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THE; STABILITI OF OPMtAT ION OF
A LIQUM FUL ROOMf ENGM

[The fo~lowing is a 'translation of 'Ustoychivost' roboty
zhidkostnogo raketnogo dvigatelay. (English version
above) by K. L Artoionov in 1, QUasnm
Tam, , Ia Me ikaI M A-s 2zI-o Jrya, No 1, Jan-
Feb. 1961, page.. 64-69."1

The liquid rocket engine (-RK)is considered as an oscill-
atory system with delayed feedback; transient processes in one
of the elements of the engine (the fuel lines) are described by
means of a wave equation. The lag and the wave processes induce an
altornatlon of stable and unstable regie., as the thrust of the LRE
iS reduced. The oscillation frequencies are then close to the natur-
al frequencies of the fuel pipel!ie. If the lag is a large o032, It
is only possible to have relatively low-frequency oscillatory regimes

1. The -11 as a self-lscillain= sentm.

The self-excitation of oscillations in an M1E is to a large
extent determined by the character of the process of converting
liquid fuel bomponents to gaseous combustion products. Before
being converted to gaseous combustion products the oxidiser and
the fuel must go through a series of preparatory processes (atom-
isation of the liquid Jets, heating and evaporation of the droplets,
Smxing of the components, chemical reactions, etc.). The volume of
fuel, passing through this stage, has practically no effect on the
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gaseous products, the inflow of vhioh also determines the chamber
pressure. Given sufficiently rapid variations In fuel coneumption
this means that at any given amment the chamber pressure is dete1im5
ined by the consumptio of fuel during a oertain preceding interval
of time. In other words, the connection between the flow of fuel
through the atomizer and the chamber pressure is characterized by a
delay. In existing LX fuel feed system this connection is also
two-..m:, fluctuations In the Ohamber pressure also affect the rate
of flai of fuel into the chamber. Thus, with respect to the nature
of the working process in the combustion csamber and the oharacter-
istios of the fuel food system the IN is a system with delayed
feedbeak.

One of the elements of the propulsion plant - the fuel lines -

ought to be considered an elemont with distributed parameters, since
the tranalt time for the pressure wave through the pipeline and thU
period of the oscillstions are oemmonsuable.

The lag and the wove processes determine a series of prop-
erties of the dynamiso of an IUM which we shall discuss below vith
reference to the simplest typo of propulsion plant,

2. D2mamic esaAteo Of an 1am
In order to derive the stability conditions, we shall write

out the equations describing non-steady processes in an MZB. As is
usual, In investigating stability in the mall we shall use linesr-
ised equations.'.

Iguation of the eeavarspJ• engel.
We shall characterize the process of converting liquid fuel to gas
by means of the conversion curve f(t) - ratio of the mRss of the
gas formed at a moment t from the cmbustion of a given volume of
fuel to the initial juse of the fuel introdueed at the Smont t a 0.

Evidently, the conversion curv ollabe smoothly fro wro wa
tends asymptotiosaly to nilty (Pig. 1). This cuv is only an
averaged characteristic of the processes at work; its forn is
determined botb by the law of conversion of the individual particle
(the drop) of fuel and by differences in the conditions associated
with the conversion of the different particles (e.,. due to the
non-uniform slse of the drops). We shall asstom that the conversion
ourve is determined only by steady-state parameters and Is not
affected by small fluctuations.

If we introduce the rate of conversion & = deli , then
the mass of gas oonverted per unit of time Mr (1) may be expressed
as:

Mr(Mm No I -I,)V(4)dA (2.1)
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where (M ) is the mNas rate of inflow of fuel through the

Fig. I

We shall iAtroduoo the small dimensionless deviations

AMr - MM M -- ,A

The index 0 denotes stationary values of the functions.
Taking into account thAt

"re. get instead of (2.1)

nr (t)M nm#(tI-1)(t,)dt, (2.2)

Eq~uation of oemibstion ebamber

We shall consider that the gas pressure Is uni•orm throughout the
chamber at all times. This is correct for oscillations, the period
of which ft much greater than the tim the pressure wave takes to
traverse the length of the chamber.

The equation of conservation of mass of the gas in the chamber
has the form

dQm-v + MA 0 Mr (2.3)

where Q[ is the mass of gas in the chamber and o isa the nass rate
of floQ of gases through the supersdnic nossle.

