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APPLICATION OF CONTINUOUS, ORTHONORMAL

WAVELETS TO IMAGE DATA REDUCMION

GENERAL INTRODUCTION

It is often possible to adequately represent a digital image using significantly les

information than is required to specify each individual picture element. Such a representation is

useful since the image can then be stored, transmitted, and displayed more efficiently (see, e.g.,

Geri, Zeevi, & Porat, 1990; Gertner & Geri, 1994). The classical techniques of Fourier analysis

(FA) have been used to efficiently represent images by a set of spectral fimctons which, when

added together, will adequately reproduce the original image. Fourier analysis however, is not

ideal for representing natural images since the latter are generally nonstationary - that is, their

characteristics vary as a function of location within the image. The spectral functions of FA each

encompass the entire image, and hence they are not well suited for representing the localized

features of natural images.

Wavelet decomposition involves finding image expasion coefficients with respect to a

basis derived from those wavelets. The wavelet coefficients, or some subset of them, can then be

stored, transmitted, compressed, and used for image generation. The efficient representation of

images, therefore, requires that coefficients be discarded such that the image generated from the

remaining coefficients is perceptually equivalent to the original. We have decomposed images and

reconstructed reduced versions of them by selectively discarding high-frequency components that

are known to be less important in conveying visual form information. The reduced, full

gray-scale, multiresolution images are suitable for use in visual simulators.

INTRODUCTION TO WAVELETS

Many joint position/spatial-frequency techniques have been developed for overcoming the

limitations of FA described above (cf, Jacobson & Wechsler, 1988). The most straightforward

way to obtain a joint representation is to simply multiply the signal by an appropriate window
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function, compute the Fourier transform of the product, and repeat the procedure for windows

translated in position. This procedure defines the short-time (or windowed) Fourier tramsform

that allows a signal (or image) to be represented in both position and spatial frequency. Any

smooth, spatially-localized function can be used as a window function, and many have been tried.

Gabor (1946) has shown, however, that a window function in the form of a gaussian provides the

greatest joint localization in position and spatial frequency. The Gabor representation is a special

case of what are known, in the physics literature, as cohetent states associated with the

Weyl-Heisenberg group (Daubechies, 1992).

In the present context, the Weyl-Heisenberg group represents one of two classes of what

are now referred to as wavekts. Wavelets are sets of functions that are formed by applying

dilation and/or translation operators. Thus, we can define a class of Weyl-Heisenberg group

wavelets, which are generated by a translation in both space and spatial frequency as follows:

g8,b(S) =9(S -b) -e'm , (1)

where g(s-b) is a window function that can be translated in space by an amount proportional to b,

and the complex exponential represents spectral functions translated in frequency by an amount

proportional to a. Examples of Weyl-Heisenberg group wavelets are shown in Figure la. These

wavelets all have the same window function (a gaussian in this case) that has been translated in

space and multiplied by spectral functions of various spatial frequencies.

The second class of wavelets are the affine group wavelets, which are generated by

dilations and translations in space as follows:

n,,b(S) = lal-½'(j--) , (2)

where the parameter a represents dilation, and the parameter b represents translation. Examples

of affine group wavelets are shown in Figure lb. These wavelets were developed to analyze

transients in signals (or images), which had previously been dealt with by non-optimal, and largely

ad hoc, techniques.

2



(a) WeyI-Heisenberg Wavelets
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(b) Affine Wavelets
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Figure 1
Examples of (a) WeyI-Heisenberg Wavelets and (b) Affine Wavelets.
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As noted above, one major motivation for developing wavelet techniques is the

requirement for a joint space and spatial frequency analysis to overcome the limitation of FA,

which assumes infinite resolution in one domain and no resolution in the other. In the context of

image representation, wavelets are used to decompose images, and the decomposition is most

efficient when the image information represented by each of the wavelets in the set is

nonredundant. Wavelets which allow such a nonredundant representation are called orthogonal,

and can be used to represent images with a minimum number of coefficients. The affine-group

wavelets are orthogonal whereas the Weyl-Heisenberg group wavelets are not. The affine-group

wavelets are also better suited for representing transients and other high-frequency image

components. Since our major objective is image data-reduction (as a first step toward image

compression), we are more concerned with the above-mentioned desirable properties of

affine-group wavelets and less concerned with the high joint localization attainable using the

Weyl-Heisenberg group wavelets. We will, therefore, limit the remainder of our discussion to

affine group wavelets.

