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Regarding the surface finishing project, a unified mathematical theory for the
process of material removal by abrasion (grinding and polishing) was developed.
Then strategies were formulated for material removal by Operator controlled (OC) or
Computer Numerically Controlled (CNC) machines.
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ABSTRACT. This report summarizes research surrounding the simulation of two manufac-
turing processes-the finishing and/or repair of material surfaces and the stamping of sheet
metal parts.

Regarding the surface finishing project, a unified mathematical theory for the process
of material removal by abrasion (grinding and polishing) was developed. Then strategies
were formulated for material removal by Operator Controlled (OC) or Computer Numerically
Controlled (CNC) machines.

For the sheet metal stamping project, certain asymmetric numerical solutions were char-
acterized as symmetry breaking bifurcations of the differential algebraic equations (DAE)
which mathematically describe the physical phenomena of sheet metal stretching. That is,
these asymmetries are inherent in the mathematical rather than the numerical formulation
of the problem.
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1. Introduction.
There were two major projects comprising this research program on simulation of man-

ufacturing processes. The first involves the finishing and/or repair of material surfaces and
the second the stamping of sheet metal parts.

Objectives of the surface finishing project were to develop a unified mathematical theory
for the process of material removal by abrasion (grinding and polishing), and then to
synthesize a strategy for material removal by a an Operator Controlled (OC) machine
or a Computer Numerically Controlled (CNC) machine that will accurately approximate
a desired removal profile. Of particuiar interest were computer simulations of (i) the
fabrication of large optics (lenses and mirrors) of the type used in telescopes (such as the
Hubble space telescope) and cinetheodolites, and (ii) the reclamation of damaged aircraft
canopies. In pursuit of these objectives a model for the kinematics of a Draper polishing
machine was developed and experiments to test this model were designed in cooperation
with Contraves-Goerz Corporation. Also, computational experiments were continued on
the use of mollifers or smoothing functions to achieve a desired material removal.

The motivation for the sheet metal stamping project was based on an observation made
a few years ago concerning the numerical solutions of sheet metal punch problems. Even
though the problems were mathematically symmetric, the numerical solutions produced
would typically be grossly asymmetric. This was explained at the time as a "lack of
robustness" of the numerical methods. Under this research project, we attempted to
characterize these anomolies as symmetry breaking bifurcations of the DAE (differential
algebraic equations) which mathematically describe the physical phenomena of sheet metal
stretching. That is, our thesis was that these asymmetries are inherent to the mathematical
(rather than the numerical) formulation.

2. Surface Finishing. OC and CNC surface finishing machines have been used in the
optical industry for more than twenty years. See for example [1-11]. More recently, this
technology has also been applied to the restoration of aircraft canopy transparencies [12].
While some of the modeling principles and approximations underlying the control of sur-
face finishing machines have appeared in the open literature ([1-3], [5]. [7], [9], [11], [13]),
a comprehensive mathematical approach to the overall problem did not exist in the public
domain prior to 1990. This is not surprising in view of the complex physics and gen-
eral geometrical considerations that influence surface finishing processes. Nevertheless,
certain common threads ran through the published literature on the subject, and in the
series of papers [14-16), and especially [17] we fashioned these into a systematic, unified
mathematical treatment of the problem.

One of the essential ingredients in any mathematical approach to a finishing process
is the determination of a material removal rate corresponding to a given machine tool
configuration. This is the rate at which material is removed at each point on the workpiece
by abrasion due to the relative motion of the workpiece and the tool. By a tool we shall
mean a device whose contact region with the workpiece is a homogeneous, time invariant
lamina. Thus, although the physical tool may be quite complex, involving possibly a series
of cranks, levers and other drive mechanisms, the mathematical model involves a relatively
simple two-dimensional entity whose kinematical nature is reasonably well understood. Of
course, in determining the motion of any specific tool we must incorporate the effects of
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its constitutive parts. However, one of the consequences of our analysis is that for a class
of tools that are widely used in practice (the so-called freely pinned tools) it suffices to
know only the motion of a single point on the lamina (its mass center). The solution of
this latter problem is theoretically a straightforward (though perhaps tedious) exercise in
plane mechanics. In [17] we presented the kinematics surrounding a general removal rate,
gave its definition, and illustrated the idea with an example.

The second main item in our theory is the material removal profile that the machine
produces. This is the amount of material removed at each point on the workpiece by the
machine. The material removal profile can be synthesized from a knowledge of the removal
rate and the dwell times associated with points on the workpiece. If all of the relative
motion between the tool and workpiece is accounted for in the removal rate, then the
material removal profile at a given point on the workpiece is just the sum of the individual
removal contributions made by points on the tool contacting the given point over the
duration of the finishing process. However, for modern CNC machines it is also useful to
develop the removal rate in terms of a restricted set of motions called local motions. In
this case the removal rate is described relative to a reference frame whose origin is referred
to as the tool center. The removal profile is then produced by allowing the tool center to
move along a path on the workpiece according to some speed distribution. The motions
of the tool center are what we call global motions. If the speeds of the global motions
are small relative to those of the local motions (which is usually the case), then one can
neglect their contribution to the removal rate, and the removal profile assumes the form
of a convolution integral. We developed this idea in detail in [17].

