Model of Anoxic-Aerobic Wastewater Treatment

at Phoenix 91st Avenue Plant

AD-A280 179

Robert C. Greybill

1547

94-17523

A Non-Thesis paper submitted in fulfillment of the requirements for the degree of

Master of Science in Civil Engineering

S ELECTE JUN 0 9 1994 F

University of Washington

1993

THE WILLITY IN SPECTED 2

(Chairperson of Supervisory Committee)			
Program Authorized to Offer Degree	This document has been approved for public release and sale; its distribution is unlimited.		

94 6 8 133

TABLE OF CONTENTS

	Page
List of Figures	iii
List of Tables	iv
Chapter 1: Introduction and Research Objective	1
Project Objective	1
Background Information	1
Chapter 2: Description of Michaelis-Menton Kinetics	
Substrate Removal Model	7
Description of Mass Balance Equations	11
Incorporation of Model into Excel Spreadsheet	21
Model Solution.	22
Chapter 3: Description of Substrate Storage Model	24
Description of Mass Balance Equations	25
Incorporation of Model into Excel Spreadsheet	29
Model Solution	30
Chapter 4: Results and Discussion	31
Chapter 5: Conclusion	42
References	76
Appendix A: Spreadsheet Model Based on	
Michaelis-Menton Kinetics	77
Appendix B: Spreadsheet; Storage Model	89
Appendix C: Mass Balance Equations	103

LIST OF FIGURES

Nun	aber	Page
1.	Schematic of Phoenix 91st Avenue	
	Anoxic-Aerobic Treatment System	6
2.	Storage Model; Ammonia Profile	43
3.	Storage Model; Nitrate Profile	44
4.	Storage Model; Nitrite Profile	45
5.	Storage Model; SCOD Profile	46
6.	Storage Model; PCOD Profile	47
7.	Storage Model; Oxygen Consumption Rate	48
8.	Storage Model; Stored SCOD Profile	49
9.	Effect of SRT on Ammonia Concentration	52
10	D. Effect of SRT on Nitrate Concentration	53
1	1. Effect of SRT on Nitrite Concentration	54
12	2. Effect of SRT on Stored SCOD / XH Ratio	55
13	3. Effect of DO on Ammonia Concentration	56
14	4. Effect of DO on Nitrate Concentration	57

Acces	ion For		
DTIC	ounced	000	
By form 50 Distribution/			
Availability Codes			
Dist Avail and/or Special			
A-1			

15.	Effect of Internal Recycle Withdrawal	
	Location on Ammonia Concentration	58
16.	Effect of Internal Recycle Withdrawal	
	Location on Nitrate Concentration	59
17.	Effect of Internal Recycle Withdrawal	
	Location on Nitrite Concentration	60
18.	Effect of Internal Recycle Flow Distribution	
	on Ammonia Concentration	61
19.	Effect of Internal Recycle Flow Distribution	
	on Nitrate Concentration	62
20.	Effect of Internal Recycle Flow Distribution	
	on Stored SCOD Profile	63
21.	Effect of Internal Recycle Flow Amount	
	on Ammonia Concentration	64
22.	Effect of Internal Recycle Flow Amount	
	on Nitrate Concentration	65
23.	4 November 1992 Data Set; Ammonia	
	Concentration; Storage Model	66
24.	4 November 1992 Data Set; Nitrate	
	Concentration; Storage Model	67
25.	4 November 1992 Data Set; Nitrite	
	Concentration; Storage Model	68
26.	4 November 1992 Data Set; SCOD	
	Concentration; Storage Model	69

27 .	Compare 4 November and 17 November 1992 Data Sets; PCOD Concentrations; Storage Model	7 0
28.	4 November 1992 Data Set; Oxygen Consumption Rate; Storage Model	71
29.	4 November 1992 Data Set; Stored SCOD Concentration; Storage Model	7 2
30.	Variation of Ammonia Concentration Profiles from Different Phoenix Plant Data Sets	7 3
31.	Michaelis-Menton Model; Nitrate Concentration	74
32.	Michaelis-Menton Model; SCOD Concentration	75

LIST OF TABLES

Num	ber	Page
1.	Coefficient and Parameter Definitions	8
2.	Input Requirements for Microsoft Excel	
	"Solver" Function	23
3.	Input Requirements for Microsoft Excel	
	"Solver" Function (for Storage Model)	30
4.	Effluent Concentrations of Ammonia,	
	Nitrate, and Nitrite	50

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Professor

H. David Stensel for his guidance in preparation of the mass balance equations for this model.

Chapter 1: Introduction and Project Objective

Project Objective

The objective of this project was to develop a model that can be used to evaluate the design and performance of a multiple staged anoxic-aerobic wastewater treatment system. This type of system has general application, and was first used at the 91st Ave. wastewater treatment plant in Phoenix, Arizona. The model simulates the concentrations of ammonia, nitrate, and nitrite in each of the stages of the ten-stage system, using a Microsoft Excel spreadsheet. The oxygen consumption rate is also computed in each stage. The staged treatment system performance was evaluated as a function of various design and operating parameters which include the effect of Solids Retention Time (SRT), the internal recycle flow rate and distribution, and aeration tank DO concentrations. Two models were developed for comparison. The first model was based on Michaelis-Menton kinetics. The second model was a modified version of the first model that takes into account soluble substrate uptake and storage in the initial stages.

Background Information

Nitrification and Denitrification Processes

Anoxic/aerobic treatment systems are used in wastewater treatment for the control and removal of nitrogen. Nitrogen concentrations in treatment plant effluents must be controlled in order to avoid adverse effects in receiving waters. High effluent ammonia-nitrogen concentrations may result in depletion of dissolved oxygen in receiving waters, thereby having a negative impact on aquatic life. Significant nitrogen concentrations in effluent can also accelerate the

eutrophication of lakes and allow for the growth of rooted aquatic plants and algae in streams. Therefore, nitrogen control strategies are an important part of wastewater treatment (Metcalf and Eddy, Inc., 1991)

The biological removal of nitrogen from wastewater requires a two step process. The influent ammonia is first converted to nitrate through a process known as biological nitrification. The transformation of ammonia-nitrogen to nitrate-nitrogen does not result in nitrogen removal, but it does eliminate its oxygen demand (Metcalf and Eddy, Inc., 1991). The nitrate can then be used as an electron acceptor under anoxic conditions (without oxygen), and can subsequently be reduced to nitrogen gas through a process known as denitrification (Stensel, 1992(a)). When describing the denitrification process, the term "anoxic" is used rather than "anaerobic". This is because the principal metabolic pathways involved in denitrification are modified aerobic pathways using nitrate as the final electron acceptor, rather than anaerobic reactions. (Metcalf and Eddy, Inc., 1991).

Nitrification is a two step process involving two different genera of nitrifying bacteria. In the first step, *Nitrosomonas* converts ammonia to nitrite. In the second step, nitrite is converted to nitrate by *Nitrobacter* (Metcalf and Eddy, Inc., 1991). This two step oxidation process is generally written as follows:

$$2NH_4^+ + 3O_2 \longrightarrow 2NO_2^- + 4H^+ + 2H_2O$$
 via Nitrosomonas
 $2NO_2^- + O_2 \longrightarrow 2NO_3^-$ via Nitrobacter

Nitrification is an autotrophic process. Ammonia oxidation provides the energy for growth of the nitrifying microorganism and carbon dioxide is used for cell synthesis. This can be contrasted with heterotrophic organisms, which use organic carbon for cell synthesis (Metcalf and Eddy, Inc., 1991). Dissolved oxygen concentrations above 1 mg/l are required to sustain reasonable nitrification rates.

The anoxic process of denitrification can be accomplished by several different genera of heterotrophic bacteria, such as *Pseudomonas*, *Bacillus*, *Achromobacter*, *Flavobacterium*, and *Spirillum*. These heterotrophs are capable of dissimilatory nitrate reduction in the form of the following reaction sequence:

$$NO_3^- \longrightarrow NO_2^- \longrightarrow NO \longrightarrow N_2O \longrightarrow N_2$$

This reaction sequence shows that the first step of denitrification involves the conversion of nitrate to nitrite. This is followed by the production of nitric oxide, nitrous oxide, and nitrogen gas. These three gaseous products can be released to the atmosphere, thereby completing the nitrogen removal process (Metcalf and Eddy, Inc., 1991). The presence of dissolved oxygen will suppress the enzyme system needed for this dissimilatory nitrate reduction process to occur.

Phoenix 91st Avenue Anoxic-Aerobic Wastewater Treatment Plant

The City of Phoenix 91st Avenue Wastewater Treatment Plant provides service for seven cities in the Phoenix, AZ area, receiving wastewater that is primarily of domestic origin. This plant uses conventional primary and secondary treatment with a design capacity of approximately 150 MGD. In September 1992, two existing aeration tanks were modified to accomplish nitrogen removal by converting to an anoxic-aerobic system with internal recycle. The

purpose of the modification was to achieve biological nitrification and denitrification without the added expense of constructing new aeration basins. The nitrogen removal goal was an effluent total nitrogen concentration of 10.0 mg/l or less. Test results over a six month period indicated that this goal was being achieved (Stensel, 1993(b)).

Figure 1 shows the layout of one of the two modified aeration tanks. The tank volume is 3.72 million gallons (315 ft x 100 ft x 15.5 ft deep), and it is sub-divided into 4-pass aeration channels with a 25 ft. width. The total flow length of the 4-pass channel system is 1260 ft. The primary effluent feed rate into stage 1 (Ax-1) of the basin is approximately 20 MGD. The internal recycle flow rate into stage 1 (Ax-1) and stage 3 (Ax-3) is 20 MGD and 40 MGD respectively. The return recycle sludge flow rate is approximately 9 MGD, and the operating solids retention time (SRT) is around 5 days (Stensel, 1993(b)).

The basin was sub-divided into several small initial anoxic stages, instead of using only one single anoxic stage of greater volume. This design feature was included in an effort to reduce sludge volume index (SVI) values, and to achieve shorter total anoxic detention times. These initial anoxic stages (Ax-1 and Ax-2), with short detention times and high F/M ratios, serve as biological selector zones that maximize soluble substrate uptake by non-filamentous bacteria (Stensel, 1993(b)). This helps to control sludge settling characteristics. The first two anoxic stages in the basin (Ax-1 and Ax-2) are mixed with course bubble diffusers. The remainder of the anoxic and aerobic stages are mixed with fine bubble diffusers. The operating dissolved oxygen concentration in the first four anoxic zones is maintained at or near zero. The fifth stage (Ax-5) is a very short zone with limited DO concentration. The last five aerobic zones (Ox-2 through Ox-6)

are operated with target DO concentrations of 2 to 3 mg/l. Significant biological storage of SCOD occurs in the first stage of treatment (Stensel, 1993(b)). Approximately 70 to 80 percent of the SCOD removed in the first anoxic zone is taken into cell storage by the microorganism population in the wastewater.

FIGURE 1: Schematic of Phoenix 91st Ave.
Anoxic-Aerobic Treatment System

Chapter 2: Model Based on Michaelis-Menton Kinetics

A Microsoft Excel (version 4.0) spreadsheet has been used to solve the anoxic-aerobic wastewater treatment system model. Ammonia, nitrate, and nitrite concentrations are calculated and plotted through each stage of the ten-stage system. Other model parameters include soluble chemical oxygen demand (SCOD), particulate chemical oxygen demand (PCOD), and the oxygen consumption rate in each stage. Mass balance equations were written for ammonia, nitrate, nitrite, SCOD and PCOD for each of the ten aeration basin stages. The oxygen consumption was based on the amount of nitrogen and COD oxidized in each stage, and appropriate stoichiometry relationships between oxygen consumed and unit substrate removed. Steady-state conditions were assumed for the model solution.

Internal recycle flow is withdrawn from stage 9 of the aeration basin. Therefore, the total flow into the first anoxic stage includes:

- (Qir(1)) Internal recycle flow from stage 9
- (Q_{ras}) Return flow from stage 10 (via secondary clarifier)
- (Q₀) Influent flow (from primary effluent)

The total flow into stage 3 includes the above listed flows and the internal recycle flow from stage 9 $(Q_{ir(3)})$.

The following is a listing of typical mass balance equations in stages 1 and 6 for each of the wastewater components being modeled. Descriptions of kinetic terms within the equations are also included (see **Table 1** for coefficient and

Table 1: Coefficient and Parameter Definitions

C 1 1	D.C 121	T1	C-11 #
Symbol	Definition	Typical	Cell #
		Value	on
			Spread-
			sheet
$\mu_{m(NS)}$	maximum specific growth rate for	0.50 d ⁻¹	T2
	nitrosomonas nitrifiers		
$\mu_{m(NB)}$	maximum specific growth rate for	0.70 d ⁻¹	V5
	nitrobacter nitrifiers		
$\mu_{m(H)}$	maximum specific growth rate for	3.2 d ⁻¹	P10
	heterotrophs		
Yns	yield of nitrosomonas nitrifiers	0.10 g TSS/	T3
		g NH4	
Ynb	yield of nitrobacter nitrifiers	0.05 g TSS/	V6
		g NH4	
YH	yield of heterotrophs	0.35 g TSS/	N10
		g COD	
K	heterotrohic maximum specific substrate	8 g COD/g	N24
	utilization rate	TSS-d	
k _s	half-saturation constant for soluble	20 mg/l	N13
J	substrate (for heterotrophs)	İ	
Kos	DO half-saturation constant for	0.1 mg/l	N14
	heterotrophs		
Kp	coefficient for particulate substrate	0.0009	R2
-	utilization	l/mg-d	,
koh	DO nitrate reduction inhibition constant	0.1 mg/l	P13
kon	DO half-saturation constant for nitrifiers	0.5 mg/l	P12
k _{N(ns)}	Nitrogen half-saturation constant for	0.5 mg/l	P5
• (•••)	nitrosomonas		
K _{N(nb)}	Nitrogen half-saturation constant for	0.60 mg/l	P11
11(110)	nitrobacter		
K _(sto)	coefficient for stored substrate utilization	0.937	P16
k _{SS}	half-saturation constant for stored		
33	substrate utilization		
$S_{s(10)}/X_H$	ratio of SCOD in cell storage to	0.000115	P19
3(10)11	heterotrophic biomass (stage 10)	g/g	
			<u> </u>

S _{s(9)} /X _H	ratio of SCOD in cell storage to	0.000388	P20
-2(3)II	heterotrophic biomass (stage 9)	g/g	
kd(h)	endogenous decay coef. for heterotrophs	0.06 g/g-d	N23
kd(n)	endogenous decay coefficient for nitrifiers	0.01 g/g-d	Т6
NOs	nitrate-nitrogen half-saturation constant	0.75 mg/l	N17
FDN	fraction of heterotrophs using nitrate for electron acceptor	0.5	N11
Fn	fraction of g NH ₄ -N / g TSS	0.1	T5
F _n O	dissolved oxygen concentration	0 / 3 mg/l	N15 and N26
So	influent soluble substrate concentration (primary effluent)	228 mg/l	N3
S ₁₀	effluent soluble substrate concentration for stage 10	0 mg/l	N3
S ₉	soluble substrate concentration in stage 9	0.1 mg/l	N7
$S_{\mathbb{R}}$	residual (non-biodegradable) SCOD	30 mg/l	P18
NOo	influent nitrate concentration (primary effluent)	0 mg/l	N19
NO ₁₀	nitrate nitrogen concentration in stage 10	10.0 mg/l	N20
NO ₉	nitrate concentration in stage 9	6.7 mg/l	N21
NO2 _o	influent nitrite concentration (primary effluent)	0.1 mg/l V2	
NO2 ₁₀	nitrite concentration in stage 10	0.7 mg/l	V8
NO29	nitrite concentration in stage 9	0.9 mg/l	V7
Po	influent particulate COD concentration (primary effluent)	228 mg/l	R3
P ₁₀	particulate COD concentration in stage 10	392mg/l	R4
P ₉	particulate COD concentration in stage 9	397mg/l	R5
No	influent ammonia nitrogen concentration (primary effluent)	45 mg/l T7	
N ₁₀	ammonia concentration in stage 10	2.9mg/l	T8
N ₉	ammonia concentration in stage 9	6.3 mg/l	T9
$\overline{v_1}$	volume of stage 1	0.156 MG	N18
$\overline{V_2}$	volume of stage 2	0.145 MG N27	
V ₃	volume of stage 3	0.5047 MG	N28
V ₄	volume of stage 4	0.124 MG	N29
V ₅	volume of stage 5	0.124 MG	N30
V_6	volume of stage 6	0.3394 MG	N31
V ₇	volume of stage 7	0.4648 MG	N32

Vg	volume of stage 8	0.9296 MG	N33
V ₉	volume of stage 9	0.4648 MG	N34
V ₁₀	volume of stage 10	0.4648 MG	N35
V_{T}	total volume of anoxic-aerobic basin	3.72 MG	P14
θ_{c}	SRT (solids retention time)	5 days	L2
Q_0	influent flow (primary effluent)	20 MGD	N2
QRAS	return flow from secondary clarifier	9.35 MGD	N4
Qir(1)	internal recycle flow to stage 1	20 MGD	N6
Qir(3)	internal recycle flow to stage 3	40 MGD	N25
XH	heterotroph concentration	2977 mg/l	N12
X _{NB}	nitrobacter concentration	31 mg/l	P4
X _{NS}	nitrosomonas concentration	62 mg/l	T4
Xio	influent inert solids concentration	20 mg/l	R6
Xi	inert solids concentration	537 mg/l	R7
X_{T}	total MLSS	3910 mg/l	P21
X _P	particulate solids concentration	300 mg/l	N/A

^{**} The value for $\mu_{m(ns)}$ (0.50d⁻¹) listed in the table above was obtained from Phoenix Plant data (Stensel, H.D.,1993(c)). The value for $\mu_{m(nb)}$ was derived by using a ratio of terms ($\mu_{m(nb)}/\mu_{m(ns)}$ =1.4) obtained from an EPA manual for wastewater treatment. This ratio was multiplied by the value for $\mu_{m(ns)}$ to obtain $\mu_{m(nb)} = 0.70 \text{ d}^{-1}$. The remainder of the coefficients listed in the table above were obtained from a variety of sources, including: (Abbott, 1992), (Metcalf and Eddy, Inc., 1991), and class notes from a course entitled "Biological Treatment Systems", H.D. Stensel, 1993.

parameter definitions, and typical values assigned). For a complete listing of mass balance equations, see Appendix C.

Description of Mass Balance Equations

Ammonia (NH₄-N) Mass Balances

Stage 1 (Ax-1)

Term (a) represents the flow of ammonia into and out of the first anoxic zone in the basin. Term (b) represents the depletion of ammonia by *Nitrosomonas* (nitrifiers). The dissolved oxygen value (O₁) is included to take into account the

inhibiting effect of low DO on nitrification rates. In the anoxic stages, the dissolved oxygen concentration (O₁) is assumed to equal zero. Therefore, is the first five stages, term (b) is equal to zero. Terms (c) and (d) represent the depletion of ammonia by the heterotrophic uptake of soluble COD (S₁) and particulate COD (P₁). Term (e) represents the addition of ammonia to the wastewater due to the decay and death of heterotrophic bacteria. The value for F_{DN} is included in term (e) because only a fraction of the heterotrophic organisms are able to use nitrate as an electron acceptor.

The ammonia mass balance for the first aerobic zone (Ox-2) is the same as the equation for Stage 1 above, except that term (e) is replaced with the following:

$$+(k_d)(X_H)(V_6)(F_N)\left(\frac{O}{k_{cc}+O}\right)$$

This ammonia production term (for endogenous decay) takes into consideration the limiting effects of low dissolved oxygen concentration. The entire ammonia mass balance for stage 6 (Ox-2) is written as follows:

$$V\frac{dN_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{6})$$
[Term (a)]
$$-\left(\frac{\mu_{ss(NS)}}{Y_{NS}}\right)\frac{(X_{NS})(N_{6})}{(K_{N} + N_{6})}\left(\frac{O_{6}}{K_{0N} + O_{6}}\right)(V_{6})$$
[Term (b)]
$$-Y_{H}\left[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{6})\right](F_{N})$$
[Term (c)]
$$-Y_{H}\left[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{6})\right](F_{N})$$
[Term (d)]

$$+(K_{d(h)})(X_H)(V_6)(F_N)\left(\frac{O_6}{k_{cc}+O_6}\right)$$
[Term (e)]

Nitrate (NO₃-N) Mass Balances

Stage 1 (Ax-1)

$$V\frac{dNO_1}{dt} = 0 = (Q_0)(NO_0) + (Q_{RAS})(0.1)(NO_{10}) + (Q_{r(1)})(NO_9) - (Q_0 + Q_{RAS} + Q_{r(1)})(NO_1)$$
term (a)

$$- \left(\frac{1 - 1.42 Y_H}{2.86}\right) \left(\frac{\mu_{\text{m(H)}}}{Y_H}\right) F_{DN} \left(\frac{S_1 X_H}{K_s + S_1}\right) \left(\frac{k_{\text{oh}}}{k_{\text{oh}} + O_1}\right) \left(\frac{NO_1}{NO_s + NO_1}\right) V_1 \\ \text{term (b)}$$

$$-\frac{1.42}{2.86}(k_d)(X_H)(F_{DN})\left(\frac{k_{oh}}{k_{oh}+O_1}\right)\left(\frac{NO_1}{NO_s+NO_1}\right)V_1$$
term (c)

$$-\left(\frac{1-1.42Y_{H}}{2.86}\right)F_{DN}(K_{P})X_{H}\left(\frac{k_{oh}}{k_{oh}+O_{1}}\right)\left(\frac{NO_{1}}{NO_{s}+NO_{1}}\right)V_{1}$$
term (d)

Term (a) represents the flow of nitrate into and out of the first anoxic zone in the basin. Term (b) represents the depletion of nitrate due to heterotrophic uptake of soluble substrate. Term (c) represents the use of nitrate during endogenous decay, and term (d) represents nitrate used due to particulate COD degradation.

Term (d) has been multiplied by fractions that account for the inhibiting effect of

high DO or low nitrate concentrations on the rate of nitrate depletion by heterotrophic organisms using NO₃⁻ as an electron acceptor.

