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THE PHYSICS AND OPERATION OF
ULTRA-SUBMICRON LENGTH SEMICONDUCTOR DEVICES

ABSTRACT

This document summarizes activities under ONR Contract: N00014-86-C-0780,
under which equilibrium and nonequilibrium electron and hole transport in micron
and submicron structures were studied via a wide range of numerical procedures.
These included Monte Carlo methods, moments of the Boltzmann transport
equation, Schrodinger’s equation and the quantum Liouville equation in the
coordinate representation. While all of the studies have resulted in a large
collection of publications, the basic theme of the studies was the determination of
the physics of device operation and the influence of small structure size on this
operation. The most recent activities have involved the quantum Liouville
equation with emphasis on dissipation and the calculation of current. This
document includes a description of quantum transport via the quantum Liouville
equation, as we now understand it, as well as a brief summary of the previous
activities involving larger submicron devices. While the principle goal of this study
was elucidating the physics and operation of nanoscale devices, a continuing
requirement was that all algorithms be menu driven and accessible to device
scientists and engineers. The quantum transport algorithm is accessible on UNIX
workstations and in a PC Windows format.




THE PHYSICS AND OPERATION OF
ULTRA-SUBMICRON LENGTH SEMICONDUCTOR DEVICES

1. PREFACE

From it’s inception the study discussed below, performed under ONR
Contract N00014-86-C-0780 has concerned itself with equilibrium and
nonequilibrium electron and hole transport in micron and submicron structures.
All relevant equations and procedures were invoked and included Monte Carlo
methods, moments of the Boltzmann transport equation, Schrodinger’s equation
and the quantum Liouville equation in the coordinate representation.

The more classical problems emphasized hot carrier phenomena and
transients, while the quantum transport was concerned with specific quantum
phenomena and the best means of studying it. Quantum transport has occupied
most of our activities in the past few years, and the major success in the program
was the recent ability to compute current self-consistently within the framework of
a dissipation model. Two examples serve to illustrate. This model when coupled
to earlier models now permits us to deal with transients in a sensible manner in that
the relaxation to an intermediate state is better defined.

The approach we have taken is different from those of others because our
goals were very general and included the requirement that any and all algorithms
include tools that device scientists and engineers could utilize as part of routine
device design tasks. In other words one goal was to include algorithms that would
be as accessible as the standard drift and diffusion equations.

The quantum transport equation we deal with is the quantum Liouville
equation in the coordinate representation. Recall that Schrodinger’s equation is a
coordinate representation description. In dealing with the quantum Liouville
equation in the coordinate representation we broke new ground, particularly with
respect to devices. For example boundary conditions that workers typically
employ in solving the drift and diffusion equations were discarded. In it’s place it
was necessary to incorporate quasi-Fermi level conditions at the boundaries to
assure flat band contact conditions. The issues of Fermi statistics was not treated
within the framework of the differential equations, which would formally require
the introduction of the Dirac Hamiltonian into the quantum Liouville equation.
Instead statistics were accounted for through boundary conditions.




The calculation of current was introduced self-consistently and coupled to
the quasi-Fermi levels. The quantum Liouville equations were also used as a basis
for justifying earlier and more recent work on the quantum potential.

This document summarizes these studies.

Many papers were either published or submitted for publication during this
study and one huge review article was initiated. A copy of each of these is
included with this report.




2. INTRODUCTION

Since the pioneering work of Tsu and Esaki', the experimental studies of
Sollner et al.> on double-barrier resonant tunneling devices, and the superlattice
detector work of Levine et al.®, there has been growing interest in barrier/well
devices and in the fundamental underpinnings of quantum device operation.
Further, following the work Datta et al.*, there has also been rising interest in the
basic physics accompanying the Aharonov-Bohm® effect in heterostructures.
Indeed, major advances in material technology has enabled device scientists to
conjecture about new device structures that both test and illustrate basic
fundamental quantum physics issues of few and many particle systems. For
example the issue of nonlocality now finds its way into discussions of transport in
quantum devices. Nonlocality in classical physics is illustrated by the coulomb
interaction that decreases as the square of the distance between particles. In
quantum mechanics there are additional interactions that do not necessarily drop
off with distance and these are discussed below.

Another issue involves dissipation. Schrodinger's equation as traditionally
used is dissipationless, and if all transport in subsystems were governed by
Schrodinger’s equation without interactions between the subsystems, all transport
would be ballistic. Dissipation in quantum mechanics is treated by introducing
additional systems, e.g., phonons, and allowing the additional system to cause a
transition between states of the original system.

A third issue, specific to the treatment of electronic devices, is the
reservoir. Traditionally, the examination of classical devices involves the
specification of densities on the bounding surfaces, regarded as reservoirs. Such
specification, which is assumed to remain valid under bias, often involves the

'R. Tsuand L. Esaki: *Tunneling in a Finite Superlattice,” Appl. Phys. Lett., 22, 562 (1973)
3T.CL.G. Sollner, W.D. Goodhue, P.E. Tannewald, C.D. Parker and D.D. Peck: "Resonant
Tunneling Through Quantum Wells at Frequencies up to 2.5 THz," Appl. Phys. Letts., 43, 588
(1983).

3BF. Levine, KK. Choi, C.G. Bethea, J. Walker and RJ. Malik: "New 10 micron Infrared
Detector Using Interband Absorption in Resonant Tunneling GaAlAs Superlattices,” Appl. Phys.
Letts., 50, 1092 (1987).

4S. Datta, M.R. Melicoh, S. Bandyopadhyay and M.S. Lundstrom: Appl. Phys. Letts., 48, 487
(1986).

Y. Aharanov and D. Bohm: Phys. Rev., 1185, 485 (1959).




concept of a quasi-Fermi level, in which the energy separation between the bottom
of the conduction band and the Fermi level at the boundary remains unchanged.

Presently, our ability to incorporate these quantum mechanical issues to
describe physical phenomena in ultra small devices and to propose quantum phase
based devices has been evolutionary. Through a coupling of experiment, theory
and numerical simulation we have been better able to understand how basic
quantum mechanical processes affect device physics. But the 'goodness’ of a
description of quantum transport lies in the ability of the theory to explain the
detailed experimental results obtained from such complex devices as, e.g., two
terminal resonant tunneling diodes (RTD), quantum well superlattice detectors,
and the more common heterostructure FETs. However, the complexity of the
RTD and the puzzle associated with understanding its detailed operational
principles has led Ferry® to describe it as the fruit fly of quantum transport device
theory. How good is the fruit fly analog.

Traditionally, transport in RTDs and other barrier structures has been
analyzed through implementation of the formula' :

1) J=[2e/(2z)’]jm(k)[ Fro(E)= fro (E+e@)|T(E. o)

It is the approximations associated with this formulse that provide the bounds of
our understanding of transport in quantum structures. In equation (1) f.pis the
equilibrium Fermi-Dirac distribution function, 7(E,#)is the transmission
coefficient obtained from solutions to the time independent Schrodinger equation,
E'is the energy of the tunneling particle and ¢ the applied potential. As discussed
by Kluksdahl et al.” a major criticism of this approach is that it requires knowledge
of the distribution function at each side of the tunneling interface, rather that the
bulk like distribution far from the tunneling interface. Additionally the form of
equation (1) also implies: (1) the use of equilibrium distribution functions to
describe a biased state, when the biased resonant tunneling diode is in a non-
equilibrium state; (2) the neglect of scattering, although scattering would be

¢D. K. Fertry, Theory of Resonant Tunneling and Surface Superlattices , a chapter in Physics of
Quantum Electron Devices , F. Capasso (ed) Springer-Verlag, Berlin pp77-106 (1989)

"N.C. Kluhsdahl, AM. Kriman and DK. Ferry: "Self-Consistent Study of the Resonant
Tunneling Diode,” Phys. Rev., B39, 7720 (1989).




required to force a system to a state of equilibrium; and (3) the concept of a Fermi
level, which clearly implies the presence of strong carrier-carrier interactions,
particularly in the quantum well.

While the use of equation (1) has been successful in predicting negative
conductance in RTD its inadequacies in explaining experiment have been well
documented. These include: First: the dc studies do not account for the peak-to-
valley ratio of resonant tunneling devices. Second: the dc studies do not
adequately treat dissipation. Third: the dc studies do not treat hysteresis in the
current voltage characteristics, observed experimentally. Fourth: the dc treatment
cannot predict how the devices will be used in applications. Fifth: the dc
treatment cannot treat the time dependent nature of the boundary conditions that
represent physical contacts.

The above studies suffer from lack of incorporating the feature basic to
quantum mechanical phenomena: all quantum mechanical devices are time
dependent. Apart from dissipation, there are always reflections off boundaries,
barriers, wells, imperfections and contacts. What is needed is a time dependent
large signal numerical studies of quantum feature size devices. This need has
been discussed by Ravaioli et al.* and Frensley’ and more recently Ferry and
Grubin'. This approach emphasizes the details of transient behavior, the numbers
of particles involved in device operation, the temporal duration under which the
effective mass approximation is valid, the significance of the Fermi-golden rule,
and other short time phenomena. As currently practiced, when scattering is
present, or when time dependent fields are present and treated as perturbations, it
is supposed that the perturbation does not modify the states of an unperturbed
system, rather the perturbed system instead of remaining permanently in one of the
unperturbed states is assumed to be continually changing from one to another, i.e.,
undergoing transitions from one state to another state. This approach is at the

$U. Ravaioli, M.A. Osman, W. Potz, N. Kluksdahl and D.K. Ferry: “Investigation of Ballistic
Transport Through Resonant-Tunneling Quantum Wells Using Wigner Function Approach,”
Physica, 134B, 36 (1985).

W. Frensley: “"Boundary Conditions for Open Quantum Systems Driven Far From
Equilibrium,* Reviews of Modern Physics, 62, 745 (1990).

¥p_ K. Ferry and H. L. Grubin, “Modeling of Quantum Transport in Semiconductor Devices”
~ Chap. In Solid State Physics (H. Ehrenreich, ed) Academic Press (1994)




heart of those calculations employing the density matrix'', those employing the
Wigner distribution function'?, and those employing Green's function techniques® .

In addition to these fundamental approaches there are also derivative
procedures that enjoy wide spread use, both for the intuitive nature of the
equations and because of the ease with which classical concepts emerge. These
discussions include the quantum moment equations, see e.g., Iafrate et al.'*,
Stroscio'®, and Grubin and Kreskovsky'S .

In the discussion that follows the density matrix and quantum moment
equations were impiemented in the study of quantum feature size devices. Further
we have found insight for multiparticle transport based upon concepts obtained
through a recasting of the single particle Schrodinger equation. Adopting the
approach of Bohm'? the single particle wave function is written in the form:

® v=reqs]

subject to the condition that increasing the phase by 2z, does not change the
wave-function. This wave function when inserted into Schrodinger’s equation
results in two equations:

" See, e.g., H. Ehrehreich and M. H. Cohen, Phys. Rev., 115, 786 (1959), J. Goldstone and K.
Gottfried, /! Nuovo Cimento, 13, 849 (1959), and more recently, W.A. Frensley, Rev. Mod.
Phys., 62, 745, (1990), which include a discussion of the density matrix in the coordinate
representation. Most recently a discussion by J. B. Krieger and G. J. lafrate, Phys. Rev. B3S,
9644 (1987) and G. J. Iafrate and J. B. Krieger, Phys. Rev. B40, 6144 (1989) for a discussion of
the deasity matrix in the momentum representation.

12E. P. Wigner, Phys. Rev., 40, 749 (1932)

3 R Lake and S. Datta, Phys. Rev. B4S, 6670 (1992)

“G.J. Iafrate, HL. Grubin and D.K. Ferry: *Utilization of Quantum Distribution Functions for
Ultra-Submicron Device Transport,” J. De Physique, 10, C7-307 (1981).

M. A. Stroscio: "Moment-Equation Representation of the Dissipative Quantum Liouville
Equation,” Superiattices and Microstructures, 2, 83 (1986).

SHL. Grubin and JP. Kreskovsky: "Quantum Moment Balance Equations and Resonant
Tunneling Structures,” Solid State Electronics, 32, 1071 (1989).

17 See, ¢.g., C. Philippidis, D. Bohm and R.D. Kaye: 1 Nuovo Cimento, T1B, 75 (1982). More
recently see D. Bohm and B. J. Hiley, The Undivided Universe, Routledge, London (1993)




2
25 ,(5)

(3) a1 —E— +V+ Q =0
and
oR? 2 VS _
4) ry +V-(R 7)—0
where:
m VR
5y ¢@= -(*2;) R

Equations (3)-(5) indicate that the Schrodinger wave represents a particle
with a well defined position whose value is causally determined. The particle is
never separate from the quantum force, —-VQ, that fundamentally affects it. The
particle has an equation of motion:

() m% =-V(V+Q)

which means that the forces acting on the particle consist of the classical force,
—-VV, and the quantum force, —VQ. It is important to note that the quantum
potential is dependent on the shape of the real part of the wave function rather
than on its intensity; and does not necessarily fall off with distance. The quantum
force is dependent on the momentum of the carrier through the continuity
equation, but does not require a source term

The quantum potential is defined in terms of a single particle wavefunction.
And if S(r,t) = s(r,t) - Et, where E, is a constant independent of position, then
under zero current conditions, equation (3) is the real part of Schrodingers
equation whose solutions subject to a particular set of conditions leads to a set of
bound state eigenvalues. We will come back to this point over and over again, in
the discussion that follows.

While the above discussion is for single particle wave functions we are
interested in quantal and classical distribution functions, both representing an




ensemble of particles. Our experience, has developed from approximate
representations of the Wigner distribution function'’, indicates that the
incorporation of the quantum potential for an ensemble of particles, where the
amplitude R is replaced by the square root of the self-consistent density, p(x), is a
significant aid in interpreting much of the salient features of quantum transport
in devices. The use of the quantum potential provides an alternative explanation
for the peaking of the charge density at positions away from the interface of wide
and narrowband gap structures, for real space transfer, for the potential
distribution associated with a Schottky barrier, for density variations associated
with variations in effective mass, and a host of additional features. To get to these
points we must get through some mathematics, part of which is exact, and part
approximate. We begin with the development of the single particle density matrix.

3. THE SINGLE PARTICLE DENSITY MATRIX

While the density matrix approach discussed below and the Wigner
approach are mathematically equivalent, we have made the choice of the density
matrix because the equation of motion readily submits to algorithms developed by
the authors; the use of which are extremely short computational times for steady
state solutions. These algorithms are discussed below. There are limitations to
our treatment. The most important is that the equation of motion discussed below
does not include anti-symmetric components and the density matrix has not been
subject to anti-symmetrization'*. We note that the application of the Wigner
formulation to devices suffers from the same limitation. In some of the studies
below, the inclusion of Fermi statistics is through the boundary conditions, as in
the Wigner studies.

The structures that we discuss fall under the category of open structures’,
which can exchange particles with its surrounding, and which mathematically
expresses this interaction in terms of boundary conditions. The phenomena we are
interested in will be with systems that are far from equilibrium.

18 A brief discussion of anti-symmetrization is included in the monograph: “"Foundations of
Electrodynamics," S.R. De Groot and L.G. Suttorp, North-Holland Publishing Company,
Amsterdam (1972). See also O'Connell (get reference).
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The density matrix is obtained from the density operatorp, (f), which
following Dirac notation" is:

(M) poy(t)=2li(t)> P() <i(t)

where |i(f)> represents an eigenstate®. The time evolution of the density
operator is obtained from the time evolution operator® U (t,f,) which has the
property [Xt,1,)]i(t,) >=li(f) >. The time evolution operator is unitary and the
dependence of the density operator on previous times is given by:

@) P, ()=Ut1)p,t)U(1L,)

where the symbol '} represents the adjoint. The time dependence of the density
operator is governed by the time dependence of the time evolution operator, which

lSn :

© in

nZ8) - v

Assuming that the Hamiltonian H(?) is Hermetian, the time dependence of the
density operator is:

¥p. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Uliiversily Press, London
(1958). Particular attention should be paid to Section 33, where we note that if P(i) is the
probability of the system being in the ith state, it can never be negative. If o’ is an eigenvalue of
Pop and |0 > is an cigenket belonging to this eigenvalue, then Pl >=plp' >. As
discussed in section 33, o’ cannot be negative.

® Note, later we will be expressing our results in the coordinate representation. As discussed by
P. R. Holland, The Quantum Theory of Motion, Cambridge University Press, Cambridge (1993),
page 104, a mixed state may be decomposed in an infinite number of ways, and so we cannot
uniquely deduce from it the set of eigenstates in the easemble and their respective weights. The
same will apply to the Wigner distribution function, which is obtained from it through a
transformation, and has the same content.

2 Reference [19], section 27.

2See, c.g., A. Messiah Quantum Mechanics, Volume II, John Wiley & Sons, NY, (1961),

particularly Chapter XVII.
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a0 a%20 _[r@.0,0)

The density matrix in the coordinate representation is given by:

A0 {_%(%-%)W(x) -V(x')} <xlp()ix'>

+I.h{ﬁ<x|p|x'>}
ot

Notice that we are ignoring any spatial variation in the effective mass, although we
will deal with this later. The last term on the right hand side of equation (11) is a
generic representation of scattering, which we treat below in a semiclassical
manner. All of the quantum features associated with the devices below will arise

from the streaming terms.
The density matrix is Hermetian, and p(x,x') =<x|p, |x'>= p(x',x)".

Additional quantities relevant for transport include the current density matrix:
12 i(xx)=—(V, - V,)o(x5)

2mi *F
and the energy density matrix:

(1) E@x)=-(9,-7,) nxx)

The diagonal components of each represent the observables.
Equation (11) when coupled to Poisson’s equation :

(14)  V-(sVW =-€*(p(x) - p,(x))

B A key study is referenced here G. T. Einevoll and L. J. Sham, Boundary conditions for
envelope functions at interfaces between dissimilar materials, Phys. Rev. B49, 10533 (1994).
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and equations describing scattering are the relevant equations for device
transport. Note while the above equations are for electrons, we will also discuss
hole transport; the relevant modifications to the equation will be indicated.

The Liouville equation in the coordinate representation is a function of six
variables plus time. The six variables represent a coordinate phase space whose
relation to the standard phase space involving position and momenta may be
assessed through application of the Weyl transformation®, which has been
modified to include spin

as) p(x,x'):l:(—z;zr—)-; fax f,[k,(‘;—")]up[m.(x-x')]

To date the description of transport in devices via the density matrix has
been confined to cases where the particles are free in two directions, which for
specificity we take as the 'y’ and 'z' directions. Further in the discussion below we
will deal with diagonal components along the free directions, and treat the density
matrix p(x,x',y = y',z=2) = p(x,x").

To determine the form of the density matrix, we can picture a situation in
the absence of dissipation in which boundary conditions permit the separation of
equation in two Schrodinger type equations, with a solution that is the product of
two wave functions. More generally we seek solutions of the type:

(16)  p(x,2,0=2 ¥ @ ,N¥(x0) .

for which equation (15) is a special case. We now consider several examples.
4. EXAMPLES OF THE EQUILIBRIUM DENSITY MATRIX

For a Fermi-Dirac distribution function:

1
“lrexp|(E-E,) K, T]

an A w(k,x)

and for parabolic bands the density matrix is:

2 H. Weyl, Z. Physik, 46, 1 (1927).
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~ [ N, 1 sin[y"z(x—x')lﬂ.]
(18) plxx )‘[r(3/2)1(x_,-)]fd“ 1+exp{u-p,)
w#Vdy

Here, Li’"x—bx‘p(x’ x’) = Ncﬁﬂ(”u)’ Flﬁ(”l) = [r(3 /2)]4[(:. 1+ exP[p —H ],

u=(E-E;)/ kT, p,=(Ez-E;)/ kT N, = I'(3/2)/(22*2’) is the density
of states and A* =h*/(2mk,T) is the square of the thermal deBroglie
wavelength.

There are two limiting cases that submit to analytical expression. In the
high temperature limit, where Boltzmann statistics apply (the Boltzmann
distribution arises when u, <-4)

(19) Axx)=N_ exp[p,—(x-*')/47]

This distribution is Gaussian. For a material such as gallium arsenide, the thermal
deBroglie wavelength at room temperature is 4.7nm and N, = 4.4x1023/m3. For
a nominal density of 1023/m3, 4, =-148. In the low temperature limit, e.g.,
T=0K »:

3 ‘I kp — !
(20) P("-"')=[f[é ]JE,(S‘_ x’.‘))]

where j,(2) is a spherical Bessel function, E, = h*k2 /2m, and k, =[32*N]". In
the limit as z => 0, j,(2)=>z/3. One of the earliest applications involving equation

(20) was in a discussion by Bardeen * where it was demonstrated that the electron
density profile a distance 'z’ from an infinite barrier was:

> See also equation A 5.1.7 in N.H. March, Solids: Defective and Perfect, appearing in The
Single-Particle Density in Physics and Chemistry, N. H. March and B. M. Deb, editors,
Academic Press, London (1987)

% 3. Bardeen, Phys. Rev. 49, 653 (1936)

14




1—3—-[-—-11' 2kez Jor z>0
@2 pz2)=N| 2 ke
0 otherwise

Figure 1 displays the density matrix corresponding to equation (20) for a density of
1023/m3.

Real Part of the Density Matrix, 7=0.0 K

Figure 1. Density matrix for free particles weighted by a Fermi distribution for
GadAs at T=0K. The density is 107 /m’.

The oscillation in the density matrix along the direction (correlation
direction) normal to the diagonal is determined by the argument of the spherical
Bessel function. The periodicity depends on density as expressed by the Fermi
wave number, and suggests the possibility of a wavenumber dependent resonance.
The oscillation disappears at room temperature where the distribution approached
as Gaussian as described by equation (19). The progressive decrease in the
numbers of oscillations as the temperature increases is displayed in figure 2, which
displays a cut of the density matrix in a plane normal to the diagonal of the density
matrix. The effects of Fermi statistics are also more pronounced as the density is
increased (e.g., k. is increased) and we expect this to manifest itself in the
oscillatory character of the density matrix.