The third subject in the formulation of a mathematical theory for finishing is the de-
termination of a machine material removal strategy. This amounts to the selection of a
set of admissible machine controls so as to achieve a specified pattern of material removal
from the workpiece. For OC machines such a strategy ususally involves the determination
of an optimal set of dwell times, or the choice of an optimal path and/or speed distribu-
tion for the tool center. In [17] we showed how to utilize the notion of a mollifier along
with numerical quadrature rules to produce a path-speed strategy. Although this strategy
is in general suboptimal, the bounds that we derived for the error produced by it show
that in theory it can be made as precise as one wishes by proper adjustment of machine
parameters.

We now discuss some of these ideas in more detail. Assume that the interface between
the tool and workpiece motions is confined to a fundamental plane. In this plane we fix
a frame of reference F with origin 0. To describe the relative motion between points at
the tool-workpiece interface we denote the region of contact at any time by G. Frequently,
G is the region contacted by an abrasive pad so that we also refer to G as the tool pad.
Although the motion of the workpiece can be built into that of G, it is more natural to
treat this explicitly. However, we limit the workpiece motion to pure rotations about 0
with angular velocity Q. This is in keeping with the type of OC polishing machines that
have been traditionally used to finish an important class of optical surfaces, the so-called
axisyrmnetric surfaces (3], (13].

Let P E G have the time dependent position vector P(t), where t is time, and let q be
the relative velocity between P and the workpiece. If we represent q as a complex number,
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then we have shown [17] that

q = [& + ior( - nZ)]e', + ip(W - f )e'('+p) (1)

where a and # are the polar coordinates of C, the mass center of G relative to the frame
F, p and a are the polar coordinates of P relative to a line through 0 and C, and w is the
angular velocity of G in the frame F.

Using the representation (1), we have proven that in the special. but important, case
in which the tool pad G is free to rotate about a smooth pin through C (a freely pinned
tool), the relative velocity q is the same at all points of G providing that its initial angular
velocity is zero. This is of great importance in computer simulations of finishing processes
since it implies that in order to determine the material removal rate at a given point on
the workpiece, it suffices to keep track only of the relative velocity of C and whether or
not the point is contacted by G.

Now we turn to the definition of the material removal rate. Preston's hypothesis [18]
provides a viable (and widely used) description of material removal by abrasion. This states
that the rate at which material is removed from the workpiece by the tool is proportional
to the product of the pressure and relative speed between the tool and workpiece. The
constant of proportionality depends on the interface pressure, the workpiece material, the
tool pad material, and any additional agents such as slurries or iubricants that have been
used to enhance or retard the abrasiveness of the pad.

To define the instantaneow material removal rate it is convenient to use a reference
frame F' fixed on the workpiece, i.e., rotating with it. In this frame the relationship
between the relative velocity q' of a point P E G and q is simply q' = qe-if, where the
angle ý satisfies the condition ý = f?.

Let the point Y on the workpiece have position vector y which, since we are using the
frame F', does not depend on t. If 'Z(y, t) denotes the instantaneous material removal rate
at the point Y at time t, then according to Preston's hypothesis, either t(y, t) = 0 or

4(y, t) = K*plq'I = K*plql. (2)

where P is the point on G that contacts Y at time t and q is given by (1). In (2) K* is
the proportionality constant, and p is the pressure.

A second and perhaps more useful type of removal rate is obtained by eliminating the
explicit dependence of the removal rate on t. Thus, in addition to 4ý, we consider the
average material removal rate

0(Y) IT b T(y,t)dt, (3)

where (TO, T1] is some appropriately chosen time interval.
The complex kinematical relationships of most surface fininshing machines preclude

the representation of their average removal rates in closed form. Consequently, we use
numerical quadrature to generate them.
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If we take To = 0, T1 = t, suppress the dependence on y, and emphasize the dependence
on t, we can write (3) as

)(t) = 0 j (s)ds. (4)

We are interested in the calculation of 0(t) for large values of t. For this purpose we
differentiate (4) to get

dd Tt) (5)

and note that by (4), we also have

40(o) = 4(o). (6)

Relations (5) - (6) constitute an initial value problem for 0(t). We solve this numerically
by using the midpoint method. We let to = 0, t,+, = t, + h, n = 0, 1. If On denotes
the approximate value of 00(t0), then the midpoint method yields

=.+ t,4),, + h4,,+1 /2
0n+ , n -- 0,1,..., (7)tn+1

where Dn+1/2 = 'Z(tn + h/2) and O)o = t(0). Note that an any finite interval [0,T], we
have

On = 0(tn) + 0(h2 ),

i.e., the method is second order. Note further that (7) can also be written as

nn 14)n+i = ,+--TT 4 ) + j'-- n+i/2. (8)

We now consider the calculation of

ln+1/2 = $(y, tn + h/2), (9)

where 4 is given by (2). Equation (9) holds provided that at time t the point P on the
pad whose representation in the frame F is

P = Oreilt + pei(0+P) (10)

coincides with the given point y.
In the frame F' let y = rei9 where r and 0 do not depend on t. See Figure 1. Since in

F'

P = [aeip + pei(t+1)]e-int,

the constraint P = y becomes

aei# + pe-(Q+O) = rei(G+flh) (11)
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Figure 1. The Frames F and F'.
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Figure 2. The constraint (12).