Stage 6 (Ox-2)

The mass balance for nitrate in the first aeration zone (Ox-2) is as follows:

$$V\frac{dNO_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{6})$$

$$+ \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{6})}{K_{N} + NO2_{6}}\right) \left(\frac{O_{6}}{k_{on} + O_{6}}\right) V_{6}$$

$$+ \left(\frac{1 - 1.42Y_{H}}{2.86}\right) \left(\frac{\mu_{m(B)}}{Y_{H}}\right) F_{DN} \left(\frac{S_{6}X_{H}}{K_{s} + S_{6}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{6}}\right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right) V_{6}$$

$$+ \left(\frac{1 - 1.42Y_{H}}{2.86}\right) \left(\frac{k_{oh}}{V_{DN}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{6}}\right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right) V_{6}$$

$$+ \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN} (K_{P}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{6}}\right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right) V_{6}$$

$$+ \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN} (K_{P}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{6}}\right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right) V_{6}$$

$$+ \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN} (K_{P}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{6}}\right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right) V_{6}$$

$$+ \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN} (K_{P}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{6}}\right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right) V_{6}$$

Term (b) is added to this mass balance to represent the production of nitrate from nitrite by Nitrobacter.

Nitrite (NO₂-) Mass Balances

Stage 1 (Ax-1)

$$V\frac{dNO2_1}{dt} = 0 = (Q_0)(NO2_0) + (Q_{RAS})(NO2_{10}) + (Q_{tr(1)})(NO2_9) - (Q_0 + Q_{RAS} + Q_{tr(1)})(NO2_1)$$

This equation describes the flow of nitrite into and out of stage 1. This mass balance assumes that there is no production or depletion of nitrite in the anoxic zones, and that nitrite is not used for denitrification in the oxic zones.

Stage 6 (Ox-2)

$$V\frac{dNO2_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO2_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO2_{6})$$

$$+ \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \left(\frac{X_{NS}N_{6}}{K_{N} + N_{6}}\right) \left(\frac{O_{6}}{K_{on} + O_{6}}\right) (V_{6})$$

$$+ \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{X_{NB}NO2_{6}}{k_{N(NB)} + NO2_{6}}\right) \left(\frac{O_{6}}{k_{on} + O_{6}}\right) (V_{6})$$
term (c)

Term (b) represents the production of nitrite by Nitrosomonas. Term (c) represents the depletion of nitrite by Nitrobacter.

SCOD Mass Balances

Stage 1 (Ax-1)

$$V\frac{dS_1}{dt} = 0 = Q_0S_0 + Q_{RAS}S_{10} + Q_{tr(1)}S_9 - (Q_0 + Q_{RAS} + Q_{tr(1)})(S_1) - (R_{sw})(V_1)$$

where:
$$R_{su} = K(F_{DN}) \left(\frac{S_1 X_H}{k_s + S_1} \right) \left(\frac{k_{oh}}{k_{oh} + O_1} \right) \left(\frac{NO_1}{NO_s + NO_1} \right)$$

R_{SU} represents the rate of depletion of the soluble COD (SCOD).

Stage 6 (Ox-2)

$$V\frac{dS_6}{dt} = 0 = (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_5) - (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_6)$$
Term (a)

$$-\left(\frac{KS_6X_H}{k_s+S_6}\right)\left(\frac{O_6}{O_6+k_{os}}\right)V_6$$
Term (b)

$$-\left(\frac{KS_6X_H}{k_s + S_6}\right)\left(\frac{k_{oh}}{k_{oh} + O_6}\right)\left(\frac{NO_6}{NO_s + NO_6}\right)V_6(F_{DN})$$
Term (c)

Term (a) represents the flow of SCOD into and out of the first oxic zone (stage 6). Term (b) describes the depletion of SCOD by heterotrophic organisms using oxygen as an electron acceptor. A low DO concentration inhibits the SCOD utilization rate. Term (c) represents the depletion rate of SCOD by heterotrophic organisms using nitrate as an electron acceptor. High DO or low nitrate concentrations inhibit the rate of SCOD depletion.

PCOD Mass Balances

Stage 1 (Ax-1)

$$V\frac{dP_1}{dt} = 0 = (Q_0)(P_0) + (Q_0 + Q_{RAS})(P_{10}) - \frac{(V_T)(P_{10})}{\theta_c} + (Q_{tr(1)})(P_9) - (Q_0 + Q_{RAS} + Q_{tr(1)})(P_1) - r_p(V_1)$$
where:
$$r_p = F_{DN}(K_p P_1 X_H) \left(\frac{k_{oh}}{k_{oh} + Q_1}\right) \left(\frac{NQ_1}{NQ_c + NQ_1}\right)$$

The term labeled r_p describes the rate of depletion of PCOD by heterotrophic organisms under anoxic conditions.

Stage 6 (Ox-2)

$$V\frac{dP_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(P_{5}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(P_{6})$$

$$-(K_{p}P_{6}X_{H}V_{6})\left(\frac{k_{oh}}{k_{oh} + Q_{6}}\right)\left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right)(F_{DN})$$

$$-(K_{p}P_{6}X_{H}V_{6})\left(\frac{O_{6}}{k_{ou} + O_{6}}\right)$$

$$-(K_{p}P_{6}X_{H}V_{6})\left(\frac{O_{6}}{k_{ou} + O_{6}}\right)$$

$$-(K_{p}P_{6}X_{H}V_{6})\left(\frac{O_{6}}{k_{ou} + O_{6}}\right)$$
Term (c)

Term (b) describes the rate of depletion of particulate COD at low or zero DO concentrations using nitrate. Term (c) represents PCOD degradation at higher DO concentrations, where oxygen is used as the electron acceptor.

Oxygen Consumption

Equations for the dissolved oxygen consumption rate have been included in the five aerobic stages of this model (stages 6 through 10) in units of kg O_2 / hr. A present limitation of this model is that it does not account for the oxygen used in the anoxic stages due to the use of course and fine bubble aeration for mixing. The equation for stage 6 (Ox-2) is shown below as an example:

Stage 6 (Ox-2)

Dissolved Oxygen Consumption Rate (Kg O₂ / hr) per stage

$$= \left[(A)(r_{sw}) + 1.42(K_d) \left(\frac{O_6}{K_{cs} + O_6} \right) (X_H) \right] (V_6) + (3.22)(r_{NH_4(cs)}) (V_6) + (1.11)(r_{NO_2(cs)}) (V_6)$$
term (a) term (b) term (c)

where:

$$r_{su} = \left(\frac{KS_6 X_H}{k_s + S_6}\right) \left(\frac{O_6}{O_6 + k_{os}}\right) + K_p(P_6)(X_H) \left(\frac{O_6}{O_6 + K_{os}}\right)$$

$$A = 1 - 1.42(Y_H)$$

$$r_{NH_4(\alpha x)} = \left(\frac{\mu_{m(NS)}}{Y_{NB}}\right) \left(\frac{X_{NS}(N_6)}{K_N + N_6}\right) \left(\frac{O_6}{O_6 + k_{om}}\right)$$

$$r_{NO_{2}(ox)} = \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{6})}{K_{N} + NO2_{6}}\right) \left(\frac{O_{6}}{O_{6} + k_{om}}\right)$$

Term (a) represents the oxygen consumed for heterotrophic degradation of soluble and particulate substrate, and for endogenous decay. This term also describes the oxygen consumed during the endogenous decay of the heterotrophs. Term (b) represents the oxygen consumed as a result of depletion of ammonia by Nitrosomonas. Term (c) represents the oxygen consumed due to depletion of nitrite by nitrobacter under aerobic conditions.

Approximation of Biomass, Inert Solids and PCOD(10) Concentrations

An important and reasonable simplifying assumption used to solve the model equations was that the biomass concentrations were constant from stage to stage. This required performing a steady state mass balance for solids for the overall system. A similar approach was used for the particulate COD to aid in the model solution. Mass balance equations were done for the entire ten-stage system (as a whole) to approximate the following components:

X_H (Heterotrophic biomass concentration)

X_{NS} (Nitrosomonas Nitrifier concentration)

X_{NB} (Nitrobacter Nitrifier concentration)

X_I (Inert solids concentration)

P₁₀ (effluent PCOD concentration)

These mass balance equations have been rearranged, and are listed below:

$$X_{H} = \left(\frac{Y_{H}(\Delta S)(SRT)}{[1 + (k_{d(H)})(SRT)](\theta)}\right)$$

where:
$$\Delta S = S_0 - S_{10} + P_0 - \left(\frac{V_T P_{10}}{(SRT)Q_0}\right)$$

$$X_{NS} = \frac{Y_{NS}(N_0 - N_{10})(SRT)}{(1 + k_{d(n)}(SRT))\theta}$$

$$X_{NB} = \frac{Y_{NB}(N_0 - N_{10})(SRT)}{(1 + k_{d(n)}(SRT))\theta}$$

$$X_I = \frac{Q_0(X_{I(0)})(SRT)}{V_\tau}$$

$$X_t = X_H + X_{ns} + X_{nb} + X_I + X_P$$

$$P_{10} = (1.3)X_P$$

[This approximation assumes the relationship between P_{10} and X_p can be defined with the ratio: COD/VSS = 1.3. This ratio is used to convert P_{10} to X_{D1}

Assume $P_{10} = P_{avg}$

$$P_{\text{avg}} = \frac{Q_0 P_0}{\left(\frac{V_T}{(SRT)} + K_p(X_H)(V_T)\right)} = P_{(10)} \quad (solve for K_p)$$

The value for X_t (total MLSS) is obtained from Phoenix Plant data for the testing date that is used in the model. The last equation can then be rearranged to solve for K_p , with the assumption that $P_{10} = P_{avg}$.

Incorporation of Model into an Excel Spreadsheet

Appendix A shows the layout of the model on the Excel spreadsheet.

Column (B) lists the calculated concentrations for each of the components being modeled. These components are calculated using the Excel "solver" function, and are computed for each of the ten stages of the anoxic-aerobic basin. The six components included on the spreadsheet are as follows:

SCOD --- Soluble COD concentration (mg/l)

NO --- Nitrate-nitrogen concentration (mg/l)

PCOD --- Particulate COD concentration (mg/l)

NO --- Ammonia-nitrogen concentration (mg/l)

NO2 --- Nitrite-nitrogen concentration (mg/l)

Ox consu --- Oxygen consumed $(kg O_2 / hr)$

Columns (D) through (H) of the spreadsheet contain the output values produced by mass balance equations for each component in each of the stages. These mass balances have been written in terms of cell references. All kinetic constants and initial input values for this model are located in columns (L) through (X) of the spreadsheet. The lower portion of the spreadsheet contains output graphs and tables, describing the changing concentrations through the ten stage system for each component being modeled. Typical concentration curves based on plant data are also provided for comparison to the curves computed by mass balances.

Model Solution

Any of the input values in Table A.1 of Appendix A [columns (N) through (X) on the Excel spreadsheet] may be altered for the purpose of analyzing the effect on the anoxic-aerobic treatment system. When any of these input values are changed, the "solver function" in Excel must be used first to solve the two simultaneous equations for X_H and $P_{(10)}$. These equations are located in rows 41-42 and columns (N) through (O) on the spreadsheet. This solver command can be activated by clicking the Macro button in cell O-37.

The "solver command" must then be used ten more times for each of the ten stages in the treatment system. Using the first anoxic stage (Ax-1) as an example, the "solver function" would be selected from the Format Menu of Excel. Cell D6 would be used as the target cell in stage 1. Cells D6 through D10 would be set equal to zero as constraints in the "solver" dialog box. Cells B6 through B10 would be designated as the "changing cells". The table below lists the input requirements for the dialog box of the "solver function" in each of the ten stages. A macro button has been installed for each stage to speed up the solving process. Clicking this button with the mouse will automatically activate the "solver function" for the corresponding anoxic or aerobic stage. The button location for each stage is also listed on the following table:

Table 2: Input Requirements for Microsoft Excel "Solver" Function

Stage	Target Cell	Changing Cells	Constraints	Macro Button Location
1	D6 = 0	B6:B10	D6:D10 = 0	A5
2	D14=0	B14:B17	D14:D17=0	A13
3	D22=0	B22:B26	D22:D26=0	A21
4	D30=0	B30:B33	D30:D33=0	A29
5	D38=0	B38:B41	D38:D41=0	A37
6	D46=0	B46:B50	D46:D50=0	A45
7	D54=0	B54:B58	D54:D58=0	A53
8	D62=0	B62:B66	D62:D66=0	A61
9	D70=0	B70:B74	D70:D74=0	A69
10	D78=0	B78:B82	D78:D82=0	A77

There will normally be at least one stage within each run in which the "solver function" cannot find a feasible solution for the set of simultaneous equations. When this occurs, the component that did not achieve a successful solution must be identified, and "re-solved" individually using the "solver function". This component can be identified by observing the values listed in column (D). If the "solver" has found a successful solution, then all of the values in column (D) should be very close to zero. If any of the values in column (D) are not close to zero, then the corresponding component must re-solved. This provides a seed value that can be used to re-solve all of the mass balances for a particular stage simultaneously. The new seed value [re-entered into the appropriate row of column (B)] should allow for a successful solution using the "solver function". If not, then repeat the procedure for unsolved mass balances until appropriate seed values are obtained (see Microsoft Excel "User's Guide" for description of "Solver" command).

Chapter 3: Substrate Storage Model

As previously stated, significant substrate uptake and storage of SCOD occurs in the first anoxic zone in the aeration basin. An additional model has been developed that accounts for substrate storage on an Excel Spreadsheet, and is referred to in this paper as the "storage model". This model accounts for the initial accumulation and subsequent utilization of stored substrate within the cell. Steady-state conditions have again been assumed for this model. The concentrations of the following components are computed for each of the ten anoxic-aerobic stages:

ratio of soluble stored substrate to heterotrophic biomass (S_S/X_H) ammonia-nitrogen (N) nitrate-nitrogen (NO) nitrite-nitrogen (NO2) soluble substrate as chemical oxygen demand (S) particulate substrate as chemical oxygen demand (P)

In order to account for cell storage, the value for S_S is divided by X_H throughout this model to create a ratio (S_S/X_H). This normalizes the stored substrate concentration by relating it to the heterotrophic biomass concentration. The following mass balances are based on the assumption that as the amount of stored substrate per unit biomass increases, there will be a higher degradation rate.

Description of Mass Balance Equations

The following is a listing of typical mass balance equations for the "substrate storage model". See Table 1 for coefficient/parameter definitions and typical values. For a complete listing of mass balance equations, see Appendix C.

Ss/XH Mass Balances

Stage 1 (Ax-1)

$$V \frac{d\binom{S_{s(1)}/X_H}{dt}}{dt} = (Q_{tr(1)})(S_{s(9)}/X_H) + (Q_{RAS})(S_{s(10)}/X_H) - (Q_0 + Q_{tr(1)} + Q_{RAS})(S_{s(1)}/X_H)$$

Term (a)

$$+ \left(\frac{1}{X_H}\right) (Q_0 S_0 - Q_0 S_R)(0.7) - (R_{S_2 U})(V_1)$$
Term (b) Term (c)

where:

$$R_{S_sU} = k_{sto} \left(\frac{S_{S(1)}/X_H}{k_{ss} + (S_{s(1)}/X_H)} \right) \left(\frac{k_{oh}}{k_{oh} + O_1} \right) \left(\frac{NO_1}{NO_s + NO_1} \right) (F_{DN})$$

Term (a) represents the flow of stored substrate (S_S) into and out of the first anoxic zone. Term (b) describes the uptake of soluble COD into cell storage. Based on observations at the Phoenix Plant, this model assumes that 70 % of all influent SCOD is taken up into storage in the first anoxic stage (Ax-1). In the mass balance equations for stages 2 and 3, this uptake percentage is assumed to be

10 % and 100% respectively. Residual non-biodegradable SCOD is subtracted from the influent total SCOD concentration. Term (c) represents the rate of depletion of stored SCOD.

The stored substrate mass balance equations for the aerobic stages (zones 6 through 10) are similar to the above equation, with the exception that the Rs_Su equation is substituted with the following:

$$R_{S_{S}U} = k_{sto} \left(\frac{S_{S(6)}/X_{H}}{k_{ss} + (S_{S(6)}/X_{H})} \right) \left(\frac{O_{6}}{k_{as} + O_{6}} \right)$$

One potential weakness in this model is the lack of information available for estimating the following coefficients:

K_{sto} (coefficient for stored substrate utilization)

k_{ss} (half-saturation constant for stored substrate utilization)

For the run of the spreadsheet model shown in Appendix B, values of 0.937 1/day and 0.002 g/g were used for K_{StO} and k_{SS} respectively. However, the accuracy of these values is not known. The value for K_{StO} was estimated using an iterative process with the S_S/X_H mass balance equations in stages 5 through 10. A K_{StO} value was chosen that would satisfy the condition that S_S in stage 10 is less than or equal to one one-hundredth (1/100) of S_S in stage 5. In equation form:

$$S_{s(10)} < or = (0.01)(S_{s(5)})$$

This was based on the assumption that the rate of stored substrate utilization would rapidly start to decrease in the region of the curve where $S_{s(10)}$ is less than $(0.01)(S_{s(5)})$. Oxygen consumption data is expected to be available from the

Phoenix Plant in 1994, and this will hopefully allow for a better approximation of the K_{sto} value.

SCOD Mass Balances

The SCOD mass balance for stage 1 in the "Storage Model" is shown below:

Stage 1

$$V\left(\frac{dS_{1}}{dt}\right) = 0 = Q_{0}S_{0} + (Q_{tr(1)})(S_{9}) + (Q_{RAS})(S_{10}) - (Q_{0} + Q_{tr(1)} + Q_{RAS})(S_{1})$$
Term (a)
$$-(Q_{0}S_{0} - Q_{0}S_{R})(0.70)$$
Term (b)

Term (b) assumes 70 % uptake into cell storage of soluble degradable COD. For the mass balance equations in stages 2 and 3, 10% and 100% uptake is assumed respectively. Therefore, after the third anoxic stage, all degradable SCOD will theoretically have been depleted. These SCOD mass balances assume that none of the soluble substrate is metabolized by the microorganisms. All SCOD that is removed from the wastewater in the first three stages is taken up into cell storage. After the third anoxic zone (Ax-3), all that remains is the residual non-biodegradable SCOD (S_R), which remains at a constant concentration through the remaining seven stages in the basin.

The remainder of the storage model mass balances are identical to the equations listed for the model in Chapter 2 (for NH₄, NO₃, NO₂⁻, PCOD, and oxygen consumption), with the exception of the following three modifications:

Modification #1

For NH₄ mass balances, term (c) is replaced with the following (using stage 1 and 6 as an example):

$$-Y_H[X_H(R_{S,U})(V_1)](F_N)$$

where:

$$R_{S_sU} = k_{sto} \left(\frac{S_{S(1)}/X_H}{k_{ss} + (S_{s(1)}/X_H)} \right) \left(\frac{k_{oh}}{k_{oh} + O_1} \right) \left(\frac{NO_1}{NO_s + NO_1} \right) (F_{DN}) \qquad \{in \ anoxic \ zones\}$$

and

$$R_{S_3U} = k_{sto} \left(\frac{S_{S(6)}/X_H}{k_{st} + (S_{s(6)}/X_H)} \right) \left(\frac{O_6}{k_{st} + O_6} \right)$$
 {in aerobic zones}

This portion of the ammonia mass balance represents the depletion of NH₄-N used for cell synthesis during heterotrophic utilization of stored soluble substrate.

Modification #2

For NO₃ mass balances, term (b) is replaced with the following (using stage 1 as an example):

$$-\left(\frac{1-1.42(Y_H)}{2.86}\right)[(X_H)(R_{s_{zU}})(V_1)]$$

where:

$$R_{S_{SU}} = k_{sto} \left(\frac{S_{S(1)}/X_H}{k_{ss} + (S_{S(1)}/X_H)} \right) \left(\frac{k_{oh}}{k_{oh} + O_1} \right) \left(\frac{NO_1}{NO_s + NO_1} \right) (F_{DN})$$

The basic form of this term can be used in the NO₃ mass balance equations for both the anoxic and aerobic zones (all ten stages). This portion of the ammonia mass balance represents the depletion of NO₃-N by heterotrophic utilization of stored soluble substrate.

Modification #3

For dissolved oxygen consumption, the heterotrophic substrate utilization rate (r_{SU}) is replaced with the following equation for stored substrate utilization rate:

$$R_{S_{S}U} = k_{sto} \left(\frac{S_{S(6)}/X_H}{k_{ss} + (S_{s(6)}/X_H)} \right) \left(\frac{O_6}{k_{os} + O_6} \right) + k_P(P_6)(X_H) \left(\frac{O_6}{k_{os} + O_6} \right)$$

Incorporation of Model into Excel Spreadsheet

Appendix B shows the layout of the storage model on the Excel spreadsheet. An additional component (Sg/XH) has been added under column (B) of each stage, along with the associated output value produced by mass balance equations in columns (D) through (F). A chart displaying the fluctuation of the Sg/XH value in each of the ten stages has also been added on the lower portion of the spreadsheet. The remainder of the spreadsheet layout is identical to the model previously described in Chapter 2.

Model Solution

The procedures for operation of this storage model are similar to those described in Chapter 2 of this paper. The only difference is that one additional mass balance equation (for S_S/X_H) must be incorporated into the solution process for each stage. Table 3 lists the input requirements for the dialog box of the "solver function" in each of the ten stages (for manual use of the "solver" command). Macro buttons have again been installed for each stage to speed up the solution process.

Table 3: Input Requirements for Microsoft Excel
"Solver" Function (for Storage Model)

Solver Function (101 Storage Winder)					
Stage	Target Cell	Changing Cells	Constraints	Macro Button Location	
1	D6=0	B6:B10;B12	D6:D10;D12=0	A5	
2	D14=0	B14:B17;B20	D14:D17;D20=0	A13	
3	D22=0	B22:B26;B28	D22:D26;D28=0	A21	
4	D31=0	B31:B33;B36	D31:D33;D36=0	A29	
5	D39=0	B39:B41;B44	D39:D41;D44=0	A37	
6	D47=0	B47:B50;B52	D47:D50;D52=0	A45	
7	D55=0	B55:B58;B60	D55:D58;D60=0	A53	
8	D63=0	B63:B66;B68	D63:D66;D68=0	A61	
9	D71=0	B71:B74;B76	D71:D74;D76=0	A69	
10	D79=0	B79:B82;B84	D79:D82;D84=0	A77	

Chapter 4: Results and Discussion

Introduction

The storage model was run using the typical kinetic coefficients shown in Table 1. The spreadsheet results are provided in Appendix B. Profile data from the Phoenix Treatment Plant was available for eight different testing dates between October 1992 to April 1993. A data set from 17 November 1992 was selected for analysis in this paper because the concentrations of the various components were in the average range when compared to the other data sets.