15




Density Matrix Along Cross Diagonal

15

-0.5 T ¥ 1
0 50 100 150 200
Comelstion Distance (nm)

Figure 2. Density matrix versus correlation distance for free particles weighted by
a Fermi distribution for GaAs at T=0K, 77K and 300K.. The density is 10°° /m’

The density matrix p(x,x') shown in figure 1 is plotted for a range of
values of x and x’, (0<x <200mm,0<x'<200nm). The density ‘observable’
p(x) = p(x,x) is the value of the density matrix along the diagonal and is plotted
along the physical coordinate x. Pictorially, the density is a projection of the
diagonal component of the density matrix onto the x-axis. The density matrix
along the cross diagonal is defined as g, (x) = p(L - x,x), where L is the length
of the structure; it is shown as a projection onto the x-axis.

The above discussion provides an indication of what the density matrix
coordinate representation profiles corresponding to standard classical equilibrium
distribution functions look like. It is expected on physical grounds that a classical
problem studied with the classical distribution function in momentum space would
yield the same physical results as that obtained with coordinate representation
density matrix. For example, classically, with the Boltzmann distribution, the
probability distribution is proportional to exp—V (x)/k,T. Thus, when a potential
energy change equal to &k, 7(nl10 (0.059521 ev at room temperature) is
considered, classical theory teaches that the density will be reduced by an order of
magnitude. Solving the equation of motion of the density matrix for this case

16



provides the same result. If we go to the other extreme at T=0K, and recognize
that the Fermi energy relative to the bottom of the conduction band, E, - E,

corresponding to a density of 10*/m’ is 54.4 mev, while that corresponding to a
density of 10® /m® is 11.7 mev, then introducing a barrier of 42.7 mev will reduce
the density by an order of magnitude. This is shown in figure 3.

Fermi Statistics, Density and Potential Energy

26 0.05

gmt )
et ??.
e o
8
Potentiat Energy (ev)

— Density - 0.02
4 - Potentisi Energy
- 0.01
22 4 -
- 0.00
21 T T T
] ] 100 150 200

Figure 3. For GaAs at T=0K, Fermi statistics, with a step change in potential
energy from 0.0 ev 1o 0.0427 ev (dotted line), the non-self consistent spatial
variation in density (solid line).

Apart from the asymptotic (classical) values of density far from the
interface we point to the local oscillation in density on either side of the interface,
and make note of the position of the peak and minimum values of density. Classical
studies indicate that the peak value of density occurs at the interface; while all
quantum mechanical studies indicate that the peak is shifted away from the
interface. In a recent density matrix study”’, devoted to Boltzmann statistics, it
was analytically demonstrated that the density could be represented in equilibrium
as being equal to

7Y L. Grubin, T. R. Govindan, J. P. Keskovsky and M. A. Stroscio, Sol. St. Electron, 36, 1697
(1993)

17




(22) p(x)=N, exp[p, - (V(x)+Q(x)/3)]

In the absence of the quantum potential the density is determined solely by
the potential energy, and so the density for the potential energy distribution of
figure 3 would be equal to its left hand value right up to the potential barrier, and a
second (lower) value within the potential barrier. The finite value of the quantum
potential and its spatial variation is responsible for the minimum and maximum
values of the density occurring away from the interface. This will be discussed in
more detail below where we will also illustrate the value of the quantum potential.
The factor ‘3’ that appears in equation (22) is discussed in detail in reference 27.

The potential variation in figure 3 is imposed and abrupt. Alternatively we
can envision a structure in which the density changes abruptly at the same point
(100nm). Then a solution to the Liouville equation and Poisson’s equation yield a
potential distribution whose values asymptotically approach those of figure 3. The
potential distribution at the interface is no longer abrupt, and the local peak seen in
figure 3 is absent. Rather, there is a more gradual decrease in density across the
interface, with values that cannot be described by the classical distribution, but
require the presence of the quantum potential. The two dimensional density matrix
for the calculations of figure 3 are shown in figure 4.

Real Part of the Density Matrix

X (nm)

Figure 4. Two dimensional density matrix from which the results of figure 3 are
obtained.
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The origin of the scales in figure 4 is closest to the reader where the density
matrix has its highest values. Notice the ripples in the density matrix closest to the
highest density regions. Ripples are also present at the lower density regions but
their period and magnitude are weaker. Generally the effects of Femi statistics are
more pronounced at higher densities, where from equation (20) it is seen that the
amplitude of the oscillation increases and the period decreases, with increasing
density.

5. EQUILIBRIUM DISTRIBUTIONS AND THE QUANTUM POTENTIAL

As indicated in the earlier discussion the classical distribution function
accounts incorrectly for the charge distribution in the vicinity discontinuities in
potential energy and cannot be used if the goal is a description of the operational
physics of devices; the quantum potential must be included. Additionally, we have
also used the quantum potential as an aid in interpretation. Several cases are
treated below which illustrate the significance of the quantum potential. The
situation of the resonant tunneling diode will be treated separately where the
significance of the quantum potential is most apparent.

The first case of interest is that of a single barrier of modest height, 42.7
mev. This value of barrier height is the same value as that of the step potential of
figures (3) and (4) where the asymptotic values of density differed by an order of
magnitude. For the case illustrated in figure 5, we again consider a non self-
consistent calculation, with a reference density of 10%* /m®, T=0K, Fermi statistics
and a device length of 200nm. For the situation when a very wide 42.7 barrier,
100nm width and centrally placed, is considered it is found that the asymptotic
value of density within a central 80 nm region is equal to 10 /m®, a result
expected from the earlier discussion. There was additionally the structure in
density at the potential discontinuity that was seen in figure 3. )

When a narrow 10nm wide barrier is considered the results are
quantitatively different. There is a local peak away from the barrier, but the
minimum velue of density exceeds that associated with the wider barrier. Of
interest, however, is the structure of the quantum potential, shown in figure S.
First we note that the magnitudes of O(x) and V(x) are approximately the same
within the barrier region. The quantum potential is negative within the barrier, a
consequence of a positive value of curvature for the density within the barrier (the
density reaches a minimum at x=100nm). The quantum potential is positive in the
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regions immediately upstream and downstream of the barrier, where the curvature
of the density is negative. The signs of the quantum potential are consistent with a
density that is below its classical value immediately outside the barrier, and above
its classical value within the barrier region.

Quantum and Potential Energy
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Figure 5 Quantum potential (solid curve) and V(x) (dotted) for a single barrier
10nm wide.

The next case of interest, which again offers the quantum potential as a
vehicle for interpretation is the familiar self-consistent charge distribution
associated with a wide bandgap/narrow bandgap structure. Figures 6 through 8
illustrates results using the density matrix for a room temperature self-consistent
calculation. Here the device length is 200nm where for 0<x<100nm, Np=10"/m’,
for 100nm<x¥<200nm, Np=10>/m* . A barrier of 300 mev is imposed. While the
non self-consistent calculations of figure 3 show a reduction in charge density
within and near the edge of the barrier, there is nothing in figure 3 resembling the
extent of the charge reduction seen in figure 6. The contributions to this change
are several-fold. First the barrier of figure 6 is an order of magnitude higher than
that of figure 3. Second, the applied potential energy difference across the
structure is chosen to yield flat band conditions, and thus equal to the height of the
barrier plus the built-in potential. Third, the self-consistent potential displays
structure. What is the origin of this structure?

20




Density and Potential Energy
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Figure 6. Self-consistent calculation of the density and potential energy for a 300
mev heterostructure diode at T=300K, with Fermi statistics and flat band
conditions

In all of the calculations with a heterostructure barrier, once we pass the
peak density, there is a progressive decrease in density until a minimum value of
density is reached within the interior of the heterobarrier. The simple explanation
based upon the quantum potential indicates, from equation (6) that the net force,
under zero current conditions is zero. But the quantum mechanical self-force,
Zenerated by variations in the single particle density (from the quantum potential
as seen in figure 7) is always nonzero. Here as we move into the wide band gap
region where the density is decreasing and approaching a minimum value, the
curvature of the density is positive, resulting in a negative value for the quantum
potential. Since there is a minimum value of the density within the wide band gap
region, there is structure to the quantum potential leading to a spatialiy dependent
driving force. This force must be balanced by variations in the self consistent
potential as seen in figure 7. The self-consistent potential which is driven by
Poisson’s equation is now subject to the additional constraint imposed by the
quantum potential The details are not governed by equation (6), rather they are
governed by the Liouville equation; but the qualitative features are represented by
equation (6). When examining the classical situation we note that the potential
energy, is also constrained by a diffusive contribution. Diffusive contributions are
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also present when quantum transport is considered. The quantum potential
contribution is an additional contribution that is not dependent upon the presence
of diffusion.

Potential Energy and Quantum Potential
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Figure 7. Self-consistent calculation of the quantum potential and potential
energy for a 300 mev heterostructure diode at T=300K, with Fermi statistics and
Jlat band conditions

There are several interesting additional points concering the structure of
the charge distribution associated with the calculations of figures (6) and (7). A
good approximation to the curvature of the potential energy within the wide band
gap region and near the interface, is to assume that the region is free of mobile
carriers, whereb)ﬁ’ V(x)=(e*/£)p,(x). As a consequence, the- higher the
heterobarrier, the larger the width of the depletion zone on the wide band gap side
of the structure. Under flat band conditions where the net charge distribution is
zero there is a corresponding increase in charge on the narrow band gap side, and
this accumulated charge will increase with increasing barrier height. Thus unlike
the non-self consistent calculation of figure (3) there is significant charge
accumulation on the narrow band side of the structure. The quantum potential
which is negative on the wide band gap side and therefore yields a larger than
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classical result for the particle density, also has the effect of yielding a lower than
classical result for the density just outside of the barrier. The small region of
negative quantum potential to the left of the barrier is a consequence of the
quantum potential defined in terms of the square root in density. An expansion of
the quantum potential leads to contributions from the square of the first derivative
of density as well as the second derivative.

What is the situation with multiple barrier structures; the simplest being
the double barrier resonant tunneling structure. The characteristic feature of the
multiple barrier structures is the existence of quasi-bound states within between the
barriers. The density between the barriers depends upon the barrier height, barrier
configuration, doping, etc. As discussed earlier’®, the value of the quantum
potential within the quantum well of a double barrier structure is approximately
equal to the energy of the lowest quasi bound state, relative to the bottom of the
conduction band. We note that in terms of the definition of the quantum potential,
under steady state, zero current conditions, it is direct to show from Schrodinger’s
equation that O(x) +V (x) = E, where E is the energy of the quasi-bound state (see
also reference 20). We illustrate the quantum potential for a 200nm structure
double barrier structure. There are two barriers Snm wide, each 300 mev high,
separated by 5 nm, placed in the center of the structure. The background doping is
10*/m® and uniform, except in the interior 40nm region where it is reduced to

- 10®/m’, Figures 8 and 9 show, respectively the density and donor distribution, the

quantum potential and the self consistent potential energy.

With respect to figures 8 and 9, we note that carriers in excess of
4x10®/m’ reside within the quantum well. The quantum potential is negative
within the barriers of the structure corresponding to the curvature of the density,
and is positive within the quantum well. But the remarkable feature is that the
quantum potential is approximately constant within the quantum well. We have
found that for the 300mev barrier, the quantum potential within.-the well is
approximately 84mev (for a 200mev barrier the quantum potential within the well
is approximately 70mev). A key feature in utilizing the density matrix in the
coordinate representation. is that the quantum potential behaves like a quasi-bound
state.

Y L. Grubin, J. P. Kreskovsky, T. R. Govindan and D. K. Ferty, Semi. Sci Technolog. (1994)
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Figure 8. Self-consistent T=300K calculation with Fermi statistics showing the
density and donor distribution for a symmeftric double barrier structure.
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Figure 9. For figure 8, the quantum and potential energy distribution.
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Further evidence for use of the quantum potential within the well as a
measure of the energy of the quasi-bound state was provided by supplemental with
calculations in which the double barrier structure was placed within a 40nm wide
quantum well. 1he depth of the quantum well was varied. As the depth increased
the quantum potential between the barriers remained independent of position, but
increased slightly in value. The situation when the quantum well was 150mev
deep, resulted in a value of the quantum potential between the barriers that
increased to 94mev. The detailed results are different than that of figures 8 and 9
in that the density between the barriers has increased” .

6. DISSIPATION AND CALCULATION OF CURRENT

The calculations of the density and potential profiles for the barrier
structures in both non self consistent and self consistent studies indicate that for
distances sufficiently far from the interface the results are the same as that
expected using the dissipationless Boltzmann (or Vaslov) equation. When current
flows, classical device transport studies usually proceed via the drift and diffusion
or hydrodynamic equaticns, or through solutions to the Boltzmann transport
equation and Monte Carlo procedures. Here, ior cases where the ends of the
device are heavily doped Nt regions, boundary conditions on the numerical
procedures are invoked to assure that the numbers of particles leaving and entering
the structure are the same. An alternative approach that should yield the same
results with respect to charge and potential energy distributions at the boundaries,
is to implement procedures recognizing that dissipation at the beginning and ends
of the structure may be represented by carriers that thermalize to a local
equilibrium. The issue then is how is to deal with this situation. To date, very
approximate methods have been introduced, and a rational for this approach is
discussed below, but it is emphasized that some procedure for dissipation must be
invoked if transport in devices is to be discussed sensibly.

One of the most succinct way to express the problem of dissipation follows
that of Caldeira and Leggett®®. We consider a system A (the device) interacting

®This increase in density has at least two origins: (i) the increased density on cither side of the
barriers, and (ii) the lowering of the quasi-bound state relative to the Fermi energy of the entering
carriers.

% A.O. Caldeira and A. J. Leggett, Physica, 121A, 587 (1983).
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with a second system B (the reservoir) described by the Hamiltonian
H.o=H, . +Heprir + Hjrrocson incorporating the reservoir and the Hamiltonian
describing the interaction between the two systems. The breakup between the
device and reservoir is problem dependent. If upper case letters denote the
coordinates of the reservoir and lower case letters the coordinates of the system of
interest (e.g., the electron system) then the quantity interest is the density matrix
<xRle"™p_(0)e™™"[x'R'>. This quantity describes the behavior of the entire
system. We do not need detailed information about the reservoir; rather we need
to determine its influence on, in our case, the electron system, which implies:
p(x,x',0)= j dRdR' <xRle™**p_ (0)e ™ |x'R'>.

One method that has been invoked to deal with dissipation and boundaries
and current flow in devices, has been guided by perturbation theory on the density
matrix *'. First the equation of motion of the density matrix has been rewritten to
include a scattering contribution, as shown by equation (11). Below we
concentrate on the modificaiions of the Liouville equation through the
incorporation of scattering and deal only with the Liouville equivalent of classical
scattering.

In the Boltzmann picture, ignoring Fermi statistics, the scattering rate is:

@n [ff—";ﬁ)-]ﬂ = -(5-35 [t {7, (e, (x, k', K) - £, (' x)(x,k, k)}

where the subscript ‘w’ denotes a Wigner function and W(x,k,k') represents the
standard transition probability per unit time. Utilizing the Weyl transformation:

(22) p(r+s,r-s)= s—z;jdk J.(k,r)expi2s-k
v 4
with the following change in coordinates: x+x'=2r, x—x'=2s, the scattering

rate of density matrix (after manipulation of the variables of integration) is given
by: -

3 H. L. Grubin, T. R. Govindan and M. A. Stroscio, Semi. Sci. Technolog. (1994).
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[ap(r-i-s,r—s)] ~
— -a_' — =
(23) -

_[ _827 ]’ Jal(dk'{ 7. (k,r)Yexpi2s-k]#(r, k',k)}{l- expi2s- (k'-k)}

The structure of the scattering term within the framework of classical
Boltzmann scattering expressed within the coordinate representation is obtained
from equation (23). For example the second exponential term in equation (23) can
be expressed as an infinite series, in which case the scattering term is expressed as
an infinite series in powers of s. The lead term is given by:

[ap(r-;:,r—s)L _

(24) 2
iZs-[[-é-’zz—;] j dk £, (k,r)expi2s-Kk] j ax'(k' - k)W(r, k',k)]

Standard classical theory®> teaches that:

@) | - k)W, k', k) = KI'(r, |KI)

(8#°)
where I'(r,|k|) represents a scattering rate. Thus:

p(r+s,r-s)

(26) [ = L E—iZs-[sz? j dk f,(k,r)[expiZs-k]kl“(r,lkl)]

which, using the inverse of the Weyl transformation:

Qn 2f.(k r)=‘2’jds pr+s,r-s)exp—i2s-k

can be rearranged as

32D, K. Ferty, Semiconductors, Macmillan Publishing Company, NY, (1991).
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(28) [ap(r;:’r-')]‘ )

—iZs-[éjdkds' pAr+s',r—s)expi2(s —s')-k]kl‘(r,lkl)]

A significant simplification arises when the crystal momentum in equation (28) is
replaced by a divergence of the correlation vector:

(29) [ap(r;’rﬂ)]" )

-iv, [-527-:? faas p(r+s‘,r—s')[expi2(s-s’)-k]F(r,IkI)]

For the case when the scattering rate is independent of momentum, the dissipation
term reduces to:

p(r+s,r-s)
ot

(30) [ ] =-Ts-V, p(r+s,r-s)

and the Liouville equation in the coordinate representation is modified to read:

aPExL0)
at
31D - gmz—(% - -a—a:'?)o(x, x,0)+(V(x)-V(x"))p(x,x',f)

—ih = (x-x)-(V, =V, )o(x.x)

The additional contribution due to dissipation was discussed in reference
[27] and in a study by Dekker. Density matrix algorithms incorporating the
dissipation contributions of equation (31) have been implemented with some
results reported®?. But because of numerical difficulties at higher bias levels
modifications to the scattering were introduced whose consequences go beyond

BH. Dekker, Phys. Rev. A16, 2126 (1977)
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the approximations associated with the expansion of equation (24). It is
worthwhile dwelling on these modifications.

In modifying the scattering term in equation (31) it was first recognized
that the dissipation term could be reexpressed in terms of a velocity density matrix:

) iEa)=( |- Vete)

The diagonal elements of equation (32) yield the velocity flux density. In terms of
j(x,x') equation (30) becomes:

aPEx0)
(CX)
_hﬁ(gxz_’-%)p(x""’)+(V(x)-V(X'))p(x,x',t)+ml"(x-!')'i(‘,!')

The scattering term in the above equation was then written in the form of a
scattering potential. The procedures for this were as follow. First, the term
j(x,x') was rewritten as j(x,x')=v(x,x')p(x,x'), where v(x) = v(x,x) represents
the expectation value of the velocity. Second, j(x,x') was approximated as
j(x,x')=v(x)p(x,x'). Higher order terms are at least second order in (x-x’), and
retaining them would be inconsistent with the approximation leading to equation
(24). Third, quasi-Fermi levels were introduced through the definition:

G4  E()-Ex)=-[dx"'va"mra"),

For small values of x-x’ about x, equation (34) is approximately represented by:
E,(x)-E.(x')=-(x-x')-v(x)mI'(x). Under this approximation equation (33)
becomes:

i ap(x,x',1) _
17

 §
) w7
2m\ 5x* Ix?

x,x,0) +[(V (x) -V (")) - (Er () - E.(x"))]o(x,x',7)
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Thus we have taken the differential equation (31) whose right hand side is complex
and replaced it by one whose right hand side is real, when the density matrix is
real. Side by side calculations at low values of bias yield identical results.

While the above discussion leading to equation (35) appears to be model
dependent, the results implied by this equation have greater generality than the
means used to arrive at it.

The implementation of equation (35) permits us to calculate current in a
direct manner. How is this done? In all of the calculations with current the
assumption is that the carriers at the upstream boundary are in local equilibrium
and that the distributions are either a displaced Maxwellian or a displaced Fermi-
Dirac distribution. As discussed in reference [27] this implies that at the upstream
boundary, the zero current quantum distribution function p(x,x') is replaced by
p(x,x")exp[imv(boundary)-(x-x')/ k).  Since current is introduced as a
boundary condition to the problem as formulated by equation (35) a prescription
is necessary for finding its value. An auxiliary condition was constructed.

To compute a value of current for use in the Liouville equation, a criteria
was introduced through moments of equation (35)**. Under time independent
conditions, the momentum balance equation yields the condition:

(36) 2V,E+[VV1p(x)-[V.E.]p(x)=0

where E is the kinetic energy and is given by the equation (13). Under the
assumptions of current continuity, i.e., p(x)v(x) is independent of distance
(satisfied for the Liouville equation), and the condition that the energy of the
entering and exiting carriers are equal, equation (34) becomes:

@7 Ep()- () =~j[,d¢'mD(")/ pla),

where we have restricted the considerations to one space dimension. The current
is chosen so that E.(L)— E.(0), is equal to the change in applied energy across
the structure.

3 These moment equations are discussed in reference (27) and are incorporated into a later
section,
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We now iilustrate some of the above considerations. The simplest type of
calculation to deal with is that of a free particle. For this case and with current
introduced as a boundary condition the density matrix is complex. The real part is
symmetric and the imaginary part (from which current is obtained) is asymmetric
about the diagonal. The calculation displayed in figure (10) shows the real part
and figure (11) the imaginary part for a 200nm with a doping of 10®/m™ subject to
a bias of 10mev. For this calculation and parameters appropriate to GaAs, a
scattering rate of 10"sec, yields a mobility of 0.258m?/v-sec. The mean carrier
velocity for this calculation is approximately 1.3x10*m/sec.

Real Part of the Density Matrix

Figure 10. Real part of the density matrix for a free particle subject 1o a constant

Jorce.
Increasing the applied bias results in an increase in the carrier velocity and

an increase in the kinetic energy of the carriers. This increase affects the curvature
of the density matrix in the correlation direction and is displayed in figure 12.

