B A “ i
A L e R L T B W T LR . P o

RERO T
LR

Y0280 297
Coor b gt e

LEPLICATION OF C'ONTIMUOU& ORTHONORMAL
WAVELETS TO IMAGE DATA REDUCTION

__ George A. Gerl

BEST AVAILABLE COPY

. P B VIR Wi sitmlg
g % i RS i
Do 3 W

April 1994
Final Technical Report for Period October 1602 - Deoember 1983

T
g

Approved for public release; distribution is uniimited.

. B fﬂ:@ o 5
ﬁﬁ% ﬁ.} g 5 ,f,r-g

N 94-18432
94 6 14 107 AN

AIR FORCE MATERIEL COMMAND

e e g A




NOTICES

s tondwdogd repunt s pubhshed as recelved and has not basn vdited by the
conoasal oditing stzft of the Armstrong Laboratory.

JAhan Govemment drawings, spacllications, or other data are used for any
saipsy other than In connection with a definitely Govemment-related procure-
mant, tho Unkted States Governmant incurs no responsibility or any obligation
whaizoever. Tho fact that the Government may have formulated or in any way
- upiisd the sald drawings, specitications, or other data, is not to be regarded by
grisiloation, or othorwise in any manner construed, as licensing the holder, or any
ciher porson or corporation; or as conveying any rights or permission to
-naesiaciure, use, or sell any p lented Invention that may in any way be related
Ligrslo.

Tho Office of Public Alfalrs has reviewed this paper, and & is releasable 1o
iha Rational Technical Information Service, where it will be avallable to the general
pubiic, including foreign nationals.

This report has been reviewed and Is approved for pubiication.

Uszdadn b Madin @—4&4{' W

ELIZABETH L. MARTIN DEE H. ANDREWS, Technical Director
Projsct Sciantist Alrcrow Training Ressarch Division

BEST AVAILABLE COPY




REPORT DOCUMENTATION PAGE o 018

Public reporting burden for this collection of information is estimated to aversge 1 o008, mmwwmmm
muwmum Mmmﬁﬁwnm“ wwmmmau

and
mmmm&WﬁW¢zwmwmmmm mosmm
Y (Leave 2. REPORT DATE | 3. REPORT TYPE AND DATES COVERED
April 1994 Final October 1992 - December 1993
[, TITLE AND SUSTITLE S. FUNDING NUMBERS
Application of Continuous, Orthonormal C - F33615-90-C-0005
Wavelets 1o image Data Reduction PE - 62205F
e AGTORET PR - 1123
TA - 03

George A. Gerl WU- 85

kzidor C. Gertner

(7. PERFORMING ORGANIZATION NAME(S) AND ADORESS{ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

University of Dayton Research Institute

300 College Park Avenue

Dayton, OH 45469

9. SPON / NCY NAME(S) AND ADDRESS(ES 10. SPONSORING / MONITORING
Armstrong Laboratory (AFMC) AGENCY REPORT NUMBER
Human Resources Directorate

Alrcrew Training Research Division AL/HR-TR-1994-0031
6001 South Power Road, Bkig. 558

Mesa, AZ 85206-0904

11. SUPPLEMENTARY NOTES
Armmstrong Laboratory Technical Monitor: Dr. Elizabeth L. Martin, (602) 988-6561.

12a. DISTRIBUTION / AVARLABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unfimited.

13. ABSTRACT (Maximum 200 words)
Images are decomposed and reconstructed by applylng recently developed multiresolution techniques to a

particular class of orthonormal wavelets. An original image is decomposed into a series of sub-images in which
the low- and high-frequency information of the original image has been segregated. The image is then
reconstructed after any redundant high-frequency information is discarded. This procedure allows a perceptually
equivalent image to be generated using less information. Further, the resulting reduced-data image can be
stored, processed, transmitted and displayed more efficiently. The advantages of the technique are that the
wavelets used are continuous and well-localized in both space and spatial-frequency, the reconstruction can be
performed by simply reversing the multiresolution decomposition process, and the reconstruction is error-free.
The C source code required to implement the present technique on a PC-compatible computer is also presented.