Some coefficient and parameter values from the Phoenix Plant profile data were input directly into the model. These include values for:

 Q_0 (influent flow) = 20 MGD

 Q_{ras} (return flow) = 9.34 MGD

 X_T (total MLSS) = 3910 mg/l

 X_{ns} (nitrosomonas concentration) = 62 mg/l

 X_{nb} (nitrobacter concentration) = 31 mg/l

The values for X_{ns} and X_{nb} were computed in a summary report on the Phoenix Plant operations (Stensel, 1993(c)). These calculations were based on the average influent TKN, SRT, and COD removed over a two week period. The original intention was to use the following equations for calculation of X_{ns} and X_{nb} :

$$X_{NS} = \frac{Y_{NS}(N_0 - N_{10} - N_{sym})(SRT)}{[1 + k_{d(s)}(SRT)]\theta}$$

$$X_{NB} = \frac{Y_{NB}(N_0 - N_{10} - N_{sym})(SRT)}{[1 + k_{d(n)}(SRT)]\theta}$$

where:
$$N_{syn} = \frac{X_T(V_T)}{(SRT)(Q_0)} (0.09)$$

*** N_{syn} = amount of influent nitrogen
used for cell growth

However, use of these equations yielded values that were 15 percent higher than the average values obtained directly from available plant data. Therefore, concentrations of nitrosomonas and nitrobacter (X_{ns} and X_{nb}) were fixed for the purpose of this analysis (for the SRT analysis, the X_{ns} and X_{nb} values were prorated to account for changing SRT).

Table 1 shows that there are many different coefficients that could conceivably be adjusted to achieve a "better fitting curve". However, for the purposes of this analysis, the only coefficients that were considered for adjustment in curve fitting are as follows:

 $K_{N(mb)}$ (nitrogen half saturation constant for nitrobacter) = 0.6 mg/l $\mu_{m(mb)}$ (maximum specific growth rate for nitrobacter nitrifiers) = 0.7 d⁻¹ X_{IO} (influent inert solids concentration) = 20 mg/l

The values for $K_{N(ns)}$ and $\mu_{m(ns)}$ were fixed at 0.5 mg/l and 0.5 d⁻¹ based on testing data obtained from Phoenix Plant (Stensel(b), 1993).

In order to run the spreadsheet model, several initial assumptions were made for influent concentrations, and concentrations in stages 9 and 10. The internal recycle withdrawal is located in stage 9, and therefore required an assumed concentration for each component. Assumed concentrations for stage 10 were needed due to the return flow that is cycled through a secondary clarifier.

Assumed concentrations for the following components are taken directly from the Phoenix Plant Data (for the particular testing date being analyzed):

SCOD (influent)

SCOD (stage 9)

SCOD (stage 10)

Nitrate (stage 10)

Nitrate (stage 9)

Ammonia (influent)

Ammonia (stage 10)

Ammonia (stage 9)

Nitrite (influent)

Nitrite (stage 10)

Nitrite (stage 9)

These values were used to initiate the computations in the spreadsheet. The calculated values (computed in the model) were normally very close to the concentrations that were initially assumed. Influent nitrate was always assumed to equal zero in this model, and the influent PCOD concentration was assumed to equal the influent SCOD concentration (as a rough approximation).

Figures 2 through 8 show the results for the storage model using coefficient and parameter values as listed in Appendix B. The calculated NH₄, NO₃, and NO₂⁻ concentrations (produced by the model) correspond fairly well to the

Phoenix Plant Profile Data in each stage of the ten stage system. The calculated concentration for NH₄ decreases steadily in the aerobic zones (stages 6 through 10) as NH₄ is transformed into NO₂⁻ and NO₃ through the nitrification process. As shown in Figure 2 for ammonia, the calculated influent concentration is 25 % greater than the influent Plant Data concentration. This difference is due to the assumption that the influent flow for the Storage Model profile for ammonia includes TKN (Total Kjeldahl Nitrogen). However, the Phoenix Plant Data only includes the inorganic NH₄-N, as evidenced by historical Plant Data. The influent TKN value was assumed to be approximately 25% greater than the inorganic NH₄-N influent value. All of the organic nitrogen is assumed to be hydrolyzed in the first anoxic zone (stage 1). Consequently, the calculated (model) curve and the Plant Data curve are directly comparable in later stages (Figure 2), due to the fact that most of the inorganic NH₄-N should be released as the number of stages increases.

The calculated curve for Nitrite (Figure 4) does not correspond to the Plant Data curve as well as for NH₄ and NO₃. The Plant Data profile shows nitrite depletion in stages 1 and 2. The mass balance equations for the Storage Model do not include depletion terms for NO₂⁻ in the anoxic stages. Therefore, the model curve rises well above the Plant Data curve in stages 1 and 2. The remainder of the stages correspond fairly well.

The model and plant data curves for SCOD (Figure 5) fit very well, with the assumption that 70% of the degradable SCOD is taken up into cell storage in the first anoxic zone. The figure shows that most of the biodegradable SCOD is depleted after reaching the third anoxic zone, leaving only the non-biodegradable (residual SCOD) in the remaining seven stages.

There is no plant data available for comparison when evaluating the profile curves for PCOD, oxygen consumption rate, and S_S/X_H (ratio of stored SCOD to heterotrohic biomass concentration). The PCOD curve is shown in Figure 6. The PCOD concentration accumulates in stage 1 (due mostly to the internal recycle flow from stage 9), and is then gradually degraded in stages 2 through 10. Figure 7 is a bar chart showing the oxygen consumption rates computed by the model in stages 6 through 10. The rates are computed in units of kg/hr, and converted to mg/l-hr for plotting on the bar chart. Figure 7 shows that the O₂ consumption rate is fairly constant in stages 6 through 9, and drops slightly in stage 10 due to declining NH₄ and NO₂⁻ concentrations. No oxygen consumption is assumed to occur in the anoxic stages (zones 1 through 5).

The stored substrate curve (S_S/X_H) is shown in Figure 8. Although there is no plant data available for comparison, the curve behaves as would be expected. The peak amount of SCOD in cell storage occurs in the first anoxic zone, with gradual depletion to near zero in stage ten.

Analysis of Parameter Adjustments (Using Storage Model)

The Storage Model as shown in Appendix B was analyzed to determine the effect of adjusting various operating parameters. The following adjustments were made (individually) using the coefficients and parameters listed in Appendix B as the default values:

- 1) Vary SRT (Solids Retention Time)
- 2) Vary DO (dissolved oxygen concentration) in aerobic stages

(6 through 10)

- 3) Change the internal recycle withdrawal location from stage 9 to stage 10
- 4) Vary the percent distribution of internal recycle flow from stage 9 to stages 1 and 3.
- 5) Increase the internal recycle flow from stage 9

Effect of SRT

The effect of SRT was varied from 3, 5, 7 and 9 days. The effect of raising the SRT on NH₄, NO₃ and NO₂⁻ concentration can be seen in Figures 9, 10, and 11. As SRT increases, the effluent NH₄ concentration decreases and the effluent NO₃ concentration increases (see Table 4). This can be attributed to the fact that the nitrifier biomass increases as SRT increases, thereby resulting in a greater nitrification rate, and more rapid depletion of NH₄. Figure 11 shows that the effluent NO₂⁻ concentration drops sharply as SRT increases, due to decreased amounts of NH₄ available for transformation to NO₂⁻ by nitrosomonas in stage 10. The SCOD concentration remains fairly constant as SRT is increased, while peak stored substrate (S_S/X_H) ratios decline (see Figure 12). The latter effect is mainly due to the increases in heterotrophic biomass concentration that occurs as SRT increases.

Effect of Dissolved Oxygen Concentration

The dissolved oxygen concentration was varied in the aerobic zones (stages 6 through 10). DO concentrations of 0.5, 1.0, 2.0, 3.0 mg/l were used. The effect

of raising DO levels on NH₄ and NO₃ concentration profiles can be seen in Figures 13 and 14. As DO is decreased, effluent NH₄ concentrations increase and effluent NO₃ concentrations decrease (see Table 4). This change is to be expected due to the inhibitory effects of low dissolved oxygen concentrations on the nitrification rate. As the DO level falls below 2 mg/l, the rate in which NH₄ is converted into NO₂⁻ and NO₃ is reduced, resulting in higher effluent NH₄ concentrations. There is little change in the profile for nitrite, with only a small decrease in effluent NO₂⁻ concentration in stage 10 as DO increases.

Effect of Internal Recycle Withdrawal Location

With the current aeration basin design, the internal recycle flow is withdrawn from stage 9. One-third of this flow is directed to stage 1 (20 MGD), and the remainder (40 MGD) feeds into stage 3. As part of this analysis, the Storage Model was modified so that the internal recycle flow was withdrawn from stage 10 instead of stage 9. The effect on the NH₄, NO₃ and NO₂⁻ concentration profiles can be seen in Figures 15 through 17. Changing to stage 10 withdrawal lowers the NH₄ and NO₂⁻ curves slightly. This is due to the lower concentrations of ammonia and nitrite that are being recycled from stage 10 (in comparison to stage 9). The change in withdrawal location raises the NO₃ profile (Figure 16) due to the higher nitrate concentration that exists in stage 10. However, the effluent concentrations of each component remain approximately the same (see Table 4). This would suggest that little benefit would be realized as a result of relocating the withdrawal location. There is little change observed in the SCOD, PCOD and stored substrate curves as a result of changing the withdrawal location.

Effect of Internal Recycle Flow Distribution

The internal recycle flow distribution to stages 1 and 3 (from stage 9) was varied with five different scenarios as follows:

	$Q_{ir(1)}$	$Q_{ir(3)}$
60 MGD =	20 MGD	40 MGD
	30 MGD	30 MGD
	40 MGD	20 MGD
	50 MGD	10 MGD
	60 MGD	0 MGD

As can be seen in Figures 18 and 19, the re-distribution of internal recycle flow does not have a significant effect on the NFI₄ and NO₃ profiles, except for in stages 1 and 2. As the percentage of internal recycle flow into stage 1 is increased, the concentration of NH₄ in stages 1 and 2 is decreased, and the concentrations of NO₃ and NO₂⁻ in stages 1 and 2 are increased. The effluent concentrations for all five distribution scenarios remain fairly constant (see Table 4). SCOD concentrations drop slightly in stages 1 and 2 as increased flow is fed into stage 1 (SCOD declines by approximately 5% as flow into stage 1 is increased from 20 MGD to 60 MGD). Similarly, PCOD concentration also fell slightly in the first two anoxic stages, with the effluent levels remaining essentially the same. Figure 20 shows the effect of varying internal recycle distribution on stored SCOD concentration, with declining S_S/X_H values as flow to stage 1 is increased.

Effect of Increased Internal Recycle Flow

The existing internal recycle flow from stage 9 is approximately 60 MGD.

The Storage Model was used to analyze the effects of varying this withdrawal flow as follows:

	$Q_{ir(1)}$	$Q_{ir(3)}$
40 MGD =	13.33 MGD	26.67 MGD
60 MGD =	20 MGD	40 MGD
75 MGD =	25 MGD	50 MGD

Each of these three scenarios assumes that one-third of the internal recycle flow is directed into stage 1, with the remainder being fed into stage 3. Figures 21 and 22 show the effect of increased flow on the ammonia and nitrate concentrations. As internal recycle flow increases, the NH₄ concentration decreases in stages 1 through 7, while NO₃ concentrations increase in stages 1 through 7, and decrease through the remainder of the aerobic zones. Table 4 shows that NH₄ effluent concentrations change very little with increased flow. Little change occurs in the NO₂⁻ profile, with only small concentration increases in the anoxic zones as internal recycle flow increases. The stored SCOD curve lowers only slightly as flow increases.

Analysis of Alternate Data Set (Phoenix Plant Data from 4 November 1992)

The spreadsheet run shown in Appendix B was based on Phoenix plant data dated 17 November 1992. In order to determine how well the Storage Model would "fit" to another set of plant data, an additional run was performed using the 4 November 1992 data set. The results are shown in Figures 23 through 29. As can be seen, the ammonia and nitrate profiles do not fit as well as was observed with the 17 November Plant Data. However, there still seems to be an adequate correlation with the Plant Data curve. The SCOD model curve (Figure 26) falls below the Plant Data curve, suggesting that the percentage of SCOD uptake into cell storage is significantly less than the assumed 70% (in stage 1). Figure 30 is provided to show the wide variability in NH4 Plant Profile Data for different testing dates.

Comparison of Michaelis-Menton Model to Storage Model

The Michaelis-Menton Model (described in Chapter 2) has been run using the same coefficients and parameters used for the Storage Model (Appendix B). The results of the Michaelis-Menton Model are provided in Appendix A, including concentration profile charts for each component being modeled. The curves for NH₄ and NO₂⁻ are similar to the Storage Model in terms of correspondence with the Plant profile data. The PCOD concentration profiles for the two models are also very similar. The NO₃ profile in the Michaelis-Menton model, however, is considerably lower than for the Storage Model (see Figure 31). The calculated SCOD curve in the Michaelis-Menton Model (Figure 32) does not take into account non-biodegradable SCOD. This explains the poor correspondence between the model and Plant Data curves for SCOD. This can be compared with

the SCOD profile for the Storage Model (Figure 5), which does take the residual (non-biodegradable) SCOD into account, and provides a much closer approximation of the actual concentrations in each stage. The SDNR (Specific Denitrification Rate) curve shown for the Michaelis-Menton Model in Appendix B fits much better to the Plant Data than the SDNR curve for the Storage Model (shown in Appendix A). This suggests that the Storage Model is not sufficiently calibrated due to lack of information for kinetic coefficients.

Chapter 5: Conclusions

Two models have been developed to simulate various components of an anoxic-aerobic treatment system in Phoenix, Arizona. An initial observation suggests that both models appear to be equally sufficient in their ability to approximate NH₄, NO₃⁻, and NO₂⁻ concentrations in each of the ten stages. When comparing modeled concentrations to Phoenix Plant Data, neither model produces a precise estimate of actual concentrations within the aeration basin. Only a rough approximation is obtained. The Storage Model should provide a more reasonable correlation, due to the fact that it takes into consideration the uptake of soluble degradable COD into cell storage. The Michaelis-Menton Model does not take this into account. However, in view of the results, no conclusion can be reached concerning the superiority of one model over the other.

An analysis was performed using the Storage Model to determine the effects of adjusting various operating parameters. The model responded in a logical manner, predicting decreased NH4 concentrations and increased NO3 concentrations as the SRT and DO levels were increased. The internal recycle withdrawal location was changed from stage 9 to stage 10 as part of the analysis. The model showed that this modification would have little effect on the effluent NH4, NO3, and NO2⁻ concentrations. However, the model could not be calibrated due to lack of certainty in the kinetic coefficients. Appropriate values for the K_{StO} and k_{SS} storage terms are not known, and had to be roughly approximated for the purposes of this model. Therefore, the model cannot be used to predict profile concentrations of the various components. Nevertheless, the Storage Model could be used to predict trends in profile concentrations as a result of changing various operating parameters.

FIGURE 2: Storage Model; Ammonia Profile

FIGURE 3: Storage Model; Nitrate Profile

FIGURE 4: Storage Model; Nitrite Profile

FIGURE 5: Storage Model; SCOD Profile

FIGURE 6: Storage Model; PCOD Profile

FIGURE 7: Storage Model; Oxygen Consumption Rate

FIGURE 8: Storage Model; Stored SCOD Profile

TABLE 4: Effluent Concentrations of NH₄, NO₃ and NO₂⁻
EFFLUENT CONCENTRATIONS
(Storage Model)

	Ammonia (mg/l)	Nitrate (mg/l)	Nitrite (mg/l)
Internal Recycle Withdrawal Location		, ,	· • ·
Stage 9	2.32638	10.5886	0.95286
Stage 10	2.7225	9.78687	0.98328
<u>SRT</u>			
3 days	5.98667	7.70259	1.10224
5 days	2.32638	10.5886	0.95286
7 days	0.56086	12.6163	0.48776
9 days	0.16648	13.6194	0.199
DO			
DO 0.5 mg/l	6.08655	5.66895	1.0997
1.0 mg/l	4.21585	8.12662	1.07492
2.0 mg/l	2.85036	9.89541	1.00315
3.0 mg/l	2.32638	10.5886	0.95286
3.0 mg/1	2.32036	10.5660	0.93280
Distribution of			
Internal Recycle Flow			
$\underline{Oir(1)} \qquad \underline{Oir(3)}$			
20 MGD 40 MGD	2.32638	10.5886	0.95286
30 MGD 30 MGD	2.32554	10.5291	0.95274
40 MGD 20 MGD	2.32546	10.507	0.95273
50 MGD 10 MGD	2.32557	10.4987	0.95274
60 MGD 0 MGD	2.32573	10.4966	0.95276
Increased Internal			
Recycle Flow			
Qir(1) Qir(3)			
40 MGD = 13.33 + 26.67	2,27488	11.3958	0,95736
60 MGD = 20 + 40	2.32638	10.5886	0.95736
75 MGD = 25 + 50	2.35185	10.3736	0.93266

	TABLE 4 (continued):	Effluent Concentrations	
	Ammonia	Nitrate	Nitrite
Compare Storage Model			
and Michaelis-Menton			
Model			
Storage Model	2.32638	10.5886	0.95286
Michaelis-Menton Model	2.39589	9.23093	0.95974
Compare 4 NOV and			
17 NOV Plant Data Using			
Storage Model			
17 NOV	2.32638	10.5886	0.95286
4 NOV	2.72203	11.8047	0.97504

FIGURE 9: Effect of SRT on Ammonia Concentrations

FIGURE 10: Effect of SRT on Nitrate Concentrations

FIGURE 11: Effect of SRT on Nitrite Concentrations

FIGURE 12: Effect of SRT on Stored SCOD / $X_{\mbox{\scriptsize H}}$ Ratio

FIGURE 13: Effect of DO on Ammonia Concentration

FIGURE 14: Effect of DO on Nitrate Concentration

FIGURE 15: Effect of Internal Recycle Withdrawal Location on Ammonia Concentration

FIGURE 16: Effect of Internal Recycle Withdrawal Location on Nitrate Concentration

FIGURE 17: Effect of Internal Recycle Withdrawal Location on Nitrite Concentration

FIGURE 18: Effect of Internal Recycle Flow Distribution on Ammonia Concentration [$Q_{ir(1)}/Q_{ir(3)}$]

FIGURE 19: Effect of Internal Recycle Flow Distribution on Nitrate Concentration [$Q_{ir(1)}/Q_{ir(3)}$]

FIGURE 20: Effect of Internal Recycle Flow Distribution on Stored SCOD Profile [$Q_{ir(1)}/Q_{ir(3)}$]

FIGURE 21: Effect of Internal Recycle Flow Amount on Ammonia Concentration

FIGURE 22: Effect of Internal Recycle Flow Amount on Nitrate Concentration

FIGURE 23: 4 November 1992 Data Set; Ammonia Concentration;
Storage Model

FIGURE 24: 4 November 1992 Data Set; Nitrate Concentration; Storage Model

FIGURE 25: 4 November 1992 Data Set; Nitrite Concentration; Storage Model

FIGURE 26: 4 November 1992 Data Set; SCOD Concentration;
Storage Model

FIGURE 27: Compare 4 November and 17 November 1992 Data Sets;
PCOD Concentration; Storage Model

FIGURE 28: 4 November 1992 Data Set; Oxygen Consumption Rate;
Storage Model

FIGURE 29: 4 November 1992 Data Set; Stored SCOD;
Storage Model

FIGURE 30: Variation of Ammonia Concentration Profiles
from Different Phoenix Plant Data Sets

FIGURE 31: Michaelis-Menton Model; Nitrate Concentration

FIGURE 32: Michaelis-Menton Model; SCOD Concentration

BIBLIOGRAPHY

- Abbott, Joan D., "A System Engineering Approach Applied to an Anoxic/Aerobic Oxidation Ditch Simulation Model", Master's Thesis, University of Washington, February 1992.
- Albertson, O.E. and Stensel, H.D., "Aerated Anoxic Biological NdeN Process", 1993.
- Stensel, H.D., "Principles of Biological Nutrient Removal", 1992
- Stensel, H.D., Albertson, O.E. and Hendricks, P., "Evaluation of Anoxic-Aerobic Treatment and the Phoenix 91st Avenue Plant", 1993.
- Stensel, H.D., "Summary Report, Nitrification and Denitrification Kinetic Tests for the City of Phoenix 91st Avenue Wastewater Treatment Plant, University of Washington, 1993.
- Metcalf and Eddy, Inc., "Wastewater Engineering, Treatment, Disposal, and Reuse, 1991.

