.10194 \mathrm{U}^{3}-0.27814 \mathrm{UV}^{2}-0.13598 \mathrm{~V}^{3}+0.34670 \mathrm{UV}^{3} \\
& -0.46107 \mathrm{~V}^{4}+1.29432 \mathrm{U}^{2} \mathrm{~V}^{3}+0.17996 \mathrm{UV}^{4}-1.13008 \mathrm{U}^{2} \mathrm{~V}^{5} \\
& -0.46832 \mathrm{U}^{8}+0.30676 \mathrm{~V}^{\mathrm{B}}+0.31948 \mathrm{U}^{9}+0.16735 \mathrm{~V}^{9}
\end{aligned}
$$

Where : $\quad U=K\left(\phi+27^{\circ}\right) ; \quad V=K\left(\lambda-134^{\circ}\right) ; \quad K=0.05235988$

NOTE : Input ϕ as (-) from $90^{\circ} \mathrm{S}$ to $0^{\circ} \mathrm{N}$ in degrees.
Input λ as (-) from $180^{\circ} \mathrm{W}$ to $0^{\circ} \mathrm{E}$ in degrees.

Quality of $\mathrm{fit}= \pm 2.0 \mathrm{~m}$

Test Case :

AUG

$$
\begin{aligned}
& \phi=(-) 20^{\circ} 38^{\prime} 00.677^{\prime \prime} \mathrm{S} \\
& \lambda=\quad 144^{\circ} 24^{\prime 29.29} \mathrm{E}
\end{aligned}
$$

Shift
$\begin{array}{ll}\Delta \phi=5.50^{\prime \prime} & \phi=(-) 20^{\circ} 37 \cdot 55.177^{\prime \prime} \mathrm{S} \\ \Delta \lambda=4.11^{\prime \prime} & \lambda=r\left(144^{\circ} 24^{\prime} 33.40^{\prime \prime} \mathrm{E}\right.\end{array}$

WGS 84

Multiple Regression Equations (MRE's)
for Transforming
Campo Inchauspe Datum (CAI) to WGS 84

Area of Applicability : Argentina (Continental land areas only)

MRE coefficients for ϕ and λ are :

$$
\begin{aligned}
\Delta \phi^{\prime \prime}= & 1.67470+0.52924 \mathrm{U}-0.17100 \mathrm{~V}+0.18962 \mathrm{U}^{2} \\
& +0.04216 \mathrm{UV}^{4}+0.19709 \mathrm{UV}^{2}-0.22037 \mathrm{U}^{4}-0.15483 \mathrm{U}^{2} \mathrm{~V}^{2} \\
& -0.24506 \mathrm{UV}^{4}-0.05675 \mathrm{~V}^{5}+0.06674 \mathrm{U}^{6}+0.01701 \mathrm{UV}^{5} \\
& -0.00202 \mathrm{U}^{7}+0.08625 \mathrm{~V}^{7}-0.00628 \mathrm{U}^{8}+0.00172 \mathrm{U}^{8} \mathrm{~V}^{4} \\
& +0.00036 \mathrm{U}^{9} \mathrm{~V}^{6} \\
\Delta \lambda^{\prime \prime}= & -2.93117+0.18225 \mathrm{U}+0.69396 \mathrm{~V}-0.04403 \mathrm{U}^{2} \\
& +0.07955 \mathrm{~V}^{2}+1.48605 \mathrm{~V}^{3}-0.00499 \mathrm{U}^{4}-0.02180 \mathrm{U}^{4} \mathrm{~V} \\
& -0.29575 \mathrm{U}^{2} \mathrm{~V}^{3}+0.203377 \mathrm{UV}^{4}-2.47151 \mathrm{~V}^{5}+0.09073 \mathrm{U}^{3} \mathrm{~V}^{4} \\
& +1.33556 \mathrm{~V}^{7}+0.01575 \mathrm{U}^{3} \mathrm{~V}^{5}-0.26842 \mathrm{~V}^{9}
\end{aligned}
$$

Where : $\quad U=K\left(\phi+35^{\circ}\right) ; \quad V=K\left(\lambda+64^{\circ}\right) ; \quad K=0.15707963$

NOTE : Input ϕ as (-) from $90^{\circ} \mathrm{S}$ to $0^{\circ} \mathrm{N}$ in degrees.
Input λ as (-) from $180^{\circ} \mathrm{W}$ to $0^{\circ} \mathrm{E}$ in degrees.

