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The problem of interference detection or contact determination between two or

more objects in dynamic environments is fundamental in computer graphics, robotics
and computer simulated environments. Most of the earlier work is restricted to ei-
ther polyhedral models or static environments. In this paper, we present efficient
algorithms for contact determination and interference detection between geometric
models undergoing rigid motion. The set of models include polyhedra and surfaces
described by algebraic se". or piecewise algebraic functions. The algorithms make use
of temporal and spatial coherence between successive instances and their running time
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1 Introduction

Intersection problems are among the fundamental topics in computational geometry
and geometric modeling. They are also considered important in computer animation,
physical based modeling, robotics, and computer simulated or virtual environments. In
most of these applications, the objects are undergoing motion governed by dynamic
constraints or external forces. It is important to determine contact or interference
between any pair of objects in a dynamic environment and generate a collision response
to it. This problem has received a lot of attention over the last few years in all these
areas.

The problems of contact determination and interference detection have been ex-
tensively studied in different areas. The literature in computational geometry consists
of a number of theoretically efficient algorithms for polyhedral objects in static envi-
ronments [1, 2, 8, 9, 10, 11, 12, 16, 34]. There are a number of algorithms with good
asymptotic bounds, however their practical utility is not clear since many of them are
not implemented in a realistic environment.

Many algorithms are known for intersection between curved objects represented
as algebraic surfaces or piecewise spline models in geometric modeling [13, 24, 31,
23, 351. However, they are targeted towards robust computations of the intersection
curve between such models for CSG operations and boundary computations. They
are usually specialized to static environments and are relatively slow for the kind of
performance desired in computer simulated environments

Similarly, the problem of collision detection has been addressed in robotics liter-
ature as well. However, the main purpose of applications has been on planning a
collision-free trajectory between obstacles [7, 14, 26, 29, 401. This is different from
applications in physical based modeling and virtual environments, where the motion
is subject to dynamic constraints or external forces and cannot typically be expressed
as a closed form function of time..

The simplest algorithms for interference detection in dynamic environments are
based upon using bounding volumes and spatial decomposition techniques. Typical
examples of bounding volumes include cuboids, spheres, octrees etc. and they are
chosen due to the simplicity of finding interference between two such volumes. These
bounding volumes work very well in performing "rejection tests", when two objects
are far apart. However, once the two objects are in the vicinity of each other, spa- For
tial decomposition techniques based on subdivision are used to solve the interference Rol'
problem. This can become rather slow in practice as highlighted by Hahn in [21]. [(

In computer animation, algorithms for polyhedral objects of complexity O(n 2m 2), 0

where m is the number of polyhedra with n vertices per polyhedron, are described by
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Moore and Wilhelms in [33]. For convex polytopes, linear time algorithms based on
linear programming by Megiddo and Seidel [32, 391 and tracking closest points between
incremental motion by Gilbert and etc. [20] have been proposed. However, they do not
make use of coherence in their methods between successive instances. More recently,
geometric coherence has been utilized to devise algorithms based on local features
for convex polytopes by Baraff and Lin [3, 271. This has significantly improved the
performance of interference detection algorithms in dynamic environments. As far
as curved models are concerned, algorithms based on interval arithmetic have been
proposed by Duff, Herzen, Snyder, etc. [15, 22, 17]. They are relatively slow in
practice and expect that the motion can be expressed as a closed form functibn of
time. However, no practical and efficient interference detection algorithms are known
for general geometric models in dynamic environments.

In this paper, we present efficient algorithms for contact determination and inter-
ference detection between two or more objects undergoing rigid motion. The models
include polyhedral models and curved objects whose boundary can be represented
in terms of algebraic sets. This includes algebraic surfaces and NURBS models fre-
quently used in computer graphics and geometric modeling. No assumption is made
on the motion of the objects. At each instance, their position is described using a
transformation matrix with respect to the origin. For convex polytopes, the algorithm
keeps track of closest features based on convexity of polyhedra as described in [27]
and [28]. Concave polytopes are decomposed into convex polytopes and represented
by sub-part hierarchical tree.

For curved models we use a combination of hierarchical representations, algorithms
for polytopes, and global and local methods for solving systems of polynomial equa-
tions. In particular, we use the control polytopes of the objects and their sub-patches
along with sub-part hierarchical tree representation to describe them for top-level
collision detection. Once the control polytopes come into contact with each other,
we algebraically formulate the problem of contact determination and interference de-
tection. The problem is reduced to solving a system of overconstrained algebraic
equations. We initially use global algebraic methods based on resultants and matrix
computations to compute the solutions in the corresponding domain of interest and
update these solutions using local numerical methods as the objects undergo motion.

One of the main contribution of this paper is to present a methodology which cap-
tures the temporal and spatial coherence between successive checks to achieve real-time
collision detection for polyhedral objects and to determine the contact information be-
tween general curved models efficiently using the algebraic analog of coherence. When
the objects are not in contact with each other, the resulting algorithm for a pairwise
test essentially runs in 0(1 + f(M)), where f(M) is a function of relative motion M

2



(relative homogeneous transformation matrix to describe the relative motion) which
the objects undergo.

We also analyze the complexity of our approaches to curved models. The com-
plexity of global methods is O(M 3 ), where M corresponds to the algebraic complexity
of the resulting system. It is a function of the degrees of the polynomials used to
represent curved models. At each iteration the complexity of the local methods is a
function of the algebraic degrees of the boundary surfaces and the motion undergone
by the object pairs.

The rest of the paper is organized as follows. We analyze the problem of interfer-
ence detection, review literature on object models and solutions of algebraic systems
in Section 2. In Section 3, we review the expected constant time algorithm for tracking
closest features between convex polytopes and show how it can be extended to inter-
ference detection between general polyhedral models. The problem of closest features
and interference between curved models are analyzed in Section 4. In Section 5, we
present algorithms between curved models using equation solving approaches. Finally,
we discuss our implementation and performance in Section 6.

