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Preface

. . This present work had its inception in 1954, shortly after Professor G. H.
Dieke of The Johns Hopkins University, with the support of the U.S. Atomic
Energg Commission, imtiated a program of experimental studies of the sharp
line absorption spectra of crystals. The effort was directed principally to
rare earth salt crystals, but some work was also done on the ruby and uranyl
salts. Dr. Dieke suggested to the author that a theoretical study to accompany
the experimental program would be desirable and encouraged the undertaking
of such a study.

It rapidly became apparent on surveying the problem that the techniques
of group theory would be of central importance in such a study. Early in 1955,
Dr. Charles M. Herzfeld, then of the Naval Research Laboratory in Washington,
addressed the Spectroscopy Seminar at Hopkins on the techniques of group
theory with particular application to the paramagnetic resonance of salts of
the iron group. This was the beginning 0})& continuing association with Dr.
Herzfeld in the study of group theory, an association which has been a source
of great personal and professional satisfaction to the author to the present time.

In August of 1955, through the courtesy of Dr. F. G. Brickwedde, then
Chief of the Heat and Power %)ivision of the National Bureau of Standards,
and Dr. R. P, Hudson, Chief of the Cryogenic Physics Section of the Bureau,
the author was appointed a Guest Worker at the Bureau, and office space was
%rovided and the extensive library facilities of the Bureau made available.

his appointment continued when Dr. Herzfeld was appointed Chief of the
Heat Division,

The present work is largely an exhaustive collection of the results of group
theory which apply to the &eory of atomic energy levels in crystals, together
with & careful, and detailed, but not especially abstract development of the
general theory to permit an intelligent application of the results to experimental

roblems. Dr. Herzfeld, in collaboration with Professor Paul H. Meijer of

he Catholic University of America, has written a review on the general subject
“Group Theory and Crystal Field Theory”, soon to be published, treating the
subject from a more abstract viewpoint of modern algebra and concentrating
on the fundamental aspects of the theory. This latter work and the present
one form a complementary pair of works on the general topic. It is hoped
that, together, they will meet the needs of most workers in the field.
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Atomic Energy Levels in(}‘rystals i
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lied to the determination of the number and type of levels arising from a free

I The results of this analysis are mbuﬂ
for electric dipole, mgguetio dipole, and electric quadrupole transitions.

the use of W:

levels observed within certain crystals are treated as due to perturbations
of the free ion by an electrostatic field arising from the crystal lattice.
The analytic procedures for determining the field from the charge

fields are classified according to their symmetry. After a general survey

configuration are given,

analyzed in detail, and characters

ted, as are the selection rules
Calculation of the

er and Racah coefficients is discussed.

xamples of the application of these several techniques to specific problems are given.

1. Introduction

In contrast to the sharp lines or resolvable
bands characteristic of the optical absorption
spectra of free atomic and molecular systems,
such spectra for solids consist for the most part
of broad absorption re%'gns or bands without any
. resolvable structure. ese spectra are therefore

of little used for analysis of the details of the solids
for which they are observed, revealing only general
information such as the presence or absence of
certain molecular groupings. Nevertheless, it was
early recognized in the development of optical
sppct.roscogiy that certain naturally occurring
‘minerals did in fact show a characteristic line
absorption spectrum. The earliest observations
were on the cx?fstals of salts of the iron grou
elements and of the rare earth elements, thoug
later observations have shown similar spectra in
crystals of all elements characterized by a par-
tially filled inner shell of electrons. In this
present work we shall be concerned primaril
with the rare-earth spectra, though we sh
gketch the application of the development to
other possible cases.

The earliest data on these spectra, covering
about 50 years before 1905 are reviewed by
Kayser (see bib 'ograpl;g). Subsequent to the
discovery of the Zeeman effect in 1895, J. Becquerel
initiated an extensive investigation on the effects
of etic fields on the absorption lines of
nat rare earth crystals, their polarization, and
pa}rticula.rli their rotation of the plane of polariza-
tion of light (Farada{ effect). These measure-
ments, carried out both at room temperature and
at liquid air temperature, are summarized in hi

aper of 1908. this same year, Becquerel and

es reported on the spectra and magnetic
effects at liquid hydrogen temperatures, and
asurements at liquid helium temperatures were
finally reported in 1926 b%]?ecquerel, Onnes, and
de &as du Bois and Elias (1908, 1911) also

1 Based on a dissertation submitted to the Faculty of Philosophy of The
Johns HopklmMU;\'l'mm in partial fulfillment of the requirements for the

degree y.
1 8u| in the U.8. Afr Force, through the Air Force Office of
Belentihe Research of ¢ Alr Res Research and Development Command, under

' 71 Guest worker, formerly from The George Washington University, now
_with Baloit Collegs, Belol{. Wise

B % ﬁ:,i‘;ﬁ}r%@;,ﬁ;;},;{ LAY Y SRTEES T

reported work on chromium, cobalt, and uranium
crystals as well as on the rare earths.

The year 1929 marked the beginning of an
extensive program of investigation of these spectra
at various temperatures by Spedding, Freed, and
collaborators. The principaf’ experimental ad-
vance over earlier work lay in the use of synthetic
crystals of more definite composition than the
natural crystals, which usually consisted of a
mixture of rare earths of varying composition.
Hence there had been little if any reliability in
intercomparison of the results obtained from
various crystals, even of the same nominal type.
This was a considerable advance over the previous
attempts at a systematic experimental approach
to these spectra, though by today’s standards
even these crystals were not of satisfacto:
puri‘tiy. These measurements were also muc]
aided by continuing develoB:lllents in the theory
of these spectra, which we s trace below.

All of these spectra show the same general
pattern and behavior upon reducing the temper-
ature. The absorption lines for various elements
fall into groups in several regions of the spectrum—
the general wavelength regions where the lines
fall depend on the rare earth involved, while
details concerning the number of lines, the exact
position, intgn;fs, Zeeman effect, etc., depend
on the negative ions involved and on the details
of the crystal structure. In comparison with
room temperature measurements, those at re-
duced temperatures show generally sharper lines,
together with a slight overall shift of the groups
to the red and increased separation of the lines
within a group t)Sigedding and Bear, 1932). The
number of lines changes; certain ‘high temper-
ature lines” disappear, while others appear or
become more intense at lower temperatures.
Such lines have also been observed in solutions of
the ions, though these lines are generally broader
than in the crystals.

Although :Kzre was some theoretical specula-
tion on these spectra, no theoretically satisiactory
contributions save the derivation of empirical
energy level diagrams could be made prior to the
advent of quantum mechapics. The first major




contribution directly related to the rare earth
spectra was the calculation by Hund (1925) of the
room temperature paramagnetic susceptibility of
the rare earth crystals on the assumption that the
crystals consisted of an independent statistical
assemblage of ions, characterized by an unfilled
shell of 4f electrons which became increasingly
filled as one proceeded up the periodic table.
The ground states of these ions were calculated
on the assumption that Hund’s rules for free
atoms were valid, i.e., that of all the terms arising
from the given 4f* configuration, that with the
greatest multiplicity had the lowest energy, and
of those of this greatest multiplicity, the largest
L value was lowest. For a given L-S term, the
resulting multiplet was taken as normal in the
first half of the series (the 4f shell being less than
half filled) and as inverted in the last half of the
series. The agreement with experiment was
quite good, save in the cases of europium and
samarium, and these two discrepancies were
corrected by the second order calculations of Van
Vieck and Frank (1929), Hund having considered
only the lowest level of the ground multiplet as
contributing to the susceptibility. This agree-
ment with experiment not only gave evidence for
the electronic structure of the rare earth ions in
the crystals, but also suggested that the effects on
the magnetic properties of the ion due to inclusion
in the tal were small in comparison with k7T
at 300° K and also small in comparison with the
multiplet splitting of the ground L-S term.

It was perhaps natural to assume that the line
spectra observed were similarly due to the spectra
of the free ions, modified to some slight degree by
their inclusion in the crystal, but the first sugges-
tion to this effect was made by Brunetti and
Ollano (1929), who considered the crystal as a
perturbing electrostatic field on the free ion
spectrum. This idea was also developed by

eed and Spedding (1929) in initiating their
program of experimental observations noted
above. The classic paper in these early years of
the theory is that Bethe (1929). Bethe
pointed out that the details of the theoretical
treatment depended on the strength of this
external crystal field compared to the other inter-
actions gresent (principally the Coulomb inter-
action of the electrons and the spin-orbit inter-
action), and that the symmetry alone of the
external field, independent of its magnitude,
would determine the number and type of levels
arising from a given level of the free ion. These
were specifically computed by Bethe for certain
symmetries, emphasizing in the process the
importance of group-theoretical ideas for such
calculations, and the properties of one-electron
wave functions under these same crystal fields
were also calculated. These ideas were Iater
extended to treat the Zeeman effect in crystals
(Bethe, 1930). At about the same time, Kramers
(1829, 1930) considering principally the Faraday
effect, formulated the fundamental requirement

that these electrostatic fields arising from the
crystal must leave every level of an odd-electron
system at least twofold degenerate,

Although it seemed clear that the idea of an
electrostatic perturbation acting upon the levels
of the free ion was the key to the problem, it was
not at all certain what transitions were responsible
for the lines actually observed. The situation was
complicated by utter ignorance of the actual free
ion spectrum, and even as recently as 1958 only
that of CelV is known (Lang, 1936). The earliest
suggestions were that the transition involved a
4f electron excited to either 5d or 6s (Spedding,
1931; Spedding, 1933). These were based princi-
pally on analogy with the selection rules applicable
to free ions. However, the sharpness of the lines
indicates a freedom from interaction with other
ions which would not be expected from such levels
(involving 5d or 68) having a fair probability of
being at appreciable distances from the nucleus.
Furthermore, the general intensity of the lines
relative to the high concentration of ions in a
solid yields transition probabilities corresponding
to transitions forbidden in the usual type of
atomic spectra (Van Vleck, 1937). For thisreason,
it is today generally considered that the lines
come from transitions between terms arising
from the ground 4f* configuration. This view is
strengthened by the simplicity of such sharp line
sgsctra in the salts of cerium and ytterbium
(Dieke and Crosswhite, 1956) both of which have
only one excited level from the ground configura-
tions 4f* and 4f%, respectively. Van Vleck also
made some estimates of the relative probability of
transitions due to electric quadrupole radiation,
magnetic dipole radiation, electric dipole radiation
arising from absence of a static center of symmetry
in the crystal field (which destroys the character-
ization of levels as odd or even), and electric dipole
radiation arising from destruction of a static center
of symmetry by lattice vibrations. It was con-
cluded that there was no clear quantitative reason
to reject completely any of these as being not
responsible for the lines observed.

uring this period (the 1930’s) detailed calcula-
tions were made by Penney and Schlapp (1932,
Schlapp and Penney) based on the assumption of
a cubic crystal field, adjusting the parameters to
fit observed magnetic susceptibility data. Al-
though good agreement with expermment in this
regard was obtained, it is in marked disagreement
with the spectral data. This may be ascribed to
the insensitivity of susceptibility data (a statistical
average over all ions present) to details of the
crystal field. The same objection also applies to
attempts to derive the crystal field from specific
heat data (Ahlberg et al., 1937). It is now known
that the symmetry of the cubic system is too high
to account for the spectroscopic observations.

Apart from theoretical considerations of the
rare earth spectra alone, several general theoretical
contributions have been made which are applicable
in major part to the determination of the energy




levels of rare earth ions in crystals. Since these
will be referred to in detail later in this work, we
shall merely mention them for general background
at this point. The general applicability of group
theory to Jxroblems of atomic structure has been
emphasized by Weyl (1928), clarified by Eckart
(1930), and treated at length by Wigner (1931).
The calculations of Bethe (1929) for certain sym-
metry groups were extended by Wigner (1930{1:;1
other symmetries, though this was in connection
with problems of molecular vibrations. The
monumental work of Condon and Shortley (1935)
is invaluable for the study of the free ion spectrum.

While experimental data on many different
crystals were collected by many observers, using
many different techniques (absorption spectra,
Zeeman effect, fluorescence spectra, magnetic
measurements, specific heat data) during the fol-
lowing years, the next major advance was the ap-
plication of paramagnetic resonance techniques to
the rare earth crystals. A general review of this
work may be found in the paper by Bleaney and
Stevens (1953), while additional data are given in
the supplementary article by Bowers and Owen
(1955). This method has the advantage of giving
data of high accuracy and resolution—its major
limitation 1s in the fact that with rare exceptions
only data on the ground level in the crystal are
obtained.

The next major advance in the general theory
was the work of Racah (1942, 1942a,b) on complex
spectra, which provided very powerful general
techniques for the solution of problems in many-
electron systems. His results have been made
applicable to specific numerical calculations by
the recent appearance of numerical tables b
Biedenharn (1952), Simon (1954), and Simon et al.
(1954). While the procedures of Racah have
been used in several fields, and their applicability
to the problem of rare earth spectra in crystals has
been mentioned by Elliott and Stevens (1953),
no widespread use of them has been made in
crystal spectra problems. The general work of
Bethe (1929) on the applications of group theory
to the problem has subsequently been applied
by various authors to special cases, but no general
overall survey of the possibilities has been given.
The results have been obtained by Hellwege
(1948, 1948a—d) without the explicit use of group
theory, but much elegance and conciseness is lost
thereby, and the results are presented in a rather
cumbersome form. A general survey of these
and many other aspects of the problem by Fick
and Joos (1957) has recently appeared.

Recent renewed interest in these spectra and
the associated properties of the ions has generated
a requirement for a comprehensive survey and
development of the theoretical techniques required
for an analysis of such spectra. While the theory
in its most general terms is known, its applications
in the past have either been concerned with a
particular salt or ion, or have used only a portion
of the theoretical equipment available, are widel
scattered through the literature, and their useful-
ness is limited by differences in conventions of
sign, phase, normalization, notation, etc. It is
the purpose of this paper to provide a compre-
hensive thenretical approach to the analysis of
these spectca in a form particularly adapted to
the requirements of the erperimental workers.
In the interest of meeting this aim, mathematical
rigor and long purely algebraic manipulations
have for the most part ieen omitted, except
where necessary for an understanding of the
concepts and procedures involved. It 1s hoped
that it will be of value to experimentalists in the
field who have had only a general background in
the ordinary theory of the atomic spectra of free
atomic systems,

Since the general problem is that of computing
the effect on the free ion of the electrostatic
perturbations arising from the crystal lattice, we
begin by considering in section 2 the development
of this potential in a power series of tesseral har-
monics, in explicit terms of the charge and position
of the ions giving rise to the field. Ap important
property of such fields is their symmetry, and
this will be discussed in detail. In section 3, we
shall consider the connection between the theory
of groups and quantum mechanics. We begin
by sketching the group-theoretical ideas associated
with the problem of the free atom. This leads
naturally into those modifications caused by the
inclusion of the ion in the crystal lattice. The
proEerties of the groups involved in the present
problem are then considered in detail. In section
4, we present explicitly the results of the consider-
ations of section 3 to the degeneracy of levels,
selection rules and polarization of lines in the
spectrum of the crystal. In section 5, we consider
the calculation of the matrix elements of the
perturbing electrostatic potential. Finally, we
conclude in section 6 by a review of the various
factors influencing the experimentally observed
spectra, correlated with the spectra of the free
ion, and some examples of the application of the
techniques to specific problems,

2. The Electrostatic Field

2.1. Expansion in Tesseral Harmonics

Let us consider, in a given frame of reference
an ion with a charge glocated at the point descnb_eti
in spherical coordinates as (R, a, 8). The potential
at the point (r, §, ¢) may be expressed as a series
of Legendre polynomials in the variable cos v,

where v is the angle between the directions given
by a, 8, and 8, . The unit vectors in the two di-
rections are sin a cos fi+-sin a sin 8j+cos ok, and
sin ¢ cos ¢i4sin 0 sin ¢j-+cos 6k, respectively.
Thus, cos v is the scalar product of the two unit vec-
tors and cos y=sin 8 sin «a cos B cos ¢+sin #sin a
sin B sin ¢+cos § co8 a=sin « sin § cos (p—B)+




e

"+

e - e - Sty o o am

cos @ cos a. The potential is given, for r<R, by
-« rN
V=1EWPN(GOS 7). (21)

The total potential is the sum of similar contribu-
tions from each ion of the tal lattice. In the
above expression, the contribution of each ion is
described with reference to a different axis, and
it is convenient to refer each contribution to the
same axis, which we choose to be the z-axis of
the given frame of reference.

This may be accomplished through the use of
the addition theorem of spherical harmonics, which
expresses Py(cos v) in terms of «, 8, 6, and ¢
(Stratton, 1941).

Py (cos v) =Py(cos a)Py(cos ) +2E_‘: g%_i_%;v

P¥(cos o) P¥(cos 6) cos M(¢—B). (2.2)

The potential due to the i-th charge can then be
be put into the form

@ N
Vim 0,35 | Pu(cos a) P (cos0)

+2 Z @ (NT M; 1P% (cos a;) P (cos 6)

(cos M cos MB,—+sin M sin MB‘)]. 2.3)

The total potential may then be obtained by sum-
ming over all charges 1n the lattice.

As used above, the P¥(cos 6) are not normalized
in the quantum—mechamcal sense, since

f _’lPa‘, (cos ) PE (cos 6) d (cos 0)

P 2 (N+M)!
NEOMLONT1(N—M)!

and it is consequently convenient to define

2
o=/ 5t A PE (c0s0).  (24)

Tabulated functions 6% for N up to and including
6 are given m table 1. Slmlla.rly, the functions

‘;_ sin M¢, —= cos M¢, and —
orthonormal set. of functions over the interval
} 2x] in the variable ¢. We shall define the
oilowm tesseral harmonics, which are functions
of posman on the surface of the unit sphere, and
may be evaluated either from 6, ¢, or from z, y,

constitute an

TABLE 1. Normalized Legendre functions

eﬁ=l/_2g )= ‘F (35 cos* §—30 coe? 8- 3)
6‘}=-‘/?(—i cos 8 e:=%_(7 cos? §—3 cos 6) sin @
9}=%§ sin @ 92=3g§ (7 cos? §—1) sin? 4
5= @ (Bcos?9—1) [6l= 3f6 cos & sin? ¢
9§=—‘/—;—§ sin 6 cos @ 92=3}/6§5.sin‘ 0
0}=@sm’ 0 o= \/— 2 (63 cos® §— 70 cos? g(—):lo?
9€=‘—/-:— 6 cossczsgS - \/W 5 (21 cost §— 14 cos? 03—111!)’
el= 1/—;: (5 cos? osmlg e§=1/T,'8E5 (3 cos? §—cos 6) sin? §
e= 1405 sin? 0 cos @ 92=@ (9 cos? §—1) sin® 9
=@ sind @ 9::3{'28_5 cos 0 sin' @
ej= %‘/1_5—‘1 ins 9
92—£ (231 cos* 9—315 cos* 6+ 105 cos? §—5)
9}——% (33 cos® #— 30 cos? 8+ 5 cos 6) sin §
0§=‘/26? (33 cost 8—18 cos? -+ 1) sin?
9:=‘/2;’2E—0 (11 cos® —3 cos 8) sin? @
eg=3‘/_ (11 cos? §—1) sint
9:=3‘/:23:—.02 cos 6 sind 8
9:=‘/€£%sin° ]

and 2. They are given as functions of 2, y, and

z in table 2:

»8in Mo
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»S§=0,
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TaBLb 2. Normalized tesseral harmonics

cg="§._1_.5 q_m 1 2232832
2Veer s 5, )
3lz Vi3 1 dsts—pie

Cl=1".—_.2 . z :By’

LY a 8 ¥

si=¥3 1y gV 1 4sy—aty—y
2 Var =8V )

QYD 1 28-s | i1 moap

V18 1 2z _VI08 1 242
2 yar R YR
§=VI5 1 yz . V70 1 23z
2 Yar TR Ve P
a_Vis 1 z#—y qVT0, L 3ty
vy T8y B
sg_‘/_ﬁ._l.?"’”
Y =

_3V2 1 82+ 3ri+ 3yt — 242721 — 24y2+ baty?

16 ‘/— ré
q_g_@‘ 1 (42— 32?3y (z2)
e
§i=3VI0, 1 (42—321—~3y7) (y2)
T8 Va r
a3V5 1 (62—2—y) @~y
8 Vx r
G35 1 (622—z—yY)(22y)
s Tl 8 v—" I
q=3m 1 (@3 (z2)
8 Vr r
5370 1 32—y 2)
8 V= r
cg=§"__3—5.i.£‘;ﬁf’l’iy_‘
16 = r
. 3V35 1 ary(@—p?)
Si=-7g vr ré

V2Z 1 88402+ + 15+
18 Vox )

Y186 1 (82‘+z‘+y‘+2¢'y’ 120320 — 12220z

Q=

_Vi85 1 (8:‘+z‘+y‘+21a'y' 12888 — 1242 2%) y
18 Vs

551664—61——2

a- VL85 1 (222—z—y) (@~ )2

8§ V& s
sz=‘“"55 1 (22—2'—y") (2ry2)
8 V& r
QY770 1 (84—z1—y) (= —3ay?)
32 /x s
§=Y770 1 (8212 y*)(:wy )
32 /7
=3V385 1 (—6atyrty)z
T8 Yy ]
513385 1 (a—y?) (4zy2)
6 7z s
«_3V154 1 28— 100+ 50y
TR r

s1=3VI54 1 y3— 10430+ 5yzt
32 /7 e

G_J'zé 1 162—120(22+ 1) 2+ 90(22 + )13 — 5(z2 + 2)
R ]

= YIT3 1 (85203 +1) +5e(a+ 1)l

16 /x s
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With these substitutiuns, the potential may now
be written in the form

® N
Vzl}‘;,or" ;‘___,o (CHCK+S%SD (2.6)
where the coefficients C% and S¥ depend on the

size and location of the neighboring 1ons and are
given explicitly by

YN S pn ) @7a)

1

AN P ErnSH@B)  (27b)

We recall here that the i-th ion, charge g, is
located in spherical coordinates at (B, ay,B:).
The terms C¥(a.,B8,) and S¥(a,,B) represent the
quantities (2.5) evaluated for the several pairs of
angles involved in the summation.

We shall also have oceasion to utilize the complex
form of (2.5), defining

"—LT_IZI M 5 —M=l_
YN— 3 (cN'*""sJAV‘): YN ‘/5

Y =Cy

This will similarly require, in lieu of (2.7a, b) the
coefficients

(—I)M M __ QM - __1_ .
‘/5 (C¥—8¥), YNM—‘[Q-(WA-%S%).
2.9)

This expression (2.6) for the potential diverges for
r>R. As we shall see later, however, we shall
require only terms for N up to and including 6,
and we shail assume that the wave function of the
free ion vanishes sufficiently rapidly for large r
_that,.nes}lglble error is made by integrating to
infinite distances.