Quality of $\mathrm{fit}= \pm 2.0 \mathrm{~m}$

Test Case :

$$
\begin{array}{clc}
\text { CAI } & \underline{\text { Shift }} & \text { WGS 84 } \\
\phi=(-) 29^{\circ} 47^{\prime} 45.68^{\prime \prime} \mathrm{S} & \Delta \phi=1.95^{\prime \prime} & \phi=(-) 29^{\circ} 477^{\prime 43.73 " \mathrm{~S}} \\
\lambda=(-) 58^{\circ} 07^{\prime} 38.20^{\prime \prime} \mathrm{W} & \Delta \lambda=-1.96^{\prime \prime} & \lambda=(-) 58^{\circ} 07^{\prime 4} 40.16^{\prime \prime} \mathrm{W}
\end{array}
$$

Multiple Regression Equations (MRE's) for Transforming Corrego Alegre Datum (COA) to WGS 84

Area of Applicability : Brazil (Continental land areas only)

MRE coefficients for ϕ and λ are :

$$
\begin{aligned}
\Delta \phi^{\prime \prime}= & -0.84315+0.74089 \mathrm{U}-0.21968 \mathrm{~V}-0.98875 \mathrm{U}^{2} \\
& +0.89883 \mathrm{UV}^{4}+0.42853 \mathrm{U}^{3}+2.73442 \mathrm{U}^{4}-0.34750 \mathrm{U}^{3} \mathrm{~V} \\
& +4.69235 \mathrm{U}^{2} \mathrm{~V}^{3}-1.87277 \mathrm{U}^{6}+11.06672 \mathrm{U}^{5} \mathrm{~V} \\
& -46.24841 \mathrm{U}^{3} \mathrm{~V}^{3}-0.92268 \mathrm{U}^{7}-14.26289 \mathrm{U}^{7} \mathrm{~V} \\
& +334.33740 \mathrm{U}^{5} \mathrm{~V}^{5}-15.68277 \mathrm{U}^{9} \mathrm{~V}^{2}-2428.8586 \mathrm{U}^{8} \mathrm{~V}^{8} \\
\Delta \lambda^{\prime \prime}= & -1.46053+0.63715 \mathrm{U}+2.24996 \mathrm{~V}-5.66052 \mathrm{UV} \\
& +2.22589 \mathrm{~V}^{2}-0.34504 \mathrm{U}^{3}-8.54151 \mathrm{U}^{2} \mathrm{~V}+0.87138 \mathrm{U}^{4} \\
& +43.40004 \mathrm{U}^{3} \mathrm{~V}+4.359977 \mathrm{UV}^{3}+8.17101 \mathrm{U}^{4} V^{4} \\
& +16.24298 \mathrm{U}^{2} \mathrm{~V}^{3}+19.96900 \mathrm{UV}^{4}-8.75655 \mathrm{~V}^{5} \mathrm{U}^{8} \\
& -125.35753 \mathrm{U}^{5} \mathrm{~V}-127.41019 \mathrm{U}^{3} \mathrm{~V}^{4}-0.61047 \mathrm{U}^{4} \\
& +138.76072 \mathrm{U}^{\mathrm{V}}+122.04261 \mathrm{U}^{5} \mathrm{~V}^{4}-51.86666 \mathrm{U}^{9} \mathrm{~V} \\
& +45.67574 \mathrm{U}^{9} \mathrm{~V}^{3}
\end{aligned}
$$

Where : $\quad U=K\left(\phi+15^{\circ}\right) ; \quad V=K\left(\lambda+50^{\circ}\right) ; \quad K=0.05235988$
NOTE : Input ϕ as (- from $90^{\circ} \mathrm{S}$ to $0^{\circ} \mathrm{N}$ in degrees.
Input λ as (-) from $180^{\circ} \mathrm{W}$ to $0^{\circ} \mathrm{F}$ in degrees.