2 Background

2.1 Coherence for Detection Problem

The simplest algorithms for interference detection are based on bounding volumes.
Typically they correspond to bounding boxes, spheres or octrees etc. In case, two
objects are far apart, the bounding volumes approach can be used to determine that
there is no interference. These bounding boxes overlap only if the given pair of objects
collide or are close to each other. As a result, any good algorithm for interference de-
tection needs to compute the spatial relationship between a pair of objects, when they
are close to each other and perhaps moving towards each other. Since no assumptions
are made on the motion of the objects, it is not possible to exactly compute the time at
which the given pair of objects would collide. Therefore, in most applications the col-
lision detection routines are being called frequently. Due to the nature of application,
there exists spatial and temporal coherence between successive instances. Different
algorithms in the literature have utilized the coherence. Baraff uses cached edges and
faces to find a separating plane between two convex polytopes [3]. However, this may
not work when the closest features between the objects change or when there is a large
abrupt motion. In (27], an algorithm for keeping track of closest features between con-
vex polytopes using Voronoi regions of the features and local geometry information
is used to determine the minimum separation between them, thus to detect possible
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collision. This works very well for convex polytopes. However, it is difficult to apply
this approach directly to non-convex polygonized curved models as there may be more
than pair of closest features and the closest pair features may correspond to curves
on the surface. In Section 5, we make use of the coherence along with local numerical
methods and global techniques for solving algebraic systems to check whether there is
a contact or interference between such curved models.

2.2 Object Models

Polyhedral models are represented using boundary representation [23]. A polyhedron
consists of vertices, edges and faces represented in terms of parameters needed to de-
scribe them. In addition, we also have the topological information such as adjacencies
and incidences of all features (vertices, edges, faces). Concave polytopes are decom-
posed into convex polytopes and represented by hierarchical sub-part trees. Curved
models consist of NURBS surfaces and piecewise algebraic surfaces. NURBS models
are represented in terms of control polytopes, knot vectors and order continuity [18].
The convex hull of the control polytopes serves as a bounding volume approximation
for these surfaces. They are further decomposed into a series of Bizier surfaces using
knot insertion algorithms. Each B~zier surface corresponds to a rational parametric
surface, which can be represented in homogeneous coordinates as:

F(s, t) = (X(s, t), Y(s, t), Z(s, t), W(s, t)). (1)

The B6zier surface is defined over the domain (8, t) E [0, 1] x [0, 1]. Algebraic surfaces
are represented implicitly as zero sets of the form:

f(z,y,z) = 0.

Many commonly used models like the quadrics or torus are described using such
formulations.

2.3 Solutions of Algebraic Systems

It is shown in Section 5 that the problem of interference detection corresponds to
finding common solutions of a system of algebraic equations in a particular domain.
The system may be a zero dimensional system with a finite number of solutions or
an overconstrained system with no common solutions. There are different well-known
methods for solving system of polynomials equations. Most of the algorithms in liter-
ature are for a system of n equations in n unknowns represented as:

Fl(X1,X2,...,X,) = 0
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F=(X,,72,...,Z,) = 0 (2)

F%(X 1 ,z 2 .. = 0

Let their degrees be di, d2, ... , 4, respectively.
Purely symbolic approaches like Gr6bner bases and resultants eliminate variables

and reduce the problem to finding roots of a univariate polynomial. These can be slow
even for low degree systems and need exact arithmetic. On the other hand iterative
methods like the Gauss-Newton's method are good for local analysis and need good
initial guesses to all the solutions. In the context of floating point arithmetic, the two
main approaches are those of homotopy methods [19] and matrix computations [30].
The latter algorithms make use of matrix formulation of resultants of polynomial equa-
tions and reduce the problem to computing eigenvalues and eigenvectors of generalized
companion matrices. They have been applied to a number of geometric applications
and perform very well in practice [30]. The complexity of the algorithm is o(M 3),
where M corresponds to the algebraic complexity of the system. For dense polyno-
mial systems, it is the Bezout bound corresponding to the product of the degrees of
the equation; and for sparse polynomial systems, it is the BKK bound corresponding
to the mixed volume of the Newton polytope corresponding to each equations [6, 41].
Homotopy methods use the solutions of a known system along with tracing algorithms
to find the solutions of the given system. The tracing steps corresponds to Newton's
iteration.

3 Collision Detection for Polyhedra

In this section, we summarize a simple and efficient collision detection algorithm for
convex polyhedra by tracking the closest points between them [27]. We also extend it
to handle penetration between objects. The method works by finding and maintaining
a pair of closest features (vertex, edge, or face) on the two convex polyhedra, in order
to calculate the Euclidean distance between them to detect possible collision. The
method is applicable in static environment, but is especially well suited to dynamic
domains as the objects move in a sequence of small, discrete steps. We take advantage
of the empirical fact that the closest features change only infrequently as the objects
move along finely discretized paths. By preprocessing the polyhedra, the algorithm
runs in expected constant time if the objects are not moving very swiftly. Even when
the closest feature pair is changing rapidly, the algorithm takes only slightly longer
(runtime is proportional to the number of feature pairs traversed which is a fuction of
the relative motion objects undergo).
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3.1 Preliminaries

We represent each convex polyhedron using modified boundary representation. Each
polyhedron data structure has fields for its features (faces, edges, and vertices) and
Voronoi regions (defined below).

Each feature (a vertex, an edge, or a face) is described by its geometric param-
eters and its neighboring features, i.e. the topological information of incidences and
adjacencies. In addition, we also precompute the Voronoi region (defined below) for
each feature as well.
Definition: A Voronoi region associated with each feature is a set of points closer
to that feature than to any others. [38]

The Voronoi regions form a partition of space outside the polyhedron according
to the closest feature. The collection of Voronoi regions of each polyhedron is the
generalized Voronoi diagram of the polyhedron. Note that the generalized Voronoi
diagram of a convex polyhedron has linear size and consists of polyhedral regions.
A cell is the data structure for a Voronoi region. It has a set of constraint planes
which bound the Voronoi region with pointers to the neighboring cells (which share
a constraint plane with it) in its data structure. If a point lies on a constraint plane,
then it is equi-distant from the two features which share this constraint plane in their
Voronoi regions. Using the geometric properties of convex sets, applicability criteria
(explained in Sec.3.3) are established based upon the Voronoi regions. If a point P
on object A lies inside the Voronoi region of the feature fB on object B, then fB is a
closest feature to the point P.