(CH—SY)- (2.8)

and

Y¥=

2.2. Symmetry

_ The effects of the electrostatic field on the free
ion spectrum may be separated into two categories:
first, those depending on the qualitative nature of
the field (its sha.%e or symmetry), which is ex-
pressed through the mere presence or absence of
certain of the C¥ or S¥; and second, the quanti-
tative details which depend on the sign and magni-
tude of the C¥ and S¥. It is convenient to con-
?iu%flr separately these two characteristics of the
eld.

There are several standard and equivalent
techniques for describing the symmetry of the
electrostatic field. For example, given an arbi-
trary point (z, y, 2) of the field, one may indicate
the coordinates of all points baving the same
value of the ?otent.ial suchas (z, —y, 2), (—=z,v, 2),
(—=z, —y, 2). Another widely used scheme 1s to

indicate by a symbolic notation the operations
which convert a given initial point into one of
equal potential. Thus, in the example just given,
the operations are respectively a reflection 1n the
z-z plane, a reflection in the y-z plane, and a
rotation of = about the 2z axis, and may be desig-
nated as o,,, a,, and C;. Finally, for a given
point (z, y, z) one may give those 3X3 matrices
which transform the orginal point into one of
equal potential. If one is thorou§hly familiar
with the notation and properties of the various
rotations, reflections, and the inversion, there is
no reason to prefer one of these to the other. If
one does not have this familiarity, the use of the
matrices has the advantage that the effect of two
successive operations can be computed by matrix
multiplication without recourse to geometric
arguments. Thus, if r'=Ar and r’’=Br for all r,
then r’/’=ABr is also a point of equal potential
asisr’//”’=BAr. For the problem to be considered
here, there are only a few basic matrices which
must be considered. These, together with their
symbolic notation (Schonflies, 1923) are:

f . ) [ 1 33

cos¢ —sing 0 5 — 35 0
C.=| sing¢ cos¢ 0[Ce={ 3 1 0

0 0 1 2 2

L L o 0 1J

r C 1 43 )
0 —1 0 —5 T3 0

c=| 1 0 olc=| v 1
g 730

0 0 1

X J L o ol

3 N
r-—1 0 0 r—1 0 0
= 0 1 olc=l o 1 o

0 0 1 0 0 -1

\ L J

h 4 3
1 0 0 —1 0 0
E= 0 1 0 I= 0 —1 0

0 0 1 0 ¢ —1

\ J L 7

Thus, the point (or vector) r={(z, ¥, z) under
the operation G_ becomes

£’ =(x cos ¢—y sin ¢, z sin ¢-+y cos ¢, 2).

We see that this is equivalent to a rotation of the
vector about the z-axis by an angle ¢, counter-
clockwise (i.e., by +¢ in terms of the right-hand
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screw convention) when looking toward the origin
along the positive z-axis. This may also be inter-
preted as a new description of the old point (z, v,
2) in terms of a new coordinate system where the
coordinate system has been rotated by the angle
¢ in the opposite sense. In figure 1, we have ini-
tially (in two dimensions only) the vector r in the

/

FiGuUrE 1

z, y frame. The operation C, will then give r’
in the z, y frame. However, this is clearly the
same 88 r described in the rotated frame z’, ¥’
We ksha.ll use both interpretations in the present
work.

1 0 07
IC,=| 0 1 0i=o0,
\0 0 —1
IC=| 3 1 0 =0,Cs= Sy
2 2
\0 0 —1)

There are only a finite number of possible com-
binations of these basic operations which are of
interest in the present work. These are dia-
grammed in table 3 and are known as crystallo-
graphic point groups, since each of the combina-
tions constitutes a mathematical group, the
elements of which leave the potential of a point
unchanged. In interpreting table 3, the starting

oint is the column headed C,. The groups C,
or the values of n for which we are interested,
consist of the operation C, and its n distinct
powers, so a total of n symmetry operations are
represented in the group C,. This set of opera-
tions may be enlarged by adding the element I
(moving along the diagonal to the left), as is
indicated under the heading C,XI. This nota-

The designation C, represents a n-fold axis of
symmetry (rn=2,3,4,6), since the matrix is ob-
tained from C, by restricting ¢ to 2x/n. Each
rotation by 2x/n yields an equivalent point in the
potential field and, including the original one,
there are » such altogether. %‘he element C; is a
twofold axis of symmetry about the y-axis—it is
characteristic of the collections of these symmetry
operations to be emphasized here (the noncubic
point groups) that there i3 at most one axis having
more than twofold symmetry, and hence rotations
about the y-axis can be restricted to those of order
two. The element I, the inversion, is noteworthy
in the above as being the only one with a determi-
nant —1, all others being +1. Viewed as an
operation on a coordinate system, the inversion
represents the transformation to left-handed
rather than the usual right-handed system.

In addition to the symmetry operations given
above, there are operations which may be repre-
sented as the product of the element I with those
rotations given above. If we are considering a
collection of these symmetry operations con-
taining both I and the rotation, no fundamentally
new information is obtained by considering the
products, but there are certain collections of
symmetry operations which include some of these
product operations but not the factor operations
separately. These product operations, together
with their symbolic notation, are as follows:

F[1 0 O
IC;={0 —1 0]=a,
G
0 —1 O

IC3= 1 O 0= d'hC4= 84

0 0 —1J

tion represents the fact that I commutes with all

owers of C,. The group C, may also be enlarged
Ey adding the element C; (moving along the diag-
onal to the right). Here, the heading {C,C;}
represents that the various operations do not now
necessarily commute, but that all possible com-
binations of them and their powers are included.
Both of these enlarged groups have 2n elements.
To the latter set, I may now be added (moving
farther to the right), obta'min% 4n operations.
From these groups containing I, in some cases
groups of lower order may be obtained by sup-

ressing half the elements, including the element I
itself but not all products containing I. For
example, let us consider the Erou C,, which con-
tains the elements C, and E. ﬁ we add I, we
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TaBLE 3. Structure of noncubic point groups

’ Sub-
Order | Sub-lg,x1| G (GG (CaCIXT| group
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obtain C,, containing C,, E, GI, and I. From
this we obtain C, by considering only E and
CI=o0,. Similarly, by adding C; to C,, we obtain
D;, which involves E, C;, C;, and C,C;. By the
further inclusion of I, we obtain D,, with Ig, C,,
G, C.C,, I, 1C,, IC;, and IC,C;. B{ suppressing
I, 1C,, C;, and G;C;, the remaining four elements
E, G, IC; (=a,) and C,0, consiitute the group C,,.

here are a few points which should be made
clear in this connection. First, in the abstract
mathematical sense, these groups are not all dis-
tinct. For example, the group C, contains the
elements C; and E, while the group I contains
the elements I and E, and they both have the
same multiplication table. On the other hand
there is some degree of distinction which shoul
be made between the E=C} (which we might call
the identity in rotation space) and the E=I*
(which we might call the identity in inversion
sgace). Strictly speaking, the identity element of
the groups such as C,X1 is the product of these
two separate identity elements.

We shall now investigate, term by term, the
symmetlz possessed by the tesseral harmonics
tabulated above. The overall symmetry of a
given potential will then be at least that of those
symmetry elements common to each term of the
potential expansion. Conversely, if the symmetry
18 kmown from other considerations, we shall know
what terms must be included to describe such g
condition.

C..: For this element to be present, the potential
must be independent of ¢, a condition which is

met only by terms with A/=0 for all IV,

C.: lgor invariance here, V(¢)=V(¢p+2x/n).
Since the terms involve sin M¢ or cos M¢, it is
clear that n=M, M/2, M/3, for integral values
only, etc. 'We shall specify n=2»M, since the other
cases are covered by the powers of C, which are
also present in any group.

C;: A point with the coordinates (r, 8, ¢) under
the transformation C; becomes (r, #—0, r—¢).
Since 0¥ is a polynomial of degree N—M in cos ¢
and degree M in sin 6, and cos (r—8)=—cos 6,
sin (r—0@)=sin 6, then O) changes as (—1)V ¥,
However, sin M(x—¢) = sin M= cos M¢p—cos Mr
sin M¢-=(—1)**! sin M¢ and cos M(x—¢)=
cos Mx cos M¢+sin Mx sin M¢o=(—1)* cos M¢.
Hence € terms have this symmetry for N even
and S terms have it for N odd.

I: Under this operation, the point (z, y, 2)
becomes (—», —y, —2z), and it is clear from
inspection of table 2 that terms with even N have
this syminetry, while terms with odd N do not.

o, This operation results, in rectangular coordi-
nates, in the substitution of —z for z and, in
spherical coordinates, in the substitution of r—g
for 0. This is the same as the # substitution in
C; and supplies a factor (—1)¥ . Hence, N
and M must both be even or both odd for this
element.

o,: A vertical plane of symmetry exists at
o=81if V(r, 9, B+a)=V(r, 6, B—a) for all values
of a. For terms, we have sin M(8+a)=
sin Mg cos Ma-+cos MB sin M« and sin M(8—a) =
sin MB cos Ma—cos Mp sin Ma. This yields the
requirement that cos MP sin Ma=-—cos M
sin Ma=0. For this to be independent of «,
cos MB=0, MB=r=/2, 3x/2, 5/2. . . and planes
of symmetry exist at f==/2M, 3x/20 . . .
(2M—1)x/2M. Similarly for C terms, we obtain
the requirement that sin Mg sin Ma=0, MB=0,
x, 27, 3r. .. and planes of symmetry exist at
8=0, /M, 2x/M, (M—1)x/M. We shall find it
converient to distinguish these sets of planes, de-
scribing those arising from C terms as o, and those
from S terms as o,. Note that the set o, for a
given even M includes both o, and e, for M/2, and
that any vertical plane is a plane of symmetry if
M=0. Letusemphasize that the z—z plane (8=0)
is & plane of symmetry for all C terms, while the

y—2 plane ( B=% ) is a plane of symmetry for C
2

terms if M is even, for S terms if M is odd.

S.: This operation transforms (r, §, ¢) into
gr, x—0, ¢+ (x/2)) and 0¥ transforms as (— 1)V,

terms involve sin M (¢ (x/2)) =sin M¢ cos Mx/2
+cos M¢ sin Mx/2. M odd yields a cos M¢ term
which we reject, and M even yields (—1)*/2gin M¢.
Thus S terms transform as (—1)N-#M for M
even. For C terms, the 6 contribution is the
same a8 for S terms and cos M(¢+ (%/2))=cos M¢
cos Mx/2—sin M¢ sin Mx/2. As for S terms, we
reject M odd and in ¢ obtain (—1)™/? cos M¢ for
M even. C terms then transform as (—1)N-iM,




just as § terms. The overall requirement for S,
18 then that both M and N— )I\; must be even.

Ss: Since this element is defined as Cll, it is
necessary and sufficient that both C; and I be
present for this element to be present, and it need
not be considered separately.

Based on the above analysis and discussion, the
symmetry elements present in each of the tesseral
harmonics of table 2 have been given in table 4.
An analysis of table 4 will indicate the potential
coefficients (2.7) which must be included to repre-
sent a potential appropriate to the groups of
table 3, and the results of this analysis are given
in table 5. Two foints are worthy of note in the
use of table 5. In each case where, for a given
M and N both € and S are shown, the first S
appearing is shown in parentheses. This repre-
sents the fact that, though both are consistent with
the required symmetry, the S term may be sup-

iessed by a suitable rotation about the z-axis.

his may be done, of course, for any one C, S
pair, but only for one. Al other indicated combi-
nations of C and S must then be allowed, and this
one S omitted. Second, with the potential terms
considered, it will be noted that the groups D,
and Cg cannot be distinguished from the group
D» of higher symmetry, nor can Cybedistinguished
from C,,. Further analysis of the potential terms
shows that the coefficients S%, allowed in D,, and
S§ in Cg, neither of which is allowed in Dy,, are
the lowest order terms separating these three
groups. Similarly, 8% in C, will separate it from
Ce», Where this coefficient is forbidden. Finally,
it will be noted that the groups D, C.,, and C,_
have been omitted from the table. These sym-
metries do not arise from the electrostatic fields
considered here.

2.3. Preferred Coordinate Systems

In considering the expansion of the potential
(2.6) and the calculation of the coefficients (2.7),
it is clear that the coefficients (2.7) will depend
upon the choice of the coordinate system used.

On the other hand, it is also clear that all expan-
sions of the field (2.6) must be physicalliliy equiva-
lent, and that a choice between two differing de-
scriptions of the same field is merely & matter of
choosing the simplest description. Following uni-
versal convention, the principal axis of symmetry
in the preceding considerations has been taken to
be the z-axis, and in the calculation of the coeffi-
cients (2.7) this will have to be determined by an
inspection of the given configuration of charges,
as will also the location of any y-axis (C;). Any
other choice of axis will, in general, yield a more
complicated expansion, and the symmetry will be
apparently (but not actually) lower.

t would be well to dis~uss further the point
mentioned in the preceding subsection concerning
the planes of symmetry. For a given N and M,
both C terms and $ terms describe planes of sym-
metry, differing merely in their orientation with
respect to the vertical coordinate planes. Clearly,
any linear combination of these two terms also
represents a set of planes of symmetry, at some
intermediate angle. If only one NV and M (other
than M=0) is present, the linear combination will
represent no more information than will either one
alone. The general preference arises from the fact
that the actual calculation of matrix elements in
section 5 will be done through the Y terms (2.8)
rather than the C and S terms. It will be seen
from /2.9) that the suppression of § terms (as far
as possible) will yield real coefficients for the
matrix elements. A conventional preference for
C terms then implies the z-z plane as the pre-
ferred vertical plane of symmetry, and the y-axis
for the operation C;, since IC; is then a reflection
in this preferred plane. Scmetimes (e.g., Dss), we
shall admit S terms and keep C; as the y-axis
rat%gr than adopt some other axis in the plane
as C,.

Once an expansion has been obtained in a given
coordinate system, that in any other coordinate
sKstem may in principle be obtained from the fact
that each of the terms (2.5) or (2.8) in the new
coordinate system will be expressible as a sum of

TABLE 4. Symmelry elements in tesseral harmonics

M= 0 1 2 3 4 5 6
N=1 | Cwo, oA\ T,
2 | CxIC:o,S:0a o.1C: cxlc;a'h [ Y
c 3 Cmﬂ. [ 2% 0 ¢3¢ Galau
4 CQIC‘IU vs(dh T Ic; cllqal Ty C;lC'.a. s. C(lclla'b [ 2 sl
5 00 » AT, o'vsd AT » CQO'" cld’kﬂ'n |
8 | CxIC,a.S04 | a.1C, GlCoao, GICo,8, | ClICiors,S. | ClGo, CICioarq,.S:
1 o:,04C,
2 aql Cilorog
3 0104C | CGGa.S. | GGaras
s 4 aul Clonas GC)losS, Claora4S,
5 a10:C; Ci 48, Cioi 02 a4 C,C,0164
6 a4l Ciloroq GClo.S, CdoroiS. Lof L7 Ciloro4S,
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TanLe 6a. Transformation of tesseral harmonics the 2N+1 terms of the same value of N but of
_ 'Y different M in the old coordinate system. While
{ N0l ¢ a s general formulas have been derived for such rela-
i o\ tions (Wigner, 1931), a detailed study has been
! N carried out for a second coordinate system O’
} c obtained by a rotation of O by —120° about the
; i r o (i+j+k) axis. This is equivalent to a cyclic
1 1 ermutation z—>y—>2—z of the variables; i.e., the
unctions C¥ (y,2,2) and S¥ (y,2,2) were evaluated
St 0 in terms of C¥ (z,y,2) and S¥ (2,5,2). The results
of this evaluation are presented as the matrices of
table 6. Itshould be noted that these matrices are
orthogonal.
TasLE 6¢c. Transformation of tesseral harmonics
N
TaBLE 6b. Transformation of tesseral harmonics 0,\\0 c G G G S S s
N \d
0 (& (& 1
O'\{\ ’ e s s 4] 0 —‘/g 0 Vfg 0 0 ©
A 1 H]
& -3 0 3 0 0 i "
10 6
a o o o o 1 ¢ 0 -3 0-73 00 0
G —‘@ o ~3 0 0 a 0 o o —‘/Zi o -1
Si 0 0 0 s} _‘/g 0 ‘/1_—2 0 0
Si 0 0 0 1
b 0 0 0 0 0 1 0
s VBB 5 V& o o 0 o
4 4
Tasie 6d. Transformation of tesseral harmonics
o 0 ] s e} Q ¢ s S St st
3 V5 V35
Q 8 0 2 0 3 0 0 0 0
G 0 0 0 0 ] ] —‘/-E 0 ‘/1_—:
V5 1 Vi
a i 0 -3 o -z 0 0 0 0
G 0 0 0 0 0 0 -—‘/Ii 0 ‘/g
3
V35 Vi 1
< 3 i 0 g 0 0 0 0
st 0 -2 0 ‘/Z 0 0 0 0 0
V2 VIi
s 0 0 0 0 -3 0 = 0
s o T o -3 0 0 0 0 0
Vid V2
st 0 0 0 0 o -¥4 o - 0

11




Tasre 6e. Transformalion of tesseral harmonics

N a ¢ a @ «¢ <« s & s s 8
a Vi V70 314
0 3 0 1 1 0 ) , 0 0 _?
a 1 _v4z V210
0 0 0 0 0 ()} 5 0 5 0 -6
G ) ‘/Z 0 -‘/g 0 —‘@; 0 0 0 0 0
a Vi2 _13 35
3 0 0 0 0 0 0 = 0 5 0 s
a vai ov3 Vo
i 0 3 0 T 0 T 0 0 ; 0 0
<] V210 3v5 1
H 0 0 0 0 0 0 15 0 e 0 T
st V15 V7 V21 0
H 8 o0 i 0 3 0 0 0 0 0
s 0 0 0 0 0 0 o -1 0 \/g 0
) V70 _vé %2
3 - 0 3 0 T 0 0 0 0 0 0
] 0 0 0 0 0 0 0 —‘/g 0 -—2—, 0
s 3v14 V30 410
4 =3 0 3 0 5 0 0 0 0 0 0
2.4. Cubic Point Groups the diagonals of the coordinate planes. T has

In addition to the 27 noncubic point groups of
table 3, there are 5 point groups known as the
cubic groups. While these are not known to
arise in natural rare earth crystals, they are impor-
tant in the consideration of crystais of other types;
e.g., the iron group, and some data on rare earth
ions have been obtained by the inclusion of the
jon in & foreign lattice of cubic symmetry (Low,
1958). Wae shall therefore complete the discussion
by considering these groups.

The five groups are assigned the symbols O,
O,=(0X]I), T, Ts=(TX]I), and T, but only four
distinct abstract groups are involved since T, and
O are isomorphic. The group O has 24 elements
and represents the purely rotational symmetry
of the cube (or octahedron), while O,, 48 elements,
represents the symmetry of the cube. T is
of order 12 and represents the pure rotational
symmetry of the tetrahedron, while T,, a subgroup
of O, with 24 elements, represents the full sym-
metry of the regular tetrahedron. T, is also of
order 24.

These groups represent & higher degree of sym-
metry than our previous considerations have sug-
gested. In particular, O includes fourfold axes
slong 2, 7, and 3, threefold axes along the principal
diagonal of each octant, and twofold axes along

12

4 threefold axes, of which at most one can be
along a coordinate axis, but has also three mutually
perpendicular twofold axes. Rotations of these
groups will be generally designated C, for rotations

? and they may be further distinguished by

primes. However, the distinctive conventions of
section 2.2 which are amopriate for D, and its
subgroups, cannot be ered to for these high
symmetries, These symmetries cannot arise from
considering the symmetr{l elements common to
8 sum of terms as in the previous cases, but
depend upon certain fixed ratios in the coefficients.
In other words, these may be viewed as higher
8 etries arising from “accidental” values of

e coefficients in a case of lower symmetry.

As a particular example, let us consider the
group D,, representing the rotational symmetry
of a rec ar prism, with potential coefficients
(table 5) (%, C, C%, Ci, S, and C§. The z and ¥
axes are equivalent, but the long dimension, the
3 axis, wi genemlfy be different. If the prism
actua.liy becomes a cube, the z, y, and 2 axes will
all be equivalent. Hence we ect that any
combination of these terms which is invariant
under a substitution z—y—2—z will represent a
hiﬁer symmetry, in this case O. This is just the
substitution considered in table 6. We see, for
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Transformation of tesseral harmonics

ON e ¢ ¢ e ¢ ¢ ¢ s § s s$ s
e _5 V210 i Vie2
16 0 2 0 6 0 5 0o o 0 0 0 0
a 0 0 0 V10 _v3 V22
. 0 0 0 0 o & 0 i 0 16
VY210 17 V30 3v55
L] 33 0 32 0 -V 0 -2 0 0 0 i] 0 ]
a 0 0 0 9 RE _V55
0 0 0 0 0 T 0 5 0 8
. _37 V30 13 V66
< 16 0 33 0 1 0 3 0 0 0 0 0 0
(& 0 0 0 V165 V22 V3
0 0 0 0 0 Vg 0 3 0 6
162 3v55 V66 1
L& 3 0 —=5; 0 -'5 0 -5 0 0 0 0 0 0
] 5 _3V10 66
S 0 H 0 T 18 0 0 0 0 0 0 0
3 0 V10 -2 V165
S 4—() 0 0 0 , 0 0 16 0 16 0 16 0
3v10 1 165
St 0 16 0 -3 T 0 0 0 0 0 0 0
s¢ 0 0 0 0 0 0 0 ‘/g 0 -‘/32 0 _\’Zﬁ 0
: veé 165 5
S 0 18 0 16 0 16 0 0 0 0 0 0 0
322 V55 V3
st 0 0 0 0 0 0 0 g 0 e 0 e 0

examgle, that C3 becomes a combination of € and
Q. Since (s not allowed in D,, we suppress the
second degree terms and proceed to those of the
fourth degree. Although both C} and C§ yield
Q, if the coefficients are in the ratio C}:Ci=

\7: 4/5, the G will cancel and the combination
C2+‘/§ C! will be invariant under the operation

of table 6. Similarly, if C?:C¢=—1: +7, C} and
C} arising from the transformation will vanish
and QQ—+7 C will also be invariant. S} will
admix S}, forbidden in D,, so S% must also vanish.
We conclude then that under these conditions,
we have but two coefficients, C} and C} left to fix
the strength of the field, and the symmetry is O
rather than D,. In fact, all of the terms allowed
also contain I as a symmetry element, and the
symmetry is even higher, ie., O, The dis-
tinction between O and O, will arise from potential
terms of higher order.