Quality of fit $= \pm 2.0 \mathrm{~m}$

Test Case :

COA

$$
\begin{aligned}
& \phi=(-) 20^{\circ} 29^{\prime} 01.02 \mathrm{NS} \\
& \lambda=(-) 54^{\circ} 47^{\prime} 13.1 .7 \mathrm{~W}
\end{aligned}
$$

Shift

$$
\begin{aligned}
& \Delta \phi=-1.03^{\prime \prime} \\
& \Delta \lambda=-2.10^{\prime \prime}
\end{aligned}
$$

WGS 84

$$
\begin{aligned}
& \phi=(-) 20^{\circ} 29^{\prime} 02.05^{\prime \prime} \mathrm{S} \\
& \lambda=(-) 54^{\circ} 47^{\prime} 15.27^{\prime \prime} \mathrm{W}
\end{aligned}
$$

> Multiple Regression Equations (MRE's) for Transforming
> European Datum 1950 (EUR) to WGS 84

Area of Applicability : Western Europe* (Continental contiguous land areas only)

MRE coefficients for ϕ and λ are :

$$
\begin{aligned}
\Delta \phi^{\prime \prime}= & -2.65261+2.06392 \mathrm{U}+0.77921 \mathrm{~V}+0.26743 \mathrm{U}^{2} \\
& +0.10706 \mathrm{UV}^{4}+0.76407 \mathrm{U}^{3}-0.95430 \mathrm{U}^{2} \mathrm{~V}^{+}+0.17197 \mathrm{U}^{4} \\
& +1.04974 \mathrm{U}^{\mathrm{V}} \mathrm{~V}^{9}-0.22899 \mathrm{U}^{5} \mathrm{~V}^{2}-0.05401 \mathrm{~V}^{8}-0.78909 \mathrm{U}^{9} \\
& -0.10572 \mathrm{U}^{2} \mathrm{~V}^{4}+0.05283 \mathrm{UV}^{9}+0.02445 \mathrm{U}^{3} \mathrm{~V}^{9} \\
\Delta \lambda^{\prime \prime}= & -4.13447-1.50572 \mathrm{U}+\frac{1.94075 \mathrm{~V}-1.37600 \mathrm{U}^{2}}{} \\
& +1.98425 \mathrm{UV}^{1}+0.30068 \mathrm{~V}^{2}-2.31939 \mathrm{U}^{3}-1.70401 \mathrm{U}^{4} \\
& -5.48711 \mathrm{UV}^{3}+7.41956 \mathrm{U}^{5}-1.61351 \mathrm{U}^{2} \mathrm{~V}^{3} \\
& +5.92923 \mathrm{UV}^{4}-1.97974 \mathrm{~V}^{5}+1.57701 \mathrm{U}^{6}-6.52522 \mathrm{U}^{3} \mathrm{~V}^{3} \\
& +16.85976 \mathrm{U}^{2} \mathrm{~V}^{4}-1.79701 \mathrm{UV}^{5}-3.08344 \mathrm{U}^{7} \\
& -14.32516 \mathrm{U}^{6} \mathrm{~V}+4.49096 \mathrm{U}^{4} \mathrm{~V}^{4}+9.98750 \mathrm{U}^{8} \mathrm{~V} \\
& +7.80215 \mathrm{U}^{5} \mathrm{~V}^{2}-2.269177 \mathrm{U}^{7}+0.16438 \mathrm{~V}^{9} \\
& -17.45428 \mathrm{U}^{4} \mathrm{~V}^{5}-8.25844 \mathrm{U}^{9} \mathrm{~V}^{2}+5.28734 \mathrm{U}^{8} \mathrm{~V}^{3} \\
& +8.87141 \mathrm{U}^{5} \mathrm{~V}^{7}-3.48015 \mathrm{U}^{9} \mathrm{~V}^{4}+0.71041 \mathrm{U}^{4} \mathrm{~V}^{9}
\end{aligned}
$$

Where : $\quad U=K\left(\phi-52^{\circ}\right) ; \quad V=K\left(\lambda-10^{\circ}\right) ; \quad K=0.05235988$

NOTE : Input ϕ as (-) from $90^{\circ} \mathrm{S}$ to $0^{\circ} \mathrm{N}$ in degrees.