CONSTRUCTION OF AFFINE-GROUP WAVELETS

The affine-group wavelets to be described here fall into two categories that will be

referred to as scaling functions and wavelets. Scaling functions are obtained as solutions to a

two-scale difference equation of the form:

(X) = Ck (2x-k) , (3)
k

where the c. are a set of coefficients.

Wavelets are obtained as solutions to a difference equation of the form:

(X)= . (-1)k~l cN-.(k+l) *(2x-k) (4)
k
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where N is the number of coefficients. Unique solutions to Equations 3 and 4 are guaranteed if

the sum of the coefficients, c., is exactly two (cf, Strang, 1989). The solutions can be obtained

starting from any of a number of initial conditions, denoted ^°(x), for Ox). The simplest initial

condition is the "box" function, q/),(x), shown in Figure 2a. Using the box function, various

interesting and useful scaling functions and wavelet pairs can be obtained by using different sets of

coefficients. For instance, when c- = c, = 1, a scaling function can be obtained as a solution to

Equation 3:

+*"(x) = ,l((2x) + ,+((2x -1) , (5)

which is simply the box function again (i.e., $rl)=q). This construction is shown graphically in

Figure 2. The associated wavelet, for co= cl = 1, is the solution to Equation 4:

WHWx)= -8•)(2x) +,•(2x-) ,(6)

which is illustrated graphically in Figure 2. The function, yv(x), known as Haar's wavelet, is

simple in form and was the first function to be used to generate an orthogonal basis. However,

whereas yiH(x) is well localized in space, it has a discontinuity, and so does not provide good

frequency localization. It is, therefore, not ideal for image representation.

Another scaling function and wavelet can be obtained again using the box function, but

with the coefficients co = '/, c, = 1, and c2 = ½/. The scaling function is obtained using Equation 3

as:

- ) )= ()(2x). + )(2x- 1) +I ý( o)(2x -2) (7)

and the corresponding wavelet is obtained from Eqn. (4) as:

(X) =- (B)(2X) + 4, (2x- ) - ,'°)(2x-2) (8)
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(a) 

+

0

0 1

ýB(°)(2) ýB(°)(2X-1)
1 1

(b)
0 0

0 0

ýH()(X) 
-- WH (x)

(C) 0--

0 L

0 1 -1

original box
function Haar wavelet

Figure 2
Generation of a Scaling Function and Haar Wavelet (c) from the

Scaled and Translated "Box" Functions shown in (a) and (b).
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The results of four iterations using Equation 7 and 8 are depicted graphically in Figures 3a and 3b,

respectively. The scaling function shown in Figure 3a is triangular function, while the wavelet of

Figure 3b is the so-called "hat" function. Although the hat function is smoother than the Haar

wavelet, it is not orthogonal to its translations and dilations and thus yields a nonorthogonal basis.

A final example of a useful scaling function and wavelet pair is the cubic B-spline obtained

using the coefficients co = 1/8; c, = 4/8; c2 = 6/8; c3 = 4/8; and c4 = 1/8. The first through fourth

iterations of these functions are shown in Figures 4a and 4b, respectively. The scaling function is

smooth and may represent a good approximation to a gaussian low-pass filter. The wavelet, on

the other hand, has a triphasic form which is similar to that of both measured and theoretical

visual receptive field profiles (cf., Young, 1987).

A Continuous, Localized, Orthonormal Wavelet

A family of wavelets (actually scaling functions and wavelets) of both practical and

theoretical importance was devised by Daubechies (1988). The scaling functions and wavelets

shown in Figures 2 through 4 were generated using rational coefficients. Daubechies found a set

of irrational coefficients, which resulted in scaling functions and wavelets that are orthonormal to

their integer translations and dilations. These functions are particularly useful because both they

and their Fourier transforms have compact support (i.e., are of finite extent) and are continuous.