On the other hand, the cube may be considered
as standing on & corner with a threefold axis along

the z axis, arising as a special case of Dy s etry.
The allowed coefficients will be generally C3; S3;
8, C%; S3; C8, O, and CF. Since we do not have
data corresponding to table 6 to apply our previous
method, we shall set up a charge configuration
having the desired symmetry and orientation,
evaluate the coefficients (2.7) and determine the
necessary relations among them. This has been
done in detail as an example in section 6—we
report mer%;r the result at this point. The
coefficients %, 83, and S? must vanish, while the
ratios among the nonvanishing coefficients are
C9:03=—17:2+/35 and C%:03:03=24:2105:y462.
In this case as well, % and C}are the only adjust-
able parameters to fix the strength of the field.
The group T may likewise be considered either
as a special case of D,, where the z, y, and 2 axes
all become equivalent, or as a special case of C;
with the principal threefold axis of the figure
vertical. the former case, the allowed coeffi-
cients are: C3; C3; S3; €%, C4, C4; 83, Si; and C,
C3, C%, and C%. A consideration of these terms
and table 6 shows that the following conditions
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must be met:
C=C3=0 S?is arbitrary Ci=0 S3=8;=0
CkC4=T B  CLCi=—1:T

and 02:C%=—11:455.

The constants S3, C%, C2 and C3 can be considered
the variable coefficients describing the strength of
the field. The symmetry becomes T, if the only
one of these terms lacking the element I, 83, 18
suppressed. If we start from the case of Dy
symmetry instead of merely D;, we obtain T,
symmetry but must suppress the coefficient C3,
leaving l:%’ 4, and C4.

3. Groups, Characters,

3.1. Representations and Quantun
Mechanics

Let us consider a Hamiltonian H, and ¢, (1=
1,2, . . . n) an n-fold degenerate solution of the
Schroedinger equation Hy,=Ey,. Let us further
consider a group of transformations (generally
rotations or the inversion) which may be applied
to this equation. If an element of the group is P,
with inverse P~, then PHy,=PEy,, which may be
rewritten as

(PHP ) (Py)=E(Py,).

This we interpret as yielding a transformed
Hamiltonian (ll;g-ll’") and a transformed solution
Py, of the Schroedinger equation. Let us now
assume that the Hamiltonian is invariant under
the group of operations; i.e., that PHP~'=H or
PH=HP, and that Q is another operation of the
%roup. Then (3.1) becomes H(Py,)=E(Py,), and
. must be a solution of the original wave equa-
tion with the same energy; i.e., it must be a linear
combination of the original wave functions

Ph:%_‘,P.,W,.

Similarly Qy,=3"Q,#,, and (OP)¢,=§:(QP)4,¢,-

Thus the effect of each operation of the group may
be expressed as a n)Xn unitary matrix. The
importance of the concept becomes most evident
when we consider the product QP as the operation
P followed by the operation Q:

O(W‘)=O(‘§P‘,¢;)=§JQ;Z,‘)‘;PZ¢; .,
= 24 R4V4.

Thus, the matrix for (QP) is the product of the
matrix for P by that for Q. 086 unitary
matrices are called a * gesentation of the group”’
because any relation between elements of tﬁe
group is also a relation between the matrices corre-
sponding to the group elements.

3.1)

(3.2)

(3.3)
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In evaluating the coefficients for the threefold
axis vertical, we have again had recourse to the
establishment of a specific configuration, namely,
that of the regular tetrahedron itself. This will
yield terms for T, rather than T or T.. Con-
figurations for these latter symmetries are con-
siderably more complicated, and have not been
evaluated for this orientation. The nonvanishing
coefficients must meet the following conditions:

02: = /3—5:5
C2:C%:C8=4+/2310:77+/5:35+22.

0%:03=+5:2 and

and Representations

Clearly, the precise form of the matrices depends
on the particular choice of original wave functions,
and any other set, related to the original set by a
unitary transformation may be selected and will
{ield a transformed representation of the group.

it is possible to find a transformation such that
the group operations cause only m of the n wave
functions to transform among t{emselves, and the
remaining n-m functions among themselves, the
reﬂresentation is said to be (fulliy) reducible,
otherwise irreducible. Following Melvin (1956),
we shall for brevity speak of an irreducible repre-
sentation as a ‘“rep’”. If the representation is a
rep, the degeneracy is said to be essential, since
the n wave functions may be transformed into
each other purely by symmetry operations. If
the representation can be reduced into two or
more reps, the degeneracy is essential between
wave functions belong to the same rep, but ‘“‘acci-
dental’” when wave functions belonging to different
reps are concerned, since wave functions belonging
to different reps are not related to each other
purely by symmetry operations. Accidental de-
generacy is either due to a purely fortuitous con-
sequence of the numerical parameters of the sys-
tem under consideration, or to the presence of
additional symmetry not previously considered
(sometimes called “excess degeneracy”). An ex-
ample of this latter will be considered in connec-
tion with Kramers’ theorem (section 4.2), which
states that all levels of an atomic system with an
odd number of electrons will be at least twofold
degenerate under the influence of external fields
of purely electrostatic character. In this case, it

ill be seen that wave functions belonging to
different reps of the rotation-reflection group may
actually be related by symmetry with respect to
time reversal.

3.2. Rotations in Three Dimensions

One of the transformations in which we shall be
particularly interested is that of an arbitrary rota-
tion of the coordinate axes in three dimensions, so
we shall now examine this in some detail. Let us
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consider 8 fixed (», y, 3) reference frame, and &
movable frame (&, w, {), the origin of the lat-
ter being fixed at the origin of the (¥, ¥, %)
frame. We assume initially that the £, 4, and §
axes coincide with the x, y, and 2 axes, respec-
tively. Any rotation will move the (§, 9, ¢) frame
to some new orientation which is uniquely deter-
mined by the rotation performed. %Ve are in-
terested in the various ways of specifying the
orientation of the (¢, , {) frame and its relation to
the rotation involved.

It is clear that there will be three independent
quantities to be specified, two to fix the direction
of the axis of rotation and one to fix the angle of
rotation about this axis. Consider a vector r
fixed in the (¢, », §) frame rotated through an
angle » about an axis fixed in (¥, ¥, 3) containing

cos w- (1—cos w)a?
D,(u,w)={ (1—cos w)af+7 sin @
(1—cos w)ay—pBsin w

and r,r’ are the column vectors (¢, 1, ) or (z, ¥, 2),
and (z’, ¥, '), respectively.

Since r is fixed in the (&, 9, ¢) frame, its com-
ponents in that frame are the same before and
after the rotation; they are the same as its coor-
dinates (z, v, 2) before the rotation in the fixed
frame

The direction of the (£, », t) frame may be deter-
mined then by applying this relation to the vectors
(1, 0, 0), (0, 1, 0), and (0, 0, 1) in turn.

The set of all three dimensional rotations con-
stitutes a group which we shall designate as R,
The set of real matrices D, (u,) is orthogonal, hence
unitary, and meets the requirements of section
3.1 for a representation of the groug. (Note that
D, is a particular element of [,.) It is important
that the group of matrices I); be not confused
with the group of abstract osle;ations R, but
this requires a clear understanding of the differ-
ence between a group and any particular repre-
sentation of the group. In elementary work, a
three-dimensional rotation is invariably thought
of as an operation on a vector. This is adequate
in these elementary cases, since this leads, as we
have seen, to a particulariy simple faithful repre-
gentation (a unique matrix for each operation) of
the group. However, we have already mentioned
in section 2.3 that an element of 3%, will induce
not only the linear substitution D, among the
three components of a vector, but also a linear
substitution Dy among the 2N+1 components of
the tesseral harmonics of degree N (table 2). All
these substitutions are equally well representa-
tions of M, and they are faithful for N>O0.
Geometrically, a vector may be resolved into its
components, which are the tesseral harmonics of
degree 1, which lie along the three coordinate
axes, 80 that a linear substitution among the com-
ponents of the tesseral harmonics of degree 1

(1—co8 w)af—v sin
cos8 w4 (1—cos w)B?

(1—cos w)yB+asinw
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the unit vector u with direction cosines (a, 8, ¥).
Observe that r may be resolved into a component
parallel to u, (r-u)u, and & component perpen-
dicular to u, (r-(r-u)u), and that the vector (u X r)
is perpendicular to both and has the same
magnitude » sin (u,r) as the latter.

The component of r along u, (r-u)u will be
unchanged, while the perpendicular component
r—(r-u)u will be rotated through the angle
into (r—(r-w)u) cos w+(uXxr) sin w. Thus,

r'=r co8 w+ (1—cos w)(r-u)u+ (uXr) sin .
This may be written as the matrix equation
r’=D,(u,w)r, where

(1—cos w)ay+-B sin w
(1—co8 w)fy—a sin w

cos w- (1—cos w)y?

(3.5)

necessarily implies a corresponding linear sub-
stitution among the components of a vector,
which we interpret as a rotation of the vector.
Likewise, any linear combination of the 2N--1
tesseral harmonics of degree N (or any quantity
having similar transformation properties) may
be viewed as a vector in a space of 2N+1 dimen-
sions, with the 2N-+1 tesseral harmonics serving
as the unit vectors. An element of %; may also
be represented by a rotation matrix in this 2N+1
dimensional space. Our choice of properly nor-
malized tesseral harmonics ensures that the
resulting matrices are orthogonal. In terms of
this concept, the matrices of table 6 are the
matrices Dy for N=1,2,34,5,6 and

__1_ _2x
= A+i+k) o=7-

A general rotation may also be described by a
g%int along the direction of u and &t a distance w

m the origin. All rotations are thus represented
as points within or on the surface of a sphere of
radius ». More precisely, the points represent the
results of the rotation, while the details of the
rotation are fixed by prescribing a path from the
origin (representing the original orientation) to this
particular end point. It is important to notice
that all points of the closed sphere represent dis-
tinct orientations, save those on the surface where
diametrically opposed pairs of points represent the
same orientation, being attained by a rotation »
about oppositely directed axes. Consequently,
there are two essentially different types of pat
by which one can go from the origin to another
point within the sphere. Thus, if it is desired to

reach the point (0: ’—5; 0 ) in the (U w) space, this
could be accomplished by & single rotation ’-;— about
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the y-axis, and the resulting path is a straight line
from (0, 0, 0) to (o, .8 o) On the other hand, &

rotation by » about the —y axis will be repre-
sented by a straight line from (0, 0, 0) to (0, —r,
0). Since the latter point is equivalent to (0, «, 0),

a further rotation % will result in & path from
0, =, 0) to (0: %: O). We have thus reached

(0: %: 0) by two different paths. These are es-

sentially different since there is no continuous
deformation of the paths, keeping the end points
fixed, which will cause them to coincide. Paths
which can thus be made to coincide are said to
be of the same homotopy class, otherwise they
are of a different homotopy class. There are
only two homotopy classes for rotation in three
dimensions. We shall call them P, (for paths
involving no points on the surface of the sphere
or an even number of pairs of such points) and
P, (paths involving an odd number of pairs of
points on the surface of the sphere).

It is frequently more convenient to describe
directly the orientation of the (¢, », ) frame than
to describe the rotation as above; i.e., we give
directly the angles between the two frames. The
Zen technique is due to Euler, and the three
angles which must be specified are known as
E[:ﬁer’s angles. There are a great number of
different choices which can be made, and indeed
have been made by various authors, & freedom
which complicates considerably comparisons be-
tween different authors. We shall follow here
what seems to be the most frequent choice by
recent American writers on the subject (Edmonds,
1957; Rose, 1957). The position of the ¢ axis will
be specified by 8, the angle between { and z, and
by ¢, the angle between z and the projection of §
in the z-y plane. These are just the usual spherical
coordinates of the unit vector along the { axis in
the (=, p, 2) system. For the third angle, we shall

use ¥, the al:fle between » and the intersection of
the z-y and the ¢y planes. rimental
workers (Dieke and Crosswhite, 1956) have found
convenient an alternate choice x, the angle be-
tween ¢ and the intersection of the z-z and ¢y
planes. These angles are related by the equation
x=xo-+V¥, where tan x,=cos # tan ¢. If §=90°,
then x=y.

A major advantage of Euler’s angles is that any
given orientation of the (§, n, §) frame can be
obtained by three rotations in succession about the
coordinate axes. For these rotations, the matrices
(3.5) take on a particularly simple form, and their
product, e:})ressing the general form of (3.5) in
terms of Euler’s angles, may be computed directly.
The three rotations are:

1. A rotation by ¢ about the z,¢ axes (which
initially coincide). The {9 plane remains in
the z-y plane, but the ¢ and the 5-t planes are
rotated by the angle ¢.

2. A rotation by 8 about the 5 axis. This will
bring the { axis into its final position, as specified
by ¢ and 8. The {—x plane will no longer be in
the z-y plane, but their intersection is the » axis.

3. A rotation by ¢ about the ¢ axis. This will
bring the ¢ and 7 axes to their final orientation.
In performing these rotations, it will be noted that
each one is carried out in the (§, 9, ¢) frame, which
is generally in a different position each time as a
result of the preceding rotation in the sequence.
The same final configuration can be obtained by
rotating aboit the (%, y, 2) frame axes, provided,
that the sequence of the angles is reversed. In
other words, a rotation of the (£, n, {) frame first
about the z-axis by the angle ¥, then about the
y axis by 8, and finally about the z-axis again by
the angle ¢, will yield exactly the same final
orientation of the (£, n, ¢) frame. This may be
established either by pure ﬁ' geometric considera-
sions, or by specific multiplication of the matrices
involved. Using this latter sequence of angles, we
obtain from (3.5)

if
u=(0,0,1), w=¢ory oru=(0,1,0), o=0

cos¢p —sing O cosd 0 sin cosy —siny 0
Ry=|sing cos¢ 0 R,= 0 1 o Ry=| sin ¢ cosy 0
0 0 ] —sinf® 0 cosd 0 0 1

and their product RyR4R; yields the matrices of the representation Dj of R;, now in terms of the three

Euler es,
cos ¢ cos @ cos ¥y—sin ¢ sin ¥
D, (¢,9,¥)=] sin ¢ cos 6 cos ¥+ cos ¢ sin ¢

—sin 0 cos ¥

—co8 ¢ cos # sin Y—sin ¢ cos ¢

—sgin ¢ cos @ sin Y-}-cos ¢ cos ¢

cos ¢ sin 0
singsin 0] (3.5a)

sin fsin ¢ cos §
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Since these matrices are orthogonal, the inverse of
& given matrix is its transpose. In terms of u,w,
this amounts to reversing either the vector u or
the sign of the angle of rotation. In terms of the
Euler es, the inverse amounts to reversing the
sign of the angles and also their sequence. In
eneral, we shall not indicate the variables for
1 (or for Dy), since either set may be used.
A third extremely important description of &
three-dimensional rotation arises from the Cayley-
ein parameters. Let us consider the general
2X2 matrix with complex elements, which we
shall write in the form

ae's be
cet G+ detatd

where g, b, ¢, and d are real nonnegative numbers,
and a, B, v, and 8 are real numbers. This matrix
contains eight arbitrary parameters. If we require
that it be a unitary matrix U, four conditions of
restraint on these parameters are imposed, and
there remain but four independent quantities.
These four conditions are: a=d; b=c¢; a*+b*=1;
and 2a-+8=28+vy+x. The further condition
that det U=41 requires that 2a+3=0, leaving
three independent quantities. We can then

write
ae‘a befﬁ
U= B
— be— ) ae—’c

remembering that a®*+b*=1. The independent
parameters are then, essentially, a, «, and 8.

Further, let
R=( ¢ £~ in)
E-+in —¢

be a Hermitian matrix with a trace of zero, ¢, 9,
and { being arbitrary real numbers. A unitary
transformation

URU-'=R’ 3.6)

will leave invariant the Hermitian property, the
trace, and the determinant, so R’ can be written

Rie ( z z zy>.
24ty —z
Furthermore, det R’=—(2*+y?4-z*)=det R’'=
—(B+7*+¢9. If weinterpret the sets of numbers
(¢, 1, %) and (z, y, 2) as the coordinates of a point in
the movable (¢, 0, {) system and the fixed (x, g, 2)
system, respectively, we see that the transforma-
tion leaves unchanged the distance of the point
from the origin, so that the transformation can be
interpreted as a rotation. The matrix U can be
explicitly calculated in terms of the Euler es
by finding the matrices U,, U,, and Uy, so that

U=U,U,U,.

e-ieil
U‘=( ) etiei

6 .
cos;  —sing ~wn g
U= e P) Uw=( 0 etivis
sin § [0 ] E
~i(e-+¥) ~i(g—¥)
2 [ z .
e cos5  —e gin =
U Ho—) Fio+) 3.9
7 . 3
e sin 5 e cos 3

Just as in the previous discussion distinguishing
between R; and D,, we have here an abstract
group of unitary unimodular transformations in
a complex space of two dimensions, and a partic-
ular representation of the group through the
matrices (3.7). The abstract group we shall desig-
nate as ll;, the particular representation by the
collection of U matrices (3.7) as D,,,. The ele-
ments of the representation I);;; may be given
gither in terms of the Euler angles as in (3.7), or
in terms of the unit vector u and the angle o,
though we shall not give the latter form here ex-
plicitly. Since it will not generally be necessary
to indicate the variables, we shall generally write
the matrices merely as Dy, (instead of U) to parallel
our earlier distinction between D, and D,.

Let us consider the implication of this transfor-
mation in more detail. e firsy observe that the
matrix R can be written in the form

0 1 0 —1 1 0
R=E +"1 . +§' )

1 ) 1 0 0 —1
where the 2X2 matrices are the Pauli matrices
corresponding to the z, y, and z-components, re-
spectively, of the spin angular momentum oper-
ator. If we let (¢, 9, {) be a unit vector, the
matrix R is the operator corresponding to the pro-
jection of the spin angular momentum in the
direction given by the unit vector (¢, 9, {). Let
us consider for simplicity U for 6=¢y=0. R’'=
URU~! may similarly be written

0 1
R’=(£ c0s ¢—n sin ¢)< )
1 0

. (N 1 0
+(n cos ¢-+£ sin ¢) ( )H( )
() 0 0o -1

This corresponds to our interpretation that the
vector with components (¢, 5, ¢), fixed in the
(§, », ¢) frame, is given 8 rotation about the z—¢
axis, positive in terms of the right hand screw
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convention. R’ is now the operator correspond-
ing to the projection of spin in the new direction,
stﬁl described in the movable system by (£, », {),
but described in the fixed (x, y, 2z) system by
z=£cos ¢—usin ¢ y=ncos ¢+ £s8in ¢ z2=¢.
Note that the Pauli matrices retain their form, i.e.,
they are expressed in the fixed (x, y, z) frame.
However, we can also write

0 e'*
R'=
E(e“ 0)
0 —e i 1 0
+,,(, )+;( )
le'® ) 0 -1

where £, 7, and ¢ retain their original values, and
the Pauli spin matrices have been transformed to
the form appropriate to the new £, n, { axes.
Recalling that this is a rotation by + ¢, this should
be equivalent to a rotation of the physical system,
the fixed z, y, 2 axes, and the spin functions de-
scribed therein, by —¢. In other words, generally,
a transformation of the spin operators o, by U is
equivalent to a transformation of the spin func-
tions themselves by U~!. More formally, con-
sider =R ¢, where ¢ and ¢ are spin wave func-
tions. This expression, under the transformation
U, yields
Us=URU-'Uy or o'=RW

which represents merely the transformation of
each side of the expression to a new frame of
reference; in other words, essentially the same
angular momentum measurement. From the
standpoint of a simple rotation of R to measure
angular momentum 1n the new direction fixed by
R’ as considered in the original frame of reference,
we are interested in the quantity R’¢y=URU"ly
which is generally different from ¢. This
new measurement may be transformed by U~ to

give

U~ X=U"[URUJUU-¢y=R{U-¥].

In other words, the rotation of R to R’, URU-!
gives the same result as the inverse transformation
of the spin wave functions by U=’. Since we are
usually interested in transforming wave functions,
we shall write Dy,=U"! rather than Dy="U.

The presence of the half-angle functions in this
transformation reflects the very special properties
of the spin transformations. In particular, the
rotation ¢'=¢+2x, ¢ =027, ¢'=¢+2x clearly

ields an orientation of axes identical to that des-
ignated by ¢, 8, ¢. On the other hand, it may be
seen that Dy(¢’, 0', ¥')=—Dy(¢, 6, ¥). Thus,
for each change of orientation in ordinary three-
dimensional space, there are two matrices corre-
sponding to this in the two-dimensional apin space.

or this reason, the set of matrices Dy does not
constitute a representation of the three-dimen-
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sional rotation group in the stricted mathematical
sense of the term. It has become customary to
refer to Dy as a ‘‘two-valued” or “‘ambiguous”
representation, and the abstract group U, as the
double rotation group. If a rotation is specified
by giving the initial and final configuration of
axes, the matrices Dy are fixed apart from the
sign. The sign may also be fixed if the detailed
course of the rotation is also prescribed. Clearly,
the matrix D, is a continuous function of the
variables ¢, 6, ¢ and becomes the unit matrix for
no rotation at all. In other words, if the initial
and final axes are the same, we know only that
the appropriate Dy, matrix is either the unit 22
matrix or its negative, while the detailed knowl-
edge that no rotation at all has occurred (or one
involving a path in the (uw) space of homotopy
class P,) enables us to fix upon the unit matrix as
the appropriate one. Generally, if two axes are
related by the Euler angles ¢, 8, ¥ we will select
D, (¢, 6, ¢) if the transformation is of homotopy
class P,, and —Dy,(¢, 6, ¢) if of class P,.

3.3. Group Theory and the Free Atom or Ion

The Hamiltonian for a free atom contains the
following types of terms:

. . 1
1. Kinetic energy terms om pd
: Zet | .,
2. Central ficld potential terms—r—-}-V (rs)
i

2
3. Electrostatic repulsion terms :;—V'(r,)
19

4. Spin-orbit interaction terms {(ry)l,-s,.

In the above, the V’/(r;) is selected so that the
overall effect of the third term is minimized. In
addition to the terms of the free ion Hamiltonian,
we shall also be interested in the effects of the
crystal lattice potential V discussed in the pre-
ceding section and of an external magnetic
field Consequently, we shall be interested in
the operations which leave invariant these various
terms in the Hamiltonian.