Input λ as (-) from $180^{\circ} \mathrm{W}$ to $0^{\circ} \mathrm{E}$ in degrees.

Quality of fit $= \pm 2.0 \mathrm{~m}$

Test. Case :

EUR
Shift
WGS 84

$$
\begin{array}{lll}
\phi=46^{\circ} 41^{\prime} 42.89^{\prime \prime N} & \Delta \phi=-3.08^{\prime \prime} & \phi=46^{\circ} 41^{\prime} 39.81 " \mathrm{~N} \\
\lambda=13^{\circ} 54.54 .09^{\prime \prime} \mathrm{E} & \Delta \lambda=-3.49^{\prime \prime} & \lambda=13^{\circ} 54 \cdot 50.60^{\prime \prime}
\end{array}
$$

* See Table D. 1 (Page D-3) for the list of countries covered by the above set of MRE's.

```
    Multiple Regression Equations (MRE's)
    for Transforming
North American Datum 1927 (NAS) to WGS 84
```


Area of Applicability : Canada (Continental contiguous land

 areas only)MRE Coefficients for ϕ and λ are :

$$
\begin{aligned}
& \Delta \phi^{\prime \prime}=0.79395+2.29199 U+0.27589 \mathrm{~V}-1.76644 \mathrm{U}^{2} \\
& +0.47743 \mathrm{UV}+0.08421 \mathrm{~V}^{2}-6.03894 \mathrm{U}^{3}-3.55747 \mathrm{U}^{2} \mathrm{~V} \\
& -1.81118 U^{U} V^{2}-0.20307 V^{3}+7.75815 U^{4}-3.1017 U^{3} V \\
& +3.58363 \mathrm{U}^{2} \mathrm{~V}^{2}-1.31086 \mathrm{UV}^{3}-0.45916 \mathrm{~V}^{4}+14.27239 \mathrm{U}^{5} \\
& +3.28815 U^{4} V^{4}+1.35742 U^{2} V^{3}+1.75323 U V^{4}+0.44999 V^{5} \\
& -19.02041 \mathrm{U}^{4} \mathrm{~V}^{2}-1.01631 \mathrm{U}^{2} \mathrm{~V}^{4}+1.47331 \mathrm{UV}^{5} \\
& +0.15181 \mathrm{~V}^{6}+0.41614 \mathrm{U}^{2} \mathrm{~V}^{5}-0.80920 \mathrm{UV}^{6}-0.18177 \mathrm{~V}^{7} \\
& +5.19854 U^{4} V^{4}-0.48837 U V^{7}-0.01473 V^{8}-2.26448 U^{9} \\
& -0.46457 \mathrm{U}^{2} \mathrm{~V}^{7}+0.11259 \mathrm{UV}^{8}+0.02067 \mathrm{~V}^{9} \\
& +47.64961 \mathrm{U}^{8} \mathrm{~V}^{2}+0.04828 \mathrm{UV}^{9}+36.38963 \mathrm{U}^{9} \mathrm{~V}^{2} \\
& +0.06991 \mathrm{U}^{4} \mathrm{~V}^{7}+0.08456 \mathrm{U}^{3} \mathrm{~V}^{8}+0.09113 \mathrm{U}^{2} \mathrm{~V}^{9} \\
& +5.93797 U^{7} V^{5}-2.36261 U^{7} V^{6}+0.09575 U^{5} V^{8} \\
& \Delta \lambda^{\prime \prime}=-1.36099+3.61796 \mathrm{~V}-3.97703 \mathrm{U}^{2}+3.09705 \mathrm{UV} \\
& -1.15866 \mathrm{~V}^{2}-13.28954 \mathrm{U}^{3}-3.15795 \mathrm{U}^{2} \dot{\mathrm{~V}}+0.68405 \mathrm{UV}^{2} \\
& -0.50303 V^{3}-8.81200 U^{3} V^{5}-2.17587 U^{2} V^{2}-1.49513 U V^{3} \\
& +0.84700 \mathrm{~V}^{4}{ }^{+}+31.42448 \mathrm{U}^{5}-14.67474 \mathrm{U}^{3} \mathrm{~V}^{2} \\
& +0.65640 \mathrm{UV}^{4}+17.55842 \mathrm{U}^{6}+6.87058 \mathrm{U}^{4} \mathrm{~V}^{2}-0.21565 \mathrm{~V}^{6} \\
& +62.18139 U^{5} V^{2}+1.78687 U^{3} V^{4}+2.74517 U^{2} V^{5} \\
& -0.30085 \mathrm{UV}^{6}+0.04600 \mathrm{~V}^{7}+63.52702 \mathrm{U}^{6} \mathrm{~V}^{2} \\
& +7.83682 \mathrm{U}^{5} \mathrm{~V}^{3}+9.5944 \pm \mathrm{U}^{3} \mathrm{~V}^{5}+0.01480 \mathrm{~V}^{8}+ \\
& \begin{array}{l}
+10.51228 \mathrm{U}^{4} \mathrm{~V}^{5}-1.42398 \mathrm{U}^{2} \mathrm{~V}^{7}-0.00834 \mathrm{~V}^{9} \\
+5.23485 \mathrm{U}^{7} \mathrm{~V}^{3}-3.18129 \mathrm{U}^{3} \mathrm{~V}^{7}+8.45704 \mathrm{U}^{9} \mathrm{~V}^{2}
\end{array} \\
& -2.29333 U^{4} V^{7}+0.14465 U^{2} V^{9}+0.29701 U^{3} V^{9}
\end{aligned}
$$