If (11) does not hold then in place of (9) we have

4$(y,t) = 0.

We assume that t is large enough so that 0(y, t) is axi-symmetric. This allows us to
fix 0 at some convenient value, say 0 = 0. We also assume that the pad G is the disk
0 : p <s. Then in view of Figure 2 condition (11) holds if and only if

r2 + 2 - 2ro cos(f2t - 9) < s 2 . (12)
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As an illustration of these ideas, we apply this general theory to develop the form of
the material removal rates produced by a Draper polishing machine, an OC machine that
is used in the finishing of axisymmetric optical surfaces. Figure 3 is a schematic of a
typical Draper machine. The workpiece is mounted on a circular bed that rotates with
constant (but adjustable) angular velocity 02 about its center 0. The tool consists of a
circular abrasive pad G that is freely pinned at C to a beam PQ. (Some machines also
allow forced rotation of the pad G about C.) The beam is free to slide in a collar at Q
and is driven in a reciprocal manner by a crank arm that rotates with constant angular
velocity A. The other parameters of the machine are the lengths A, B. R, T, as well as S,
the distance of the pin C from P, the length of the crank arm a, and s, the radius of the
pad.

L B

07 x •

A

x

Figure 3. Schematic of a Draper machine.

Since the pad is freely pinned, w - • and so (1) reduces to

q- [6 + ia(/ - i)]eif. (13)

Therefore, it suffices to determine a and i as functions of the lengths a, A, B, R, S, T and
the angular velocity A. But by Figure 3,

a cos/3 = B + a cos At - S cos y x,

or sin/3 = T + a sin At - S sin -Y y.

The angle -y is defined by the conditions,

Lcos-t = A + B + a cos At = X,

Lsin-y = T- R+asinAt =1.

We then have
x

cos 7 = VfX2 + 2

Ysin - = X 2 +Y 2'



and similarly

Cos#3 =

o"
sin#3 -

where

a" = VX +y y2.

Finally, for use in (13) we have

Xi + yT)
0"-

d
i = -aA sin At - S --•(cos-y),

dt
= aA cosAt - Sd(sin

d Y2± - XYY
d(cos,)= (X 2 + y2) 3/2 1

d . X 2 Y-XYX

s )= (X 2 + Y2 )3/ 2 '

X= -aA sin At,

S= aA cos At,

a2 Cos/#

Figure 4 shows the trajectory traced out by the pad center C over an interval of 2
minutes when f/= 1.05, A = 2.81 radian/second, and

A=B-=36, R=T=6, S=36, a=8, s=2inches.

This figure illustrates that points on the workpiece within the envelope of the trajectory
are well contacted by the tool over a sufficiently long time interval (i.e., there are no 'dead'
areas).

In Figure 5 we plot the azimuthal variation of an average material removal rate of
a machine having the above settings. The averaging interval is 18 minutes. The near
constant values as a function of RI, the distance from the workpiece center, show that this
rate is essentially axisymmetric in spite of the fact that there is no overt symmetry in the
tool's geometry and motion. Finally, in Figure 6 we plot the radial variation of this rate
for different settings of the machine parameter R.

It is clear that useful formulas for 4 (and hence 4) depend on the ability to obtain rea-
sonably accurate representations of Preston's constant K*. This issue has been addressed,
for example, in [2], [11], [19-21]. With the cooperation of the Contraves Corporation we
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Draper Machine
Tool Center Path

PC= 36, An 36, BO 36, Ro 6, T" -6, Time- 18 min
Pad radlusm 2, Cam radius= S

The origin corresponds to center of woriplece.
15.0 ,,

0I

.0.0- [
'I•
C
U

-10.0-

-15.0 .1. 50 00 . 00 1.

Distance In Inches

Figure 4. Tool center path for Draper polishing machine.
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Draper Machine
Angular Independence of the Removal Rate

PC= 36, A= 36, B= 36, R= 6, T= -6, Timein 18 min
Pad radius= 2, Cam radiusas 81.0,

- - - - - - - - -- -- -- ---- - - -- - --

0.I

a Legend
N It- 0.00

...4 .....----........'--"---".............. .... . . . . ..• ..~ . .. 8 ... '

S0, in 1S.44

0.2 ..........
S.. .. . .. . .. . .. ... .. .. .• ' me T.T$..

- 4 ~ 0 - . f oe - no- lo , n - , -1 -• -10 .