Let us first consider terms (1) and (2) only.
In this case, each electron is considered to move
independently of the detailed motion of the other
electrons present, their mutual interaction appear-
ing in an averaged form in the V’(r;) term. Term
(1) gives the Laplacian operator, which may be
viewed as a scalar product of two vector operators
and is therefore invariant under an arbitrary rota-
tion of coordinate axes about the force center.
Since second derivatives are involved, it is also
invariant under the inversion. Simularly, the
second term involves only the scalar magnitude
of r which is invariant under the same two opera-
tions. The solutions of the Schrodinger equation
for one electron for these two terms only are
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characterized by the quantum numbers =, I, m,,
and m,, and have a degeneracy equal to 2(2/+1),
there being 2/+1 values of m, and 2 values of m,
all belongmg to the same energy and all related to
each other by the particular choice of coordinate
axis. These 2/+1 functions are just the functions
(2.8). Thus, a rotation of the coordinate axes will
cause each of the 2I+1 functions in the new set of
axes to be expressed in terms of all 2/+1 functions
referred to the old axes, yielding a 2/ 1 dimensional
representation of the rotation as in section 3.2.
It is shown in the general theory of groups that
for all nonnegative integral values of [ these repre-
sentations are in fact reps. General formulas for
the matrix elements in terms of Euler’s angles
have been %ven by Wigner (1931). Specific ex-
amples of these matrices using a real basis (2.5)
rather than the complex basis (2.8) have already
been given in table 6. It is further to be noted
that, for [>>0, the representation is faithful, i.e.,
there is & unique matrix corresponding to each
rotation. We shall designate the rep lg)y D, its
elements by D,.

For a single electron, 8s in hydrogen or in the
alkali-type atoms or ions, term (3) in the Hamil-
tonian vanishes. So long as term (4) is neglected,
the transformation of the 2{-+1 values of m,; and
the two values of m, are completely independent
of each other, and may even be described with
respect to different coordinate axes. The general
transformation may be represented by a matrix
of 2(214+1) dimensions, the direct product of Dy
and D,. Upon the introduction of term (4), the
independent transformation of spin and orbit no
longer leaves the Hamiltonian invariant. The in-
variance of the scalar product of two operators
(e.g., 1-8) is founded upon the assumption that
each is referred to the same set of axes. The
group of allowed transformations is now less gen-
eral, since both spin and orbit must simultane-
ously undergo the same rotation. The 2(2[4-1)
dimensionsal matrix is still an element of a repre-
sentation of the group of allowed transformations,
but it is no longer irreducible, and it may be
transformed by a new choice of wave functions
into a diagonal matrix of sub-matrices of dimen-
sionality 2(I+3%)+1 and 2(!—%)+1. The correct
choice of wave funciions is precisely that dictated
by the usual trensformation from a m; m, to j,
m, representation in one-electron spectra. The
wave functions are determined by the coefficients
known variously as Wigner, Clebsch-Gordon, or
vector addition coefficients, and yield allowed
valuesiof the total angular momentum j=I+}% or
i=[—3.

A similar argument is applicable to the case of
two electrons. Without terms (3) and (4) in the
Hamiltonian, all transformations are independent
and most generally yield a matrix of 2°(2/;+1)s
(2L+1) dimensions. The introduction of term
(3) now excludes those transformations affecting
differently the space parts of the two one-electron
wave functions, and the space portion of the
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matrix can be reduced into sub-matrices D, of
dimensionality 2L-1, where ranges from
L+L to |h—L|. The restrictions of the Pauli
principle require that the four-dimensional spin
matrix be simultaneously reduced, yielding &
three-dimensional submatrix D; and the unit
1 by 1 matrix D,. This reduction of the spin
transformation matrix corresponds to the well-
known existence of triplet and singlet states in
two-electron spectra. For our immediate pur-
poses, perhaps the most noteworthy point is the
disap?ea.rance of the ambiguity in sign of the spin
transformations. This is a general characteristic
of atoms or ions with an even number of electrons.
The reps of U, are infinite in number and are of
both even and odd dimensionality. Those of even
dimensionality include D} and others designated
as Difs, Dsf», etc., the dimensionalities being
2,4,6,. .. respectively. These representations
are all faithful, and hence all are double-valued
representations of the three-dimensional rotation
%‘oup. The odd dimensional reps are the

b12s - - - previously discussed as reps of the
three-dimensional rotation group, but these latter
are not faithful. Aside from the identity rep D,
&ni element D;, J integral, corresponds to +D,,
J half-integral. This is a point of greatest im-
portance when considering the representations of
the Eoint groups, as we shall see shortly.

The introduction of term (4) into the Hamil-
tonian now requires the reduction of the (25+1)-
(2L+1) dimensional direct product into a diagonal
array of sub-matrices D,, where J=L+8,
L+8—1, ... |L—S|. Here, the integral S
yields integral J and the spin ambiguity remains
suppressed. In certain atoms, the magnitude of
the various terms in the Hamiltonian requires
that term (4) be introduced before (3). The re-
duction of the various matrices must then be
accomplished in a different order, correspondin
to the j—j coupling scheme rather than the L—
scheme discussed above. For 3 or more electrons,
the details can become increasingly complicated,
but the general features remain the same. In
particular, integral J’s without spin ambiguity
appear for systems with an even number of
ef:actrons, while half-integral J’s corresponding to
double-valued representations of pure rotations
a})pear for systems with an odd number of
electrons,

There is another symmetry which must be
considered at this point, that of the inversion.
Terms (1), (2), (3) in the Hamiltonian depend only
on the length of a vector or vector operator and
hence are invariant under the transformation from
a right-handed to a left-handed coordinate system.
The angular momentum operator, orbital or spin,
has the transformation properties of a cross prod-
uct of two vectors, i.e., an axial vector or pseudo-
vector. Although the two vectors will change sign
on inversion, their product will not and the vector
operators (pseudovectors) 1 and s as well as the
Hamiltonian term 1.8 are also invariant. It is
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important to note at this point the distinction
between a vector and its description. Let us con-
sider the vector r=(z, y, 2) and t=(u, 9, w), with
rXt=(yw—2v, z2u—zw, zv—yu). I we now switch
to 8 left-handed system, the vector r remains the
same, but it is now described by (—z, —y, —2).
Likewise, t remains the same but its description
becomes the negative of the original. On the
other hand, the product rXt retains the same
description, but is consequently a different vector
since 1t is now in a left-handed system. The dis-
tinction between a quantity and its description is
a fundamental one which must on occasion be

e very carefully. If we consider a one-elec-
tron wave function y(z, v, 2, ), the description of
this state in the inverted frame is ¢(—z, —y, —2,
8), the description of an angular momentum being
invariant. ¢ is a homogeneous polynomial of de-
gree ! in the variables z, y, z and the transfor-
mation under the inversion is that of (—1)' and
that of a n-electron system (—1)¥¢ Strictly
speaking, of course, ZI; will not have a definite
numerical value when terms (3) and (4) in the

Hamiltonian are introduced, but only down

through term (2). Nevertheless, the introduction
of (3) and (4), invariant under the inversion, will
admix only wave functions of the same value of
(—1)¥: which may be used to describe states of
the free atom or ion. In addition to J, the states

- may be designated even or odd, (g or u, respec-

tively) depending on (—1)%,

3.4. Group Theory and the Perturbed Ion

It is the primary purpose of this paper to con-
sider in detail theyeﬂ'ects of terms in the Hamil-
tonian arising from the crystal lattice perturba-
tion V and from the external magnetic field B.
There are two techniques which may be used in
the solution of the problem, both of which must
be used in a complementary fashion for a complete
discussion. One technique is to apply further the
theory of groups, reducing the representation of
the state of the free ion according to the reps of
the appropriate electrostatic-magnetic field sym-
metry group. This technique will yield the num-
ber of levels, their description in terms of their
behavior under the allowed symmetry operations,
and selection and polarization rules for various
types of transitions. The method will not yield
purely numerical details, such as the relative posi-
tions of levels, their variation with electric and
magnetic field intensities, or transition probabili-
ties (save for the vanishing forbidden transitions).
The other technique is to calculate to some degree
of approximation the matrix elements of the per-
turbing potentials in terms of the free ion wave
functions, interpreting the results in the frame-
work of the usual perturbation theory. In the
final analysis, this latter procedure will yield not
only the numerical details not obtained from the
former technique, but can be so interpreted as to
yield all of the results that the former technique
will give. Nevertheless, the group-theoretical ap-

proach is one of great generality and provides a
very concise systematic framework for stating the
results obtained. Furthermore, the principles of
group theox&y (or essentially similar arguments)
are used to determine what matrix elements of the
perturbing potentials vanish if the second approach
18 used, and to calculate the magnitude of those
which do not vanish. Hence, the two approaches
are not really so divergent as might at first sight
appear to be the case. In this work, the contribu-
tions to the problem which can be made with the
use ofegfoup theory will be studied in detail before
roceeding to the alternate considerations of calcu-
tions involving specific matrix elements. While
it is not the intent of this paper to furnish a general
treatise on group theory, and a general acquaint-
ance with at least the basic definitions will be
resumed, certain concepts will be examined in
etail and applied as the necessity arises.

Let us consider the very simple group C;, con-
sisting of the elements C;, C}, and E. We shall
describe the group in terms of the effect of its
operations on the basis triangle of figure 2a,
taking C; as a counterclockwise rotation of the
triangle by 120°. In the present configuration,
the operation C; will cause the vertex (1) to
appear at the point previously occupied by (2),
(2) at that occupied by (3), and also (3)—(1).
We may shorten this to C;: (1)—(2)—>3). We
may also describe the operations in terms of their
effect on the triangle in figure 2b, where we see
that we also obtain C;: (1)—>(2)—(3). Notice
that figure 2b differs from figure 2a only in that
C; has been applied to the basis triangle before
we use it to describe the group. We could also
have applied C} to figure 2a before describing the
operation, and again would have obtained C;:
(1)—(2)—(3). A study of the operation C} will
show that, using any of these basis triangles,
we obtain C}: (1)—(3)—>(2) as its description.
Thus, 1" we restrict ourselves to transformations
within the group under discussion, there is no
transformation which will cause C} and C; to have
the same description in terms of their effect on
the basis triangle. Let us now consider the group
D;, where we have added to our original set of
three elements three rotations of 180° about axes
in the z-y plane, described in terms again of figure
28 88 C,: (2)—(3); Ci: (1)—(2); and C3: (1)—>(3)-
Still restricting ourselves to transformations within
the group, let us consider the effect of C; in terms
of the basis of figure 2¢, derived from figure 2a by
the application of C;. Here we see that we obtain
G;: (1)—(3)—>(2), but this is the same as C}

{2) ) {3)
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described in terms of figure 2a. We thus see that
in our first case Gy and C} were essentially different,
in that none of our allowed transformations permit
them to have the same descriptica, while in the
second case at least part of this essential difference
has been lost. This difference is expressed by the
notion of class. _In the first case C; and are
said to be in a different class, while in the second
case they are said to be in the same class.

More generally, if we consider the general trans-
formation, P'=TPT-! and limit ourselves to
transformations T belonging to the group of P,
we see that P’ is also in the group of P, and is
defined as being in the class of P. For each T of
the group a is obtained, not necessarily dis-
tinct, and the complete set of P’ constitutes the
class of P. Clearly, if P and T commute, P’=P.
In an Abelian group, where all elements commute,
every element 1s in a class by itself. Conversely,
if P’ is distinct from P, then P and T must not
commute. The se tion of & group into classes
may be accomplished either by geometric con-
siderations such as outlined above, or by formal
computation. The formal computation is aided
by the following considerations. Let N be the
set of group elements which commute with P.
tI't znay %e ShOWl(l tha{; 1thi?1 set, of elements isil ig
act a su up (possibly the entire group) calle
the normalizer oFi’ Xn elementg;? Ig as the
transforming element yields a P’=P. Let K be
& group element not in N (K does not exist if the
normalizer is the whole group). Then K as the
transforming element T yields a P’ different from
P, but any element in ihe complex KN yields the
same P’ as does K. Similarly, if L is a group
element not in N or KN, it will yield still another
P, but all elements in LN will yield the same P*’.
Generally, if the group order is g and the order of
the normalizer is n, the ratio g/n, an integer, is
called the index of N, and the group may be split
into g/n complexes, one of which is the subgroup
N. All of the elements of the class of P may then
be obtained by transforming P with an element
from each of these g/n complexes. Hence the
class of P has g/n distinet elements.

These considerations may be applied to the
group D, discussed above as an example. The
group order is 6, and the elements which com-
mute with G; are E, C;, C}. Hence the index of
the normalizer is 2, and there are two elements in
the class of C;, one of which is C; itself, the other
of which may be obtained by transforming C, with
any one of C,;, Cj, or C;. To accomplish this
latter we need the multiplication table for the

up elements, usually summarized as C}=C}=E,

C,=C,C}. The other element in the class of Cs
is G;C,Cr '=C,GC,= C,C,C}=C}, as was geometri-
cally shown above. C, commutes only with itself
and E, so the order of its normalizer is 2, its index
is 3, and there are three elements in the class of C.
These are C, and the products of G, with C;and C}.

If we have a set of g uni matrices forming a
representation of a group of order g, the set of
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traces of these g matrices is said to be the char-
acter of the representation. The importance of
the concept lies in the invariance of the trace under
& unitary transformation, Tr P'=Tr UPU-!=
Tr P. We seo immediately that if U is a matrix
of the representation, then P’ is an element of the
class of P and all elements of the same class have
the same trace. If U is a matrix reducing the
representation into two or more reps, the character
of the representation is the sum of the characters
of the component reps. This latter fact will allow
us to determine what reps may be present in a
given representation without actuslly finding the
particular U necessary to accomplish the reduction.

This latter procedure is precisely what we have
outlined above in sketching the application of
group-theoretical ideas to the description of states
of free atoms or ions, and what we wish to examine
in detail when considering the effect of the intro-
duction of the crystal field V and the external
magnetic field B. Before the introduction of the
external fields, the Hamiltonian is invariant under
arbitrary rotation (of the simple or double group)
and inversion, and the wave functions are trans-
formed by D, and (—1)2, respectively. After
the introduction of the external fields, the Hamil-
tonian is now invariant only with respect to sub-
%oups of the original group of transformations.

he original rep of the complete group will not in
general be a rep of this smaller group but merely
a representatior, reducible into reps of the smaller
group. Thisis the expression of the fact that the
original 2J+1 fold degenerate level will under the
influence of these external fields split into several
levels of lower degeneracy. The character of the
original representation is the sum of the characters
of the reps into which the state splits. We shall
now outhne the method whereby this determina-
tion of the component reps may be accomplished.

3.5. Group Characters and the Rep-D,

Let us consider a finite group of g elements,
with the elements separatedgrinto classes. There
will, in general, be several reps for this lgroup.
Let us write the trace in the 7-th rep and j-th class
as x5 For a given 1, j will assume values from
1 to n, where n is the number of classes, and x,
will be a set of numbers, generally complex an

not necessarily all distinct. Strictly speaking,
the set of numbers xy, for all j and a given ¢ con-
stitutes the character, while the number xy, for a
particular ¢ and j is merely (he trace of a matrix,
and one component of the :haracter. This may
be emphasized by conside.ing the character as a
vector x; in a space of n dimensions, with the »
comnents, x¢5» 'This is a distinction which is
usually either overlooked or ignored. We shall
now introduce a weighted trace, &; defined as

‘/% Xss, Where N, is the number of elements in

the class j, and, correspondingly, a weighted char-
acter §,. Fundamental to our further considera-




tions will be the orthogonality theorem for these
weighted characters, which we shall state without
roof, referring to Wigner (1931) for details.
}I)‘his theorem states the following:
1. The weighted character & for a given 7 is a

normalized vector in the Hermitian sense in a

space of n dimensions. Symbolically
n
Et'E:=fT_l, gik=1. (3.8)
2. The weighted characters belongir}lf to_dif-
ferent reps are orthogonal in the Hermitian
serse.
n
Ei‘£k=jz; Elibe =0 (3.9)

3. The set of weighted characters & for all 4
forms a complete set in the space of n dimensions,
in terms of which the weighted character of any
representation may be expanded. If Eis snch a

weighted character, with components = = / —Z:JL’ X,

8=il a(Eg and a¢=£i~5- (3. 10)

Two important conclusions may be immediately
drawn from this theorem. We observe that, since
the weighted characters form a complete set in a
space of n dimensions, there must be n of them,
In other words, the index % as well as § must assume
values from 1 to n, and the number of reps is equal
to the number of classes of the group. The
orthogonality theorem suggests that we consider
these weighted characters as the elements of a
nXn matrix. The orthonormality (3.8) and (3.9)
in the rows (i.e., in the index 1) implies a similar
relation in the columns (i.e., in the index 7). 1In

n
particular, we have Z_‘,l #sbiz=1

where j= E refers to the class of the unit element.
The unit element is always in a class by itself, so
Ng=1. The matrix corresponding to the unit
element in any rep is the unit matrix of the di-

mensionality d; of the rep, so x,z=d, and §, ,=i’—-

\

Consequently,

2 tiata=1

For the finite groups under consideration, there
will be a unique solution to this relation in terms
of integral values of d,. The dimensionality of
the reps (and hence the maximum allowable
essential degeneracy) will be determined by the

implies

gnl) di=g- (3.11)
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order and class structure of the group. Thus, for
the group D, discussed above, with six elements
and three classes, we have 2°4-141=6, and the
maximum essential degeneracy will be 2

We shall begin our discussion of the character
of specific reps%y considering the reps Dy, initially
limiting J to 1. The ideas of class, character,
and orthogonality just discussed were with specific
reference to finite groups, but are applicable to
infinite groups with but minor modification, the
most far-reaching being in the orthogonality rela-
tions. In this case the finite sums cited are re-
placed by integrals over parameters defining the
elements of the group. We shall not require the
theorem for infinite groups to be discussed here.

A matrix D, expresses a transformation of a
vector r (¢ 7, ¢) into a vector t'(z, ¥, 2z). The
transformation is orthogonal, leaving the length
of the vector unchanged, and may be viewed as a
rotation about an axis along rXr’ with an angle of

’

rotation w such that cos w:ﬁi—%,—l. To resolve the

group elements into classes note that we can first
rotate the vector r into the z-y plane and, if
necessary, perform a rotation about r so that r’
will also lie in the z-y plane. We thus transform
D, into a rotation about the z axis where it will,
from (3.5) for U=(0, 0, 1) assume the form

 cosw —sin w 0
R, (w)=| sin w cosw 0
0 0 1

We see that all rotations with the same angle of
rotation are in the same class, and that the trace
is 142 cos w. It is important to observe that the
fundaiiental interval of » and the complete range
of the character, here a vector with an infinite
number of components, may be obtained with «
between the limits 0 and =. This reflects the fact
that a rotation, —w about a given axis is equiv-
alent to a rotation w about an oppositely directed
axis. Thus every rotation is in tﬁe same class as
its inverse.

Pieparatory to considering other integral values
of J, let us transform R,(w) to the purely diagonal
form R;j(w) given by

e+{w 0 0
Ri(w)=| 0 1 0
0 0 et

This is the matrix describing the effect of a rota-
tion about the z axis on the three states (41, 0,
—1) of a p electron. For a d electron, we know




e T ——— - bt < g o+ 5 e et o

that such a rotation may b i
Lot ay be described by the

fettie 0 0 o0 0
0 ot g9 0 0
Ri(w)=| 0 0 1 0 0
0 0 0 et 0

L0 0 0 0 e~ 3w

Since there is a unique 1 to 1 correspondence be-
tween the matrices D, and D,, it follows that any
matrix D, may be brought into the form Rj(w) by
the transformation corresponding to that bringing
D, into Rj(w). Here the trace is 1+2 cos w+2
c0s 2w. A similar argument holds for other in-
tegral J. A general expression x,(w) is then given

J
by ge‘". This is & geometrical progression in

which the first term is e~*%, the common ratio
is e'*, and which contains 2J+1 terms. The
general formula for the sum of such a progression
gives
e—iJa
1—ete
which may be simplified to
w

(1—e @+0oy — x ()

Xs(w)= (3.12)
sing

We see from an inspection of this formula that

the relations considered for D, hold generally for

integral J, namely, x(w)=x(—w), and that « on

the interval (0, ») covers the allowed ran e.l .

half-

Let us now consider the group for
integral, initially limiting ourselves to J=—;—-
Any unitary matrix may be diagonalized, and
i/ 0
<0 a*)

This diagonalized form of Dy

Dy will assume the particular form

where la| is +1.
can be written as

e“% 0
0 e“‘§

By equating the trace of this matrix to that of the
nondiagonalized matrix (3.7), we obtain

2 cos —;—’=2 cos (%i) cos 50’

a relation between the angle of rotation w and the
Euler angles ¢, 6, . We see that in this group, as
well as in that with integral J, every element
and its inverse are in the same class, since the
character does not depend on the sign of w and
that the classes are determined by the parameter
w. The character of this rep is 2 cos w/2. The
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range of the parameter /2 in defining the group
element is (0, x) corresponding to w in three dim-
ensions on the interval (0, 2x), again confirmin

the double nature of this group in describing rea
rotations. Let w, be the angle, less than =, re-
lating two orientations of three-dimensional axes,
the corresponding diagonalized two-dimensional

matrix being
e‘? 0
Rl(wo)=( .,,.)
0 ey

with character 2 cos wy/2. The other two-
dimensional matrix corresponding to the same
orientation of three-dimensional axes is then
given by

e‘(?ﬂt) 0
Rl("’o+ 2x)=
0 e—i(-';—'+2r

wy 0
— ety
=( ¢z w)=—R§(w0).
0 —eiz

The character of Ry(wo+27)=2 cos (wy/2-+7)=
—2 cos wy/2. Hence these two elements of D,
corresponding to the same three-dimensional rota-
tion have different traces and belong to different
classes, unless the trace is zero. This latter occurs
for woy=m, at which point the two matrices become

) 0 —1 0
Ri(x) =< ) and R;(3x) =< >
0 —: 0 )

For real rotations of x, the two elements are in the
same class, because they are then reciprocal
elements,

For higher half-integral values of J, with a
unique 1 to 1 correspondence with the elements of
the group D, a similar reduction to diagonal form
must be obtainable, yielding

fetis 0. .. 0 0
0 e+l(l—l)0 e 0

0 0.. etve g

L0 0... 0 et

The trace of this matrix is a geometrical progres-
sion of the same form as the earlier one for integral
oJ, so the general formula (3.12) will still be valid.