3.2 Overview

The distance computation algorithm which tracks the closest feature pair is more fully
described in our earlier work [27] or [28]. Here we only give a general overview of the
algorithm.

Our method is straightforward in its conception. We start with a candidate pair of
features, one from each polyhedron, and check whether the closest points lie on these
features. Since the objects (thereby the faces as well) are convex, this is a local test
involving only the neighboring features of the current candidate features. If either
feature fails the test, we step to a neighboring feature of one or both candidates, and
try again. With some simple preprocessing, we can guarantee that every feature has
a constant number of neighboring features. This is how we can verify or update the
closest feature pair in constant time.

When a pair of features fails the test, the new pair we choose is guaranteed to be
closer than the old one. So when the objects move and one of the closest features
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changes, we usually find it after one or two iterations. Even if the closest features are
changing rapidly, say once per step along the path, our algorithm takes only slightly
longer. In this case, the running time is proportional to the number of feature pairs
traversed in this process. It is not more than the product of the numbers of features of
the two polyhedra, because the Euclidean distance between feature pairs must always
decrease when a switch is made [27], which makes cycling impossible.

3.3 Applicability Test

Given the overview of the algorithm, we now present a concise description of the main
component of the algorithm - the applicability test - which is established based
upon Voronoi region.

A Voronoi region, associated with each feature, is bounded by the constraint planes
derived from the feature's neighbors. The applicability test is a simple checking process
that verifies whether a point lies inside the Voronoi region of a given feature. With
the preprocessing procedures to guarantee that every feature has a constant size of
neighboring features, each applic;tbility test is only a local test which runs in 0(1) time.
When a point fails the applicability test of a given feature, the pointer associated with
each constraint plane provides a new, closer feature which shares the same constraint
plane with the previous cell.

For a given pair of features, featA and featB, on objects A and B, we first find
a pair of nearest points, PA and PB, between these two features. Then, we need to
verify that featB is truly the closest feature on B to PA (i.e. PA lies inside the Voronoi
region of featB) and featA is truly the closest feature on A to PB (i.e. PB satisfies
the applicability test of featA). If either check fails, a new and closer feature (which
is usually one of neighboring features of the previous features) is substituted, and
the new pair of features is checked. Eventually, we must terminate with the closest
pair, since the distance between the feature pair is strictly decreasing through each
iteration.

This verifying process is demonstrated in Fig.1 where the previous closest feature
candidate pair is (F., Vb), P. and Vb are the two nearest points on these two given
features. Though P. satisfies the applicability of Vb (i.e. P. lies inside of Vb's Voronoi
region), V6 fails F.'s applicability test imposed by the constraint plane CP. Therefore,
a new candidate pair (E., Vb), which is closer in distance, is returned. Then, the
algorithm is called again upon (E., Vb) to verify whether this is the closest feature-
pair iteratively, until the nearest points on two features both satisfy the applicability
tests of each other. Then, the algorithm stops and returns the closest feature-pair.
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Figure 1: Applicability Test: R, and R 2 are the Voronoi regions of F. and E. re-
spectively. (F., Vi) --+ (E., V&) since %b fails the applicability test imposed by the
constraint plane CP.

8



N.
SOP

~R, 2: R4

Va

Object A

Object B

{R R(b)

Figure 2: Preprocessing of a vertex's conical applicability region and a face's cylindrical
applicability region

3.4 Subdivision Procedure

In general, each face of a typical convex polyhedron has four or five edges in its
boundary and each vertex has three or four incident edges . When a face has more
than 5 edges in its boundary or a vertex has more than 5 incident edges, its Voronoi
region is preprocessed by subdividing the whole region into smaller cells. In Fig.2, R.,
the Voronoi region of V. which has 8 incident edges, is subdivided into R 1, R2, and
R3 ; P4, the Voronoi region of Fb which has 8 edges in its boundary, is subdivided into
R4, R5, and R6. After subdivision, each of the new cells has only 3 or 4 constraint
planes. This subdivision procedure is a simple linear time routine which can be done
as a precomputation step. It guarantees that when the algorithm starts, each Voronoi
cell has a constant number of constraint planes. Consequently, each applicability
test described above runs in constant time for updating the closest feature pairs in a
dynamic environment.
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3.5 Implementation Issues

In order to minimize online computation time, we do all the subdivision procedures

and build all the Voronoi regions first as one-time computational cost. We do not need
to reconstruct all the Voronoi regions for each polyhedron as the objects move. We

only need to transform the candidate features and recompute the nearest points, since
local applicability constraints are all we need for tracking the closest pair of features.
That is, we transform the point coordinates using relative homogeneous transformation
matrices (available from either dynamic calculations or motion transformations as
described in Sec 2.2) and leave constraint plane equations fixed. For example, given
two objects moving in space, their motions with respect to the origin of the world frame
can be characterized by the transformation matrices TA and TB respectively. Then,
their relative motion can be represented by tCe homogeneous relative transformation
TAB = T~jTA.

This algorithm outputs the pair of closest features and also the distance between
two objects. If the distance is less than or equal to 6 (a small safety margin defined
by the user or determined by a given environment), then the objects collide.

3.6 Hierarchical Representation for Non-Convex Objects

We extend the collision detection algorithm for convex polyhedra to non-convex ob-
jects using hierarchical representation. We assume that each nonconvex object is given
as a union of convex pieces or is composed of several nonconvex subparts, each of these
can be further represented as a union of convex subparts or a union of non-convex
pieces. We use a sub-part hierarchy tree to represent each nonconvex object (includ-
ing curved objects which will be discussed later Fig.6). At each node of the tree,
we store either a convex sub-part or the union of several convex subparts. First, we

construct the convex hull for each node and work up the tree as part of preprocessing
computation. We also include the convex hull of the union of sub-parts in the data
structure. The convex hull of each node is the convex hull of the union of its children.
For instance, The root of this sub-part hierarchy tree is the nonconvex object with its
convex hull in its data structure.

