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Hypobaric Decompression Sickness Model Development (Part I):
Diffusion of Inert Gas from a Viscoelastic Fluid (Blood)

into an Expanding Gas Phase

Introduction

In 1989, an altitude decompression model development program was initiated at the Armstrong
Laboratory. The immediate goal of this effort is to define the architecture (or framework) and the algorithms
(or software) for the decompression model. The final product will be a software package that will serve as
the altitude decompression "standard" and will lead to hardware developmcnt to provide the USAF with
DCS risk assessment capability for a variety of operational settings. This report is one in a series of several
steps taken towards the completion of this goal.

"!- z:':ies on cavitation and cavitation damage, it is necessary to use mathematical expressions
to characterize pressure and velocity fields in the neighborhood of a growing or collapsing gas-filled cavity
in a fluid. Our emphasis is on the problem of spherical bubbles in an incompressible viscoelastic liquid.
Attempts have been made recently to associate the number of bubbles and their size, with the existence
and severity of decompression sickness (DCS). It is a fact that bubbles appear when dissolved gases are
supersaturated in the blood and the tissue during DCS. Bubbles have been seen with various methods
(Ultrasound imaging techniques), and it is commonly believed that their size and numbers are involved in
DCS. The direct relationship is yet to be discovered because it is still not known how to relate critical
variables (that will be able to pre-inform us if and when DCS will occur and where) with the actual
physiological processes. The details of the processes underlying some of the manifestations of altitude
decompression sickness remain unknown, but the basic mechanism is undoubtedly the supersaturation of
the tissues and blood with nitrogen. DCS may arise either in flight or during exposure to reduced
atmospheric pressure in a hypobaric chamber. The dynamic representation of the diffusion process, and
the understanding of its solutions, analytical (if analytical solutions are possible) or numerical, will provide
an important tool to better understand this complex physiological system.

Effects of viscoelasticity and compressibility on the bubble dynamics have been previously
investigated. Barlow and Langlois(1) considered the diffusion-fed growth of a spherical gas bubble into a
Newtonian viscous liquid under isothermal conditions. Street() performed a theoretical study of bubble
growth in a viscoelastic medium (represented by the Oldroyd three-constant model) by considering the
momentum transfer process, but neglected a diffusion process between the gas and the liquid phase.
Tanasawa and Yang(7 also investigated the collapse of a gas bubble suspended in a viscoelastic liquid
represented by the Oldroyd three-constant model. Like Street, they neglected the diffusion process between
the gas and the liquid phase because they made the assumption that the gas inside the bubble was
undergoing a reversible polytropic process (the instantaneous gas pressure inside the bubble was a
function of a polytropic exponent and not coupled with a diffusion process). By taking into account the
thermodynamic behavior of the gas phase inside the bubble, they observed that, when the bubble
oscillation occurs during collapse, viscous damping is less important in viscoelastic liquids than it is in
purely viscous liquids. They observed further that a gas bubble collapses faster under adiabatic conditions
than under isothermal conditions. We will investigate a similar case, but with the exception that we will take
under consideration the fact that the blood diffusion rate cannot be characterized either fast nor slow (for
this reason the diffusion equation cannot be neglected). If the diffusion coefficient of a gas dissolved in the
suspending medium lies in the intermediate range, we must solve the hydrodynamic and the diffusion-----------------------
equation simultaneously. 8y
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Assumptions

We assume, first of all, that a single bubble of gas is growing in an otherwise unlimited volume of
liquid in the absence of foam dynamics (in other words we assume that bubbles won't compete for space
with others growing in close proximity). We assume that the liquid is a viscoelastic fluid, and we will use
an Oldroyd type B model to represent the rheological properties of the blood. We also assume that the
liquid is incompressible (low velocity gas flow can be assumed to be incompressible); the gas is ideal, it
diffuses according to Fick's law. The concentration inside the bubble is related to the concentration just
outside the bubble according to Henry's law, and only a negligible amount of gas is absorbed on the bubble
wall. Once we reach the desirable altitude, the initial radius value of the gas pocket will change according
to Boyle's law (This change occurs once and is discrete). The Laplace relationship is valid because we
emphasize growth and not nucleation. The bubbles are assumed to be spherical.