Values of x,(w) have been calculated for w and
J of interest and are presented in table 7. In
further confirmation of previous discussion, for
integral JJ, w/2 need only range from 0 to =/2, since
the numerator is an odd polynomial of the de-
nominator, and the numerator and denominator
will change sign at the same time. For half




TaBLE 7. A character table for the reps D,

» 0° 60° 90° 120° 180° 240° 270° 300° 360°
J 2x/6 2x/4 2x/3 x 4«/3 6x/4 10x/6 2x

0 1 1 1 1 1 1 1 1 1
1/2 2 V3 V2 1 0 ~1 —V2Z | —+3 -2
1 3 2 1 0 -1 0 1 2 3
3/2 4 V3 0 -1 0 1 0 -3 —4
2 5 1 -1 -1 1 -1 -1 1 5
5/2 6 0 —v2 0 0 0 V2 0 —6
3 7 -1 ~1 1 -1 1 ~1 -1 7
712 8 —v3 0 1 0 -1 0 V3 —8
4 9 —2 1 0 1 0 1 -2 9
9/2 10 ~v3 vZ | -1 0 1 —V2 3 —10
5 11 -1 1 -1 -1 -1 ‘q 3/; 11
11/2 12 0 0 0 0 0 0 0 —12
6 13 1 -1 1 1 1 -1 1 13
13/2 14 V3 —2 1 0 -1 2 -3 —14
7 15 2 | X1 o | -1 0 V2 ‘/; 15
15/2 16 V3 0 -1 0 1 0| —v3 —16
8 17 1 1 -1 1 -1 1 1 17

integral J, the numerator will be a product of an
odd function of sin «/2 and an odd function of
cos w/2. No new values are obtained by going to
negative values of w, since in the numerator
and denominator will both change sign together
at w=0. However, the odd terms in cos w/2
change sign at w/2=x/2, so that the range (0, 2x)
in w will give distinct traces in this latter case.
This is due, of course, to the fact that the division
between the two homotopy classes of D, occurs
at w== rather than at «=0.

3.6. Noncubic Crystallographic Groups

We shall now consider the details of the sub-
ups of D, in which we shall be interested.
pon the introduction of the crystal field and/or
the external magnetic field the general rotation-
inversion invariance of the free 1on Hamiltonian
is destroyed and only those transformations which
leave invariant terms representing these external
fields are admissible. I’l‘hese were defined in
section 2 in terms of the elements D, X1I. Because
of the uni?)ue 1 to 1 correspondence between
D, XI and D, XI for integral J >0, the structure
as & group of the allowed transformations for all
integral J >0 is the same as those of the perturbin
fields. This correspondence does not hold for
balf-integral. In this case we again select out of
D, X1 those transformations which correspond in
terms of D,XI to invariance of the perturbin,
fields. However, there are two elements o
D, X1, J half-integral, corresponding to the same
transformation in terms of D, X1, so there will be
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twice as many elements in the corresponding sub-
groups. For this reason the structure of the sub-
groups for half-integre’ J will be different from
those for integral J .nd must be considered
separately. We shall .aitially limit ourselves to
those subgroups appro: viate for integral J.

We shall examine n.ve_ closely the detailed
structure of those groups listed mn table 3, ex-
cluding temporarily the infinite groups listed at
the bottom of the table and the cubic point groups.
These we divide into four general types:

1. The ¢yclic groups C,

2. The dihedral groups D,

3. The holohedric groups C,XI, D, X1

4. The hemihedric groups, which are the sub-
groups of the holohedric groups which do not
contain I alone but only in products with rotations.

The cyclic groups C, are Abelian, of order n.
The elements of the group are the various powers
of G, with C3=E. Every element is in a class by
itself; consequently, there are n reps for the group.

The dihedral groups D,, n>1, are of order 2n,
and include the n powers of C, and products of
these n elements with the elements C,’.  Products
of C, and C; are related by CiC,=C7}C;. Hence
the group in non-Abelian for n>2. If n=2,
every element is in a class by itself, otherwise the
class structure is more complicated. For n>2,
the element C% and its inverse C%~* are in the
same class. If n is odd, there are n-1 powers of
Ca (eliminating the unit element in a class by

itself) which are grouped by pairs into 'n_;_l classes.



The n products of C; with the powers of C, are all

in the same class, 50 we have a total of
N

classes. For n>2 and even, the element C2'*

18 1ts own inverse and like E is in a class by

itself. The other n—2 powers of C, fall into "—%?-

classes, each with two elements. The n products
of the form CLC] will in this case fall into two
classes, one with k even, the other with k odd.
Here the total number of classes is given by
2425212342

The case for n=3 has been discussed above
(section 3.4) in detail in connection with the
definition of class. In the present work, this is
the only case we shall be concerned with, though
a little geometric consideration on the symmetry
of the pentagon, heptagon, ete, will confirm the
above discussion of odd n. Since 7 is odd, an
axis of the form Cj will pass through a vertex and
the opposite side of a n-gon. For n even, such
axes will join either opposite pairs of vertices or
sides, and no operation of the group either repre-
sents a rotation about a line joining & vertex and a
side, or will transform a rotation about one type
of axis into one about the other.

The holohedric groups D,XI, C.XI contain
twice as many elements as D,, C, and hence are
of order 4n or 2n, respectively. Since I commutes
with all elements, the group C,X1is Abelian. It
is interesting to note that for odd = it is also cyclic
since the group can be written in terms of the
powers of C,I, with (IC,)*=I1. In the case of
D. X1, if A, B, and X are elements of D, such that
A=XBX"!, the element IX will similarly trans-
form B into A. Thus the addition of 1 to the
group elements does not affect the class structure
of those elements not oontaininﬁal. On the other
hand IA=X{IB)X-'=(IX) (IB) (IX)~! so the
class structure of those elements containing I ex-
actly reproduces that of those elements not con-
taining I.

Let us consider the relations between D;, D, X1
(=Dy) and the hemihedric subgroup C,,. D,
contains sg’ %e:n&:arg; ci’n three classes uls1 follm
E; G, C; C;, G,C;, CIC;. D, contains these t!
classesand threemore:I;1GC,, IC}; IC;, IC,C3, ICIC.
We will now consider which elements must be
suppressed to eliminate I as an element of the

up without reverting to Dy. Clearly, I must
itself be eliminated, as well as the class of Gl
since (Cgl)’=1. If the class of IC;is eliminated
we are back to D,, 50 we retain these three ele-
ments, noting that we cannot obtain I from powers
of these elements as was done with IC, since the
square of any of them is the unit element. In
looking at the classes not containing I, we must
retain E to have a group, and the c!ass of C; must
be retained, since 50= (IC}) (ICICJ) and both of
the latter are retained. On the other hand, G
(IC)) =1, 80 we conclude that the class of C; must
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also be eliminated, so we obtain for the class
structure of G;,: E; G;, C}; IC;, 1G,C;, ICIC; which
is the same as that of D; (i.e., the unit element,
two elements of order three, and three elements of
order two). Furthermore, the multiplicative rela-
tions between the elements of C,, are the same as
those between corresponding elements of D,. The
i)roduct of two elements of C,,, neither containin

or both containing I clearly follows the paralle
relationsin D,. If only one contains I, say 1C,C;,
its products with the elements E, C,, Ciy ield I
times the products of E, C,, C} with the element
C,C; of D;. We shall see later the importance of
the fact that not only is the class structure the
same, but that the corresponding multiplication
table is the same (though the latter implies the
former) for the two groups.

We may generalize these considerations, and
assert that the structure of any hemihedric group
is the same as that of the pure rotation group
from which it is derived through the intermediary
holohedric group of double order. Such groups
are said to be isomorphic. The only difference,
mathematically superficial, is in the geometric
designation of the operations involved. The pri-
mar%:igniﬁcance of this for the present is that the
number of actually independent groups to be con-
sidered is considerably less than the 27 finite groups
enumerated in table 3, and that only the struc-
tures of the E:;re rotation groups and the holo-
hedric groups have to be considered.

3.7. Noncubic Double Groups

'We now turn our attention to the double groups,
which we shall designate as 11Cs,, 1Da, etc., de-
%ending on the corresponding subgroup of D,X1.

his notation will be used when it is desired to
particularly emphasize the double group. Ususlly
we shall merely imply these groups through the
use of the s Is C;,, Dia, etc., in connection with
half-in J. Some of these groups were first
considered by Bethe (1929). The problem was

in considered by Opechowski (1940), who
clarified many of the ideas involved. We shall
begin with the groups nC.. The element of
Dy for ¢=2x/n, §=¢=0 is, from (3.7), [Dy=U"]
the matrix
+ir
e® 0

—ix
0 e
This is obviously the element of a cyclic group of
order 2n. We shall call this ;C,, {)bserzmg that

) which
1

0 —
we usually designate by R. The unit element is
then R’. ~ As in the case of C,, each element of
nCs i8 in a class by itself. The groups C,, and
ug;‘ t.u'eRisomo{phic. The inverse of [C} is

" The aml?le dihedral groups consist of the powers

uCh i8 given by the matrix




of ;C., and the powers and pn;duct,s of the matrix
0 +
Dy(0, =, 0)=nCi= )

its powers. The element yC; is of order 4; its
square is R. We note from direct multiplication
o? the corresponding matrices that (nCp)(nCy)=
(aC:))(C;). Groups such as this are called
dicyclic groups, and have the defining relations as
abstract groups A*=B?=R, R!*=E, A"'B=BA,
& group of onf:r 4n. The class structure may be
determined from the matrices themselves, or from
the defining relations of the abstract group.
A pictorial argument is here inapplicable ab initio,
but we shall investigate the relations between the
structure of D, and pD.. We shall use the
defining relations.

The elements which commute with A clearly
include the 2n powers of A, but no element in-
volving B will commute with A (unless A=A,
which implies that A=R and that n=1, which is
excluded, since n>2). Thus the order of the
normalizer of A is 2n, its index is two, and there
are two elements in the class of A, which we see
immediately from the defining relations are A
and A-!. Generally, A* and A~ will be in the
same class, except when k=n, since A*=R com-
mutes with all elements and is in a class by itself.

The normalizer of B consists of B, R, B? and
E, of order 4 and index n, so there are n elements
in the class of B, obtained by transforming B
with the first » powers of A. e have ABA™'=
A’B:, A’BA-*=A'B; etc., or generally the even
powers of A, times B. We have left over the
class of AB, with normalizer AB, R, (AB)Y, E.
The n elements in the class of AB may likewise be
obtained by transforming by the first » powers of
A, yielding generally the odd powers of A times B.
Summarizing, there is the class of E with one ele-
ment, the class of R with one element, the (n—1)
classes of A* with two elements, the class of B
with » elements, and the class of AB with n
elements. Altogether there are n+3 classes.
We notice that the class structure is the same for
both odd and even n.

It will now be interesting to compare the class
structure of ;yD, with that of the group D, from
which it is derived. Let us write the defining
relations of D, in terms of the abstract elements
A and B as A*=B*=E; AB=38A"", so that we
distinguish corresponding elements by italics.
Let us further, n D, write powers of A
greater than n in terms of products of powers of
A less than n and the element R. Thus, A***=
RA* and A~ *=A""*=RA"* Let us consider
the class of A, which is (A, A™!). There are four
elements in D, corresponding to these two,
A and RA to the first, A'=RA"! and A™! to
the second. These four elements are in separate
classes by pairs (A, RA*™!) and (RA, A*'). Ifn
is even, these are both classes of order 2n. If n
is odd, A is of order 2n, but RA is of order n.
Similarly, the class of A* A** will generally
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split into (A%, RA**) and (A**, RA%). Ifniseven,

ese are of the same order; if # is odd, these are
of the same order for even k, and of different
order for odd k. The sole exception to this will
occur if k=n/2 (which will require n to be even),
where there is but one element in the class (A%2)
and the two elements A2, RA™? are in the same
class.
Let us now consider the classes of B and B.
If n is odd, the class of B contains A’B, A‘B,
... A"B, RAB, RA’B . . . RA*B, but it
does not contain RB, nor does it contain AB.
The class of AB also contains A’B, . . . A"B,
RB, RA’B . . . RA*!B. On the other hand, the
class of B contains B, AB, A°B, . . . A*'B, so
the class of B will split into two classes, one con-
taining B and RAB, the other containing AB and
RB (and other elements as indicated above). If
n is even the class of B will still include only the
even powers of A times B, but A*=R will now be
included, so B and RB are now in the same class.
The class of B now involves only B and the even
powers of A times B, so for n even the class of B
will not split, but will merely contain twice as
m%%y elements.

e may summarize this behavior by the fol-
lowing diagram, where we give in one column the
typical classes of D,, in the next column the cor-
responding classes of D, for both odd and
even n.

n odd
D, nDa
E (E)
(R)
(Ak’ Al—k) (Ak, RAH—!)
(At RAY
(B, 4B, A’B . ) (B, RAB, AB . )
(RB, AB, RA’B . .)
n even
B (E)
R)
(A*, An-b) (A%, RA™H)
(A", RA¥)
(Av2) (A™3, RAW?)
(B, AB, A'B . ) (B, RB, A'B, RAB . . )
(AB, A*B, A'B ) (AB, RAB, A'B, RA'B, . )

We see that the class structure of ;; D, follows the
same pattern for both odd and even n; the pattern
varies in the case of D,, in lHa.rt,iculsu', for classes
of elements of order 2. Results of the comparison
may be summarized into the following rules, first
given by Opechowski:

1. For each class of D, of order other than 2,
there are two classes of ; D, each having the same
number of elements as the class of D,. .

2. If there is but one class in D, of order 2 (n is
odd), this will in D, follow rule (1).

3. If there are two or more classes in D, of
order 2, (n is even) i.e., there are two or more
mutually perpendicular two-fold axes, these classes




will not split in »D, but will contain twice as
many elements. These rules also hold for the
cubic groups, essentially special cases of D, or D,.
Finally, we may observe that we deduced the
existence of n+3 classes in ;D,. This should be
considered in the light of the above rules with the
(n+3)/2 classes of D, (n odd), all of which split
In D, or 3+n/2 classes for n even, where n/2
classes split in ; D,.

The relations between the double pure rotation
groups and the associated holohedric and hemi-
hedric groups is the same as between the single
rotation groups and their associated holohedric
and hemihedric groups, and therefore need not be
discussed separately.

3.8. Reps and Characters

. We shall now examine briefly the notions of an
invariant subgroup and of a factor group. We
shall see that these, together with the orthogo-
nality relation for group characters, will permit us
to derive the characters for most of the finite
groups in which we shall be interested. While
these group characters have been derived by very
general considerations, a detailed study will prove
to be very instructive. Let us consider s sub-
§voup Sof G, of order ¢ and index n (ns=g). If

is any element of G, § is an invariant subgroup
if XSX~!=8, or XS§=8X. This does not imply
that every element S, of S commutes with X, Eut
only that X8,=8X, or that the set of elements
XS'is the same as the set $X, differing only in the
order if at all. If n=2, we may expand G into
the sum S+ ST, where T is an element of G not
in S, orinto the sum S+TS. Wesee that ST=TS,
or that any subgroup of index 2 is an invariant
subgroup. It is clear that S is either a class of G
or a sum of classes,

Let us associate with each element X of G the
complex SX. While there are ¢ X’s, there are
only n distinet complexes SX. t P and Q be
elements of G with product PQ=R. The asso-
ciated complexes, similarly multiplied, give (SP)
(SQ)=S5SPQ=S(PQ)=(SR), since S commutes
with any group element, and $S=S. We thus see
that a relation PQ=R holds either for the group
elements themselves or for the associated com-
plexes SP, SQ, and SR. These n complexes
constitute a factor group of order n, the unit ele-
ment being S. The importance of the factor group
for our purposes lies in the fact that any rep of the
factor group will likewise be a rep of the original
group. Since the factor groups are of lower order,
their reps may frequentclg be found by inspection.

As an illustration of these ideas, let us consider
the group D, with elements E, C;, C;, C,C;. Since
C,, C;, and C,C; are all of order 2, E and any one
of them will constitute a subgroup of index 2, and
hence an invariant subgroup. There are thus
three “proper” factor groups (of order >>1 and

<4):
1: (E, G) (G, GCy)  2: (E, C) (G, GCy)

3: (E, GC)) (G, C).
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We observe that the set of numbers 1,1 and 1, —1
constitute reps for the factor groups. We may
then obtain four reps for the whole group by
associating with of the three factor groups
the two reps. 'This would generally yield six reps,
but those arising from the rep 1, 1 are the same
for all three factor groups. These reps are tabu-
lated below. Those numbered 1-3 are obtained
from the corresponding factor groupg)ﬁv the associ-
e

ation 1, —1 of the factor group, wi (4) arises
from 1, 1.
E G C GG
®»n 1 1 -1 -1
@ 1 -1 1 —1
3) 1 -1 -1 1
4) 1 1 1 1

We are now prepared to discuss the characters
of the reps of spacific groups, to tabulate their
numerical values, and to systematize the descrip-
tion of states in terms of their behavior under the
%roup operations, just as the quantum numbers

, S, and J, and M,;, M, and M, describe the
behavior of states under general rotations. In the
original work of Bethe (1929), the various reps
were designated generally by I', and distinguished
by numerical subscripts such as I';, Ty, etc. This
notation has persisted in this field, though it has
no systematic meaning and does not suggest the
actual behavior of the state under consideration.
An alternate notation has been highly developed in
connection with the theory of groups as applied to
molecular vibrations (Herzberg, 1945; Mulliken,
1955), and it is & modification of this that we shall
employ. While we shall discuss the notation ap-

licabf; to each group as it is discussed in detail
low, it seems desirable to cover the notation
generally at this time, particularly to point out
variations from the notation appropriate to molec-
ular spectra.

We shall consider first the single groups, i.e.,
those appropriate to integral J. We shall find
that the reps are of dimensionality three, two, or
one. Those of dimensionality three, which arise
only in the cubic groups, are designated by the
symbol 7. If the inversion i8 & group element,

e symbol will carry the subscript “‘g’" or “u”, as
appropriate, and, if necessary, they may be further
distinguished, essentially by convention, by sub-
scripts “‘1”” or ‘2”. Two-dimensional reps will be
designated as E, again with a “g’’ or “u’’ if appro-
priate. The two-dimensional reps of D,, and
C.., infinite in number, will be found to corre-
spond to the pair of states 3+ M, of the free ion;

ey will thus be distinguished by M, appended
as & subscript. For these two groups, molecular
spectroscopists use the symbols II, A, ®, etc. It
is believed that the notation of the present work
is more adaptable to crystal spectrs, since D..
and C,, are only useful approximations to s case
of lower symmetry, where the “ E’’ notation is also
used in molecular spectroscopy.

One-dimensional reps have as elements numbers,
real or complex, of magnitude 1. If all elements
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are real, i.e., +1 or —1, they are designated as
“4” if the element for rotation about the z-axis
is +1, “B” if the element is —1. They may be
further distinguished by subscripts 1, 2 according
as the element for rotation about the y-axis is
+1 or —1; g or u for the inversion; or (") or (’’)
for +1, =1, re:gctively, for reflection in the z
plane. While this is the general policy to whic
the molecular notation conforms, it is usually
abandoned in the case of the group D; or Di,.
This is becauso the z, y, and 2 axes are distinguish-
able only by convention, and the reps are called
B,, B,, B,. This does not seem to be warranted ;
even the assignment of subscripts in the B’s must
be done by convention, so one may as well con-
form to the general rule. If the elements are not
all real, we use the symbol Ci, according to the

uantity (¥1)*. The general procedures of molec-

ar spectrosoocﬂy melﬁgon complex rep with its
conjugate, which must appear, as & two-dimen-
sional rep designated as “E”’. We are interested
in distinguishing these regls because of their separa-
tion when a magnetic field is applied.

The double groups do not appear in problems
of molecular vibrations. Their reps are of dimen-
sionality four, two, and one. t one of di-
mensionality four is the appropriate collection of
the elements of the rep Dy, of 1,, so we designate
it a8 Dy here also. me of those of dimension-
ality two which ap are similarly collections of
elements of Dy, which we continue to designate
as Dy; those two dimensional reps not so desig-
nated are assigned the symbol ,S,, where “S”
represents the idea of “spin” or ‘specific”’, the
anterior subscript for a two-dimensional rep, and
the terior one (if necessary) by convention.
Simiﬂﬁy the one-dimensional reps are designated
“S» with s distinguishing subscript according
to the root of 1 involved in the rep.

The reps of the cyclic groups C, are all one-
dimensional. It is clear that just as the group
consists of the n powers of C, so also will the n
powers of /1 serve as a rep. It is similarly clear

that the n powers of (V1)* will also serve as a
rep, where k may be 2,3,4, . . . n. If k=n, we
designate it by 4, & general notation for a rep
where every rotation about the z-axis is the unit
one-dimensional matrix. If n is even, for k=n/2
we use B, similarly a general notation for a rep
where the element of the rep corresponding to the
basic group element C, is the 1X1 matrix (—1).
In other words, A is & xl:meu'ic rep, B an anti-
symmetric rep. Note that C,_, is the complex

conjugate to Cx.

’l]he dourl?: eyclic groups ,C, are isomorphous
with the group C,., and hence the reps are the
various powers of (¥D*. For k even, we desig-
nate the rep by Cis or A or B since it will then
be also the corresponding rep of C.. Kor k odd,
we shall call the rep S; (§ for spin or specific) to
emphasize that it is r to the double group.

S, and S;,. 2 aTe complex conjugate repe. We note
that, if ¥T=w,«’,1 then Yi=—d*, Yi=—iw.

The dihedral groups are less easily analyzed.
The reps (and ters) for D, were obtained
above In connection with the illustration of the
application of the factor group concept. In terms
of num there used, we shall describe (4) as
Al,.(l) 88 A3, (2) a8 B], Bn.d (3) as B’- Here
again, A is used for reps which are totally sym-
metric for rotations about the z-axis, being dis-
tinguished by subscripts according to the behavior
for rotations about the secondary y-axis. B is
used where the basic rotation about the z-axis is
antisymmetric, and again distinguishing various
behavior for rotations about the y-axis.

The group D; contains the invariant subgroup
(E, G;, C}), so two reps are obtained as the rep
(1, 1) and (1, —1) of the factor group. Since
(3.11) admits of the solution 2?4-1*-413=<6, the
other rep is two-dimensional and its character
may be deduced from the orthogonality relation
for group characters. The one dimensional reps
are designated as 4, and A,, while two-dimensional
reps generslly are designated as K.

For D,, 8 elements in 5 classes, eq (3.11) admits
the solution 23-+13+4-12+413+12=8, so there are
four 1-dimensional reps and one 2-dimensional
rep. Since (E, C,, G}, C}) is an invariant sub-
group, two reps are again the reps of the factor

up (1, 1) and (1, —1), designated A, and A,.

e may also verify that (E, C}) is an invariant
subﬁu.p, whose factor group is isomorphous with
D,, the structure (E, C) (Cy, C3) (C;, CIC))
(GC;, CGGy). A4, and A; of D; give no new reps,
but B, and B; of D; will give us new reps, which
we shall designate as B, and B, in this case also.
The two-dimensional rep £ may now be found
from the orthogonality condition.