Appendix A: Model Based on Michaelis-Menton Kinetics

	K	L	M	N	0	P	Q	R
1			TABLE A.2	(INPUT VA	LUES FOR	M-M MODE	L)	
2	SRT =	5	Qo=	20			K(part.) =	0.000982
3			So =	198			Po =	228
4			Qras =	9.35	Xnb =	31	P(10) =	392.4781
5			S(10) =	0	Kn(ns) =	0.5	P(9) =	397.4781
6			Qir(ax-1)	20	A =	0.175874	X(i)(o) =	20
7			S9 =	0			X(i) =	537.6344
8			S1 =		Fh =	0.1		
9					Kno =	0.75		
10			Y(h) =		Um(H) =	2.8		
11			Fdn =		Kn(nb) =	0.6		
12			Xh =		Kon(nitrifi)	0.5		
13			Ks=		Koh(inhib)	0.1		
14			Kos(het) =	0.1	V(total) =	3.72		The Macro
15			01 =	0				
16			NO1 =		K (sto) =	0.937		
17			NOs =		Kss (sto) =	0.002		
18			V1 =	0.156				
19			NOo =	0				
20		-	NO10=	10				
21			NO9 =		X(total) =	3910		
22			A =	0.175874				
23			Kd(het) =	0.06				
24			K(hetero)	8				
25			Qir(ax-3) =	40				
26			06 =	3				
27	<u> </u>		V2 =	0.145				
28 29			V3 = V4 =	0.5047				
30			V4 = V5 =	0.124				
31			v5= V6=	0.124 0.3394				
32			V0 = V7 =					
33			V7 = V8 =	0.4648 0.9296				ļ
34			vo = V9 =	0.4648				
35			V10=	0.4648				
36			-10-	0.7070				
37		Solve for XI	and P(10)					
38			initially as:	sumed				
39	<u>, , , , , , , , , , , , , , , , , , , </u>		are estimate					
40		solving two			v			
41		X(h) =	2977.459					
42	<u></u>	P(10) =	392.4781	0				
43			JUL: 1701					

	S	Т	υ	V	W	Х
1						
2	Um(ns) =	0.5	NO2o =	0.1	A =	0.503
3	Y(ns) =	0.1				
4	Xns =	62				
5	Fn =		Umb =	0.7		
6	Kd (nitrif) =		Ynb =	0.05		
7	No =		NO2(9) =	0.9		
8	N10 =		NO2(10) =	0.7	· · · · · · · · · · · · · · · · · · ·	
9	N9 =	6.3				
10						
11						
12						
13		ial ali elle	(60) 1/ 141	4 3/1 4/1		
14 15	SSOCIATED W	ith this tile i	s [SOLV_MN	n.XLMj		
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						

	Α	В	С	D	Ε	F	G	Н	T	1
1				PROJECT			IS - MENT	<u> </u>	ICS	MOD
	Final Analys	is Madel (be		ENX27.XLS)		(IVIICI IALI	Amended 2		100	
3	CHICH WHENYS	is Michel (De	sed un Pho	ENAZI.ALS).	•		Amended 2	3 1404 93	L	
4	Comp.	Stage		Mass Balanc	e Equation		ł]		····
5	COMD.	AX-1		INDSS DOIBING	C CUODUOII					
	SCOD =	68.06068		-1.3E-07	3853.882			1		
	NO =	0.540159		-2.4E-08	105.7365	2.896626	8.06002			
	PCOD =	480.06		-5.3E-09	293.7714					
	N =	20.89265		-1E-06	0	21.0422	1.603992	0.583405		
10	NO2 =	0.537893		3.55E-14						
11	Ox consu	0								
12						78-81 41				
13		<u>AX-2</u>								
	SCOD =	65.65949		2.13E-07						
15	NO =	0.073741		3.79E-08	20.84084	0.575672	1.601222			
16	PCOD =	479.8755		2.33E-09	62.78873					
17	N =	20.8045		-1.7E-12	0	4.147451	0.318653	0.115945		
	NO2 =	0.537893								
	Ox consu	0								
20	<u> </u>									
21		<u>AX-3</u>								
	SCOD =	23.21862		-2.1E-08						
	NO =	0.423677		-4E-09	205.0185	8.079959	20.68507			
	PCOD =	441.6717		-1.1E-09	233.0353					
	N =	13.82667		-1E-06	0	40.79991	4.116452	1.627372		
	NO2 =	0.7		-1E-06						
	Ox Consu	0								
28		AYA								
	SCOD =	<i>AX-4</i> 21.82914		7 15 00	1001.212					
	NO =	0.144015		-7.1E-08 -6.4E-08	21.83482	0.885877	2.267146			
	PCOD =	441.5274		-0.4E-08	103.9575	0.0000//	2.20/140			
	N =	13.77499		-2.9E-07 -1E-06		4 345259	0.451175	0 178423		
	NO2 =	0.7		12-00		4.070200	3.731173	0.170420		
	Ox Consu	0.7								
36										
37		AX-5								
	SCOD =	21.3406		-1.7E-08	352.0229					
	NO =	0.045552		-3.7E-08	7.677053	0.314881	0.805753			
	PCOD =	441.4762		-1.9E-07	36.94691					
	N =	13.7568		-1E-06	0	1.527779	0.16035	0.06342		
42	NO2 =	0.7								Militaria
	Ox Consu	0								

	Α	В	С	D	E	F	G	Н	1
44					_				
45		Ox-2 /6							
	SCOD =	4.657131		-7.9E-11	1477.689	12.97904			
47	4	0.835624		-3.4E-09	73.77928	2.282677	0.255888	0.647773	
	PCOD =	436.7418		2.07E-09	3.683165	419.3357			
49	N =	12.10356		-8.4E-10	86.60573	52.17339	14.80566	5.867708	
50	NO2 =	0.843553		4.56E-09	86.60573	73.77928			
51	Ox Consu	220.5524		1037.525	278.8705	81.895	5589.349		
52			,						
53		Ox-3 /7				,			
54	SCOD =	0.677953		-1.7E-10	351.2799	4.259734			
55	NO =	2.003096		-9.6E-08	106.7535	0.749177	0.483809	1.206775	
56	PCOD =	430.3321		8.06E-09	6.861583	565.8419			
57	N =	10.51041		-2.4E-08	117.8955	12.44389	20.04462	8.035683	
58	NO2 =	0.968254		1.21E-07	117.8955	106.7535			
59	Ox Consu	169.3293		575.4189	379.6235	118.4963	1973.154		
60									
61		Ox-4 /8							
62	SCOD =	0.05163		-5.4E-14	55.17513	0.786792			
63	NO =	4.443684		-2.4E-09	222.0987	0.138376	1.137867	2.755932	
64	PCOD =	417.8581		1.21E-11	15.66991	1098.88			
65	N =	7.637138		-8.8E-10	231.8302	1.958667	39.00924	16.07137	
66	NO2 =	1.077168		3.27E-09	231.8302	222.0987			
67	Ox Consu	284.1862		808.703	746.4932	246.5295	1241.453		
68								i	
69		Ox-5 /9							
	SCOD =	0.007291		-2.5E-13	3.904244	0.057475			
71		5.674778		-4.5E-07	111.9972	0.010108	0.587333	1.401601	
	PCOD =	411.7101		1.96E-09	7.969341	541.3559			
73	N =	6.230772		-3.4E-07	114.3294	0.13866	19.22638	8.035683	
	NO2 =	1.10327		7.88E-07	114.3294	111.9972			······································
75	Ox Consu	138.9334		388.3726	368.1407	124.3169	1173.107		
76									
77		Ox-6/10							
	SCOD =	0.000373		3.21E-15		0.003082			
	NO =	9.230935		-9.8E-08	106.3925		0.61499	1.403743	
	PCOD =	393.7959		-1.6E-11	7.981523	517.8006			
81		2.39589		-1.1E-07	102.18	0.007106	18.40237	8.035683	
	NO2 =	0.959743	,, <u>, , , , , , , , , , , , , , , , , , </u>	2.12E-07	102.18				
83	Ox Consu	129.6188		374.661	329.0196	118.0957	1114.459		***************************************
84									
85						<u> </u>		<u> </u>	
86								-	
87				1				1	

	Α	В	С	D	E	F	G	Н	ı
88	AMMONIA								
89		(concentrati	on)	(concentratio)				
	stage	Calculated		Plant Data					
91	0			35.8			17-Nov		
92	1	20.89265		19.5					
93	2			20.5					
94	3			14.7					
95	4			14					
96	5			14.4					
97	6	12.10356		12.7					
98	7	10.51041		11.5					
99	8	7.637138		8.2					
100		6.230772		6.3	····				27
101 102	10	2.39589		2.9		 			
103					_				
104	\vdash								+
105				Δmm	onia Con	centration			
				7311111	oma com	Centration			
									ì
106									-
106 107		5 🖷							-
106 107 108	45	\mathbb{N}							
106 107 108 109 110	45) +\							-
106 107 108 109 110 111	45) +\							
106 107 108 109 110 111 112	45 40 35	j -							
106 107 108 109 110 111 112 113	45 40 35 30								
106 107 108 109 110 111 112 113 114	45 40 35 30								
106 107 108 109 110 111 112 113 114 115	45 40 35 30								
106 107 108 109 110 111 112 113 114 115 116	45 40 35 (VBE):000 25								
106 107 108 109 110 111 112 113 114 115 116 117	45 40 35 30								
106 107 108 109 110 111 112 113 114 115 116 117	45 40 35 (VBE) 25 20 20 15								
106 107 108 109 110 111 112 113 114 115 116 117 118 119	45 40 35 (VBE):000 25								
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	45 40 35 (VBE) 25 20 20 15								
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	45 40 35 (VBE) 20 20 15								
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	45 40 35 (VBE) 20 20 15					· · · · · · · · · · · · · · · · · · ·			
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	45 40 35 (//BE/) 20 20 15		2	4		6	8		10
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	45 40 35 (J/8E) 20 25 15		2	4		· · · · · · · · · · · · · · · · · · ·			10
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	45 40 35 (VBE) 20 20 15		2	4		· · · · · · · · · · · · · · · · · · ·			10
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126	45 40 35 (VBE) 20 20 15		2			6	8		10
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	45 40 35 (VBE) 20 20 15		2		stage	6			10

	A	В	С	D	E	T F	G	Н	T I
214	SOLUBLE								
215		(concentration	on)	(concentratio)					
	Stage	Calculated		Plant Data					
217		0 198		228			17-Nov		
218		1 68.06068		53				 	
219		2 65.65949		48					
220		3 23.21862		31				,	1
221		4 21.82914		27					
222		5 21.3406		31					
223		6 4.657131		32		 			
224		7 0.677953		30				······································	
225		8 0.05163		34				,	
226		9 0.007291		26				······································	
227		0 0.000373		31					
228									
229									ļ-
230	_								
231				SCO	DD Conc	entration			1
232									
233	7								
234		250 _T							
235		Å							
236		/\							Γ
237		200 🜓							
238									
239		\\							
240	J/6	150 🕂 \							
241	E								
242	conc.(mg/l)								
243	8	100 +							
244									
245		<u></u>							
246		50 +	-	<u> </u>					
247	_						-		_
248								_	-
249		0 +		+			-8		—• [
250	_	0	2	4		6	8		10
251									Ĺ
252					stag				i .
253									Ĺ
254				Cal	culated	Plai	nt Data		
255			Į		,				
256	<u> </u>			<u> </u>		1	T		<u></u>

	Α	В	С	D	E	F	G	Н	T I
257	PARTICULA	1	<u>`</u>		- L		G ,		
258		(concentrati	on)	Concentration		+			
	Stage	Calculated	0117	from Plant D		 			
260				110/11/10/11/0	70.00				
261	4	480.06		xxxxxx		1			
262		479.8755		XXXXXX		1			
263				XXXXXX					
264		441.5274		XXXXXX				, , , , , , , , , , , , , , , , , , , 	*
265	5		VI 1	XXXXXX					
266	6	436.7418		XXXXXXX		1			
267	7	430.3321		XXXXXXX				·	
268	8	417.8581		XXXXXX				***************************************	
269		411.7101		XXXXXX	······································				
270		393.7959		XXXXXX					
271									
272									
273	. !								
274				PC	OD Cond	centration			
275									1
276	50	00 -							
277	4!	50 · /				_			
278 279		00 /					-		
280	-	1 /							
281		50 + /							
282	[[/Bu] 30 2! 20 20	00 + /							
283	5 2!	50 🖟							
284	<u> </u>	00 ‡							
285		i							
	L }	50 🕂							
1200									
286 287	10	00							
286 287 288	וי דו								
287	10	00			•	····	****	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
287 288	10	00	2		- 1	6	ο		10
287 288 289	10	00 50 	2		4	6	8		10
287 288 289 290 291 292	10	00	2		4 Stag		8		10
287 288 289 290 291 292 293		00	2				8		10
287 288 289 290 291 292 293 294		00	2				8		10
287 288 289 290 291 292 293 294 295		00	2				8		10
287 288 289 290 291 292 293 294		00	2				8		10

	Α	В	С	D	E	F	G	н	ı
298	OXYGEN C	ONSUMPTIO	N						
299		Calculated C			Calculated (Oxvaen			
1	Stage	Consumptio			Consumption				
301	1	0			0				
302	2	0			0				
303	3	0			0				
304	4	0			0				
305	5	0			0				
306	6	220.5524			171.6656				
307	7	169.3293			96.23862				
308		284.1862			80.7589				
309	9				78.96305				
310	10				73.66908				
311					70.0000				
312				<u> </u>	A	L			<u> </u>
313				0	0	4:			
314				Oxyg	en Consun	nption			
315									-
316			200						<u> </u>
317		Ė	150			\bigcap			-
318		Sur.	150						
319		Ox. Consum	100						
320		ပ						71	
321		ŏ	50						-
322			o 🗠	7.77.7	,,,,,,				<u> </u>
323			1	2 3	4 5	6 7	8 9 1	0	<u> </u> -
324									-
325					sta	ge			-
326									
	NITRIFICAT	ION							
	Term (a)		NH4 via he	terotrohic un	take of solu	ble COD			
	Term (b)					ticulate COD)		
	Term (c)	<u> </u>	by death of						-
	Term (d)		NH4 by Nit						
	Stage	Term (a)		Term (b)		Term (c)		Term (d)	
333			mg/L-hr	mg/L-day	mg/L-hr	mg/L-d	mg/L-hr		mg/L-hr
334		134.8859						0	0
335	2	28.60311	1.191796				0.033318	0	0
336		80.83992	3.36833				0.134351	0	0
337	4	35.04241	1.4601	3.638512		1.438896	0.059954	0	0
338		12.3208	0.513367	1.293142		0.511449	0.02131	0	0
339	6	153.7224	6.405101	43.62304		17.28847	0.720353		10.63221
340	7	26.77256	1.115523	43.12526			0.720353		10.56866
341	8	2.107	0.087792	41.96347			0.720353		
342	9	0.298322	0.01243		<u> </u>		0.720353		
343		0.015288		39.59203			0.720353		
344		0.010200	0.00007	00.00203	1.04000	17.2007/	J. / 2.0000	2.0.000	J. 1 J J J J Z
345									
243		<u> </u>			<u> </u>	1		<u> </u>	

	A	В	С	D	E	F	G	Н		
346										
347	Total Nitrific	cation								
348										
349	Stage	ma/L-d	mg/L-hr							
350	1	148.9076		, , , , , , , , , , , , , , , , , , , ,				 	- 	
351	2	31.60034								
352	3	92.22059								
353	4	40.11982	1.671659							
354	5	14.12539	0.588558							
355	6	469.807	19.57529							
356	7	340.8341	14.20142							
357	8	310.746	12.94775	11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	177 /					
358	9	304.9272	12.7053							
359	10	276.7322	11.53051							
360										
361										
362										
363		MLSS =	X(total) =	<u>Xh +</u>	Xns +	Xnb +	X(inerts)			
364										
365				2977.459	62	31	537.6344			
366										
367		<u> </u>	X(total) =	3608.094	mg/l			····		
368		-		·						
369		ODEOIEIO	DENUTRICIOA	TION DATE						
370 371		SPECIFIC	DENITRIFICA	TION HATE						
371			SDNR			00210 (2	100/ 7- 1			
373		Stage	gr. NO3/gr.:	Va day		Plant Data	103/gr. Xt-d	ауі	-	
374		Stage	gr. NO3/gr./	At-day		Plant Data				
375		1	0.207321	116.6932		0.18				
376		. 2	0.207321			0.18				
377		3	0.128382			0.02				
378			V. 120002						7 +	
379				^					 	
380				SDN	M					
381		0.0-								
382		0.25	!	_						
383		_ ક 0.2	•				_			
384		₽ ₹ 0.15		7//		_		Series 1		
385		EX 0.1								
386		₩			// //		S	Series2		
387		Ø 0.05	1							
388		_ 0								
389			0	1	2	3				
390				Stag] e					
391										

Appendix B: Storage Model

	J	K	L		M		N	٥	Р
1		TABLE A.1	(INPUT	VALUE	S FC	OR	STORAGE	MODEL)	
2		SRT =		5 Qo	<u> </u>		20		
3				So		1	228		
4				Qra	s =		9.35	Xnb =	31
5				S(1	O) =		30	Kn(ns) =	0.5
6				Qir(ax-1)			A =	0.175874
7			· · · · · · · · · · · · · · · · · · ·	S9 :	=		30		
8				S1 :	=			Fh =	0.1
9								Kno =	0.75
10)			Y(h	=		0.35	Um(H) =	2.8
11				Fdn	=		0.5	Kn(nb) =	0.6
12				Xh:	=		2977.459	Kon(nitrifi)	0.5
13				Ks=	=		20	Koh(inhib)	0.1
14					(het) :	=	0.1	V(total) =	3.72
15				01			0		
16				NO				K (sto) =	0.937
17				NO:				Kss (sto) =	0.002
18				V1 :	=		0.156		30
19				NO				Ss(10)/Xh	0.000115
20					0=		10	Ss(9)/Xh	0.000388
21				NO) =			X(total) =	3910
22				A =			0.175874		
23				Kd(net) =		0.06		
24					etero)		8		
25		· · · · · · · · · · · · · · · · · · ·			ax-3)	=	40		
26				06			3		
27				V2			0.145		
28		****		V3			0.5047		
29				V4 :			0.124		
30				V5:			0.124		
31				V6:			0.3394		
32				۷7:			0.4648		
33				V8:			0.9296		
34				V9:			0.4648		
35				V10	=		0.4648		
36				<u> </u>		لــــــــــــــــــــــــــــــــــــــ			
37			solve for						
38			X(h) and						
39			P(10) val						
40							multaneousi		
41			X(h) =		77.4!			411.3998	
42			P(10) =		2.478	51	0		
43		clear all con	centration	ns					
44									
45			V. 1. V						
46									
47									
48									

	Q	R	S	Ţ	U	V	W	X
1	,	TABLE A.1	(CONTINU	ED}				The second secon
	K(part.) =	0.000982	Um(ns) =		NO20 =	0.1	A =	0.503
3	Po =	228	Y(ns) =	0.1				
	P(10) =	392.4781	Xns =	62				
	P(9) =	397.4781			Umb =	0.7		
	X(i)(o) =		Kd (nitrif) =		Ynb =	0.05		
	X(i) =	537.6344			NO2(9) =	0.9		
8			N10 =		NO2(10) =	0.7		
9			N9 =	6.3				
10								
11								
12	-						***************************************	
13			NA N	- (60) (6	TO VIAN			
14 15			Macro Nam	e: [SOLV_S	TU.XLM]			
16								
17								
18								
19								
20								
21								
22								
23								
24								
25				<u> </u>				
26				<u> </u>				
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39 40								
40								
41					<u> </u>			
42								
43		·						
45								
46								
47								
48								
40	L			<u> </u>	<u>L</u>	L		<u></u>

	A	В	С	D	E	F	G	Н	T 1
1				PROJECT		<u> </u>	E MODEL)	<u> </u>	
	"Cit" Model	EOD ANALY	I .	on STORGE1		10101174	- MODEL		
		(ras) = 9.35;			Xns and Xn	h are fixed			
4	Comp.	Stage	107-20	Mass Balanc			1		
5	COMD.	AX-1		IVIDSS DOIGHT	SE ENGREON				:
	SCOD =	54.07295		-1E-06	2772				
	NO =	2.010418		2.02E-07		5.038781	14.0007	0.307213	
	PCOD =	479.3755		8.46E-07	510.2971	5.036761	14.0007	0.307213	
	N =	21.20262		7.05E-09	010.2371	4 004225	2.786222	1 014952	0.307213
	NO2 =	0.537893		3.55E-14		4.554333	2.760222	1.014033	0.307213
	Ox consu	0.537653		3.00E-14					
	Ss/Xh =	0.018073		9 SE 11	0.047925				
13	35/7/1 =	AX-2		0.35-11	0.047323				
	SCOD =	51.66565		15.06	1100	[
15		1.28935		-1E-06	118.8 20.25265		11.26634	0.266726	
	PCOD =	478.0775		2.30E-08 1E-07		4.000/1	11.20034	0.200/20	
17		21.09211		7.88E-10		4.020208	2 242060	0 010060	0.266726
		0.537893		7.002-10	0	4.030336	2.242069	0.818868	0.200720
	NO2 = Ox consu	0.537653							
	Ss/Xh =	0.018098	<u> </u>	0 APE 12	0.038675				
21	35/XII =			3.40E-12	0.036075) 3041741611 - 2011 10041
	SCOD =	<u>AX-3</u> 30		15.00	1000.0	1			
	NO =	2.164613		-1E-06		16.62240	42 22040	0.200022	
	PCOD =	439.3013		-1.7E-07		16.62348	42.32849	0.299933	
	PCOD = N =	14.23665		-3E-07		45 77506	0.400000	2 24044	0.300033
	NO2 =	0.7		-1.5E-08	0	15.77506	8.423622	3.34611	0.299933
	Ox Consu	0.7		-1E-06					
	Ss/Xh =	0.012494		1 05 10	0.151376				
29	35/AII =			-1.0E-1U	0.131376			****************	382166 (SNR 1215 o. Las 101899
	SCOD =	<u>AX-4</u> 30		1		1			
	NO =	1.804206		1 215 07	19 44067	2 004555	9.877117	0 202002	
	PCOD =	438.6728	<u> </u>	6.35E-07	18.44067 452.9044	3.884555	3.0//11/	0.283993	
	N =	14.18234	<u></u>	2.56E-09		3.669804	1 065505	0 702202	0.383003
	NO2 =	0.7		2.306-09		3.003004	1.303003	0.702302	0.20333
	Ox Consu	0.7							
	Ss/Xh =	0.0121		3 12E-11	0.035215				
37		AX-5		J. 12L-11	0.000210	J			l Registery automorphism octavi
	SCOD =	<u>AA-9</u>							
	NO =	1.467539		-6.6E-09	17.20042	3.639397	9.241358	0.264892	
	PCOD =	438.0847		-3.2E-08	423.7524	3.033337	3.241300	0.204032	
	N =	14.13165		-3.2E-08 -1.3E-10	423.7324	3.422986	1.839085	0 722005	0.264892
	NO2 =	0.7		-1.35-10		3.422300	1.035000	0.733005	0.204032
	Ox Consu	0.7							
	Ss/Xh =	0.011733	· · · · · · · · · · · · · · · · · · ·	_1 GE 12	0.032847				
45	03/AII -			-1.0E-12	U.UJZQ47	[
	SCOD =	Ox-2 /6		, , , , , , , , , , , , , , , , , , , ,					
		30		25.47	72 02404	1 647500	0.004044	0.045000	0.00007
	NO =	2.261081		-2E-07		1.647538	0.364614	0.915883	0.00927
48	PCOD =	433.3695		-3.5E-07	5.207603	416.0978			