14, SUBJECT TERMS 15. NUMBER OF PAGES |

Data compression ‘Muttiresolution analysis 48

Data reduction Orthonormal bases [16. PRICE CODE

Image processing Wavelets

17, SECURITY CLASSIFICATION ] 18. SECURITY CLASSIFICATION ] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
;;egs(‘r‘;ged by ANSI Std. 239-18




CONTENTS

Page
GENERAL INTRODUCTION . ... ..ottt e e e et e 1
INTRODUCTION TOWAVELET S ... ..ottt it e ettt 1
CONSTRUCTION OF AFFINE-GROUPWAVELETS ...t 4
A Cohtimous, Localized, Orthonormal Wavelet . . .. ......................... 7
* IMAGE REPRESENTATIONUSINGWAVELETS . . . ...t 12
IMrodUCHON . . . ... .. e 12
ImageDecomposition . . . ............ ... ... i i 13
ImageReconstruction . . . ...... ... ... . ... .. ... ... i 15
Implementation. ... ...... ... ... i i i e 21
SUMMARY . .. e e 25
REFERENCES . ... ..o e e e e e e e e e e 27
APPEND K . ... i e e 29
Accesion For ]
NTIS CRA& g
DTIC TAB
Unannounced 0
Justification
o N
Distribution]
Avallabifity Codes
Avail and/or
Dist
\A- l




List of Figures

Figure
No. Page
1. Examples of (a) Weyl-Heisenberg Wavelets and (b) Affine Wavelets . . . ... .3
2 Generation of a Scaling Function and Haar Wavelet (c) from
the Scaled and Translated "Box" Functions shownin(a)and(b)........... 6
3. Four Iterations in the Generation of (a) a Triangular Scaling
Functionand (b)a"Hat"Wavelet ................................. 8
4 Four Iterations in the Generation of (a) a Cubic-Spline Scaling
Function and (b) a Cubic-SplineWavelet . .. ......................... 9
5. Four Iterations in the Generation of a Continuous, Orthonormal
Scaling Function (a) and Wavelet®) . . ............................ 11
6. Schematic of the One-Dimensional Decomposition Process . . . .......... 16
7. Schematic of the Two-Dimensional Decomposition Process . . ........... 17
8. A More Detailed Schematic of the Two-Dimensional ’
Decomposition ProcesstoLevelOne . ............................ 18
9. An Example of a Level-One Decomposition . . . ...................... 19
l? wA:;E;mmple ofa Lwd-Three Decomposition. . ..................... 20
1 o Sehematnc o’ffthe @hc-ﬁlmensxonal Reconstruction Process . . . .......... 22
12 Schemanc of the Two-Elmens:onal Reconstruction Process . . .......... 23
) R
P
ol o
i L
' e oy
L | Ly




PREFACE

The research reported here was conducted in support of the Ammstrong
Laboratory/Aircrew Training Research Division (AL/HR) under Work Unit 1123-03-85, Flying
Training Research Support.

This research was supported by Air Force Contract F33615-90-C-0005 (UDRI). The
laboratory contract monitor was Mrs. Patricia Spears.

The authors thank Colonel Lynn Carroll for supporting the Image Generator Project under
which the present research was performed. We also thank Drs. Byron Pierce and Elizabeth
Martin for their encouragement and for administrative support. Some of the graphics routines
implemented in the programs included here were written by Mr. Craig Vrana.




.

APPLICATION OF CONTINUOUS, ORTHONORMAL
WAVELETS TO IMAGE DATA REDUCTION

GENERAL INTRODUCTION

It is often possible to adequately represent a digital image using significantly less
information than is required to specify each individual picture element. - Such a representation is
useful since the image can then be stored, transmitted, and displayed more efficiently (see, e.g.,
Geri, Zeevi, & Porat, 1990; Gertner & Geri, 1994). The classical techniques of Fourier analysis
(FA) have been used to efficiently represent images by a set of spectral functions which, when
added together, will adequately reproduce the original image. Fourier analysis however, is not
ideal for representing natural images since the latter are generally nonstationary — that is, their
characteristics vary as a function of location within the image. The spectral functions of FA each
encompass the entire image, and hence they are not well suited for representing the localized
features of natural images.