Where : $\quad U=K\left(\phi-60^{\circ}\right) ; \quad V=K\left(\lambda+100^{\circ}\right) ; \quad K=0.05235988$
NOTE : Input ϕ as (-) from $90^{\circ} \mathrm{S}$ to $0^{\circ} \mathrm{N}$ in degrees.
Input λ as (- from $180^{\circ} \mathrm{W}$ to $0^{\circ} \mathrm{E}$ in degrees.
Quality of fit $= \pm 2.0 \mathrm{~m}$
Test Case :

NAS

$$
\begin{aligned}
& \phi=r 4^{\circ} 26^{\prime} 08.67^{\prime \prime N} \\
& \lambda=(-) 110^{\circ} 17^{\prime} 02.41^{\prime \prime} \mathrm{W}
\end{aligned}
$$

Shift

WGS 84

$$
\Delta \phi=0.29^{\prime \prime}
$$

$$
\Delta \lambda=-3.16^{\prime \prime}
$$

$\phi=\quad 54^{\circ} 26^{\prime} 08.96^{\prime \prime} \mathrm{N}$
$\lambda=(-) 110^{\circ} 17^{\prime} 05.57^{\prime \prime} \mathrm{W}$

Multiple Regression Equations (MRE's)
for Transforming
North American Datum 1927 (NAS) to WGS 84

Area of Applicabisity : USA (Continental contiguous land areas only; excluding Alaska and Islands)