31




Imaginary Part of the Density Matrix

Figure 11. Imaginary part of the density matrix corresponding to figure 10.
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Figure 12. Density matrix versus correlation distance when current is flowing.
Dashed line is for a bias of 10 mev and a mean velocity of 1.3x1™ m/sec; solid
line is for a bias 200 mev and a mean velocity of 2.6x10° m/sec.
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All semiconductor devices sustain energy dependent scattering, implying
that the scattering rate within one region of the structure will be different than at a
different region of the structure. To understand how this is implemented in the
density matrix algorithm several illustrative examples of nonuniform scattering
were performed. These examples deal with the generation of nonuniform fields
from variation in the mobility (vis scattering). We will treat an element with
material parameters nominally the same as those associated with figures 10-12.
However, here we vary the scattering rate within the central Snm of the structure.
On the basis of the definition of the quasi-Fermi energy, a decrease in the
scattering time, which results in a decrease in mobility, will yield a sharp drop in
the quasi-Fermi level. The density cannot change as rapidly, but is constrained by
the Debye length and so results in a more gradual change in the self consistent
potential energy. The quasi Fermi energy and potential energy as well as the
density are displayed in figure 13 for a bias of 10 mev, where the scattering time
within the central Snm was 10™*sec, while that at the boundaries are respectively
10"%sec. There are several points to emphasize. For the calculation of figure 13
the quasi-Fermi energy varies in an approximately linear manner in three separate
regions. In particular within the exterior cladding regions the quasi-Fermi level is
equal to the potential energy distribution where it assures the presence of local
charge neutrality. The departure of the potential energy from the quasi-Fermi
energy for this calculation is in large part a consequence of Debye length
considerations. The quasi-Fermi energy which is an integral expression follows the
same slope, to the interior region, where the precipitous change in value is
consequence of the reduction in the scattering time.

Figure 14 displays the scattering rate used in the calculations and the self-
consistent density distribution. Of extreme significance here is the formation of a
local dipole layer within the interior of the structure.
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Figure 13. Self-consistent calculations of the potential energy and quasi-Fermi
energy for a uniform doped structure with a variable scattering rate within the

center of the structure.
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Figure 14. Self-consistent calculation of the density for a uniform doped structure
with the displayed variable scattering rate..
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7. SINGLE BARRIER DIODE: CONSTANT SCATTERING RATE

The quasi-Fermi scattering model has been applied to a variety of
structures including single and multiple barrier diodes as well as electron-hole
transport. We illustrate single barrier calculations in figures 15 through 18 for a
structure with a constant scattering rate. Preliminary results for this type of
structure were presented earfier’. The calculations are for a 200nm structure
containing a single 300 mev high, 20nm wide barrier embedded within a 30nm N-
region, surrounded by uniformly doped 10*/m* material. The scattering time < is
constant and equal to 10" sec. The calculations are self-consistent and assume
Fermi-Dirac boundary conditions. The first three figures, 15 through 17 show
potential energy, density, and quasi-Fermi energy distributions, respectively, for
different bias levels.

From figure 15 as the collector boundary is made more negative with
respect to the emitter, a local ‘notch' potential well forms on the emitter side of the
barrier. The potential energy decreases linearly across the barrier, signifying
negligible charge within the barrier, followed by a broad region where the potential
energy decreases to its value at the collector boundary.

The charge distribution, figure 16, displays a buildup of charge on the
emitter side of the barrier, and a compensatory region of charge depletion on the
collector side of the barrier. At a bias of 400 mev significant charge accumulation
has formed on the emitter side of the barrier, followed by a broad region of charge
depletion on the collector side. Note that as the bias increases there is a
progressive increase in charge within the interior of the barrier. Both results are
consistent with the low temperature experimental findings of Eaves et al*.

Figure 17 displays the quasi-Fermi energy (relative to the equilibrium Fermi
energy). Becuuse of the low values of current E, is approximately zero from the
emitter to within the first half of the barrier’’ and then drops to a value
approximately equal to the bias through the remaining part of the structure.

3D. K. Ferty and H. L. Grubin, Proceedings of the Interational Workshop on Computational
Electronics, Univ. of Leeds 247, (1993)

%], Eaves. F. W. Sheard, and G. A. Toombs, Physics of Quantum Electron Devices (ed. F.
Capasso), 107 (1990) Springer -Verlag , Berlin.

In the emitter region the variation in £, matches that of V(x), and insures that p x is

coastant in the vicinity of the emitter boundary.
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Potential Energy versus Distance

04

0.3 - L
N
A

0.2 “1 \\ =3

u

g)ﬂ - -

‘3 — 00ev \\\

%24 ooee S
03 4 ervavanenr o““ .'.'. B
04 4 o
L8 +—rrrrrrr ey ey ey

0 SO 100 150 200
Distance (nm)

Figure 15. Self consistent room temperature potential energy calculations
assuming Fermi-Dirac boundary conditions for a single barrier structure under
varying bias conditions.

I versus V for the 20nm barrier is shown in figure 18. Note that for a broad
range of voltage the current depends exponentially on voltage; but there is distinct
sublinearity to the curve. In words, the sublinearity indicates that at a given value
of voltage the current is lower than expected on the basis of a pure exponential
relation. In seeking an origin of this sublinearity we note from the accompanying
voltage distributions that not all of the voltage falls across the tunnel barrier;
indeed a substantial contribution falls across the region immediately adjacent to the
collector side of the barrier.

36




1e¢24

10423
.50022 E

gﬂzi -1

10420 -

fee19

Distance {(nm)

Figure 16. Self consistent density calculations for figure 15.
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Figure 17 Quasi-Fermi energy distribution for the calculations of figure 15.
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Figure 18. Current-voltage relation for the calculations of figures 15 through 17.
8. RESONANT TUNNEL DIODE; VARIABLE SCATTERING RATE.

To illustrate the calculation for resonant tunneling structures we treat a
200nm structure, with two 5 nm - 300 mev barriers separated by a 5nm well. The
structure has a nominal doping of 10* /m* except for a central 50nm wide region
where the doping is reduced to 102/m®. The effective mass is constant and equal
to that of GaAs (0.067m, ); Fermi statistics are imposed; the ambient is 77K; and
current is imposed through the density matrix equivalent of a displaced distribution
at the boundaries. In these computations only one set of scattering rates was used,
although scattering was increased in the vicinity of the double barriers.

The signature of the RTD is it’s current-voltage relation with the region of
negative differential conductivity; for the structure considered this is displayed in
figure 19. The current is numerically negligible until a bias of approximately 50
mev, with the peak current occurring at 260 mev, followed by a sharp but modest
drop in current at 270 mev. The interpretation of these results is assisted by
figures (20) and (21) and the Bohm quantum potential. As indicated earlier, we
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have found, through an extensive number of numerical simulations, that the value
of V(x)+Q(x), between the barriers of an RTD is a measure of the position of the
quasi-bound state.

Current vs Applied Potential Energy (77K)
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Figure 19. Current versus (magnitude) voltage for the resonant tunneling
structure.

Consider figure 20 which displays the equilibrium self-consistent potential
for the RTD. Also shown is the value of the equilibrium Fermi energy
(approximately 54 mev) and the values, at five different values of applied potential
energy, of V(x)+Q(x) within the quantum well. At 100 mev the quasi-bound state
is approximately equal to the equilibrium Fermi energy and significant current
begins to flow. The current continues to increase until the bias equals 260 meyv,
where there is a sudden drop in current.
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Squilibrium Potential Energy, Sias Dependent V(X}+Q(x)
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Figure 20. Equiliorium potential energy and the bias dependence of V(x)+Q(x)
within the quantum well. Legend denotes collector bias.
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Figure 21. Blow up of figure 20.

To see what is happening we blow up the region on either side of the
emitter barrier, where we display values of V(x)+(Q(x) before the emitter barrier
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and within the quantum well (figure 21). Within the quantum well we see the
quasi bound state decreasing as the bias on the collector is increasing. In the
region prior to the emitter barrier where a ‘notch’ potential forms signifying charge
accumulation, we see the formation with increased bias of a region where
V(x)+Q(x) is relatively flat. Of significance here is that for values of bias
associated with the initial current increase the value of V(x)+Q(x) within the
quantum well is greater then its value in the emitter region. The current reaches a
maximum at the cross-over where V(x)+Q(x) in the emitter region and in the
quantum well are approximately equal. (Implementation of an earlier algorithm,
generally resulted in solutions oscillating between high and low values of current
when this condition was reached). While it is tempting to associate V(x)+Q(x)
within the emitter region with a quasi-bound state, this may be premature.

The distribution of potential energy V(%) as a function of bias is displayed in
figure 22, where the notch potential is deepened with increasing bias, signifying
increased charge accumulation. This is accompanied by a smaller share of the
potential drop across the emitter barrier, relative to the collector barrier region.
Comparing the slopes of the voltage drop across the emitter and collector barriers,
we see larger fractions of potential energy fall across the collector barrier.

Bias Dependent V(x)
04
— — 0.100eV
034 ——— 0.1400v
—— 02000V ~
—— 02408V ﬁ N\
o.z - J— °mv \

T ) L 1 1) L)

' ¥ L4
50 60 70 &0 90 100 110 120 130 140 150
Distance (nm)

Figure 22. Distribution of potential energy as a function of applied bias.
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Explicit in this calculation is dissipation which is incorporated through the
quasi-Fermi level. Within the vicinity of the boundaries the quasi-Fermi level is
parallel to the conduction band edge. Indeed, for this calculation the quasi-Fermi
level departs from the conduction band edge only within the vicinity of the barriers.
The quasi-Fermi level is displayed in figure 23 at a bias of 260 mev, where we see
that the quasi-Fermi level is relatively flat until the middle of the first barrier at
which point there is a small drop in value followed by a flat region within the
quantum well. There is a strong drop of the quasi Fermi level within the second
barrier.

The charge distribution accompanying these variations in bias shows
accumulation on the emitter side of the barrier along with charge accumulation
within the quantum well. The increase in charge within the quantum well and
adjacent to the emitter region is accompanying by charge depletion downstream of
the second barrier, with the result that the net charge distribution throughout the
structure is zero.

Variations in the quasi Fermi level were accompanied by variations in
density and current which were all obtained in a self-consistent manner.
Supplemental computations were performed in which the quasi-Fermi level was
varied by altering the scattering rates. The calculations were applied to the post
threshold case with values for the scattering rate chosen so to provide a large drop
in current. Indeed a current drop by greater than a factor of three was obtained
followed by a shallow current increase with increasing bias. The significant
difference leading to these changes was the manner in which the quasi-Fermi level
changed. Rather than the shallow change depicted in figure 19, there was a larger
change in the quasi-Fermi level across the first barrier, a result similar to that
obtained for single barriers.




Potential and Quasi Fermi Energies at 260meV
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Figure 23 Potential and quasi-Fermi energy at a bias of 260 mev.

The calculations obtained for figures 19 through 23 were obtained from a
new solution algorithm that was constructed for the quantum Liouville equation
that permits a more convenient specification of boundary conditions, in particular
when the device is under bias. The algorithm is based on a reformulation of the
governing equations in which a higher order differential equation in the local
direction [(x+x)/2] is constructed from the quantum Liouville equation. The
reformulated equation behaves like an elfiptical equation in the local direction
rather than the hyperbolic behavior of the quantum Liouville equation. With
appropriate boundary conditions, solutions to the two forms of the quantum
Liouville equations are equivalent. However the reformulated equation allows
construction of a more robust algorithm that provides desired solution behavior at
the contacts by boundary condition specification at both contacts.
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9 THE QUANTUM HYDRODYNAMIC EQUATIONS

A detailed description of the density matrix under equilibrium and
nonequilibrium conditions was given in the previous sections. Much of the work
reported there was a consequence of considerable effort at understanding the
nature of the quantum Liouville equation in the coordinate representation. As such
many of these results were obtained at the end of the program; with some results
particularly the RTD results obtained after the program was completed.

Simultaneous with this effort was attempts at determining an understanding
of the quantum hydrodynamic equations, as it was felt that these equations being
approximate in nature would find greater acceptance in the engineering community
as a vehicle for the design of multidimensional devices. A discussion of these
equations is not given here as an extensive paper along with several smaller
supplement al studies have either been published or will be published. These
papers form part of this final report and constitute part of this section.
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sre examined for modelling and interpreting the operation of semiconductor
devices.

correction to E(x). The term E/mrepresents an equilibrium
energy term to which the system relaxes [3). To place
equations (1) in a familiar form requires additional
manipulation, and one common form is (4]

1. Introduction

Quantum effects occur in device structures when the
fateral confinement dimensions (the distance over which
significant chauges in density occur) are comparable to
the thermal de Broglic wavelength. It is possible to
mode! quantum structures with a quantum deasity from
the Schrddinger equation, the Liouville oquation or the

Wigner equation. However, modelling of these structures 23V(x) . op
has also cvolved from the use of & sct of classical M ek Qa)

hydrodynamic equations, which include corrections in
jgg,, (£) demr+ ptery fﬂ
L] m, x

LU ( 1) Aorl) , AoksT) , p2QXV3)
& o

éx o

the form of the quantum potentisl. The most familiar
forms used involve the Bohm poteatial (1)

*Vp PPe) H(Qu/3) + V(x)) <
(55 (e e
Ak, T\(3*(n p)\ dp, 2(5 E) _
and the Wigner potential [2] ( 6m F% )ax‘ + = =0 b)
d'lnp) .
Quwm —{— - where 1 is the thermal de Broglic wavelength and £, is

an equilibrium cnergy. In (he above equations, the
quantum poleatial has been reduced by a factor of theoe,

For example, using the density matrix ia the coordinate
represeatation, in which dissipation is modelled by a
Fokker-Planck coatribution, the hydrodynamic equa-
tions are of the form (3]

% , (1\ dop,
— e | ——-
Y (..) P (a)

3_0!_1+”E(x)+ﬂ"¢‘)+gp_4_

& 4 o
(L )ar"'m (m)WOr) 2% o8
d \2m) ox m) & t

=0 (1)

—=0 (lc)

where p, is the mean momentum, E(x) is the mean kinetic
cucrgy and P cepresents the encsgy flux [3] (which in
the classical case represents the transport of caergy). The
Wigner potential is usually interpreted as a quaatum

although this reduction is a subject of some dobate. We
have taken this view, with otheis (5], that this is an
adjustable parameter, calculations beloWw iflustrate the
effect of varying this parameter.

It is possible (0 determine the validity of the above
equations for quantum devices by performing comparable
cajculations with one of the full quantum transport
equations. In addition, it is useful to ask whether the
quantum poteatial aids in the interpretation of results.
Thefull quantum (reatment used here involves the density
matsix (in the coordinate representation) [6] The latter
calculations include the appropriate Fermi or Boltzmaan
statistics, although the moment equations discussed
below involve only Bolizmann statistics. When a com-
parison between the quantum hydrodynamic equations
and the density matrix is made, Boltzmann statistics is
assumed.
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2. Fesonam lwuanel diode under equiiibrium

The first example is that of a GaAs/AlGaAs double-
barrier (S nm barriers and 5 am well) resonant tuanciling
structure, with a nominal doping of 10'* cm™?. This
structure has a quasi-bouad state of 85meV. It is
snticipsted that within the quantum well Q, would
determine the quasi-bound state. Figure 1 displays a
blow-up of the region surrounding the doublo-bacricr
structure. In fgure 1(a), the sell-consistent poteatial
energy, V (x), the Bohm and Wigner quantum potentials
are compared. It is scen that the Bohm potentisl is
constant within the well at the quasi-bound state value.
There is a small sccumulation of carriers whose value
peaks in the ceatre of the well. Figure 1(5) replaces ¥ (x)
with the mean kinetic encrgy per particle for this
comparison. It is scen that the best repecsontation of this
encegy is with the Wigner potential. The closeness of the
sesults suggests that the Wigner potential is important
for the structure of the energy within the well

'Y
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Figure 1. (#) Blow-up of equilibrium polential
mm).mmuumm)mm
potentiatl (dotted curve) within and surrounding a resonant
Mm-.mmdm onergy per

particle (broken curve), Bohm potentiel (full curve) and
Wigner potential {(dotted ourve) within and surrounding a
resonant tunnetiing structure.

3. uoorer calculstion

The next example is 3 comparative calculatioa aloag &
line perpendicular to the conduction channel of a MoDrET.
For this device (figure 2) the GaAs region (left-hand side
of the structure) is 100 nm long (doped to 10°¢cm™?)
and is adjacent to a wide-bandgap (300 meV) regioa
doped 10 10'® cm ™2, The first 10 am of the wide-bandgap
region is uadoped. The hydrodynamic equations were
solved using the Bohm potential with three dilferent
values for the multiplicative coastants: 3 (as in equations
(2)), 1 and 9. Figure 2(a) shows the deasity obtained from
the density matrix, while figure 2(0) shows deasity
oblained from the hydrodynamic equations. Several
points are worth emphasizing The structure of the
density is the same for the three quaatum hydrodynamic
equations and for the density matrix calculation. The
value of the deasity (or the hydrodynamic equatioas is
closest to that of the deasity matrix when the conctant
is between 1 and 3. It should be meationed that while
the value of the multiplicative constant was varied by
almost an order of magnitude in these calculations, the
quantum poteatial also underwent changes, and was
different for each of the three hydrodynamic equation
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Figure 2. (5) Density matrix caloutation of the density
within a M00FET configuration. (b)) Quantum fydrodynemic
caiculation of the density for three different vaiues of the
mulliplicative factor: q/9 (broken curve), /3 (full curve)
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calculations, with the aet result that all three results are
satisfactory in some sense of the word.

4. Quanium well rev caiculations

The final example of the use of the quantum potential
in moddling devices is that of s quantum well sev
calculation. For this calculation, a ono-dimensional slice
through the source regioa showing the plansr doped
region in the wide-bandgap material is shown in figure
3(a) In the two-dimensional structure, the gate sits 20 am
into the structure, which is otherwise nomiaslly doped.
There is a large concentration of carriess adjaceat to the
wide-bandgap region, duc to the placement of the
delta-doped region. The potential enesgy displays a linear
variation with charge depletion in the wide-bandgap
region (figure 3(b)). All of the density within the quantum

well is a coasequence of the planar-doped region sad the
barrier is depleted of carriors. This latter caloulation shows
the significant advaatages found in using the quantum
poteatial to model semiconductor FET stryctures.

§. Conclusions

In the above discussion, we have illustrated the wee of
the quantum potcatial as both an adjunct for jatecpre-
tation and ax a tool for examining transport with the
hydrodynamic equations. While cakulations using the
quantum potential have been performed (7], and
illustrate the significance of its coatribution to the density
distribution within small devices, significant advances
will occur when one can modd two-dimensional flow in
MODFET structures. Preliminary studies indicate that
realistic simulations can be performed (8]
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Liouville and Poisson equations, the use of the Bohm quantum potential to represent the oquilibrium
dmnbuuonofdenswnndmgqummfummwnmm(n)mmedﬂebmmof

the nonequilibrium quantum hydrodynamic (QHD) equations with

the truncation of

the quantum distribution function; and (jii) compares select results of the QHD equations incorporating
the Bohm poteatial to the exact Liouville equation solutions. The broad conclusion of the study is that
for structures of current interest such as HEMTs, oaly quantum mechanical solutions, or the incorpor-
ation of the quantum potential as a modification of the classical equations will permit representative
solutions of such critical features as the sheet charge density.

INTRODUCTION

Advances in crystal growth and processing tech-
niques have assured the construction of nanoscale
devices with sharp interfaces. Concomitantly, new
device concepts have emerged, including resonant
tunneling structures, quantum wires, quantum dots;
and varients of classical structures with quantum
features, e.g. HEMTs and HBTs. While all devices
are governed by quantum mechanics, many devices
including HEMTs and HBTs do not require quantum
transport for a description of their basic operation.
Nevertheless, quantum mechanics is required to
provide key electrical features. For example, HBTs
sustain Jow levels of current at low bias levels;
these currents are dominantly tunneling currents.
Thermionic contributions to curreat occur at high
bias levels. Recently, device formulations utilizing the
drift and diffusion equations and the moments of the
Boltzmann transport equation were generalized to
include a description of tunneling currents (Ancona
and Iafrate{l]}, Grubin and Kreskovsky{2]). These
newer studies indicated that quantum contributions
of the type first considered by Wigner{3], could
be incorporated as modifications to the more tra-
ditional apgroaches to studying transport of carriers
through devices. Such an approach was taken by
Zhou and Ferry{4,5] in a study of quantum contri-
butions to transport in MESFETs. How well do
the quantum modifications of classical transport
represent actual transport? This question is addressed
for a limited number of cases through comparison
of (i) quantum “corrected” solutions with (ii) exact

1Supported by AFOSR, ARO and ONR.

coordinate representation solutions to the quantum
Liouville equation for the density operator p,,,
whose time dependence is govemed by the Hamil-
tonian H:

hdpey |0t = [H, po,). M
The relevant quantity in the Liouville simulations is
the density matrix p(x, X', £} = (x|p,, {x") whose role
is similar to that of the distribution function in
classical physics.

The procedure for assessing the quantum contri-
butions has two parts: First, approximate and exact
equilibrium solutions to the dissipationless quantum
Liouville equation for a variety of structures, includ-
ing a barrier, are compared. The approximate sol-
utions which arise from a new procedure, with results
similar to that of Wigner{3], arc also expressed in
terms of the Bohm quantum potential{6}:

Qs = —(h*[2m)[d(p)"?/dx*)/(p)'?, ¢3)
whose physical significance is addressed. Second, the
quantum Liouville equation with Fokker-Planck
dissipation mechanisms is introducdd[7]; from which
a new derivation of the quantum hydrodynamic
(QHD) equations are obtained. Nonequilibrium zero
current QHD and exact Liouville solutions are com-
pared for a simple heterostructure diode configur-
ation relevant to HEMT structures. We confirm that
the simplest version of the QHD equations, the drift
and diffusion current density equation, and its zero
current solution are modified as follows{1,2}:

J(x, 1) = puk, TOI(V + aQs)/k\ T + In(p)}fox  (3)
p = poexp — [V (x) + aQp (x)l/k\ T, «@
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where a is a constant, determined analytically below
and in (1] to be a = 1/3. More often a is chosen to
provide the best fit to exact results, and is thus
determined from numerical simulations as discussed
below. Any value of a other than a = 1 is of concern,
in that arguments associated with the single particle
Schrodinger equation, suggest a value of unity, see
e.g. [2]. Nevertheless, we show for conditions appro-
priate to Boltzmann statistics, that the exact and
approximate solutions for a # 1 are remarkably simi-
lar; and that solutions without quantum contri-
butions will not represent the local charge
distribution in barrier dominated structures. Finally,
the results are related to earlier work on the Wigner
function for mixed and pure states{8]. These latter
issues are addressed in the appendices, which also
include a discussion of the numerical algorithm.

