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FOREWORD

This final technical report was prepared by the Re search Foundation
of the University of Toledo, Toledo, Ohio on contract AF 33(616)-5737 for
t'he Aeronautical Research Laboratory, Office of Aerospace Research.
The research was carried out under Task 70151, "Investigation of Internal
Visco-Compressible Flow Phenomena' of Project 7063, '"Mechanics of
Flight", under the direct supervision of Dr. Andrew A. Fejer, chief
investigator, with the collaboration of George L.. Heath and Richard

Thomas. Dr. Earl E. Hays and C. S. Hsu also assisted in the work.
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ABSTRACT

An experimental study was made of supersonic flow through
various convergent and convergent-divergant passage configurations,
The details of the flowa were examined by means of total and static
pressure surveys and Schlieren photographs and the effects of some
changes in passage geometry on the characteristics of the passages
were observed, Based on the tests, some designcriteria were
determined for supersonic passages capable of operating at high
static pressure ratios, I;: was concluded that long and narrow conver-
gent-divergent passages are capable of producinga significant
pressure rise without extensive separation in the divergent region.
However, the values of obtainable pressure rise appears to be sub-
stantially lower than anticipated by early designers of supersonic

compressor cascades,
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SECTION 1
INTRODUCTION

In the past years several investigators have demonstrated the feasi-
bility of compressors with supersonic flow in the blade passages and have
shown that one could expect high pressure ratios and good efficiencies from
such machines. (Refs. 1, 2, 3, 4). However, experimental studies con-
ducted on supersonic blade passages (Ref. 5) rotors (Refs. 6, 7) and rotor
and stator combinations (Ref. 8) have not born out the theoretical predictions.
In all cases large discrepancies were noted between the flow patterns on
which the passage designs were based and those observed experimentally:
the experimentally determined shockwave configurations differed from those
forming the basis of the designs and the estimated performance of the sub-
sonic diffuser region of the passages could not be attained. In an effort to
throw light on this situation an extensive study was undertaken at the Research
Foundation of The University of Toledo under the support of the Aeronautical
Research Laboratory, OAR of USAF, that was directed toward an under-
standing of the fundamental principles governing the flow through supersonic
compressor passages of various geometries. The first phase of the study
which dealt with passages of convergent-divergent geometries covered the
period from 1950 to 1953 and was reported in Ref. 9) in September 1953, The
second phase of the work concerned itself primarily with convergent passages;
it was completed in 1955 and is contained in Ref. 5. The final phase of the in-
vestigations which was conducted from 1955 to 1960 is presented in this report;
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various convergent and convergent-divergent passage geometries were con-
sidered and the effects of turbulence generators, blunted leading edges, dis-
continuities in the passage surface in the vicinity of the throat, and alterations
in the shape and size of the trailing edge region investigated. In addition,
tests were also conducted concerning the nature and magnitude of the energy
losses in the mixing region of two supersonic parallel jets; this information is
of relevance when supersonic compressors are being considered as the source
of motive power for high speed jet pumps.

The material presented in Section II of this report represents a review
of results of the first and second phases of the passage studies that have al-
ready been reported in detail (Refs. 4, 5) while the third and final phase of
the study is covered in Sections III and IV, The study on mixing of the super-
sonic jets is presented separately as part II of this report.

SECTION II
CONVERGENT-DIVERGENT PASSAGE TESTS

(A) Passage Geometries:

The first phase of the study (Ref. 9) concerned itself with passages of
convergent-divergent geometry that were designed for supersonic relative inlet
velocities and subsonic discharge flow. Such a passage is shown schematically
in Fig. 1. Here, it is assumed that the flow entering the passage will be de-
flected and decelerated by means of an oblique shock due to the fact that the high

pressure surface of the passage profiles includes an angle of attack Q@ with




the incoming flow. The change in direction of the flow equals here the angle

of attack @ and as shown in Fig. 1 this angle is identical with the wedge
angle S of the profile leading edges. At the passage throat the flow under-
goes"a further reduction in speed to subsonic values through a normal shock,
with subsonic diffusion following in the divergent region of the passage, where
the flow is considered to be parallel to the diffusor axis. The velocity diagram
representing such a flow is shown in Fig. 2.

In determining the geometry of passages of this type the following con-
siderations were felt to be relevant:

a) at design conditions the wedge angle S of the leading edge should
not exceed the maximum possible value for attached shock corresponding to the
relative inlet Mach Number. (The dependence of S max. on M 1 is shown in
Fig. 3).

b) the pressure ratio across the leading edge oblique shock and
through the normal shock in the throat should be limited to values that will not
induce separation in the region of interaction between the shockwave and the
wall boundary layer; separations of this type can result in a breakdown of the
flow in the subsonic diffusor and cause excessive losses. The determination
of acceptable limits for the pressure ratio across these shocks was one of the
objectives of the present study.

c) the pressure rise through the passage shock system should be

apportioned between the oblique and normal shock in a manner which will re-

sult in minimum over-all losses. The shock system, as shown in Fig. 4, is
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considered to consist of an oblique shock followed by a normal shock; the

changes in state corresponding to the shocks are indicated in the T-S diagram
in Fig. 5. In view of the fact that in isentropic compression the stagnation
Pressure remains constant, a change in stagnation pressure is representative
of the losses due to the irreversibilities inherent in a shock type compression
process. This can be stated in terms of a ''shock-effectiveness' which may bc

defined in the following manner:

_ Pos
Poi~ Pos Poy pou
T 1= %=5, "' % |7
-p—-l
]

This effectiveness was evaluated for a series of inlet Mach numbers
and leading edge wedge angles. The results of the calculations are yresented
in Fig. 6. With the aid of the curves shown in the figure one can readily de-
termine for a given value of M; the wedge angle 8 which will result in max-
imum shock-effectiveness; the entropy rise corresponding to the optimum com-
binations of Mach Number and wedge angle is shown in Fig. 7.

d) the ratio of inlet area to throat area AllAt (see Fig. 1) must satisfy
the starting requirement; i.e., when at starting a normal shock appears at the
passage inlet the Mach Number at the throat M, must not exceed unity, other-
wise the shock cannot pass through the convergent region into the divergent
section. If one assumes that the flow is isentropic within the passage this re-
quirement can be obtained from the curve A of Fig. 8. Curve B is representa»-

tive of test data (Ref. 22) indicating the magnitude of frictional effects,
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e) the angle of divergence € of the subsonic portion of the passage
should be an optimum selected for maximum efficiency, large angles being the
cause of excessive friction losses due to the rapidly thickening boundary layer
and small angles resulting in excessive passage length. Available data on low
speed diffusers indicate that € = 4° may be considered an appropriate value.

