Best
Available

Copy




{ ¢

RAS I S @
| b

AD-A280 283
— 2 RINERERRR JERS: 9170

Q o, 1 May 1961
| e
g D THE STABILITY OF OPERATION OF
NN { A LIQUID PUEL ROCKET ENGINE
' ' By K. I. Artomonov
i; - USSR -

DTIO QUALITY tvsproTap g

OFFICE OF TECHNICAL SERVICES
U. S. DEPARTMENT OF COMMERCE
WASHINGTON 25, D, C,

(e

T

Y |

g Distributed by:
(Lo

N

U, 8. JOINT PUBLICATIONS RESEARCH SERVICE
1636 CONNECTICUT AVENUE, N, We,
WASHINGTON 25, D, C.

94 5 18 080




FOREWORD

This publication was prepared under contract
by the UNITED STATES JOINT PUBLIGATIONS RE-
SEARCH SERVIGE, a federal government organi-
zation established to service the ranslation

and research needs of the various government

departments.




DISCLAIMER NOTICE

-

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY,

.
e




kel e

- 4s reduced. The oscillation frequencies are then close to ths natur-

ization of the liguid jets, heating and evaporation of the droplets,

' JPRS: 9170
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THE STABILITY OF OPERATION OF
A LIQUID FUEL ROCKET ENGINE

[ The following is a tranalation of "Ustoychivost' raboty
shidkostnogo raketnogo dvigatelya® (English version
above) by K.I., Artomonov in Iz AN SSSR,

'] NO ,l’ Jan-

1akh, Nauk, :
Feb, 1961, pagea 64-69.

The liquid rocket engine (LRE) is considered as an oscill-
atory system with delayed feedback; transient processes in one
of the elements of the engine (the fuel lines) are described by
means of a wave equation. The lag end the wave processes induce an
alternation of stable and unstsble regimes, as the thrust of the LRE

al frequencies of the fuel pipeline. If the lag is a large ope, it .
is only possible to have relstively low-frequency oscillatory regimes

The self-excitation of oscillations in an IRE is to a large
extent determined by the charscter of the process of converting
1liguid fuel components to gaseous combustion products. Before

being converted to gaseous combustion products . the oxidizer and
the fuel must go through a series of preparatory processes (atom-

mixing of the components, chemical reactions, etc.). The volume of
fuel, passing through this stage, has practically no effect on the
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gaseous products, the inflow of which slso deterrines the chember
pressure. Given sufficiently rspid veriations in fuel consvaption
this means that at any given moment the chsmber pressure is deters-
ined by the consumption of fuel during a ocertsin preceding interval
of time. In other words, the connection between the flow of fuel
through the atomiser and the chamber pressure is characterised by e
delay. In existing LRE fuel feed systems this connection is also
two-way:. fluctuations in the chamber pressure also sffect the rete
of flow of fuel into the chamber. Thus, with respect ta the nature
of the working process in the combustion chsmber end the character-
istics of the fuel feed system the IRE is g system with delayed
feedback. .

One of the elements of the propulsion plsnt - the fuel lines -

to be considered en element with distriluted parsmeters, since
the treansit time for the pressure wave through the pipeline and the
period of the ogcillations are commensurebls.

The 1lag and the wave processes determine s series of prop-
erties of the dynamics of an IRE vhich we shall discuss below with
reference to the simplest type of propulsion plant,

2. Dmanic equations of an IRE

In order to derive the stability conditions, we shsll write
out the equations describing non-steady processes in san IRE, 4As is
usual, 1in investigating stability in the small ve shall use linesr-
ized equations. -

Equation of the converslon. process.
We shall characterise the process of converting ligquid fuel to gas
by means of the conversion curve @(t) - ratio of the mass of the
gas formed at a moment t from the combustion of a given volume of
fuel to the initial mass of the fuel introduced at the moment ¢t = 0.