Wavelet decomposition involves finding image expansion coefficients with respect to a
basis derived from those wavelets. The wavelet coefficients, or some subset of them, can then be
stored, transmitted, compressed, and used for image generation. The efficient representation of
images, therefore, requires that coefficients be discarded such that the image generated from the
remaining coefficients is perceptually equivalent to the original. We have decomposed images and
reconstructed reduced versions of them by selectively discarding high-frequency components that
are known to be less important in conveying visual form information. The reduced, full
gray-scale, multiresolution images are suitable for use in visual simulators.

INTRODUCTION TO WAVELETS

Many joint position/spatial-frequency techniques have been developed for overcoming the
limitations of FA described above (cf,, Jacobson & Wechsler, 1988). The most straightforward
way to obtain a joint representation is to simply multiply the signal by an appropriate window




function, compute the Fourier transform of the product, and repeat the procedure for windows
translated in position. This procedure defines the short-time (or windowed) Fourier transform
that allows a signal (or image) to be represented in both position and spatial frequency. Any
smooth, spatially-localized function can be used as a window function, and many have been tried.
Gabor (1946) has shown, however, that a window function in the form of a gaussian provides the
greatest joint localization in position and spatial frequency. The Gabor representation is a special
case of what are known, in the physics literature, as coherent states associated with the
Weyl-Heisenberg group (Daubechies, 1992).

In the present context, the Weyl-Heisenberg group represents one of two classes of what
are now referred to as wavelets. Wavelets are sets of functions that are formed by applying
dilation and/or translation operators. Thus, we can define a class of Weyl-Heisenberg group
wavelets, which are generated by a translation in both space and spatial frequency as follows:

gas(s)=g(s-b)- 6% | (M

where g(s-b) is a window function that can be translated in space by an amount proportional to b,
and the complex exponential represents spectral functions translated in frequency by an amount
proportional to a. Examples of Weyl-Heisenberg group wavelets are shown in Figure 1a. These
wavelets all have the same window function (a gaussian in this case) that has been translated in
space and multiplied by spectral functions of various spatial frequencies.

The second class of wavelets are the affine group wavelets, which are generated by

dilations and translations in space as follows:

Vap(s) = Ial‘%w(s;b) ; )

where the parameter a represents dilation, and the parameter b represents translation. Examples
of affine group wavelets are shown in Figure 1b. These wavelets were developed to analyze
transients in signals (or images), which had previously been dealt with by non-optimal, and largely
ad hoc, techniques.
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Figure 1

Examples of (a) Weyl-Heisenberg Wavelets and (b) Affine Wavelets.




As noted above, one major motivation for developing wavelet techniques is the
requirement for a joint space and spatial frequency analysis to overcome the limitation of FA,
which assumes infinite resolution in one domain and no resolution in the other. In the context of
image representation, wavelets are used to decompose images, and the decomposition is most
efficient when the image information represented by each of the wavelets in the set is
nonredundant. Wavelets which allow such a nonredundant representation are called orthogonal,
and can be used to represent images with a minimum number of coefficients. The affine-group
wavelets are orthogonal whereas the Weyl-Heisenberg group wavelets are not. The affine-group
wavelets are also better suited for representing transients and other high-frequency image
components. Since our major objective is image data-reduction (as a first step toward image
compression), we are more concerned with the above-mentioned desirable properties of
affine-group wavelets and less concerned with the high joint localization attainable using the
Weyl-Heisenberg group wavelets. We will, therefore, limit the remainder of our discussion to
affine group wavelets.

CONSTRUCTION OF AFFINE-GROUP WAVELETS

The affine-group wavelets to be described here fall into two categories that will be
referred to- as scaling functions and wavelets. Scaling functions are obtained as solutions to a
two-scale difference equation of the form:

$0) = ; Ck §(2x-K) , €)

where the c, are a set of coefficients.