Since we will be using this scaling function and wavelet to decompose and reconstruct images, the

technique for generating them will now be described in detail.

Since all initial conditions converge to the same function, for simplicity we will again use

the box function, #0°,(x) to generate the scaling function and wavelet.. The set of four coefficients

suggested by Daubechies (1988) are:

Co = (1+ ) =0.683013

G1 = i(3 + T3) = 1.18301

C2 =L(3 - T3) =0.316987

C3 = (1 - Jr3") = -0. 183013

Using Equation 3 and following the procedures described earlier, the first-iteration scaling

function is obtained as:
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Figure 3
Four Iterations in the Generation of (a) a Triangular

Scaling Function and (b) a "Hat" Wavelet
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Figure 4
Four Iterations in the Generation of (a) a Cubic-Spline

Scaling Function and (b) a Cubic-Spline Wavelet
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= 0.683 ()•(2x) + 1.183 *'ý(2x- 1)

+0.317 *'B(2x - 2) + (--0.183) 4((2x - 3)(9

The finction o•/D(x) is shown graphically at the top of Figure 5a. The second-iteration scaling

function is then obtained from #fDz(x) as follows:

+12)(X 0.683 *()(2x) + 1.183 0(')(2x- 1)

+ 0.317 #l')(2x- 2) + (-0.183) ,IP')(2x- 3) (0)

This procedure is repeated to obtain all higher-iteration scaling functions as requirea. The second

through fourth-iteration Daubechies scaling fiinctions are also shown in Figure 5a. As a practical

matter, no significant changes occur in this function after the seventh iteration.

In analogous fashion, but using Equation 4 rather than Equation 3, the first-iteration

Daubechies wavelet can be obtained as follows:

'/P(x) = 0.183 0¶D0(2X) + 0.317 ,#gD(2x- 1)

-1. 183 0('))(2x -2) + 0.683 0(1))(2x -3) .(11)

The first-iteration wavelet is shown in Figure 5b along with the second- through fourth-iteration

wavelets. In the next section we will describe a technique for constructing an orthonormal basis

from the scaling function and wavelet of Figure 5. Such a basis yields a better joint representation

than does that associated with Haar's wavelet, but at the expense of basis-function regularity.

10
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Figure 5
Four Iterations in the Generation of a Continuous,
Orthonormal Scaling Function (a) and Wavelet (b).
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IMAGE REPRESENTATION USING WAVELETS

Itroductio.

Image decomposition is a procedure for obtaining an alternative representation (i.e., a

t o n) of an image. The procedure results in a set of numbers, called epawuou

coeffcients, which represent the amplitudes of each of a set of specialized finctions (known

collectively as a bans) that can then be summated to produce the original image. The usefidness

of image decomposition is that certain image components, which may be more important than

others in a particular context, can be identified and isolated. Once isolated, these components can

be selectively subjected to further processing. In the context of images, the decomposition

procedure partitions information into two domains, namely space (or position) and

spatial-frequency. Since the space domain is the image itsel most of the novel information

resulting from a decomposition is in the spatial-frequency domain. Further, it is often the case

that components of interest are segregated in the spatial-frequency domain. This observation is

the major motivation for the development of multiresolulion (or pyramid) decomposition

techniques.

In multiresolution decomposition (cf., Akansu & Haddad, 1992), an image is filtered into

low- and high-frequency components and subsampled, and this procedure is repeated as required.

Multiresolution analysis was originally done (Burt & Adelson, 1983) using second derivatives of

gaussians (i.e., Laplacian functions). Mallat (1989) formalized the procedure and extended it by

using symmetric, non-orthogonal wavelets, since orthonormal wavelets were not available at that

time (see Figure 1 in his Appendix A). As noted above, Daubechies (1988) has derived

orthonormal wavelets, which while not symmetric, do have compact support and reasonably good

joint localization in space and spatial-frequency. It was not immediately clear that orthonormal

wavelets were suitable for multiresolution image decomposition and reconstruction because they

were not symmetric, and image processing was usually performed with symmetric kernels.