THE EXACT EQUATION OF MOTION FOR THE
DENSITY MATRIX

The Liouville equation in the coordinate represen-
tation without dissipation is:

dp ot + (h/2mi)(V: - V})p
=RV X, ) - VX, 0)lp =0. ()

Solutions yield the time dependent density matrix
#(X, X', t), whose diagonal components provide the
density, and whose values are constrained by the
integral: {d*Xp(X,X)=N,, where N, is the total
number of electrons. Assuming free particle con-
ditions along the Y and Z directions, the density
matrix, with 12 = h*/2mk, T, separates and we seck
p(X, X', 1)

P(x’x'a‘)=P(X:X'J)
xexp~[{((Y = YV +(Z -ZV}42%} (§)

Here 2, is the thermal de Broglic wavelength,
Equation (5) separates and the X, X’ portion is
rewritten in terms of center of mass and nonlocal
coordinates:
center of mass coordinates: (X + X*)/2 = x;
nonlocal coordinates: (X —~ X")2={. (7)

Note: the transformation is consistent with [3], but is
not area preserving (the Jacobian is not unity). In
terms of these variables and for free particle con-
ditions along the other directions, the governing
equation for p(x + {,x —~{, 1) is:

9p [0t + (h[2mi)d*p |0x3L
-/)V(x+{0)-V(x={,0lp=0. (8)

All results arise from p(x + {, x — {); nevertheless,
we require expressions for current and energy, which
are obtained from the diagonal components of the
following matrices: '

density: p(x + {, x = {); (%)

H. L. GausiN et al.

current density: j(x + {, x —{) = [h/(2mi)dp /3(;
(9b)

encrgy density: E(x +{, x — {) = —(h*/8m)d’p/3(*.
(%)

The above definitions are discussed in [7}, and in
Appendix B.

THE APPROXIMATE DENSITY MATRIX EQUATION AND
EQUILIBRIUM SOLUTION

Numerical solutions are obtained from eqn (8). For
interpretive purposes and for developing the QHD
equations, we approximate eqn (8) in two steps. Firse,
we assume an infinitely differentiable potential, in
which case eqn (8) becomes:

dp[ot + (h[2mi)d*p [0xd] — (2/ik)
x Y (/2 + DI+ 038+ Dy g+ Dp = 0, (10)

where the sum is over 0 €/ < . Second, we retain
only the first two terms in the expansion:

9p [0t + (h[2mi)d’p 0x0{
— (l/iR)(2LaV {ox + ({*13)a*V jox’lp = 0. (11)

Note: retaining only the term linear in {, yields an
equation cquivalent to the time dependent collision-
less Boltzmann equation; demonstrating that quan-
tum effects arise from higher order terms in the
expansion of [V (x + {, t) — V(x —{, ¢)]. For the den-
sity matrix equivalent to the collisionless Boltzmann
equation, and for dp /ot = 0:

p(x +{,x —{,1)=poexp — [[}2% + pV(x)] (12)

is an exact solution for free particles (no collisions) in
a potential energy distribution V(x). More generally:
pX, X', 1) = poexp — (/42 + BV (x)Jexp — [{(Y —
Y'Y +(Z—Z7}/42. For a reference density
Pos the Fermi energy Eg=(1{flinlp,/N], where
N = 2(m[2xph?)*?. Equation (12) is equivalent to
exp{—B{(p*/2m) + ¥(x)}] (see Appendix B).

To obtain the quantum modifications, we recog-
nize that the classical carrier density and mean
kinetic energy density under zero current conditions
are respectively: p(x, x) = pyexp —[f¥(x)], and
E(x, x) = e(x, x)p(x, x) = p(x, x)k, T/2, where
€(x, x) is the mean kinetic energy per particle, and that
eqn (12) can be recast as:

p(x+{, x —{) = p(x, x)exp—[2 *e(x, x)/3’). (13)

Equations (13) and (12) have the same content for
classical transport. For quantum transport the mean
kinetic energy per particle includes modifications to
the classical value[3). The numerical studies below
suggest that the effect of the quantum correction is to
cither pinch or stretch the density matrix along the
nonlocal direction. Equation (13) represents both
contributions. To obtain these corrections eqn (13) is
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substituted into eqn (11) with the resulting equation
ordered in powers of {:

({401 (x, x)p(x, x))/ox + AV [ax)p(x, x)}
~ (8L%/AN{(Pe(x, x)e(x, x)/dx
—~ (A24)3*V [ax*)p(x, x)} = 0. (14)
Thus separately:
20[e(x, x)p(x, x)}/ox + (0¥ [ox)p(x,x) =0 (15)
e(x, x)de(x, x)/ox — (R3[24B)3°V /ox*=0. (16)
Equation (16) submits to an immediate solution:
€(x, x) = ¢[1 + (A /¢)(1/128)3*V [ox7]'?, where
€=k, T/2 is independent of position and the inte-
gration constant is chosen to retrieve the classical
result under uniform field and density conditions. If

the quantum corrections are small compared to ¢,
the quantum corrected energy is:

E(x, x) = ¢(x, x)p(x, x)
= [k, T/2 + (4}/12)3*V [oxNp(x, x), (17)
which corresponds to Wigner’s result (3], eqn (30)).
For the quantum corrected density, we solve a re-
arranged eqn (15), using eqn (17) for energy:
[(A%/6)(8°V [ox>) + oV [ox]
AA%6)(@*V/[ax) + 1/f]+dnplox =0. (18)

For small quantum modifications the above inte-
grates (approximately) to:

p(x, x) = polexp — B(V + Qu/3)L (19)
where:

Ow = (h*/4m)B[*V [ox* — p(3V [ox)[2]  (20)
defines a Wigner quantum potential. For small
modifications eqn (19) becomes: p(x,x)=
polexp — BV (x)}{1 — fQw/3}, which corresponds to
Wigner’s equation (28).

Equations (19) and (4) have the same form
although the modification is in terms of potential
energy rather than density. To the extent that the
above approximations are of order h?, we replace the
potential energy in eqn (20) with its classical density
equivalent: BV (x)= —Infp(x, x)/p,). In this case
Qs = Qw, and eqn (4) is retrieved with g = {. In terms
of density, the energy [eqn (17)] is reexpressed as:

E(x, x) = [ky T/2 — (h*/24m)3*(In p)/0*x)p(x, x).
@n

The quantum corrected form of the density matrix
using eqns (13), (17) and (19) is:

p(x +{, x ~{) = pyexp — [B{V(x) + Qu/3}
+CIAY{1 + AY/6)pd*V [3x?}). (22)

For small corrections, p(x + {, x —{) =~ pyexp — [({/
AP + BV (x)){1 — POw /3 — ({*/6)B*V [0x?}, which as
discussed in Appendix B, yields upon application of

the Weyl integral, Wigner's form of the quantum
corrections (eqn (25) of {3]).

Equation (19) highlights the quantum modifi-
cations. For example, in the case of a symmetric
barrier, classical theory teaches that density is deter-
mined solely by the value of the potential. Quantum
theory is predicated upon continuity of the wave
functions, permits tunneling, and teaches that the
density within a barrier can be higher than that
determined classically. At the peak of the barrier,
V,=0,V,<0,0y, <0 and the density exceeds its
classical value. Within a symmetric quantum well,
at the center of symmetry, V,=0,¥,,>0,0y>0
and tne density can be less than that obtained classi-
cally.

COMPARISON OF EXACT AND APPROXIMATE
EQUILIBRIUM DISTRIBUTION FUNCTIONS

The extent to which quantum modification rep-
resent quantum transport in structures under equi-
librium was addressed in two steps. First, solutions
were obtained for the coupled Liouville equation (8)
and Poisson’s equation:

ole(x)oV [ox)/ox = —eHp(x, x) — pp(x)).  (23)

(In the discussion below, the permittivity and effective
mass are constant, with values are those appropriate
to GaAs.) Second, the exact density computed from
the Liouville equation was inserted into egn (2),
Qs was computed, and an approximate density
and energy per particle was obtained. The results
of part one and part two were compared. In all
calculations global charge neutrality oocured:
fdxlp(x, x) — pp(x)] = 0. Two examples were con-
sidered, each at 300 K, where for GaAs the thermal
de Broglic wavelength is 4 =45A. In both calcu-
lations the nominal density was 10"%/cm’. (At these
densities gallium arsenide calculations necessitate the
use of Fermi statistics. These have been performed by
the authors{10}, and demonstrate two density depen-
dent contributions to energy, one classical and a
second quantum mechanical in origin. At lower den-
sities where Fermi statistics are not an issue calcu-
lations demonstrate that the effects of the quantum
potential @y are qualitatively similar to the results
discussed below, but the magnitudes of the density
derivatives are smaller (longer Debye length) and the
quantum corrections are reduced.) |

Classical N*N~N* structures

The structure is 1600 A long with a nominal doping
of 10*/cm® and a centrally placed 500 A, 10'*/cm’
region. The variation in background doping was
over one grid point or 4 A. Solutions yield p(X, X),
which in equilibrium is real and symmetric,

(X, X)=p(X’, X), as displayed in Fig. 1(a). The
inset to Fig. 1(a) is the free particle density matrix.
Free particle Boltzmann boundary conditions are as-
sumed; i.e. p(X, X’) = poexp — ({/2)’. All numerical
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The quantum potential is shown in Fig. 1(d). At the
boundary regions Q= 0; at or mear the interface
regions Qg is alternatively positive and negative, and
n flects changes in the curvature of the potential. The
magnitude of Qs is approx. 3-5meV and is pearly
30% of the mean eaergy oftbeenwringunicrs.as
given by ke T[2. The signs of Q, are consistent with
continuity of the wavefunction and its derivative
through the potential encfgy barrier region, and
the density from approaching its
cassical value outside (within) the barrier, which
insicad assumes 3 smaller (larger) value. This de-
creased value of density outside the barricr has been
1 m “repulsion“[l 1}.
The mean cnergy per particle is displayed in Fig. 1e)
where the solid line represents {he exact solution to
the Liouville equation {obtained from the ratio of the
diagonal components of eqns (93) and (9¢)). The
The results closest

p (XX

Fig. 1(a). Caption on facing page.
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Fig. . () Density matrix for the N*N~N* structure with {ree particle boundary conditions, as obtained
from the Liouville equation (8). The physical dimension of the structure is 1600 A, requiring that the

" density matrix, which is calculated over a square matrix, is of side 1600 A/,/

2. The center of mass and

nonlocal coordinates are indicated. The insct is the free particle density matrix. (b) (——) Diagonal

t of the density matrix from (a). (---) Density as obtained from eqn (4) with @ = 0; (—--) with

a = 1/3. (c) Seif consistent potential energy for the calculation of (a). (d) Quantum potential for the

calculation of (8). (¢) (—) Energy per particle as obtained from the diagonal component of eqn (9¢)

for the calculation of (a). (——) Enecigy per particle as :buin:;l from eqn (24) with g = 1/3; (- --) with
a = 1/4; (---) with a = /5.

to the exact solution cccur for a between 1/3 and 1/4.
The significance of these results is that the quantum
contributions are solely responsible for the spatial
variation in the energy per particle, and demonstrates
the presence of quantum contributions with classical
structures.

Single barrier diodes

For this calculation the background density is flat
and equal to 10"%/cm®; the structure is 2000 A long
and the grid spacing is uniform and equal to 3.33 A.
Figure 2 displays the regults for a 500 meV barrier
represented analytically by:

Viacrae () = 500 meVI{1 + tanh{(x ~ a,)/b]}/2
+ {1 —tanhf(x — &,)/b]}/2~ 1], (25)

where a,= —150A, a,=150A, b =50A/3.80.
Figure 2(a) displays eqn (25), where V..., increases

continuously (from near zero) to 500 meV, over
approx. 75A.

Figure 2(b) displays p(X, X’). As in the Fig. 1
calculation, free particle boundary conditions are
assumed. The dramatic “hole” is a consequence of
the barrier. Figure 2(c) is a line plot of density. The
solid line is obtained from the Liouviliz and Poisson
equations; the dashed lines are from eqn (4) with
a =0 (long dashed line) and 1/3 (short dashed line).
Common to each calculation is a significant reduction
of charge within the barrier, as well as charge ac-
cumulation on either side of the barrier. At the edges
of the barrier the solutions closest to the Liouville
equation are those for a=1/3. The reduction
of charge within the barrier is a consequence of
the barrier, while the presence of charge adjacent
to but outside of the barrier is a consequence of
self-consistency in the calculation. Its magnitude is
dependent on the condition of global charge neu-
trality. Figure 2(d) displays the potential energy
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Fig. 2. (a) Sketch of the hyperbolic tangent barrier centrally placed within the 2000 A structure. (b)
Density matrix for the single barrier structure with free particle boundary conditions, as obtained from
the Liouville equation (8). The physical dimension of the structure is 2000 A, requiring that the density
matrix, which is calculated over a square matrix, is of side 2000 A/, /2. The center of mass and nonlocal

coordinates are indicated. (c) (—) Diagonal

t of the density matrix from (a). (---) Density

as obtained from eqn (4) with a = 1/3; (——) with a =0. (d) Self consistent potential encrgy for the
calculation of (a). (¢) Quantum potential for the calculation of (a). Inset includes (d). (f) (——) Energy
per particie as obtained from eqn (9¢). (---) Energy per particie as obtained from eqn (24) with a = 1/3.

THE APPROXIMATE NONEQUILIBRIUM DENSITY
MATRIX; THE CONSTRUCTION OF THE QHD
EQUATIONS

The nonequilibrium situation, is considered within
the framework of the QHD equations, which incor-
porate quantum contributions as modifications. The
QHD equations incude dissipation within the context

of Fokker-Planck (FP) scattering. The motivation
for FP dissipation is simplicity. When scattering is
treated as in the Boltzmann transport equation,
utilization of the Weyl transformation resuits in an
equivalent scattering integral, that is approximately
dependent upon powers of {, and derivatives with
respect to {[10]. Under special circumstances these
take the form of FP dissipation. The equation of
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poﬁon of the density matrix with FP dissipation{12]
(- M
dplot + (O (\ i i
—~ (i) VX. 0=V X, 0
+ (120X =X T= V)P
+IEMHX =X & -XxNe =0,
where t represents 2 scattering time, and E represents

a diffusive term in the momentum representation (see

Appendix B). Using procedures leading to eqn (1)
and assuming that the £ is directionally dependent,

i.c. along the Yand Z,E = mk, T/t (sec 8ls0 . the

(26)

-
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equation from which the QHD equations arc ob-

wined is:
dplot + (h/2mi)d*p [0x% — (/i) [40V [ox + «13)
x 3’V [ox*lp + (1t X0 /K +(@smYp =0 Q7
Wenotcthatagen«alsctofmoquuaﬁonsis
obtained by taking successive nonlocal direction de-
rivatives of the Liouville equation. Truncating the
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Fig. 3. (2) 200 meV barrier within the 6000 A structure studied with the simulation. (b) Deluity.muix

for the single barrier structure with free particle

conditions, as obtained from the Liouville

boundary
equation (8) for a bias of —0.2meV. The physical dimension of the structure is 6000 A, requiring that
the density matrix, which is calculated over a square matrix, is of side 6000 A/,/2. The center of mass

and nonlocal coordinates are indicated. (c) (——~) Self consistent di

diagonal component of the deasity matrix

for a bias of —0.2 meV. (- --) Quantum corrected solution. (d) (——) Self consistent diagonal component

of the density matrix for a bias of 0.0 meV. (-—-) Quantum corrected solution. (¢) (——) Self consistent

potential energy for a bias of —0.2meV. (—--) Quantum corrected solution. () (—) Self consistent
potential energy for a bias of 0.0 meV. (-~-) Quantum corrected solution.

cated by representing nonequilibrium by a displaced
Maxwelhan, exp — [B{(p — ps)’/2m + V}}, and where
the mean momentum, p,, the density, and a particle
temperature, are to be determined. The argument for
a displaced Maxwellian is the assumption of rapid
thermalization. While there is experimental evidence
that some quantum feature size devices sustain strong
relaxation effects, such phenomena is not likely to be
universal. Nevertheless, as a first step in developing
a set of nonequilibrium QHD equations we examine
the consequences of modifying the quantum equi-
librium distributions to 'describe nonequilibrium
conditions. Within the context of the coordinate
representation, the Weyl transformation as discussed
in the Appendix B, dictates that the displaced equi-
librium density matrix (generally non-Maxwellian)
used below, is obtained through the following modifi-
cation of a zero current density matrix:

pix+{, x—{)=p(x +{, x — {)exp +[2ip,{/h], (28)

where p, is at most a function of x. With the current
incorporated as in eqn (28) the construction of the
QHD equations proceeds in three parts: First, the
truncated density matrix is identified as eqn (28) with
the form of the equilibrium contribution given by
eqn (22) (the potential is replaced by the classical
density equivalent); second, the relevant transport
qQuantities are identified as carrier density, p(x),
mean momentum, p,(x) and electron temperature,
To(x) = 1/(Beks,); third, the moment équations, are
obtained from a succession of derivatives, followed
by the limit as { = 0. In taking moments we note that
much information contained in the off-diagonal el-
ements of the density matrix is lost.

With eqn (28) the following quantities [from
eqn (9)] are relevant to the moment equations (with-
out the equipartition contributions of the ¥ and Z
directions):

J(x, x) = p(x, x)py[m; (292)
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E(x, x)=[pif2m + k T [2
— (h%24m)d%(In p)/ox7)p;  (29b)
POY(x, x) = [p} + Ipgmk, T
= p4(h?/4)0%(In p)/dx7}p. (29¢)

Equation (29¢c) is the diagonal component of
Px +{,x —{)=(h/2i)3°p/3(’, and represents
the energy flux, (as typically appears, e.g. in the third
moment of the Boltzmann transport equation).
Equations (29) and their dependence on derivatives
of density are valid only in the limits discussed
in the above sections, and represent modifications to
classical situations. In this sense it is important to
note that the derivation of the quantum potential
in terms of Oy explicitly involved the carrier tempera-
ture. The Bohm potential Q,, is independent of
electron temperature. The consequences of using Qg
rather than Qy, in the QHD equations should be
examined.

The QHD equations are obtained by taking succes-
sive derivatives with respect to {, as defined by eqn (9)
and taking the limit { =»0. The QHD particle, momen-
tum and energy balance equations, are respectively:

aplot + d{pp,[/m)/ox =0, (30)
9(pps)ot + 20E(x, x)[0x + (OV [0x)p + pps/t = O;
&£1))
OE /ot + 1/(2m»)aP/ox

+(pps/m)3V [0x + 2E[r —(E[m)p =0. (32)

We rearrange eqns (31) and (32), noting that the
quantum correction driving force is implicit in E(x, x)
and P%(x, x). Using eqn (29b) for E(x, x) and noting
that 3[pd*(In p)/0x*Yox = —(4m[h*)pdQs [0x, the
QHD momentum equation is{2]:

3(pp,)/ot + d(ppim)ox + 0(pkT)/ox
+ pd(Qa/3)/0x + pdV [0x + ppysjt =0, (33)

which differs from its classical analog through the
presence of Q4[2). When the first two terms are
zero, and the electron temperature is spatially inde-
pendent, the drift momentum density reduces to:
PPy = =k, Tpd[(V + Q3 3)/k\,T + In(p))/ox. Then
for a = 1/3;: and J = —epp,/m, eqn (3) is retrieved;
for pd =0, the density, as given by eqn (4) is a
solution to eqn (33). Note: the form of the scattering
term in eqn (33) identifies the first part of the FP
scattering as a frictional term (see [7].

For the energy balance equation, using eqn (29),
eqn (32) becomes:

OE[0t + d{(pe/m)IE + (p/B)(1 — [A%/6)0%(n p)/

x 3xN)}/0x + (ppy/m)V, + 2E[t —(E/m)p = 0.
(49

To determine E, we note that it generally depends
upon x, as does t. In the context of eqn (34) we
require that £ relax to E, which is the p, = 0 value

H. L. Grusi ¢ af.

given by eqn (21). This is guaranteed with
E = 2mkE, [t. Thus eqn (34) becomes:

OE[3t + d(ps/m)(E + pk, T)Ox
+(ppsIm)3(Qa/3 + V)ox
— (A%, T/6)[0%(In p)/0x)0
X (pg/m)/ox + IT)E — B} =0.  (35)

The second part of the FP dissipation involves a
relaxation to a non-zero thermal energy. E, above is
the same as used by Woolard er al[13].

The consequences of the above approximations is
the appearance of the quantum potential with the
factor *“1/3". (The situation for Fermi statistics is not
addressed here.)

QUANTUM MOMENT EQUATION COMPUTATIONS;
COMPARISON TO THE EXACT SOLUTIONS

‘l'hedzvelopmtoftheQHDequaﬂons.up:e—
dicted on future use in the design and understanding
of multi-dimensional quantum feature size devices.
The degree to which this is useful remains to be
determined for nonequilibrium phenomena, and the
work of [4,5] represents an important beginning.
Another relevant case is the evaluation of density
across an abrupt heterostructure region, as occurs in
cither a heterostructure diode or in modulation
doped FETs. While the sheet charge density can be
obtained from solutions to Schrodinger's equation,
the incorporation of such a calculation in a quantum
corrected standard set of device simulation equations
has only recently been addressed. We consider this in
assessing solutions of the QHD equations against the
Liouville equation in the zero current limit. It is noted
that the use of an abrupt interface violates the
following conditions regarded as the basis for the
development of the quantum modifications: the po-
tential is continuous, and the value of Q is small enough
to be regarded as a “correction™. It may be conjec-
tured that the use of quantum potential has more
generality than that uncovered in the above deri-
vations; at this Sme there is no justification for this
claim.