0_ __--0

0.0 1.0 2.0 3.o 4.0 1.0 6.0
Theis In radian4

Figure 5. Azimuthal variation of removal proffe.
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Draper Machine Material Removal Rates
PC=36, A= 8 =36, T=-6, Time= 18min
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0.010 -

0.005

30

.o~oo.Measured Data

Prediction

-10.010

Radial distance In Inches

Figure 7. Comparison of Predicted and Experimental Removal Profiles.

have obtained estimates of/tK* for various optics. The first task was to validate the shapes
of the theoretical removal rates for the Draper polishing machine discussed above. The
shop procedure required an optician to record the machine parameters, dwell time, and
surface measurementsl before and after a "rub" of a specific optic. Figure 7 compares themeasured material removed from a 12 inch mirror with that predicted by our model. The

data used to generate this figure involved two settings of machine parameters and Figure
8 illustrates the theoretical shape of the two removal rates associated with this data. In
Figure 7 Preston's constant was estimated so as to match the measured material removed
at maximum values in each of two intervals. A least squares fit could also be used for this
purpose.Next we consider the manner in which material is removed from the surface. In view of
the definition of the instantaneous removal rate given by (2), it follows that the amount
of material removed at point X on the workpelce during the interval d0, T a is simply

T

R(x) = fo (x, t)dt,

sContraves uses a Sheffield Cordax Coordinate Measuring machine equipped with an MP-30/35 pro-
cessor and computer to obtain the surface measurements.
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1.2-

1.0- /

/ I I

-1.0s~ -1.0o .9~ a .0 s.o 10.0 -1s.o
Radial distance In Inches

Figure 8. Removal Rate-9.

where x is the position vector of X. However, R(x) is of limited value in developing a
useful theory of surface finishing. In the first place the removal rate of a specific tool
depends on a set of parameters--for example, the Draper tool generates a nine parameter
family of material removal rates. These parameters may be regarded as controls by which
the finishing process can be adjusted so as to achieve (or approximate) a desired pattern of
material removal. Thus in one type of finishing operation a choice of parameters is made
and the tool is allowed to run (i.e., dwell on the workpiece surface) for a time interval bti.
Then the tool is modified by a second choice of parameters and applied for time 6t2. This
procedure is repeated, say n times, until the workpiece surface is acceptable.

For such a process, it i.s natural to define the machine material removal profile, i.e., the

total amount of material removed by the machine during the process, as

n

sn(x} = btio&)x}
j=1

where Oi is the average removal rate corresponding to the jth choice of parameters. Note
that the functions Oi can in principle be determined once and for all. Consequently, the
surface finishing problem reduces to the determination of the dwell timnes 6ti. Several
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methods have been suggested to accomplish this, including a simple type of deconvolution
[13], as well as L 1 and L 2 optimization [14], [11].

A second type of finishing process that is more aptly termed "computer numerically
controlled" utilizes machines that are driven either directly or indirectly by a computer
[22]. Typically the workpiece is mounted on a fixed bed and the tool is translated over
the workpiece along a path r with a speed v provided by the computer. The tool itself
is capable of a set of independent motions which we call local motions. To model the
material removed during such a process, we assume that the workpiece is stationary and
the average removal rate 0 has been developed on the basis of the local motions only. We
interpret the reference frame origin 0 as the tool center. The movement of the tool center
along r constitutes the global motions.

To describe the global motions let

y(u) = (yI(u), y2(U)), a < u < b (14)

be a parametric representation of the tool center path on the workpiece, and let v(u) be
the speed of the tool center at the point y(u). Then we have shown in [17] that when the
speed of the global motions is small compared to that of the local motions, the machine
material removal profile, S(x), has the representation

5 (X)= ,,(xY(u)) ly'(u)ldu. (15)

The form (15) was derived under the assumption of a given tool center path y(u) and
speed v(u). However, the basic CNC surface finishing problem is to determine one (or
both) of these quantities so as to make S(x) a good approximation of a given profile.

The fundamental variables in a computer numerically controlled finishing process are
the tool head trajectory y(u), a < u < b, and speed v(u). Suppose that at each point x on
the workpiece we have a measure of the error profile f(x), i.e., the difference between the
desired and existing surface. Then the CNC finishing problem may be stated as follows.

Given an error profile f(x) and a tool with associated material removal rate 0(y),
determine a tool center path y(u) and/or a tool center speed v(u) such that the re-
sulting machine material removal profile S(x), as defined by (15), approzimates f(x)
to within a desired accuracy.
In [17] we developed an approach to this problem that exploits the convolution integral

form of (15). To describe this approach, let Dp(x) = {y : ly-xJ _< p}, and assume that the
removal rate 4 : R 2 -* R is a continuous, nonnegative function whose support is contained
in the disk Dp,(O). Then H = min{p: supp 4 C Dp(O)} is well defined and is called the
extent of the tool. Given a tool with extent H, let

C = 1j j4 (y)dy > 0.

Then the normalized removal rate

.,I(x) = O(x)/C

14



is called a mollifier, and the mollification of a given function f(x) that is integrable on R2

is the convolution integral

JH * A(x) = f L JH(x - y)f(y)dy.

We now relate JH*f(x) to the removal profile S(x). Assume for simplicity that the
workpiece domain W is the rectangle, 0 _5 x, _5 a,, 0 5 zX2  a2 . The generalization to
nonrectangular domains is not difficult. Let

0 = G0 .<- G- 1 < n=a

be a partition of the interval [0, af] into n equal subintervals of length h, and supp iat
we have a quadrature rule such that for 0 _5 Y2 _5 a2 ,

ja (1/I, Y2)dY1 = Wjg(Cj, Y2) + O(h').0 j=0

Here the wj are the weights and p is the order of the rule. If we define the tool head
trajectory as the curve

y(u)-=(Cj,u--ja 2 ), ja 2 •_u <_(j-+-1)a 2 , j-=O,-*..n, (16)

and if we choose the speed to be

wjf(Ci, u - ja2)' (17)

then in [17] it was shown that

S(x) = JH*f(x) + O(hP). (18)

In other words, if we apply a strategy that consists of choosing the tool center path
according to (16), and the speed according to (17), then the error in replacing the resulting
removal rate by the mollification is O(hP). The curve (16) is simply a set of parallel straight
line segments equally spaced across the y, coordinate direction of the workpiece.