However, it is now well established that Daubechies' wavelets are appropriate for this purpose

(Akansu & Haddad, 1992). Further, they are computationally efficient in that decomposition and

reconstruction can be done using filters constructed from as few as four coefficients. In the next

section we will outline a method for decomposing and reconstructing an image using the

12



computo procedures describ by Mafat (1989), and the wavelet basis derived by

inbehi. (1988).

Imagp Doewmpasition

In order to perform a multiresolution image decomposition using the scaling flmctions and

wavelets described earlier, we use •j(x) and Wv(x) (see Figure 5), and define the following

orMonMnal wavelet basis (Daubechies, 1988):

Op(x) = 2-POD(2-Jx- n) (12)

O(x) = 2-42WD(2-Jx- n) (13)

We can further define (cf., Daubechies, 1988; Mallat, 1989) filters h and g as the inner product of

particular scaling functions and wavelets as follows:

h(n- 2k) 2-1r2 f V). (x-(n- 2k)) dx, (14)

and
g(n - 2k) =2-1/2 f •V(f)" -(x -(n -2k) dx . (15)

The functions h(n-2k) and g(n-2k) can be considered the pulse responses of low-pass and

high-pass filters, respectively. Thus, using the multiresolution technique developed by Mallat

(1989) for symmetrical wavelets, we can expand a one-dimensional signal, S (here denoted Si),

into two components, SLI and SHI as follows:

SLI = h(n-2k). SLo (16)

and

Sm = g(n-2k) SLO (17)
k

13



This, S., and S,,,, which are the low-pass and high-pans versions, respectively, of the image, S14

are obtained by convolving SL*) with the low-pass and highi-pass filters h(n) and g(n). The facor

of two in the argument of both Equations 16 and 17 indicates that the filter (convolution) output

is subsampled by a factor of two.

The decomposition process of Equations 16 and 17 can be represented as:

S SL0 -+ SLI, SH

indicating that SL is decomposed into S., and Se,,, where S., represents a lower resolution

(smoother) version of S~p and S,,, represents the details of SL that are missing from S,, The

decoqmpoiton process can be continuied by firther decomposing S,~, such that:

SLI -+SL2. SM.

and more generally,

where, again Szp, is the low-pass filtered version of S., and S,,~+, is the high-pass filtered

version of SL,. Note that if h(n)is deuigned to besymmetric [i.e., h(n)=h(-n)], then Equations 16

and 17 can be written as:

S~l(k)=Twg(n)-SLgn-2k) ,(20)

14



respective. The operations of Equations 19 and 20 are equivalent to taking every other sample

from the result of conavol n SL, with h and g.

In summary, the decomposition of a signal, Szw,, into its componentts, SL4 and SNP is

ace by convolving that signal with the filter h and g, respectively, followed by decimating

the resultant signals by a factor of two (i.e., taking every other sample). A level-one

decomposition of the signal SL,.,, whose length is N, results in the components, SL, and S,,, each of

length N/2. Thi; decomposition process is depicted in Figure 6. Linearly convolving S.., which

is of length N, with either h or g, which are of length L, results in a signal of length N+L-1. To

deal with this problem we used circular convolution. As Equations 16 and 17 indicate, if the

signal S 4 is of length N then its components, Szo, and S,,,,, will each be of length N/12.

Shown in Figure 7 is a schematic for extending the decomposition process to

two-dimensional signals such as images. Figure 8 gives a more detailed graphical description of

the two-dimensional decomposition process. Signals corresponding to S, and S, are obtained by

filtering each row of the original image, and are denoted LP and HP in Figure 8. These signals

form the intermediate image. The filtering process is then repeated for the columns of the

intermediate i thereby producing the level-one decomposition. An example of the level-one

decomposition applied to a real image is shown in Figure 9. In this figure (as well as in Figure 10

below), the pixel values in each of the three cells containrýg high-pass (HP) information have been

artificially increased to make them more easily visible. An example of a higher-order (level-three)

decomposition is shown in Figure 10.