Wavelets are obtained as solutions to a difference equation of the form:

v = ; 1) Cngen 6X—K) @




where N is the number of coefficients. Unique solutions to Equations 3 and 4 are guaranteed if
the sum of the coefficients, c,, is exactly two (cf,, Strang, 1989). The solutions can be obtained
starting from any of a number of initial conditions, denoted ¢”(x), for ¢(x). The simplest initial
condition is the "box" funiction, ¢” (x), shown in Figure 2a. Using the box function, various
interesting and useful scaling functions and wavelet pairs can be obtained by using different sets of
coefficients. For instance, when c,= c, = 1, a scaling function can be obtained as a solution to
Equation 3:

000 =0R@0) + $P@x-1) , )

which is simply the box function again (i.e., ¢*/=¢). This construction is shown graphically in
Figure 2. The associated wavelet, for c,= c¢,= 1, is the solution to Equation 4: '

V00 =-08@09 +6Q@x-1) , (6)

which is illixstrated graphically in Figure 2. The function, y,(x), known as Haar's wavelet, is
simple in form and was the first function to be used to generate an orthogonal basis. However,
whereas y,(x) is well localized in space, it has a discontinuity, and so does not provide good
frequency localization. It is, therefore, not ideal for image representation.

Another scaling function and wavelet can be obtained again using the box function, but

with the coefficients ¢,= %3, ¢,= 1, and ¢,= %4. The scaling function is obtained using Equation 3
as:

$P00=368@0 +B@x-+348@x-2) , Q)

and the corresponding wavelet is obtained from Eqn. (4) as:

20 =-208@0) +6B@x-1)- 1 8@x-2) . ®
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Figure 2

Generation of a Scaling Function and Haar Wavelet (c) from the
Scaled and Translated "Box" Functions shown in (a) and (b).




The results of four iterations using Equation 7 and 8 are depicted graphically in Figures 3a and 3b,
respectively. The scaling function shown in Figure 3a is triangular function, while the wavelet of
Figure 3b is the so-called "hat" function. Although the hat function is smoother than the Haar

wavelet, it is not orthogonal to its translations and dilations and thus yields a nonorthogonal basis.

A final example of a useful scaling function and wavelet pair is the cubic B-spline obtained
using the coefficients c,= 1/8; c, = 4/8; c,= 6/8; ¢, = 4/8; and c¢,= 1/8. The first through fourth
iterations of these functions are shown in Figures 4a and 4b, respectively. The scaling function is
smooth and may represent a good approximation to a gaussian low-pass filter. The wavelet, on
the other hand, has a triphasic form which is similar to that of both measured and theoretical
visual receptive field profiles (cf., Young, 1987).

A Continuous, Localized, Orthonormal Wavelet

A family of wavelets (actually scaling functions and wavelets) of both practical and
theoretical importance was devised by Daubechies (1988). The scaling functions and wavelets
shown in Figures 2 through 4 were generated using rational coefficients. Daubechies found a set
of irrational coefficients, which resulted in scaling functions and wavelets that are orthonormal to
their integer translations and dilations. These functions are particularly useful because both they
and their Fourier transforms have compact support (i.e., are of finite extent) and are continuous.
Since we will be using this scaling function and wavelet to decompose and reconstruct images, the
technique for generating them will now be described in detail.

Since all initial conditions converge to the same function, for simplicity we will again use
the box function, ¢?,(x) to generate the scaling function and wavelet.. The set of four coefficients
suggested by Daubechies (1988) are:

co=3(1+43) =0.683013
1= }(3 + J?) =1.18301
1= %(3 -3 ) =0.316987
c3 = %(1 - J'3') =-0.183013

Using Equation 3 and following the procedures described earlier, the first-iteration scaling

function is obtained as:
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Figure 3
Four Iterations in the Generation of (a) a Triangular
Scaling Function and (b) a "Hat" Wavelet
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Four Iterations in the Generation of (a) a Cubic-Spline
Scaling Funcvion and (b) a Cubic-Spline Wavelet




$3(x) =0.683 $§(2x) + 1.183 T (2x- 1)
+0.317 $Q(2x-2) + (-0.183) $D(2x-3) )

The function ¢#”/ (x) is shown graphically at the top of Figure Sa. The second-iteration scaling
function is then obtained from ¢/ (x) as follows:

$300=0.683 $J(2x) + 1.183 pD(2x- 1)
+0.317 $Q(2x- 2) + (-0.183) $P(2x-3) (10)

This procedure is repeated to obtain all higher-iteration scaling functions as requirea. The second
through fourth-iteration Daubechies scaling functions are also shown in Figure 5a. As a practical
matter, no significant changes occur in this function after the seventh iteration.