Hydrodynamics of the Model

First we must define the hydrodynamics of the problem. When a bubble grows in a liquid, there will
be a velocity field within the liquid at the gas-liquid interface, which in turn, generates a stress field tending
to retard the bubble's growth. Basically, when the fluid is being pushed by the growing bubble, it creates
a velocity field, which is equal to the rate of change of the bubble radius. The spherical symmetry of the
situation (the bubbles are spher;cal), makes it convenient to choose a spherical coordinate system with its
origin at the bubble center. The relationship of our hydrodynamic equation and the diffusion equation is
govemed by the diffusion rate. Peticolas(3 ) calculated the limiting cases of extremely rapid and extremely
slow gas diffusion, and he came to the following conclusion: if the dif'usion is sufficiently rapid, the bubble
pressure remains constant and the growth is determined by the hydrodynamic equations alone. Here the
treatment of the moving boundary is important. On the other hand, if the diffusion is slow, hydrodynamic
effects become negligible, and the diffusion equation alone describes the process fairly accurately. An
asymptotic solution of the second case, for viscous liquids, was derived by Barlow and Langlois(" in 1962.
We will solve the intermediate case where the hydrodynamic equation is coupled with the diffusion
equation.

The Model

The velocity field generated in the liquid can be described completely by the Navier-Stokes
equations. If we assume that it has only a radial component v(r,t), it reduces to: vr=vr(r,t), v8=v,=O.
From the conservation of momentum equation:

at r ar ar r2 ar r

From the continuity equation in spherical coordinates (See appendix 1):

a V V)-O (2)
* ar

Integrating equation (2) from R(t) to r we get:

r2 I (3)

2
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Notice that we treat a stationary bubble, with respect to the blood flow (creeping flow is considered in the
veins). We can assume, because of the biomolecular structure of the fluid, that the bubble (like a
suspension) is just hitching a ride with the blood. Once it is nucleated, it doesn't move independently. It just
follows the flow (Buoyanm; forces, gravity effect are omitted), and it grows in an infinite mass of
homogeneous incompressible viscoelastic liquid. Incompressibility and spherical symmetry implies
Trr+TOe+tw=0 and roo=tw. By taking under consideration these two relationships and by substituting equation
2 and 3 in equation 1, we integrate equation 1 (with respect to r) from R to infinity. The result is the
following integrodifferential equation:

PJWý RR41 =P(FP_)rf

+.FflL-p-)+An +3f"-dr (4)

The above equation represents the pressure distribution in the blood. The dynamic equation governing the
growth or collapse of the bubble may be obtained by replacing r with R. The balance of forces at the
bubble surface (r=R) requires that:

pAM)-pg(R)-(_R2 ,,,X)+T (5)

in which the radial normal stress acting on the bubble surface due to the gas phase viscocity is neglected.
Similarly, the balance of forces at r_-o will be: -P(oo)+Tr(-)=-P, (Relationship 1).

In the present study, the three-parameter, Oldroyd model is employed to represent the rheological
behavior of the blood.(4) The B fluid model is proposed here as the simplest case that might apply to blood
(shear thinning, positive Weissenberg effect). This model allows a reduction to a three-constant model but
results in both the elimination of the extra normal stress terms and the modification of the term cee in a
viscometric flow. However, since it does not appear that one can determine the additional constants
experimentally, the model is employed as a reasonable approach in the spirit of most models proposed for
the complex blood fluid. Other more recent models for the blood are the three-dimensional dyadic Walburn-
Schneck constitutive equation derived by Easthope() and the non-linear Maxwell model by Quemada(1 ).
Both of these models will be examined in the future.

The full constitutive equation for the blood was given by Phillips and Deutsch in their 1975 paper.(4)
Here we will treat the three-parameter model, which can be written in spherical coordinates:

where D/Dt is the material derivative defined:

D=_a +(v.v) (7)
Dt at

Tlk means that the stress variable is a tensor, and it is in a matrix form. Because of our assumptions, T is
equal to the following matrix:
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0r 0) (8)

0 0O'9

X,1 is the characteristic stress-relaxation time, % is the shear viscosity, k is the characteristic strain-
relaxation time (X.1>•_>), and dik is the rate of strain tensor which can be expressed:

lav 0 0'

de 0 do 0 (9)
00 dvo 0 0_

r)