Image Reonmtruction

In the present context, image reconstruction is the reverse operation of image

decomposition. The higher resolution signal, Sr,,, can be reconstructed from its components, S,

and Ss, asfollows:

St#.I = .,h(n - k) . SItp + 7, g(n - k) . Sit*
If k

= S/t * h(n) + SHp. * g(n) (21)
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Figure 9

An Example of a Level-One Decomposition
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Figure 10

An Example of a Level-Three Decomposition
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where (*) is the convolution operator and SL, is an interpolated version of SL, (i.e., with a mean

luminance value inserted after every sample of SL,). Schematics for the one- and two-dimensional

reconstruction process are shown in Figures 11 and 12, respectively.

Implementation

It follows from Daubechies (1988) that g(n) and h(n) are related as:

g(n) = (-1)nh(1 - n)

where h(J-n) is the mirror filter of h(n). Thus, as a practical matter, if g(n) is known, h(n) can be

obtained directly. We will now show, further, that h(n) and g(n) are equivalent to the ck's of

Equations 3 and 4. The significance of this equivalence is that it allows the required expansion

coefficients to be computed from the scaling-function coefficients, ck. Thus, it is not necessary to

generate the fMli wavelet waveform or to use that waveform in the computation of the inner

products from which the expansion coefficients are obtained.

As implied by Equations 16, 17, and 18, we can decompose an image, H, at resolution

level 2" with respect to the functions ý and W. Those equations can be rewritten as:

SLp = H(x)8t.,, 2J-i = 2, (H, jj) ý.* + 2 (H, W.*) W.i* (22)
k k

where *jk and W'k are the low- and high-pass filter coefficients (or basis functions), and so the

summations represent low- and high-pass filtering. The inner products of Equation 22 give the

wavelet (or decomposition) coefficients. For instance, when extended to two-dimensions, the

first inner product is simply the upper left comer of Figure 9. We will now show that the inner

products in the summations are equivalent to the ck's of Equation 1.

We begin by using Equations 4 and 13. Specifically, from Equation 4 we have:
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4-Jx- = (-1)n" CN_-(F,) ,(2 (2X- n) - k)
k

IY (-l)k*lCN-A )• 2--) •x-(2n + k)) (23)
k

Subsuting Equation 23 into Equaion 13 gives:

W,(x)= ) (-C),+' • 2-. 4(2--("). x - (2n + k))
k

=Y (-1)k+1C-(+i) .2-12 21 (2-*-').x-(2n+k))
k

and using the notation of Equation 12 we get:

AX)= Z (-1)1 +1 CNt4(k+i) •2 2 *U.1.(•,(X) (24)
k

Denoting I = 2n+k and k+1 (7-2n+]) gives:

Wffi = ) (-1) ' CN---2n+i) 2 2-
I

and denoting,

g(I- 2n) = (-1)IN"H CN-,) .2-1 (25)

gves,
•.,,x) =E g(- 2n. *O1)j(26)

The high-pass wavelet coefficients at a given resolution level can be obtained by taking the inner

product of the above equation with the image, H:
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ý(H, 9g(1- 2n).- (H. +01v) ,(27)
I

where g is a high-pass filter. The inner product (< - >) on the right side of Equation 27

represents the wavelet coefficients at one resolution level, whereas the inner product on the left

side of the equation represents the wavelet coefficients at the next higher level.

Following the same procedure as indicated in Equations 23 through 26, the low-pass

wavelets coefficients can be obtained as:

(H , +fi)= hQ h- 2n). (H, D/Ij (28)
I

where, in analogy with Equation 25, ht = c I/ .

Equations 14,15, and 22 show how to compute a coarser approximation from a finer one,

as well as how to compute the difference in information between the successive approximations.

To obtain a finer representation from a coarser one, we proceed similarly obtaining:

(H, = h(m- 2k) . (H, +k) + -g(m- 2k) (H. V) (29)
I I

SUMMARY

The essence of multiresointion image decomposition and reconstruction is the use of a

pair of filters--one low-pass and one high-pass. The filters are constructed from orthonormal

wavelets -by taking the inner product of the dilated wavelet and a shifted version of the undilated

wavelet. Image decomposition is performed by first passing each image row and column through

both a low-pass filter and a high-pass filter. Since this filtering operation reduces the image

bandwidth, fewer pixels can now be used to represent each line with no loss of information.