The computation is for a 6000 A structure with
constant 10'/cm® doping. The grid spacing for the
Liouville equation was constant and equal to 7.5 A;
the grid was nonuniformly spaced for the QHD
calculation. A 200 meV abrupt barrier is placed
across the right half of the structure, as shown in
Fig. 3(a). The self-consistent space charge profiles
were computed for two values of applied bias:
Veopies =0.0¢V and —0.2¢V. In both computations
the quantum potential was finite within the vicinity of
the interface, with structure similar to that of the
barrier problem discussed in Fig. 2; it was zero within
the vicinity of the boundaries. The two dimensional
zero current density matrix for V= —0.2¢V is
shown in Fig. 3(b).
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Fig. 4. Schematic representation of the characteristic directions with respect to the grid points.

Line plots of the density matrix for both the exact
(solid kine) and quantum corrected solution (dashed
line) are displayed in Fig. 3(c,d). Note the accumu-
lation of charge on the narrow bandgap side of the
structure followed by depletion (with non-negligible
values) of charge on the wide bandgap portion of the
structure. Under bias the edge of the structure is
depleted of charge. The potential energy distribution
for the two values of bias are displayed in Fig. 3(e,f)
where we see that the discontinuity in potential is
equal to the full 200 meV associated with the barrier.
The character of this solution is similar to that at the
edge of the hyperbolic tangeat barrier shown in
Fig. 2. In particular the quantum potential is positive
(negative) to the left (right) of the metallurgical
boundary. The comparative density and potential
profiles are extremely close and attest to the confi-
dence of the approximation, for this type of structure.
But caution is in order! The excellent agreement for
the calculations of Fig. 3, but the less certain agree-
ment of Fig. 2, indicate that a ¢ -2ful case-by-case
assessement may be necessary. Nevertheless it ap-
pears that obtaining representative charge densities
necessitates the incorporation of quantum effects
through such additions as the Bohm quantum poten-
tial. Alternatively, realistic device simulations must
resort to a full multidimensional quantum transport
calculation.

SUMMARY

This study assessed the introduction of quantum
modifications of classical transport, with the results
indicating that quantum corrective transport is useful
under certain circumstances, and that many simple
device studies, such as those for HEMTs would
benefit from its incorporation. It is likely that such
corrective transport considerations would also be
valuable under nonequilibrium conditions particu-
larly in evaluating transport across heterostructure
regions. It is important to note that introduction of
the quantum potential in a generic form of the QHD
equations is not new: it has been linked to density
functional theory, as discussed by Deb and Ghosh{14])
who also identify the force as being of quantum
origin. Bohm and Hiley{15], point out that an essen-

tial new feature of the quantum potential is that for

single particle Schrodinger ficlds, only the form of the
Schrodmgetﬁeldeomu.nonhemmty The force

grising from this poteatial is not like a mechanical
fomofamwmhmgmapamdemtham
peoportional to the wave intensity; rather the force
arises from information content, e.g. structure, rather
than value, of the wave[lS]. Bohm and Hiley{15]
distinguish this force from the Madelung{16} hydro-
dynamic model in which the particle is pushed me-
chanically by the fluid.
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APPENDIX A

Solution Procedure

Fummofadmmduammmnnabbfom
of boundary conditions, eqn (8), is rewritten as a coupled

first order system of equations{17}:
u(X, X) +[h[2m])[0p /0X 4+ 3p[0X]=0

dp 0t + [OufdX — du[oX]

+UANV X, )= V(X' 0)p =0. (A2)
Equation (A1) defines (X, X, :);eqn(AZ)sanahumme
fotndeqn(l)aﬂum free particle conditions

aloulhe Y and Z directions; rewritien in terms of ¥ and p.
The characteristic directions for eqns (Al) and (A2) are:

x = (X + X')/2 = constant (A3)
{ = (X — X)/2 = constant. (A9)

In terms of the characteristic directions x and {, equs (A1)
and (A2) can be written as:
u(X, XY+ [ihf2m)dp[dx = O (A9)
3p/21 + [ +[iMNV(X, ) - V(X',0)lp =0. (A6)
Sxitable boundary conditions for eqns (AS) and (A6) are
the specification of p and » along the boundary X’ =0 and
themduabn;tbbmmdmx-L/szm
L is the length of the device. Along the X=0,p
is specified as the complex conjugate of p(X, 0), since p is

(AD)

H. L. Grusm ¢1 ol.

hermitian, and « is computed form the outgoing character-
istic oqn (A6). Aloag the boundary X = L/,/2, p is com-
puted from the outgoing characteristic eqn (AS).
An slernative system can be formulated in terms of the
current matrix:
X X) + [ih2m)op (X =0 (A7)
p /0t + 3jjox + [iMIV(X, 1) - V(X' t)p =0. (AS)

Equations (A7) and (A8) have the same characteristic
directions x and { as equations (Al) and (A2). Suitable
boundary conditions for eqns (A7) and (AS) are the specifi-
cation of p and j along the boundary X' =0 and the
specification of p slong the boundary X = L. Along the
boundary X =0, j is specified as the complex conjugate of
J(x,0) and p is computed from the outgoing characteristic
eqn (A7). Along the boundary X = L, j is computed from
the outgoing characteristic eqn (A8). Both sets of the first
order system of equations, oqns (AS) and (A6) and oqus
(A7) and (A8), are useful in applications since they allow
different forms of boundary conditions. Both scts of
equations can be solved by the same numerical procedure.

The solution procedure consists of solving the first order
system of equations as an initial boundary-value problem
starting from coaditions along the line X = 0 and marching
to the line X* = L using the method of characteristics. A
characteristic net for the equation of motion of the density
matrix can be coanstructed a priori from grid points of &
mifogmaqmgrid.Adiaauefomofeqns(AS)md(A‘)
on this grid is (Fig. 4}:

fuk, + [ 2m){p (L. /) — pG ~ 1§ — DYAx =0

[Op/o1), +[uli + 1, j — 1) — u(é, VAL

+{AVX, ¢) - V(X' )L 1p). =0, (AlOQ)

whese {1, represcats an average over the grid cell. Depend-
ing upon the form of averaging chosen, eqns (A9) and (A10)
form a system of 2 x 2 block tridiagonal or block diagonal
algebraic equations that can be solved at X* = j from known
values at X’ = j — 1. Thus, the solution procedure can be
marched from boundary conditions at X’ = 0, in steps along
X’, to X’ = L. Similar procedures can be utilized for egns
(A7) and (A8).

Self-consistency is included in the analysis by iterating the
solution of the density matrix equation with the solution of
Poisson’s equation to convergence, by successive substi-
tution. For this purpose, Poisson’s equation is written in the
form:

{2le(x)D(AV)faxYax)* + (3p[OVIAY"
= —{e(x)3V [ox)ox}* — eXp(x, x) — po(x)F'. (ALl)

with ¥**' = V" 4+ AV", where a is the iteration number. The
second term on the left hand side of equation (A1l) serves
to accelerate convergence of the iteration, wherein 9p/oV s
evaluated at x either numerically from peevious iterations or
analytically as 3plal’ - —p(x. x)lk.T for Boltzmann stat-
istics. A 3-point centered difference approximation to
(All)reﬂltsmamdn.oml of algebraic equations
thtanbesolwdelﬂyMMyf«AV which is the
increment in ¥ between iterations. -

The first step of the iteration procedure consists of
assuming a distribution for the self consistent potential
(typically, 2ero everywhere) and solving the density matrix
equanontoobumthedenatydmbuuon. Based on the

(A9)

computations of this paper, the analytical
9p oV was utilized. For cases where dp/oV is computnd
numemnlly aevenl!lumom (typically, fourot&ve)m

mequauon(All)sreplacedbyltetmofthefotm
—[e(x)AV (At {Ax}%)] (Ax is the mesh spacing, At = 50) for
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APPENDIX B

Relation of Results 10 the Wigner Formulation
Thmhumthedumyugmntheeo«dl

p(x +{,x={) = A1 (2xh)P
" f &'l . Xexpl2ip- (ML (BY)

where the factor of 2 accounts for the fact that each
momentusn state can hold two electrons. The inverse trans-
formation is:

f-(’-')-?ﬂj-. & Lo(x + (. x —{dexpl—2ip- {/A}, (B2)

respect
Note: (l) plx, l)-lll(ld)l’[ d’rl.(r- w); (b) substi-
tution of eqn (12) into eqn ®2) yields the results:
f.-un( l{(p‘ﬂn)-l' Vix) - E})
The Wigner equation including FP scattering, as discussed
by Stroeciof18] is:
of /3t + (p/m)dffox
+(lll)(l/2¢)j dp’ I dax’ fip', x)
x [V(x, 1) = V(x’, t)expli(p — p)x’[h)
=(1/t)div,[o/] + ZVpY, (B3)
where, as in the main text, all spatial variations sre along
the x direction, Boltzmann statistics apply, and momentum
variations in all three dimensions are allowed. The co-
efficients t and Z are chosen as in the deasity matrix studies.
For transport in one space dimension it is direct to demon-
strate that the integral in eqn (B3) reduces in the classical
case to (2V'/0x)(9f/dp). To second order in A, the Wigner
equation: _
&/t + (p/m)efjox — OV |oxdf[dp
+(M[240) @'V 0x)2f10p* = (L e )div, faf] + EVYS. (B4)
The left hand side of equ (B2) has been discuseed in {1,2].
dthemdmuon.qn(ll).yddtm(ll).
In the sbeence of dissipation the approximate Wigner
distribution function to second order in A is [Wigner{3], see,
eg. oqn (23)}
Jo=exp—B(p*2m + V(x)){1 - (A26/4)
x {92V 12x? ~ B(3V [0xY[3) — P(p*[3m)D?V [ox?}} (BS)

which upon application of eqn (Bl) yields the equation
following eqn (22).

The relation between the density matrix and the Wigner
function extends to obecrvables, permitting a concise defi-
nition of the associated matrices. Defining current density,
energy density and third moment matricies respectively, as:

Kx + 0 x = {) = 2A1/2xh)P

x I " & peimY. (. xexpi2in- UM (B6)

E(x +{,x = {) = 1/2xA))’

"'r &’ p( - p/2mY, (p. x)exp(2ip- (/2] (BT

Pox +{, x~{) = A1/2=A)]’

x I " @l LG X)expi2ip - (M), (BS)
it is direct to demonstrate the validity of eqns (9b) and (9¢).
The derivative definition of the third moment [see discussion
fonowingeqnmc)]fonowdimlyfmthe.bove. Note:

If the distribution function in eqn (B1) is for zero current,
and s finite curreat function is obtained from /,(p — pp. x),

then the zero current and finite current density matrix are
related as eqn (28).

APPENDIX C

Pure State Results and a Comparison to lafrate,
Grubin and Ferry(8]

The pure state results for current, energy density and third
moment may be obtained as follows. Express the wave
function as _¥(x, 1) = p(x, 1)'? exp 10 (x, 1), with p(x, 1) =
86 /0x. Thea s equation, MOV [0t =
- (R32m)P?P jox? + ¥(x,1)?P, which is complex is rewrit-
ten as two real partial differential equations:

P10t + Ysrmataqm) /10X =0 ©n

(pp)ot + 20E g retiagn[0x + p3V |0x =0, ({or}]
where

Jescuratiagmi (%, 1) m p(x, t)p/m )

E(X, ) sctetioqn S (P12 — (W[8m)3*(ln p)/2x%)p. (CA)
While the content of Schrodinger’s equation is contained in
eqns (C1) and (C2), an expression for the time dependence
of the enesgy may be obtained through the time derivative
g::‘:i(t?) and judicious use of eqns (C1) and (C2). We

¢ N— )

=(p* — (A14){3p3%(n p)/ox? + d'pjox}lp (C9)
+(pp/m)oVidx = 0. (CS)
Note the differences between the pure state definitions
feqns (C3), (C4), and (CS)], and that of equs (29). For
the pure state: there is the absence of a temperature depen-
dence, the factor of 3 is absent, and there i a velocity

correction.
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Abstract
This study describes the evolution and implementation of a set of quantum balance equations for examining
transport im mescoscopic structures.

Key Woeds
Wigner functions, quantum potentials, quantum balance equations.

Introduction
Thlsstndydesaibee evolution and implementation of a set of quentum balance equaﬁons examining
tmspon im mescoscopic structures. The study is motivated perceived for an intuitively accessible set
of multi-dimensional quantum transport -consistent of
current and current mwkmdlmdﬁm e hmanie oo

Mmm&esﬁm’ W[l]fwammuﬂﬁedﬂdhﬂwwmm<

Pure State and Classical Moment Equations

R R i et
3 +3y(pge/m) = 0 m
3(rpg) +ax(ppg*/m) +p2,(U+Q) = 0 . ’ @
Q = -(a?/2m}p)ay’ls (3)
e e o of o

Iﬁm -nuuwozkﬁed BB]) The classical moment equations for w
3 +35(pge/m) = 0 @
31(ppg) +3x(ppy*/m) +p8, U +35(pKT) = 8ppg coll (€)
8W+2,(pgW/m) + 8 (pgokT/m) + (spg/m)a, U = aW oo ©)
W= Bkaﬂ+pp¢’I2m y)]
I iswoﬂhwhile three dimensional momentum space integration,
'Tli}eh m%ﬁ',-ﬂ‘, and momentum now represent particle density.

Structure of the Quantum Mechanical Equations
equations (1) dmd: (3), and the classical

T L T et et
thkwe turn to0 an approximate discussed in {4]. .
mmmmmmmammu MMMQWMMM
function obtained by Wigner [5], and discussed more
fw = exp-8[p*/2m + U}{1-2a(3* U-£(22U) */2)/3-a(1-py* /m)a5* U/3} ®

In equation (8), # = 1/kT, a = #?p*/2m, and p* -p.l""P]""pl’

inequﬂon(S)byomemm e:predons.'l‘hemierdensityls the andits
# = 21230)* [ xp)I*p = Nexp-pU[1-2a(8,* U-8(2,U ¥2)3] ©)

2 e/: After U= U
mxﬂ)lp) ‘I:n:’ 6(«), it is a direct m’x = (320)(Bp) + Ofa),and 3,

52 NN-<
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fo = (o/N)exp(-0p* /21 + (/38 X1-#px mX3x{(d3p Vo }) + Oa?)] (10)

when equation (9) is substituted into equation (4), with U representing the equilibrium potential,
equaﬁon(ﬂ).wm(c,)kmrkwd. “

the within s relaxation
Tommem(lO)oﬁgm& steady state small signal Wigner function ] time

fw = fo«wl(pdmnxto-(oxu)opfo'r(a’mxax'wp'fol 1)
into (11), the results sp=[f,d*p, and for j, =
.Wm ;d (11), the following key emerge: [, d*p=[fsd°p, ix

ix = #{p2x(U+Qn3) +25(kTp)} (12)
whichwaﬁmobmud Ancons and Iafrate ﬂ}hqy-u/m%nemmkkmm&c
gcnenl seedouthehaoroﬂonthegnmm

:%hoedvetdon (10).!!»Moto€3isreu{nedior momemsoﬂhe
Wigner tzinann

Moments of the Wigner-Boltzman Equation

esumons have been obtained f: WB equation
mwm f“(:eealso dkuibnﬁonmnedonl:rwul:icd:pmeun(w)kmphcedby
p-P4- The WB equation of

3¢fu + (Pa/m) {35 play + (/24X 53 Uap* o] = oot ®)
and the first three moment equaton corresponding to that of equations (4) through (7) are:
30 +3x(pge/m) = 0 (14)
34(ppg) +x(ppg”/m) +p8x(U +Q/B3) +3,(pkT) = 2pq coll (15)
3, W+ 3,(paW/m) + 85(pgrkT/m) + (ppg/m)3 (U + Q/3)

(pa?/12m)2,{(2x0 Vp }ox(pg/m) = 2W o0y ’ (16)
W = 3pkT/2+ppg? 2m-(pa */24m)35{(8 50 Vr } a”n
WIﬂwwsi).)faMhumm mechanical m(:elllothem
e e e ey e
e e G e e
straightforward to first show
p<(ppd)® > = mo(l - (38)(2x{(2xr Ve }/A] (18)
<o(@pg*> =0 (19)

fromwhdlretem(s emauom(wa).and(m:)whenmbinedwnh(l ayieldequado?(u)nd(u)ot‘
dmihgeﬂere, mmlw&km:mlﬂpledby%m added to ( wlichkmlupledby
wmﬂmotdnewyhhmeeq\monoﬂhkmdy W:srephcedby'

W = pkT/2+ppg* 2m~(pa ’M)Ox{(‘xl)/l} (20)
From the of view of device is pointed out 8 qumm corrected quasi-Fermi energy can
defined. E= where . is a reference density, tbeanremdemityineqnﬁon 12
anbewﬁmj-p?v%%:ﬂe% IS):I{G(IG) can be reexpressed as: )
2¢(pPd) +3x(pPg’/m) +pOxE = 2Pg,coll @)
8 W +2,(pgW/m) +2(PgoKT/m) + (ppy/m)2E

«pa*/12m)dx((2xp)p )2 x(pg/m) = OW oot )

In the sbove form the dynamics of the transport are governed by an energy E. However, E
kinnodmduumﬁon w
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AnﬁdpatedSoluﬁonsoftbeQuanmdemBquaﬁons

We focus anention on the single particle pure time derivative .{ the
““‘““‘“‘gu ookt (ighacon sl dorraths xR ‘*i&:&‘;:%&'w"‘* m“-'m'“?
{}H !L- lndmuntmtymppdlm J, where E, and J are integration coastants. pd

ition of the quantum potential, energy oonsemuoncanberewnuens.
o +(2m/a2 ) [Eg-U(mJ?/2p*)|p = 0 @)

For bound states, J = Qandeqmnonél?)kawmﬂuepmbkm.onethamthemdawmmd
smlnval Qto Umdthevduuofonespcz“ﬂy - .::’ns.mthﬂgn‘. approximstely
e =E,- in some are
:!:unltouu:'bmnd This result will pronﬁmnﬂydmm discussion below.

The si i is limited, in that it does not a direct
T R S
with ¢! wil - structure,
oy e e St b o i i s
requuu&amwmvdwqmwwude&mmm&&mim 'l'hl_lsinthea:o-eoolh
dissipation there will necessarily be charge downstream anode, unless dissipation is present
the interior of the device. If the assumption is made, that the physical contact are boundaries where the
mmbenofl;unennth%amdemdmodemmmofmw within the interior of the structure is
couceptually necessary. For formulation particle Schrodinger’s equation, there
mnommngtomuoduangN"’a umderegions.nncewuedeaﬁngmthlanﬂepuﬁde.

is an essential feature of in devices, the quantum balance equations represented by

In that
equanons throu'g f staring or the simulations to be discussed below. To
( ) %3‘"" ﬁmmﬂl’mse&?ﬂﬁo& Mhavebeenm«f:a

spa' depeqdemfeﬁeamm effective have wmmgsphoed Wi;::m
moment equations for a mass nor we a
thatsaﬁ:f'iaedl-‘ermimtk:i.fs.wehaveg?)ud X ongaeconuibuuons. F‘gr“therweh&v:umdﬂ:e
factor of "3’ associated wil equauons as an adjustable ter reflects the statistical
distribution used as a basis for the calculation, as ! m[ﬂangtnm nbyumty lndnsclse
mthv-pdlm.theeonummyeqmnomsundlmsed. momenmmbr:rmce

at"""’x(ﬂ"')"'(l’/m){[‘x(u+Q)]+[(PV’,2HNW:/:/P)]’:‘“} +(?J3)8xNkTF,/, +pVT =0 (74)
where Fy (xg) = (2] x)f [x*/1 +cxp(x-:££]dx. range is o <x<e.

17:‘ s 1 "mr“'h‘“"’f“‘ +pl 8),fon¢<4 and
ﬂﬁwf‘}?' % “‘,},’,,,“'ﬁ_‘{‘fm+m m&é:m """z‘si’

3gpv +23x(pv?) + (p/m)}{[35E] +[(pv* 2){(NKTF, /,/p)}3 xt B} +pVT" = (25)

Equauon 25) is coupled theequaﬁonofeonunm and Poisson’s equation, wi representing the
conductio: ( ) enuge:mhetmuuennekrep:ymmd th: nmlc U(-)}:-x(x),mx(
apoauomm lm.d:yndsobnined equmm;}:-e’ -p,t )
z%gmbemnmmml_ﬁthe ollowmgrehtiomlnpswereused.lgino.m+0.m3x,AB¢-

X

Calculations
The calculations discussed beiow are for the structure shown in figure 1, with resonant

located symmetrically at the ceater of the structure. The structure and dimensions ofthebanmsm
mﬁm&whdshmmwmmmuadmmdmwatmmmsamknﬁm
conductance. The conduction band

at different bias levels, figure 3, shows the tilt as
mukwmmamkmmuuumgmmqmam tage drop falis
across the upstream layer, 30% within the confines of the barrier, and 50% across downstresm
from the second barrier. The charge distribution, figure 4, shows a region of sccumulation of
the barrier that increases with increasing biss, as does the charge in the well. different
mmmwmmmmmumunmmmm conditions at the

once we pass the amemoftheLVdnnaeﬁsﬂc. pleuonlayensa

Eumumeffea. The layer keeps on for biases ageuthe the
V curve until the depletion layer touches the heavily 210 ! Then, the electron

downstream of the second barrier gradually increases depleuon region

The quantum potential is Iayedin 5. If we concentrate on its value in the well, the most dramatic
pommmms dup ﬁﬁg ue of the quantum potential tends to cluster around a narrow
mge.mamnginmammdefmmtheupmumbamertothe tream barrier. Within the barrier the




10. ELECTRON AND HOLE TRANSPORT

Multispecies transport is part of the density matrix algorithm with
applications to heterostructure barriers and diodes. While extensive work on
electron and hole transport in underway as part of the ULTRA program, some of
this type of activity has been published and forms part of this document, and is
incorporated into this section.
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7.5 High Field Transport and the Gunn Effect in AlGaAs/GaAs
Structures

by H.L.Grubin
September 1992

A. INTRODUCTION

When a device physicist studies high field transport there are several issues to address. First,
what is the momentum space kinetics, and second what are the high field dynamics in devices?
For much of the early phases of device studies in which length scales were of the order of tens
and hundreds of microns, a satisfying picture often emerged in which it was assumed that the
space charge distribution did not affect, in any significant way, the kinetics of transport. In this
picture the semiconductor was represented as a material with a specified field dependent velocity,
which in the case of GaAs sustained a region of negative differential mobility associated with k-
space transfer. As the structure length scales decreased, it was clear that the separation of the
kinetics from the space charge contributions was no longer possible, and a more complicated
picture emerged that required the use of advanced numerical algorithms for the study of device
physics. These algorithms, however, depended in a detailed way on uncertain parameters that
were used in the k-space calculation. This was the best we could do; and today when high field
transport is considered it is most often examined without respect to device configuration. In the
discussion below, we take this viewpoint.