	Α	В	С	D	E	F	G	Н	
49	N =	12.7678		2.89E-13	86.78485				0.740685
	NO2 =	0.844978		-3.6E-13	86.78485				
	Ox Consu	103.1783		292.7451	279.4472		1226.721	emeryment of the second	
	Ss/Xh =	0.008919		-6.2E-07	0.251388		,	na managang pad hi Middle Manda dan managan di Primitina dan dan managan di Primitina dan dan dan dan dan dan dan dan dan d	and the second s
53		0x-3 /7					l Bengan tangan tan Gudi Amerikan	ingrisenismi minimi.	
	SCOD =	30			d 9990 i 1960a juga 1600 januar v	4888918 SQM48311 12 . 13 111	yanta magalatilany ili, komb		
	NO =	3.411185		-3.3E-08	106.8637	2.207626	0.545107	1.349143	0.00907
56	PCOD =	426.9998		-6.2E-08	7.671071	561.4603			
57	N =	10.95301		-6E-14	118.1122	32.15546	19.9196	8.035683	0.663857
58	NO2 =	0.970871		-1.4E-13	118.1122	106.8637			and the second second second second second
59	Ox Consu	141.2656		396.6764	380.3214	118.6187	1208.625		
60	Ss/Xh =	0.005466		-1.1E-07	0.308561				
61		Ox-4 /8							
	SCOD =	30							
	NO =	5.822783		-4.1E-08	222.2464	2.760602	1.178162	2.831391	0.005671
64	PCOD =	414.6164		-9.7E-08	16.09896	1090.355			
	N =	7.687354		1.6E-12	231.9233	37.2083	38.72588	16.07137	0.384087
66	NO2 =	1.079174	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-1.6E-12	231.9233	222.2464			
	Ox Consu	279.2338		776.8415	746.7929	246.6935	1173.313		
68	Ss/Xh =	0.00147		-6.3E-07	0.357047		4 4		
69		Ox-5 /9							
	SCOD =	30							ļ
	NO =	7.046403		-3.6E-09	112.0305	0.676028	0.60099	1.423057	0.002777
	PCOD =	408.5141		-1.1E-08	8.091338				
	N =	6.184886		6.75E-14	114.2664		19.08357	8.035683	0.184386
	NO2 =	1.104199		-1.8E-13	114.2664				
	Ox Consu	138.2708		384.338	367.938		1155.85		
	Ss/Xh =	0.00051		-6.4E-07	0.085703				
77		Ox-6 /10							
	SCOD =	30							
	NO =	10.5886		-1.2E-07	106.0975		0.620973	1.406388	0.000439
	PCOD =	390.7364		-4.5E-07	7.996558				
	N =	2.32638			101.6556		18.2621	8.035683	0.028184
	NO2 =	0.952856		-2.7E-10	101.6556				
	Ox Consu	128.9668		372.5435	327.3309	117.7682	1105.402		
84	Ss/Xh =	6.42E-05		-1.6E-07	0.0131				
85							*		
86		<u> </u>							
87	L	<u> </u>							

	Α	В	С	D	E	F	G	Н	1
88	<u>AMMONIA</u>								
89		(concentration	on)	(concentrati	on)				
90	<u>stage</u>	Calculated		Plant Data					
91	0	45		35.8			17-Nov		
92	1	21.20262		19.5					
93	2	21.09211		20.5					
94	3	14.23665		14.7					
95	4	14.18234		14					
96	5	14.13165		14.4	<u>Delta</u>				
97	6	12.7678		12.7	0.067798				
98	7	10.95301		11.5	-0.54699				
99	8	7.687354		8.2	-0.51265				27
100	9	6.184886		6.3	-0.11511				
101	10	2.32638		2.9	-0.57362				
102		<u> </u>	·						 }
103									
104	-			_					
105				Amn	nonia Cond	centration			,
106	\vdash								
107	4!	5 =							-
108 109		N .							}
110	40) † \							-
111	35	5 🛦 🔪							-
112	-								}
113		P + \ \							+
114	(l/gm) 55	<u> </u>							-
115	H 5 -		_						-
116	일 20) + 🔀							1
117	8 15	=	`						-
118	H '`	7							-
119	 10)							+
120	H .	_							-
121		5 +							
122	\vdash	o ↓		·······	 				
123		0	2		4	6	8		10
124		J	۷.	•	*	U	U		
125	H				Stage				<u>}_</u>
126			٢						-
127				Ca	lculated -	Plant Da	ata		
128			L						-
129	H	,					,		

	Α	В	С	D	Ε	F	G	Н	1
130	NITRATE								
131		(concentration	n)	(concentrati	on)				
132	stage	Calculated		Plant Data					
133	0	0		0			17-Nov		
134	1	2.010418		0.7					
135	2	1.28935		0.7					
136	3	2.164613		1.9					
137	4	1.804206		1.4				í	
138	5	1.467539		0.5	<u>Delta</u>				
139	6	2.261081		0.9	1.361081				
140	7	3.411185		1.9	1.511185				
141	8	5.822783		5.6	0.222783				
142	9	7.046403		6.7	0.346403				
143	10	10.5886		10	0.588595				
144									<u>2</u> 7
145									
146									
147				Nitr	ate Conce	ntration			
148									
149	1:	2							
150		2 T							
151									
152	10	o +							/ A
153								/	
154	_	в 🖟							_
155	_ €							_//	
156	<u>E</u>						_	7	
157	ا ن	6 +							
158	conc. (mg/l)								<u></u>
159		4 🕂							
160	_					_	# /		
161	┙.	2		.					
162	վ '	"					4		
163	_			-					
164		0		· · · · · · · · · · · · · · · · · · ·					
165		0	2	4	l .	6	8		10
166		-	_		0 4: =	-			
167	_				Stage				L
168									
169				Ca	Iculated —	Plant	Data		
170			L_						
171	<u> </u>			Y		<u> </u>			

	Α	В	С	D	Ε	F	G	Н	1
	SOLUBLE C								
214		(concentration	on)	(concentration	n)				
215	<u>Stage</u>	Calculated		Plant Data					
216	00	228		228			17-Nov		
217	11	54.07295		53					
218	2	51.66565		48					
219	3	30		31					····
220	4	30		27	····				
221	5	30		31					
222	6	30		32					···
223	7	30		30	***				
224	8	30		34					
225	9	30		26					
226	10	30		31					
227		1				<u> </u>			}-
228	_								-
229	_			00/	3D 0				-
230	_			SC	OD Conce	entration			1
231	-4								
232	25	60 _T							-
233	4								-
234	_	T							į
235	20	o +\							}
236	_								+
237	\dashv	\							}
238	Conc. (mg/l)	60 							-
239	⊢ 5								-
240	ျှ								-
241	5 1C	00 + \							-
242 243	-								-
244	-								
245	_	50 +							-
245					-			-1-	
246 247		0							}
248	4		_						
249	-	0	2	4	ļ	6	8		10
250	-				Stage	•			-
251	-		r						+
252	-			Ca	culated -	—▲ Plar	nt Data		†
253	-								}
254	-								}
(204)		I I					1		

	A	В	С	D	E	T F	G	Н	1
255	PARTICULA							•	
256		(concentration	on)	Concentration	on				<u> </u>
257	Stage	Calculated		from Plant D					
258	0	228							
259	1	479.3755		XXXXXX			 	*	1
260	2	478.0775		XXXXXX					
261	3	439.3013		XXXXXX					
262	4	438.6728		XXXXXX					
263	5	438.0847		XXXXXX					
264	6	433.3695		XXXXXX	· · · · · · · · · · · · · · · · · · ·		1	***************************************	
265	7	426.9998		XXXXXX	· · · · · · · · · · · · · · · · · · ·				
266	8	414.6164		XXXXXX					
267	9	408.5141		XXXXXX	······································				
268	10	390.7364		XXXXXX					
269									
270								, , u, q. _Q . t. q. q.	
271						_			Ţ
272				P	COD Con	centration			
273									
274	5	i00 _T	_						
275	4	50 -							
276	! [-					
277		00 +					_		•
278		50 + /							
279	— 5 3	800 /							
280	F	250 🗸							
281	ဗ္ဗ								
282		200 -							
283	1	50 +							
284	1	00 +							
285 286		50							ļ
287	_	1							H
	-	0 +		7	- +				——
288 289		0	2		4	6	8		10
290					Stag	ne.			a de la companya de l
291					- 10	, -			H
292						1			
293				-	 	 			_
293	·	 				 			
295		-				 			+
233		L					1		

	Α	В	С	Пр	E	F	G	Н	
296	OXYGEN C	ONSUMPT		1					
297		Calculated			Calculated (Dxygen			
298	Stage		tion (Kg/hr)		Consumptio				
299	1		0		0				
300	2		o	<u> </u>	0				·
301	3		o		0				
302	4	i	0		0				
303	5	_ 1	0		0				
304	6	103.178			80.30819				
305	7	141.265		_	80.28857				
306	8	279.233		1	79.35155				
307	9	138.270			78.58649				
308	10	128.966		1	73.29851				
309	· · · · · · · · · · · · · · · · · · ·	1 = 2.7.200	_	†					
310					<u> </u>	<u> </u>			
311									
312				Ovvnen	Consump	tion			
313				Oxygen	Consump	(1071			
314									
315		90 🗸							
316						7/7/			
317		-08					$Y \times Y \setminus Y$		
318		~ 70					$ \cdot \cdot $	-	
319	_	E '0]							
320		0x.Consum.(mg/L-hr)							
321		<u>E</u> 50-							
322		ا عن							
323		5 40-							
324		5 20							
325		ပ္ 30 −						The state of the s	
326	7	o 20-							
327									
328		10-	J	, , , , , , , , , , , , , , , , , , , ,					
329		o∤	<u>////</u>			44			
330		•	1 2	3 4	5 6	7 8	9 1	0	
331				-					
332					Stage				
333									
334		1	·		1				
335				1					
336		MLSS =	X(total) =	Xh +	Xns +	Xnb +	X(inerts) +	X(part.)	
337	·····	1							
338		1		2977.459	62	31	537.6344	301.9062	
339		1				<u> </u>			
340		1	X(total) =	3910	mg/l				
341		1							
342		 	+	 					
اعتدا	····	4		1	<u> </u>	L	<u> </u>		

	Α	В	c I	D	E	F	G	Н	1
343		UBSTRATE							
344		concentration	7						
345	Stage	Calculated							
346		O							
347	1	0.018073							
348	2	0.018098							
349	3	0.012494							
350	4	0.0121		,					
351	5	0.011733							
352	6	0.008919							
353	7	0.005466							
354	8	0.00147							
355		0.00051							
356		6.42E-05							
357			I						
358									
359				Stored	Substrate	Concentra	ition		
360				Otorea	oubstrate	Ooncentre	ition		
361									ļ.
362	-	0.02							-
363		.018 🕴 🕴							Į.
364 365	_ 0	.016 🕴 /	\						H
1.500	1 7	/ סוט.	Ì						
	H ₹ 0.	1 1	·						
366	l/gm/	.014 /	·						
366 367	g/L/mg/l	.014	·	-	-				
366 367 368	(mg/L/mg/l	.014 .012 0.01	·	•					
366 367 368 369	Kh (mg/L/mg/l	.014 .012 0.01 .008		•		•			
366 367 368 369 370	\$\$/Xh (mg/L/mg/l	.014 .012 0.01		•					
366 367 368 369 370 371	Ss/Xh (mg/L/m	.014 .012 0.01 .008		•					
366 367 368 369 370 371 372	0.	.014 .012 0.01 .008 .006				•			
366 367 368 369 370 371 372 373	0.	.014 .012 0.01 .008 .006 .004							
366 367 368 369 370 371 372 373 374	0.	.014 .012 0.01 .008 .006 .004							10
366 367 368 369 370 371 372 373 374 375	0.	.014 .012 0.01 .008 .006 .004	2		4	6	8		10
366 367 368 369 370 371 372 373 374	0.	.014 .012 0.01 .008 .006 .004	2		4 Stag	•	8		10
366 367 368 369 370 371 372 373 374 375 376	0.	.014 .012 0.01 .008 .006 .004	2		~	•	8		10
366 367 368 369 370 371 372 373 374 375 376 377	0.	.014 .012 0.01 .008 .006 .004	2		~	•	8		10
366 367 368 369 370 371 372 373 374 375 376 377 378	0.	.014 .012 0.01 .008 .006 .004	2		~	•	8		10
366 367 368 369 370 371 372 373 374 375 376 377 378 379	0.	.014 .012 0.01 .008 .006 .004	2		~	•	8		10
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380	0.	.014 .012 0.01 .008 .006 .004	2		~	•	8		10
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381	0.	.014 .012 0.01 .008 .006 .004	2		~	•	8		10
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382	0.	.014 .012 0.01 .008 .006 .004	2		~	•	8		10

	T	1	Y						
440	A	В	С	D	E	F	G	Н	<u> </u>
	NITRIFICAT					<u> </u>			
	Term (a)	Depletion of NH4 by heterotrophic utilization of soluble degradable COD in cell storage							
	Term (b)	Depletion of NH4 via heterotrophic uptake of particulate COD							
	Term (c)	Adding NH4 by death of heterotrophs Depletion of NH4 by Nitrosomonas							
£	Term (d)								•
	Stage	Term (a)	i	Term (b)	·	Term (c)		Term (d)	
425		mg/L-d	mg/L-hr	mg/L-day	mg/L-hr	mg/L-d	mg/L-hr	mg/L-d	mg/L-hr
426		32.01497			0.744183	6.505469	1,	0	
427	2	27.79585	1	15.46255	0.644273	5.647369	0.235307	0	
428		31.25632	<u> </u>	16.69036	0.695431	6.633862	0.276411	0	
429		29.59519	1		0.660486	6.309534		0	
430		27.60473	l			5.911334		0	
431	I	77.18755	I		1.810264	17.28847	0.720353	1	10.6542
432	B	69.18127	2.882553		1.785678	17.28847	0.720353	254.1141	10.58809
433		40.02614	1.667756		1.735777	17.28847	0.720353	249.4872	10.3953
434		19.2151	0.800629		1.710733	17.28847	0.720353		
435		2.937111	0.12238	39.29023	1.637093	17.28847	0.720353	218.7082	9.112841
436									
437									1
438									
	Total Nitrification								
440									
441	Stage	mg/L-d	mg/L-hr						
442	11	56.38083							
443	2	48.90576							
444	3	54.58034							
445		51.75638							
446		48.3474	2.014475						
447	_	393.6232	16.40096						
448		383.4401	15.97667						
449		348.4604							
450	9	323.4012							
451	10	278.224	11.59267						

Appendix C: List of Mass Balance Equations for Storage Model and Michaelis-Menton Model

Mass Balance Equations for Michaelis-Menton Model

Ammonia (NH₄-N) Mass Balances

Stage 1

$$V\frac{dN_{1}}{dt} = 0 = (Q_{0})(N_{0}) + (Q_{RAS})(N_{10}) + (Q_{tr(1)})(N_{9}) - (Q_{0} + Q_{RAS} + Q_{tr(1)})(N_{1})$$

$$-\left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{1})}{(K_{N} + N_{1})} \left(\frac{O_{1}}{K_{0N} + O_{1}}\right) (V_{1})$$

$$-Y_{H} \Big[(Q_{0}S_{0}) + (Q_{RAS}S_{10}) + (Q_{tr(1)}S_{9}) - (Q_{0} + Q_{RAS} + Q_{tr(1)})(S_{1}) \Big] (F_{N})$$

$$-Y_{H} \Big[(Q_{0}P_{0}) + (Q_{0} + Q_{RAS})(P_{10}) - \left(\frac{V_{1}P_{10}}{\theta_{e}}\right) + (Q_{tr(1)})(P_{9}) \Big] (F_{N})$$

$$-Y_{H} \Big[-(Q_{0} + Q_{RAS} + Q_{tr(1)})(P_{1}) \Big] (F_{N})$$

$$+(K_{d})(X_{H})(V_{1})(F_{N})(F_{DN}) \left(\frac{NO_{1}}{NO_{e} + NO_{1}}\right)$$

$$V\frac{dN_{2}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)})(N_{1}) - (Q_{0} + Q_{RAS} + Q_{tr(1)})(N_{2})$$

$$- \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{2})}{(K_{N} + N_{2})} \left(\frac{Q_{2}}{K_{0N} + Q_{2}}\right) (V_{2})$$

$$- Y_{H} \left[(Q_{0} + Q_{RAS} + Q_{tr(1)})(S_{1}) - (Q_{0} + Q_{RAS} + Q_{tr(1)})(S_{2}) \right] (F_{N})$$

$$-Y_{H}\Big[(Q_{0}+Q_{RAS}+Q_{tr(1)})(P_{1})-\Big[(Q_{0}+Q_{RAS}+Q_{tr(1)})(P_{2})\Big]\Big](F_{N})$$

$$+(K_{d})(X_{H})(V_{2})(F_{N})(F_{DN})\Big(\frac{NO_{2}}{NO_{s}+NO_{2}}\Big)$$

$$V\frac{dN_{3}}{dt} = 0 = (Q_{0} + Q_{MS} + Q_{\nu(1)})(N_{2}) + (Q_{\nu(3)})(N_{9}) - (Q_{0} + Q_{MS} + Q_{\nu(1)} + Q_{\nu(3)})(N_{3})$$

$$- \left(\frac{\mu_{M(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{3})}{(K_{N} + N_{3})} \left(\frac{O_{3}}{K_{0N} + O_{3}}\right) (V_{3})$$

$$-Y_{H} \left[(Q_{0} + Q_{RAS} + Q_{\nu(1)})(S_{2}) + (Q_{\nu(3)})(S_{9}) - (Q_{0} + Q_{RAS} + Q_{\nu(1)} + Q_{\nu(3)})(S_{3}) \right] (F_{N})$$

$$-Y_{H} \left[(Q_{0} + Q_{RAS} + Q_{\nu(1)})(P_{2}) + (Q_{\nu(3)})(P_{9}) - \left[(Q_{0} + Q_{RAS} + Q_{\nu(1)} + Q_{\nu(3)})(P_{3}) \right] \right] (F_{N})$$

$$+ (K_{d})(X_{H})(V_{3})(F_{N})(F_{DN}) \left(\frac{NO_{3}}{NO_{2} + NO_{3}}\right)$$

$$V\frac{dN_{4}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{3}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{4})$$

$$-\left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{4})}{(K_{N} + N_{4})} \left(\frac{Q_{4}}{K_{0N} + Q_{4}}\right) (V_{4})$$

$$-Y_{H} \Big[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{3}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{4}) \Big] (F_{N})$$

$$-Y_{H} \Big[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{3}) - \Big[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{4}) \Big] \Big] (F_{N})$$

$$+(K_{d})(X_{H})(V_{4})(F_{N})(F_{DN}) \left(\frac{NQ_{4}}{NQ_{s} + NQ_{4}}\right)$$

$$V\frac{dN_{5}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{4}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{5})$$

$$-\left(\frac{\mu_{m(NS)}}{Y_{NS}}\right)\frac{(X_{NS})(N_{5})}{(K_{N} + N_{5})}\left(\frac{Q_{5}}{K_{0N} + Q_{5}}\right)(V_{5})$$

$$-Y_{H}\Big[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{4}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{5})\Big](F_{N})$$

$$-Y_{H}\Big[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{4}) - \Big[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{5})\Big]\Big](F_{N})$$

$$+(K_{d})(X_{H})(V_{5})(F_{N})(F_{DN})\left(\frac{NO_{5}}{NO_{d} + NO_{5}}\right)$$

$$V\frac{dN_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{6})$$

$$-\left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{6})}{(K_{N} + N_{6})} \left(\frac{O_{6}}{K_{0N} + O_{6}}\right) (V_{6})$$

$$-Y_{H} \Big[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{6}) \Big] (F_{N})$$

$$-Y_{H} \Big[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{6}) \Big] (F_{N})$$

$$+(K_{d(h)})(X_{H})(V_{6})(F_{N}) \left(\frac{O_{6}}{k + O_{c}}\right)$$

$$V\frac{dN_{\gamma}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(N_{6}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(N_{\gamma})$$

$$-\left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{\gamma})}{(K_{N} + N_{\gamma})} \left(\frac{O_{\gamma}}{K_{0N} + O_{\gamma}}\right) (V_{\gamma})$$

$$-Y_{H} \Big[(Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(S_{6}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(S_{\gamma}) \Big] (F_{N})$$

$$-Y_{H} \Big[(Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(P_{6}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(P_{\gamma}) \Big] (F_{N})$$

$$+(K_{d(h)})(X_{H})(V_{\gamma})(F_{N}) \left(\frac{O_{\gamma}}{k_{os} + O_{\gamma}}\right)$$

$$V\frac{dN_{\xi}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{7}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{\xi})$$

$$-\left(\frac{\mu_{tot}(NS)}{Y_{NS}}\right) \frac{(X_{NS})(N_{\xi})}{(K_{N} + N_{\xi})} \left(\frac{Q_{\xi}}{K_{0N} + Q_{\xi}}\right) (V_{\xi})$$

$$-Y_{H} \left[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{7}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{\xi})\right] (F_{N})$$

$$-Y_{H} \left[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{7}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{\xi})\right] (F_{N})$$

$$+(K_{d(h)})(X_{H})(V_{\xi})(F_{N}) \left(\frac{Q_{\xi}}{k_{at} + Q_{\xi}}\right)$$

$$\begin{split} V\frac{dN_{9}}{dt} &= 0 = (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(N_{8}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(N_{9}) \\ &- \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{9})}{(K_{N} + N_{9})} \left(\frac{O_{9}}{K_{0N} + O_{9}}\right) (V_{9}) \\ &- Y_{H} \Big[(Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(S_{8}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(S_{9}) \Big] (F_{N}) \\ &- Y_{H} \Big[(Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(P_{8}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(P_{9}) \Big] (F_{N}) \\ &+ (K_{d(h)})(X_{H})(V_{9})(F_{N}) \left(\frac{O_{9}}{k_{os} + O_{9}}\right) \end{split}$$

$$V \frac{dN_{10}}{dt} = 0 = (Q_0 + Q_{RAS})(N_9) - (Q_0 + Q_{RAS})(N_{10})$$

$$- \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{10})}{(K_N + N_{10})} \left(\frac{Q_{10}}{K_{0N} + Q_{10}}\right) (V_{10})$$

$$- Y_H \left[(Q_0 + Q_{RAS})(S_9) - (Q_0 + Q_{RAS})(S_{10}) \right] (F_N)$$

$$- Y_H \left[(Q_0 + Q_{RAS})(P_9) - (Q_0 + Q_{RAS})(P_{10}) \right] (F_N)$$

$$+ (K_{d(k)})(X_H)(V_{10})(F_N) \left(\frac{Q_{10}}{k_{es} + Q_{10}}\right)$$

Nitrate (NO3-N) Mass Balances

Stage 1

$$V\frac{dNO_1}{dt} = 0 = (Q_0)(NO_0) + (Q_{RAS})(0.1)(NO_{10}) + (Q_{tr(1)})(NO_9) - (Q_0 + Q_{RAS} + Q_{tr(1)})(NO_1)$$

$$-\left(\frac{1-1.42Y_{H}}{2.86}\right)\left(\frac{\mu_{\text{m(H)}}}{Y_{H}}\right)F_{DN}\left(\frac{S_{1}X_{H}}{K_{s}+S_{1}}\right)\left(\frac{k_{\text{oh}}}{k_{\text{oh}}+O_{1}}\right)\left(\frac{NO_{1}}{NO_{s}+NO_{1}}\right)V_{1}$$