Therefore, the output from each filter is subsampled by eliminating every other pixel. The
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procedure is repeated for each row and column producing four images each one-quarter the size

of the original. The procedure is applied recursively to obtain additional levels of decomposition.

Decomposition is, as a practical matter, always performed down to the 2 x 2 pixel level.

After decomposition, redundant information can be removed up to any chosen level.

Reconstructions can then be performed up to various levels in order to determine the lowest level

which gives an acceptable reconstruction. We start the reconstruction from the lowest

decomposition level (the 2 x 2 level). The subimage corresponding to that level is first processed

through the same high-pass and low-pass filters used in the decomposition. The resulting filtered

images are then doubled in size by inserting the mean luminance value between all pixels, and

corresponding pixel values are added together to produce a single image. This procedure is then

repeated on this image and all subsequent images until the original image size is achieved. The

original image can be reconstructed exactly by this procedure. The point of the multiresolution

analysis, in the present context, is to identify information that can be removed without

significantly affecting the appearance of the reconstructed image. The advantage of the

orthonormal wavelet technique is that it provides a formal method for reconstructing an original

image from the multiresolution decomposition. Prior to the development of this technique,

multiresolution reconstruction could not be performed error free and not so simply as in the

orthonormal wavelet case wherein reconstruction is simply the reverse process of decomposition.
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APPENDDX

Source code for the program wavec which perforn image decomposition and

ron with respect to a continuous, orthonormal wavelet basis.

29

.. ...-. ..



mil

g AI
-C -C

I-C

40 *. -US0

11111111 L -

2-0 -V C6-C! 0- a 64

-U% -1 '""' *C* -*
:M !9 -M1 Yr A C*1i t. A "SPI Apm A. C 0' U'-0.0 t 03ý STý %; %W %I

=~~~~~~ 1 ~£ A ~ . -. C-



h116

* i;• ¸. .. . . 3, . . .. . .

.53,Iaq *~i :- a
4' gO * .I C- "wU

*-.-* . :4 u . '• 6

c•- rn• - .- . O.

HAII L *~..

-.~ - eunj . mLLL sc .. •al

-- ~ ~ ~ ~ # 16 f. , =.16. m

will -11- - .4114

fa - t u f i- mI I '

3 3 3 3 3 3 . * . * . * . * .,-
I. t :ama " ".. ,:-. U !m UIU_.- . ..

•• I

im.

32



0f

16

00

m-m

W6 p 0

X - "na 16
-~Lo .3* '

I.L 0.*

£o %3 am E %1a. E

= M!M.f Ap . i- *

33a -



* 3.

If.

E.= .. . .U : F t%vU I. •f b a ;

-a a a

S.. .. S - -c-| .

340

F 6.. -6".

^E 404 6.w 8 W"4 c '5 '

^%% .L a 2

.~ iv..34



, a0.* 4.. ... h~m .

40 WP,,a'- - i -. .- ,C os
X a CIO .- iNm-6 9 4i

a -. -)%k, I v-6 &.L• - -a h a

! 1.1! L. !!' 6. 6L.. L.

L. •6 * •m LIU"." a.j . .. .. .. _.. _- - .... . ...

SbL•ge LLLn • 4 . 3 3 -1.

4'_ U LNLILLLLUp

- -ng.2.- "U 10UAIIgV
4''6L "4'L L' L U 0-.J O

"I"'3-1 PI 13e- MC AXO A U~"'am111

3.

35



lilt
I ~ ~ '- a .C

01- U 4%.%

413

*3



V- 5

Lp
00 u

a0 c 40

IA
0~I.. u~a

0u 0 1" 0 -L:
0% de %. a *

d 9..4

^,W F6% k LC
4 4'I mmm

RM AA AAA APPM"APRR

S.. 37



.0.

-- C

4., &0 *0

*PC's

*a.. Goa'o un.orpI s="

~ I38