Although this strategy may not be optimal in the sense of minimizing some norm of
the error S(x) - f(x), it allows for simple error estimates (and attendant controls). For
example, suppose that W0 is a compact subset of W that is at least b units from the
boundary of W. If f is continuous on W, H < 6, and L is the order constant in (18), then
with the above strategy we have established the error estimate

max I S(x) - f (x) 1 :5.,(f ; H) + LhP, (19)
XEWo
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where w(f; H) = Imax HIf(x) - f(y)I is the modulus of continuity of f on W. See [17]. If

f has continuous first partials on W whose magnitudes are bounded by M, then (19) may
be replaced by the more accessible estimate

max IS(x) - f(x)I < v12MH + Lh'.XEW0

It is clear that in either case the accuracy of the finishing process can be made as precise
as necessary by decreasing the control parameters H and h. These theoretical results have
been verified by a series of numerical experiments that we reported in [17].

2. Sheet Metal Stamping. A differential-algebraic equation (DAEi is a problem of the
form

F(x,±) =0, (20)

where F(= F(x, y)): R' x RI -- RI satisfies the condition rank D1 F(x, y) = r < n for
all (z, y) E R' x R'. In particular, equation (20) does not reduce to an explicit ODE via
the implicit function theorem. A simple example of DAE is when x = (XI, X2 ) and (20)
reads

S= gi(z1 ,X2 ), g2(XIX 2 ) = O.

Thus, the constraint g2(XI, X2 ) = 0 is one of algebraic type, while the first equation is
clearly of differential nature.

Despite the growing interest for DAEs in the engineering and numerical literature (see
(22-25]) a general existence theory for DAEs was completely lacking. Such a theory was
worked out in [27], which is based on the remark that (20) can be reduced to an explicit
ODE by a sequence of projections and partial differentiations. This approach should also
be helpful for the design of reliable algorithms for the numerical solution of DAEs.

One of the aspects of the approach in [27] which is not completely satisfactory, at least for
theoretical purposes, is that it is not intrinsic. In other words, the success of the reduction
of the DAE (20) to an explicit ODE may depend upon the choice of the projection. Because
of this remark, a different approach, entirely geometric, was developed in [28], where it
becomes indispensable to consider, instead of (20), the more general setting of DAEs on
manifolds. Then, it can be seen that the iterative procedure discovered in [27] is, in fact,
a special case of a general and intrinsic process of reduction of a DAE to manifolds of
smaller and smaller dimension, until an explicit ODE is obtained. These results, although
more theoretical, shed some new light on the problem and completely clarify the definition
of the index for a DAE, a terminology used so far in a more intuitive than mathematical
sense (except in the linear case).

The important question of the mathematical and numerical characterization of impasse
points has also been resolved in [29] and [30], respectively. Impasse points are points where
solutions of DAEs terminate (that is, cannot be continued further) in finite time. They are
well-known to play an important role in electrical circuit theory but they may appear in
virtually every DAE problem irrespective of its physical origin (chemical reactions, phase
transitions, plasticity theory, etc.).

In spite of their acknowledged physical existence, impasse points had so far remained a
not fully explained mathematical phenomenon, as they do not occur and have no analog
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in explicit differential equations. The clarification of this issue was made possible by
combining the aforementioned reduction procedure for DAEs with recent work on singular
differential equations by Rabier [26].

As a by-product of the better understanding of impasse points (and other higher sin-
gularities), sharp connections with some aspects of stiffness in ODEs and convergence
questions in singularly perturbed problems have begun to surface. However, much work
remains to be done before more precise statements can be made.

The recent theoretical work [26] gives a complete and rigorous analysis of the dynamics
in the vicinity of a generic singular point. The results in [26] explain why such deviations
from the expected symmetric solution occur, which are due to the slightest breaking of a
perfectly symmetric problem. Numerically, such a breaking may be caused by roundoff.
More interestingly, since actual problems are never perfectly symmetric, these results show
that the true solution may well eventually lose symmet.-y completely, because the sym-
metric configuration becomes, loosely speaking, "unstable" beyond the singularity. This
demonstrates that enforcing symmetry of the solution by reducing the size of the system,
although tempting numerically, is not a safe procedure if a singularity is encountered, for
then the calculated solution is no longer significant beyond the singularity. This phenom-
enon is largely (and probably totally) unknown, and its discovery could have considerable
importance in problems in which symmetry of the solution is routinely taken for granted
because it is "obvious". From now on, consideration should be given to the nonobvious
and unsuspected fact that the slightest breaking of symmetry has drastic effects on the
solution in fixed finite time.