In the case of Dy, 12 elements in 6 classes,
204201 10413+12+13=12. The group C, is an
invariant subgroup, and the (1, 1) and (1, —1) of
its factor group C, are A, and A, respectively of
Ds. The group G, is also an invariant su up,
with factor group D,, whose reps B, and B, give
B, and B; of D;. Finally, the group (E, G;) is an
invariant subgroup with factor group D, whose
rep E will yield a new rep E; of D,. We find
from the orthogonality condition the rep E.
The reps are numbered according to the reps of
D, with which they may be correlated (table 10).

For the double groups generally, cyclic or di-
cyclic, (E, R) is an invariant suﬁgroup whose
factor group is the corresponding single gro:lﬁ),
sotherepsofthesinﬁl’egmupmalsorepsof 8
double group, as we have already seen in the case
of the cychic groups. For any half-in J,
the traces of D,&sl) and D,(R) are (2J41)
and — (2J+1), respectively. Hence we see that
we cannot resolve a faithful representation for
half-integral J into a sum of rEps, any one of
which has the same trace for E and R. This
latter is clearly the case for those reps derived
from the invariant subgroup (E, R), namely those
which are also repe of the smgle group, so we con-
clude that they will not be useful for describing




states arising from an odd number of electrons.
Those reps which are _peculiar to the double
groups we shall call specific reps (the basis for the

S” notation in the cyclic groups used earlier);
we include the non-specific reps for the complete-
ness required by the orthogonality theorem and
for the treatment of selection rules.

uD; contains 8 elements in 5 classes, so
2'4+1*4+1°4+1241?=8. The four 1-dimensional
reps are the reps of D,, so the only specific rep is
two-dimensional. It is obvious that this must be
equivalent to the appropriate elements of Dy, or
in other words, the representation is its own rep.
We Ds:all emphasize this by designating the rep
as Dy,

uD; has 12 elements in 6 classes, whence
20422 4134-124124-12=12. Half of these are
the reps of D, so there are two specific one di-
mensional reps and one :?eciﬁc two-dimensional
rep. We observe that (E, ;C}, RyG;) is an in-
variant subgroup. Its associated complexes
(cosets) are (llc:,'nC§11q:, Ry CinCy), .(n 43y R,
R;C}) and (n.cmcg, RuCs, BuCinC;) yleldmg a
factor group isomorphous with C,. The reps A
and B of C, yield no new reps, but C, and C; will
yield specific reps which we shall distinguish as
S: and S;. Because of these two 1-dimensional
reps into which the representation from Dy, could
perhaps split, we cannot conclude that the repre-
sentation from Dy is also a rep here, but this
proves to be actually the case if the two-dimen-
sional character is calculated from the ortho-
gonality relations. As before, we call this rep D,

uD, has 16 elements in 7 classes. Since
224224 234134+124-124+12=16, we find on sub-
tracting the reps of D, that there are but two
specific reps, both two-dimensional. One of these
must be Dy; the other, derived from the ortho-
gonality relations, we shall call ,S.

uDs has 24 elements in 9 classes. Equation
(3.11) gives us 22-+274284224924 124124194
12=24. Eliminating the reps of Ds, we have
three specific reps, all two-dimensional. One of
these must be D), Unfortunately, we cannot
obtain either of the other two characters by the
methods used so far, and an alternate procedure
must be used. We obtain from table 7 the char-
acter of the representation arising from Dy, which
is four-dimensional and hence reducible. By appli-
cation of the exgansion theorem (3.10) we see
that Dy is included once in the representation.
The other rep involved we shall call ;8,. The
final rep may now be obtained from the ortho-
gonality theorem as 5S,.

The holohedric groups, single or double, are
defined as the direct product of the group (E, i)_—. 1
with a pure rotation group. The reps may be
obtaine(Pas products of the reps (1, 1) and (1, —1)
of I with those of the pure rotation group. The
reps are designated like those of the pure rotation
group, with the additional subscript “g” if (1, 1)
is used and ‘“u” if (1, —1) is used.

It bas already been pointed out that the hemi-
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hedric groups are isomorphous with the corre-
sponding (in the sense of table 3) pure rotation
group and hence have the same reps. Most of
these hemihedric reps are described just like the
corresponding pure rotation reps. The exc:g—
tions are the groups Dy, Ca, C,, and S,. For the
first three of these, the reps are classified accord-
ing to behavior under the operation IC;=a,, sym-

metric reps a (') while antisymmetric
reps have (7). Dy, 18 further subclassified accord-
ing to C;. This difference in notation is peculiar

to the single groups—the specific reps of all hemi-
hedric double groups will be designated like those
of the corresponding pure rotation group. In the
case of 8, isomorphic with C,, the generating ele-
ment is taken as the operation IC{=C,1IC,=Cq,
which is usually considered as the fundamental
rotation-reflection operation. This is why the rep
g‘ off S, corresponds to (; of C, rather than to
1 0 C{.

3.9. Infinite and Cubic Groups

We have finally to discuss the infinite groups
involving infinitesimal rotations about the z-axis,
namely C., C.s, D., D.», C.s and the cubic
groups. In C_, the group operation consists of
arbitmg rotations C(¢) such that C(¢,) Cl¢,)=
C(¢:) C(61)=C(¢1+4¢2), and that C(2x)=C(0).
If & 1s any number, ¢"** will meet the first require-
ment, but the second limits & to a real integer,
positive or negative, including zero. If k=0, we
shall call the rep A, otherwise (. For the group
1:Ce, the first of the above conditions holds, but
the second is replaced by C(2x)=—C(0). Here
k must be half-integral, positive or negative, and
we designate the reps by S, (2% is an odd integer).
C.» is C, X1, so the reps for this group will carry
the subscript “g’’ or ‘‘u’.

In D,_, the group elements consist of the rota-
tions C(¢) and the rotation C;, such that C;C(¢)=
C(—¢)C;. Considering C_ as an invariant sub-
group, the reps (1, 1) and (1, —1) of the factor
group C, yield reps 4, and 4; of D.. As discussed
under C.,, ¢ will serve as a rep insofar as C(¢)
is concerned, but the operation C; makes ¢'** and
¢*~% egquivalent. Except when k=0 (which gives
A, and A,) our rep for C(¢) must have the two-
dimensional form

e 0
(0 e““)

and C; will assume the form
(1)
-1 0
which will transform G(¢) into C(—¢). It may
be shown that there are no otherreps. Thesere

we shall call E,, where k is a positive integer. In
the case of ;; D, the reps become

e ' 01
nc(¢)=<o e—t»ﬂ)’ “c’=(—1 0>
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and we shall designate them as ,S; (k odd). Repe
of D., will have the additional subscripts “g” or
‘“%” while reps of the hemihedric group C., will
be Jeugm. like those of D,.

In the group O, there are 24 elements in §
classes, ese are the class of E, 1 element; the
class of C,, 8 elements; the class of C,, 3 elements;
the class of G;, the body disgonal axes, 8 elements;
and the class of C; (here, C; is not along the y-axis),
6 elements. (3.11) gives 3'+3%+-2'+13+1°=24.
The set of elements (E, 3C,, 8C;) is an invariant
subgroup with factor timup of order 2. Its re
1,1 sng (1, —1) are the reps 4, and 4; of O. If
we consider D, for J=1, we find that neither 4,
nor A, is in the representation. Since it cannot
be reduced to A,+F or Ay-+E (E being the two-
dimensional rep), it must itself be one of the three-
dimensional reps. These are generally designated
as T—this particular rep we shall call T,. D,,
J=2, contans neither A4,, A,, or T}, so it must
reduce to E+T,, but we cannot separate them.
On going to J=3, we find from this seven-dimen-
sional representation, A4, and T; accounting for
four. The remaining three must then be T,
which, subtracted from the J=2 case leaves E.
The groups O, and T, follow our previous con-
siderations on pure rotation, holohedric, and
hemihedric groups. The reps of T,; parallel
those of O.

The double group ;O has 48 elements. The
splitting into classes, as compared with the group
O, follows the same rules as for the dihedral
gro\l?s given in section 3.7, so the class structure
is: E (1); R (1); nCe (6); RuC, (6); nCs (6); nGi
8); RuCs (8); nCiC; (12). (3.11), after elimi-
nating the reps of O, indicates three reps for ;;O,
two 2-dimensional and one 4-dimensional. As
usual, Dy, is one of these reps. D;; in this case
is also a rep, the four-dimensional one. The
:;e:lxlmining rep obtained from orthogonality we

_ The group T, 12 elements, may be separated
into the class E (1); G, (3); G, (3); and C} (4).
It 181 mte}'eﬁtmg to note that, in spite of thedrela-
tively 8 etry, a rotation G, and its
iqversebtlf“=g are?xrx different classes. (3.11)
yields 3°+1*+12+1?=12. The elements (E,3C,)
constitute an invariant subgroup, with a factor
group of order 3, C;, The rzfs 4, C, and G, of
C; are thus the one-dimensional reps A, C}, and C;
of T. The rep T may then be obtained from
orthogonality and completeness considerations.
The igoup uT, 24 elements divides (section 3.7)
into E (1); R (1); uC; (6); uCs (4); RuC; (4);
nCl (4); and R;CG} (4). Subtracting off the
reps of T, we have 2'4-274-28=12, indicating reps
we shall call D, ,8), and 1S;. As the notation
suggests, Dy, is its own rep. Unfortunately, our
previous techniques for finding reps fail in this
case, since the reps ,8, and ,S, always appear
together and cannot be separated. We must
therefore proceed to a more general method.
The product of any two classes of a group [C,)

and [C,] with N, and N, elements, respectively,
will be a total of NN, e.lements, not nm
all distinet, which ma]y th: ves be written as
a sum of classes [C,], or [C.][C.]=2'N“,.,[C,],

with N, ,, & small nonnegative integer. A par-
ticular ¢ may not appear at all, or may sp
more than once. It may be shown (Murnaghan,
1938) that thie expansion implies the following
relation between the traces of the i-th rep:

NuNbxuxu=xtlZN¢. b:chxu

1

where (g is the trace of the unit element, i.e., the
dimension of the rep. By developing in detail
the multiplication table of a group, sufficient
relations may be found to calculate the complete
character table of any up. In the present
case, we already have but two of the seven
possibilities for ;T. A solution of these equa-
tions for xy=2 will then give the desired
characters.

3.10. Table of Group Characters

The foregoing considerations have been sum-
marized in table 8, a table of group characters for
both the single and double groups in which we
shall be interested. Each portion of the table is
constructed around one of the single holohedric
groups. Typical elements of the various classes
of the group, together with an indication of the
total number of elements in the class, are shown
to the right of the group designation, while the
designations of the several reps are shown under
the group designation. For convenience, we also

ive the notation of Bethe (1929). The characters
%l r the various classes and reps are the entries in
the table. The classes, reps, and characters for
the corresponding pure rotation group may be
obtained by dropping all classes containing I and
the subscripts “g” and “u” on the reps.

Above and to the left of each basic character
table are shown the classes and Ir'lc‘egs of the corre-
sponding hemihedric groups. e appropriate

oup designations are given upward and to the
eft of that of the basic holohedric group, while
the class structure is given along the same row
and the several reps in the same column, so that
both classes and reps correspond to those of the
holohedric group. A careful study of these will
indicate very clearly the relations between a holo-
hedric group and its hemihedric derivatives.

The characters and reps for the specific reps of
the double groups are given in table 8 immediately
below the reps of the single groups. Because of
the frequent splitting of the classes of the single

up into two classes discussed above, there will
in such cases be two characters for each class of
the single group. If A is a class element of the
single group, the first double group character will
be that for the class of A, the second for that
of RyA. Upon inspection, it will be seen that
such pairs of characters have opposite signs, while
those arising from classes of the single group which
do not split are all zero.
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TasLE 8. A table of group characters—Continued
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4. Degeneracy, Selection Rules, and Polarization

4.1, Splitting of Free Ion Levels

We are now in & position to apply the results of
our previous considerations to the problem of
deFenemcy in the presence of a perturbing external
field. The general procedure has been covered
in the previous section; we consider here the spe-
cific example of a free ion level described as
4u(J=4,(—1)¥1=—1) in a field of C,, symme-
try. From table 8 we obtain the class structure
of Ces as E, 200, 2C3, Cq, 310;, 310304 The
traces of the matrices of the rotation group J=4
corresponding to the first four of these classes
may be obtained directly from table 7. Those for
the last two classes will be —1 times the traces
of the corresponding pure rotation. We obtain
the following for the character table of a reducible
representation of Cs,. We also include for imme-
diate convenience the reps 4, and 4,.

E 2Cs 2C; C, 3IC] | 31G:C]
4u 9 -2 0 1 -1 -1
4; 1 1 1 1 1 1
A, 1 1 1 1 —1 -1

The expansion theorem for group characters
(3.10) was given in terms of the weighted traces

51.1:‘\[ %xu
— /N
l:'dj__- ‘g_jXﬂ

but it is usually more convenient to use the
traces directly. Thus a,=§,-2 (3.10) becomes ga,
=>"N;x}X,. Using thislatter form, we obtain for

7
A 12, =1(1)(9) +2(1)(—2)+2(1)(0) +1(1)(1)
+3(1)(—1)+3(1)(—1)=0, so A, will not ap-
pear in the reduction. Likewise, 12a,,=1(1)(9)
+2(1) (=2)+2(1) (0)+1(1) (1)+3(—=1) (—1)
+3(—1)(—1)=12,s0 A, will appear in the reduc-
tion once.

The results of this and similar calculation for all
the subgroups of D, of present interest are given
in table 9. As in table 8, the results for the pure
rotation groups are not given separately, and may
be obtained from the associated holohedric group
by omitting the ‘“g”- “4” distinction. Only the
group I has been omitted; this has no symmetry
apart from the inversion, and states are either

sor A,. The integral range of J is from 0 to 8,
while half-integral J ranges from J to '%. If only
electric fields constitute the perturbation on the
free ion, the appropriate group may be obtained
from table 5 or from crystallographic considera-

and

551664—61——4
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tions. For a pure magnetic field, we shall consider
onl{la. uniform field with symmetry C,,. In case
both fields are present, the appropriate group is
the group of those symmetry og)erations common
to the ei)ect.ric and magnetic fields. Unless the
magnetic field is parallel to one of the symmetry
axes of the crystal field, there will in general be
no symmetry common to both perturbations.

In accordance with our previous discussions,
the physical implication of this reduction is that
all one dimensional reps appearing in the reduction
represent states arising from the free ion level J,
which are not related by symmetry to any of the
other states so arising. These states, then, are
either nondegenerate or “accidentally”’ degenerate,
the latter being due to numerical values of the
parameters hence very improbable in any actual
case. Any two-dimensional rep represents a pair
of states from the original 2J+1 which are
essentially degenerate, being related by symmetry
operations, but not degenerate with the other
2J—1 states. Similarly for any reps of higher
dimension. If a particular rep appears only once
in the reduction the state or states it represents
may be uniquely associated with a particular
combination of the original 2J41 states. If the
rep appears more than once there will be two or
more states of the original 2.J41 having the same
symmetry properties, and the appropriate states
in the crystal may be a linear combination of
these. This can only be determined from the
numerical parameters involved. These consider-
ations are modified by Kramers degeneracy to be
considered in detail in section 4.2, Certain pairs
of reps are noted in table 9 as being Kramers
conjugate states, These states, even though
belonging to different reps, are degenerate if the
perturbing field is purely electrostatic.

It is often of considerable interest to follow the
behavior of a given level during the introduction
of perturbing fields of increasingly lower symmetry.
For example, one may wish to see the effect on the
levels under Dy, symmetry of a reduction of sym-
metry to C;,. This may be accomplished by the
correlation table, table 10. Since most of the
groups with which we are presently concerned are
subgroups of D_,, we start with the reps of D,,.
For each group of lower symmetry, the designation
of the level or levels is given in the appropriate
column. Again, the pure rotation groups are not
given separately, requiring only the suppression
of “g"—y” in the associated holohedric group.
The procedure involved here is the application to
the characters of the reps of D_, precisely the
same procedures as were applied to the rotation-
inversion group characters in constructing Table 9.
Notice that here, in many cases, the rep of D, is
still a rep of the subgroup, since the levels fre-
quently remain twofold degenerate.

For an example, let us consider the state 2,
under the influence of a crystal field of symmetry




TasLe 9. Type and number of perturbed levels

: 0 1 2 3 4 5
? VRN ulg g uig uig ulg ulg u\g u
Al. 1 1 1 1 1
™ 1 1 1 1
10 1 1 1 1
¥ 1 1 l l 1
E, 1 1 1 1 1 1 1 1
E,. 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1
Duar B 1 1 1 1 1 1
E;, 1 1 1 1 1 1
E;s. 1 1 1 1 1 1
E,, 1 1 1 1 1
E,, 1 1 1 1 1
Es, 1 1 1 1
E&- 1 1 1 l
e 1 1 1
o 1 1 1
Ezo 1 1
ET- 1 l
Es, 1
Eﬂl l
A, 1 11 1)1 1)1 111
2 1{1 1 1)1 1{1 1
E, 1 1)1 1 1|1 111 1{1 1[1 1)1 1
Cor E; 1 1 1{1 1{1 171 141 1)1 1
E, 1 11 1)1 1]1 111 111 1
E; 1 1|1 1)1 1{1 191 1
E; 1 1)1 1{1 11 1
E, 1 1|1 1{1 1
E, 1 111 1
Es 1 1
4, 1 1 1 1 1 1 1 1 1
A4, 1 1 1 1 1 1 1 1
Cxy, 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
Cxs, 1 1 1 1 1 1 1
E1u 1 1 1 1 1 1
Cxsp 1 1 1 1 1 1
Cor  Ciaa 1 1 1 1 1 1
Cuiyg 1 1 1 1 1
Caiiu 1 1 1 1 1
3 +50 1 1 1 1
. 1 1 1 1
Caxso 1 1 1
0w 1 1 l
Cx1q 1 1
0*1- 1 1
Ctll 1
*8u 1

38

Note: The states Cay, C-u;, 81d Cuuy C-ns, are Kramers conjugate states.
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TasLe 9. Type and number of perturbed levels—Continued
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TasLe 9. Type and number of perturbed levels—Continued

0 2 s 4 5
g u\lg LEN) ulg u|g u|g ulg ujg ul|g u
A, |1 1 1 2 1 3 2 3
A, 1 1 1 2 1 3 2 3
Dse Az 1 2 1 2 2 3 2
Ase 1 2 1 2 2 3 2
E, 1 2 2 3 4 4 5 6
E, 1 2 2 3 4 4 5 6
A, 1 1{1 1 2|2 111 213 2|2 313 2
Cse As 11 1|2 111 212 1]2 3|3 2|2 3
E, 1 1]2 2|2 2|3 3|4 4|4 415 516 6
A, |1 2 1 3 2 4 3 5
A 1 2 1 3 2 4 3 5
Asp 1 1 2 2 3 3 4 4
Da Az 1 1 2 2 3 3 4 4
By, 1 1 2 2 3 3 4 4
B, 1 1 2 2 3 3 4 4
B, 1 1 2 2 3 3 4 4
B:. 1 1 2 2 3 3 4 4
4, 1 1{2 1{1 213 212 3]4 3|3 4|5 4
A, 1|1 1 2|2 1(2 313 2|3 414 3|4 5
Ca, B, 1 1]1 12 2|2 2|3 313 3|4 1|4 4
B, 1 1)1 1|2 2|2 213 3|3 3|4 4|4 3
4, |1 1 1 1 1 1 3 3 3
A 1 1 1 1 1 1 3 3 3
B, 2 2 2 2 2 2
B. 2 2 2 2 2 2
Cio 1 1 1 1 2 2 3 3
Ca Cie 1 1 1 1 2 2 3 3
Czy 1 1 2 2 2 2 3
Cau 1 1 2 2 2 2 3
Cio 1 1 2 2 2 2 3
Ciu 1 1 2 2 2 2 3
Cse 1 1 1 1 2 2 3 3
Csu 1 1 1 1 2 2 3 3
Note: The states (Cyq, Cyo)y (Cruy Csu)s (Caoy Cio), (Caus Cuu) are Kramers conjugate states.
4’ 1 1 1 1 211 2|1 213 213 213 2
A 1 1 1}2 1]2 1|2 1|2 3|2 3|2 3
Cu c, 1|1 1|1 1|2 12 2|2 212 313 3
C: 1 1 1{1 111 2|2 212 23 213 3
C, 1{1 1|1 1|2 1{2 2|2 212 313 3
Cs 1 1 1|1 1|1 2|2 2|2 213 213 3

Note: The states (C;, C3) and (C}’, Cy’) are Kramers conjugate states.
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TasLp 9. Type and number of perturbed levels—Continued

1 2 8 4 5
g v |9 u|g u|g uijg u|g u|g ujg u
4, 1 1 3 3 3 5 5 5
4, 1 1 3 3 3 5 5 5
S¢ Ci, 1 2 2 3 4 4 5 ()
Cie 1 2 2 3 4 4 5 6
Cse 1 2 2 3 4 4 5 6
Ci 1 2 2 3 4 4 5 [}
Note: The states (Cy,, C30) and (Cia, Csa) are Kramers conjugate states.
A, 1 1 1 3 3 3 3 5
A, 1 1 1 3 3 3 3 5
B, 2 2 2 2 4 4 4
Ca B, 2 2 2 2 4 4 4
C, 1 1 2 2 3 3 4 4
Cie 1 1 2 2 3 3 4 4
Cse 1 1 2 2 3 3 4 4
Cse 1 1 2 2 3 3 4 4
Note: The states (Cy,, C3,) and (Cj., Cs.) are Kramers conjugate states.
A 1 1 2(1 213 213 213 413 415 4
Se R 1)2 112 112 312 314 3] 4 34 5
C, 1 111 1112 2|2 213 313 3|4 41 4 4
Cs 1 111 1]2 212 213 313 3|4 4|4 4
Note: The states C, and C; are Kramers conjugate states.
4, 1 3 3 5 5 7 9
Qk A- 1 3 5 5 7
B, 2 2 4 4 6 6 8 8
B, 2 2 4 4 6 6 8 8
C, A’ 1 213 213 415 415 67 617 8§19 8
AT 2 1|2 3|4 314 516 5|6 718 718 9
Ay, 1 1 1
Alu 1 1 1
Alu 1 1 1
A!u 1 1 1
O E, 1 1 1 1 1 2
E, 1 1 1 1 1 2
T 1 1 1 2 1 2 2
T 1 1 1 2 1 2 2
Tre 1 1 1 1 2 2 2
T 1 1 1 1 2 2 2
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Note: The states (C,,, Cs,) and (Ciu, C3.) are Kramers conjugate states.
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TasLe 9. Type and number of perturbed levels—Continued

1 3 5 7 8 u 1 1
2 2 2 2 2 2 2 2
g ulg ulg ulg ulg ulg ulg ulg u
Se1y (1 1 1 1 1 1 1 1
*lu 1 1 1 1 1 1 1 1
+3g 1 1 1 1 1 1 1
*3u 1 1 1 1 1 1 1
Sise 1 1 1 1 1 1
Sase 1 1 1 1 1 1
Sis, 1 1 1 1 1
*7u 1 1 1 1 1
Sa, 1 1 1 1
Coa Sivu 1 1 1 1
Stne 1 1 1
St 1 1 1
S, 1 1
Stl:l- 1 1 1
+=13¢
S:EISI 1
Note: The states (Sus, S-no) 80d (Seu, S_au) are Kramers conjugate states.
Dy, |1 1 1 1 1 2 3 3
Dy, 1 1 1 1 1 2 3 3
Dea 281, 1 1 1 2 2 2 3
1S1u 1 1 1 2 2 2 3
2820 1 2 2 2 2 2
285, 1 2 2 2 2 2
%‘ 1 111 1{1 111 1)1 112 213 313 3
Ceo 29; 1 1)1 1)1 112 2|2 2|2 213 3
28z 1 1{2 2|2 2|2 212 212 2
lg‘ 1 1 1 11 211 22 2(3 2(3 2
Dia 25 1 111 1{1 1{2 212 212 213 3
18 1 111 112 112 1|2 212 312 3
Dy, |1 1 1 2 3 3 4
Dy, 1 1 1 3 3 3 4
Daa 1S, 1 2 2 2 3 4 4
1S 1 2 2 3 4 4
Cuy Dy 1 111 111 112 213 313 313 34 4
28 1 112 212 212 213 314 4| 4 4
Dig¢ Dy 1 1 1)1 22 213 213 3|13 4| 4 4
28 1)1 1(2 1]2 212 3]3 3] 4 314 4
Dy, |1 1 2 3 3 4 5 5
Dy 1 1 2 ) 3 ) 4 s 5
1 1
Dea . 1 1 1 2 3
Sie 1 1 1 2 2 2
3 1 1 1 2 2 3

Note: The states (Sy,, Sso) and (S, Siu) are Kramers conjugate states.
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TasLe 9. Type and number of perturbed levels—Continued

- ————c .