In analogous fashion, .but using Equation 4 rather than Equation 3, the first-iteration
Daubechies wavelet can be obtained as follows :

v ) =0.183 ¢D(2x) + 0.317 §D(@2x- 1)
| - 1.1834Q@x-2) +0683¢P@x-3) . (1)

The first-iteration wavelet is shown in Figure Sb along with the second- through fourth-iteration
wavelets. In the next section we will describe a technique for constructing an orthonormal basis
from the scaling function and wavelet of Figure 5. Such a basis yields a better joint representation
than does that associated with Haar's wavelet, but at the expense of basis-function regularity.

10
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Figure 5
Four Iterations in the Generation of a Continuous,
Orthonormal Scaling Function (a) and Wavelet (b).
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IMAGE REPRESENTATION USING WAVELETS
Imtroduction

Image decomposition is a procedure for obtaining an alternative representation (i.c., a
transformation) of an image. The procedure results in a set of numbers, called expansion
coefficients, which represent the amplitudes of each of a set of specialized functions (known
collectively as a basis) that can then be summated to produce the original image. The usefulness
of image decomposition is that certain image components, which may be more important than
others in a particular context, can be identified and isolated. Once isolated, these components can
be selectively subjected to further processing. In the context of images, the decomposition
procedure partitions information into two domains, namely space (or position) and
spatial-frequency. Since the space domain is the image itself, most of the novel information
resulting from a decomposition is in the spatial-frequency domain. Further, it is often the case
that components of interest are segregated in the spatial-frequency domain. This observation is
the major motivation for the development of multiresolution (or pyramid) decomposition
techniques.

In multiresolution decomposition (cf.,, Akansu & Haddad, 1992), an image is filtered into
low- and high-frequency components and subsampled, and this procedure is repeated as required.
Multiresolution analysis was originally done (Burt & Adelson, 1983) using second derivatives of
gaussians (i.e., Laplacian functions). Mallat (1989) formalized the procedure and extended it by
using symmetric, non-orthogonal wavelets, since orthonormal wavelets were not available at that
time (see Figure 1 in his Appendix A). As noted above, Daubechies (1988) has derived
orthonormal wavelets, which while not symmetric, do have compact support and reasonably good
joint localization in space and spatial-frequency. It was not immediately clear that orthonormal
wavelets were suitable for multiresolution image decomposition and reconstruction because they
were not symmetric, and iniage processing was usually performed with symmetric kernels.
However, it is now well established that Daubechies' wavelets are appropriate for this purpose
(Akansu & Haddad, 1992). Further, they are computationally efficient in that decomposition and
reconstruction can be done using filters constructed from as few as four coefficients. In the next
section we will outline a method for decomposing and reconstructing an image using the

12




computational procedures described by Mallat (1989), and the wavelet basis derived by
Daubechies (1988).

Image Decompaosition

In order to perform a multiresolution image decomposition using the scaling functions and
wavelets described earlier, we use ¢,(x) and y,(x) (see Figure 5), and define the following
orthonormal wavelet basis (Daubechies, 1988):

dn() = 2P¢pp(27x - n) (12)
V() = 2%2yp(27x-n) . (13)

We can further define (cf., Daubechies, 1988; Mallat, 1989) filters 4 and g as the inner product of
particular scaling functions and wavelets as follows:

h(n—2K) =22 [ §(3) - dlx— (n-2k)) o, (14)
and

g(n-2K)=2""2 [ y(%) - dx— (n-2K) dx . (15)

The functions h(n-2k) and g(n-2k) can be considered the pulse responses of low-pass and
high-pass filters, respectively. Thus, using the multiresolution technique developed by Mallat
(1989) for symmetrical wavelets, we can expand a one-dimensional signal, S (here denoted S, ),
into two components, S,, and S,,, as follows:

Su = % hn-2K)- Swo (16)

S =2k:g(n-2k)-sm . (17)

13




Thus, S,, and S,;,, which are the low-pass and high-pass versions, respectively, of the image, S,
are obtained by convolving S, with the low-pass and high-pass filters A(nj and g(n). The factor
of two in the argument of both Equations 16 and 17 indicates that the filter (convolution) output
is subsampled by a factor of two.