MRE coefficients for ϕ and λ are :

$$
\begin{aligned}
\Delta \phi^{\prime \prime}= & 0.16984-0.76173 \mathrm{U}+0.09585 \mathrm{~V}+1.09919 \mathrm{U}^{2} \\
& -4.57801 \mathrm{U}^{3}-1.13239 \mathrm{U}^{2} \mathrm{~V}+0.49831 \mathrm{~V}^{3}-0.98399 \mathrm{U}^{3} \mathrm{~V} \\
& +0.12415 \mathrm{UV}^{3}+0.11450 \mathrm{~V}^{4}+27.05396 \mathrm{U}^{5}+2.03449 \mathrm{U}^{4} \mathrm{~V} \\
& +0.73357 \mathrm{U}^{2} \mathrm{~V}^{3}-0.37548 \mathrm{~V}^{5}-0.14197 \mathrm{~V}^{6}-59.96555 \mathrm{U}^{7} \\
& +0.07439 \mathrm{~V}^{7}-4.76082 \mathrm{U}^{8}+0.03385 \mathrm{~V}^{8}+49.04320 \mathrm{U}^{9} \\
& -1.30575 \mathrm{U}^{6} \mathrm{~V}^{3}-0.07653 \mathrm{U}^{3} \mathrm{~V}^{9}+0.08646 \mathrm{U}^{4} \mathrm{~V}^{9} \\
\Delta \lambda^{\prime \prime}= & -0.88437+2.05061 \mathrm{~V}+0.26361 \mathrm{U}^{2}-0.76804 \mathrm{UV} \\
& +0.13374 \mathrm{~V}^{2}-1.31974 \mathrm{U}^{3}-0.52162 \mathrm{U}^{2} \mathrm{~V}-1.05853 \mathrm{UV}^{2} \\
& -0.49211 \mathrm{U}^{2} \mathrm{~V}^{2}+2.17204 \mathrm{UV}^{3}-0.06004 \mathrm{~V}^{4}+0.30139 \mathrm{U}^{4} \mathrm{~V} \\
& +1.88585 \mathrm{UV}^{4}-0.81162 U \mathrm{UV}^{5}-0.05183 \mathrm{~V}^{6}-0.96723 \mathrm{UV}^{6} \\
& -0.12948 \mathrm{U}^{3} \mathrm{~V}^{5}+3.41827 \mathrm{U}^{9}-0.44507 \mathrm{U}^{6} \mathrm{~V}+0.18882 \mathrm{UV}^{8} \\
& -0.01444 \mathrm{~V}^{9}+0.04794 U \mathrm{~V}^{9}-0.59013 \mathrm{U}^{9} \mathrm{~V}^{3}
\end{aligned}
$$

Where: $\quad U=K\left(\phi-37^{\circ}\right) ; \quad V=K\left(\lambda+95^{\circ}\right) ; K=0.05235988$

NOTE : Input ϕ as (-) from $90^{\circ} \mathrm{S}$ to $0^{\circ} \mathrm{N}$ in degrees.
Input λ as (-) from $180^{\circ} \mathrm{W}$ to $0^{\circ} \mathrm{E}$ in degrees.

Quality of $\mathrm{fit}= \pm 2.0 \mathrm{~m}$

Test Case :

\qquad
$\phi=34^{\circ} 47^{\prime} 08.83^{\prime \prime} \mathrm{N}$
$\lambda=(-) 86^{\circ} 34^{\prime} 52.18^{\prime \prime} \mathrm{W}$

Shift

$$
\begin{aligned}
& \Delta \phi=0.36^{\prime \prime} \\
& \Delta \lambda=0.08^{\prime \prime}
\end{aligned}
$$

WGS 84
$\phi=\quad 34^{\circ} 47.09 .19^{\prime \prime} \mathrm{N}$ $\lambda=(-) 86^{\circ} 34.52 \cdot 10 " W$

Multiple Regression Equations (MRE's) for Transforming
South American Datum 1969 (SAN) to WGS 84

Area of Applicability : South America (Continental contiguous land areas only)