At each time step, we examine the possible interference by a recursive algorithm.
The algorithm first checks for collision between two parent convex hulls. Of course, if
there is no interference between two parents, there is no collision and the algorithm
stops and returns the closest feature pair between two convex hulls of the objects. If
there is a collision, then it expands their children. If there is also a collision among the
leaves, then the algorithm recursively proceeds down the tree to determine if a collision
actually occurs. In this recursive manner, the algorithm only signals a collision if there
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is actually an impact among sub-parts of two objects; otherwise, there is no collision
between the two objects.

For complex objects, using a deep hierarchy tree with lower branching factor will
keep down the number of nodes which need to be expanded. This approach guarantees
that we find the earliest collision between two non-convex objects.

3.7 Penetration Detection for Convex Polyhedra

The core of the collision detection algorithm is built upon the concepts of Voronoi

regions for convex polyhedra. As mentioned earlier in Sec 3.2, the Voronoi regions.form
a partition of space outside the polyhedron. Therefore, the algorithm can possibly run
into a cyclic loop when interpenetration occurs, if no special care is taken to prohibit
such events. Hence, if the polyhedra can overlap, it is important that we add a module
which detects interpenetration when it occurs as well.

* Pseudo Voronoi Regions:

This module can be constructed based upon similar ideas of space partitioning
to the interior space of the convex polyhedra. The partitioning does not have to
form the exact Voronoi regions since we are not interested in knowing the closest
features between two interpenetrating polyhedra but only to detect such a case. A close
approximation with simple calculation can provide the necessary tools for detecting
overlapping.

This is done by partitioning the interior of a polyhedron. We first calculate the
centroid of each convex polyhedron, which is the weighted average of all the vertices,
and then construct the constraint planes of each face to the centroid of the polyhedron.

These interior constraint planes of a face F are the hyperplanes passing through the
centroid and each edge in F's boundary and the hyperplane containing the face F.
If all the faces are equi-distant from the centroid, these hyperplanes form the exact
Voronoi diagrams for the interior of the polyhedron. Otherwise, they will provide a

reasonable space partition for the purpose of detecting interpenetration.
The data structure of these interior pseudo Voronoi regions is very much like the

exterior Voronoi regions described in Sec 3.1. Each region associated with each face

has e+ 1 hyperplanes defining it, where e is the number of edges in the face's boundary.

Each hyperplane has a pointer directing to a neighboring region where the algorithm
will step to next, if the constraint imposed by this hyperplane is violated. In addition,
a type field is added in the data structure of a Voronoi cell to indicate whether it is

an interior (pseudo) or exterior Voronoi region.

The exact Voronoi regions for the interior space of the polyhedron can also be
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constructed by computing all the equi-distant bisectors of all facets. But, such an
elaborate precomputation is not necessary unless we are also interested in comput-
ing the degree of interpenetration for constructing some type of penalty functions in
collision response or motion planning.

As two convex polyhedral objects move and pass through each other, the change
of feature pairs also indicate such a motion since the pointers associated with each
constraint plane keep track of the pseudo closest features between two objects during
penetration phase as well. However, to ensure convergence, we will need to construct
the exact Voronoi regions of the interior space or use special case analysis to guaran-
tee that each switch of feature necessarily decreases the distance between candidate
features.

4 Interference Detection for Curved Surfaces

In this section, we analyze the problem of interference detection between curved ob-
jects represented as spline models or piecewise algebraic surfaces. We show that these
problems reduce to finding solutions of a system of algebraic equations. In particular,
we present algebraic formulations corresponding to closest points determination and
geometric contacts.

4.1 Closest Features Formulation

Given the homogeneous representation of two parame'- surfaces, F(s, t) = (X(s, t,
Y(s,t), Z(s,t), W(s,t)) and G(u,v) = (X'(u,v), V(u, -,,(u,v), W(u,v)), the clos-
est features correspond to points or curves on the surface. The closest features are
characterized by the property that the corresponding surface normals are collinear.
This can be expressed in terms of the following variables. Let

F11(s,t,u,v,a1) = (F(s,t)-G(u,v))

F 12 (s,t,u,v,ai) = a1(Gu(u,v) x G•(u,v))

F2n(s,tu,v, aa) = (F.(s,t) x Ft(s,t))

F22(s,t,u,v,Ca2) = 02 (Gu(u,v) xG(u,v)),

where F,, Ft, Gu, G, correspond to the partial derivatives. The closest features be-
tween the two surfaces satisfy the following equations:

Fi(s,t,u,v,a1 ,a 2 ) = F1(s,t,u,v,a1 ) - FL2 (s, t, u, v, a) = ( . (3)

0
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F2(, =t, U, t, 2 ) F21(3,t,u,v,o) - F2(3,t,u,v, a 2) = 0 .
(0

This results in 6 equations in 6 unknowns. However, we are only interested in the
solutions in the domain of interest (since each surface is defined on a subset of the
real plane). These constraints between the closest features can also be expressed as:

H1 (a, t, u, v) = (F(3,t)-G(u,iv)).G.(u,v)= 0

H 2(s, 3, u, v) = (F(s,t)-G(u,v))*G,(u,v)= 0 (4)

H 3(s,t,u,v) =(F(s,t)-G(u,v))*F.(3,t)= 0

H 4(3, t, u, v) = (F(s,t)-G(u,v))*Ft(s,t) = 0

where * corresponds to the dot (or inner) product. This results in four equations in
four unknowns.