With high field transport considered within a device context, the ternary alloy AlGaAs can be
regarded as an enabling material. For while AlGaAs for a range of aluminium mole fraction
possesses a region of negative differential mobility (NDM), other samples possess superior NDM
regions. A major interest in AlGaAs lies in the fact that within the Anderson rule, its electron
affinity is significantly different from such materials as gallium arsenide and indium gallium
arsenide. This, in its simplest version, was responsible for the presence of barrier structure
devices, and the carliest AlGaAs/GaAs devices were among the first band structure engineered
devices. While a host of AlGaAs/GaAs devices have emerged as a result of barrier engineering
we will focus attention on only several versions of this enabling technology. The structures we
will focus on are Gunn diodes, AlGaAs/GaAs HBTs, AlGaAs/GaAs MODFETs and
AlGaAs/GaAs BICFETs. The emphasis will be on transport. The following will briefly review
the high field k-space transport properties of AlGaAs, and then turn to high field transport in the
devices mentioned above.

B. HIGH FIELD BULK PROPERTIES

Electron transport on the AlGaAs alloy depends in a detailed manner on the numbers of carriers in
the I, L and X portions of the conduction band. For moderate values of the mole composition of
aluminium, and 2t low values of electric field the clectrons are dominantly in the " valley. As the
field increases and LO phonon scattering no longer effectively removes the excess carrier energy,
a certain fraction of electrons, with the assistance of phonons, transfers to the subsidiary L valley,
of which there are four equivalent valleys. The rate at which these electrons are transferred
determines whether negative differential mobility will occur. At further increases in field the
clectrons can also transfer to the next higher valley, the X valley, of which there are three
equivalent valleys. Transfer between any two valleys including equivalent valleys occurs. The
specific properties needed to determine these transfer rates are listed in TABLE 1, Where the
density of states effective mass in the table is my = (m;? Myempendicuar) - /

\'ﬁm«njd
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7.5 High field ransport and the Gunn effect in AlGaAsIGaAs structures

TABLE | Properties of AL, Ga, ,As

Parameter GaAs AlAs AlLGa ;As

Static dielectric constant € 13.18 10.06 13.18 - 3.12x

High frequency dielectric constant €,, 10.89 8.16 10.89 - 2.73x

Band gap energy E; (eV) 1.424 2.168 1.424 + 1.247x (0<x<0.45)
4.07 - 1.1x (O<x<0.45)

Indirect band gap (L) 1.708 2.35 1.708 - 0.642x

Indirect band gap (X) 1.900 2.168 1.900 + 0.125x + 0.143x?

Electron affinity X (¢V) 407 3.5 3.64 - 0.14x (0<x<0.45)
1.900 + 0.125x + 0.143x2 (0.45<x)

Density of states electron mass m,

I" valley 0.067 0.150 0.067 + 0.083x

X valley 0.49 0.34 0.49 - 0.15x

L valley 0.2 0.26 0.22 + 0.04x

Acoustic deformation potential = (eV) 6.7 5.5 6.7-1.2x

Phenomenological def. potential E,. (eV) ] 3.6 29 3.6-0.7x

Intervalley def. potential D(ij) (eV/cm)

DTX) 05-1.1)x10°

D{TL) ©.15-1.0)x 10°

D(X.L) 0.34-11)x10°

DE.X) 027-1.1)x 10° | 1.47x 10°

DLL) 1x10°

LO phonon energy (eV) 0.033 0.050 0.033 + 0.017x

Intervalley phonon energy (€V)

(r=Xx) 0.0299 0.0299 + 0.0175x

(r=L) 0.03 0.03 + 0.0134x

X=L) 0.0293 0.0293 + 0.0181x

X=>X) 0.0299 0.0299 + 0.0175x

@L) 0.029 0.029 + 0.0150x

A number of studies have been performed which show the degree to which the percentage of
aluminium affects the region of NDM. The parameters used in these studies sustain a certain
degree of uncertainty in that such scattering contributions as the deformation potential
contribution, the relevant optical phonon frequencies, etc., are all dependent upon the aluminium
mole fraction. A representative calculation was performed in 1988 [1]. This was a Monte Carlo
calculation of the field dependent velocity of Al 5,Gag ¢gAs. Comparison was not made to
experiment, as no experimental drift velocity measurements were available. However, the
calculation is of sufficiently general nature to reproduce its results here. In ref (1] a set of
parameters was chosen from the literature, about which a parameter variation was made. The
parameters are approximately represented by inserting 32% into the expressions of TABLE 1,
from which the velocity field curve of FIGURE 1 was obtained.
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FIGURE 1 Field dependent velocity for Aly 3,Gag ¢gAs, from (1].

Several points are relevant: first the peak velocity is slightly in excess of 9 x 10° cm/s, which is
considerably below that of gallium arsenide. The saturated drift velocity is however
approximately equal to that of gallium arsenide. The study in {1] undertook a number of
parameter variations. For example when the I'-L separation was reduced there was as expected a
larger fraction of carriers in the L valley in equilibrium, with a consequent reduction in the
mobility. Indeed for an energy separation of 91 meV the NDM region is absent. For an increase
in the I'-L separation to 140 meV there is a reduced population in the L valley, the mobility is
higher and a region of negative differential mobility is present with an increase in the peak velocity
to nearly 1.2 x 107 cm/s. Increasing the effective masses of all the valleys tends to reduce the
peak velocity as well as the saturated drift velocity. The LO phonon scattering rate increases as the
optical phonon frequency increases. Increase in the scattering rate results in fewer electrons
heated to sufficient values for intervalley transfer to occur. It was found that for an optical phonon
energy increase from 38 to 45 meV the peak velocity increased by approximately 15%. A
decrease in the optical phonon energy to 30 meV also resulted in a near 15% decrease in peak
velocity. It is important to note that for percentages of aluminium greater than 50%, the region of
NDM disappears (see the general discussion in [2]). Additionally, in the vicinity of 40%
aluminium the band structure energy minimum order changes from the I'-L-X ordering to the
X-L-T ordering. ’

The phrase heated, in the above paragraphs, implies nonequilibrium electrons, and an electron
temperature model is the one most often invoked to deal with this description. There are a variety
of means by which the electron temperature model is invoked, the most common being usually
predicated on a displaced Maxwellian for a distribution function and solving three sets of
equations: a carrier balance equatior, a momentumn balance equation and an energy balance
equation. This model is briefly considered as the language associated with it is invoked in the
device discussion.

Under uniform field conditions these equations for two levels of transfer (e.g. I and L) represent
particle, momentumn and energy conservation. For particle conservation:
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da;n, /0ot =-a;n, T, + a,n,I, (1a)
aaznzlat = alnlrl - aznzrz (Ib)

For Eqn (la) there are n, electrons in each lower energy valley and n, electrons in each higher
energy valley. Eqn (la) indicates that there are a;n, electrons scattered out, distributed equally to
the a, higher energy valleys; and there are a,n, electrons scattered from the higher energy valleys
into the lower energy valleys. The respective carrier scattering rates are designated I'; and I,
For uniform fields and steady state, a condition under which the velocity field curve is generated,
the following condition holds: a,n,I"; = a,n,I,.

For momentum conservation, the second set of equations describes the rate of change of
momentum (or velocity) in the individual valleys under application of an applied field and
scattering events. Under uniform fields and for the low energy carriers this equation is:

d(n,p, )0t = -n,cF, -n;p,I; )

where the momentum is designated p,, = myv,, and I'; is the momentum scattering rate for the
low energy carriers. Under steady state conditions: n;m, v, = -(1/I3)n;eF,. Similar equations
can be written for the high energy valley carriers and for holes.

For energy conservation, there are various forms in which the lower and higher energy valley
energy equations can be described. We cast the energy equations in terms of the species ‘1’ and
species ‘2’ electron temperatures:

a(alanl)ﬁt = [m1V12/(3k8)] {alnl(2r3‘rl) + alnzrz} - alanlrs + aznszl" (3)

In Eqn (3) kg denotes the Boltzmann constant; I's denotes energy relaxation within the species ‘1’
valley plus energy exchange with the species 2’ valley; I'y denotes return energy between species
2’ and species ‘1’ valleys. The above analysis requires calculations of the scattering rates. These
are taken from scattering integrals. For a review see [2], in which the significance of the above
description is dwelled upon. In particular, with the electric field as a driving force the three
paramexers density, momentum
and temperature are deterrnined,
as a function of field. It is !_
generally assumed that under

equilibrium conditions the -
distribution of carriers in each
of the valleys is determined by I
the density of states of each
valley and the energy separation
of each valley. “00f-

Adachi (3] has performed some 5
of the above electron
temperature calcglations. In T=300 K
particular, an estimate of the *
increase of electron temperature 300[—
as a function of electric field for R T T T S S R T
polar phonon scattering is w0’ 10° )
shown in FIGURE 2. 1Itis ELECTRIC FIED € ( Viem )
clear from FIGURE 2 that as

the alloy composition is FIGURE 2 Electron temperature as a function of electric field for
increased carrier heating is less various alloy compositions, under the condition of polar optical
severe, at any given value of scattering. From (3).
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field. When all of the scattering
mechanisms are included the <
clectron temperature increases
much more rapidly with field,
indicating that at high values of
electric field there is a considerable
amount of transfer from the low
energy regions to the high energy
regions [2].
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Polar optical scattering also L o 1300 K
dominates the low field mobility of w0y ' <
many of these alloys, and in 7 3 )
FIGURE 3 the dependence of the 10 10 0
polar optical scattering limited ELECTRIC FIELD €  ( Viem )
mobility for GaAs and indicated

alloys is shown, with the apparent FIGURE 3 Polar optical scattering limited mobility as a
degradation as the  alloy function of alloy composition using the electron temperature
composition is increased. model. From [3].
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C. PERPENDICULAR TRANSPORT - HOT ELECTRON INJECTOR
CATHODES

While most of the discussion of high field transport in AlGaAs will be concemned with transport
parallel to the interface, the following discussion on perpendicular transport will provide an
indication of how high field transport in devices is affected by such materials as AlGaAs.

Consider FIGURE 4, which within the context of the Anderson model is a generic conduction
band diagram of a three region structure: HEA-LEA-HEA {(H: high, L: low, EA: electron affinity).
In the case of hot electron injector cathodes [4], a recent application choice for Gunn diodes, the
HEA material was GaAs while the LEA material was AlGaAs. As configured the structure
consisted of an n* heavily doped cathode, a linearly graded AlGaAs region extending over 500 A
with a height of 300 meV, an n* spiked doping layer, approximately 50 A long, followed by a
drift region and an n* anode. The design parameters of the structure are consistent with the
requirement that for Gunn oscillations to occur electrons must transfer from a low energy region
to a higher energy with a consequent local region of negative differential mobility. Early theories
recognised that satisfactory control of the oscillations required the presence of local regions to
force at least one parameter, e¢.g. a bounding electric field, to be insensitive to bias and
temperature conditions such that electrons would enter the drift region with a distribution of
energies consistent with a sufficient number of carriers in the L valley, in the case of ¢.g. GaAs.

The equilibrium band structure for this case (ignoring subsidiary valleys and invoking Boltzmann
statistics) is represented in FIGURE 4 for an undoped AlGaAs launcher. One concept behind this
design is that carriers enter the drift region with a non-zero velocity whose value is estimated from
the conversion of carrier potential energy to kinetic energy. It is assumed that a large fraction of
the clectrons that enter the device are I valley carriers, as are those that are in the AlGaAs region.
Those carriers that pass through the spiked region are I valley carriers, but when they get to the
boundary of the drift region there is enough energy to place a considerable number of carriers in
the L valleys. The design appears to provide improved performance of the transferred electron
oscillator, but the presence of the wide band gap AlGaAs next to the GaAs introduces, as in all
structures of this type, a trianmular potential well and a force that tends to confine carriers. Indeed
the presence of such a force 1 carriers in the continuum is of the order of 10 kV/cm and in the
wrong direction! Under bias of course there may, depending on conditions, be a net force acting
on the carriers pulling them into the transit region, but then the operating conditions would display
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a significant dependence on bias. The origin of this dilemma lies in the incomplete manner in
which transport problems are addressed. This incomplete feature is highlighted here because the
contribution we are about to focus on is present in all structures where there are large carrier
density gradients, often associated with heterojunction interfaces.
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FIGURE 4 Equilibrium density and potential energy for a hot electron
injection launcher with an n* spike of 1017 /cm3. From [5).

The calculation displayed in FIGURE 4 was obtained through a solution to the Liouville equation
in the coordinate representation [S], and contains the relevant quantum features. However,
through an analytical expansion of the Liouville equation, in which classical transport dominates
and quantum contributions are treated as corrections, and Boltzmann statistics prevail, it has been
demonstrated that the net driving force on carriers is given by:

F=-V(V+Q3) @
Q = -22m)(p 1)@ p'2/32 ) ®)

We have calculated Q, often referred to as the quantum potential, from the structure of FIGURE 1,
and find that in equilibrium there is a net force acting on the carriers that is of the order of
10 keV/cm, acting in such a direction as to move carriers into the drift region. It is perhaps
important to emphasise that the configuration of FIGURE 4 is representative of perpendicular
transport; and for the specific situation of the hot electron launcher it is expected that the details of
such things as the field dependent velocity may be of secondary importance to the feature of
providing a heterostructure offset region.

D. PERPENDICULAR TRANSPORT - AlGaAs/GaAs HETEROSTRUCTURE
BIPOLAR TRANSISTORS

The second example of perpendicular transport is that of the heterostructure bipolar transistor

(HBT). In this case the band structure of the device falls into the same generic category as that of
the hot electron injector. Typically the HEA region is a heavily doped n* gallium arsenide region,
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followed by an LEA region which is a heavily doped n* AlGaAs region (whose properties are
often application specific), followed by HEA material. The HEA material is often a standard p*
GaAs base followed by a low doped GaAs collector region. Most of the attention associated with
this structure involves compositional grading of the AlGaAs emitter. Here there are several
aspects to consider. First, the electrons must get from the heavily doped GaAs region to the wide
band gap AlGaAs. If the first n*(HEA)n*(LEA) interface is not obliterated in the device
processing steps, then the interface is expected to look like that shown in FIGURE 5, where the
wide band gap material is at the left. Note that in equilibrium the density in the wide band gap
material approaches background, which for this case is 108/cm3, within 300 A, and is relatively
insensitive to the density of the adjacent material. Similar remarks apply to the potential energy,
which is also shown.
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FIGURE 5 Quantum mechanical calculation of the distribution of charge and potential energy
for a wide band gap/narrow band gap structure with varying doping distributions. From [5].

In the design of the HBT, if the upstream emitter interface is graded, as in the hot electron injector,
the necessity of requiring tunnelling mechanisms to move the electrons from the gallium arsenide
region to the aluminium gallium arsenide region is minimised. But most of the effort in designing
the HBT is concerned with the compositional grading of the AlGaAs in the vicinity of the base.

The quantum mechanical calculation of the equilibrium potential energy profile and electron and
hole density, for an emitter that incorporates an abrupt 1000 A long, 300 meV barrier adjacent to
the base, is displayed schematically in FIGURES 6 and 7, respectively. For this calculation an
acceptor doping of 10'¢/cm3, and a wide band gap emitter doping of 10!7/m3, was assumed.
This latter is generally an order of magnitude below that of the usual design of the HBT, but is
sufficient to illustrate the features of the role of the heterostructure in the device - it prevents the
diffusion of holes from the base to the emitter while enhancing the injection of electrons into the
base. The latter is represented by the dip in the potential at the n-hetero-p interface. There is a
diffusion of mobile holes from the base to the collector region, that follows the standard results
when recombination is ignored. Higher doping in the emitter will pull down the poteatial within
the centre of the heterostructure region to a near zero value, which is consistent with the higher
emitter background doping. While quantum effects associated with electron injection into the base
are apparent, on the emitter side the hole density goes from its peak value within the base to a
negligible value at a distance of approximately 70 A into the emitter base; quantum effects are
likely here. The details indicate that the band structure of the base is dominated by near charge
necutrality within the base away from the heterointerface. Notice that the decrease of the
conduction band energy on the emitter side of the barrier corresponds to the increase in the space
charge on the emitter side of the barrier. This is similar to the space charge distribution in
FIGURE 5.
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FIGURE 6 Quantum mechanical calculation of the equilibrium
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E. PERPENDICULAR TRANSPORT - THE BIPOLAR INVERSION FIELD
EFFECT TRANSISTOR

The bipolar inversion field effect transistor [6] (BICFET) has the same generic ordering as that of
the two previous devices, but is of interest because in some of its present configurations it
involves the strategic placement of a planar doped (or delta doped) layer of acceptors or donors.
In particular, the configuration of the HBT shown in the previous figures can be altered to that of
the BICFET by replacing the heavily doped p base with a planar doped p region, approximately
30 A long. Unlike ordinary inversion regions which arise at suitable values of the local potential
energy, the local region of holes generated by planar doping is thought to contain many of the bias
dependent characteristics of the more common inversion layer (hence the term inversion in the
name of the device).

For the BICFET the operating voltages are different because the critical device lengths are of a
nanostructure scale. For the configuration of an HBT, and on the basis of earlier studies [7], it is
anticipated that the presence of the planar doped layer would lead to potential contours that would
lie parallel to the interface everywhere except at the vicinity of the metallisation or contact regions.
In the vicinity of the contacts they would spread from a small region at the emitter planar doped
edge into the contact regions. For the case in which the planar doped barrier is introduced as a
replacement for the base in the HBT, it is anticipated that such terms as the base transit time would
improve, simply because of a reduction in the base dimensions. The presence of the wide band
gap material such as aluminium gallium arsenide is crucial for the operation of the device because
it eliminates the possibility of a remote migration of holes toward the emitter and confines them to
the collector region.

F. PARALLEL TRANSPORT - GaAs/AlGaAs MODFETS

While much recent activity has concentrated on the structures discussed above particularly with
respect to the analog and digital properties of the devices, the vertical devices, as the above are
referred to, do not reflect the transport properties of the ternary AlGaAs. Rather they reflect
primarily the band structure of the material in concert with the lower band gap material. To
examine the role of high field transport in devices and the Gunn effect, we need to examine the
MODFET as a generic device (see ref [8] for a review).

FIGURE 8 is a sketch of a
MODFET, and while these SOURCE DRAIN
structures can be very N N
complicated, the essential
feature of the device is that the GaAs GATE GaAs

wide band gap material is
dfped. and aftwo dimensional
electron gas forms within the

narrow band gap material, near AlGaAs  (N*)
the heterostructure interface. '
The structure shown
incorporates AlGaAs/GaAs.
Other structures incorporate

AlGaAs/InGaAs/GaAs, which , GaAs (UNDOPED)
includes the possibility of '

transport in a quantum well.

Since the offset voltage of the SUBSTRATE
AlGaAs/GaAs  system s

dependent upon the mole FIGURE 8 Schematic of an n-channel MODFET.
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fraction of aluminium, and since the distribution and number density of the two dimensional
- electron gas are dependent upon the barrier height between the dissimilar materials, as shown in
FIGURE 9, the mole fraction becomes an important design feature. For the FIGURE 9
calculations it is noted that the wide band gap material is uniformly doped, and that the entire
offset is at the heterostructure interface. The density distribution displays a decresse within the
wide band gap material where a minimum is reached. The maximum value of charge density
occurs to the left of the interface and within the narrow band gap Portion of the structure. For the
100 meV offset calculation the peak density approaches 7 x 10t fcm?, for an approximate sheet
carrier concentration of 3 x 10!''/cm2. For the 200 meV offset calculation the sheet carrier
concentration increases by approximately 40%.
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FIGURE 92 Quantum mechanical calculation of the dependence of two dimensional
electron gas on the offset voltage. Potential and el=ctron distribution for an
n*'n"(LEAn*(HEA) structure with an offset of 100 meV. From {5).
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FIGURE 9b As in FIGURE 9a, but for an offset of 200 meV.
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An examination of FIGURE 9 provides some important features of transport in the MODFET.
First we are interested in transport in the GaAs region. In this region, there is a high
concentration of clectrons whose origins are in the wide band gap material. Thus ideally, there is
no impurity scattering or alloy scattering to worry about. But if we look at the distribution of
charge in the aluminium gallium arsenide, it is seen that only a marginal amount of current flows
in the structure near the interface, but a substantial amount of current can flow at regions away
from the interface. Using the parameters discussed earlier it is known that the alloy and density
contribution and the scattering contributions in the aluminium gallium arsenide indicate that any
contributions to the current from the wide band gap material are undesirable. This means that
design efforts must be introduced to minimise the contributions of transport within the AlGaAs
region. One prominent

means is to introduce a 25 T T T T T T T T T
region of planar
doping into the wide
band gap region. The
situation is displayed
in FIGURE 10 for
an undoped 400
meV barrier, that
incorporates a 30
wide planar doped
region with a doping
of 10¥%cm3. The
important feature to
note is that there is
very little mobile
charge within the wide

k0

(X}

CARRIER OENSITY, N/N,,(N,,t 212 10"/cn)

0.5

(A B ARAE RARARAREE] LB AARERARR AR ESRERAE R RARERE

aasatasaalassaaaanalasataasaaleasasasaalaisaaiiag

band gap material, and

thus the parasitic F \

current is minmscd. [ N EREERRREEENE] s fl1s4 4 .
The details indicate that haad

the peak in charge falls
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gap material, and that

the presence of
exposed donors, ok
associated with the 2 E
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potential energy “
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reduction in charge CETTTTT N
density implies a
reduction in parasitic P
current. E
In addition to the T R S e e
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above issues several oesTance, &
others emerge. For the
materials of interest FIGURE 10 Quantum mechanical calculation of the dependence of two
there are three bands to dimensional electron gas form in the presence of a planar doped donor region.
consider, the I', L and Potential and electron distribution for an n*(HEA)n"(LEA)n (HEA) structure
X valleys for each of with an offset of 400 meV.
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the materials. Here, generally only the offset voltage between the gamma valleys of the two
materials are considered. For concreteness consider AE(x,i,j) where i,j = (I',L.X) and x denotes
the composition of aluminium. Then while the AE(x,I",I") increases as x increases from x = 0, for
sufficiently large x the subsidiary valleys begin to influence the statistics. The commonly used
value for x in MODFETs was 30%, where the offset voltage is approximately 260 meV. At this
value the commonly known DX centre comes into play and leads to instabilities particularly in
digital circuits, as a result of which much effort has been confined to MODFETs with lower
aluminium composition.