$$-\frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN})\left(\frac{k_{\text{oh}}}{k_{\text{oh}}+O_{1}}\right)\left(\frac{NO_{1}}{NO_{s}+NO_{1}}\right)V_{1}$$

$$-\left(\frac{1-1.42Y_{H}}{2.86}\right)F_{DN}(K_{P})(P_{1})X_{H}\left(\frac{k_{\text{oh}}}{k_{\text{oh}}+O_{1}}\right)\left(\frac{NO_{1}}{NO_{s}+NO_{1}}\right)V_{1}$$

$$\begin{split} V\frac{dNO_{2}}{dt} &= 0 = (Q_{0} + Q_{ras} + Q_{tr(1)})(NO_{1}) - (Q_{0} + Q_{RAS} + Q_{tr(1)})(NO_{2}) \\ &- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) \left(\frac{\mu_{m(H)}}{Y_{H}}\right) F_{DN} \left(\frac{S_{2}X_{H}}{K_{s} + S_{2}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{2}}\right) \left(\frac{NO_{2}}{NO_{s} + NO_{2}}\right) V_{2} \\ &- \frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{2}}\right) \left(\frac{NO_{2}}{NO_{s} + NO_{2}}\right) V_{2} \\ &- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN}(K_{P})(P_{2}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{2}}\right) \left(\frac{NO_{2}}{NO_{s} + NO_{2}}\right) V_{2} \end{split}$$

$$\begin{split} V\frac{dNO_{3}}{dt} &= 0 = (Q_{0} + Q_{\text{ress}} + Q_{\text{lr}(1)})(NO_{2}) + (Q_{\text{lr}(3)})(NO_{9}) - (Q_{0} + Q_{\text{RdS}} + Q_{\text{lr}(1)})(NO_{3}) \\ &- \bigg(\frac{1 - 1.42Y_{H}}{2.86}\bigg)\bigg(\frac{\mu_{\text{m(H)}}}{Y_{H}}\bigg)F_{DN}\bigg(\frac{S_{3}X_{H}}{K_{s} + S_{3}}\bigg)\bigg(\frac{k_{\text{oh}}}{k_{\text{oh}} + O_{3}}\bigg)\bigg(\frac{NO_{3}}{NO_{s} + NO_{3}}\bigg)V_{3} \\ &- \frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN})\bigg(\frac{k_{\text{oh}}}{k_{\text{oh}} + O_{3}}\bigg)\bigg(\frac{NO_{3}}{NO_{s} + NO_{3}}\bigg)V_{3} \\ &- \bigg(\frac{1 - 1.42Y_{H}}{2.86}\bigg)F_{DN}(K_{P})(P_{3})X_{H}\bigg(\frac{k_{\text{oh}}}{k_{s} + O_{3}}\bigg)\bigg(\frac{NO_{3}}{NO_{s} + NO_{3}}\bigg)V_{3} \end{split}$$

$$\begin{split} V\frac{dNO_4}{dt} &= 0 = (Q_0 + Q_{rest} + Q_{tr(1)} + Q_{tr(3)})(NO_3) - (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_4) \\ &- \left(\frac{1 - 1.42Y_H}{2.86}\right) \left(\frac{\mu_{m(H)}}{Y_H}\right) F_{DN} \left(\frac{S_4 X_H}{K_s + S_4}\right) \left(\frac{k_{oh}}{k_{oh} + O_4}\right) \left(\frac{NO_4}{NO_s + NO_4}\right) V_4 \\ &- \frac{1.42}{2.86} (k_d)(X_H)(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_4}\right) \left(\frac{NO_4}{NO_s + NO_4}\right) V_4 \\ &- \left(\frac{1 - 1.42Y_H}{2.86}\right) F_{DN}(K_P)(P_4) X_H \left(\frac{k_{oh}}{k_{oh} + O_4}\right) \left(\frac{NO_4}{NO_s + NO_4}\right) V_4 \end{split}$$

$$V \frac{dNO_{5}}{dt} = 0 = (Q_{0} + Q_{ros} + Q_{tr(1)} + Q_{tr(3)})(NO_{4}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{5})$$

$$- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) \left(\frac{\mu_{m(H)}}{Y_{H}}\right) F_{DN} \left(\frac{S_{5}X_{H}}{K_{s} + S_{5}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{5}}\right) \left(\frac{NO_{5}}{NO_{s} + NO_{5}}\right) V_{5}$$

$$- \frac{1.42}{2.86} (k_{d})(X_{H})(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{5}}\right) \left(\frac{NO_{5}}{NO_{s} + NO_{5}}\right) V_{5}$$

$$- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN} (K_{P})(P_{5}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{5}}\right) \left(\frac{NO_{5}}{NO_{s} + NO_{5}}\right) V_{5}$$

$$V \frac{dNO_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO_{5}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO_{6})$$

$$+ \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{6})}{K_{N} + NO2_{6}}\right) \left(\frac{O_{6}}{k_{on} + O_{6}}\right) V_{6}$$

$$- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) \left(\frac{\mu_{m(H)}}{Y_{H}}\right) F_{DN} \left(\frac{S_{6}X_{H}}{K_{s} + S_{6}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{6}}\right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right) V_{6}$$

$$- \frac{1.42}{2.86} (k_{d})(X_{H})(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{6}}\right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right) V_{6}$$

$$- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN} (K_{P})(P_{6}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{6}}\right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right) V_{6}$$

$$\begin{split} V\frac{dNO_{7}}{dt} &= 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{6}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{7}) \\ &+ \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{7})}{K_{N} + NO2_{7}}\right) \left(\frac{O_{7}}{k_{on} + O_{7}}\right) V_{7} \\ &- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) \left(\frac{\mu_{m(H)}}{Y_{H}}\right) F_{DN} \left(\frac{S_{7}X_{H}}{K_{s} + S_{7}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{7}}\right) \left(\frac{NO_{7}}{NO_{s} + NO_{7}}\right) V_{7} \\ &- \frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{7}}\right) \left(\frac{NO_{7}}{NO_{s} + NO_{7}}\right) V_{7} \\ &- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN}(K_{P})(P_{7}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{7}}\right) \left(\frac{NO_{7}}{NO_{s} + NO_{7}}\right) V_{7} \end{split}$$

$$V\frac{dNO_{\rm g}}{dt} = 0 = (Q_{\rm 0} + Q_{\rm RAS} + Q_{\rm ir(1)} + Q_{\rm ir(3)})(NO_{\rm 7}) - (Q_{\rm 0} + Q_{\rm RAS} + Q_{\rm ir(1)} + Q_{\rm ir(3)})(NO_{\rm g})$$

$$+ \left(\frac{\mu_{\rm m(NB)}}{Y_{\rm NB}}\right) \left(\frac{(X_{\rm NB})(NO2_{\rm g})}{K_{\rm N} + NO2_{\rm g}}\right) \left(\frac{O_{\rm g}}{k_{\rm on} + O_{\rm g}}\right) V_{\rm g}$$

$$- \left(\frac{1 - 1.42Y_{\rm H}}{2.86}\right) \left(\frac{\mu_{\rm m(H)}}{Y_{\rm H}}\right) F_{\rm DN} \left(\frac{S_{\rm g}X_{\rm H}}{K_{\rm s} + S_{\rm g}}\right) \left(\frac{k_{\rm oh}}{k_{\rm oh} + O_{\rm g}}\right) \left(\frac{NO_{\rm g}}{NO_{\rm s} + NO_{\rm g}}\right) V_{\rm g}$$

$$- \frac{1.42}{2.86} (k_{\rm d})(X_{\rm H})(F_{\rm DN}) \left(\frac{k_{\rm oh}}{k_{\rm oh} + O_{\rm g}}\right) \left(\frac{NO_{\rm g}}{NO_{\rm s} + NO_{\rm g}}\right) V_{\rm g}$$

$$-\left(\frac{1-1.42Y_{H}}{2.86}\right)F_{DN}(K_{P})(P_{s})X_{H}\left(\frac{k_{oh}}{k_{oh}+O_{s}}\right)\left(\frac{NO_{s}}{NO_{s}+NO_{s}}\right)V_{s}$$

$$\begin{split} V\frac{dNO_{9}}{dt} &= 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{8}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{9}) \\ &+ \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{9})}{K_{N} + NO2_{9}}\right) \left(\frac{O_{9}}{k_{on} + O_{9}}\right) V_{9} \\ &- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) \left(\frac{\mu_{m(H)}}{Y_{H}}\right) F_{DN} \left(\frac{S_{9}X_{H}}{K_{s} + S_{9}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{9}}\right) \left(\frac{NO_{9}}{NO_{s} + NO_{9}}\right) V_{9} \\ &- \frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{9}}\right) \left(\frac{NO_{9}}{NO_{s} + NO_{9}}\right) V_{9} \\ &- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN}(K_{P})(P_{9}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{9}}\right) \left(\frac{NO_{9}}{NO_{s} + NO_{9}}\right) V_{9} \end{split}$$

$$\begin{split} V\frac{dNO_{10}}{dt} &= 0 = (Q_0 + Q_{RAS})(NO_9) - (Q_0 + Q_{RAS})(NO_{10}) \\ &+ \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{10})}{K_N + NO2_{10}}\right) \left(\frac{O_{10}}{k_{on} + O_{10}}\right) V_{10} \\ &- \left(\frac{1 - 1.42Y_H}{2.86}\right) \left(\frac{\mu_{m(H)}}{Y_H}\right) F_{DN} \left(\frac{S_{10}X_H}{K_s + S_{10}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{10}}\right) \left(\frac{NO_{10}}{NO_s + NO_{10}}\right) V_{10} \\ &- \frac{1.42}{2.86}(k_d)(X_H)(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{10}}\right) \left(\frac{NO_{10}}{NO_s + NO_{10}}\right) V_{10} \end{split}$$

$$-\left(\frac{1-1.42Y_{H}}{2.86}\right)F_{DN}(K_{P})(P_{10})X_{H}\left(\frac{k_{oh}}{k_{oh}+O_{10}}\right)\left(\frac{NO_{10}}{NO_{s}+NO_{10}}\right)V_{10}$$

Nitrite (NO2⁻) Mass Balances

Stage 1

$$V\frac{dNO2_1}{dt} = 0 = (Q_0)(NO2_0) + (Q_{RAS})(NO2_{10}) + (Q_{ir(1)})(NO2_9) - (Q_0 + Q_{RAS} + Q_{ir(1)})(NO2_1)$$

Stage 2

$$V\frac{dNO2_{2}}{dt} = 0 = (Q_{0} + Q_{res} + Q_{tr(1)})(NO2_{1}) - (Q_{0} + Q_{RAS} + Q_{tr(1)})(NO2_{2})$$

Stage 3

$$V\frac{dNO2_3}{dt} = 0 = (Q_0 + Q_{res} + Q_{r(1)})(NO2_2) + (Q_{r(3)})(NO2_9) - (Q_0 + Q_{RAS} + Q_{r(1)} + Q_{r(3)})(NO2_3)$$

Stage 4

$$V\frac{dNO2_4}{dt} = 0 = (Q_0 + Q_{ras} + Q_{tr(1)} + Q_{tr(3)})(NO2_3) - (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO2_4)$$

$$V\frac{dNO2_{5}}{dt} = 0 = (Q_{0} + Q_{ras} + Q_{tr(1)} + Q_{tr(3)})(NO2_{4}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO2_{5})$$

$$V \frac{dNO2_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO2_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO2_{6}) + \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \left(\frac{X_{NS}N_{6}}{K_{N} + N_{6}}\right) \left(\frac{O_{6}}{K_{om} + O_{6}}\right) (V_{6}) - \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{X_{NB}NO2_{6}}{k_{N(NB)} + NO2_{6}}\right) \left(\frac{O_{6}}{k_{om} + O_{6}}\right) (V_{6})$$

Stage 7
$$V \frac{dNO2_{7}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO2_{6}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO2_{7})$$

$$+ \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \left(\frac{X_{NS}N_{7}}{K_{N} + N_{7}}\right) \left(\frac{O_{7}}{K_{on} + O_{7}}\right) (V_{7})$$

$$- \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{X_{NB}NO2_{7}}{k_{N(NB)} + NO2_{7}}\right) \left(\frac{O_{7}}{k_{on} + O_{7}}\right) (V_{7})$$

$$V\frac{dNO2_8}{dt} = 0 = (Q_0 + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO2_7) - (Q_0 + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO2_8)$$

$$+ \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \left(\frac{X_{NS}N_{8}}{K_{N} + N_{8}}\right) \left(\frac{O_{8}}{K_{on} + O_{8}}\right) (V_{8})$$

$$- \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{X_{NB}NO2_{8}}{k_{N(NB)} + NO2_{8}}\right) \left(\frac{O_{8}}{k_{on} + O_{8}}\right) (V_{8})$$

$$V\frac{dNO2_9}{dt} = 0 = (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO2_8) - (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO2_9)$$

$$+ \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \left(\frac{X_{NS}N_{9}}{K_{N} + N_{9}}\right) \left(\frac{O_{9}}{K_{on} + O_{9}}\right) (V_{9})$$

$$- \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{X_{NB}NO2_{9}}{k_{N(NB)} + NO2_{9}}\right) \left(\frac{O_{9}}{k_{on} + O_{9}}\right) (V_{9})$$

Stage 10

$$V\frac{dNO2_{10}}{dt} = 0 = (Q_0 + Q_{RAS})(NO2_9) - (Q_0 + Q_{RAS})(NO2_{10})$$

$$+ \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \left(\frac{X_{NS}N_{10}}{K_{N} + N_{10}}\right) \left(\frac{O_{10}}{K_{on} + O_{10}}\right) (V_{10})$$

$$- \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{X_{NB}NO2_{10}}{k_{N(NB)} + NO2_{10}}\right) \left(\frac{O_{10}}{k_{on} + O_{10}}\right) (V_{10})$$

SCOD Mass Balances

$$V\frac{dS_1}{dt} = 0 = Q_0S_0 + Q_{RAS}S_{10} + Q_{tr(1)}S_9 - (Q_0 + Q_{RAS} + Q_{tr(1)})(S_1) - (R_{sw})(V_1)$$

where:
$$R_{sw} = K(F_{DN}) \left(\frac{S_1 X_H}{k_s + S_1} \right) \left(\frac{k_{oh}}{k_{oh} + O_1} \right) \left(\frac{NO_1}{NO_s + NO_1} \right)$$

$$V\frac{dS_2}{dt} = 0 = (Q_0 + Q_{res} + Q_{ir(1)})(S_1) - (Q_0 + Q_{RAS} + Q_{ir(1)})(S_2) - (R_{su})(V_2)$$

where: $R_{su} = K(F_{DN}) \left(\frac{S_2 X_H}{k_s + S_2} \right) \left(\frac{k_{oh}}{k_{oh} + O_2} \right) \left(\frac{NO_2}{NO_s + NO_2} \right)$

Stage 3

$$V\frac{dS_3}{dt} = 0 = (Q_0 + Q_{res} + Q_{tr(1)})(S_2) + (Q_{tr(3)})(S_9) - (Q_0 + Q_{RAS} + Q_{tr(1)})(S_3) - (R_{se})(V_3)$$

where: $R_{av} = K(F_{DN}) \left(\frac{S_3 X_H}{k_s + S_3} \right) \left(\frac{k_{oh}}{k_{oh} + O_3} \right) \left(\frac{NO_3}{NO_s + NO_3} \right)$

Stage 4

$$V\frac{dS_4}{dt} = 0 = (Q_0 + Q_{res} + Q_{ir(1)} + Q_{ir(3)})(S_3) - (Q_0 + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(S_4) - (R_{su})(V_4)$$

where: $R_{\text{nu}} = K(F_{DN}) \left(\frac{S_4 X_H}{k_s + S_4} \right) \left(\frac{k_{\text{oh}}}{k_{\text{oh}} + O_4} \right) \left(\frac{NO_4}{NO_s + NO_4} \right)$

Stage 5

$$V\frac{dS_{5}}{dt} = 0 = (Q_{0} + Q_{res} + Q_{tr(1)} + Q_{tr(3)})(S_{4}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{5}) - (R_{su})(V_{5})$$

where: $R_{au} = K(F_{DN}) \left(\frac{S_3 X_H}{k_s + S_5} \right) \left(\frac{k_{oh}}{k_{oh} + O_5} \right) \left(\frac{NO_5}{NO_4 + NO_5} \right)$

$$V\frac{dS}{dt} = 0 = (Q_0 + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(S_5) - (Q_0 + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(S_6)$$

$$- \left(\frac{KS_6 X_H}{k_s + S_6}\right) \left(\frac{O_6}{O_6 + k_{os}}\right) V_6$$

$$- \left(\frac{KS_6 X_H}{k_s + S_6}\right) \left(\frac{k_{oh}}{k_{oh} + O_6}\right) \left(\frac{NO_6}{NO_s + NO_6}\right) V_6$$

Stage 7

$$V \frac{dS_{\gamma}}{dt} = 0 = (Q_0 + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(S_6) - (Q_0 + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(S_7)$$

$$- \left(\frac{KS_{\gamma}X_H}{k_s + S_{\gamma}}\right) \left(\frac{O_{\gamma}}{O_{\gamma} + k_{os}}\right) V_{\gamma}$$

$$- \left(\frac{KS_{\gamma}X_H}{k_s + S_{\gamma}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{\gamma}}\right) \left(\frac{NO_{\gamma}}{NO_s + NO_{\gamma}}\right) V_{\gamma}$$

$$V\frac{dS_{s}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{7}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{s})$$

$$-\left(\frac{KS_{s}X_{H}}{k_{s} + S_{s}}\right)\left(\frac{O_{s}}{O_{s} + k_{os}}\right)V_{s}$$

$$-\left(\frac{KS_{s}X_{H}}{k_{s} + S_{s}}\right)\left(\frac{k_{oh}}{k_{oh} + O_{s}}\right)\left(\frac{NO_{s}}{NO_{s} + NO_{s}}\right)V_{s}$$

$$V \frac{dS_{9}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{8}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(S_{9})$$

$$- \left(\frac{KS_{9}X_{H}}{k_{s} + S_{9}}\right) \left(\frac{O_{9}}{O_{9} + k_{os}}\right) V_{9}$$

$$- \left(\frac{KS_{9}X_{H}}{k_{s} + S_{9}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{9}}\right) \left(\frac{NO_{9}}{NO_{s} + NO_{9}}\right) V_{9}$$

Stage 10

$$V \frac{dS_{10}}{dt} = 0 = (Q_0 + Q_{RAS})(S_9) - (Q_0 + Q_{RAS})(S_{10})$$

$$- \left(\frac{KS_{10}X_H}{k_s + S_{10}}\right) \left(\frac{O_{10}}{O_{10} + k_{oc}}\right) V_{10}$$

$$- \left(\frac{KS_{10}X_H}{k_s + S_{10}}\right) \left(\frac{k_{oh}}{k_{oh} + O_{10}}\right) \left(\frac{NO_{10}}{NO_s + NO_{10}}\right) V_{10}$$

PCOD Mass Balances

$$V\frac{dP_1}{dt} = 0 = (Q_0)(P_0) + (Q_0 + Q_{RAS})(P_{10}) - \frac{(V_T)(P_{10})}{\theta_c} + (Q_{r(1)})(P_0) - (Q_0 + Q_{RAS} + Q_{r(1)})(P_1) - r_p(V_1)$$
where: $r_p = F_{DN}(K_p P_1 X_H) \left(\frac{k_{oh}}{k_{oh} + Q_1}\right) \left(\frac{NQ_1}{NQ_1 + NQ_1}\right)$

$$V\frac{dP_2}{dt} = 0 = (Q_0 + Q_{\text{res}} + Q_{\text{tr(1)}})(P_1) - (Q_0 + Q_{\text{RAS}} + Q_{\text{tr(1)}})(P_2) - r_p(V_2)$$

where:
$$r_p = F_{DN}(K_p P_2 X_H) \left(\frac{k_{oh}}{k_{oh} + O_2}\right) \left(\frac{NO_2}{NO_s + NO_2}\right)$$

Stage 3

$$V\frac{dP_3}{dt} = 0 = (Q_0 + Q_{ras} + Q_{tr(1)})(P_2) + (Q_{tr(3)})(P_9) - (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{r(3)})(P_3) - r_p(V_3)$$

where:
$$r_p = F_{DN}(K_p P_3 X_H) \left(\frac{k_{oh}}{k_{oh} + O_3}\right) \left(\frac{NO_3}{NO_s + NO_3}\right)$$