Let us analyze the algebraic complexity of these two systems of ons cor-
responding to closest features. Lets consider the first system correspoi, .ig to (3).
Given 2 rational parametric surfaces F(s, t) and G(u, v), both of their numerators
and denominators are polynomials of degree n. The numerator and denominator of
F11 (s, t, u, v, a,) have degree 2n and 2n due to subtraction of two rational polynomials.
As for F 12 (s, t, u, v, a1 ), the degrees of numerators and denominators of the partials
are 2n - 1 and 2n respectively in the given variables (due to quotient rule). Taking
the cross product doubles the degrees for both the numerator and denominator; there-
fore, the degrees for the numerator and denominator of F12(s, t, u, v, a,) are 4n - 2
and 4n respectively. To eliminate a, from F,(s, t, u, v, ai), we get F1,(X(.,.,,*,,,u,)) -

Fjj(,~s,t,ii,•,)) F (Z(,,t,"•.1)) After cross multiplication and clearing out the de-F12(Y($,t,u'V,00)) F 12(Z(&,t,-,V,0j))"

nominators, we get two polynomials of degree 12n - 2 each. Once again, by the same
reasoning as stated above for subtraction and dot product of rational polynomials,
both the numerators and denominators of F21(8, t, u, v, a 2) and F 22 (s, t, u, v, a 2) have
degrees of 4n - 2 and 4n. By similar method mentioned above, we can eliminate a 2

from F 2(s, t, U, v, a 2). We get two polynomial equations of degree 16n - 4 each after
cross multiplication. As a result the system has a Bezout bound of (12n-2)2(16n-4) 2.

Each equation in the second system of equations has degree 4n - 1 (obtained after
computing the partials and subtraction of two rational polynomials) and therefore the
overall algebraic complexity corresponding to the Bezout bound is (4n - 1)4. Since
the later system 4 results in a lower degree bound, in the rest of the analysis we will
use this system. However, we are only interested in the solutions in the domain of
interest (since each surface is defined on a subset of the real plane).
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Figure 3: Tangential intersection and boundary intersection between two Bezier sur-
faces

Baraff has used the formulation in Eqn. 3 to keep track of closest points between
closed convex surfaces [31 based on local optimization routines. The main problem is
finding a solution to these equations (3) for the initial configuration. In general, these
equations can have more than one solution in the associated domain (even though there
is only one closest point pair) and the optimization routine may not converge to the

right solution. A simple example is the formulation for the problem of interference
detection between two spheres. There is only one pair of closest points, however
Equations (4) have four pairs of real solutions.

Given two algebraic surfaces, f(x, y, z) = 0 and g(xy, z) = 0, the problem of
closest features determination can be reduced to finding roots of the following system

of 6 algebraic equations:

f(z 1 ,y;,z1 ) = 0

g(X2,y 2 , z 2) = 0

f,(zI,y1 ,z ) I = a1  9,(z 2,,Y2 ,z 2 ) (5)fM(X,,•, z1 ) / I9(Z2, y2, z2)
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X1 X2 g.(X2, Y2, Z2)
Y1 Y 2 / 02 9,(Z2, Y2,z2)

ZI Z2g,( 9(2, Y12, Z2)

Given two algebraic surfaces of degree n, we can eliminate at by setting 'OL '')8=

s(m)E(L'•f"L) = I.(L * After cross multiplication, we have a polynomial equation of

2n- 2, since each partial has degree of n- I and the multiplication results in the degree
sum of 2n - 2. Similarly, to eliminate 02, we set - -..,ff., ,") = s(,,2 ,
and the degree of the resulting polynomial equations is n. We have six quations
after eliminating a, and a2: two of degrees (2n - 2) and four of degrees n respec-
tively (2 from eliminating 02 and 2 from f(zl, lh, z1) and g(z2, Y2, z2 )). Thertfore,
the Bezout bound of the resulting system can be as high as N = (2n - 2)2n4. In
general, if the system of equations is sparse, we can get a tight bound with Bern-
stein bound [5]. The Bernstein bound for Eqn. 5 is n2 (n 2 + 3)(n - 1)2. Canny
and Emiris calculate the Bernstein bounds by using sparse mixed resultant formula-
tion [6]. For example, the Bernstein bounds' for the case of n = 2,3,4,5,6,7,8,9
are 28,432,2736,11200,35100,91728,210112,435456, while the Bezout bounds are
64,1296,9216,40000,129600,345744,... respectively. Even for small values of n, the
bound on the number of solutions can be large, and therefore the algebraic complexity
of computing the closest points can be extremely high, even using the exact tight
bound. In our applications we are only interested in the real solutions to these equa-
tions in the corresponding domain of interest. The actual number of real solutions
may change as the two objects undergo motion and some configurations can result in
infinite solutions (e.g. when a closest pair corresponds to a curve on each surface, as
shown for two cylinders in Fig. 4. ). As a result, it is fairly non-trivial to keep track
of all the closest features between objects and updating them as the objects undergo
motion.

4.2 Contact Formulation

The problem of interference detection corresponds to determining whether there is
any contact between the two objects. In particular, it is assumed that in the be-
ginning two objects are not overlapping. As they undergo motion, we are interested
in knowing whether there is any precise contact between the objects. There are two
types of contacts. They are tangential contact and boundary contact. In this section,
we formulate both of these contact determination problems in terms of a system of

IThese figures are calculated by John Canny and loannis Emiris using their code based on the

sparse mixed resultant formulation [6].
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algebraic equations. In the next section, we describe how the algorithm tests for these

conditions as the object undergoes rigid motion.

Tangential Intersection : This corresponds to a tangential intersection between
the two surfaces at a geometric contact point, as in Fig.3(a). The contact point

lies on the interior of each surface (as opposed to being on the boundary curve)
and the normal vectors at that point are collinear. These constraints can be

formulated as:

F(s,t) = G(u,v)

(F.(s,t) x Ft(s,t)) * G.(u, v) = 0 (6)

(F.(s, t) x Ft(a, t)) * G.(u, v) = 0

The first vector equation corresponds to a contact between the two surfaces and
the last two equations represent the fact that their normals are collinear. They
are expressed as scalar triple product of the vectors. The last vector equation
represented in terms of cross product corresponds to three scalar equations.

We obtain 5 equations in 4 unknowns. This is an overconstrained system and
has a solution only when the two surfaces are touching each other tangentially.
However, we solve the problem by computing all the solutions to the first four
equations using global methods and substitute them into the fifth equation. If

the given equations have a common solution, than one of the solution of the first
four equation will satisfy the fifth equation as well. For the first three equations,

after cross multiplication we get 3 polynomial equations of degree 2n each. The
dot product results in the addition of degrees of the numerator polynomials (each
of these partials has numerator polynomial of degree (2n - 1)). Therefore, we
get a polynomial equation of degree 6n - 3 from the fourth equation. Therefore,

the Bezout bound of the system corresponding to the first four equations is
bounded by N = (2n) 3 (6n - 3), where n is the parametric degree of each surface.