The special case in which X1=k=O corresponds to a Newtonian fluid. Remember equation 6 is in matrix
form. The stress tensor is being represented by equation 8; consequently, equation 6 is actually a system
of 3 differential equations. Because we are talking about a velocity field in the liquid, we are interested only
in the radial stress component. Thus, the matrix form of equation 6 can be reduced to the following:

f(f ,. 2[ ., g D.aVJ (10)Dt, IV D al]

We use the same technique that Tanasawa and Yang used in their 1970 papereT, in order to avoid
nonlinear convective terms by introducing a new independent variable: y=(r3-[R(t)] 3)/3. The material
derivative defined in equation 7 in the (r,t) coordinate system may be reduced to the following form in the
(y,t) coordinate system:

D _a a_(11)
Dt at ay r2 ay at

Therefore equation 10 can be written:

, t +,(yO_-4-n (Z÷ • (12)
at

Where Z=QZ/o and

Z= R94/ (13)
(3y+R3)
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Thus, through this transformation, the non-linear convective terms irn equation 10 are eliminated. The
normal stress component can be obtained by integrating equation 12 as:

t1_0 f R2A'X 2(R=/l+2R#) (14)

Finally equations 4,5,14 and relationship 1 are combined and the resulting equation is integrated with
respect to y. It yields:

2 R' R

12%lo ,tf -t R (2)f() +1[R4( )() *21)#(()J] In R(O A

X1X0 R3(0-W(E) R(&)

This relationship is an integro-differential equation that tells us how the bubble radius varies with respect
to time. In addition to R, we have another variable whose rate we also have to define. The pressure p, at
any point in the liquid is a function of r and t. However the pressure pg (pressure of the ideal gas forming
the bubble) is only a function of time. We need an expression that relates P. to bubble radius R. Such a
relationship can be derived from a mass balance performed on the gas dissolved in the liquid phase by
Fick's law of diffusion. Before we proceed in describing the process, it should be mentioned that the bubble
pressure p,(t) is related to the amount of gas within the bubble at time t according to the ideal gas law. If
we assume isothermal conditions, (in our case this assumption is perfectly valid, because we keep the
cockpit at constant temperature): pg(t)=Ap.(t)(Relationship 2), where Pg is the concentration (density) of the
gas forming the bubble, and where A is a constant given by A= 9T/M. Constant Rg is the universal gas
constant, T is the absolute temperature, and M is the molecular weight of the gas (nitrogen in our case).

Assume that at time t=0, a homogeneous concentration C. of gas is dissolved throughout the liquid.
As mentioned above, the concentration C obeys Fick's law of diffusion, and in spherical coordinates has
the form:

430, +v Ss ac, r2CCi (16)

aT + r f r2 ar2 ar

where V,=R 2(dR/dt)/r2 and D is the diffusion constant. The material derivative is used to account for
convection of gas by the moving liquid. At the time the pilot first reaches altitude the bubble (actually a
nuclei, previously in equilibrium at sea level conditions, being created through heterogeneous nucleation
or tribonucleation) will grow instantly (Boyle's law), resulting in a discrete drop in pressure inside the
bubble. As the gas bubble grows, the pressure (concentration) inside the bubble will decrease, giving rise
to a 1concentration gradient at the gas-liquid interface, which in turn, affects the mass transfer process
(This concentration gradient depends on the altitude that the pilot was exposed to, and the prebreathet

't prebreathe=100% Oxygen intake prior to exposure to maximum altitude.
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protocol). Hence equation 16 must be solved simultaneously with an expression that relates the solute
concentration just outside the bubble wall, C,(t), to the concentration inside the gas bubble, Cg(t). Henry's
law will provide that relationship for us: C,(R,t)-C,(t)=KpPg(t)=KpApg(t). Then pg(t)=Cw(t)/KpA(Relationship 3).
Constant Kr is the Henry's law constant. The initial conditions for R(t) and C1(r,t) may be written as R(O)=Ro,
dR(Oydt=O, and C,(r,O)=Co.