The decomposition process of Equations 16 and 17 can be represented as:
S2 80— Su,Sm ,

indicating that S, is decomposed into S,, and S,,,, where §;, represents a lower resolution
(smoother) version of S, and S, represents the details of §,, that are missing from §;,. The
. decomposition process can be continued by further decomposing S, , such that:
Su1—> 812, S,
and more generally,
Stp = Sipi1 , SHput _ (18)
where, again, S§,,,, is the low-pass filtered version of §,,, and §,,,, is the high-pass filtered

version of S, . Note that if h(n) is designed to be symmetric [i.e., h(n) = h(-n)], then Equations 16
and 17 can be written as:

St = Z h(n) - Sip(n-28) (19)

Sm(k)=§:a(n)- Sip(n-26) (20)

14




respectively. The operations of Equations 19 and 20 are equivalent to taking every other sample
from the result of convolving 5, with 4 and g.

In summary, the decomposition of a signal, S, into its components, S, and S, is
achieved by convolving that signal with the filters 4 and g, respectively, followed by decimating
the resultant signals by a factor of two (i.e, taking every other sample). A level-one
decomposition of the signal S, ,, whose length is V, results in the components, S, and S, each of
length N/2. This decomposition process is depicted in Figure 6. Linearly convolving S, ;, which
is of length N, with either  or g, which are of length L, results in a signal of length N+L-1. To
deal with this problem we used circular convolution. As Equations 16 and 17 indicate, if the
signal S, is of length N then its components, S, and S, will each be of length N/2".

Shown in Figure 7 is a schematic for extending the decomposition process to
two-dimensional signals such as images. Figure 8 gives a more detailed graphical description of
the two-dimensional decomposition process. Signals corresponding to S,, and S, are obtained by
filtering each row of the original image, and are denoted LP and HP in Figure 8. These signals
form the intermediate image. The filtering p-ocess is then repeated for the columns of the
intermediate image thereby producing the level-one decomposition. An example of the level-one
decomposition applied to a real image is shown in Figure 9. In this figure (as well as in Figure 10
below), the pixel values in each of the three cells containir:g high-pass (HP) information have been
artificially increased to make them more easily visible. An example of a higher-order (level-three)
decomposition is shown in Figure 10.

Image Reconstruction

In the present context, image reconstruction is the reverse operation of image
decomposition. The higher resolution signal, S, ,, can be reconstructed from its components, S,
and S, as follows:

SLp-1 =§h(n—k)' S',_p+§g(n—k)- SIHP

=8ip * i) + Sip * 9(n) , (21)

15
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Figure 9
An Example of a Level-One Decomposition
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Figure 10
An Example of a Level-Three Decomposition




where (*) is the convolution operator and S’ is an interpolated version of S, (i.e., with a mean
luminance value inserted after every sample of S, ). Schematics for the one- and two-dimensional
reconstruction process are shown in Figures 11 and 12, respectively.

Implementation
It follows from Daubechies (1988) that g(n) and h(n) are related as:

g(n)=(1)"h(1-n)

where A(1-n) is the mirror filter of A(n). Thus, as a practical matter, if g(n) is known, h(n) can be
obtained directly. We will now show, further, that A(n) and g(n) are equivalent to the c,'s of
Equations 3 and 4. The significance of this equivalence is that it allows the required expansion
coefficients to be computed from the scaling-function coeﬂiciénts, c,. Thus, it is not necessary to
generate the full wavelet waveform or to use that waveform in the computation of the inner
products from which the expansion coefficients are obtained.