1 3 5 7 5 1 1 15
2 ] ] ] ] 2 2 2
g ulg uig LA R ulg uig ulg ul|g
Dy 1 1|1 112 213 313 314 415 558 5
Csy S, 1 1{1 111 1|12 212 212 213 3
S 1 1(1 1{1 1]2 212 212 2|3 3
Note: The states (S;, Ss) are Kramers conjugate states.
Sie 1 1 1 2 3 3 3 4
Sie 1 1 1 2 3 3 3 4
Sse 1 2 2 2 3 4 4
Sy 1 2 2 2 3 4 4
Cu Sse 1 2 2 2 3 1 4
Su 1 2 2 2 3 4 4
70 1 1 1 2 3 3 3 4
S:e 1 1 1 2 3 3 3 4

Note: The states (Sig, S12), (Siu, Sia", (S3a, Ssa), (Sses Ssu) are Kramers conjugate states.

S, 1/1 112 112 2|2 313 34 314 4
Ss 1 1 111 212 213 213 313 4] 4 4
Sy S 1 1 111 212 213 213 313 444 4
S; 11 112 1|2 212 313 3| 4 314 4
Note: The states (S, S;) and (S;, Ss) are Kramers conjugate states.
D;a Dy, 1 2 3 4 5 6 7 8
Dy, 1 2 3 4 5 6 7
S 1 1 1 1 1 2 3 3
Siu 1 1 1 1 1 2 3
Siy 1 1 1 2 2 2 3
Se 1 1 1 2 2 2
Con Sso 1 2 2 2 2 2
Ssu 1 2 2 2 2
S1e 1 2 2 2 2 2
S 1 2 2 2 2
Soe 1 1 1 2 2 2 3
Sou 1 1 1 2 2 2
Si1e 1 1 1 1 1 2 3 3
Siia 1 1 1 1 1 2 3

Note: The states (Si,, Sup)s (Siw Sita), (S0, Sea), (Ssur Sou), (Sser Sra)y (Ssuy S:u) are Kramers conjugate states.

S, 1 1 1 1)1 211 212 213 23
Ss 1 11 11 142 212 212 213
Caa Ss 1 1)1 1|2 1({2 12 2(2 3(2
S; 1 1(1 1{2 12 112 212 312
S 1 1t 1{1 1({2 212 22 213
Su 1 1 1 1)1 211 272 213 213

PR W &N

Note: The states (8,, Sy), (Ss, Sy), (Ss, S;) are Kramers conjugate states.
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TaBLE 9. Type and number of perturbed levels—Continued

L s s 7 9 u 13 15
2 2 2 2 2 2 2 2
g uilg ulg ulg ulg ul|g ul|g ulg u
S 1 1 2 3 3 4 5 5
™ 1 1 2 3 3 4 5 5
S3, 2 2 2 4 4 4 6
Se Siu 2 2 2 4 4 4 6
Ss0 1 1 2 3 3 4 5 5
Ssu 1 1 2 3 3 4 5 5

Note: The states (S;,, Sso), (Sis, Ssu) are Kramers conjugate states, The states (Ss;,, Si) appear an even num-
ber of times as Kramers conjugate pairs.

Ces Dy 1 1{2 23 3|4 4|5 5(6 6|7 718 8
Cn S, 1 2 3 4 5 6 7 8
- 1 2 3 4 5 6 7 8
Ss, 1 2 3 4 5 6 7 8
i 1 2 3 4 5 6 7 8

Note: The states (S;,, S3;) and (S;., S;.) are Kramers conjugate states.

Dy, |1 1 1 1 1 1
Diygu 1 1 1 1 1 1
Oa Dssq 1 1 1 2 2 2 3
D3sy 1 1 1 2 2 2 3
28, 1 1 1 2 2
25 1 1 1 2 2
Dy 1 1|1 1)1 1 Ll 201 2
Tq D3s 1 1)1 111 1]2 22 22 213 3
’ 1 1 1 i 11 1|2 1|2 1
Dy 1 1 2 1 2 3 2
Dy 1 1 2 1 2 3 2
2810 1 1 1 2 2 2 3
Ts 151 1 1 1 2 2 2 3
2520 1 1 1 2 2 2 3
3824 1 1 1 2 2 2 3

Note: The states (38,5, 251,) and (28,4, 281.) are Kramers conjugate pairs of states.
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Dy, where table 5 shows that potential coefficients
30108, CiC1CY; C4Ct and (C§ are present, and
table 9 shows that thero are two states A,, and
one each of A,,, By, and B,,, indicating that the
original fivefold degeneracy of the state 2, has
been destroyed. If the terms (3, C3, and (3 are
more significant than the rest, an initial approxi-
mation using these terms only leads to D, sym-
metry, with states A,,, E,,, and E;,. The inclu-
sion of C§ will reduce the symmetry to Ds,, but the
states retain their designation. On the other
hand, the inclusion of ('} will reduce the sym-
metry to D, leave the A, level unaffected, leave
the E,, level unaffected save for a redesignation to
E,, and cause the E,, level to split to B,, and
B,,. If we now include all terms, we see that F,
of Dy, splits to B, and B, of D,,, and that the
states B), and B;, of D, become A,, and A,
respectively, in D,,. This 4,, state can interact
witg the A4,, state from the original D, approxi-
mation, so that a rigid correlation with the states
of D, has been lost.

Table 10 has been so constructed that the same
process may be followed for still lower order
groups. For every column in the table, its sub-
groups are found further to the right in the table
(or in the same column without the “g”’—“«4""), and
the designation of any level under increasingly
lower symmetry may be followed across the table.
Entries of the same line have significance only
with respect to the allowed subgroups of any given
group. Thus, there is no correlation between

arallel entries in Dy, and D,,, though either may
ge correlated with D,,. All splittings of double-
degenerate reps have been correlated to ensure
consistency. Since the basic entries of the table
are the reps of D_,, any desired rep of soine other
group must be found from the table by inspection

but its behavior under lower symmetry does not
depend upon the rep of D, from which it arose.
In & manner of speaking, the columns of table 10
are first differences of the entries of table 9.

Table 11 shows the reduction of the reps of the
cubic group into the reps of their own cubic sub-
groups, and into reps of the noncubic groups.
Here, we have considered the two possibilities
which may arise in destroying cubic symmetry.
Thus, the group O may reduced to D, by
destroying the threefold axes, or to D; by destroy-
ing the fourfold axes. In either case, the principal
axis remaining is considered to be the principal
axis of symmetry.

While our discussion has been that appropriate
to the weak-field case (sections 3.3, 3.4), the
results are immediately applicable to both the
intermediate field case and the strong field case.
In the former, the external perturbation is stronger
than the spin-orbit interaction. Consequently,
instead of reducing the representation D,,Xli,
into those reps of the group leaving invariant the
spin-orbit term in the Hamiltonian, i.e., D,, we
reduce the representation into those reps of the
groug leaving invariant the crystal field potential
V. Since the spin is not included in the Hamil-
tonian at this stage of the approximation, we
reduce D, only into reps X,. This may be
done by using table 9 for L instead of J
(here, the double groups will not appear, since
L must be integral). The rep for the wave
function, including spin, will then be X,XDs.
We shall parallel spectroscopic notation for such
a state by using the appropriate symbol from
table 8 for the rep X, with an anterior superscript
28+1 for Ds, the whole being placed in paren-
theses. If the spin-orbit interaction is now intro-

TaBLE 11. Reduction of the cubic groups
O Ta Ta Dia D3a Ta D Ss Tq T D | Gi
A, A, Ay A, Ay, A, A, A, Ay A Ay 4,
A A, 3 Ay, Ay, A, Ay, 4, A, A B, Ay
As, 4, Az By, Age Ci, A, Ciy E GG, AB, | E
Ah Au Al Blu AZu Clu Alu Clu Tl T AzE AzE
E, C14Cse E AyBy, | E, C. | Ar, Ca, T; T BE | A\E
E- hnclu E AluBlu E- Czu lu 2u le DK D}‘ D}‘
ZS DK 2S D;‘
T . | B | Bk | T | AnBuBn | AfGr| P | 5S | Dass| Dusis
T T T. E,B E, A D D S8,
e T’ 7. | BB | Eid | Dt | Diit s
Dy Dy Dy | Dy Dy Sie | Dy 81,8
D e & | pes | Dt Su | Do Siusie
28 Dy 28 28 Dy Sa Dy 83,55
A Dy, Dy |.S. | Dy Siv | Digu 1St
Dapye NP Dyjz | Dyy 20S¢| Dige Sis Ss
Dyse 3 1: zsx: Dy u: 3 : x: 1: s:




duced, the rep XX Ds is now merely a representa-
tion, so that it must be reduced according to the
overall i{mmetry of the problem, which is still
that of the crystal field VP If X, is one-dimen-
sional, the s;fi’tting which arises is that of the
spin states only through Ds, and the angular mo-
mentum is said to be quenched; if X, is of dimen-
sionality greater than 1 but less than 2L+-1, the
orbital angular momentum is partially quenched.
This verbally depicts the effect on the orbital
angular momentum of the strong crystal potential
field V, which destroys (X, one-dimensional) or
limits (1<<X,s<{2L+1) any further influence on
the angular momentum either by spin-orbit inter-
action or by a moderate external magnetic field.
Still another intuitive view is that the crystal po-
tential partially or completely fises the orientation
of the angular momentum in the lattice, so that
these other influences have no further effect.

As an example, let us consider the 'F; level of
the europium trivalent ion, the symbol indicating
a reduction of Dy XD, to D; by spin-orbit inter-
action. A weak perturbing field D,, will (table
9) split this 2, level into states described as
(F)Ay; (F)By,; (F)By; and (F)E,. An inter-
mediate case field Dy, will split the "F term (table
9 for 3,) into ("A,); (By); (By); and 2(E,), a
total of (25-+1)(2L’+1)=49 states. The intro-
duction of the spin-orbit coupling will now cause
each of these to be split further. Consider the
Ievel (A;). The rep Ay, in D,y has the character
(a, 1,1, =1, —1, 1, 1, 1, —1, —1), while the
representation from D; has the character (parity
even, since it is a spin representation) (7, —1, —1,
-1, —1,7, —1, —1, —1, —1), so the representa-
tion Ay XD, has the character (7, —1, —1, 1, 1,
7, —1, —1, 1, 1) and is reducible into A4,,: By,:
B,,; and 2E,. The final states may be designated
(7421)A1¢§ .(7A2¢)Bu; (Ag)Byy; and  2(Ay)E,.
This notation parallels that of the usual L-S
coupling scheme. The labels inside the paren-
theses indicate the approximate transformation
prodperties of the state for transformations of spin
and orbit separately which leave invariant the
Hamiltonian, while the final designation is the
accurate specification of the behavior of the state
under the simultaneous transformation of spin
and orbit.

In the strong field case, we introduce the crystal
field in our sequence of approximations (section
3.3) before considering the details of the electro-
static interaction of the electrons, retaining only
the initial central field average V' (r;). e now
specify our initial energy by giving only the con-
figuration, and the reduction of the representa-
tions begins at this point. As a matter of notation,
following Mulliken (1955), we shall designate the
reps and characters for a single electron by lower
case letters (e.g., ;). If thereis but one electron,
there is no distinction between the intermediate
field and strong field cases, and we proceed as
outlined for that case.

We shall illustrate the procedure for the case of

49

2 nonequivalent electrons, and then consider the
restrictions imposed on equivalent electrons by the
operation of tge Pauli principle. We shall take

e configuration pp in a field of C;, symruciry.
The threefold degeneracy of a p stuic (apart from
spin) is completely lifted, and we obtain (table
9 for 1,) a,; b,; and b, for each electron, so the con-
figuration breaks up into (¢,)(a); (@) (d2); (bs)
(a,); etc., a total of 9 possibilities corresponding
to the original 9 orbi ossibilities in pp. The
spin transformation will ge DyxD,. The intro-

uction of the details of electrostatic interaction
cannot cause any further splitting of the orbital
wave function, since all the states are one dimen-
sional, though a relabeling may occur. The re-
quirement for totally antisymmetric wave func-
tions will require that the spin transformation
Dy X Dy be reduced to D, and D,, giving the usual
singlet and triplet states, respectively. Thus, (a,)
(a:) becomes (a)(e;)(*4,) and (a:)(a)(CAy); (b1)
(bz) becomes (b,)(b,)(*A;) and ({’1)(172)(3‘42); ete.
Note that this latter state is distinet from (b,)
(5,)(CA4,), which is also an allowed state in the
reduction. The further introduction of spin-orbit
interaction now requires the reduction of X, XD,
for the singlet states, X, XD, for the triplet states,
in accordance with the overall symmetry of the
groblem, which is still that of the external crystal

eld potential V. Consider (b:)(b:)(A;). The
character of A, is (1, 1, —1, —1), while the char-
acter of D, in C,, (even parity for a spin transfor-
mation) is (from table 7) (3, —1, —1, —1), so the
character to be reduced is (3, —1, 1, 1), giving
A,, B, and B;, We may write the final states,
then, as pp(b))(b:)CA)A;, or pp(b1)(b:)CA)B,,
for example.

If the electrons are equivalent, i.e., %, we write
(a,)? instead of (a,)(a;), and we cannot distinguish
(a,)(b,) from (b,)(z;). Furthermore, the Pauli

rinciple requires the spin state of opposing spins
For the orbital states (a,)?; (b,)?; and (4;)?% so that
these appear as singlets only. The remainder of
the orbital states may appear either as singlets or
as triplets. Apart from these considerations, the
development follows that of the nonequivalent
electrons. A possible final state would be written
pz(bl)z(‘Al)Al- . .

e have selected here a particularly simple case
in that there is no orbital degeneracy present in
the reduction of D, for a p electron. The require-
ments of the Pauli principle are then particularly
easy to satisfy. pr the reduction yields a two-
dimensional rep, or remains three dimensional,
the development must be followed more carefully.
We introduce the procedure by considering, in the
concepts of the present work, the familiar opera-
tion of the Pauli principle in labeling the levels of
the configuration p? itself. We imagine a uniform
magnetic field such that the resulting perturba-
tion in the Hamiltonian, —M-B, has the sym-
metry C.» The degeneracy of each p electron
is lifted, and we have (table 9) the states @, €1y
and ¢_;, for each electron. Because of the Pauli




principle, the state (¢),)*C, occurs with anti-
parallel spins only; i.e., a singlet state. We see
that ao state C,, for n greater than 2 arises.
We then irfer from table 9 that there exists a
singlet level L=2 in the configuration when the
magnetic field is removed. Similarly, we deduce
a triplet L==1 and a singlet L=0.

A similar process can be used if the crystal field
leaves degeneracy in the 1-electron wave functions.
The differences are two: first, it is generally more
convenient to remove the degeneracy by the
imaginary application of an electrostatic potential
of a symmetry which is a subgroup of that actually
present; second, the correlation of states in this
additionally perturbed problem with those of the
primary perturbation is not unique, and several
alternatives must be considered.

Let us further consider p*, this time under the
symmetry C,,, where 1, reduces to ¢; and e. Our
problem really lies in the study of (¢)? since
(@1)(e) can yield either triplet or singlet, and
(a,)® is necessarily a singlet. Without the con-
siderations of the Pauli principle, (¢)? yields A,
A,, B, and B,, both triplet and singlet, and the
Pauli principle will suppress certain of these terms.
Since (e), including spin, represents 4 states, we

4—é3=6 states altogether. Let us reduce

the symmetry to C,,; (¢) becomes b,4b,, and the
allowed orbital states are (5,)%; (b,)%; and (b,)(b,).
The first two are both A, and necessarily singlet,
while the third is A,, either singlet or triplet, so
we have our total of six states. If we examine
table 10 for the relations between these states of
C;, and states of C,,, we see that A4, in the former
implies either A, or B, in the latter. Since we
have A, twice in C,, and cannot have either A4, or
B, more than once from (¢)? in C,,, we conclude
that both are present in C,, as singlet terms.
However, the singlet, or the triplet, A, implies
either A, or B,, and we cannot decide which is the
correct choice. If we reduce the symmetry to C,
instead of C,,, (¢) reduces to (¢;) and {c;), yielding
singlets (¢;)* and (¢;)?, and singlet and triplet
(¢1)(ca). The first two give B states, while the
third gives A states. Examination of table 10
shows that B in C, implies either B, or B; in C,,.
Again, since we have two of the former, and are
allowed at most one of each of the latter, we
conclude the presence of singlet B, and singlet B,,
together with the singlet A4, previously deduced.
The triplet state . C,, implies either A4; or B, in
Ci», while the trigles state in C, implies either A,
or 4;.  Obviously, the only choice consistent with
both is the triplet A,. V\ye have, thus, '4,; 34,;
'B; and 'B;, The balance of the problem then
follows previous discussion. In general, each
problem must be considered as an individual case.

expect

4.2. Kramers Degeneracy

There is one very important symmetry oper-
ation, in addition to spatial rotations and the
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inversion, which should be considered at this
time. This is the symmetry of ‘“‘time-reversal”.
This was initially considered by Kramers (1929,
1930) in connection with the rotation of the
plane of polarization of polarized light. The
matter has been thoroughly considered by Wigner
(1932) in the nonrelativistic case in which we are
here interested, and more recently by Klein (1952).
We shall outline here the principal concepts in-
volved, referring the reader to the original papers
for additional details.

Classically, the reversal of time in a mechanical
system is accomplished by the reversal of the
direction of all velocities (or momenta) by the
substitution r'=r, p’=—p. Quantum mechan-
ically, we assume that this is also time reversal, if
a similar substitution 8'= —8 is made for any spin
angular momantum involved. In the case of a
free atom, the Hamiltonian H(r, p, 8) involves
p and s in kinetic energy terms with p? and
spin-orbit interaction terms with p-s, both of which
are invariant under the time-reversal operation.
This invariance of the Hamiltonian remains under
the influence of external perturbations of a purely
electrostatic character, in which case the vector
potential A may be set equal to zero and the
scalar potential V(r) introduced. This invariance
is destroyed by the application of magnetic fields—
a term p-A arises in the Hamiltonian, which is
linear in p and changes sign on time reversal.

In general, then, we shall seek an operator
K such that KH(r,p,s)K'=H(r,-p,-s), and K¥
(r,8,t)=¥(r,-s,-t). Since the operator K repre-
sents a transformation of our wave functions, we

shall require it to be a unitary operator. If we
{Et

consider the spin-free theory,with ¥(r,f)=y(r)e ¥,
we see that the operation t— —¢ is accomplished
merely by taking the com;ilex conjugate, an opera-
tion we shall call K,. Insofar as the spin-free
theory is concerned, this is sufficient ; the p operator
— kW becomes—p= +ifiv upon taking the complex
conjugate. Let us now consider the Pauli spin
theory for one electron. The Pauli spin matrices

0 1 <0 —i) (1 0)

8,= 8,= 8,=
<l 0) ) 0 0 —1

are both unitary and Hermitian. The trans-
formation Kg8,K,"'=—s8, since 8, is purely
imaginary, but 8, and 8,, both real, are invariant
under K,. Hence, in order to effect the reversal
of s, and 8,, we seek yet another operator, which
must also be a unitary operator U, such that it
commutes with r, p, 8, and K,, but anticommutes
with 8, and 8, so that U 8, U'=—s, and simi-
larly for s,. This latter requirement is met by s,
itself, or by some product of s, with a complex
number @ of modulus 1. To ensure commutation
with K,, the product as, must be real, which
follows if a=1, so that U=i8, and K=Kgs,.
Note that the operator U is still unitary but no




longer Hermitian. For n electrons,

U=()*(8,)1(8y)2(8,)s .

Physically, it is clear that time reversal and any
rotation-inversion operation commute. Mathe-
matically, the inclusion of the operator K in an
extended ﬁroup. of the form D, X IXK cannot be
accomplished since K is not a linear operator.
The basic rules for the operator K were given by
Wigner as:

1. Ky =UKUKy=U=(—1)", since U is

real, K1=1, and 83=1.

2. K (¥ +b¢)=a*Ky+b*Ke. This shows the
nonlinearity of K.

3. (.¥)=(Ko¥,Kop)= (UK, UKo9)= (Ky,K9).