(B) Test Results:

Based on the criteria outlined above three convergent-divergent pass-
ages were designed for M = 2.00 and tested. They had identical convergent
regions (A; /A, = 1/.78 and S - 10°), differed, however, in the angle of di-
vergence € of the diffuser region ( € was 12° in passage No. 1 and 6° and
0° in passages No. 2 and 3 respectively). The details of these passage geom-
etries and the description of the tests can be found in Ref. 9. The results of
these tests show the following: (a) There is a separated region in the diffu-
ser; its extent increases with passage pressure ratio and divergence angle.
(b) ‘.. -re appears to be no possibility for the realization of the oblique shock-
normal shock configuration that was the basis of the design. The oblique shock
a’t the leading edge materializes in a predictable manner, however, an irreg-
ular and complex shock pattern appears in the divergent region instead of the
normal shock that was anticipated. This shock pattern extends, at the maxi-
mum obtainable pressure ratios, over the greater portion of the divergent
section. (c) At M = 2.28 a maximum pressure ratio P; /P; = 3.8 is obtained
with the passage having 0° divergence angle. This is considerably lower than
the pressure ratio of 7. 88 expected on the basis of the shock configuration on
which the design is based.: (d) Supersonic flow could not be established in the

5




passage, i.e., the passages ''did not start, '' at the design Mach Number of
2.00; only after a slight increase of inlet Mach Number to 2.28 was the shock
at the entrance ''swallowed'' and supersonic flow established within the passage.
As this increase in Mach Number is equivalent to an increase by 5% in the min-
imum throat area required for starting one may conclude that the boundary
layer, which is neglected in the calculations of the starting criterion, is in
effect reducing the net passage cross section by that amount.

It is evident from the test results that were obtained in the first phase
of the study that the flow picture presented in Fig. 1 is over-simplified and
that passage design principles based on such a picture are inadequate as dem-
onstrated by the discrepancies between the design flow patterns and the flow
patterns observed in the tests. In the subsequent phases of the study, pre-
sented in sections III and IV of this report, an effort was made to throw some
light on the causes for the discrepancies and to obtain a better understanding of
the underlying phenomena. Information of this type is required for the predic-
tion of the flow patterns within convergent-divergent compressor passages of
various proportions at various inlet Mach Numbers and for the formulation of
recommendations regarding the selection of passage types and the design of the
blade contours,

SECTION 11
STUDIES OF PASSAGE FLOW DETAILS

(A) The Test Program:

The discrepancies between the desired and obgerved flow patterns in

6




the convergent-divergent passages described in the preceding section appeared
to have their origins in the boundary layers of the passages. A study of the
Phenomena responsible for such discrepancies must therefore be focused on
the boundary layers and concern itself with aspects of the flow that have an
influence on the boundary layer, e.g., pressure gradients along the passage
walls, interactions between shock waves and boundary layers, etc. In the
following there are listed some of the topics that seem to be pertinent in this
connection.

(1) The strength of the shock that will produce separation in a boundary
layer.

(2) Criteria for reattachment of a separated boundary to the passage
wall.

(3) The effect of the geometry of the region downstream of a shock
wave-boundary layer interaction on the nature of the interaction;

(4) The effect of Reynold's Number on the nature of the interaction;

(5) Correlation of the results of two-dimensional cascade tests with the
performance of actual compressor stages having comparable geom-
etries.

With these topics in mind a series of tests were conducted on two-dimen-
sional passages of various geometries; some of the passages were equipped with
boundary layer trips, on others it was tried to stabilize the shock waves with the
aid of concave discontinuities on the surface; on one set of models blunted and

serrated leading edges were tried, and in one instance the passage boundary

7




layers were destabilized by heating. Below is the list of models that were

studied experimentally:

(a)

(b)
(c)
(d)
(e)
63]

(g)

(h)

(i)

three convergent passages with staggered leading edges and having
the length to throat ratios of 1.8, 3.5, 5.7 respectively (these
passages were tested with and without b. 1. trips);

a convergent passage with zero stagger;

passages with curved entrance section (with and without b. 1. trips);
a convergent passage with blunted leading edge;

a convergent passage with heated surfaces;

convergent passages with modified trailing edge regions (exten-
sions and cusps);

convergent passages with concave surface discontinuities for shock
stabilization;

a convergent-divergent passage with 'free jet'' throat;

boundary layer trip studies on flat plates (See Appendix A)

It was also intended originally to study, in addition to these passage

tests, some rotating cascades and to compare the rotating cascade data with

the results of the two-dimensional passage tests. A single stage compressor

was actually designed and partially built for this purpose. However, because

of scheduling difficulties resulting from extended use of the high speed dyna-

mometers of the Toledo Laboratory by the Continental Motors and Aviation

Corporation it was necessary to abandon this phase of the study.

Description of the tunnel of the Toledo Laboratory where the tests were
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conducted, details of the test set up and of the construction details of the
passage models including the mechanism for changing the pressure ratio of
the passages has been presented in an earlier report (Ref. 5) and will not be
repeated here.

(B) Test Results:

The test results are discussed with reference to topics 1 through 5
listed in part A above.

(a) Convergent Passages (with stagger)

To simulate the flow conditions in the entrance region of convergent-
divergent compressor passages, convergent passage models of the type shown
in Fig. 9 were used. The passages have one moveable surface permitting
changes in the angle of convergence and terminate in a plenum chamber which
is connected with the tunnel proper through a throttle valve; the setting of this
valve determines the pressure ratio across the passage. Passages having var-
ious leading edge stagger angles and height-to-length ratios were investigated.
The length of the shorter passages (1-1/2' upper chord) was sufficient to
accomodate one reflection of the leading edge shock from the lower surface
while in the longer passages (4-1/2" upper chord) there was room for two re-
flections. Typical Schlieren photographs of the flow through the short, inter-
mediate, and long passages are given in Fig. 10, for M = 2. 00; the photographs
were taken at 42 convergence and at the maximum pressure ratios at which the
passages were capable of operating at that value of the angle of convergence.

In these tests the pressure distribution in the passages was determined with the

9
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aid of rows of static pressure orifices on the top and bottom surfaces. The
pressure ratio across the shock-boundary layer interaction and the ratio of
Plenum pressure to inlet pressure resulting from these measurements is
shown in Fig. 11 for various degrees of convergence of the long and short
passage; for the throttle settings corresponding to the maximum pressure
ratios that were obtainable with each configuration. The Reynolds Number per
inch at passage inlet conditions was 3. 85 x 10° for these tests.

The tests of the convergent passages showed that an abrupt increase in
boundary layer thickness occurs across the interaction of the boundary layer
with the incident shock; and separation was observed to occur at the interaction
whenever the leading edge wedge angle, i.e., the angle of convergence ex-
ceeded 4°. For this limiting value of 8 the measured pressure ratio across
the interaction was found to be 1.71. (The corresponding calculated value for
a shock due to a 4° wedge reflected by a flat surface is 1. 56).