When the arterial nitrogen concentration drops, either because of altitude exposure or because of
an increase of the oxygen concentration in the breathing air, the venule nitrogen partial pressure depends
on the capillary diffusion-perfusion gas exchange process between the blood and the tissue. This exchange
process serves as a control mechanism of the venule nitrogen partial pressure. An increase in the venule
nitrogen partial pressure results in a concentration gradient between the blood and the bubble, and the
activation of the growth process. For this reason, our analysis is better applied in bubbles that nucleate and
grow in the veins. Here, the nitrogen concentration does not vary greatly with distance; that's why we will
assume that, at a relative distance from the bubble, the concentration of nitrogen will be constant. (In
general this is not true. In order to understand how the nitrogen concentration changes axially, radially and
due to convection in the veins, we must fully solve and understand the parabolic transport model,
describing capillary gas exchange properties. This has been the topic of several papers by Goresky(13

), and
Bassingthwaighte 1 4 ). Translating this assumption into mathematics provides us with our first boundary
condition:

linmC(r,O=C, (17)
r-,

At a sufficiently great distance from the gas-liquid interface, the effect of the growing bubble should be
negligible; thus, the concentration at any time is nearly equal to the initial concentration. The second
boundary condition representing the mass flux at the boundary can be expressed:

IJ•pdi-3pý CR (18)

In order to gain information on bubble growth rate, we must solve equations 15, 16 and 18
simultaneuus!y. In so doing, we shad! adopt the integral or moment method (one member of a class of so-
called "weighted residual" methods) introduced by Rosner and Epstein(5), which permits us to obtain an
expression for the bubble radius-time relationship in closed form. It provides a practical and sufficiently
accurate approach to these nonlinear, multiparameter boundary value problems. As Rosner and Epstein
mentioned in their paper, this method is p. rticularly well suited to problems in which the dependent variable
(solute concentration in our case) at the liquid-vapor interface is time-dependent. Applying this method, we
manage to reduce our partial differential system to a system of ordinary differential equations in which time
is the (only) independent variable.

Multiplying both sides of equation 16 by r' and integrating the resulting equation with respect to r
from r=R to r=R+S yields:

R a 3ccR afcR{2 aCi) (19)
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in which 8 is a thin concentration boundary layer. Next we integrate each term taking under consideration

the following relationships: r2V,=R 2R, C,(R+8)=Co, C,(R)=C., XC/ar=O at r=R+5. Thus:

; d R8(C,-Ccrdrd -(D'R4ý- (20)d4t +, ar )=

where C. is the concentration of the gas dissolved in the blood far from the bubble, which as we mentioned
previously, may be considered to remain constant during the entire period of bubble growth. Combining
equations 18 and 20, and integrating the resulting equation with respect to time:

3 R+,&( Co-C,•.•,2 pr-p ,R •' (21)
"34". tcOc." CO .-C. (1

where p. is the density of the gas bubble at t--O, and Ro is the initial bubble radius. Now consider the
following class of profiles for the normalized solute concentration defect:

C.-C, {(1 -_OefrFRir<R.8 (22)
C.-C•--L O-fb-t>R+8 I

in which C=Co because of boundary conditions, and (=(r-R)/. Substitution of equation 22 into the left-
hand-side of 21 yields:

3,1 1 ( 3 2 i8 '+58•6_,Pm-I6.3R, (23)

We assume that NR4-1; thus, we can disregard the terms (&R)2 and (&R)3 in equation 23 because they
are very small. Then, equation 23 becomes:

8= pW-pa.R.' (24)
PXc.-c.;.r

Substituting equation 22 into the right hand of equation 18 and eliminating 8 from the resulting expression,
with the aid of equation 24:

d ,.= ep2D(Co-C=jR' (25)
t* pWf-p 9 ,R03

Equations 15 and 25 must be solved simultaneously for R(t) and C.(t) with the aid of relationships 2 and
3, using the following initial conditions: R(O)=Ro, dR(O)/dt=O, C.(O)=Co.