Evidently, the conversion curve climbes smoothly from sero and
tends asymptotically to unity (Pig. 1). Thia curve is only an
averaged cheracteristic of the processes at work; its fora 1s
determined botb by the law of convarsion of the individual particle
(the drop) of fuel snd by differences in the conditions associsted
with the conversion of the different particles (e.g. due to the
non-uniform size of the drops). We shall assume that the conversion
ourve is deternined only by steady-state parameters and is not
affected by small fluctuations,

It we introduce the rate of conversion P =do/dt , then
the mess of gas oonverted per unit of time j{ (/) may be expressed
as: -

Me@y={ Mo —tye@dn @)
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vhere Mg (L) 1s the msas rate of inflow of fuel through the
spray ,

Ve shall introduce the small dimensionless devistions

oy M'.‘-’Mr” M —“IM
m,m——-ﬁ;—,, "hﬂ—*ﬁ'—‘—

The index O denotes stationary values of the functions.
Taking into sccount that

'we.get instead of (2.1)
X [ -]

me (t) =\ mo (¢ — 1) ¥ () 1y . (22)

0

Sauatlon of combustion ghamber
We shall consider that the gas pressure is uniform throughout the
chamber at all times. This is correct for oscillstions, the period
of which #» much grester than the time the pressure wave takes to
traverse the length of the chamber,

: The equation of conservation of né.u of the gas in the chamber
has the form
dQR

" Mo = M, (2.3)

vwhere Qx  1is the mass of ges in the chamber and Mg is the mass rate
of flow of gases through the supersonic nomsle.

If during the oscillation the relationship betwesn the fuel
components does not change, it is possible to consider the chamber




processes iscentropic, i.e.

P~ = const 2.4)
To squations (2.4) end (2.5) we must add the equation of ltut#
of sn jdeal gas: Pu - ouRT
| , .

and expressions for Qg and Mg

: : ye1
F V 1RT )
Compdiy Memoge . guPITwadfy0 o4

where pk, fx end Tx are respectively the pressure, density and
temperature of the gases in the combustion chamber; R is the ges
constant, 4 the adiabatic coefficient, Vx the volume of the com-
bustion chamber, F the ares of the eritical cross section of the
nossle and g the acceleration due to gravity.

Equations (2.3)-(2.5) give us the ocmnection between m,. end
the dimensionless pressure variation in the clamber

’u""u.
N = P
in the following form: " .
dy, Q
lu-?‘-‘-ﬁ-ln"smr (l“u‘;ﬁ-:-;, :::17};-1 (2.6)

Here tx 1s the time the gases remain in the combustion chambe}
divided by the adiabatic coefficient.

Kauatlon of fual faed system .
It is assumed that the flow of liquid is not influenced by inertia
forces due to the acceleration of the rocket. We shall consider
a compressed gas fuel feed aystem consisting of a fuel tank, a
homogeneous pipeline snd & non-elastic spray hesd.
The motion of the liquid in the straight cylindrical pipe
is determined by Zhuikov's equstions:
'd & !
— X =Pz -“-;l}-s pat 2. (2.8)

In these equations @ 18 the constant density of the liguid,
& 1is the speed of sound in the 1iquid in an elastic pipe.

The end of the pipeline st the tank may be considered closed;
during oscillations the pressure in this section is constant:

tm0, E=0 (2.9)




Neglecting the inertis of the lijuid in the spray head cavity,
ve 3et 8 second boundary conditiom from the expression for the flow
of fuel through the spray head:

z=l  pr=pVp—pn @
Introducing the variables : S
= pe — ey n‘= P—In
pea ! Py

and eliminating % from (2.3), we get for m the wavs equation

Pm *m
77;"‘42-‘;1-“;0 (2.1hH
with the boundary conditions:
om wHEN . -1 . } EN
0—3—:’=0 mz‘=0, "11‘-:'—"'-;—’1'- %‘El (2,]2)
where » h. - 2(p ()~ p,.) - 2AP°
le Pyo

‘The second condition in (2,12) is obtained by linearising
equation (2.10).