Stage 4

$$V\frac{dP_4}{dt} = 0 = (Q_0 + Q_{res} + Q_{tr(1)} + Q_{tr(3)})(P_3) - (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_4) - r_p(V_4)$$

where:
$$r_p = F_{DN}(K_p P_4 X_H) \left(\frac{k_{ob}}{k_{ob} + O_4}\right) \left(\frac{NO_4}{NO_4 + NO_4}\right)$$

$$V\frac{dP_{5}}{dt} = 0 = (Q_{0} + Q_{res} + Q_{ir(1)} + Q_{ir(3)})(P_{4}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(P_{5}) - r_{p}(V_{5})$$

where:
$$r_p = F_{DN} (K_p P_5 X_H) \left(\frac{k_{oh}}{k_{oh} + O_5} \right) \left(\frac{NO_5}{NO_5 + NO_5} \right)$$

$$V\frac{dP_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{6})$$

$$-(K_{p}P_{6}X_{H}V_{6})\left(\frac{k_{oh}}{k_{oh} + Q_{6}}\right)\left(\frac{NO_{6}}{NO_{s} + NO_{6}}\right)$$

$$-(K_{p}P_{6}X_{H}V_{6})\left(\frac{O_{6}}{k_{ou} + O_{6}}\right)$$

$$\begin{split} V \frac{dP_{\gamma}}{dt} &= 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{0}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{\gamma}) \\ &- (K_{p}P_{\gamma}X_{H}V_{\gamma}) \left(\frac{k_{oh}}{k_{oh} + O_{\gamma}}\right) \left(\frac{NO_{\gamma}}{NO_{s} + NO_{\gamma}}\right) \\ &- (K_{p}P_{\gamma}X_{H}V_{\gamma}) \left(\frac{O_{\gamma}}{k_{os} + O_{\gamma}}\right) \end{split}$$

$$V\frac{dP_{\rm g}}{dt} = 0 = (Q_0 + Q_{\rm RAS} + Q_{\rm tr(1)} + Q_{\rm tr(3)})(P_7) - (Q_0 + Q_{\rm RAS} + Q_{\rm tr(1)} + Q_{\rm tr(3)})(P_{\rm g})$$
$$-(K_p P_{\rm g} X_H V_6) \left(\frac{k_{\rm oh}}{k_{\rm oh} + Q_{\rm o}}\right) \left(\frac{NO_{\rm g}}{NO_{\rm o} + NO_{\rm g}}\right)$$

$$-(K_p P_{\mathbf{s}} X_H V_{\mathbf{s}}) \left(\frac{O_{\mathbf{s}}}{k_{cs} + O_{\mathbf{s}}} \right)$$

$$\begin{split} V\frac{dP_{9}}{dt} &= 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{1}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{9}) \\ &- (K_{p}P_{9}X_{H}V_{9}) \bigg(\frac{k_{oh}}{k_{oh} + O_{9}}\bigg) \bigg(\frac{NO_{9}}{NO_{s} + NO_{9}}\bigg) \\ &- (K_{p}P_{9}X_{H}V_{9}) \bigg(\frac{O_{9}}{k_{os} + O_{9}}\bigg) \end{split}$$

$$V\frac{dP_{10}}{dt} = 0 = (Q_0 + Q_{RAS})(P_9) - (Q_0 + Q_{RAS})(P_{10})$$

$$-(K_p P_{10} X_H V_{10}) \left(\frac{k_{oh}}{k_{oh} + O_{10}}\right) \left(\frac{NO_{10}}{NO_s + NO_{10}}\right)$$

$$-(K_p P_{10} X_H V_{10}) \left(\frac{O_{10}}{k_{oh} + O_{10}}\right)$$

Oxygen Consumption

Stage 6

Dissolved Oxygen Consumption Rate (Kg O2 / hr) per stage

$$= [(A)(r_{sx} + 1.42(K_d)(X_H)](V_6) + (3.22)(r_{NH_4(ax)})(V_6) + (1.11)(r_{NO_2(ax)})(V_6)$$

where:

$$r_{su} = \left(\frac{KS_6X_R}{k_s + S_6}\right)\left(\frac{O_6}{O_6 + k_{co}}\right)$$

$$A = 1 - 1.42(Y_H)$$

$$r_{NH_{4}(ax)} = \left(\frac{\mu_{m(NS)}}{Y_{NB}}\right) \left(\frac{X_{NS}(N_{6})}{K_{N} + N_{6}}\right) \left(\frac{O_{6}}{O_{6} + k_{om}}\right)$$

$$r_{NO_2(ax)} = \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_6)}{K_N + NO2_6}\right) \left(\frac{O_6}{O_6 + k_{con}}\right)$$

Stage 7

Dissolved Oxygen Consumption Rate (Kg O₂ / hr) per stage

$$= \big[(A)(r_{_{\mathrm{SU}}} + 1.42(K_{_{\mathrm{d}}})(X_{_{\mathrm{H}}}) \big] (V_{_{7}}) + (3.22)(r_{_{NH_{_{4}(\mathrm{GS})}}})(V_{_{7}}) + (1.11)(r_{_{NO_{_{2}(\mathrm{GS})}}})(V_{_{7}})$$

$$r_{\rm ext} = \left(\frac{KS_{\gamma}X_{\rm H}}{k_{\rm s} + S_{\gamma}}\right) \left(\frac{O_{\gamma}}{O_{\gamma} + k_{\rm ext}}\right)$$

$$\begin{split} A &= 1 - 1.42(Y_H) \\ r_{NH_4(ax)} &= \left(\frac{\mu_{m(NS)}}{Y_{NB}}\right) \left(\frac{X_{NS}(N_{\gamma})}{K_N + N_{\gamma}}\right) \left(\frac{O_{\gamma}}{O_{\gamma} + k_{om}}\right) \\ r_{NO_2(ax)} &= \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{\gamma})}{K_N + NO2_{\gamma}}\right) \left(\frac{O_{\gamma}}{O_{\gamma} + k_{om}}\right) \end{split}$$

Dissolved Oxygen Consumption Rate (Kg O2 / hr) per stage

$$= [(A)(r_{su} + 1.42(K_d)(X_H)](V_{\mathfrak{g}}) + (3.22)(r_{NH_4(cor)})(V_{\mathfrak{g}}) + (1.11)(r_{NO_2(cor)})(V_{\mathfrak{g}})$$

$$r_{su} = \left(\frac{KS_{s}X_{H}}{k_{s} + S_{s}}\right)\left(\frac{O_{s}}{O_{s} + k_{os}}\right)$$

$$A = 1 - 1.42(Y_H)$$

$$r_{NH_4(ox)} = \left(\frac{\mu_{m(NS)}}{Y_{NB}}\right) \left(\frac{X_{NS}(N_s)}{K_N + N_s}\right) \left(\frac{O_s}{O_s + k_{on}}\right)$$

$$r_{NO_2(ox)} = \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{\text{g}})}{K_N + NO2_{\text{g}}}\right) \left(\frac{O_{\text{g}}}{O_{\text{g}} + k_{om}}\right)$$

Dissolved Oxygen Consumption Rate (Kg O₂ / hr) per stage

$$= [(A)(r_{ss} + 1.42(K_d)(X_H)](V_9) + (3.22)(r_{NH_4(\alpha r)})(V_9) + (1.11)(r_{NO_2(\alpha r)})(V_9)$$

$$r_{xx} = \left(\frac{KS_{9}X_{H}}{k_{s} + S_{9}}\right)\left(\frac{O_{9}}{O_{9} + k_{ox}}\right)$$

$$A = 1 - 1.42(Y_H)$$

$$r_{\mathit{NH}_{4}\left(\mathit{ox}\right)} = \left(\frac{\mu_{\mathit{m}\left(\mathit{NS}\right)}}{Y_{\mathit{NB}}}\right) \left(\frac{X_{\mathit{NS}}\left(N_{\mathit{9}}\right)}{K_{\mathit{N}} + N_{\mathit{9}}}\right) \left(\frac{O_{\mathit{9}}}{O_{\mathit{9}} + k_{\mathit{en}}}\right)$$

$$r_{NO_2(ox)} = \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_9)}{K_N + NO2_9}\right) \left(\frac{O_9}{O_9 + k_{ox}}\right)$$

Dissolved Oxygen Consumption Rate (Kg O₂ / hr) per stage

$$= [(A)(r_{su} + 1.42(K_d)(X_H)](V_{10}) + (3.22)(r_{NH_4(\alpha x)})(V_{10}) + (1.11)(r_{NO_2(\alpha x)})(V_{10})$$

$$r_{sw} = \left(\frac{KS_{10}X_H}{k_s + S_{10}}\right) \left(\frac{O_{10}}{O_{10} + k_{cs}}\right)$$

$$A = 1 - 1.42(Y_H)$$

$$r_{NH_4(ox)} = \left(\frac{\mu_{m(NS)}}{Y_{NB}}\right) \left(\frac{X_{NS}(N_{10})}{K_N + N_{10}}\right) \left(\frac{O_{10}}{O_{10} + k_{on}}\right)$$

$$r_{NO_{2}(ax)} = \left(\frac{\mu_{n(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{10})}{K_{N} + NO2_{10}}\right) \left(\frac{O_{10}}{O_{10} + k_{om}}\right)$$

Storage Model Mass Balance Equations

(Mass balance equations for PCOD and Nitrite in the Storage Model are identical to the mass balance equations listed previously in the Michaelis-Menton Model)

S_S/X_H Mass Balances

Stage 1

$$V \frac{d \binom{S_{S(1)}}{X_H}}{dt} = (Q_{tr(1)})(S_{S(9)}/X_H) + (Q_{RAS})(S_{S(10)}/X_H) - (Q_0 + Q_{tr(1)} + Q_{RAS})(S_{S(1)}/X_H)$$

$$+ \left(\frac{1}{X_H}\right) (Q_0 S_0 - Q_0 S_R)(0.7) - (R_{S_2 U})(V_2)$$

where:

$$R_{S_{sU}} = k_{sto} \left(\frac{S_{S(1)}/X_H}{k_{ss} + S_{s(1)}/X_H} \right) \left(\frac{k_{oh}}{k_{oh} + O_1} \right) \left(\frac{NO_1}{NO_s + NO_1} \right) (F_{DN})$$

Stage 2

$$V \frac{d \binom{S_{S(2)}/X_H}{dt}}{dt} = (Q_0 + Q_{ros} + Q_{tr(1)})(S_{S(1)}/X_H) - (Q_0 + Q_{tr(1)} + Q_{RAS})(S_{S(2)}/X_H)$$

$$+ \left(\frac{1}{X_H}\right) \left[(Q_0 + Q_{res} + Q_{tr(1)})(S_1) - (Q_0 + Q_{res} + Q_{tr(2)})(S_R) \right] (0.10) - (R_{S,U})(V_2)$$

$$R_{s_{sU}} = k_{so} \left(\frac{S_{S(2)}/X_{H}}{k_{ss} + S_{s(2)}/X_{H}} \right) \left(\frac{k_{oh}}{k_{oh} + O_{2}} \right) \left(\frac{NO_{2}}{NO_{s} + NO_{2}} \right) (F_{DN})$$

$$V\frac{d\binom{S_{S(3)}/X_H}{dt}}{dt} = (Q_0 + Q_{res} + Q_{rr(1)})(S_{S(2)}/X_H) + (Q_{rr(3)})(S_{S(9)}/X_H) - (Q_0 + Q_{rr(1)} + Q_{RAS} + Q_{rr(3)})(S_{S(3)}/X_H)$$

$$+ \left(\frac{1}{X_H}\right) \left[(Q_0 + Q_{ras} + Q_{ir(1)})(S_2) - (Q_0 + Q_{ras} + Q_{ir(2)})(S_R) \right] (1.0) - (R_{S_3U})(V_3)$$

where:

$$R_{S_{s}U} = k_{slo} \left(\frac{S_{s(3)}/X_{H}}{k_{ss} + S_{s(3)}/X_{H}} \right) \left(\frac{k_{oh}}{k_{oh} + O_{3}} \right) \left(\frac{NO_{3}}{NO_{s} + NO_{3}} \right) (F_{DN})$$

Stage 4

$$V \frac{d \left(\frac{S_{S(4)}}{X_H}\right)}{dt} = \left(Q_0 + Q_{rax} + Q_{tr(1)} + Q_{tr(3)}\right) \left(S_{S(3)}/X_H\right) - \left(Q_0 + Q_{tr(1)} + Q_{RAS} + Q_{tr(3)}\right) \left(S_{S(4)}/X_H\right) - \left(R_{S_3U}\right) (V_4)$$

$$R_{S_{S}U} = k_{sto} \left(\frac{S_{S(4)}/X_{H}}{k_{ss} + S_{s(4)}/X_{H}} \right) \left(\frac{k_{oh}}{k_{oh} + O_{4}} \right) \left(\frac{NO_{4}}{NO_{s} + NO_{4}} \right) (F_{DN})$$

$$V \frac{d^{\left(S_{S(5)}/X_{H}\right)}}{dt} = \left(Q_{0} + Q_{ras} + Q_{tr(1)} + Q_{tr(3)}\right)\left(S_{S(4)}/X_{H}\right) - \left(Q_{0} + Q_{tr(1)} + Q_{RAS} + Q_{tr(3)}\right)\left(S_{S(5)}/X_{H}\right) - \left(R_{S_{S}U}\right)\left(V_{5}\right)$$

where:

$$R_{S_{sU}} = k_{sto} \left(\frac{S_{S(5)}/X_{H}}{k_{ss} + S_{s(5)}/X_{H}} \right) \left(\frac{k_{oh}}{k_{oh} + O_{5}} \right) \left(\frac{NO_{5}}{NO_{s} + NO_{5}} \right) (F_{DN})$$

Stage 6

$$V \frac{d \binom{S_{S(6)}/X_H}{dt}}{dt} = (Q_0 + Q_{rax} + Q_{ir(1)} + Q_{ir(3)})(S_{S(5)}/X_H) - (Q_0 + Q_{ir(1)} + Q_{RAS} + Q_{ir(3)})(S_{S(6)}/X_H) - (R_{S_5U})(V_6)$$

where:

$$R_{S_3U} = k \left(\frac{S_{S(6)}/X_H}{k_{ss} + S_{S(6)}/X_H} \right) \left(\frac{O_6}{k_{os} + O_6} \right)$$

Stage 7

$$V \frac{d^{\left(S_{S(1)}/X_{H}\right)}}{dt} = \left(Q_{0} + Q_{ras} + Q_{tr(1)} + Q_{tr(3)}\right)\left(S_{S(6)}/X_{H}\right) - \left(Q_{0} + Q_{tr(1)} + Q_{RAS} + Q_{tr(3)}\right)\left(S_{S(1)}/X_{H}\right) - \left(R_{S_{2}U}\right)\left(V_{7}\right)$$

$$R_{S_SU} = k \left(\frac{S_{S(7)}/X_H}{k_{ss} + S_{S(7)}/X_H} \right) \left(\frac{O_7}{k_{os} + O_7} \right)$$

$$V \frac{d \left(\frac{S_{S(8)}}{X_H}\right)}{dt} = \left(Q_0 + Q_{ras} + Q_{rr(1)} + Q_{rr(3)}\right) \left(S_{S(7)}/X_H\right) - \left(Q_0 + Q_{rr(1)} + Q_{RAS} + Q_{rr(3)}\right) \left(S_{S(8)}/X_H\right) - \left(R_{S_8U}\right) \left(V_8\right)$$

where:

$$R_{S_sU} = k \left(\frac{S_{S(8)}/X_H}{k_{ss} + S_{S(8)}/X_H} \right) \left(\frac{O_8}{k_{os} + O_8} \right)$$

Stage 9

$$V \frac{d \binom{S_{S(9)}/X_H}{At}}{dt} = (Q_0 + Q_{ras} + Q_{rr(1)} + Q_{rr(3)})(S_{S(8)}/X_H) - (Q_0 + Q_{rr(1)} + Q_{RAS} + Q_{rr(3)})(S_{S(9)}/X_H) - (R_{S_3U})(V_9)$$

where:

$$R_{S_{S}U} = k \left(\frac{S_{S(9)}/X_{H}}{k_{ss} + S_{S(9)}/X_{H}} \right) \left(\frac{O_{9}}{k_{cs} + O_{9}} \right)$$

Stage 10

$$V \frac{d \binom{S_{S(10)}}{X_H}}{dt} = (Q_0 + Q_{res})(S_{S(9)}/X_H) - (Q_0 + Q_{RAS})(S_{S(10)}/X_H) - (R_{S_FU})(V_{10})$$

$$R_{s_{s}U} = k \left(\frac{S_{s(10)}/X_H}{k_{ss} + S_{s(10)}/X_H} \right) \left(\frac{O_{10}}{k_{os} + O_{10}} \right)$$

SCOD Mass Balances (Storage Model)

Stage 1

$$V\left(\frac{dS_1}{dt}\right) = 0 = Q_0 S_0 + (Q_{tr(1)})(S_9) + (Q_{RAS})(S_{10}) - (Q_0 + Q_{tr(1)} + Q_{RAS})(S_1)$$
$$-(Q_0 S_0 - Q_0 S_8)(0.70)$$

Stage 2

$$V\left(\frac{dS_2}{dt}\right) = 0 = (Q_0 + Q_{RAS} + Q_{tr(1)})(S_1) - (Q_0 + Q_{tr(1)} + Q_{RAS})(S_2)$$

$$-\left[(Q_0 + Q_{res} + Q_{tr(1)})(S_1) - (Q_0 + Q_{res} + Q_{tr(1)})(S_R)\right](0.10)$$

$$V\left(\frac{dS_3}{dt}\right) = 0 = (Q_0 + Q_{RAS} + Q_{tr(1)})(S_2) + (Q_{tr(3)})(S_9) - (Q_0 + Q_{tr(1)} + Q_{RAS} + Q_{tr(3)})(S_3)$$
$$-\left[(Q_0 + Q_{ras} + Q_{tr(1)})(S_2) - (Q_0 + Q_{ras} + Q_{tr(1)})(S_R)\right](1.0)$$

$$S_3 = S_4 = S_5 = S_6 = S_7 = S_8 = S_9 = S_{10}$$

Ammonia (NH₄-N) Mass Balances

Stage 1

$$V\frac{dN_{1}}{dt} = 0 = (Q_{0})(N_{0}) + (Q_{RAS})(N_{10}) + (Q_{tr(1)})(N_{9}) - (Q_{0} + Q_{RAS} + Q_{tr(1)})(N_{1})$$

$$-\left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{1})}{(K_{N} + N_{1})} \left(\frac{O_{1}}{K_{0N} + O_{1}}\right) (V_{1})$$

$$-Y_{H}[X_{H}(R_{S_{S}U})(V_{1})](F_{N})$$

$$-Y_{H}\Big[(Q_{0}P_{0}) + (Q_{0} + Q_{RAS})(P_{10}) - \left(\frac{V_{1}P_{10}}{\theta_{c}}\right) + (Q_{tr(1)})(P_{9})\Big](F_{N})$$

$$-Y_{H}\Big[-(Q_{0} + Q_{RAS} + Q_{tr(1)})(P_{1})\Big](F_{N})$$

$$+(K_d)(X_H)(V_1)(F_N)(F_{DN})\left(\frac{NO_1}{NO_s+NO_1}\right)$$

where:

$$R_{S_{s}U} = k_{sto} \left(\frac{S_{s(1)}/X_{H}}{k_{ss} + (S_{s(1)}/X_{H})} \right) \left(\frac{k_{sh}}{k_{sh} + O_{1}} \right) \left(\frac{NO_{1}}{NO_{s} + NO_{1}} \right) (F_{DN})$$

$$V\frac{dN_{2}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)})(N_{1}) - (Q_{0} + Q_{RAS} + Q_{tr(1)})(N_{2})$$

$$- \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{2})}{(K_{N} + N_{2})} \left(\frac{Q_{2}}{K_{0N} + Q_{2}}\right) (V_{2})$$

$$- Y_{H}[X_{H}(R_{S_{2}U})(V_{2})](F_{N})$$

$$- Y_{H}[Q_{0} + Q_{RAS} + Q_{tr(1)})(P_{1}) - [(Q_{0} + Q_{RAS} + Q_{tr(1)})(P_{2})](F_{N})$$

$$+(K_d)(X_H)(V_2)(F_N)(F_{DN})\left(\frac{NO_2}{NO_s+NO_2}\right)$$

$$R_{S_{sU}} = k_{so} \left(\frac{S_{S(2)}/X_{H}}{k_{ss} + (S_{s(2)}/X_{H})} \right) \left(\frac{k_{oh}}{k_{oh} + O_{2}} \right) \left(\frac{NO_{2}}{NO_{s} + NO_{2}} \right) (F_{DN})$$

Stage 3

$$V\frac{dN_{3}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{r(1)})(N_{2}) + (Q_{r(3)})(N_{3}) - (Q_{0} + Q_{RAS} + Q_{r(1)} + Q_{r(3)})(N_{3})$$

$$- \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{3})}{(K_{N} + N_{3})} \left(\frac{O_{3}}{K_{0N} + O_{3}}\right) (V_{1})$$

$$-Y_{H}[X_{H}(R_{S_{3}U})(V_{3})](F_{N})$$

$$-Y_{H}[(Q_{0} + Q_{RAS} + Q_{tr(1)})(P_{2}) + (Q_{tr(3)})(P_{9}) - [(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{3})]](F_{N})$$

$$+ (K_{d})(X_{H})(V_{3})(F_{N})(F_{DN}) \left(\frac{NO_{3}}{NO + NO_{3}}\right)$$

$$R_{S_{sU}} = k_{so} \left(\frac{S_{S(3)}/X_H}{k_{ss} + (S_{s(3)}/X_H)} \right) \left(\frac{k_{oh}}{k_{oh} + O_3} \right) \left(\frac{NO_3}{NO_s + NO_3} \right) (F_{DN})$$

$$V \frac{dN_4}{dt} = 0 = (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_3) - (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_4)$$

$$- \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_4)}{(K_N + N_4)} \left(\frac{O_4}{K_{0N} + O_4}\right)(V_4)$$

$$- Y_H [X_H(R_{S_SU})(V_4)](F_N)$$

$$- Y_H [(Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_3) - [(Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_4)]](F_N)$$

$$+ (K_d)(X_H)(V_4)(F_N)(F_{DN}) \left(\frac{NO_4}{NO_s + NO_4}\right)$$

where:

$$R_{S_{sU}} = k_{so} \left(\frac{S_{S(4)}/X_{H}}{k_{ss} + (S_{s(4)}/X_{H})} \right) \left(\frac{k_{oh}}{k_{oh} + O_{4}} \right) \left(\frac{NO_{4}}{NO_{s} + NO_{4}} \right) (F_{DN})$$

$$V\frac{dN_{5}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{4}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{5})$$

$$-\left(\frac{\mu_{nm(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{5})}{(K_{N} + N_{5})} \left(\frac{O_{5}}{K_{0N} + O_{5}}\right) (V_{5})$$

$$-Y_{H}[X_{H}(R_{S_{5}U})(V_{5})](F_{N})$$

$$-Y_{H}[Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{4}) - [(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{5})]](F_{N})$$

$$+(K_d)(X_H)(V_5)(F_N)(F_{DN})\left(\frac{NO_5}{NO_4+NO_5}\right)$$

$$R_{s_{sU}} = k_{so} \left(\frac{S_{s(s)}/X_{H}}{k_{ss} + (S_{s(s)}/X_{H})} \right) \left(\frac{k_{oh}}{k_{oh} + O_{s}} \right) \left(\frac{NO_{s}}{NO_{s} + NO_{s}} \right) (F_{DN})$$

$$V\frac{dN_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{6})$$

$$-\left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{6})}{(K_{N} + N_{6})} \left(\frac{Q_{6}}{K_{0N} + Q_{6}}\right) (V_{6})$$

$$-Y_{H}[X_{H}(R_{S_{2}U})(V_{6})](F_{N})$$

$$-Y_{H}[(Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{5}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{6})](F_{N})$$

$$+(K_{d(h)})(X_{H})(V_{6})(F_{N}) \left(\frac{Q_{6}}{k_{as} + Q_{6}}\right)$$
where:
$$R_{S_{S}U} = k_{sto} \left(\frac{S_{S(6)}/X_{H}}{k + (S_{S}U/X_{A})}\right) \left(\frac{Q_{6}}{k + Q_{A}}\right)$$

$$V \frac{dN_{\gamma}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(N_{6}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(N_{\gamma})$$

$$- \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{\gamma})}{(K_{N} + N_{\gamma})} \left(\frac{O_{\gamma}}{K_{0N} + O_{\gamma}}\right) (V_{\gamma})$$

$$- Y_{H}[X_{H}(R_{S_{3}U})(V_{\gamma})](F_{N})$$

$$- Y_{H}[(Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(P_{6}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(P_{\gamma})](F_{N})$$

$$+ (K_{d(h)})(X_{H})(V_{\gamma})(F_{N}) \left(\frac{O_{\gamma}}{k_{or} + O_{\gamma}}\right)$$

$$R_{S_{sU}} = k_{so} \left(\frac{S_{s(7)}/X_{H}}{k_{ss} + (S_{s(7)}/X_{H})} \right) \left(\frac{O_{7}}{k_{co} + O_{7}} \right)$$

$$V\frac{dN_{z}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{7}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_{z})$$

$$-\left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{z})}{(K_{N} + N_{z})} \left(\frac{Q_{z}}{K_{0N} + Q_{z}}\right)(V_{z})$$

$$-Y_{H}[X_{H}(R_{S_{z}U})(V_{z})](F_{N})$$

$$-Y_{H}[Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{7}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(P_{z})](F_{N})$$

$$+(K_{d(h)})(X_H)(V_{\mathfrak{g}})(F_N)\left(\frac{O_{\mathfrak{g}}}{k_{as}+O_{\mathfrak{g}}}\right)$$

$$R_{S_sU} = k_{sto} \left(\frac{S_{S(\mathbf{s})}/X_H}{k_{ss} + (S_{s(\mathbf{s})}/X_H)} \right) \left(\frac{O_{\mathbf{s}}}{k_{os} + O_{\mathbf{s}}} \right)$$