The transition from laminar to turbulent flow in the boundary layer was
observed to occur in some of these tests near the interaction of the incident re-
flected shock with the boundary layer. As the pressure rise to the separation
point may be dependent on the effective Reynold's Number of the boundary layer,
tests were also made with artificially induced turbulence. In one group of
these tests the boundary layer was tripped by a single two-dimensional distur-
bance at the leading edge; in a second group of tests a series of disturbances
was introduced into the flow in the form of narrow strips of tape placed at equal

intervals along the vane surface. A typical Schlieren photograph of the flow in

10




the short passage equipped with the single boundary layer trip is shown in
Fig. 12; the flow in a passage equipped with roughness strips on both the upper
and lower surface is shown in Fig. 13.

The maximum pressure ratios obtainable in the passages equipped with
roughnesses appears in Table 1. For the sake of comparison the corresponding
values for smooth passages are also shown.

(b) Convergent Passage With Zero Stagger:

Whether the distance of the shock-boundary layer interaction from the
leading edge of the lower surface has an effect on the performance of convergent
passages was investigated using a modification of the basic passage configura-
tion. In this modification the magnitude of the stagger angle was greatly re-
duced compared to the values used in the earlier tests; this was accomplished
with the aid of a combination of upper and lower vanes of appropriate lengths
as shown in Fig. 14. The distance of the interaction from the leading edge of
the lower surface was 1.25 times the corresponding distance in the short pas-
sage shown in Fig. 10a and . 73 times that found in the long passage (Fig. 10c).
With the angle of the upper vane set at 3% the interaction had the appearance
shown in Fig. 15. The ratio of plenum pressure to inlet pressure and the
pressure ratio across the interaction in this passage are shown as functions of
the vane angle setting in Fig. 11.

(c) Passages With Curved Entrance Sections:

It is well known that pressure gradients along a surface may influence

substantially the velocity profiles in the boundary layer when the boundary layer
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is laminar (Refs. 10 and 11) or turbulent (Ref. 12) and it is also known that
the gradient affects the Reynolds Number at which transition from laminar to
turbulent flow takes place (Ref. 13). In replacing the flat lower surface of the
convergent passage models by curved contours, as shown in Fig. 16, pressure
gradients impressed on the flow in this manner may have an effect on the per-
formance of the passage. In the configuration shown in Fig. 16a this pressure
gradient is negative along the entire lower surface while in the configurations
shown in Fig. 16b it is positive near the leading edge, changes sign at the in-
flection point of the contour and is negative over the remaining portion of the
surface. The effect of the pressure gradients was investigated for various
vane angle settings, i.e., various intensities of the incident shock. Typical
Schlieren photographs of the flow in each of the models as shown for maximum
pressure ratios in Fig. 17 and 18; the pressure ratio vs. vane angle setting are
shown in Figs. 19 and 20.

(d) Passages With Blunted Leading Edges;

One of the parameters known to influence the flow in boundary layers at
high speeds is the leading edge thickness. Increasing bluntness of the leading
edge has been found to displace the point of transition from laminar to turbulent
flow downstream, on flat plates (Ref. 14) and on cones and hollow cylinders
(Ref. 15). An effect on the laminar boundary layer development has also been
found: an increase in leading edge bluntness being accompanied by an increase
in boundary layer thickness (Ref. 16). These effects are apparently manifesta-

tions of a shear layer adjacent to the surface produced by the leading edge shock
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which becomes increasingly curved near the leading edge as the bluntness of
the edge is enlarged. In view of this influence of the leading edge geometry

on the boundary layer, tests were undertaken to determine whether blunting of
the leading edge would cause changes in the shock boundary layer interaction
and maximum pressure ratio of the passage. These tests were conducted on
the convergent passage. Fig. 21 shows Schlieren photographs of the flow in
the passage with sharp leading edge and with a blunted leading edge of 0. 02"
thickness. The pressure ratio variations appear for both configurations in Fig.
22. Comparison of the Schlieren photographs with corresponding pictures in
passages with sharp leading edge show that, on the lower surface, the distance
of the transition point from the leading edge was reduced by 50% by the blunting
of the leading edge.

(e) Convergent Passages With Heated Surface:

It is apparent from the boundary-layer equations of motion that the
effect of heating of passage walls is analogous to the effect of an adverse pres-
sure gradient, i.e., it causes an increase in the rate of amplification of distur-
bances. Experimental verification of this conclusion can be found in Ref. 17
where it is demonstrated that heating of a flat plate results in a forward motion
of the transition point. This phenomenon is apparently the consequence of
changes in the velocity profile in the boundary layer brought about by the heat
transfer at the surface and one may expect that heating of the walls of a con-
vergent passage will produce similar effects and result possibly in changes of

the performance of the passage.
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Several tests of a passage with heated walls were made utilizing the
passage of intermediate length. The lower as well as the upper surface of the
passage was heated. Stainless steel sheets of . 032" thickness were slotted as
shown in Fig. 23 and bonded to the altered vanes with epoxy cement. In this
manner the surfaces were converted into resistors of sufficient length to pro-
vide the heat to the boundary layers at surface temperatures of approximately
150°. The surface temperature was measured by means of thermocouples lo-
cated in the positions shown in the figure, the average of these thermocouple
readings being the value referred to in the data. Representative Schlieren
photographs are shown for maximum pressure ratios in Fig. 24a, b, for an
upper vane setting of 4°, In the test shown in Fig. 24a, the surface tempera-
ture Tw was 75°F (no heating) while in 24b TW = 150°F; the measured stagna-
tion temperature in the tunnel To was 101°F in both instances. A comparison
of the transition point location as determined from the photographs shows that

the change in temperature differential T, - Ty, from { 26°F to -49°F, i.e., a

A T, of 75°F resulted in a decrease in transition poirt distance from the leading

edge of the vane of 20%. The maximum pressure ratio for the heated passage
was 2. 62 as compared to 2. 67 for the unheated passage, both at a vane setting
of 4°.