As implied by Equations 16, 17, and 18, we can decompose an image, H, at resolution
level 27 with respect to the functions ¢ and . Those equations can be rewritten as:

Stp = H(X) atsover2it = Zkl (H, bi) dp + Ek: H, i) Vi (22)

where ¢, and v, are the low- and high-pass filter coefficients (or basis functions), and so the
summations represent low- and high-pass filtering. The inner products of Equation 22 give the
wavelet (or decomposition) coefficients. For instance, when extended to two-dimensions, the
first inner product is simply the upper left corner of Figure 9. We will now show that the inner

products in the summations are equivalent to the ¢,'s of Equation 1.

We begin by using Equations 4 and 13. Specifically, from Equation 4 we have:
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vn@ Ex-n)= T CO™enmn #2-@x-n)-H

= {'.. CD™onpn - 62V -x-@n+k) . (23)

Substituting Equation 23 into Equation 13 gives:

Vn(X) = § I ongon - 278 - 42D - x= @0+ K)
= ; (—1)k+1cN-(k+1) . 2'% . 2# ¢(2‘("1) . x_(2n+k)) ,

and using the notation of Equation 12 we get:

w09 = T )M ongery 273 pgnamn®) @4)

Denoting I = 2n-+k and k+1 = (I-2n+1) gives:

wn0) =T G ™ ongamn - 2 bens
and denoting,
90-2n) = (1) cnomy - 273 (25)
gives,
Wn(X) = ; gi-2n)- é¢g1ys . (26)

The high-pass wavelet coefficients at a given resolution level can be obtained by taking the inner
product of the above equation with the image, H :

24




(H .w.>=2,".a(l—2n) (H.,é¢) > (27)

where g is a high-pass filter. The inner product (< ~ >) on the right side of Equation 27
represents the wavelet coefficients at one resolution level, whereas the inner product on the left
side of the equation represents the wavelet coefficients at the next higher level.

Following the same procedure as indicated in Equations 23 through 26, the low-pass
wavelets coefficients can be obtained as:

(H . bm)= 2,‘. hi-2n)-(H, bg1y) (28)

where, in analogy with Equation 25, hy=¢/J2 .
Equations 14, 15, and 22 show how to compute a coarser approximation from a finer one,
as well as how to compute the difference in information between the successive approximations.

To obtain a finer representation from a coarser one, we proceed similarly obtaining:

<H.¢(H)m)=2’:h(m-2k)'<"',OA)"‘ZI:Q(M-ZR)'(H.\llk) : (29)

SUMMARY

The essence of multiresol:tion image decomposition and reconstruction is the use of a
pair of filters--one low-pass and one high-pass. The filters are constructed from orthonormal
wavelets by taking the inner product of the dilated wavelet and a shifted version of the undilated
wavelet. Image decomposition is performed by first passing each image row and column through
both a low-pass filter and a high-pass filter. Since this filtering operation reduces the image
bandwidth, fewer pixels can now be used to represent each line with no loss of information.

Therefore, the output from each filter is subsampled by eliminating every other pixel. The
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procedure is repeated for each row and column producing four images each one-quarter the size
of the original. The prooedure is applied recursively to obtain additional levels of decomposition.
Decomposition is, as a practical matter, always performed down to the 2 x 2 pixel level.
After decomposition, redundant information can be removed up to any chosen level.
Reconstructions can then be performed up to various levels in order to determine the lowest level
which gives an acceptable reconstruction. We start the reconstruction from the lowest
decomposition level (the 2 x 2 level). The subimage corresponding to that level is first processed
through the same high-pass and low-pass filters used in the decomposition. The resulting filtered
images are then doubled in size by inserting the mean luminance value between all pixels, and
corresponding pixel values are added together to produce a single image. This procedure is then
repeated on this image and all subsequent images until the original image size is achieved. The
original image can be reconstructed exactly by this procedure. The point of the multiresolution
analysis, in the present context, is to identify information that can be removed without
significantly affecting the appearance of the reconstructed image. The advantage of the
orthonormal wavelet technique is that it provides a formal method for reconstructing an original
image from the multiresolution decomposition. Prior to the development of this technique,
multiresolution reconstruction could not be performed error free and not so simply as in the
orthonormal wavelet case wherein reconstruction is simply the reverse process of decomposition.
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APPENDIX

Source code for the program waveits.c which performs image decomposition and
reconstsuction with respect to a continuous, orthonormal wavelet basis.
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