3. Characteristic equation of the svstem

We shall apply the Laplace transformation to the equatians
thus obtained, retaining the previous notation for the transformed
-functions. The operator for differentiation with respeet to time
will be designated q.

The wave equation (2.11) then goes over into an ordinary diff}
erential equstion , the solution of which for m(g,1), equal tomg,
taking into account boundsry conditions (2.12), is obtained in the
form:

N ] . PYed 3
’ hg + hgth 3;'— ( P
Instead of (2,1) and (2.7) we get:
my =P (g) mg (3.2)
= ————-._m‘.
W= e, (3.3)

From eqs, (3¢1)~(3.3) it is easy to obtain the characteristio
equation of the system:

- t
he + hath L. +i-‘-'¢(%;-o (3.4)




4. Liaita of ateble operation of an IRE

We obtain the equations for establishing the limits of the
regions of steble operation of an IRE and for computing the
oscillation frequency & at the limits of stability by substituting
in (3.4) g =i (i=yV~-N. -

These equstions can be reduced to the form

hat = $2(m)

v bt = ¢ e

» = m- — ’1"2 te? (3 =z 2:;’-) (4.!)
howt, — yh g2
{0 = — L Jail 1} B9
9 —the+ 0l Atz a (4.2)
Hore S5t (0) = ey (i) Im? § (iw), ta g = S Pl

ST Regia) ‘

The frequency functions S(w) and @(&) are the amplitude
and phase spectrs of the curve 4(t) respectively.

To continue the analysis it iz necessary to assign a concrete
form to the conversion curve. In many instances the @(t) ourve
can be spproximated by mesns of a step function (curve 1 in Fig. 1):

=0, 01ty =1, t>1,

This means that the fuel 1s converted instantsneously into
gas tp seconds after admission into the combuation chamber. For

" such a curve:

S (o) = 1, B = — oy
Approximating f(t) with function 2 (Fig. 1) ve get

Sg(m) - (siu(ou,[.?))z B o= — (n(t, + !})

ot/ 2~— '

For curve 2, as for any symmetrical 1'(1’.) curve,
where t ¢4 is the abscissa of the axis of symmetry.

ilet us consider in greater detail the case of a step convers-
ion cwrve. In this case, on introducing the quantity U/e as a
time scale, we shall have lnstead of (4.1) and (4.2):

;ST .
o=V wrams —hitgla (4.3)
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hpaty — xhytga

tgart, =

—xhy +ar A 1ga T (44)
siga sin ar, = sign (a1, — XA, tg a)
' T+ wl el l
(X=—._,-;r-—, :‘a';" fn“-‘":“o Tks‘ff—)

- As follows from (4.3 ) and (4.4), the stebility of the oper-
ating regime of an IRE is determined by the following four dimension-
leas peremeters:

l ¢! 2Ap, ploa
n ®
T == Te= a. ’ he = Pxo ' h.zpw

‘where Ty is the ratio of the time 1lag to the time of passage
of a sound wave through the length of the pipeline 2/a; Tx 1s the
ratio of the time the gases stay in the chamber (reduced 7 times)
to 2/e; hg 1s double the ratio of the pressure drop at the
spray head to the chember pressure snd hy 1s the impact pressure,
due to instantanecus total retardation of the liquid, to the chamber
pressure. ) =ly/hg=pva[28py, would be a more grsphic hydrsulic
parameter, but in the snalysis of stability it is more convenlent to
use the parameter hy . .

Another parameter is the quantity X=(7v-+1)/2y, however,
it is sufficiently correct to put it equal to wmity.