7



Discussion

We have developed a bubble growth model for the blood. Special attention must be paid to two
o'" ,he initial values involved in our computations. The first one is the dR(0)/dt value. We assumed that this
value was equal to zero, but this assumption was rot totally valid. If we look into the nucleation process
that takes place before growth, the size of the embryo (nucleus) constantly changes until it reaches a
critical radius size. Embryos that never reach this size soon collapse. The ones that do manage to reach
this r-critical radius size (through energy fluctuations), are destined to grow. In our analysis, we "peak-up"
the growth process exactly when the embryo crosses the r-critical borderline and becomes a bubble. This
threshold means that the rate of radius growth at t=0 (which is the starting time for the growth process, but
not for the nucleation process) is not actually zero. However, there is a case in which the initial radius rate
of change might, in fact, be zero. There are theories that claim the pre-existence of nuclei in stable form
In either case, the variable initial radius growth rates do not affect our final radius computations. Barlow
et al.(l" solved analytically the initial stage of growth, at a low Raynolds number, for the viscous case, and
he concluded the following:" Except for the first moments of growth, the solution is virtually independent
of the value chosen for dR(O)/dt". Thus, none of the two above assumptions will produce a significant error
in our calculations. Nevertheless, in this study, we will assume that dR(O)/dt is equal to zero.

The second initial value that we have to pay extra attention to is the initial nitrogen concentration
in the blood (on the venous side). This issue is slightly more complicated than the previous one.
Prebreathing oxygen before or during the flight (and/or exposure to altitude) affects the pilot's blood and
tissue nitrogen concentration levels. All body tissues in equilibrium with ambient nitrogen will respond to
increased or decreased nitrogen partial pressure in the breathing medium by absorbing or eliminating
dissolved gas in the tissues. The nitrogen partial pressure of the blood in the arterial side can decrease
very rapidly; in the case of 100% 02 prebreathe, it can drop to zero, creating a large concentration gradient
between the tissue and the blood in the capillary level. Consequently, the blood begins to wash out nitrogen
from the tissue through diffusion. The tissue can be characterized by a spectrum of theoretical tissue types
that represent "fast" and "slow" tissues. The outgoing nitrogen partial pressure in the blood (outgoing
meaning from the capillary level to the venous side, basically the venous nitrogen partial pressure), can
vary depending on the "half-time" of the tissue. A theoretical tissue type is characterized by the tissue half-
time: the time required for a tissue to respond to a change in ambient nitrogen partial pressure by giving
off or absorbing nitrogen until the initial difference between the tissue nitrogen partial pressure and ambient
nitrogen partial pressure is reduced by one-half. Half-time tissues are very helpfu! if one follows the
exponential function approach. (Since we haven't developed our own parabolic transport model yet, we will
use the exponential function approach to calculate the nitrogen concentration near the venule walls.)

The outgoing nitrogen partial pressure must be quantified before we can resume our computations.
The nitrogen gas dynamics and exchange in the capillaries is not a simple mathematical interpretation. For
the purpose of this report, we will compute bubble growth at the venule walls because that's where the
nitrogen concentration is at its maximum (maximum concentration in the blood results in a maximum
concentration gradient between the blood and the bubble). Its value will be calculated by the use of the
washout exponential model developed by Conkin et al.(8) This method is used because, even if we
consider the perfusion-diffusion process, the boundary condition in the capillaries will be C(r=a,t)=C,=C,
(a=the radius value of the capillary; C, is the tissue nitrogen concentration, near the capillary wall; Cv, is the
venule nitrogen concentration near the vessel's wall and close to the venule-capillary interface). C, will vary
according to the Conkin et al. equation and so will the nitrogen concentration in the venule wall- (We are
expecting the nitrogen concentration value to be higher in the venule walls no matter what kind of analysis
we use, because of the radial diffusion process in the capillaries.). It is logical (for the above reason) to
expect most bubbles to form closer to the walls.



Thus, the tissue, depending on its half-time value, alters its partial pressure value due to the
concentration gradient between the tissue and the blood. This value can be calculated through the standard
Haldanian approach from the following equation:

P-po.,(Pp-P 0)(1 _---) (26)

where Pt is the nitrogen partial pressure in the tissue after exposure for t minutes; P0 is the initial tissue
nitrogen partial pressure; Pa is th,- ambient nitrogen partial pressure in the breathing medium; t is the
exposure time in minutes; and k is the tissue nitrogen partial pressure rate constant (k=.693/t1,, where t,,
is the fissue nitrogen partial pressure half time). Now we can solve our model taking under consideration
an array of half-time tissues.