Similarly for two algebraic surfaces, the problem of tangential intersection can
be formulated as:

f(x,Y,z) = 0

g(Oz, z) = 0 (7)

f.(X,Y, Z) \ (g ' x, ,Z)
f,(z,y,z) =a g1(X,y,z) Z
f.(X,Y,Z) I9 g(X, y, Z) )

In this case, we obtain 4 equations in 3 unknowns (after eliminating a) and
these equations correspond to an overconstrained system as well. These over-
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Figure 4: Closest features between two different orientations of a cylinder

constrained system is solved in a manner similar to that of parametric surfaces.
The Bezout bound for the first three equations is M = n2(2n - 2).

e Boundary Intersection : Such intersections lie on the boundary curve of one of
the two surfaces. Say we are given a B1zier surface, defined over the domain,
(S, t) E [0, 1] x [0, 1], we obtain the boundary curves by substituting a or t to be
0 or 1. The resulting problem reduces to solving the equations:

F(s, 1) = G(u, v) (8)

Other possible boundary intersections can be computed in a similar manner. The
intersection points can be easily computed using global methods. An example
has been shown in Figure 3(b)

Two objects have a contact if one of these sets of equations, ((6) or (8)) for para-
metric surfaces and (7) for algebraic surfaces, have a common solution in their domain.

In a few degenerate cases, it is possible that the system of equations (6) and (8)
have an infinite number of solutions. One such example is shown for two cylinders in
Fig.4. In this case the geometric contact corresponds to a curve on each surface, as
opposed to a point. These cases can be detected using resultant methods as well [30].

4.3 Penetration Analysis

In most examples, it is difficult to express the motion as a closed form function of
time. As a result, it is almost impossible for the algorithm to compute the exact time
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to collision as at instance we only have the information about the object's position
and geometry. Based on the algorithm for polyhedral models and curved models
(presented in the next section) it is possible for us to know that the two objects are

getting closer. As a result, the main routine of the system can check for interference
detection at shorter time steps. However, it is possible that at a given time instance

the two objects are not colliding and at the next instance they have penetrated into
each other. The algebraic constraints for contact analysis, based on tangential contact
or boundary contact, are satisfied only if the two objects have a tangential or boundary
contact. They may no longer be satisfied, when the two objects have penetrated. In

this section, we formulate conditions for penetration between curved models and how

they can be used for collision detection.
Two objects are penetrating, if there is a finite area of contact between them

(as shown in Fig. 5). In contact analysis, we have assumed that there is a point
contact (or a higher order contact along the boundary or on the tangent plane). The
penetration therefore results in a one-dimensional intersection curve corresponding to

the intersection of the two surface boundaries. In this section, we show that there is
still a real solution to the subset of equations corresponding to (6), (8) or (7).

Lets consider boundary intersections as in Fig. 5(b). Lets assume that there was a
contact along the boundary curve corresponding to F(s, 1) and at the given instance
the two surfaces have penetrated. As a result, if we compute the common solutions of
the equations:

F(s, 1) = G(u, v) (9)

there is a real solution in the corresponding domain, which may not correspond to
the boundary curve of G(u, v) or there are more than one distinct solutions to these
equations. However, any small perturbation along the boundary curve F(s, 1) would

result in a solution to these equations in the corresponding domain and based on that
we can detect interference.

Now, lets consider the tangential contact between two algebraic surfaces as in

Fig. 5(a). Similar analysis would apply to the tangential intersection of piecewise
parametric surfaces as well. To check for tangential contact, we use the equation

solving methods to compute the solutions of the following four equations in four un-

knowns:

f(X,y,z) = 0

OXYZ)=0 (10)

MY, ) Z) gy(z,Y,z)
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Figure 5: (a) penetration resulted from tangential intersection; (b) overlap resulted
from boundary intersection

The solutions are substituted into the fifth equation, as shown in (6) to check for
contact analysis. The penetration information is obtained based on following theorem.
Lets assume that the intersection between the two surfaces is non-planar.

Theorem 4.1 Two algebraic surfaces, f(x,y,z) = 0 and g(x,y,z) = 0 have a non-
planar interpenetration, iff there is at least one real solution of the system of equations
(1o).

Proof: Lets take the case when the two objects have no geometric contact between
them. As a result, there is no common real solution to the first two equations,
f(x,y,z) = 0 and g(x,y,z) = 0.

Lets consider the case, when the objects penetrate. Moreover, the intersection
is non-planar. As a result, the two surfaces intersect along a one dimensional space
curve. In a few degenerate cases, the intersection curve is higher dimensional. Lets
denote the real curve of intersection as C. C is an algebraic space curve corresponding
to all the common solutions of f(z, y, z) = 0 and g(x, y, z) = 0. Typically, C consists
of one closed component in space (as shown in Fig.5). In some cases, corresponding
to non-convex models it may consist of multiple components. Eliminating a from the
last two equations of (10) results in

G(z,y,z) = fx(x,y,z)gy(x,y,z) - fy(z,y,z)g•(x,y,z) = 0.
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The normal at a point on the intersection curve is obtained by taking the cross
product of the two surfaces at that point. In other points, the normal function is
defined as:

ftz,y,9z) gz(z,y,z))
N(z, 1,Z) = X Y9(Zuz) X gy g(Z' , Z)

It follows from this definition that G(z, y, z) corresponds to the Z-component of the
normal vector of the intersection curve. As a result, the real solutions of the system
of equation (10) correspond to all those points on the intersection curve where the Z-
component of the normal vector is zero. Since C consists of non-planar closed loops,
there are at least two such points on each component of C. As a result, the eiven
system of equations have a real solution. Q.E.D.