If during the oscillation the relationship betwein the fuel
oomponents does not change, it is possible to consider the chamber
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processes isoeAtropiCD Ieo

S- CO (2.4)
To equations (2.4) and (2.5) we must add the equation of stata

of on tdeal pas

and expressions for Q& and Me

MemmjIPI L;1 +. (2.5)

where p]Kt fN and TV, are respectively the pressures density and
temperature of the games in the combuastion chamber; R is the gas
constants Ir the adiabatic coefficient, VL the volume of the com-
bustion chamber, F4 the area of the critical cross section of the
noszle and & the aoceleration due to gravity.

Euations (2.3)-(2.5) give us the connection between ar and
the dimmnsionless pressure vrition in the c4amber

PH -

in the following f•am P:

Here ty ti the tim the gases rmain in the oombustion ohambe
divided by the adiabatic coeffieleat.

huation of' fual fEnd mtm
It is assumed that the flow of liquid Is not influenced by inertia
forces due to the acceleration of the rocket. We shall consider
a compressed gas fuel food system. consisting of a foel tank, a
homogeneous pipeline and a nanm-lastic spray head.

The notion of the liquid in the straight cylindrical pipe
is determined by Zhujov's equations:

or• _- &- ., Pa.t1.8

In these equations ( is the constant density of the l1qui4d,
a Is tbe speed of sound in the liquid In an elastic pipe,

The end of the pipeline at the tank may be considered closed;
during oscillations the pressure in this sectian is constant:

gi"O, ,. 0 (2.9)
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Negleoting the inertia of the liq-uid in the spray head cavity,
we pet a second boundary oondition from the ezresasion for the flov
of fuel through the spray head;

x - !; (ram2OYt- i

Introducing the variables

Pr'e Am,

and eliminating 9 from (2.8), we get for m the wave equation

S-- = u(2.11)

with the boundary conditions:

O- =0 JM" z X= , II= j -- *- 1.2.12)

where ( 2 QbQ)-p, = 2Up.p
P,,oP,e.0

"The second condition in (2.12) is obtained by linearizing
equation (2.10).

3. Charactaristic eouatin of the arstim

We shall apply the Laplace transformation to the equations
thus obtained, retaining the previous notation for the transformed
functions. The operator for differentiation with respect to time
will be designated q.

The wave equation (2.11) then goes over into an ordinary diff
erential equation , the solution of which for re(q,1), equal to a,,
taking into account boundary conditions (2.12), is obtained in the
form: m --- ,-(ha •---ea (3.1)

he + h th--

Instead of (2.1) and (2.7) we get:

% M % = x•(3-3)

From eqs. (3ol)-(3.3) it is easy to obtain the characteristic
equation of the system:

h#+h. th A + W(f -0 (3.4)
a + VZU
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We obtain the equations for establii'hing the I Wtos of the
regions of stabzle operation of an IRSg "n for computing the

oscillation frequency w at the limits of stability by substituttng

These equations can be reduced to the form

- .V2 (6))
hop + 6"t iz1. , (4.1)

Bore SR (o) - leo-I (i0) 1- a (ire), f 8 ,

The frequency functions S(Wo) and e(*.) are the amplitude
and phase spectra of the curve 'r(t) respectively.

To continue the analysis it is necessary to assign a concrete
form to the conversion curve. In many instances the i(t) W cwve
can be approximated by moaus of a step function (curve 1 in Fig. 1):

=0, 0- <l -- , t,

This means that the fuel Is converted instantnaeously Into
gas tn seconds after admission into the combustion chamber. For
such a curve:

S (W) -W 1, 0 -- Mtn

Approximating 1(t) with function 2 (Fig. 1) we get

For curve 2,, as for any symmetrical *_, curve,
where tj is the abscissa of the axis of symmetry.

let us consider in greater detail the case of a atep convers-
ion curve. In this case, on introducing the quantity f a as a
time scale, we shell have instead of (4.1) and (4.2):

, . -,.



tg aT.
S.+ ,.V, t get(4.4)

sign sin Ot,, = sign (042r,,- Us tg a)

X== " ' • a' a"'-,T-

An follows from (4.3 ) and (4.4), the stability of the oper-
ating regime of an ME£ is deterzined by the following four dimension-
less parameters:

tni £1 2Ap, aO
T "- go T ic = h ® = •* h e =-" O

a'e ~ PR PHo

where •'n is the ratio of the time lag to the time of passage
of a sound wave through the length of the pipeline Z/a; rta is the
ratio of the time the gases stay in the chamber (reduced y times)
to; 2/a; h # is double the ratio of the pressure drop at the
spray head to the chamber pressure and b8 is the Impect pressure,
due to instantaneous total retardation of the liquid, to the chamber
pressnue. h = I=o / ho o proa / 2AMp, would be a more graphic hydraulic
parameter, but In the analysis of stability it is more convenient to
use the parameter h .