MRE coefficients for ϕ and λ are :

$$
\begin{aligned}
\Delta \phi^{\prime \prime}= & -1.67504-0.05209 \mathrm{U}+0.25158 \mathrm{~V}+1.10149 \mathrm{U}^{2} \\
& +0.24913 \mathrm{UV}-1.00937 \mathrm{U}^{2} \mathrm{~V}-0.74977 \mathrm{~V}^{3}-1.54090 \mathrm{U}^{4} \\
& +0.14474 \mathrm{~V}^{4}+0.47866 \mathrm{U}^{5}+0.36278 \mathrm{U}^{3} \mathrm{~V}^{2}-1.29942 \mathrm{UV}^{4} \\
& +0.30410 \mathrm{~V}^{5}+0.87669 \mathrm{U}^{6}-0.27950 \mathrm{U}^{5} \mathrm{~V}-0.46367 \mathrm{U}^{7} \\
& +4.31466 \mathrm{U}^{4} \mathrm{~V}^{3}+2.09523 \mathrm{U}^{2} \mathrm{~V}^{5}+0.85556 \mathrm{UV}^{6}-0.17897 \mathrm{U}^{8} \\
& -0.57205 \mathrm{UV}^{7}+0.12327 \mathrm{U}^{9}-0.85033 \mathrm{U}^{6} \mathrm{~V}^{3}-4.86117 \mathrm{U}^{4} \mathrm{~V}^{5} \\
& +0.06085 \mathrm{U}^{9} \mathrm{~V}^{5}-0.21518 \mathrm{U}^{3} \mathrm{~V}^{8}+0.31053 \mathrm{U}^{5} \mathrm{~V}^{7} \\
& -0.09228 \mathrm{U}^{6} \mathrm{~V}^{5}-0.22996 \mathrm{U}^{9} \mathrm{~V}^{5}+0.58774 \mathrm{U}^{6} \mathrm{~V}^{9} \\
& +0.87562 \mathrm{U}^{9} \mathrm{~V}^{7}+0.39001 \mathrm{U}^{9} \mathrm{~V}^{9}-0.81697 \mathrm{U}^{9} \mathrm{~V}^{9} \\
\Delta \lambda^{\prime \prime}= & -1.77967+0.40405 \mathrm{U}+0.50268 \mathrm{~V}-0.05387 \mathrm{U}^{2} \\
& -0.12837 \mathrm{UV}^{5}-0.54687 \mathrm{U}^{2} \mathrm{~V}^{3}-0.17056 \mathrm{~V}^{3}-0.14400 \mathrm{U}^{3} \mathrm{~V} \\
& +0.11351 \mathrm{U}^{5} \mathrm{~V}-0.62692 \mathrm{U}^{3} \mathrm{~V}^{3}-0.01750 \mathrm{U}^{8}+1.18616 \mathrm{U}^{3} \mathrm{~V}^{5} \\
& +0.01305 \mathrm{U}^{9}+1.01360 \mathrm{U}^{7} \mathrm{~V}^{3}-0.29059 \mathrm{U}^{8} \mathrm{~V}^{3} \\
& +5.12370 \mathrm{U}^{5} \mathrm{~V}^{5}-5.09561 \mathrm{U}^{7} \mathrm{~V}^{5}-5.27168 \mathrm{U}^{6} \mathrm{~V}^{7} \\
& +4.04265 \mathrm{U}^{7} \mathrm{~V}^{7}-1.62710 \mathrm{U}^{8} \mathrm{~V}^{7}+1.68899 \mathrm{U}^{9} \mathrm{~V}^{7} \\
& 2.07213 \mathrm{U}^{9}-1.76074 \mathrm{U}^{9} \mathrm{~V}^{9}
\end{aligned}
$$

Where: $\quad U=K\left(\phi+20^{\circ}\right) ; \quad V=K\left(\lambda+60^{\circ}\right) ; K=0.05235988$

NOTE : Input ϕ as (-) from $90^{\circ} \mathrm{S}$ to $0^{\circ} \mathrm{N}$ in degrees.
Input λ as (-) from $180^{\circ} \mathrm{W}$ to $0^{\circ} \mathrm{E}$ in degrees.