The penetration criterion highlighted in Theorem 4.1 assumes that the intersection
curve is non-planar. This is typically the case for most models (unless one of them is
a plane or if the two models correspond to quadric surface). In fact, the non-planarity
condition for penetration can be relaxed and it is required that the curve should
have a point where the Z-component of the normal vector is zero. This condition
is not satisfied, if the intersection curve lies in a plane parallel to the XY-plane.
To circumvent this case, we take three generic linear combinations of the last three
equations highlighted in (7) and pick two of the resulting three equations along with
f(x, y, z) = 0 and g(x, y, z) = 0 to formulate a new system. For almost all linear
combinations the penetration condition highlighted in Theorem 4.1 is exact. Similar
analysis can be applied to the tangential intersection of two parametric surfaces. In
case the two models penetrate and there is no solution for the equations corresponding
to boundary intersection in the given domain, there is a real solution to the first five
equations highlighted in (6) in the given domain. Again this may only fail if the

intersection curve is planar and there is no point where the Z-component of the normal
vector vanishes. To improve the robustness of the approach we replace the last three

equations in (6) by their generic linear combinations.

5 Coherence for interference detection between
curved objects

In most dynamic environments, the closest features between two moving objects
change infrequently between two time frames. We have used this coherence property,
utilizing spatial as well as temporal coherence, in designing the expected constant
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Figure 6: Hierarchical representation of a torus composed of B6zier surfaces

time algorithm for collision detection among convex polytopes and extended to non-

convex polytopes as well. In this section we utilize this coherence property along with
the algebraic formulations presented in the previous section for contact determination
between curved models.

Given two B-spline models, we decompose them into a series of B6zier surfaces
using knot insertion algorithm [18]. After decomposition we use a hierarchical repre-

sentation for the curved models. The height of the resulting tree is two. Each leaf node
corresponds to the B6zier surface. The nodes at the first level of the tree correspond
to the convex hull of the control polytope of each Bdzier surface. The root of the tree

represents the union of the convex hull of all these polytopes. The torus is composed
of biquadratic Bizier surfaces, shown at the leaf nodes (Fig. 6). The convex polytopes

at the first level are the convex hull of control polytopes of each Bdzier surface and
the root is a convex hull of the union of all control points.
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The algorithm proceeds on the hierarchical representation, as explained in Section
3. However, each leaf node is a B6zier surface. The fact that each surface is non-convex
implies that the closest features of the polytopes may not be a good approximation to
the closest points on the surface. Moreover, two such surfaces can have more than one
closest feature at any time. Given two algebraic surfaces, we initially enclose them in
a bounding box and test the bounding boxes for collision. At the leaf nodes, we check
the two models for precise contact, once their control polytopes collide.

The problem of collision detection between two B6zier surfaces is solved by finding
all the solutions to the equations (6) and (8). If the two models are described implicitly,
the first collision corresponds to the solution of (7). A real solution in the domain
to those equations implies a geometric collision and a precise contact betweeft the
models. The algebraic method based on resultants and eigenvalues is used to find all
the solutions to the equations (6),(8) or (7) [30]. This global root finder is used when
the control polytopes of two B6zier surfaces collide. At that instant the two surfaces
may or may not have a geometric contact. It is possible that all the solutions to
these equations are complex. The set of equations in (6) represents a&n overconstraint
system and may have no solution in the complex domain as well. However, we apply
the algebraic method to the first four equations in (6) and compute all the solutions.

The total number of solutions of a system of equations is bounded by the Bezout
bound. The resultant method computes all these solutions. As the objects move,
we update the coefficients of these equations based on the rigid motion. We obtain
a new set of equations corresponding to (6) and (8), whose coefficients are slightly
different as compared to the previous set. All the roots of the new set of equations
are updated using Gauss-Newton's method. The previous set of roots are used as
initial guesses. Gauss-Newton's method works well, if the relative motion between the
two objects is small. This approach is similar to homotopy methods for tracing paths
to compute solutions of a given system of polynomial equations. In case the Gauss-
Newton's method does not converge to a solution, we may again use the problem
in terms of an eigenvalue problem and use the previous eigenvalues as a guess and
use inverse power iteration. This approach has been explained in detail in [30]. The
convergence of inverse power iteration is well understood and it converges to the
eigenvalue closest to the guess. As a result, we are performing local computations at
each step corresponding to a few Gauss-Newton's iterations or inverse power iterations.
This procedure represents an algebraic analog of the geometric coherence exploited in
the earlier section.

Typically, if the objects have a tangential contact and as the two objects are moving
closer to each other, the imaginary components of some of the roots start decreasing.
This involves the use of complex arithmetic while updating the solution with Gauss-
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Newton's method or inverse power iterations. Finally, a real collision occurs, when the
imaginary component of one of the roots becomes zero. A real solution of the resulting
system implies a collision. In case it satisfies all the equations simultaneously, there
is a tangential contact otherwise there is penetration. The objects have a boundary
intersection, if the equations corresponding to boundary intersection have a real solu-
tion, which is not in the domain. As the objects undergo motion, the solution moves
and based on the roots of the given system of equations, we can determine whether
there is a boundary contact or penetration.

It is possible for the objects to have multiple contacts. In such cases two distinct
sets of solution paths converge to real solutions in the corresponding domain. As a
result, the algorithm can easily find all the multiple point of contacts.

The performance of the algorithm is dependent on the complexity of the global
root finder and the number of paths we need to trace. The total number of paths
correspond to the Bezout bound of the given system and can be fairly high for a given
system of equations. Tracing each path at each instance can be time consuming.
The choice of paths is made based on the solutions of the global equation solver.
In most applications, the global root finder is used when the two objects are fairly
close to each other. This happens when the bounding boxes corresponding to control
polytopes overlap. As a result, we only choose those solutions as the start paths
whose imaginary components are relatively small or whose real solutions are close to
the corresponding domain. This is a function of the degree of the resulting surfaces.
For higher degree models, we pick initial solutions with high imaginary components
as well.