Another parameter is the quantity x -(T + 1)/2T, however,
it is sufficiently correct to put it equal to idty.

In controlling the thrust o-' an IRE by reducing the pressure
in the fuel tanks, the parameters ?ik and hp remain constent,
the parameter h6 is reduced in proportion to the pressure in the
chamber (and the thrust); the variation in • ay be very diverse
and depends on the type of fuel and the form of atomisation. It is
possible to reckon that for the majority of engines the control time
lag Increases with the decrease in thrust. Thust it is expedient to
plot the limits of stability in the planeho )Tn

Since h is a real quantity, equation (4..3)" gives the
limitations on the oscillation frequency: the possible frequencies
are either close to a=0 or alose to a - nx(n--- 1, 2,...). For
these frequencies the reactive resistance of the column of liquid
(the quantity hB tan k ) is close to sero. It is clear that

Smv nx oorresponds to the natural frequencies of the acoustic-
al oscillations of the liquid In the pipeline, i.e. to the frequencis

n=. . (c/)"

The value n = 1 corresponds to the fundamental, n 2 2,3,...
to the second, third, eta. harmonics. For low frequencies the
function
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k j, I a .-.. all (if= P o I / P ,• )

and the Inertia of the liquid are defined by a single tim constAnte

With rfficient accuracy

tg aA: I 1a fpM

acoordingly, the oampressiblity of the liquid can b neglected up to

By determining h# for a given value of M frm eq. (43),
we con find the value of 4g at the limit of etability from (4.4).
The quantityv AC, is determined correct to 2A-x (k=- 1. 2,...), l.oe
it is possible to have oscillations with the smm dimensionless
frequency C for several values of 7 , differing from one another
by 2x/a. .

Fig. 2 shows the camplete limit of stability in the plane of
the prameters h14, Ira forT. *= 2 and -rt = t and for the
values n s 1,2 and k a 1,2. The region 9f stability lies to the
right 'and is bounded by a =ooth u"ppr cwve (low frequencies) and a
saw-toothed curve, for which the. oscillation frequencies are close
to the natural frequencies of the pipeline. In this particular case
the *teeth*, corresponding to the values n a Is k > 1 and n a 2,
k > 2, do not change the region of stability.

Fig. 2-. 8 - I



In the 0ase Of this Particular engine, when the presure in
the fuel tanks is reduced, the working point (h,1 Q) is displaced
upwards and to the left. Accordingly, an the thrust of the £2R is
reduced, stable and unstable regines may alternate, An increase in

will not take the engine out of the region of stability, if theworking point crosses the upper smooth boundary, which retreats to
infinity as hj epproachee I (aore accurately X).

The effect of other parameters an the region of stability
can be conveniently traced bC considering separately the upper bound-ary and the tooth with kO, n a 1. The effect of and h9
may be seen in Figs. 2 and 3. An Increase in hS leads to a narrowiuof the teeth, without affecting their position and length, and ahay
ly disolsoee the upper boundary, at the same time increasing the
number of teeth (value of k). The effect of I/a is illustrated in
the plane 4 At in Fig. 4. The effect of I /a on the ratingstability of an LJ may be very diverse. An Increase in 1/a leads
to a reduction in the region of stability due to elongation of the
teeth and powerfully broadens it by dispeoing the upper boundary.
When I /a is. increased, the points of the teeth ascend, but at
large values of /Ia it is necessary to take into account teeth
corresponding to harmonic@ of the fundamental. It is interesting to
note that, as /A varies, for nu 1= the points of the teoth are dis-
placed along a curve corresponding to . , 0 (broken line in Fig. 4)This case ( I = 0, step conversion curve) has already been dia-
cussed by H.S.Patanzon.

As the preceding discussion shows, it is possible to represent
an IRE by means of the following block diagram:

where the links 34, P and K denote respectively the fuel supply
systems, the conversion proces and the combustion chamber as a gascapacity. The characteristic equation of such a system can bewritten out at once from the known transfer functions of the links:

KQ Afq)(q) H N)

For the propulsion unit discussed above equations (3.1),
(3.2 ) tnd (3.3) give W1+ h ,Ih t h
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Fig.3
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