Quality of fit $= \pm 2.0 \mathrm{~m}$

Test Case :

\qquad
$\phi=(-) 31^{\circ} 56^{\prime} 33.95^{\prime \prime} \mathrm{h}$
$\lambda=(-) 65^{\circ} 06^{\prime} 18.66^{\prime \prime} \mathrm{W}$

Shift
WGS 84
$\phi=(-) 31^{\circ} 56^{\prime} 35.31^{\prime \prime} \mathrm{S}$
$\lambda=(-) 65^{\circ} 06^{\prime} 20.82^{\prime \prime} \mathrm{W}$

APPENDIX E
ACRONYMS

This page is intentionally blank

APPENDIX E
 -ACRONYMS-

AGD 66	= Australian Geodetic Datum 1966
AGD 84	= Australian Geodetic Datum 1984
BIH	= Bureau International de l'Heure
BTS	= BIH Terrestrial System
CEP	= Celestial Ephemeris Pole
CIS	= Conventional Inertial System
CONUS	= Contiguous United States
CTP	= Conventional Terrestrial Pole
CTS	= Conventional Terrestrial System
DMA	= Defense Mapping Agency
DMAAC	= Defense Mapping Agency Aerospace Center
DMAhtC	= Defense Mapping Agency Hydrographic Topographic Center
DoD	= Department of Defense
ECEF	- Earth-Centered, Earth-Fixed
ECI	= Earth-Centered Inertial
ECM	= Earth's Center of Mass
ED 50	= European Datum 1950
ED 79	= European Datum 1979
EGM	$=$ Earth Gravitational Model
FRG	= Federal Republic of Germany
GLONASS	= Global Navigation Satellite System
GPS	= Global Positioning System
GRS 80	= Geodetic Reference System 1980
IAG	= International Association of Geodesy
IAU	- International Astronomical Union
ITS	= Instantaneous Terrestrial System
IUGG	$=$ International Union of Geodesy and Geophysics
MC\& G	= Mapping, Charting, and Geodesy
MREs	= Multiple Regression Equations
NAD 27	= North American Daturn 1927
NAD 83	= North American Datum 1983

APPENDIX E (Cont'd)

-ACRONYMS-

NAVOCEANO $=$	Naval Oceanographic Office
Navstar GPS $=$	Navstar Global Positioning System
NGS	$=$ National Geodetic Survey
NNSS	$=$ Navy Navigation Satellite System
NSWC	$=$ Naval Surface Warfare Center (formerly Naval Surface
	Weapons Center)
OSGB $36=$	Ordnance Survey of Great Britain 1936
OSGB SN $80=$	Ordnance Survey of Great Britain Scientific Network
	1980
PSAD $56=$	Provisional South American Datum 1956
RMS	$=$ Root-Mean-Square
SAD 69	$=$ South American Datum 1969
TD	$=$ Tokyo Datum
TR	$=$ Technical Report
USNO	$=$ United States Naval Observatory
UK	$=$ United Kingdom
US	$=$ United States
UT	$=$ Universal Time
VLBI	$=$ Very Long Baseline Interferometry
WGS	$=$ World Geodetic System
WGS 72	$=$ World Geodetic System 1972
WGS 84	$=$ World Geodetic System 1984

[^0]: $\mathrm{E}-03=\mathrm{X} 10^{-3} ; \mathrm{E}-05=\mathrm{X} 10^{-5} ;$ Etc.

 * See Section 5.1

[^1]: $\mathrm{E}-03=\mathrm{X} 10^{-3} ; \mathrm{E}-05=\mathrm{X} 10^{-5} ;$ Etc.

[^2]: $\mathrm{E}-03=\mathrm{X} 10^{-3} ; \mathrm{E}-05=\mathrm{X} 10^{-5} ;$ Etc.

 * See Section 5.1

[^3]: * See next pare.

[^4]: * See Appendix A. 1 for associated constants a,f.
 *** Geodetic Reference System 1980
 ****Also known as Hito XVIII 1963

[^5]: \# Prior to October, 1990.

[^6]: ** WGS 84 minus local geodetic datum

[^7]: ** WGS 84 minus local geodetic datum