Stage 9

$$V\frac{dN_9}{dt} = 0 = (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_8) - (Q_0 + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(N_9)$$

$$-\left(\frac{\mu_{m(NS)}}{Y_{NS}}\right)\frac{(X_{NS})(N_{9})}{(K_{N}+N_{9})}\left(\frac{O_{9}}{K_{0N}+O_{9}}\right)(V_{9})$$

$$-Y_{H}[X_{H}(R_{s,U})(V_{g})](F_{N})$$

$$-Y_{H}[(Q_{0}+Q_{RAS}+Q_{tr(1)}+Q_{tr(3)})(P_{2})-(Q_{0}+Q_{RAS}+Q_{tr(1)}+Q_{tr(3)})(P_{9})](F_{N})$$

$$+(K_{d(h)})(X_H)(V_9)(F_N)\left(\frac{O_9}{k_{ss}+O_9}\right)$$

$$R_{S_{sU}} = k_{sto} \left(\frac{S_{s(9)}/X_H}{k_{ss} + (S_{s(9)}/X_H)} \right) \left(\frac{O_9}{k_{os} + O_9} \right)$$

$$V \frac{dN_{10}}{dt} = 0 = (Q_0 + Q_{RAS})(N_9) - (Q_0 + Q_{RAS})(N_{10})$$

$$- \left(\frac{\mu_{m(NS)}}{Y_{NS}}\right) \frac{(X_{NS})(N_{10})}{(K_N + N_{10})} \left(\frac{O_{10}}{K_{0N} + O_{10}}\right) (V_{10})$$

$$- Y_H [X_H(R_{S_SU})(V_{10})](F_N)$$

$$- Y_H [(Q_0 + Q_{RAS})(P_9) - (Q_0 + Q_{RAS})(P_{10})](F_N)$$

$$+ (K_{d(h)})(X_H)(V_{10})(F_N) \left(\frac{O_{10}}{k_{os} + O_{10}}\right)$$
where:
$$R_{S_SU} = k_{sto} \left(\frac{S_{S(10)}/X_H}{k_{st} + (S_{s(10)}/X_H)}\right) \left(\frac{O_{10}}{k_{os} + O_{10}}\right)$$

Nitrate (NO₃-N) Mass Balances

$$V\frac{dNO_{1}}{dt} = 0 = (Q_{0})(NO_{0}) + (Q_{RAS})(0.1)(NO_{10}) + (Q_{Ir(1)})(NO_{9}) - (Q_{0} + Q_{RAS} + Q_{Ir(1)})(NO_{1})$$

$$-\left(\frac{1 - 1.42(Y_{H})}{2.86}\right)\left[(X_{H})(R_{S_{3}U})(V_{1})\right]$$

$$-\frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN})\left(\frac{k_{oh}}{k_{oh} + O_{1}}\right)\left(\frac{NO_{1}}{NO_{s} + NO_{1}}\right)V_{1}$$

$$-\left(\frac{1 - 1.42Y_{H}}{2.86}\right)F_{DN}(K_{P})(P_{1})X_{H}\left(\frac{k_{oh}}{k_{s} + O_{1}}\right)\left(\frac{NO_{1}}{NO_{s} + NO_{1}}\right)V_{1}$$

$$R_{S_3U} = k_{sto} \left(\frac{S_{S(1)}/X_H}{k_{ss} + (S_{S(1)}/X_H)} \right) \left(\frac{k_{oh}}{k_{oh} + O_1} \right) \left(\frac{NO_1}{NO_s + NO_1} \right) (F_{DN})$$

Stage 2

$$\begin{split} V\frac{dNO_2}{dt} &= 0 = (Q_0 + Q_{ras} + Q_{ir(1)})(NO_1) - (Q_0 + Q_{RAS} + Q_{ir(1)})(NO_2) \\ &- \bigg(\frac{1 - 1.42(Y_H)}{2.86}\bigg) \! \Big[(X_H)(R_{S_2U})(V_2) \Big] \\ &- \frac{1.42}{2.86}(k_d)(X_H)(F_{DN}) \! \bigg(\frac{k_{oh}}{k_{oh} + O_2}\bigg) \! \bigg(\frac{NO_2}{NO_s + NO_2}\bigg) \! V_2 \\ &- \bigg(\frac{1 - 1.42Y_H}{2.86}\bigg) \! F_{DN}(K_P)(P_2) X_R \! \bigg(\frac{k_{oh}}{k_{oh} + O_2}\bigg) \! \bigg(\frac{NO_2}{NO_s + NO_2}\bigg) \! V_2 \end{split}$$

$$R_{S_2U} = k_{sto} \left(\frac{S_{S(2)}/X_H}{k_{ss} + (S_{S(2)}/X_H)} \right) \left(\frac{k_{oh}}{k_{oh} + O_2} \right) \left(\frac{NO_2}{NO_s + NO_2} \right) (F_{DN})$$

$$V \frac{dNO_{3}}{dt} = 0 = (Q_{0} + Q_{res} + Q_{Ir(1)})(NO_{2}) + (Q_{Ir(3)})(NO_{9}) - (Q_{0} + Q_{RAS} + Q_{Ir(1)})(NO_{3})$$

$$- \left(\frac{1 - 1.42(Y_{H})}{2.86}\right) \left[(X_{H})(R_{S_{3}U})(V_{3})\right]$$

$$- \frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{3}}\right) \left(\frac{NO_{3}}{NO_{s} + NO_{3}}\right) V_{3}$$

$$- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN}(K_{P})(P_{3}) X_{H} \left(\frac{k_{oh}}{k_{s} + O_{s}}\right) \left(\frac{NO_{3}}{NO_{s} + NO_{s}}\right) V_{3}$$

where:

$$R_{S_{S}U} = k_{so} \left(\frac{S_{S(3)}/X_{H}}{k_{so} + (S_{S(3)}/X_{H})} \right) \left(\frac{k_{oh}}{k_{oh} + O_{3}} \right) \left(\frac{NO_{3}}{NO_{s} + NO_{3}} \right) (F_{DN})$$

$$V \frac{dNO_4}{dt} = 0 = (Q_0 + Q_{ras} + Q_{ir(1)} + Q_{tr(3)})(NO_3) - (Q_0 + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO_4)$$

$$- \left(\frac{1 - 1.42(Y_H)}{2.86}\right) \left[(X_H)(R_{S_2U})(V_4) \right]$$

$$- \frac{1.42}{2.86}(k_d)(X_H)(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_4}\right) \left(\frac{NO_4}{NO_s + NO_4}\right) V_4$$

$$- \left(\frac{1 - 1.42Y_H}{2.86}\right) F_{DN}(K_P)(P_4) X_H \left(\frac{k_{oh}}{k_{oh} + O_4}\right) \left(\frac{NO_4}{NO_s + NO_4}\right) V_4$$

$$R_{S_{S}U} = k_{sto} \left(\frac{S_{S(4)}/X_H}{k_{ss} + (S_{S(4)}/X_H)} \right) \left(\frac{k_{oh}}{k_{oh} + O_4} \right) \left(\frac{NO_4}{NO_s + NO_4} \right) (F_{DN})$$

Stage 5

$$V\frac{dNO_{5}}{dt} = 0 = (Q_{0} + Q_{res} + Q_{tr(1)} + Q_{tr(3)})(NO_{4}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{5})$$

$$-\left(\frac{1 - 1.42(Y_{H})}{2.86}\right) \left[(X_{H})(R_{S_{3}U})(V_{5})\right]$$

$$-\frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN})\left(\frac{k_{oh}}{k_{oh} + O_{5}}\right) \left(\frac{NO_{5}}{NO_{s} + NO_{5}}\right) V_{5}$$

$$-\left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN}(K_{P})(P_{5})X_{H}\left(\frac{k_{oh}}{k_{oh} + O_{5}}\right) \left(\frac{NO_{5}}{NO_{s} + NO_{5}}\right) V_{5}$$

where:

$$R_{S_{S}U} = k_{so} \left(\frac{S_{S(5)}/X_{H}}{k_{ss} + (S_{S(5)}/X_{H})} \right) \left(\frac{k_{oh}}{k_{oh} + O_{5}} \right) \left(\frac{NO_{5}}{NO_{s} + NO_{5}} \right) (F_{JN})$$

$$V\frac{dNO_{6}}{dt} = 0 = (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO_{5}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO_{6})$$

$$+ \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{6})}{K_{N} + NO2_{6}}\right) \left(\frac{O_{6}}{k_{om} + O_{6}}\right) V_{6}$$

$$- \left(\frac{1 - 1.42(Y_{H})}{2.86}\right) [(X_{H})(R_{S_{J}U})(V_{6})]$$

$$-\frac{1.42}{2.86}(k_d)(X_H)(F_{DN})\left(\frac{k_{oh}}{k_{oh}+O_6}\right)\left(\frac{NO_6}{NO_s+NO_6}\right)V_6$$

$$-\left(\frac{1-1.42Y_H}{2.86}\right)F_{DN}(K_P)(P_6)X_H\left(\frac{k_{oh}}{k_{oh}+O_6}\right)\left(\frac{NO_6}{NO_s+NO_6}\right)V_6$$

$$R_{S_{S}U} = k_{sto} \left(\frac{S_{S(6)}/X_{H}}{k_{ss} + (S_{S(6)}/X_{H})} \right) \left(\frac{k_{oh}}{k_{oh} + O_{6}} \right) \left(\frac{NO_{6}}{NO_{s} + NO_{6}} \right) (F_{DN})$$

$$\begin{split} V\frac{dNO_{7}}{dt} &= 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{6}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{7}) \\ &+ \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{7})}{K_{N} + NO2_{7}}\right) \left(\frac{O_{7}}{k_{on} + O_{7}}\right) V_{7} \\ &- \left(\frac{1 - 1.42(Y_{H})}{2.86}\right) \left[(X_{H})(R_{S_{3}U})(V_{7})\right] \\ &- \frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{7}}\right) \left(\frac{NO_{7}}{NO_{s} + NO_{7}}\right) V_{7} \\ &- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN}(K_{P})(P_{7}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{7}}\right) \left(\frac{NO_{7}}{NO_{s} + NO_{7}}\right) V_{7} \end{split}$$

$$R_{s_{sU}} = k_{so} \left(\frac{S_{s(7)}/X_{H}}{k_{ss} + (S_{s(7)}/X_{H})} \right) \left(\frac{k_{oh}}{k_{oh} + O_{7}} \right) \left(\frac{NO_{7}}{NO_{s} + NO_{7}} \right) (F_{DN})$$

Stage 8

$$\begin{split} V\frac{dNO_{\text{3}}}{dt} &= 0 = (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO_{7}) - (Q_{0} + Q_{RAS} + Q_{ir(1)} + Q_{ir(3)})(NO_{8}) \\ &+ \left(\frac{\mu_{\text{mr}(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{8})}{K_{N} + NO2_{8}}\right) \left(\frac{O_{8}}{k_{on} + O_{8}}\right) V_{8} \\ &- \left(\frac{1 - 1.42(Y_{H})}{2.86}\right) \left[(X_{H})(R_{S_{8}U})(V_{8})\right] \\ &- \frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{8}}\right) \left(\frac{NO_{8}}{NO_{8} + NO_{8}}\right) V_{8} \\ &- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN}(K_{P})(P_{8}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{8}}\right) \left(\frac{NO_{8}}{NO_{8} + NO_{8}}\right) V_{8} \end{split}$$

$$R_{S_{sU}} = k_{sto} \left(\frac{S_{S(8)}/X_H}{k_{ss} + (S_{S(8)}/X_H)} \right) \left(\frac{k_{oh}}{k_{oh} + O_8} \right) \left(\frac{NO_8}{NO_s + NO_8} \right) (F_{DN})$$

$$\begin{split} V\frac{dNO_{9}}{dt} &= 0 = (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{1}) - (Q_{0} + Q_{RAS} + Q_{tr(1)} + Q_{tr(3)})(NO_{9}) \\ &+ \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{9})}{K_{N} + NO2_{9}}\right) \left(\frac{O_{9}}{k_{on} + O_{9}}\right) V_{9} \\ &- \left(\frac{1 - 1.42(Y_{H})}{2.86}\right) \left[(X_{H})(R_{S_{3}U})(V_{9})\right] \\ &- \frac{1.42}{2.86}(k_{d})(X_{H})(F_{DN}) \left(\frac{k_{oh}}{k_{oh} + O_{9}}\right) \left(\frac{NO_{9}}{NO_{3} + NO_{9}}\right) V_{9} \\ &- \left(\frac{1 - 1.42Y_{H}}{2.86}\right) F_{DN}(K_{P})(P_{9}) X_{H} \left(\frac{k_{oh}}{k_{oh} + O_{9}}\right) \left(\frac{NO_{9}}{NO_{3} + NO_{9}}\right) V_{9} \end{split}$$

where:

$$R_{S_{S}U} = k_{slo} \left(\frac{S_{S(9)}/X_{H}}{k_{ss} + (S_{S(9)}/X_{H})} \right) \left(\frac{k_{oh}}{k_{oh} + O_{9}} \right) \left(\frac{NO_{9}}{NO_{s} + NO_{9}} \right) (F_{DN})$$

$$V \frac{dNO_{10}}{dt} = 0 = (Q_0 + Q_{RAS})(NO_9) - (Q_0 + Q_{RAS})(NO_{10}) + \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{10})}{K_N + NO2_{10}}\right) \left(\frac{O_{10}}{k_{on} + O_{10}}\right) V_{10} - \left(\frac{1 - 1.42(Y_H)}{2.86}\right) [(X_H)(R_{S_5U})(V_{10})]$$

$$-\frac{1.42}{2.86}(k_d)(X_H)(F_{DN})\left(\frac{k_{oh}}{k_{oh}+O_{10}}\right)\left(\frac{NO_{10}}{NO_s+NO_{10}}\right)V_{10}$$

$$-\left(\frac{1-1.42Y_H}{2.86}\right)F_{DN}(K_P)(P_{10})X_H\left(\frac{k_{oh}}{k_{oh}+O_{10}}\right)\left(\frac{NO_{10}}{NO_s+NO_{10}}\right)V_{10}$$

$$R_{S_{S}U} = k_{sto} \left(\frac{S_{S(10)}/X_{H}}{k_{ss} + (S_{S(10)}/X_{H})} \right) \left(\frac{k_{oh}}{k_{oh} + O_{10}} \right) \left(\frac{NO_{10}}{NO_{s} + NO_{10}} \right) (F_{DN})$$

Nitrite (NO₂-) Mass Balances

(see mass balance equations for nitrite listed previously for Michaelis-Menton Model)

PCOD Mass Balances

(see mass balance equations for PCOD listed previously for Michaelis-Menton Model)

Oxygen Consumption

Stage 6

Dissolved Oxygen Consumption Rate (Kg O₂ / hr) per stage

$$= [(A)(r_{su} + 1.42(K_d)(X_H)](V_6) + (3.22)(r_{NH_4(\alpha s)})(V_6) + (1.11)(r_{NO_2(\alpha s)})(V_6)$$

where:

$$R_{S_{S}U} = k_{sto} \left(\frac{S_{S(6)}/X_H}{k_{ss} + (S_{s(6)}/X_H)} \right) \left(\frac{O_6}{k_{os} + O_6} \right) + k_P(P_6)(X_H) \left(\frac{O_6}{k_{os} + O_6} \right)$$

$$A = 1 - 1.42(Y_H)$$

$$r_{NH_{4}(ox)} = \left(\frac{\mu_{m(NS)}}{Y_{NB}}\right) \left(\frac{X_{NS}(N_{6})}{K_{N} + N_{6}}\right) \left(\frac{O_{6}}{O_{6} + k_{on}}\right)$$

$$r_{NO_{2}(ax)} = \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{6})}{K_{N} + NO2_{6}}\right) \left(\frac{O_{6}}{O_{6} + k_{om}}\right)$$

Stage 7

Dissolved Oxygen Consumption Rate (Kg O2 / hr) per stage

$$= [(A)(r_{su} + 1.42(K_d)(X_H)](V_7) + (3.22)(r_{NH_4(ox)})(V_7) + (1.11)(r_{NO_2(ox)})(V_7)$$

$$\begin{split} R_{S_{S}U} &= k_{sto} \left(\frac{S_{S(7)}/X_{H}}{k_{ss} + (S_{s(7)}/X_{H})} \right) \left(\frac{O_{\gamma}}{k_{os} + O_{\gamma}} \right) + k_{P}(P_{\gamma})(X_{H}) \left(\frac{O_{\gamma}}{k_{os} + O_{\gamma}} \right) \\ A &= 1 - 1.42(Y_{H}) \\ r_{NH_{4}(ox)} &= \left(\frac{\mu_{m(NS)}}{Y_{NB}} \right) \left(\frac{X_{NS}(N_{\gamma})}{K_{N} + N_{\gamma}} \right) \left(\frac{O_{\gamma}}{O_{\gamma} + k_{os}} \right) \\ r_{NO_{2}(ox)} &= \left(\frac{\mu_{m(NB)}}{Y_{NB}} \right) \left(\frac{(X_{NB})(NO2_{\gamma})}{K_{N} + NO2_{\gamma}} \right) \left(\frac{O_{\gamma}}{O_{\gamma} + k_{os}} \right) \end{split}$$

Stage 8

Dissolved Oxygen Consumption Rate (Kg O2 / hr) per stage

$$= [(A)(r_{su} + 1.42(K_d)(X_H)](V_g) + (3.22)(r_{NH_d(\alpha x)})(V_g) + (1.11)(r_{NO_{\gamma}(\alpha x)})(V_g)$$

$$R_{S_{s}U} = k_{slo} \left(\frac{S_{S(8)}/X_{H}}{k_{ss} + (S_{s(8)}/X_{H})} \right) \left(\frac{O_{8}}{k_{os} + O_{8}} \right) + k_{P}(P_{8})(X_{H}) \left(\frac{O_{8}}{k_{os} + O_{8}} \right)$$

$$A = 1 - 1.42(Y_H)$$

$$r_{NH_4(ox)} = \left(\frac{\mu_{m(NS)}}{Y_{NB}}\right) \left(\frac{X_{NS}(N_8)}{K_N + N_8}\right) \left(\frac{O_8}{O_8 + k_{om}}\right)$$

$$r_{NO_2(\alpha\alpha)} = \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{g})}{K_N + NO2_{g}}\right) \left(\frac{O_{g}}{O_{g} + k_{om}}\right)$$

Dissolved Oxygen Consumption Rate (Kg O₂ / hr) per stage

$$= [(A)(r_{su} + 1.42(K_d)(X_H)](V_g) + (3.22)(r_{NH_4(ox)})(V_g) + (1.11)(r_{NO_2(ox)})(V_g)$$

where:

$$\begin{split} R_{S_{S}U} &= k_{sto} \left(\frac{S_{S(9)}/X_{H}}{k_{ss} + (S_{s(9)}/X_{H})} \right) \left(\frac{O_{9}}{k_{os} + O_{9}} \right) + k_{P}(P_{9})(X_{H}) \left(\frac{O_{9}}{k_{os} + O_{9}} \right) \\ A &= 1 - 1.42(Y_{H}) \\ r_{NH_{4}(os)} &= \left(\frac{\mu_{m(NS)}}{Y_{NB}} \right) \left(\frac{X_{NS}(N_{9})}{K_{N} + N_{9}} \right) \left(\frac{O_{9}}{O_{9} + k_{om}} \right) \\ r_{NO_{2}(os)} &= \left(\frac{\mu_{m(NB)}}{Y_{NB}} \right) \left(\frac{(X_{NB})(NO2_{9})}{K_{N} + NO2_{9}} \right) \left(\frac{O_{9}}{O_{9} + k_{om}} \right) \end{split}$$

Stage 10

Dissolved Oxygen Consumption Rate (Kg O2 / hr) per stage

$$= [(A)(r_{s.} + 1.42(K_d)(X_H)](V_{10}) + (3.22)(r_{NH_4(as)})(V_{10}) + (1.11)(r_{NO_2(as)})(V_{10})$$

$$R_{S_{S}U} = k_{sto} \left(\frac{S_{S(10)}/X_H}{k_{ss} + (S_{s(10)}/X_H)} \right) \left(\frac{O_{10}}{k_{os} + O_{10}} \right) + k_P(P_{10})(X_H) \left(\frac{O_{10}}{k_{os} + O_{10}} \right)$$

$$A = 1 - 1.42(Y_{i:})$$

$$r_{NH_{4}(ax)} = \left(\frac{\mu_{m(NS)}}{Y_{NB}}\right) \left(\frac{X_{NS}(N_{10})}{K_{N} + N_{10}}\right) \left(\frac{O_{10}}{O_{10} + k_{on}}\right)$$

$$r_{NO_2(\alpha x)} = \left(\frac{\mu_{m(NB)}}{Y_{NB}}\right) \left(\frac{(X_{NB})(NO2_{10})}{K_N + NO2_{10}}\right) \left(\frac{O_{10}}{O_{10} + k_{on}}\right)$$