(f) Convergent Passages With Modified Trailing Edge Regions:

When convergent passages operate near their maximum pressure ratio
a substantial portion of the rise in pressure occurs usually in the immediate
vicinity of the trailing edge. In such cases it was observed in typical Schlieren
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photographs (Fig. 26-30) that this pressure rise is connected with a relatively
abrupt increase in the thickness of the boundary layer in that region and this
thickening of the boundary layer was found to be indicative of an impending
separation of the flow from the passage wall at the trailing edge. When separ-
ation materialized, it lead in turn, to the complete breakdown of the super-
sonic flow in the bpassage. The pressure rise may be caused by one of two
types of shock configurations: an incident-reflected shock originating on the
leading edge of the upper surface or shock systems located at the trailing edges.
As the breakdown of the flow may depend on the manner in which the pressure
rise is imposed on the flow and as on the lower surface the two shock systems
are usually close to each other and are therefore likely to interact, the dis-
tance between the incident-reflected shock and the trailing edge may influence
the passage performance. In a series of tests this distance was varied step-
wise by means of extensions added to the lower passage surface as shown
schematically in Fig. 25; this figure shows five trailing edge configurations
made possible with the use of four extensions. Schlieren pictures taken at the
maximum pressure ratio for each of these trailing edge locations are shown in
Figs. 26-30. Iu the upper photographs the angle of convergence of the upper
vane was set at Zo; in the lower photographs the corresponding pictures for a
4° angle of convergence are shown. The maximum pressure ratios that were
obtained in these tests are plotted in Fig. 31, as functions of the trailing edge
location. It is apparent from these curves that, at least for the convergent

passages tested, the pressure distribution in the region of increasing pressure
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is of little or no influence on the magnitude of the attainable pressure rise.

It was also attempted in this series of tests to modify the pressure dis-
tribution in the discharge region of the passage by addition of a convex trailing
edge extension to the lower surface (cusp); Schlieren pictures of the flow in the
passages modified in this manner are shown in Figs. 32a and 32b for angles of
convergence of 2° and 4° respectively. The corresponding maximum pressure
ratios are shown in Fig. 31 (points A and B).

(g) Convergent-Divergent Passages With Concave Surface Discontinuities

From the data obtained on flows in convergent-divergent passages (Ref.
9) it is apparent that instead of the single normal shock, which forms the basis
of the passage design, a series of irregular shocks materialize in the divergent
region downstream of the throat; there is also evidence of separation of the
flow from the passage walls. On basis of the information gathered from the
earlier tests and utilizing the data on shock wave boundary layer interactions
obtained with the convergent passage model a convergent-divergent passage
geometry was arrived at which was designed for an inlet Mach Number of 1.7.
This is a value which can be realized readily with a compressor rotor of 14"
tip diameter operating at 30, 000 rpm. The contours of this passage are shown
schematically in Fig. 33a while a Schlieren photograph of the flow appears in
Fig. 37. It is apparent from this figure that the shock system in the convergent
section did not give rise to separation; however, separations were present in
the divergent region where the static pressure was increased gradually by a

multiplicity of shock. The maximum obtainable pressure ratio across the
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passage was 2.97; this is slightly less than the pressure ratio which can be
achieved by normal shock (3.205). An increase in inlet Mach Number to 1.98
did not result in any improvements in performance.

Surface discontinuities usually have the effect of stabilizing shock for-
mations in supersonic flow and in view of this the convergent-divergent passage
was modified to include small cavities of various shapes and sizes. These
were of the shapes shown in (Fig. 33b, c & d) and were located in the divergent-
section near the passage throat. Tests were conducted to determine whether
the cavities would arrest the motion of the shock system from the trailing edge
region toward the passage entrance that occurs usually with an increase in the
pressure ratio and whether the region occupied by the shock system could be
reduced in depth to a point where it would approach in appearance the normal
shock configuration.

The results of these tests are presented for flows at the mz -imum pres-
sure for each configuration in Figs. 34, 35 and 36. In Fig. 34 prissure distri-
butions are presented for the 3 types of cavities shown in Fig. 33. The static
pressures along the center line of the upper and lower surface of the passages
are plotted in inches Hg absolute in order to permit comparison of the pres-
sures on opposite sides of the channel; in Fig. 35 the same information is pre-
sented in the form of dimensionless pressure ratios with the low pressure near
the leading edge being used in each case as the reference. It is apparent from
these figures that the pressure distributions are on the whole not affected by

the presence or shape of the cavities that were used. (In one case - run 5-5 -
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where the observed pressure rise was smallest the passage was most likely
not operating at its maximum pressure ratio). A comparison of the pressures
on a smooth passage with those on one with cavities is shown in Fig. 36. The
effect of Mach Number is also demonstrated in this figure; curves at M1 = 1.7
and at Mj = 1.92 are shown. For the tests at the lower Mach Number the pass-
age models were set at a negative angle of attack and this resulted in a shock on
the leading edge of the lower surface which caused the desired reduction in inlet
Mach Number. The maximum pressure ratio obtainable with the various con-
figurations are summarized in Table II. Typical Schlieren photographs corre-
sponding to the test points shown in the curves appear in Figs. 37-40.

(h) Convergent-Divergent Passages With Free Jet Throat:

The study of the effect of surface discontinuities was extended to cover
passages with large rectangular cutouts that simulate, in an approximate man-
ner, free jet conditions in the throat of the passage. As shown in the diagrams
in Fig. 41 the cutouts were rectangular in cross section and were positioned in
the minimum area portion of the passage. The effect of the cavity on the
structure of the boundary layer in the divergent region and on the nature of the
interaction with the shock system may of course depend on the depth (d) and
the chord length (c) of the cavity, in the slope of the lip contours and on the
exact location in the passage. However, the study of the possible effect of
these parameters was considered outside of the scope of these investigations.

It was merely attemnpted to establish whether a significant effect on passage

performance could be detected. In view of this the depth of the cavities was
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made as large as the passage models could accomodate (0.25') and only two
chord lengths were used. In the case of the shorter cavity, shown in Fig. 4la,
the chord is equal to the height of the passage throat (c = h = 0, 6'') while in the
larger cavity shown in Fig. 41b the chord exceeds this value by 0.38'. The
ratio of depth to chord length d/c was 0.42 and 0. 26 respectively; it was felt
that this parameter must be kept sufficiently large in order to prevent the
main flow from turning into the cavity. Recently published data on flows in
rectangular cavities (Ref. 18) indicate that a value of d/c of 0. 16 would prob-
ably have sufficed.

The results of these tests are summarized in Figures 42 and 43. Fig.
42 shows the pressure distribution on the walls of the passages with the cavi-
ties of 0.6'" and 0.98" chord length; the pressure distribution on the original
passage without cavities is also included. Fig. 43 shows for the case of the
0. 6" cavity the effect of back pressure (throttle position) on the pressure dis-
tribution from minimum (wide open throttle) to the maximum that can be main-
tained across the passage. The values of the maximum pressure ratios appear
also in Table II. Typical Schlieren photographs for these passages are shown
in Fig. 44.