Example 5.1 Lets illustrate the algorithm on two tori undergoing motion and even-
tually colliding at a point. We assume that each torus is enclosed by a bounding box.
Such a bounding box can either be obtained using representation of the torus as a union
of rational Bezier surfaces (taking the convex hull of associated control points) or from
the geometric definition. In particular, a torus can be described as a union of points
equi-distant from a circle in space. As a result, a torus can be described in terms of
a circle C in 3 space and a radius r. The bounding box is computed by enclosing the
circle C with the square of minimum area, say S, and its height is r along each side.
A canonical representation of the torus, assuming a circle of radius k centered at the
origin is

F(x, y, z) = (V/-2 + y2 - k)2 + Z2 - r = 0.

In Figure 7, we have shown two tori moving towards each other. The initial position
of the first torus is described using equation

F(x, y, z) = 64 - 20x2 + x4 - 20y 2 + 2x 2y 2 + y 4 + 16z2 + 2x 2z2 + 2y2z2 + z4
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and the initial configuration of the second torus corresponds to

G(:, y, z) = 392.0625 - 291: + 84.5x2 - 12X3 + x + 32.512 _ 12zy2 + 2Z2y.2+

4 - 227.5z + 84xz - 14:2z - 14y2z + 81.5z2 - 12:z2 + 2z 2 + 2y 2 z 2 
- 14z3 + z4

To check for contact we add the following three equations corresponding to the first
order differentials of F(x,y,z) and G(x,y,z):(-40z + 4z3 + 4:p2 + 4ZZ2 \ (-291 + 169: -- 36z2 + 4X3 _ 12y2 + 4zy2 + 84z - 28.zz - 12z2 + 4zz2

-40y + 4z 2y + 4y3 + 4yz2  = a 65y - 24zy + 4z 2p + 4Y3 - 28pz + 4yz2 ,
32z + 4z 2 z + 4y2 z + 4z 3  -227.5 + 84z - 14z2 - 14y2 + 163z - 24zz + 4z 2 z + 4y2z - 42z7 + 4z 3

To solve for the equations, we take linear combinations of these three equations,

eliminate a and reduce the problem of contact determination to a system of 4 equations

in 3 unknowns. As the objects undergo motion, these system of equations is updated

in the following manner. Let the rigid motion of the first object be represented as

S=R, y + T1,

where R1 is an orthogonal matrix corresponding to the rotation and Tz corresponds to

the translation. This can be expressed as

y =RT( -TI)

The corresponding position of the new object is obtained by substituting for (x, y, z)

in F(x,y, z) and obtaining the equation F = 0 corresponding to the position

of the torus after undergoing motion. Similarly, we compute a new representation

((Y,•, 2) == 0 for the second torus. Notice that, it undergoes a motion represented

by R 2 and 7T2. Given these equations, we formulate the problem of contact determi-

nation by taking their differentials and taking the linear combinations of the resulting

equations. The solution of the previous set of equations are used as the starting guesses.

This process is repeated until there is a contact or penetration between the two objects

or their bounding boxes do not overlap anymore.
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6 Implementation and Performance

We have implemented the algorithms described in this paper and tested their per-
formance on many cases. The collision detection routine for convex polytopes is very
efficient and gives us a constant time performance of 50 to 70 usec (x 10-' sec) per pair
of objects (independent of object complexity) on SGI Indigo2 XZ. The hierarchical
approach works well for concave objects, given a good convex decomposition of the
object. We are able to perform collision detection in real time using our polyhedral
collision detection algorithm.

Using the spatial and temporal coherence, we can keep track of the closest feature
pairs between convex curved objects and the control polytopes of non-convex curved
objects efficiently as well. In Fig.7(a) - 7(f) (from left to right, top to bottom) we
demonstrate the algorithm on two tori. Each torus is represented hierarchically as
shown in Fig.6. In particular, Fig.7(c) and Fig.7(d) represent the same time instant.
In Fig.7(c) the convex hulls of two tori collide but in Fig.7(d) the control polytopes
of the subparts do not touch each other. Once two control polytopes of the subparts
also collide Fig.7(e), we use the global methods to find the initial solutions of (6)
and (8) and followed by Gauss-Newton method to update the solutions at each time
instance. It involves complex arithmetic. Although the hierarchical representation is
in terms of biquadratic B~zier patches, we use the implicit representation of a torus
(as that results in a system with lower Bezout bound). Each torus is represented as
an algebraic surface of degree 4. Its equation is obtained by squaring the expressions
in

F(x,y, z) = (V x2+ y2 - k) 2 + z2 - r = 0.

Since the torus is a closed object, there are no boundary intersections and we keep track
of tangential intersections for geometric contacts. The resulting system of equations
corresponding to (6) are of degrees 4,4 and 6. Tn Bezout bound of this system is
96. Using resultants, the problem is reduced to fine iig the eigen-decomposition of a
96 x 96 matrix [30]. The eigen-decomposition takes slightly more than a second on
the IBM RS/6000 and all the solutions at that instant are complex. As the tori move
towards each other, we eventually track 8 of these solutions, whose imaginary parts
are decreasing. This uses Gauss-Newton's method at each time instance. Finally a
real solution is obtained corresponding to the instance shown in Fig.7(f).

7 Conclusion

In this paper we have described efficient algorithms for contact determination in dy-
namic environments. The algorithms are based on spatial and temporal coherence
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between successive instances and applied to polyhedral models and curved objects
whose boundaries can be described as piecewise algebraic sets. This include NURBS
surfaces commonly used in computer graphics and geometric modeling. The resulting
algorithm make use of hierarchical representations, along with local numerical and
global algebraic methods for equation solving. These algorithms have been imple-
mented and work well in practice.

Many issues related to contact determination for general dynamic environments
still remain open. In an environment with N objects, we want to avoid the O(N 2 )
pairwise tests at each instance. Some techniques to speed up the run time based
on uniform spatial subdivision are proposed in [42] and algorithms of complexity
O(Nlog2N) have been highlighted for spheres in [25] and axis-aligned bounding boxes
in [16]. However, they are suitable for static environments but do not take advantage
of coherence in dynamic environments. Furthermore, there are no good algorithms for
contact determination between deformable models.
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Figure 7: (a) (d) Collision detection algorithm applied to two tori
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