G. PARALLEL NONEQUILIBRIUM TRANSPORT - HIGH FIELD EFFECTS
AND MODFETS

We now examine high field transport in these structures. There are several ways in which these
problems can be studied. The drift and diffusion equations can be invoked, requiring the presence
of field dependent drift velocity for the carriers, or a nonequilibrium formulation transport can be
examined. For the case of nonequilibrium transport, the common approach has been to invoke
cither Monte Carlo or balance equation procedures. Only the Monte Carlo approach will be
discussed below.

A particularly interesting set of results has been discussed in [9] and (10]. Both of these
calculations include real-space transfer [11], permitting electrons from the narrow band gap
material, with a sufficiently large energy, to transfer back into the wide band gap material. Typical
material parameters used in these studies are represented in TABLE 1.

The structure studied in [9] consisted of a source drain spacing of 0.75 microns and a gate
contact, 0.5 microns long, located 0.1 microns from the source boundary. The thickness of the
AlGaAs was 400 A with a uniform donor concentration of 10!8<cm?®. The composition of
aluminium was 22% with a barrier near 190 meV. The gallium arsenide layer was undoped and
0.2 microns thick. While calculations were performed to examine the switching speed in going
from one voltage state to a state in which the gate and drain voltages were respectively 0.5 V and
1.0 V, we will concern ourselves only with the steady state.

What is to be expected? For these calculations in which only one volt falls across the source to
drain region, the average electric field is approximately 15 kV/cm, and is nonuniformly distributed
and determined by Poisson’s equation. While the electrons acquire energy from the field as they
traverse the structure there are phonon losses within the gallium arsenide layer, and the average
energy of the carriers increases to only 350 meV at the end of the channel. Within the channel and
for approximately 75% of the channel length most of the carriers in the GaAs are I valley carriers,
with most of the transfer to the subsidiary valleys occurring near the downstream portion of the
structure as shown in FIGURE 11a. The interesting feature of this result is that if most of the
carriers in the structure are gamma valley carriers, then the electron velocity within the channel
should be dominated by the low field mobility of the material. But a study of the mean carrier
velocity (FIGURE 11b) in the structure demonstrates that in regions wheré there is significant
clectron transfer, and a reduction of the numbers of gamma valley carriers, the average clectron
velocity in the gallium arsenide continues to increase. This is reasonable, since the mobility of the
subsidiary valleys is considerably smaller than that of the gamma valley and thereby makes a
negligible contribution to the total current. Thus, even when electron transfer occurs the current is
dominated by the high mobility carriers.
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FIGURE 11 (a) Average electron energy and percentage of I'-valley electrons
along the GaAs channel for y = 0.3. (b) Average electron velocity. (9]

Another feature of importance is the relative concentration of carriers in the subsidiary valleys of
AlGaAs. According to the model of [9], with the exception of a composition of 10% aluminium,
in which case most of the carriers remain in the lower energy portions of the conduction band or
the first 75% of the device length, the movement of the energy bands closer to the gamma valley
with increased aluminium composition implies that the percentage of carriers in the subsidiary
valleys increases. Thus there are fewer light mass carriers available to conduct current and the
mean electron velocity in the aluminium gallium arsenide is expected to be significantly below that
of gallium arsenide. FIGURE 12 displays the percentage of carriers in the subsidiary valley and
the corresponding average velocity. We point out that the velocity for all but the x = 0.1 mole
fraction is approximately an order of magnitude less than that of the mean velocity in gallium

arsenide.

In [9], the authors point out that in the low field region of the structure, which is dominated by
gamma valley transport, real space transfer from the gallium arsenide to the aluminium gallium
arsenide, which is the thermionic emission of electrons from one device layer to another because
of heating of the carriers by an electric field, is approximately balanced. In the high field regime,
which occurs near the end of the structure, gamma valley clectrons transfer to-the L valley. The L
valley electrons in the GaAs easily undergo real space transfer into the L valley of AlGaAs due to
deformation potential scattering and a relatively low offset barrier for the L valley electrons. The
electrons in the AlGaAs undergo further transfer to the X and L valleys. The X valley carriers do
not transfer efficiently to the X carriers in GaAs due to an unfavourable offset voltage.
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FIGURE 12 (a) Percentage of electrons in AlGaAs which have scattered into the X valley
for the indicated aluminium compositions. (b) Average velocity in AlGaAs. [9].

The study of [10] while similar to that discussed above emphasised the role of the transport in the
AlGaAs region subject to different doping distributions. In particular, they examined an
AlGaAs/GaAs MODFET, with a gate length of 0.5 microns, centrally placed, with a spacing of
0.3 microns from the source and drain metallisation regions. The aluminjum percentage was
30%. Two cases were considered. In the first an n* AlGaAs region 500 A deep was doped to
1.8 x 108/cm?, followed by an undoped AlGaAs spacer layer 50 A deep, and a 2000 A undoped
gallium arsenide layer. In the second structure, the first 400 A of the AIGaAs are undoped, the
last 100 A is doped to 5 x 10184m3; the remaining parts of the structure were unchanged. The
specific doping levels were chosen to assure identical gate capacitance and threshold voltage
levels. A self-consistent calculation was then performed, with the electrons subject to the same
scattering mechanisms as those discussed for [9]; namely polar optical, intervalley, ionised
impurity, and electron-electron scattering. Fermi statistics is also included. The calculations were
performed to reveal the differences in the high field transport in the AlGaAs for the two structures,
and thereby to reveal the relative merits of one against another. For a composition of 30%
aluminium, the offset voltage was taken as 256 meV.

Tk calculations were performed for a drain bias of 2.0 V and two different values of gate bias,
+0.4 V. A classical calculation of the conduction band profile under the gate contact for a gate bias
of 0.4 V is shown in FIGURE 13 (D-HEMT denotes delta doped structure, U-HEMT denotes
uniformly doped structure). Note that the higher conduction band levels for the D-HEMT in the
vicinity of the gate represent the presence of fewer electrons than for the U-HEMT. The channel
electric field profile for this calculation for both structures at a gate bias of 0.4 V is also displayed
in FIGURE 13. Note that with the exception of a small region near the drain contact the field

profiles are nearly the same, signifying that comparisons of the two structures are relevant.
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FIGURE 13 (a) Conduction band profile along a line perpendicular to the middle of the gate contact for a drain
bias of 2.0 V and a gate bias of 0.4 V. The zero coordinate is the Schottky contact. (b) Channel electric

field profile along the device. The zero coordinate is at the source. {10],

The observations of FIGURE 14, which are profiles of total electron concentration along:
(1) select regions of the AlGaAs (at a distance of 550 A), (2) the heterointerface (at a distance of
100 A from physical interface), and (3) the GaAs interior (at a distance of 1900 A), indicate that

under reverse bias there is little distinction between the two structures. However, at a bias of
0.4 V, there is a reduction of electrons in the AlGaAs, and a reduction in the parasitic
contributions. A supplementary calculation of {10] shows transconductance levels that are nearly
the same under reverse bias, but with substantial improvements under forward bias.
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FIGURE 14 (a) Relative electron concentration within various layers for a drain bias of 2.0 V and a gatc

bias of -0.4 V. The zero coordinate is at the source. (b) As in (a) but for a bias of 0.4 V. [10].
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H. NEGATIVE DIFFERENTIAL RESISTANCE THROUGH REAL SPACE
TRANSFER

Ii the discussion of transport in the MODFETS, we raised the issue of real space transfer. This
rhenomenon was first discussed in 1979 {11], and occurs as a function of bias in all structures in
which transport is parallel to a heterointerface. Consider the superlattice sketch shown in
FIGURE 15, and imagine carriers travelling parallel to the interface. If the structure is modulation
doped then with the doping only in the wide band gap material, there will be transport in the
narrow as well as wide band gap regions, with the mobility of the narrow band gap material being
higher because of a reduced number of scattering mechanisms. Under application of an applied
bias electrons travelling in the quantum well can acquire a sufficient energy far above their thermal
equilibrium value. Electron-electron interactions will help randomise the energy gained in the field
direction, and the transfer rate of electrons in the gallium arsenide and the aluminium gallium
arsenide will be determined by the thermionic currents from the wide band gap material to the
narrow band gap material and vice versa. As in the discussion of the energy gained in the
AlGaAs/GaAs MODFETs, electrons in the AlGaAs will not be heated to as high an energy as
those electrons in the narrow band gap region, and we may expect that the transfer rate at high
fields will not be the same. Indeed more carriers are expected to transfer from the GaAs to the
AlGaAs, with the consequent reduction in local mobility.

FIGURE 15 Sketch of a superlattice.

Thus we can imagine a device in which the source and drain regions permit transport parallel to
the interface, and two components of transport emerge. First: at sufficiently high values of
electric field electrons will undergo k-space transfer to subsidiary valleys. For sufficiently long
structures this is known to lead to negative differential conductivity and the consequences thereof.
Second: real space transfer introduces another component to the negative conductance, where it is
possible for gamma valley carriers of sufficient energy in gallium arsenide to transfer to gamma
valley carriers in a wide band gap tmaterial with a consequent region of negative differential
conductivity. It is also possible for L valley carriers in GaAs to transfer to L valley carriers in
AlGaAs with a2 consequent region of negative differential conductivity. Several initial
experimental results are summarised in (12]. But perhaps one of the more unusual results
associated with real space transfer has been the construction of negative differential resistance
transistors NERFETS [13]. These are reviewed in [14].

I. CONCLUSION

The alloy aluminium gallium arsenide is a material whose transport properties under conditions of
high fields offer a new dimension in terms of the design of electron devices. Those designs in
which transport is perpendicular to the interfaces are based in terms of the energetics of the
carriers entering the regions of interest, or, €.g., in the case of HBT upon the reduction of hole
injection into the emitter, and the enhancement of electron injection into the base. These devices
do not depend upon the specific high field properties of the AlGaAs fur their operation. Parallel
transport, however, does expose the high field transport properties of AlGaAs. Here while the
high field ransport properties associated with electron transfer in k-space are present in all devices
whose structure size is large enough to sense the NDM region, this is not the feature emphasised.
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Rather the effects of negative conductance through real space transfer are emphasised through an
understanding of its effect on the operation of such devices as MODFETs, or in the construction
of newer devices such as the NERFET.
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11. TRANSIENTS IN QUANTUM WIRES

Dissipation in rectangular quantum wires was studies through Monte Carlo
simulations.  Optical and acoustic phonons were considered and it was
demonstrated that hot-electron cooling is determined by cascade emission of
optical phonons followed by a slow second stage of inelastic electron-acoustic
phonon interactions (as well as by nonequilibrium hot optical phonons). A copy of
a recent paper is enclosed.
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Monte Carlo simulations of hot nonequilibrium electron relaxation in rectangular GaAs quantum
wires of different cross sections are carried out. The simulations demonstrate that the initial stage of
hot-electron cooling dynamics is determined by cascade emission of optical phonons and exhibity
strong dependence on the excitation energy. The second (slow) relaxation stage is controlled by
strongly inelastic electron interactions with acoustic phonons as well 2s by nonequilibrium (hot)
optical phonons. The relaxstion times obtained in our simulations are in good agreement with the
results of recent luminescence experiments, At low electron concentrations where hot phonon
effects are negligible the cascade emission of optical phonons may lead to the overcooling of the
electron system to temperature below the lattice temperature. These electrons then slowly (during
tens of picoseconds) relax to equilibrium due to the interaction with acoustic phonons. At certain
excitation energies strong intersubband electron scattering by optical phonons leads to electron
redistribution among subbands and intersubband population inversions. If the electron concentration
exceeds 10° cm™*, hot phonon effects come into play. In contrast to bulk materials and quantum
wells, hot phonon effects in quantum wires exhibit strong dependence on the initial broadening of
the energy distribution of the electrons. The very initial electron gas relaxation stage in quantum
wires is faster in the presence of hot phonons, while for 1>0.5 ps the hot phonon thermalization time
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defines the characteristic electron cooling time.

L INTRODUCTION

Potential possibilities of utilizing nnique properties of
quasi-one-dimensional (1D) semiconductor structures (peak-
like density of states, high packi=g density, high operation
frequencies) for the development of 2 new generation of
electronic and optoelectronic devices have stimulated en-
hanced interest in investigating the nonequilibrium electron
relaxation processes in these structures. Energy dissipation
processes of hot electron gases define such characteristics as
device operating speed, efficiency, gain, transport character-
istics, noise, etc. Although there exist a number of publica-
tions dealing with relaxation processes in 1D electron
gues.""thetehxmondymnofpmwm

mdiﬁmmbehavknofpwoexcinedehwm—holepln-
mas in 1D and 2D systems.®'> Time-resolved lnminescence
measurements in 1D quantum wires (QWIs)*!2 indicate that
nonequilibeium carrier relaxation to the lowest 1D state is
rather siow compared to that measured in quantum wells,
Thus, with current interest in developing a new generation of
devices based on 1D semiconductor structures it is important
to understand the temporal evolution of relaxation of non-
equilibrium carriers following initial excitation. This evolu-
tion, especially its initial stage (first few picoseconds follow-
ing polse excitation), is of great importance for device
applications, and, in particular, for high-speed photonic de-
vices. There are several important aspects of electron relax-
ation in 1D quantum wires to be considered in great detnil.

At the operating temperatures of most optoelectronic de-
vices (30-300 K), often the only important energy and mo-
mentum relaxation mecbanizm is the electron-phonon
interaction.*! In contrast to 3D or 2D systems, electron-
electron pair collisions in QW1s do not affect electron relax-
stion, whereas electron-phonon interactions remain very
strong, 416-1% That is why at low electron concentration when
the intersubband electron-clectron interaction is wesk,**
electron scattering by phonons determines the eatire electron
relaxation dynamics. It appears gan-hQWbmﬁr
from the same s in bulk materials. ®-2 Along with electron
Wmmmmmmn

been demonstrased® that acoustic phonon scattering in
Q%hemnyimluﬂcﬁebdnhckdmw
symmetry and the resuitant uncertainty of momentum con-
servation. Therefore, in considering the electron dynamic be-
havior in QW1 it is extremely important %0 allow for the real
phonon spectrum in QWis.

‘When electrons are excited well above the bottom of the
conduction band they relax via cascade emission of pbonons
and drive the phonon system out of equilibrium. It is now 2

explain observations of very slow electron cooling in quan-
tum wells following subpicosecond photoexcitation of hot
electrons (see, e.g., Ref. 25). The bot phonon problem in
QWIs bas been addressed previously in Refs. 2, 6, and 8.
However, the kinetic approach used in Ref. 2 does not pro-
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vide information about reiaxation dynamics, while in Ref. 8
the peculisrities related to 1D nature of nonequilibrium
electron-phonon systeid have been overlooked.

In contrast to 30 or 2D systems, the intrasubband
electron-clectron pair interaction in QWIs leads only to mo-
mentum exchange between interaction indistinguishable
electrons and does not contribute to the relaxation process.
Hence, at least during initial relaxation stage, the electron
gas cannot be described by a Maxwellian distribution func-
tion and it is necessary to investigate electron relaxation
without any a priori assumptions about the electron distribu-
tion function.>** Moreover, the 1D nature of optical phonons
in QWIs results in some specific peculiarities of hot phonon
hdldngﬂmshmldmm‘lymodifyhmphmmeﬁemin
WIs.

In this paper the simulation of the relaxstion of hot non-
equilibrium electrons has been carried out allowing for all
the specific aspects of electron dynamics in QWIs mentioned
sbove.

M. MODEL AND METHOD

Simulation of hot-clectron relaxation has been per-
formed in a rectangular GaAs QWIs embedded in AlAs. We
employ an ensemble Monte Carlo technique specially suited
for 1D electron simuiation.'* A two-dimensional, infinitely
doep square potential well coafines electrons in the QW1
with a multisubband energy structure. The hot-electron en-
euydmipaﬁonmodelincludaclemmwm

confined (LO), locatized surface (inter-
face) (SO) phooons,™* and bulk-like acoustic

as well as nonequilibrium optical phonon popula-
tions. We have included inelasticity of electron-acoustic pho-

non scatering in a QW1 in full detail using the sechnique
proposed in Ref. 23. The initial distribution of excited elec-
trons among subbands is considered to be defined by the
density of states for a given excess energy in each subband.

We start the simulation of electron relaxation after the
initial excitation by a short pulse with a duration of 0.1 ps.
‘We have not simulated electron relaxation in coberent regime
(<100 fs) which requires 2 quantum mechsnical descrip-
tion. Instead, we have focused our attention on the time
mnge 1>0.1 ..ps when elections can be treated
semiclassically. 2 We are interested primarily in peculiari-
ties of the electron-phonon interaction in QWIs. Therefore,
we do not take into account the electron-hole interaction.
This situation could take place when electrons are photoex-

the electron energy distribution due to two effects: (i) uncer-
tainty in electron initial energy due to the short electron av-
erage lifetime at the excited level (Aevi072 eV for
At=~10""* 3); (ii) spectral broadening of the exciting pulse
with duration of the order of 10" 5. In accounting for these
effects we assume that they both lead to & Gaussian distribu-
tion of electron energy at 1=¢,, which comesponds to the
end of the excitation pulse. A Gaussian broadening factor is
used instead of a Lorentzian (typically incorporated into ide-
alized theoretical modeis®™”) to prevent the unrealistically
large spread of electron encrgies. This approach has beea

2 J. Appl. Phys., Vol. 76, No. 2, 15 July 1984

justified for the electron-phonon interaction in a QWIs dem-
onstrating that the Golden Rule formalismm may be retained
by convolving a Gaussian broadening fimction containing a
constant broadening factor.® We vary the excitation energy
€, , which corresponds to the center of a Ganssian distribu-
tion, as well as, A¢, the half-width of this distribution.

Nomequilibrium phonons have been inciuded by calcu-
lating the phonon occupation number versus phonon wave
vector (phonon distribution) within the Monse Carlo proce-
dure. In accordance with the 1D nature of optical phonons in
QWIs, the increment of phonon occupation number after
each emission (sign +) or absorption (sign —) event is given
by the term £(2n/Aq)(n/N), where Ag is the step of the
grid in ¢ space used to record the N, histogram, » is the
electron concentration per unit length of a QWI, and N is the
actual nomber of particles in the simulation.

In Monte Carlo simulations of bulk and 2D nonequilib-
rium electron-optical phonon systems, the mesh intecval for
the phonon occupation number Ag is not a crucial parameter,
given that the interval is much less than the g-space region
populated by nonequilibrium phonons which can be easily
estimated. This is due to the fact that the phonon reabsorp-
tion rate depends on the integrated (average) occupancy over
the entire region which is not crucially sensitive % the mesh
interval. However, in ID systems as we will see in a due
course, the reabsoeption rate depends only on the local vaive
of phonon occupsncy N, at an appropriste ¢ value. There-
fore, as the mesh interval becomes smaller, both the local
occupancy snd the reabsorption rate become larger. This
problem is perticularly important when considering near-
monoenergetic electron excitation. There are, of course,
physical limits on the magnitude of Ag. These limits follow
from the uncertainty in the phonon longitudinal wave num-
ber due to the finite leagth of the QWL

We have taken a2 QWI of length L, =10 um, so that
Ag=2a/L,~6X10° cm™!. Hot phonon thermalization due
to the decay of optical phonons into acoustic phonons is
taken into account by recalculating N, for every mesh inter-
vﬂuthendofewhmm.hhsbeendmmmd"
that the phoron thermalization time 1, in low-dimensional
structures d:pends weakly on the sizes of the structare and is
close t0 the bulk value. For simulations at T=30 and 77 K,
we bave used the valve 7,,=7 ps.’ The time siep in our
simulations has been chosen to be smaller than the average
time between two events of electron scatiering by optical
phonons and much less than the phonon thermalization time
T- We have not taken into account the increase in the
mmmuamﬂdhwﬁm

oanly in a very narrow region of the Brillouin zone (near the
zone center), so that over the entire zone the average occu-
pation number increases only negligibly. This is true for sys-
tems of any dimensionality since the electrons interacting
with phonons populate caly the center region of the Brillonin
zone. Second, the acoustic phonons in QWIs embedded in
surrounding materials with similar elastic properties (GaAs
in AlAs in our case) may penetrate through GaAs/AlAs in-
terfaces and escape from the QWI. Therefore, we have ex-
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FIG. 1. Thoe evolution of the mesn-clectron energy in 8 QW1 with croes
section 150250 A? after excitation at two lattice wmperstures: (s) T=T7K
and (b) T=300 K. Curve | in (2) corresponds 10 eloctron excitation energy
€20 meV: 2, 42 meV; 3, 67 meV; 4, 100 meV. In (b) 1, 42 meV; 2, 67
meV: 3, 100 meV.

celient thermal conductivity and the QWI should not be
hested much more than the whole GaAs/AlAs structure.
Given that the surrounding AlAs is sufficiently massive, the
increase in temperature would be negligiblie even if the QWI
strongly radiates acoustic phonons.
M. RESULTS AND D.SCUSSION

A. Low electron concentrations

Let us first consider electron concentrations less than 10°
cm™! where nonequilibrium phonon effects can be neglected.
in the time scale of 10™* s electron relaxation exhibits one or
two distinguishabl: stages. Figure 1 demonstrates the elec-
trom cooling dynamics in a QWI with cross section 150250
A? for lattice temperatures of T=77 K and T=300 K, a5 well
a3 for different electron excitation energies ¢, counted from
the bottom of the lowest conduction subband. The mean
electron energy plotted on the vertical axis in Figs. 1(a) and
1(b) is calculated relative to the bottom of the first subband.