SECTION 1V
DISCUSSION OF RESULTS

(A) Convergent Passage Tests:

In the tests of the convergent passage models it was found that the
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supersonic flow through the passage will break down if the ratio of the static
pressure at the discharge to that at the inlet of the passage exceeds a certain
maximum. At that point a drastic change occurs in the flow pattern which
causes blockage of a portion of the area at the discharge choking thereby the
passage and forcing a detached shock wave to appear at the passage entrance.
From Schlieren observations of the flow by means of high speed mo-
tion pictures it was determined that the change in flow pattern was triggered
by a rapid thickening of the boundary layer which was followed in some in-
stances by separation of the flow from one of the passage walls. At small
angles of convergence this disturbance occurred at the trailing edges due to
the fact that the shock wave at the leading edge of the upper surface was rela-
tively weak and the major portion of the pressure rise took place through ob-
lique shock originating at the passage exit. With an increase in the angle of
convergence the shock at the leading edge of the upper surface became stronger
and an increasingly larger portion of the total pressure rise occurred at the
point of incidence of the leading edge shock on the lower surfaces. This is
apparent from the lower curves in Fig. 11 which shows the manner in which,
at that point, the pressure ratio across the shock boundary layer interaction
increases with increasing values of the angle of convergence. The pressure
ratio across the passage is also shown in the upper curves of the figure. And
while the curve representing the interaction pressure ratio approaches with in-
creasing angle of convergence the upper curve the interaction pressure ratio

is always less than the passage pressure ratio. This is due to the fact that the
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angle of convergence of the passage is limited by the ratio of the discharge
area to the inlet area which is inversely proportional to the degree of conver-
gence. Thus there is for each of the passage configurations a limiting degree
of convergence; it is approximately 40, 6° and 10° respectively for the large,
intermediate and short passage configurations.

It is also apparent from Fig. 11 that the total pressure rise on the
passage is independent of the angle of convergence, i.e., it is immaterial
whether the major portion of the pressure rise takes place at the trailing edge,
whether it is distributed equally between the interaction and the trailing edge
or whether most of it occurs at the interaction. This finding agrees with the
general conclusions reached by Kuehn (Ref. 19) on the basis of a study of the
pPressure rise required for incipient separation of a turbulent boundary layer
in two dimensional supersonic flow. It is reported in that study that for low
supersonic Mach Numbers (from about 1.7 to 3. 6) the incipient separation
pressure ratios are approximately the same for an incident shock and a com-
pression corner and that in the low Mach Number range incipient separation
conditions for various model shapes may be described at a given value of the
Mach Number and Reynold's Number in terms of a single pressure ratio; at
M = 2,00 this pressure ratio was found to be approximately 2.25 (Fig. 20 of
Ref. 19) and the Reynold's Number at the interaction was given there as R =
4.5 x 104 which compares favorably with the Reynold's Number of 3.85 x 105
per inch in the convergent passages used in the present studies. Furthermore,

it appears from Kuehn's study (Fig. 24 of Ref. 19) that for model geometries
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for which the size of the separated region is a continuous function of M.and
R incipient separation may occur at pressure ratios as high as 2. 8.

In the present study the maximum pressure ratio of convergent pas-
sages was observed to be in general between 2.5 and 2.7. The data presented
in Fig. 11 indicate however that small but noticeable differences exist be-
tween the various passage configurations and that the longer passages are
able to withstand the higher pressure ratios. As the pressure rise occurs in
the longer passages through a larger number of weaker shock waves and the
interactions of these waves with the boundary layer are distributed over a
greater distance this result is not unexpected.

Changes in the interaction Reynold's Number were effected by changes
in the angle of stagger of the leading edges; an increase in stagger angle being
inversely proportional to the distance of the interaction on the lower surface
from the leading edge. It is apparent from Fig. 11 which includes the data on
a passage with zero stagger that a change in stagger angle did not influence the
passage performance. One may therefore conclude that at M = 2.00 and for
free stream Reynold's Number in the vicinity of 5 x 105 per inch the effect of
Reynold's Number is negligible. This finding is also born out by the results of
the tests published by Kuehn (Ref. 19) who is pointing out that for compression
corners, curved surfaces and incident shock waves the pressure rise required
for separation decreases substantially in the range of Mach Numbers from 3 to
4 when the Reynold's Number Rg is increased from 2 x 10% to 10> while at

Mach Numbers near 2.0 the effect of Reynold's Number is small and seems to
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approach zero at the higher values of R g

The results of the tests on the passages with curved lower surfaces,
with blunt leading edges and with heated surfaces described in the previous
section also point to the absence of significant Reynold's Number effects for
lL.7< M< 2,3andR =4x 105 per inch. These passage geometries repre-
sented changes in basic passage configurations that were made with the inten-
tion of altering the boundary layer flow in the critical regions of the passage.
The observed passages were however found to be relatively insensitive to the
changes affecting the boundary layer structure. It was also found that the
maximum pressure ratio was not affected by changes in the distance of the
point of incidence of the leading edge shock from the trailing edge. Variations
of that distance were realized by means of extensions that were attached to the
lower surface as described in the preceeding section.

(B) Convergent-Divergent Passage Tests:

The information that was obtained from the studies described in the
Preceeding sections of this report were applied to a convergent-divergent pas-
sage design for an inlet Mach Number of 1.7. Tests of this passage revealed
that the maximum pressure ratio of the passage is slightly below the value
associated with a normal shock; the pressure rise through tize passage was
found to be gradual and while separation was apparent in the divergent-section
the extent of the separated region appeared to be quite small. This is felt to
be of some significance when a cascade utilizing blades of this geometry is to

be used in conjunction with other rows of blades.
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While it has been known that the static pressure rise obtainable in
passages of constant or nearly constant area corresponds that across a
normal shock at inlet Mach Number (Ref. 20) it does not follow necessarily
that a pressure ratio of this magnitude can always be obtained. This is
apparent from the fact that a change in the inlet Mach Number of the conver-
gent-divergent passage from 1.7 to 1. 98 did not result in a significant increase
in pressure ratio (see Table II). This represents essentially a deterioration
of the passage performance as compared to the normal shock pressure rise.
The cause of this may be a mismatch between inlet geometry and inlet Mach
Number: at Mj= 1. 98 the leading edge shock impinges on the lower surface at
a point downstream of the throat, i.e., in the divergent section and a large
separation may occur at the point of incidence. In support of this interpreta-
tion attention should be called to the convergent-divergent passage with free

jet throat (Fig. 41) in which a maximum pressure ratio of 3.45 was obtained.
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SECTION V
CONCLUSIONS

The following conclusions were drawn from the investigations on
convergent and convergent-divergent passages with reference to supersonic
compressor cascade applications:

(1) Convergent-divergent passage contours are suitable for super-
sonic stator and rotor applicatiuns provided that the solidity ratio of profile
length to profile spacing is sufficiently high to prevent extensive separation
in the divergent sections.