Computational experience [34-361 with rate sensitive sheet metal forming problems
strongly suggested that the related DAE's in fact possess singularities. There are basi-
cally three components to the mathematical formulation of such problems:

(i) the equilibrium equation,
(ii) equations constraining the sheet to follow the punch, and
(iii) the constitutive equations.
The first two lead to nonlinear algebraic equations and the third to a highly nonlinear

(stiff) ODE. The (Differential Equation on a Manifold) DEM method [34-36] is based
on the observation that the constitutive equations represent a differential equation on a
manifold determined by the equilibrium equation and constraint equation. Our problem
then is to determine the trajectory of a curve passing through the initial data, lying on the
equilibrium manifold and satisfying an ODE (the constitutive equations). This ODE with
algebraic constraints is of course a DAE. In [411 we investigated (numerically) the singular
behavior of this DAE and its finite element discretization.

The key steps of the DEM approach are:
I't

(i) Introduce finite element approximations to displacements u.(V, t) E uf W0 j(t)4,(0),=a -

1,2; stresses E,(•,t) r jE T 0 (t)i7i(ý), a = 1,2; effective plastic strain, Z(ý,t) ;

E 4(t)•1 (•), and normal force p(ý, t) z S piyj(ý). For this investigation the displace-
i=1 J=1

ments were approximated by linear elements, the stresses and effective strain by con-
stant elements, and the pressure was approximated by linear elements centered on the
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d l ment nodes.

(ii) The equilibrium equations and constraint equations lead to 3n nonlinear equations

F(Y,t) =0 (21)

in the (6n-3) variables Y = (TI,T 2 , E, U 1 ,U 2 , p)T where Ui = u,T, ,i = raj, Ei =

Ij and P,= p,.
(iii) Approximation of the constitutive equation by collocation at the m = n - 1 stress nodes

yields a differential equation
B(Y)'Y = G(Y,t) (22)

where the matrix B is (3n - 3) x (6n - 3).
(iv) The ODE (22) is solved on the (3n - 2)-dimensional equilibrium manifold consisting of

all solutions of (21). This can be accomplished using software packages such as LSODI
[38] or DASSL [39]. In this investigation, the software package LSODI was used to
integrate (22) subject to (21). We note that equations (21) and (22) together form a
DAE.
The basic geometry is shown in Figure 9 for a flat bottomed punch. The sheet is assumed

initially flat and is stretched over a die by a punch. We assume a state of plane strain;
the component of strain in the direction perpendicular to the paper is zero. Points on the
material are identified by their initial distance f from the z-axis. The sheet initially lies
in EL _5 f: 5 ER. In Figure 9, EL = 0.0 and CR = 100.0 rmm. The current horizontal and
vertical displacements are uI and u2, respectively, and are functions of C and time t.

The principal logarithmic atrain components are

el= in 1+ I) 2 + ( &22 1/2

ac--ac

e2 = 0

where for the strains and stresses subscript 1 is tangential to the sheet (E-direction) and
2 is normal to the paper.

Z1

_+ , *~'

I I---- i

Figure 9. Punch geometry.
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The problem has a natural symmetry with respect to the centerline of the punch, and the
chosen finite element discretization agrees with this symmetry. It must then be expected
that the solution of the discrete system (21) - (22) exhibits the same symmetry at each
time t > 0. Thus, aside from the problem corresponding to the entire sheet [0.0, 100.0]
(Problem F, for "full") it makes sense to consider the problem corresponding to, say, the
right part of the sheet [50.0, 100.0] (Problem H, for "half") where symmetry is enforced
by the condition

ui(50.0,t) = 0, u2(50.0,t) = At. (23)

The surprising fact now is that it was observed some time ago by the authors of [34-36]
that the solution to the "full" Problem F eventually loies symmetry and in particular no
longer satisfies the condition u1 (50.0, t) = 0 for increasing values of t. Instead, rather large
(and sometimes oscillating in sign) values were obtained for u1(50.0, t). Although this phe-
nomenon was partly controlled through judicious choices of error tolerances and steplengths
in LSODI, it appeared to be impossible to eliminate. Furthermore, the steplength and tol-
erance adjustments needed to preserve symmetry for as long a time as possible were found
to be extremely sensitive to parameter values (velocity A of the punch. coefficient of fric-
tion, etc. ...) and hence could not be specified once and for all for an entire range of
parameter values. This sudden lack of robustness in the DEM solution procedure was to
say the least disquieting, and could not be related to any of the usual causes of numerical
instabilities. In fact, no concomitant operational difficulty was detected either: the solu-
tion was calculated with no apparent trouble, only loosing its expected symmetry after at
most 25 to 30 seconds.

A third problem (Problem S, for "symmetrized", was also considered. that enforces sym-
metry by averaging the solution of Problem F at each step instead of using the constraints
(23). This problem can be viewed as an intermediate between Problems F and H and will
be used for various comparisons.