J. Appl. Phys., Vol. 76, No. 2, 15 July 1984

Thas it consists of two parts: the kinetic energy comrespond-
ing to one degree of freedom in 3 QW] and the intersubband
separstion energy. The electron excitation energy ¢, has
been varied from 20 to 100 meV. This implies that for this
perticular cross section of the QWI, up w0 the three lowest
subbands can be occupied by electrons st the initial time,
t=0. One can see from Fig. 1(a) that for electron excitation
at 20 meV, the electron gas cooling is slow (“slow” stage).
The “fast” stage in the mean electron energy dependence on
time is obeerved when electrons are excited above the optical
phonon energy (Awy o or Rwg,, where Awy, and Rwgg are
energies of LO and SO phonons, respectively). Electrons ini-
tially (in the subpicosecond time scale) cool down losing
their energy due to the interaction with optical phonons.
Since the optical phonon sbsorption events st temperature
T=77 K are negligibly rare, the electron gas relaxation dy-
pamics is determined by the emission of optical

with characteristic times 7,_;~10"" 5 and 7,_go~10"12 ¢
(for electron-LO and electron-SO phonon interaction, respec-
tively). It is worth to mention that ultrafast

carrier relaxation with characteristic cooling times of the
same order of magnitude have been experimentally observed
in time-resolved pbotoluminescence and cathodolumines-
cence messurements.>!12 At low optical excitation levels
the sharp line of band-edge photoluminescence occurs during
the laser excitation.®'? This implies that bot carriers Jose the
major portion of their excess energy during the time much
shorter than the excitation pulse of 25 ps. The analysis of
low-tempersture cathodoluminescence spectra suggests that
carrier capture and relaxation o the bottom subbends in
GaAs QWIs grown on nonplanar substrates occurs in a sub-
picosecond time scale. At a lattice temperature of T=300 K
the electron cooling dynamics is influenced strongly by op-
tical phonon absorption which reduces the electron gas cool-
ing rate (Fig. 1(b)}

The duration of the “fast” relaxation stage as well as the
entire electron gas cooling dynamics for €, >#%w; exhibits
a strong dependence on the excitation energy. As discussed
below, when electrons are excited just above the LO phonon
encrgy they cool down to the bottom of the first subband on
a subpicosecond time scale {curve 2 in Fig. 1(2) and curve 1
in 1(b)). Electrons emit optical phonons and occupy states
near the subband bottom. Therefore, the mean electron en-
ergy drops below that for €, =20 meV [curve 1 in Fig. 1(a)).
For a lattice temperature of T=300 K we observe anomalous
oooling dynamics when electrons occur below the thermal
equilibrium enesgy [curve 1 in Fig. 1(b)]. Overcooling of the
electron gas occurs if the electron excitation energy falls into
the range Aw o<e, <Awio+kpT/2, where kpaT/2 is the
electron kinetic energy at a given temperature T correspond-
ing to one degree of freedom in a QWL At lower tempers-
tures (I'=77 K) the transient electron
because the chosen broadening of electron initisl energy dis-
tribution exceeds the electron thermal equilibrium energy
kgT/2.

The “slow" stage of electron relaxation is controlled by
the electron interaction with acoustic phonons. Our calcula-
tions demonstrate that electron gas thermalization process in
a QWI of cross section of 150X250 A? lasts about 1 ns at a

Gaska ot ol. 3
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FIG. 2. Time evolution of mean-cieckon energy afier excitation for QWIs
with two different cross sections: 40X 40 A? (curves 1 and 2); 150%250 A?
{curves 3 and 4). Curves | and 3 correspond 0 excitation energy €, =20
moV; 2 and 4, 100 meV. The lattice texmperature is T'=77 K.

lattice temperature T'=30 K [Fig. 1(a)}, and 30 ps a1 T=300
K (Fig. 1(b)). This time depends strongly not only on the
Iattice semperature but also on the cross section of a QW1 as
does the acoustic phonon scatiering rate.” The role of acous-
tic pbonon scatering is demonstrated in Fig. 2 for electron
cooling dynamics in a QWI with a cross section 40X40 A?
compared with the cooling dynamics in a 150%250 A? QWL
The electron energy relaxation due to the intesaction with
acoustic phonons is much faster in the thin QWI as a result
of two factoes: (i) the acoustic phonon scattesing rate is
roughly inversely proportional to the cross section of 2 Q
and (ii) the inelasticity of the electron-acoustic phonon inter-
action also incresses with the decrease of the cross section.”
The relaxation times of the same order of magnitude
have been derived from the time-resolved i
cence measurements at low excitation levels.** After initial
hot-carrier relaxation below optical phonon energy, the fur-
ther evolution of the band-edge luminescence line shape is

action might be responsible for the time evolution of lumi-
nescence spectra. Rough estimates yield electron thermaliza-
tion time due to imeraction with acoustic phonons of the
order of 500 ps for the structure parameters and temperature
(T=5 K) of Ref. 12

One can see from Fig. 1(s) and Fig. 1(b) that the electron
thermal equilibrinm energy for Tw=300 K is larger than could
be expected from k,7/2~13 meV, while for T=77 K it
practically coincides with ky772=3.3 meV. The difference in
thermal equilibrium energies comes from the caiculation of
the electron mean energy in QWIs with multisnbband energy
structure. Approximately one third of electrons occupy upper
subbands in the equilibrium stase at a Iattice temperature
T=300 K due to the Boltzmann distribution. The mean elec-
tron energy includes the electron gas kinetic energy (k3 7/2)
of free motion along the wire and the energy representing the
spatial quantization (separation between subbands) in two

4 J. Appl. Phys., Vol. 76, No. 2, 15 July 1994
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FIG. 3. Time evolution of the occupancy of the first ssbband for the same
siractare parameters and excitation energies in Fig. 1; (a) T=77 K, (b)
T=30K.

other directions. In the extreme Limit of thick QW1Is, wher a
large pumber of subbands becomes occupied, the electron
mean energy tends to 3k,7/2 comesponding to the 3D elec-

tron gas.

Simmulation of hot-glectron relaxation dynamics in QWIs
demonstrates that intersubband electron scattering primarily
by optical phonous icads to 1 significant carrier redistribution
amoung subbands (Fig. 3). When electrons are excited well
sbove the bottom of the second subband (¢, =100 meV)
to ingeraction with optical phonons lead to & nonmonotonoas
time dependence of the relative of the first (low-
est) subband [curves 3 in Figs. 3(a) and 3(b)). Acoustic pho-
non scattering is also responsible for electron insersabband
transitions. For the case where the cross section is 150X%250
A?, the separation between the first and the second subband
is less than the optical phonon energy, so that electrons can-
not be scatiered from the bottom of the second subbend by

the emission of gptical phonons. Accordingly, at low tem- -

peratures electroa’can be “trapped” in the second subbend.
They are slowly (with characteristic time of tens and hun-
dreds of picoseconds) released from it doe to intersubband

Gasia of ol.
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15.6p

FIG. 4 Electron distribution in momentam spacs in 3 QWI with cross

section 150250 A? 3 pe after excitation with ¢, =67 meV. Curve | repre-
sexss the eloctron distribution in the first (lowest) sebband; curve 2 mpro-
sonts the second subbend. The lattice tempersture is 7'=77 K.

electron scattering by acoustic phonons {curves 3 and 4 in
Fig. 3(2)]: In this case the second subband serves as a hot-
electron reservoir and significantly slows electron cooling.
Even in the case when most electrons are excited into the
first subband (e, =20 meV), a small fraction of them (from
the high-energy tail of the Gaussian excitation energy distri-
bution) are initially scattered by acoustic phonons 0 the sec-
ond subband and then retum to the first one [curve 1 in Fig.
3(a)]. The eaergy of the piateau {curve 3 in Fig. 1(a)] virtu-
ally coincides with the position of the second subband with
respect to the first subband bottom (27 meV) indicating that
electrons are “trapped” there. At high temperatures [T=300
K, Fig. 3(b)] electrons “escape” from the upper subbands
due to intersubband absorption of optical phonons as well as
stronger intersubband acoustic phonon scattering, and reach
an equilibrium distribution among subbands in 30 ps.
Under certain excitation conditions intersubband elec-
tron scattering by optical phonons may lead 10 intersubband
population inversion. We observe an intersubbend population
inversion when two conditions are met: (i) separation be-
tween two lowest subbands in the QW1 is less than minimum
optical phonon (LO or SO) energy, 3o that electrons cannot
be scattered from the bottom of the second subband by the
emission of optical pbonons (we demonstrate resuits for a
QWI with cross section 150%250 A2, where this condition is
fulfilled); (ii) electrons are excited just above characteristic
energy =&, +Aw; o, where ¢, is the energy of the bottom
of the second sabband. Due 10 a significant difference in the
oumber of final states (peak-like density of states near each
subband bottom) electrons from both the first and the second
subbands are scatiered i into the second sub-
band bottom after the emission of LO phonons. Thus, the
mumber of electrons at the bottom of the second subband
exceeds the oumber of electrons at the bottom of the first
subband and a strong intersubband population inversion oc-
curs near the center of the Brillouin zone (k=0). Figure 4
presents the distribution of electrons in momentum space for

the two lowest subbands 3 ps after excitation. Electrons in
the first subband are still bot (wave numbers k>2x10" cm ™!
on curve | in Fig. 4) after emission of optical phonons and
they relax to the bottom of the subbend by inseracting with
acoustic phonons. Electrons in the second subbend occupy
states with smaller wave vectors near the subband bottom.
This populstion inversion near the center of the Brillouin
zone (k=0) lasts about 10 ps at a Iattice temperature of
T=77 K. This time is defined by intrasubband and intersub-
band electron scattering by acoustic phonons. Intersubbend
electron scatiering by acoustic phonons is responsible for
electron release from the second subband st low tempera-
tures where optical phonon absorption is virtmally frozen out,
while intrasnbband acoustic phonon scattering leads to the
thermalization of the electron distribution. As one can see
from Fig. 4 the population inversion at small electron wave
vectors is reduced due to presence of some fraction of elec-
trons near the bottom of the first subband. The nsumber and
energy of these electrons depend strongly on the excitation
regime. Due to the Gaussian electron excitation energy dis-
tribution some electrons from the high-energy tail can emit
two optical phonons and cool down $o the bottom of the first
subbend. Thus, as the electron initial energy broadening in-
creases, the occupation of states with small wave vector in
the firt subband also increases, and the effect of population
inversion decreases.

B. Hot phonon effects

Due to optical pisonon quantization and the resuitant 1D
momentum conservation in quantum wires, electrons can
emit or absorb optical phonons with wave vectors which are
strictly defined by the electron momentom and the phonon
energy. In general, the phonon wave pumber is defined by
the energy and momentum conservation equations and is
given by

gq=Jk*+k'*~2kk' cos @, 0]
wbmk is the electron wave mumber before scamering,

= JiIFX2m*wy/A is the clectron wave mumber sfter
:hapﬁon(dgnﬂormidm(dn-)oﬂhopdalpln—
non of frequency ey, and @ is the angle between electron
wave vectors before and after scattering. In 1D structures
there are just two final states for scattered electrons: forward
mﬁgwhhcmhlorhckwduﬂiuwhhmo
=~1. Consequently, there are two possible phonon wave
vectors available for emission (and two for absorption) by
any single electron:

Q=lk=k'|, qy=|k+k&'|. ()

In contrast, in quantum wells (or bulk materials) due 0 ex-
istence of additional degree(s) of freedom, cos @ can take any
value in the range (—1,+1), 30 that there is an entire range of
a phonon ¢ valves from [k—~£&'| to k+4’ available for elec-
tron interactions.

Therefore, electrons in QWIs having apprecisbly differ-
ent energies generate nonequilibriom phonons in different
narrow g-gpace regions which do not overlap. In tum, these
phonons can be reabsorbed only by the electrons that have
generated them, unlike in bulk maserials and in quantum
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FIG. S. Mean-clectron energy 23 a function of time sfer initial elecwon
excitation at an eoergy oqual 10 4.5 times the LO phoson saergy, for two
initial widibs of the slectron energy distribution. Elecyoa conceatration is
a=10° cm™! and lettice temperatare is T=30 K. Solid curves describe the
onergy evolution for the case of an equilibrium phoooa distribution. Results
apply 9 the case of a single-subband QW1 seglecting SO phomons.

wells where electrons can reabsorb phonons emitted by other
electrons. Consequently, electrons which have different ener-
gies cannot interact through the emission and subsequent re-
absorption of optical phonons. Thus, electrons and the
phonons associated with them (with appropriste wave vec-
tors) are isolated from other electron-phonon pairs if elec-
trons are in different states. Thus, for 1D structures we elimi-
nate one cross-correlation effect which is always present in
the nonequilibrium electron-phonon system in bulk materials
and in quantum wells and which is important when consid-
ering electric noise.®?

Another consequence of the 1D nature of the electron-
phonon interaction in QWIs is that the reabsorption probabil-
ity for each single electron in the QWI does not depend on
the integrated phonon occupation number but cnly on the
local occupancy at a certain g. This reabsorption probabiity
decreases as the phonon distribution spreads over ¢ space
(given that the integrated occupancy is defined by the con-
centration of excited electrons and remains constant), The
spread of the nonequilibrium phonon population in ¢ space
results from the broadening of the electron epergy distribu-
tion. As a resuit, the reabsorption rate and hot phonon effects
depend strongly on the energy distribution of excited elec-
trons.

Let us first consider a simplified picture in which there is
only one energy subband and SO pbhonons are neglected; that
is, only LO and acoustic phonons are present in the QWL
This simplified picture allows us to refine the pure 1D effect
of the broadening of the electron encrgy distribution on the
buildup of bot phonons and, hence, on electron cooling dy-
namics. 5 illustrates electron cooling dynamics in a
150%250 A? QWI &t T=30 K following initial electron ex-
citation at an energy 4.5 times the LO phonon energy for two
different Gaussian electron distribution half widths: 30 and 4
meV. For comparison, we plot the electron relaxation dynam-
ics without nonequilibrinom optical phonons. When hot
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phonons are neglected the cooling dynamics displays two
distinguishable stages: the fast stage (with subpicosecond du-
ration) due to the cascade emission of optical phonons, and
the second, slow stage of electron thermalization due © in-
teractions with acoustic phonons. it must be noted, howevez,
that in the given time scale of 10 ps, acoustic phonon scat-
tering does mot visibly influence the electron relaxation dy-
pamics in this QW1 with a rather large cross section of 150
X250 A% As one can sece from Fig. S the very initial
relaxation stage (¢<0.5 ps) is faster in the preseace of hot
created (4 meV), the faster is the very initial relaxation stage.
This effect can be understood if one first considers the sem-
perature dependence of the relaxation rase. At high tempers-
leads 10 fast enesgy redistribution of excited electrons. The
cooling rate of clectrons which emit optical phonons in-
creases and that of electrons which sheorb phonons decreases
because of the ¢! energy dependence of 1D density of
states and scattering rates. The increase, howeves, is faster
then the decrease due o the same €' function. Therefore,
the total 1D electron gas cooling rate increases when the
electron energy redistributes due t0 emission and sbeorption
of optical phonous. At very high semperatures this happens
on a very short time scale while electron distribution et low
temperatures still remains unchanged. Hence, the very initial
electron cooling rate in QWIs increases when increasing the
lattice temperamre, provided that electrons are excited well
above optical phonon energy and thermal equilibrium en-
ergy. (Note that in bulk materials, where the emission and
sbeorption rates increase with energy the relaxation rase is
higher at low lattice temperatures. There should be no tem-
perature depeadence of the initial relaxation rate in 2D sys-
tems.) To observe an sppreciable temperature effect on the
relaxation rate it is necessary that phonon occupation number
be greater thau 1. Under phonon equilibrium such occupation
mmbers could even be unachicvable in a solid stae. How-
ever, due 10 strong buildup of nonequilibrium phonons at
high excited electron concentrations the occupation number
for certain phonon modes may be considerably higher than 1.
This is why the initial relaxation is faster for higher nonequi-

electron energy distributions (Fig. 5).

One can see from Fig. 5 that the onset of hot phonons
leads 10 a substantial reduction of the electron gas cooling
rate for £>-0.5 ps due 10 strong reabsorption of nonequilib-
rium phonons. The onset of hot phonons occurs sooner if the
electron energy distribution is namower (4 meV). Hence,
electron cooling is slower for narrow electron distributions.
The effect of narrowing of the electron energy distribution is
similar to that of increasing the electron concentration and,
a8 we have already discussed, it is a purely 1D effect. As has
been demonstrated in a previous subsection, in QWIs with
small cross sections (4040 A2) the acoustic phonon scatter-
ing rate is higher and this scattering is much more inelastic
than in QWIs with large cross sections (150%250 A?).
Therefore, in a QW1 with a 40x40 A2 cross section, acoustic
phonon scattering is a very effective energy dissipation
mechanism and it is responsible for fast relaxation and
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FIG. 6. Moan electron eaergy ve time for & sealistic multissbband QW1
mmmmuwwmw-ﬂam
phonous. Electron cooceatration is oqual s = 10° cm ™, other peramencrs and
conditions ase the same as in Fig. 5.

smearing out the effect of the initial broadening of the elec-
tron distribution oe the cooling rate.

We have also coasidered the realistic case where the
multisubband structure of the QWI is taken into account
along with all possible optical phonon modes (LO snd SO).
Figure 6 shows the electron cooling dynamics in this realistic
strocture for 4 and 30 meV electron excitation linewidths.
The dependence of hot phonon buildup on the electron dis-
tribution broadening is washed out aimost complesely in this
realistic structure due to various intrasubband and intersubd-
band transitions assisted by the LO and the two SO modes.
The reason is that nonequilibrium phonon peaks in ¢ space
in this case overlap and form a complex broad distribution in
4 space virmally independent of initial electron distribution.
model is the dependence of the mumber of the upper sub-
bands invoived in electron cooling on the imitial electron
eneryy distribution. Figure 7 demonstrates the time evolution
of the subbend filling by electrons. In the case of a broad
¢clectron initial distribution (30 meV) there are more sud-
bands occupied by electrons scattered from the high-energy
tail. Therefore, the return of electrons to the first subband is
slower than for a narrow electron distribution (4 meV). Hot
phonons lead to stronger intersubband electron redistribution
and slower retum to the lowest subband. By compering Figs.
6 and 7 one notices that the different occupstion of subbands
for 4 and 30 meV excitation linewidths virtually does not
affect the mean-electron energies which coincide for both
excitation regimes after 3 ps following excitation. This, at
the first glance, strange behavior is related to the fact that the
electron kinetic energy related to 1D free motion in each
subbend is higher for 4 meV excitation linewidth due to
stronger bot phonon effects. This difference in kinetic ener-
gies is compensated by the higher occupation of the upper
subbands in the case of 2 30 meV linewidth. Consequently,
the 4 meV curve in Fig. 6 contains s larger pert of kinetic
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FIG. 7. Time evolutioa of the relative occupation of the fiest (lowest) sub-
band. Parameters are the same s in Pig. 6.

energy and a smaller part of “potential” energy than the 30
meV curve,

V. SUMMARY

Simulation reveals complex dependence of hot-electron
gas cooling dynamics on excitation energy, lattice tempera-
ture, and structure parameters of QWL Electron refaxation in
subpicosecond time scale is controlled by their inseraction
with confined optical phonons, whereas thermalization of the
electron distribution is defined by essentially inelastic
electron-acoustic phonon scattering. Electron gas thermaliza-
tion is much faster in a thinner QWI due to higher acoustic-
phonon scattering rate and stronger inelasticity of electron-
acoustic phonon interaction. The relaxation times obtained in
our simulations are in good agreement with the results of
optical measurements *!112

Varistion of the initial electron energy substantially
changes the entire picture of hot-electron relaxation due to
dnmmofemwithvmphminm

“trapped” in the upper subbands below the optical phonon
energy snd stay there for quite a long time defined by inter-
subband electron-ecoustic phonon inseraction.

We have found that hot phonon effects in QW1is are well
pronounced for electron concentrations equal %0 or higher
than 10° cm™' and depend strongly on the energy distribu-
tion of excited electrons. Hot phonon effects become wesker
as the broadening of the excited electron energy distribution
increases. This result is in complete contrast 10 the case of
bulk matetials and quantum wells where the energy distribu-
tion of excited electrons virtually does not affect the buildup
of nonequilibrium phonons and the reabsorption rate.
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12. RECOMMENDATIONS

The density matrix in the coordinate representation is an extraordinary
means of studying quantum transport in nanoscale devices. While not discussed in
this document this approach is being used to study the formation of barriers at
metal/semiconductor interfaces. Presently, the density matrix in the coordinate
representation, along with Green’s function approaches are the only quantum
device simulations explicitly accounting for dissipation. The density matrix is also
the only quantum transport procedure presently capable of handling both electron
and hole transport. Its ability to directly compute current from the nonequilibrium
quantum distribution function is a significant advance over those current
algorithms that employ the Tsu-Esaki formulation. Further, the presence of menu-
driven algorithms fur both workstations and PCs suggests that the approach taken
at SRA will provide a significant design tool.
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