(2) The angle of convergence at the inlet (leading edge wedge angle)
must be kept small so that separation is minimized at the point of incidence
of the leading edge shock on the lower surface. The pressure ratio for in-
cipient separation of a turbulent boundary layer due to an incident shock (Ref.
19) appears to be a satisfactory criterion for the choice of an appropriate
leading edge shock strength., Care must be taken, however, that the boundary
layer be actually turbulent at the location of the interaction.

(3) The ratio of throat area to inlet area is limited by passage starting
considerations. The usual impirical starting criteria for supersonic diffusors
appears to be applicable to convergent-divergent passages.

(4) In order to prevent large flow separations in the divergent region
a constant area section of sufficient length should be provided in the passage

throat between the convergent and divergent region.
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(5) The optimum passage performance that should be anticipated
corresponds to the pressure recovery across a normal shock at the inlet
Mach Number. Consequently reasonably efficient supersonic cascades are
most likely to be realized with relatively low supersonic Mach Numbers.

(6) By further experimentation with convergent-divergent passages
it should be possible to obtain pressure recoveries in excess of the normal
shock values. In this connection attention should be called to the significant
improvement in the performance of a divergent passage that was obtained by

Weise many years ago by means of boundary layer control (Ref. 21).
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TABLE 1

Comoparison of maximum pressure ratios of 1.5 inch passage
of 6 convergence with various types of roughness.

Description of Roughness

Series of strips . 047" wide x .0026' high
. 0625 inches apart along upper vane.

Series of strips . 047" wide x . 0026'" high
. 0625 inches apart along upper and

lower vanes . . . . . .

Single strip . 047" wide x . 0208'" high on

lower vane . . . . . .

Single sirip .047' wide x .0208' high on
lower vane { single strip .047" wide

% .0203'" high on upper vane .

NO I'Oughht: 88 . . . . . . .

29

Maximum Pressure Ratio

« + o . 2.33

e « . . 2.25

. . . . 2. 32
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TABLE 11

Effect of concave surface d iscontinuities on flow
in convergent-divergent passage.

; M,=17 ! M, =1.92
Description of Discontinuity E"“-I """""""" !‘ """" poTTosSssesses-
! Run ! Max. Pr. Ratip Run 5 Max. Pr. Ratio
------- e et R R Ll
i : ' !
None - Smooth Surface 11-5 ' 2,97 !11-8 ' 3.06
] ' [} t
] [}
.062" Square Groove 15-3 1 3.02 1 5-5 & 2.93
1 ] 1 [ ]
! ]
.062" Sq. Plus . 125" Dia. ' i ; |
Groove 17-5 1 2.8 ¢ 7-2 ! 2.96
! ' ' 1
] ]
. 375" x . 25" Groove '8-5 | 2,84 18-2 1 3,06
' ' H '
] ]
. 6" Chord "Free Jet" Throat H E ! 9-3 5 3.45
K \ M '
[} ]
.98" Chord "Free Jet" Throat | | {10-2 ! 3,18
‘ ' ' !
1 ? ' ]
' ' : ]
' ! i :
]
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APPENDIX A

Boundary Layer Trip Study

I. Introduction:

From the experimental studies of shock-boundary layer interactions
(Ref. Al) it is readily apparent that the nature of the interaction is governed
by conditions in the main stream (Mach number, pressure gradient, etc.) and
the nature of the flow in the boundary layer. It is, of course, well known that
these influences are interrelated because the main stream is coupled to the
boundary layer flow and consequently the nature of an interaction of a shock
with a laminar boundary layer is quite different from a turbulent boundary
layer interaction.

In the study of supersonic passages described in the main body of the
report, it seemed appropriate to select model passage dimensions that would
insure that the boundary layer was always turbulent in the regions where it
interacted with shockwaves; however, the Reynolds number of the boundary
layer at the interaction closest to the leading edge was considered marginal
(2 x 105) and while it appeared from Schlieren photographs that the interaction
was a turbulent one it was decided to equip several of the models with tripping
devices in order to increase, in this manner, the effective Reynolds number of
the boundary layer. A tripping device may of course have undesirable side
effects as far as passage performance is concerned, e.g. increased frictional

losses, and it is therefore important to use the smallest possible trips capable
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of causing boundary layer transition.

A survey of the information on boundary layer tripping devices avail-
able in the literature indicated that data on artificially induced turbulence in
supersonic flow is extremely meager and limited in scope (Refs. A2, A3, A4,
Ab5). It was decided for this reason to undertake ar investigation of the char-
acteristics of boundary layer trips on a flat plate at M = 2, It should be pointed
out, however, that the results of this study were primarily intended for use in
connection with the tests conducted in the supersonic wind tunnel of the Toledo
Laboratory and care has to be exercised in applying them to flows in other en-
vironments where the scale and intensity of free stream turbulence, stagnation
pressure, rate of heat transfer to model walls and other details of the flow may
be sufficiently different to influence significantly the performance of the trips.
The details of the study and the results derived from it are presented in the
following.

II. Description of Experimental Set-up and Techniques:

A flat plate 3-3/4 inches wide and 6 inches long was utilized in the
study. It was equipped with a wedge shaped leading edge (18°wedge angle); the
upper side of the wedge was in line with the plate surface. The model is shown
in Figs. Al and A2. The surface of the plate was smooth (the average rough-
ness was about 16 micro inches) and it was carefully aligned with the direction
of flow in the constant pressure portion of the test section of the 5-1/2'" x 6-3/4"
wind tunnel. In order to assure two-dimensional flow over the plate it was at
first equipped with glass side plates, but later in the program the side plates
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were omitted ~hen it was found that they had little effect on the magnitude and
direction of the flow velocity along the center line of the plate.

Three techniques were used to locate the transition point along the
center line of the plate: skin temperature distributions, total head surveys
and Schlieren photographs. On the model devised for the temperature distri-
bution method, a thin plate (. 031') was used; it was thermally insulated from
the supporting structure and it was equipped with a row of thermocouples lo-
cated on .25 inch centers. The thermocouple readings along the plate revealed
an increase in local temperature recovery factor in the transition region; how-
ever, the rate of change of temperature along the plate was found to be too
gradual to permit pinpointing of the transition point location with sufficient
accuracy. On the other hand the transition point locations determined from the
Schlieren photographs and total head surveys agreed with each other in most in-
stances very well; in the few instances when discrepancies did appear they did
not exceed 6% of the distance from the leading edge. A typical Schlieren photo-
graph is presented in Fig. A3 which also shows the type of total head probe that
was used for the pressure surveys. The probe was supported from the back
and could be moved along the axis of the plate and along the normal to the plate
surface.

The majority of the boundary layer trips that were used were two-di-
mensional; a few three-dimensional trips were also studied. The two-dimen-
sional trips were rectangular ridges of . 094 inches in width and were made up

of individual layers of cellophane tape; the ridges varied in height from 0.0026

L 4
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inches to 0.0234 inches depending on the number of layers used. The three -
dimensional trips consisted of single rows of glass beads of 0.015 inches diam-
eter glued to the surface. The trips were arranged to cover the entire width of
the plate and were located at various distances from the leading edge of the
plate; the range of distances covered was . 078" to 1'.