Figure 10 illustrates the centerline horizontal displacement u1(50, t) for Problem F and
three choices of mesh refinement. Sample numerical evaluations are given in Table 1. For
example, in the case of n = 21 (20 eleuents) the centerline displacement at t = 40.0 secs.
is u1(50,40.0) = -13.04 mm. For these calculations the maximum step size was taken to
be 1.0 sec, the maximum error tolerance was 0.5 x 10-2, and the backward Euler method
was used for time integration.

t = 10.0 t = 20.0 t = 25.0 t = 30.0 t = 35.0 t = 40.0

n = 21 -3.7E - 3 -1.3E - 2 1.7E - 2 -3.03 -8.02 -13.04
n = 31 6.1E - 4 9.6E - 3 5.5E - 1 2.95 7.13 13.10
n = 41 I.IE - 4 1.5E - 4 -I.OE - 3 -0.14 -4.34 - 9.73

Table 1. Centerline displacement ul(50,t) for Problem F.
In order to assess the effect of error tolerances (ER) and maximum steplength (SL) on

the centerline displacements, various combinations were considered. Some of these results
are presented in Figure 11. The conclusions are the same; eventually the solution fails
to be symmetric, the deviation from symmetry may be of either sign and its magnitude
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Figure 10. Centerline dijplacement for Problem F varying mesh size
only.

increases several orders of magnitude in the time interval (25.0,30.0). This numerical
experimentation suggests that small perturbations (of the order of magnitude of computer
roundoff errors) in the computed solution cause the integrator (LSODI) to accept points
on neighboring trajectories which ultimately evolve into non-symmetric solutions with
centerline horizontal displacements that are roughly the magnitude of the punch radius.
As we shall see, this behavior can be related to the existence of singularities for the system
(21)- (22).

Figure 12 contains plots of the strain el(C, 30) for Problem F, Problem S and Problem
H. For Problem H, the solution is reflected about the line C = 0. Note that the solution
of the (full region) Problem F produces strains which, compared with the values obtained
for Problem H, are gross overestimates for a portion of the punch contact region and gross
underestimates for another portion.
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Figure 11. Centerline displacement for Problem F varying mazimum
steplength (SL) and error tolerance (ER), with a fized mesh (n = 21).

To experiment further, we tested the hypothesis that small perturbations in the initial
data will yield only small perturbations in the solution for all finite time. This is a property
one should certainly expect under usual circumstances. The initial condition ul (ý, 0) = 0
was modified so that u1(50, t) = 6 for various values of the parameter 6 (see Figure 13).
As illustrated, it turns out that small perturbations in the initial data cause very large
deviations from symmetry even for relatively small values of time (or punch depth). Similar
results were obtained for n = 21 (20 elements). Early attempts (for example, [40]), to apply
the finite element method to punch stretching involved a rate form of the equilibrium
equations. Such a form results from (21) by time differentiation as

Fy 1 (Y, t)kl + Fy 2 (Y,t)Y2 = -F(Y,t) (24)

where Y, = (TI, T 2 , E)T and Y 2 = (U 1, U 2, p)T.
Because the matrix B in (22) has the form (I, B 2) the discrete constitutive equations

(22) can be rewritten as

"Y1 + B 2 (Y 2 )Y 2 = G(Y,t). (25)
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Hence, combining (24) and (25) we have

FY,(Y,t) Fy,(Y,t)) 2 (26-F,(Y,t) ")

Any solution of the ODE (26) satisfying the initial condition is also a solution of the DAE
(2l)-(22).

We now investigate the ODE (26) which, for simplicity of notation. we shall rewrite in
the form

A(Y,t)fY = H(Y,t), (27)

where A(Y t)- B2(Y2) (8
A(Y,t)- (Fy,(Y,t) Fy,(Y,t))' (28)

H(Y,t) (G(Yt)) (29)

First and foremost, it must be recalled that the standard existence and uniqueness
theory for ODE's applies only when A(Y, t) is invertible, i.e. (27) is equivalent to the
explicit equation Y = A(Y,t)-1 H(Y,t). The mathematical study of the case where
A(Y, t) becomes singular has been developed only quite recently. We report only the
features that appear to be relevant to the problem of interest and we refer to the paper
[26] for further details. One crucial and nonevident fact is that singularities need not only
affect trajectories on which they lie. As it turns out, some singularities may affect the
entire flow, precisely by deviating trajectories from their "expected" course. This does not
require the deviated trajectories to contain any singular point, nor even to ever get close
to them.

Tame 143.0

o.ess p!

I/ 0d0U P1 It

0.I34

0.1364 .+. ;*.• •',362S $-. Distance

Figure 12. Compariaon of strain el for different problems.
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Figure 13. Centerline displacemrent for Problem F perturbing the initial
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For the system (26), the most commonly encountered kind of singularity is the so-called
"standard singular point" where exactly two solutions terminate (accessible standard sin-
gular point) or emanate (inaccessible standard singular point) at a given time t.. The
terminology "accessible" and "inaccessible" is meant to emphasize that the standard sin-
gular point, say Y.. is actually met by trajectories initiating at t < t,. (accessible case) or
cannot be met by any such trajectory (inaccessible case: note that since the only solutions
near Y. emanate from Yf. at time t., no solution starting anywhere at time t < t. will ever
go through Y. at time t. or other). In addition, standard singular points are not isolated.
Rather, they occur in hypersurfaces that therefore separate the space (locally at least) in
two regions. Hypersurfaces of accessible standard singular points thus represent "walls"
beyond which solutions cannot be extended and hence can be viewed as catastrophes.
Hypersurfaces of inaccessible standard singular points have a different but equally strong
effect on solutions: since these hypersurfaces consist of points that cannot be reached in
increasing time, all the solutions going toward them eventually have to bounce and continue
in a different, unanticipated direction.