Clarifications

1. It is customary to express the gas concentration in a tissue in terms of its partial pressure p and the
solubility ot of that gas in the tissue: C~aP. In this report, concentration and partial pressure are used
constantly; hence, it was necessary to mention their above relationship to avoid confusion. Also we assume
that concentration changes in the blood (in the veins, due to convection) are much slower than bubble
growth rates.

2. There was no particular reason why we chose an exponential decay approach (a perfusion dominated
approach) rather than Hills'(") approach (a diffusion dominated approach). Hills' equivalent equation for pure
radial diffusion car. be expressed as:

dt 1-2S. -"-r (27)

and the above equation is valid only if v (the capillary blood velocity) >>> I (the capillary length). What each
of the parameters and variables represent is not important since it is clear now that the diffusion-perfusion
model must be solved in order to thoroughly understand capillary transport phenomena and nitrogen
concentration values in the veins. This will be the purpose of the second publication in this series.

3. Using polynomial profiles for the gas concentration is tantamount to assuming that the bubble grows in
an infinite pool of liquid. In situations where a large number of bubbles nucleate and grow simultaneously
in close proximity, the amount of liquid immediately surrounding a bubble is finite and so is the amount of
the dissolved gas. Therefore, the hydrodynamics of the growth and the diffusion process will be different
from the case of a bubble growing in an infinite medium. "The underlying assumption in adopting a
polynomial profile to describe the gas concentration is that at large distances from the bubble interface,
the gas concentration remains unchanged and is equal to the initiaL concentration. This assumption is not
valid for a bubble surrounded by a finite amount of liquid with a limited concentration of dissolved gas and
cannot predict the steady-state bubble radius correctly."(91 Therefore, it is necessary to solve the diffusion
equation in its complete form numerically as opposed to using similarity solutions""0 • or approximate
analytical methods. In their paper, Michaelides et al.19) analyzed the process of mass diffusion-induced
growth of a gas bubble surrounded by a limited amount of liquid and dissolved gas and presented a
solution technique to accurately solve for the concentration profile of the dissolved gas. Bubble growth
dynamics was predicted with this concentration profile. As mentioned in our assumptions, we will not
include foam dynamics, so the use of polynomial profiles for the gas concentration is sufficient.
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Model Summary

The equations that describe bubble growth in the blood, after all the mathematical manipulations, can be
summarized in the following system of ordinary differential equations:

12R), 0 "WA0 Ž 2(t )

And from the mass transfer process:

(, = ep, D(Co-C,) 2R4

and

PO(t)--Apg(t)
C.(t)=KpPg(t)

With the following initial conditions: R(O)=Ro, dR(O)/dt=O, C.(O)=Co

Notation

R =bubble radius il, =shear viscosity
p, =density of the liquid phase X1 =characteristic stress
p. =density of the gas inside the relaxation time

bubble ---dummy variable
p,,=density of the gas bubble at t =time

t=O X2 =characteristic strain
P. =pressure inside the gas bubble relaxation time
P_ =pressure of the liquid phase D =diffusion coefficient

far away from the bubble surface C. =initial concentration
a =surface tension of the gas dissolved in
A =ideal gas law constant (for a more the liquid phase

detailed definition look C,, =solute concentration
at page 5) just outside the bubble

KP =Henry's constant wall

11
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Appendix 1

The momentum equation in spherical coordinates (r,,(p) in terms of c is expressed as follows in the r
component:

(ava, a v, By, v,*2+v,2)= ap' +- r+ n v
ar r ae rsin e ft r ar

Ii~(r2.r)+ 1 Bý(,5jin)+ I 0" _____T

ru2nOr isinOaOIOneC1 r

The velocity field generated in the liquid will have only a radial component v(r,t), where t is time measured
from the instant of bubble formation. All the derivatives with respect to 0 and (p will be zero. Also the
velocity components in the 0 and (p coordinates will be zero. Taking under consideration the above
assumptions, the momentum equation can be rewritten as follows:

P(a'v' v. an 1 a - (+oe '€ )
at ' ar] r r2 ar r

The equation of continuity in spherical coordinates ( r,9,p() can be expressed as follows:

2E1 p 2v)+ -(pvsin)(pv,)--o
at r2 ar irinO M isine o

As we mentioned before, all partial derivatives with respect to 0 and p, will be zero. The density of the fluid
is not a spatial variable; therefore, the above equation can be reduced to the following one:

'ar Br
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