The tests were conducted at a fixed Mach number (M = 2. 00) with stag-
nation pressure and stagnation temperature held also constant.

III. Test Data and Results:

a) Two-dimensional trips:
In the first troup of tests conducted on the two dimensmnal trips a

thin plate was used; it was mounted between parallel side plates of glass and
equipped with thermocouples indicating the temperature gradient along the
center line of the plate. The results obtained by means of the temperature dis-
tribution method were however inconclusive, as mentioned before, and there-
fore detailed description of this phase of the studies is not given. In all sub-
sequent tests a thicker plate was used, the side plates were omitted and the
model was equipped with a total pressure survey probe.

The information recorded during each of the tests included the press-
ures and temperatures required to determine the tunnel operating point, static
pressures at several stations on the plate and a series of total pressures ob-
tained with the traversing probe along a vertical line normal to the surface of
the flat plate, at various distances from the leading edge of the plate. Tra-

verses were made starting with the center of the probe . 010" from the surface
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and ending with the probe in the free stream with the distance between the
individual points of the traverse being .005''. The distance between the sur-
vey stations on the center line of the plate was .5 inches. During each of the
vertical traverses several Schlieren photographs were taken.

From the total pressure distributions that were obtained in the manner
described above, data were deduced regarding the thickness of the boundary
layer and the location of the transition point in a simple manner indicated
schematically in Fig. A4. This figure also serves to define the terms
"boundary layer thickness "'y and transition point location "xt" as used here.

A summary of the results of the tests is given in Table AI. The sym-
bols used in this table are summarized in the following:

List of Symbols

*d Distance of upstream edge of trip from leading edge of plate.

X0 Distance of transition point from leading edge on smooth plate.
x4

" " (1] ”" 1] " 1" 1] " " 3]} 1" phte with trip.

d Height of trip.
Po Free stream stagnation pressure.
To Free stream stagnation temperature.
Res= %‘ Reynolds number, per inch of length at free stream P, T,
R, = u—‘l
t v
Rxd v
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c

8* Displacement thickness of compressible laminar boundary layer at a
distance X, from leading edge of plate. (calculated according to
Ref. AS5).

* Displacement thickness at trip location (in absence of trip).
S P

crit Critical trip height, causing transition at trip location (x, = x d)

It is evident that the location of the transition point (x,) will depend on
the  molds number of the flow, shape and size of the trip, trip location X4
scaic and intensity of free stream turbulence, static pressure of the free
stream, Mach number and temperature of the free stream and the temperature
of the wall. For a given trip shape and fixed values of free stream pressure,
temperature, and turbulence, and neglecting changes in the wall temperature
one may write the functional relationship between the dependent and independent

variables in the following dimensionless form

W F AR Al ) )

If the data of Table Al are presented in a graphical form based on such a
relation, Fig. A5 results. In Fig. A5 each of the curves labeled R4 = C
corresponds to a fixed trip location, characterized by the value of Ryd, with
the trip size (d/xto) increasing along the abscissa. The solidly drawn portions
of the curves indicate the range of trip sizes for which x, > xd5 X, decreases

from the maximum value of xto on the smooth plate (i.e., d = 0) with increas-
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ing trip height d, to the minimum where x; = x5 . The trip height correspond.
ing to this minimum is referred to here as the critical trip height causing
transition at the trip location, From the critical point on, the curves in Fig.

A5 are horizontal as a trip height exceeding d can have no further effect on

crit
x,. A critical analysis by Dryden of various published low speed trip studies
(Ref. A8) shows acceptable correlations between the results of these studies
when the trip size is expressed in terms of the laminar boundary layer dis-
pla: .ment thickness 8* at the trip location. In this manner one includes

*
the Reynolds number of the flow implicitely in 8* as O e f(Re, x)and con-

sequently Eqn. 1 can be restated in this case in the following form:

xe/ x, .f(dfs’;.xd,xto ) eeeirreeeieens (2)

In Fig. A6 the data from Table I are presented in the form correspond-

ing to Eqn. 2. The ordinate in this figure is again x,/ x, but the abscissa is
o

now d/ 8:, here the dispiacement thickness 8* has been calculated with the
aid of the relations given by Chapman and Rubesin in Ref. A5,

It is apparent from Fig. A6 that when transition occurs downstream of
the trip, i.e., when Xg < X the data obtained with various trip locations fall
all on a single curve. This result is in agreement with the findings of Tani,
Hama and Mitr .isi (Ref, A6) and Tani and Hama (Ref, A7) obtained in income
pressible flow with cylindrical trips. It should be noted however, that as far as
sizes of the trips is concerned, the values of d/ 8* required to trip the
boundary layer in the present study are considerably larger than the correspond-

ing values used in incompressible flow in Refs, A6, A7, A8 and in the recent
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results of Smith and Clutter (Ref. A9).

The minimum trip sizes that are necessary to move the transition
Point to the trip location (i. e. for x, = x d) referred to here as critical trip
sizes are denoted by (d/ 8‘) crit and these are presented for the various trip
locations and boundary layer Reynolds numbers in Figs, A7 and A8, It is
apparent from these figures that near the leading edge of the plate, where
Rxd and Rg' are small, the height of the required tripping device is a larger
multiple of the local boundary layer thickness than at locations that are further

downstream; at xg = 0,078 inches, (d/ § ¥) is 7,25, while at the 1 inch

crit

location it is only 3. 4.

b) Three Dimensional Trips:
The results discussed so far refer to twoedimensional, rectangular-

ridge types of tripping devices. While the disturbances produced by a two-
dimensional ridge, are larger than those present in the wake of three-dimen-
sion.al trips of equal height, it would seem that the latter should be more effect-
ive: two-dimensional disturbances must first break up into three-dimensional
vorticity before they can produce turbulence type perturbations in the boundary
layer. Consequently the effect of three-dimensional trips on xt/xto ought to be
less pronounced than that of a two-dimensional trip of equal height. However,
as shown by point A in Figs, A5 and A6 tests made with three-dimensional trips
consisting of a row of spherical glass beads do not support this hypothesis. In
these tests the beads were 0. 015 inches in diameter, located at x5 = 0.5" and

arranged on 0.031" centers. It appears that the test point A falls within the
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range of the data obtained with two-dimensional trips. A possible explanation
of this may be that the spacing between the beads was too small (2 diameters

between centers) to permit three-dimensional wakes to develop.