The numerical results that we present in [41] tend to corroborate the thesis that the
deviations from symmetry numerically observed for Problem F are due to singularities:
although the mathematical solution of (26) corresponding to symmetric initial data is
symmetric for all times, slight imperfections (roundoff) originally destroy this symmetry,
and next the system evolves as one of the bouncing trajectories. We shall see that despite
that no singularity is detected on the solution curves of the system (26), such singularities
are found in their close vicinity. In fact, our results indicate that the trajectories of the

system (26) get closer and closer to the hypersurface of singular points as time elapses.
Earlier, we have mentioned roundoff to be the reason why perfect mathematical symmetry
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is initially broken. But the singularities are responsible for making "visible" in finite time
this initially negligible perturbation because they induce an extreme sensititity upon initial
conditionj (quite comparable, although very different in its nature, to loss of stability in
static problems). But then, it must be expected that any breaking of the mathematical
symmetry, due to roundoff or other error, will result in a trajectory that deviates in finite
time and by a finite (.2s opposed to infinitesimal) amount from the symmetric solution. This
means that eventually the latter cannot be considered a reasonable solution for any problem
that differs, no matter how little, from the mathematically symmetric one. In other words,
while it is apparently harmless to neglect the slight imperfections that destroy symmetry
in a nearly symmetric problem, the truth may be quite different. Indeed, accepting the
symmetric configuration as a reasonable approximation leads to accepting its symmetric
solution as being sufficiently close to the correct one while in fact the true solution is a
significantly different, deviated one. This is fully corroborated by the results summarized
in Figure 13 and already discussed earlier. Naturally, the value of this conclusion depends
upon the accuracy of the model, but we note that it is potentially valid in any model
exhibiting singularities (on the other hand, examples show that not every type of singularity
deviates trajectories, so that other phenomena are possible).

In [411, we establish the existence of singularities for the matrix A(Y, t) involved in the
ODE (26) and show that the solutions of (26) get closer and closer to singular points of A
as time increases. It can be shown [41] that

det A = det(Fy, -Fy, B 2 ) (30)

where the matrix T =- Fy2 - Fy, B1 is 3n by 3n. Hence, the characterization of any
singular behavior of the ODE (26) reduces to investigating the spectrum of the smaller
matrix T(Y, t).

The software package EISPAK was used to calculate the spectrum of the matrix T(Y, t)
and the eigenvalue of minimum modulus was determined as a function of time. Figure 14
contains plots of this minimum eigenvalue for Problem S and Problem H with maximum
steplengths of 1 sec and 0.5 sec. Note that for the smaller steplength the symmetrized
full region problem (Problem S) produces a singular matrix T(Y, t) for t near 140 secs.
While the other cases do not become singular, we do note that the minimum eigenvdue is
tending to zero for large time values. (See Figure 15 for n = 41 nodes).

For the cases presented here and for all cases investigated, the plots of minimum eigen-
value versus time start off close to zero (reflecting the singularity in the solution at t = 0,
[41]. The eigenvalue then increases, peaks between 25.0 and 30.0 seconds and the decreases
over time to zero or near zero. It was suggested2 that the maximum may occur when un-
loading begins. Figure 16 verifies this conjecture. The minimum eigenvalue reaches its
maximum when the load a -= rhoe-I attains its maximum as a function of strain el.
To assess if singular points exist close to the solution curve the following experiment was
performed. Let yk be the solution at the kth time step and define Ak to be a vector of
the same dimension (6n - 3) defined as follows. If node i is not in contact with the die or

2 M. Wenner, private communication.
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punch and Yj -" 1,2,..- ,6 are the six entries associated with node i, then define

=ý -(Y+ -Yý+), ,+ = (V• - ,V), = 1, 3,5.

Otherwise Ak -" O.
I

Then At is orthogonal to yk _ yk-1. We choose as a point "close" to the solution curve
Y(t), the point

Zk =yk +6Ak

and vary the parameter 6. For t = 10.0 and t = 40.0 (as with all other cases considered) the
matrix T(Zk) is singular for relatively small values of 6. That is, apparently the coefficient
matrix in the ODE (26) is very close (as a function of Y) to being singular for all time t.
(See Figure 17).
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Figure 14. Minimum eigenvalue of T(Y, t), 21 nodes.
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GENERAL NOTE

Some of the mathematical tools involved in the preparation of [27-30] and other related
ideas have been used in more theoretical works by Rabier [31-33] and therefore partial
support from AFOSR 90-0094 has been acknowledged in these papers. The article [31]
is relevant in general nonlinear (PDE type) problems. It shares with [27] the feature of
making crucial use of vector bundles. Stability questions involved in the treatment of
higher singularities of DAEs originally motivated [32], and the abstract algebraic concepts
developed in [331 stemmed directly from the study of symmetry breaking in bifurcation
problems. These results could (although this is not certain as yet) have great significance in
the analysis of DAEs involving symmetry, that physical examples already seems to justify.
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