In eontrolling the thrust of an IRE by reducing the pressure
in the fuel tanks, the parameters Ty and hp remain constent,
the perameter hg 1s reduced in proportion to the pressure in the
chamber (and the thrust); the variation in T, may be very diverse
and depends on the type of fuel and the form of atomisation. It is
possible to reckon that for the majority of angines the control time
lag increases vwith the decrease in thrust., Thus, it is expedieni to
plot the limits of stability in the plsnehy ,Th-

Since h%‘ 1s a real quantity, equstion (4.3) gives the
linitations on the oscillation frequency: the possible freguencies
are either close to a={) or close to 2a=mn(n==1,2,..). For
these frequencies the reactive resistance of the column of liquid
(the quantity hp tan & ) 1is close to zero. It is cleer that

a=nn ocorresponds to the natural freguencies of the acoustic-
al oscillations of the ligquid in the pipeline, i.e. to the frequenci

 =ng (c/e)
The value n = 1 corresponds to the fundemental, n = 2,3,...

to the sscond, third, etc. harmonios. For low frequencies the
funotion




smemide

1

htgaely (I =00,/ pw)

and the inertia of the liguid are defined by a single time constant,
With sufficient acoursey

tga~al/a ﬁ?"-? a o
acoordingly, the ocompressibility of the liquid can be neglected up to

) /<T§.’.o/n.

By determining h§ for a given value of & from eq. (4.3),
ve can find the value of 7, at the limit of stahility from (4.4).
The quantity AT, 1is determined correct to 2im (k= 1.2,...), 4.0,
it is possible to have oscillations with the same dimensionless
frequzen;:y & for sevsral values of 77, , differing from one another
by 2n/a.

Fig. 2 shows the complete limit of stability in the plane of
the parameters lig, Ta for By=2 and t,=1{ and for the
values n = 1,2 and k = 1,2, The region of stability lies to the
right ‘and is bounded by a smooth upper curve (low frequencies) and s
saw-toothed curve, for which the oscillation frequencies are close
to the natural frequencles of the pipeline. In this particular case.
the “teeth®, corresponding to the values n= 1, k > 1 and n = 2,

k > 2, do not chenge the region of stability.

0 . ‘
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In the case of this particular engime, when ths pressure in
the fuel tanks is reduced, the working point (kg, 1,) 1is displaced
upwerds and to the left. Accordingly, as the thrust of the IRE is
reduced, stable and unstable regimes may alternate. An increase in

will not take the engine out of the region of stability, if the
working point crosses the upper smooth boundary, which retreats to
infinity as h¢ spproaches 1 (more sccurately X ).

The effect of other parameters on the region of stability
can be convenisntly traced by cansidering sepsrately the upper bound-
ary and the tooth with k= 0, n = 1.  The effect of and hy l

may be seen in Figs. 2 and 3. An inorease in hy leads to e narrovi
of the teeth, without affecting their position and length, and s
ly displaces the upper boundary, st the same time increasing the
nusber of teeth (value of k), The effect of !/a is illustrated in
the plane hg ,tn 1in Fig. 4. The effect of ¢ /a on the operating
stability of en IRE may be very divarse. An increase in 2/a leads
to a reduction in the region of stability due to elongation of the
teeth and powerfully brosdens it by dispescing the upper boundary.
When ¢ /a is.increased, the points of the teeth sscend, but at .
large valuea of ¢ /a it is necessary to take into acoount teeth
corresponding to harmonice of the fundemental. It is interesting to
note that, as //a varies, for n = 1 the points of the teeth are dis-
placed along a curve corresponding to .2 = O (broken line in Fig. 4)
This case ( 2 = 0, step conversion curve) has already been dis-
cussed by M.S.Patanson. -

As the preceding discussion shows, it is possible to represent
an LRE by means of the following block diagram:

L

Yﬂ‘p -, —_.'!
] x|
| ]

where the links M, P and K denote respectively the fuel supply
system, the conversion process and the combustion chamber as a gas
capacity. The characteristic equation of such a system can be
written out at once from the known transfer functions of the links:

KMy (g) =1

For the propulsion unit discussed above equations (3.1),
(3.2) #nd (303) give |

M) = — yr e

I (g) =1 (9), ’\'('l)=;:r_".,7; .




Fig. 4
(cek means sec.)