39




Al

A2

A3

A4

A5

Ab

A7

A8

A9

List of References

Chapman, D. R., Kuehn, D. M. and Larson, H. K. 'Investigation
of separated Flows in Supersonic and Subsonic Streams With Emphasis
on The Effect of Transition" NACA TN 3869, March 1957.

Brinich, P. F., "Boundary Layer Transition at M = 3, 12 With and
Without Single Roughness Elements'' NACA TN 3267, Dec. 1959.

VanDriest, E. R., and Boison, J. C., "Experiments on Boundary
Layer Transition at Supersonic Speeds' Journal of Aero. Sciences,
Vol. 24, No. 12, pp. 885, Dec. 1957.

Braslow, A. L., '"Effect of Distributed Granular Type Roughness on
Boundary Layer Transition at Supersonic Speeds With and Without
Surface Cooling''. NACA RML 58 Al17, March 1958.

Chapman, D. R. and Rubesin, M. W., "Temperature and Velocity
Profiles in The Compressible Laminar Boundary Layer With Arbitrary
Distribution of Surface Temperature' Journal of the Aero Sci., Vol.
16, No. 9, pp. 547, Sept. 1949,

Tani, I., Hama, R., and Mituisi, S. "On The Permissible Roughness
in the Laminar Boundary Layer'" Aeronautical Research Institute of
Tokyo, Rep. 199, 1940.

Tani, 1., and Hama, R., '"Some Experiments on the Effect of a Single
Roughness Element on Boundary Layer Transition' Journal of the
Aero. Sci., Vol. 20, No. 4, pp. 289, April 1953,

Dryden, H. L., "Review of Published Data on The Effect of Roughness
on Transition From Laminar to Turbulent Flow'. Journal of the Aero.
Sci., Vol. 20, No. 7, pp. 477, July 1953,

Smith, A,M, O, and Clutter, D. W., '"The Smallest Height of Roughness

Capable of Affecting Boundary-Layer Transition''. Journal of the Aero/
Space Sciences, Vol. 26, No. 4, pp. 229, April 1959,

40




S$'%  ¥2°9 00¢" 6'S  ¥9°2 02L°0  SL°0  099°€ T €92  0°ST 05°0 o¥
0S¥ SL6 9TF- 078 65t 000°T 185°¢ O _ 0Ls2 vez o 6t
00°¢ 0§59 85" 2'Ls  €0°F 001°T 0z'T  099°¢ Ol €292 9°sT 1%
0S°'T  sz't 989" L2 18°S 089°1 s§§°'€  SI1  8L62 8°L 000°T 8¢
009 szt 181" S'2Z 65T 00 050  €es'€ Ol  1€se 8L = T3
00'%  L1'Z ¥seE” 0°6T OI'c 0S8°0  00°T  9¥9°c oIl 2192 2 » 9¢
00°Z  80°T $29° 01°6  SZ°S 00S°T 0S'T  00§'€ ST  8es? 9°28L0°0 s¢
y's  99'8 80z 00°L. S8°1 0050 00  10Z°€ S0 0292 80T n 61
6Ly 15°L 281 --
0T'¥ 059 zee” 00°2§ 6°Z 06L°0  08°0  9¥9°c  SOT  18SZ 9°ST 82
W€ 1¥°S pO¥ 06°S¥ €St S€6°0  00°'T  625°€  SII 6952 0°ET ¥e
€2°2 €€V 08B OF9E  09°C OF6'0  OI'T  .8%°€ 021  6SST $'0T 1€
s0'z szt s’ 08°22 S6°F 0SE'T O¥'1  S6S°€  SOT  S¥S2 8°L L7
LET LI'T §99° 0£°8T  S5°S GLS'T 925°c 021 8852 2§ u €€ ‘2¢
89°0 S80°T 2£8° $6'8  98°9 086°1 00'z  8¥F'c 021  1es? 9z u o€

0 0 000 0o eL'8 0¥'z  9€9°t  SOT  BLSZ 0 050 8292

x [+ -
w:. n-w.w.ﬁ .Wh N-Sv“ s-00% s wdeso wdim/ew or os non Px  roNisey

IV T1dvi

41




onewayog a8essed uao_muvﬁﬂ..unomnokaoo °1 @an8t g

ONIOVdS

42




981eqosi(g otUOBqng pue 39Uy dwosxadng z0y weaBerq £11o01ep °7 sanfr g

AJDOHS
TVINYON

NOISNd4dId
JINOSENS

43

MOOHS 3NDIN80




25
Smax /
20

I

/

1/

| 2 3
| M

Figure 3. Maximum Wedge Angle & , for Attached Shock vs Inlet
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Figure 4. Schematic of Shock System in Convergent-Divergent Passage
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Figure 5.

Temperature-Entropy Diagram Depicting Changes of State in the
Convergent-Divergent Passage
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Figure 7. Increase in Entropy vs M;, for Optimum8
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Figure 8, Passage Starting Requirements
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Figure 9. Schematic of Adjustable Convergent Passages
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Figure 11. Pressure Ratio vs Passage Convergence
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Figure 12. Short Passage with Single Boundary Layer Trip on Lower Surface

Figure 13,

Short Passage with Single Trips on Upper and Lower Surfaces
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Figure 14. Schematic of Zero Stagger Passage

Figure 15. Zero Stagger Passage
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Figure 16. Passages with Curved Entrance Sections
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Figure 17. Passage with Negative Pressure Gradient Along Lower Surface

Figure 18. Passage with Positive Pressure Gradient Changing to Negative
Along Lower Surface
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Figure 19. Pressure Ratio vs Vane Angle - Convex Lower Surface
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Figure 20. Pressure Ratio vs Vane Angle - Concave Lower Surface
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(b) Blunted (. 02'") lower leading edge

Figure 21. Comparison of Passages with Sharp and Blunted Lower
Leading Edges
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Figure 22. Comparison of Performance of 1. 5" Passage with Sharp and Blunted
Leading Edges
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Figure 23. Heated Vane Construction
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(b) Heated. T = 150°F

Figure 24. Comparison of Heated and Unheated Passages
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(b) & =4°

Figure 27. Passage with One Ertension Added to Lower Surface
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Figure 28. Passage with Two Extensions Added to Lower Surface
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Figure 30, Passage with Four Extensions Added to Lower Surface
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(b) My - 1.92

Figure 37. Convergent-Divergent Passage with No Surface Discontinuities
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Figure 38. Convergent-Divergent Passage with . 062" Square Groove in Surfaces
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a) M= L7

Figure 39. Convergent-Div. .gent Passage with . 062" Square Plus . 125"
Diameter Groove in Surface
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Figure 44. Convergent-Divergent Passage with "Free Jet Throats"

82




9qoxd pesH 1e10], I [9POI oreld sreld

1V 2andr g

83




F. -
igure A2. View of Flat Plate with Two-Dimensional Trip
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