Applying (3) and (1), we have (Ky¥)=(Ky,
KRy)=(y, KN)= (2 )"(Rgp). We sco thas
the Hermitian scalar product must be zero if n
is odd, or that ¢ and £¢ are then orthogonal and
hence linearly indeEendent, yet have the same
energy if KH=HK. This is the content of
Kramers Theorem as usually stated, namely,
that every level for an odd-electron system is at
least twofold degenerate under the influence of
external perturbations of a purely electrostatic
character. We must examine further the inclu-
sion of the operator K into our previous con-
siderations on group representations.

We shall consider the following three cases
(Frobenius and Schur, 1906; Wigner 1932):

1. The rep R is real, or may be put into some
equivalent form which is wholly reaﬁ This refers
to the elements R of the rep not merely the traces.

2. B cannot be made real, and R* is not
equivalent to it.

31.e R cannot be made real, but B* is equivalent
to &v.

For the finite groups a calculation of % ; x(R?) will

yield 1, 0, or —1 in cases (1), (2), or (3), respec-
mw;lﬁv. Case (1) occurs for integral J in D, and
in its subgroups save those one-dimensional
reps where complex numbers appear explicitl
in the character table (table 8). ;i‘he only suc
specific reps of the double groups are S;,, S;, of
nSs and 8; of 4C;. Case (2) holds in those one-
dimensional reps where there are obviously com-
plex characters. The only two-dimensional reps
m this category are the pairs (2S1,:8%), (S
282), and_ (5),,8:) in the groups T, and i T.
Case (3) does not hold for any reps of the single
groups, but holds for all those of the double
groups not in (1) or (2).

In case (1) let us consider & group operation Q
such that Qy¥,=2Q,¥,and KQy,=QKy,=2Q,,Ky,,
so the function Ky will transform like ¢
under the operations of the group. Let us further
consider ¢,=v¢,+ Ky, and 2,=:(y,—Ky,). Clearly
¢ and Q, transform only among themselves under
the group operations. Furthermore, if there is an
even number of electrons, K¢,=Ky,+K¥y,=Ky,

S
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+v¥=¢, and Kﬂ¢=x'i\h—KiK'lq=—inq+Nu
=Q, so the two sets of functions ¢, and ©Q, are
not related by time reversal or otherwise, and any
degeneracy present is presumably only an acci-
dental degeneracy. Practically speaking, this
means that our set of wave functions may be
chosen to be real, and that in such a case time
reversal yields no connections among the set of
real functions that are not already present as a
result of the rotation-inversion symmetr&. If
there is an odd number of electrons, K¢,= Ky, —
v:# ¢, and we cannot so separate the ¢ and Q sets
of wave functions as we did above. Hence the
rep must appear twice, once for ¥ and once for
Ky orthogonal to it. The only actual such cases
are the reps S;,,S;, of Sy and 8; of C; and it may
be verified from table 9 for Ss that they do in fact
appear only an even number of times in any
reduction of a group of half-integral JJ.

In case (2)., Qv =2Q, ﬁ_yields KQy,=0QKy,
=Z¢5Ky,. Since therepk isnot equivalent to R,
¥ and Ky belong to different reps of the group and
hence are orthogonal (section 4.3), but have the
same energy. Hence a separation of a rep such
as E of C;, into C; and C; of C,; by an electrostatic
field does not imply & removal of the degeneracy.
It is complex conjugate reps such as these which
are usually grouped together into a single two-
dimensional rep by workers in the field of molec-
ular spectroscopy.

The equivalence of R and R * in case (3) requires
the existence of & unitary matrix S such that
SRS-!=R* or S*R*(8-1)*=R, s0 S*SRS-!(S~1)*
=R or S*SR=RS*S. We see that S*S
commutes with every R and hence must be a
multiple of the unit matrix, say cE, with ¢ of
absolute Za.lue 1. With S*S=c¢E, we have S*=
¢S~ '=¢(8)*, where S is the transposed matrix of
S. This is a consequence of the unitary property
of S. The conjugate of this relation is S=c*S,
and the transpose of this gives S=c*S, finally
giving S=c"‘£*)S, 80 (c*)*=1 or ¢c=+1. If
¢=+1, we have S with +1 along the minor
diagonal and zero elsewhere—in this case R=R*
and case (1) applies, so we take c=—1. Then S
will consist of alternate +1 and —1 along the
minor (nonprincipal) diagonal. Incidentally, this
requires that the dimensionality of S be even.

Let us gut S in the form such that +1 is in the
upper right corner, and let us label the rows and
columns of S and the R matrices by the numbers
7, 3—1,7—2, ... —j, where j is half-integral.

Then

Spe=(—1)"%8y- ¢ and (8" Na=(—1)"**"da(0).
The transformation SRS~ is then as follows:
(RS")¢o=?R¢z(S“)n=§Ru(—l)"”’ﬁn-o)

p— (_ 1 )’+°+1R¢(—D)




and
(SRS")u=¥(“1)"“:(—:)(—1)'““3&(-4)

= (=" R arca=(—1)""Broc-o-
This latter term must then also be (B*).4, since R

and R* are equivalent by the transformation S.
We now consider

WG=DZQGD¢O
and
KWa= QK\ba
=;Q*abx¢»=; (—1)7%Q oy -y K¥»
or

Q(_ 1 )“K¢¢=;Q(-a) (-b) (._ 1 )bK'l’b-

If we compare this with the transformation on
Y-, obtaining O¢_4=§Q(-¢)(_»¢_, we see that

(—1)°Ky, will transform like ¥_, under the group
operations, and that (—1)~°Ky_, will transform like
¥a.  The linear combination ¢,=y,+(—1)"°Ky¢_,
will transform in a similar fashion under the group
opera-tions. Further, we observe that

K¢a= K‘,’a+ (_‘ 1 )uKZ'p‘n_____ th,— (_' l)a‘l’—a
=—(—1)¥-a+(—1)°K¢g]=—(—1)%¢,

since our convention has “a’ half-integral, (—1)°
is purely imaginary and K¢ (—1)*=(—1)"%=
—(—1)% and K%,=—v¢,. The important point
is that the set of functions ¢,(a=j,5—1, . . . —J)
transform among themselves under the grm(lip
operations, and that the operator K merely yields
a wave function which, apart from a phase
factor, is already in the set. Similarly, if
Q=1i.— (—1)°Ky_,) the Q, will also transform
among themselves under the group operations and
time reversal, but will not involve the ¢,. Hence
we conclude that the introduction of time reversal
does not require any additional essential degen-
eracy in case (3).

For emphasis, we shall summarize the cases
where we find that the symmetry of time reversal
(with external electrostatic fields only) gives us
degeneracy beyond that expected from previous
considerations.

1. States belonging to complex conjugate reps
are degenerate. 'This is the case for bouti an ogd
or even number of electrons.

2. The reps Sy, Si. of Sy and S; of C;, arising
from odd-electron systems will always occur twice,
once for ¢ and once for its orthogonal but degen-
erate conjugate Ky.

Finally, let us consider

K=@@)"($,)(Sy)2 . . . (S)).K,
operating on a wave function consisting of 2*
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terms of the form

=) (E)5(S) . . . (S

Since

St (8) = (— 1)H~5it (— ), iS,1(8) = (— 1)+ (— )
and

Ky=f*® (— D7 50— 800(=S) . . . f.(—S.).

It will be noted that K will commute with L? S?
and J?, but not with L,, S, or J,. If 7(r) belongs
to the eigenvalue L and My, f*(r) will belong to
L, —M, if the usual phase factor (—1)M. is
surplied. Similarly, the original sl{)in terms,
belonging to S, M will belong to S,— M, with the

phase factor (—1) 2
K¢(L;ML’S)MS)
= (=M (—1)Ms(—1) 2y(L,— M,,S,— Ms).

+MS. Thus

The transformation from L M.S Ms to L,S,J,
M, is accomplished by the Clebsch-Gordan
coefficients (section 5.2), which have phase factors
such that

L s J \L+S-Ty L S T
Cip g =(—1) C-yy mg

In a state described by J,M;, we must also intro-
duce this factor, and we obtain finally

Ky(L,S,J,M;)
=(—1)Me(—1)Ms(—1) 2 (—1)**+S~7Y(L,S,J,— M)

n
S W(L,S,J,—M,).

The factor (—I)H_S-'_2 we shall neglect, but the

=(—1)7-Ms(—1)

term (—1)/-M; is of some importance, since we
shall be considering states which are a linear
combination of states with the same J and different
M,. There will be a physically significant shift
of relative phases among the components of such
states when passing to the time-reversed state.

4.3. Orthogonal States and Vanishing Matrix
Elements

Before proceeding to the consideration of
selection rules and polarization, we shall digress
here briefly to consider certain aspects of the
calculation of matrix elements of the form

f¢:x¢,df which will be required at this time,

deferring to the next section additional details.
Let us assume initially that X=1. Let ¢, and ¢,
belong to reps (1) and (2) respectively of the
appropriate symmetry group, so that any group




R

operation Q will yield W,:ZEQQ,/,(;) and
W»=$Q§,’N‘?, where Q) and Q@ are the same

if the two reps (1) and (2) are the same, otherwise
they are distinct. The operation Q on y}¥, then
gives >3 QF* QRVPYY=3] Qua¥ Py Tho
matrix with elements Qyq,  is called the direct prod-
uct of Q®* and QW, written Q®*X® TIf these
latter are of dimensionality », and n,, then the di-
rect product is a n;nXnme matrix. Obviously,
Q®*x® jg an element of a representation of the

group—its trace is § Qoe, b= (‘T_, QeE" (Zal QW),

the product of the traces of the two “factor”
matrices.

In general, Q®**® will be either & rep or a sum
of reps, in which latter case it may be reduced by
the methods of the preceding section. In either
case, wo obtain 3V Qu abPHU=3 QUYE +

TE d
; QUy® . . . where yP¢9, ete., are the com-
binations of y®*¢? appropriate to the reduced
representation. Our original integral then be-

comes 3 Q2 f¢(3>df+z Q® fwy dr . ..

d 7
The basic argument we shall use here is that our
integral, i.e., the matrix element, represents a
physically significant quantity and hence cannot

depend on the choice of any symmetrically equiva-
lent reference frame. Consequently, the terms

of the form > Q,,J;b‘?dr must either actually be

independent of Q or must vanish. If the rep (3)
is actually independent of Q, it is then in fact the
completely symmetric or identity rep of the group,
and we must ascertain the conditions under which
the rep is present in the representation Q®**®,

The identity rep has the character 41 for every
group operation, so the orthngonality theorem for

group characters tells us that 1 > Z;, Q1. 5a 18 the
g'Qo "

number of times the symmetric rep occurs in the
reduction. But we recall that % 2; Qoa. 2=
o

% (;QS’»)*) G2 Q®), and this latter expression is

merely the orthogonality theorem applied to the
characters of the reps (1) and (2), which is zero un-
less (1)=1(2). Hence we conclude the very
important result, that states belonging to different
reps of the appropriate symmetry group are
orthogonal.

The example just considered took X=1. If X
itself, either a function or operator, transforms as
a rep or sum of reps of the symmetry group, the
product Xy? must first be reduced. If this
reduction does not contain the rep (2), then the
integral must vanish.
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4.4. Selection Rules and Polarization

Selection rules and polarization rules are in-
timately connected, and we shall consider them
together. We shall consider in detail the effect
of an incident perturbing electromagnetic radia-
tion superimposed upon the static_electric and/or
magnetic field already present. In a region of
space not including the sources of the field, the
perturbing radiation is usually described by its
associated vector potential A, with the auxiliary
regluirement V:A=0, which will allow us to set the
scalar potential V=0. The fields E and B are

then given by E=—% bb—? and B=vXA. This

vector potential modifies the classical Hamiltonian

term for one electron, %n P’ to

A e Y1 (e fna_t ¢ 2).
2m (p c A) =om\P ¢ PA—C APt A

Neglecting the term in A? we obtain as the pertur-
bation term

' ®_ (. .
H'=—5"— (p-A+AP)
e
=—5me [APTAPF (p-A)l

Since p is, apart from a constant factor, the vector
operator V, the term (p-A) vanishes and our final

H’=—m—e~c A.p. This acts on each electron indi-

vidually, and the total perturbation requires that
this be added for all electrons in the aton}‘:. If a

_iEd
system is initially in a state ¥,=ye " the
robability C,C? that the system under the in-
Huence of the time-de}l)]endent perturbation H” will

at a later time be in the state ¥, is determined by

dc, i )
2 f VH" Y, dr

so we shall investigate this integral.

The components of A are functions of (z, ¥, 2, ¢).
We shall assume that the variation of A with ¢ is
harmonic. We shall not require explicitly the
harmonic factor ¢'** in the following development
and shall generally omit further reference to 1t; 1.e.,
A(z, y, 2, )=A(,y,2)e'**. For the wavelengths
of light in which we are interested, X is of the order
of 10~* cm. In comparison with the order of size
of the atom, 1078 cm, to a first a;g)roximstion the
variation of the components of A with (z, ¥, 2)
may frequently be neglected. We shall see that
this approximation may be inadequate for our

urposes, and we will improve this approximation
Ey developing the components of the vector po-




tential in a Taylor’s series about the origin. This
will yield

where the derivatives are evaluated at the origin.
Similar relations hold for 4, and A,. To this
approximation, H’ becomes

04,
oz ) °P=

H'=——2 3 [(A2P,+A‘3P~+A2p') +( z
(38 (3 e ()
) (32) () on

04, A,
+( ay ) yp3+ aaz ) zpl]'
The first three of these terms will involve matrix

elements of the components of p only, since A°
is a constant. The general quantum-mechanical

equations of motion allow f ¥ip¥.dr to be written
as ’—'h'l'—‘ (E\—E,) f ¥iry.dr. Note that our integral

now involves the time-independent wave func-
tions. Thus, these three terms can be written in
terms of the components of the vector r rather
than of p. Since er is the classical electric dipole,
transitions induced by these three terms are
called electric dipole transitions. Let us assume
temporarily that there is no external perturbation
apart from the radiation, so that J and parity
remain good quantum numbers. Let us consider
an initial state transforming as J,, J#=0. Each
of the vector components z, ¥, and z will transform
as I, (i.e., as the comporents of an odd state
J=1). Applying our previous considerations,

J
the character of therep J, is ZJ e™* for both proper

and improper rotations, while that for 1, is
(e7#+1+¢%) for proper rotations and (—1) times
this for 1m¥roper rotations. The product of the
characters for pure rotation yields

(e~ +1+¢) (ZJJ" euu)=_'(’$:“ P
+§’; euu_*.—éi—:l) e!M9,

and (—1) times this for the improper rotations.
It is_immediately clear that the direct product
1,XJ, yieds (J—1),+J+(J+1),, and (from
section 4.3) our final state arising from the
transition must be one of these. This is equiva-
lent to the well-known selection rule AJ=0, +1,
and a particular example of Laporte’s rules, where

even must combine with odd terms. If J=0,
1.X0~1,, and we obtain the restriction that
J=0 does not combine with J=90.

The other set of 9 terms in H’ does not itself
transform under a single rep of the rotation group,
and must be separated into terms, each one of
which does 80 transform. The 9 terms consist of
the general products of the 3 components of the
vector r with those of the vector p. It is well
known that three linearly independent terms
arise from the vector product rXp, and a fourth
arises from the scalar product r-p, leaving five
terms, constituting the components of an irre-
ducible tensor of rank 2 (in contrast to the original
set of 9 components, which is also a tensor but
not irreducible). In the terminology of the pre-
ceding paragraph, we have 7,X1,=2,+1,40,. In
order to exhibit these more explicitly, let us

consider (bg;,) yp: + (9%) rp,, By adding

and subtracting (%‘;’) zp,+ %‘%) yp. the ex-

pression may be brought in to the form

1 (24, , 24, |
1 724, 04.
+'2' 2z by) (l’Pv“yP,)’

and a similar relation may be derived for the other
2 pairs of similar form. This process amounts to
finding the antisymmetric portion of the original
9 components, viewed as a 3X3 matrix. We
observe that the first factor of the second term is
the z component of v>XA=B and that the second
factor is the z component of r X p=L, so, including
the other 2 pairs of terms, we have a contribu-

i _¢ B. ' S ity ——
mon—zch L to H’. Since the quantity 2mcL

is the magnetic moment operator, transitions
arising from these terms are called magnetic
dipole transitions. The components of (a
pseudovector) transform as 1, in contrast to the
electric dipole’s 1,, sc here even states combine
with even, or odd with odd. We may note at
this point that we have not yet included any
terms in our radiative perturbation representing
the interaction of the radiation with the spin
of the electron. This may be accomplished at
this point (in a more or less ad hoc manner)

by using —ﬁw- (L+2S) as the interaction with

the magnetic part of the incident radiation, though
this will not change the transformation properties
of the term, since spin is also an angular momen-
tum operator with the transformation 1,. It will
be recalled from section 3.2 that the transforma-
tion (3.6) is equivalent to a rotation among the
components of the spin angular momentum



o

operator (then called R) and hence equivalent to

a transformation lik

a sIt.:te J=d1- e the thres components of
considering the other six linearly independent

terms, we again have recourse tg the pgeneml

quantum mechanical equations of motion. In

particular, we obtain

Jweprvar=i2 £ [aear

and
Juen vt~ BB [nmar

If we further simplify the notation by writing
A, for (%) and A, for (%+—%—‘:'-) our re-

maining perturbation can be written in terms of
the matrix elements of

(Ae2+ Ay’ + A2+ Anzy+ Aszz+ Ayy2).

In lieu of 2%, y*, and 22, let us consider the linearly
independent combinations

rs=z:+y:+ 2
B=2z2—gp1—y
p!=zl_yi

with the inverse relations
=} P +ir—} 2
y=1r—} Z—} o
=} ZH}

Substituting, we have as our perturbation the
matrix elements of

r’(iA:z‘}' ‘}An+ }Au) +Zz(*Au— iAn"‘ *An)
+ P’(;Azs"' iAn) +A:yzy +A.xz +Anyz-

Of these six terms, that in 2 is the 0, term, in-
variant under rotation and inversion, and here
actually zero, since A.,.+A,,+A4,=div A=0.
Notice that the terms Z2, zy, etc., are, apart fro
normalization factors, the tesseral harmonics of
degee 2 (table 2).

he remaining five terms are the components
of the quadrupole moment, and transitions aris-
ing from them are called electric quadrupole
transitions. The general selection rule is here
given by a consideration of the £, transformation
properties of the quadrupole moment. If J>2,
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2, XJy=(J+2),+ (I +1),+-J,+ (I —1),+ (J—2),,
80 the general selection rule is AJ=+2, +1, 0.
I J=1, 2,X1,=8,+2,+1,, 8o J=1 does not
combine with J=0. Likewise, 2,X0,=2,, 80
J=0 does not combine with J=0 or J=1.

We have up to this point considered that the
symmetry present was that of the full three-di-
mensional rotation-inversion group. If this is not
the case, the 3 electric dipole components, the 3
magnetic dipole components, and the 5 electric
quadrupole components will belong to different
reps of the symmetry group. These may be de-
termined from table 9 for 1,, 1,, and 2,, respec-
tively, and the detailed correlation may in most
cases be obtained from table 10. The use of
table 10 after an initial application of table 9 for
the group D_, (for noncubic fields) is perhaps
most convenient. The reduction to D, will
separate both 1, and 1, into one 1-dimensional rep
and one 2-dimensional rep, while 2, yields one
1-dimensional rep and two 2-dimensional reps.
These may be followed to lower symmetries with
table 10. Details may be obtained from table 8.
For example, L, belonging to I,, yields, in D_a,L,
belonging to Aj,, while L, and L, both belong to
E,,. Upon reduch% the symmetry to C,,, L, now
becomes A; while L, and L, now both belong to
E. If we consider the reduction from D, to
C.», we see that E,, splits into C, and C.,,. How-
ever, these do not represent the transformation of
either L, or L,, but of L,+iL, and L,—:L,, re-
spectively. In this case, and also for the sub-
groups of C.,, we shall consider these latter, along
with L,, as the three linearly independent com-
ponents, each of which involves only one rep of
the s etry group. Similarly, we shall resolve
the electric dipole term r into z, ¥, and z for most
groups, using z+1y, z—14y, and z for thesubgroups
of C.a, and the electric quadrupole components
into Z? z2,yz, p?, 2y, or, alternatively, Z2, z(z-+1y),
2(z—1y), (@+1y)?, and (z—1y)®. These resolutions
are presented in table 12,

As usual, there are two possibilities for the
cubic groups, one in which the z-axis is an even-fold
axis and one in which it is an odd-fold axis. This
makes a difference only for the quadrupole com-
ponents, since the electric and magnetic dipole
components remain indistinguishable under these
symmetries. If we consider the z-axis to be an
even-fold axis, i.e., G, for O and O,, S, for T,, C;
for T, and T, the five real quadrupole components
remain a satisfactory basis for the resolution in all
cases except for two components in T, and T,
where we require the normalized components

1 . 1 .
E[Q’HG] and El@—%@l

transforming as C,, and C, resﬁect.ively.

If we take the z-axis to be the G, axis in these
cages, we find that these quadrupole components,
the harmonics of degree 2, do not serve as
& basis for the reduction of the £, representation
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TaBLE 12. Multipole moment iransformations

z y s Ls L, L, pAS zs s ra zy

D, E, E. 4 E, E, A A E, E, E; E;
& BB (& (BB (44 (BB B (B
O T, T T T, T T E T, T; E T:
T, Tl. - T: . Tl’l T:a TI‘I l: El :l l’l U 2:
Ta T, T T, T T, T O] T T ® T
D E. |B. |4 |E, |E, |4 |4, |EBE, |BE, |B |E.
Dia E, E, A E E A y: | E E B B
Cas E, E A& | E E 4, | E Ef Y | B
D,‘ El E' ;’ El' EII ; : El’ Ell EI EI
Dsq E- E, AI- El El 2z All El El Eu El
Did E E B’ E E Az A1 E E Bl Bz
Cus E E A E E A, 4, E E B, B,
CD:: ghs gl- ﬁ:s g’. gl( ﬁ:( ﬁ;‘ Bl' gzg Au At:
ch B] B’ Al B’ Bl A’ Al B; Bz Al Az
Cax B. B, A, B, B, A, A, B, B, 4, 4,
C. AI AI All A’I AII Al AI AII AII Al AI

z+1y z—1y z L,+iL,|L,—iL, L, Z? (x+iy)z) @—iyz| x+iy? | @—1y)?
Coon Clu C—ln A- Cl; C—l' A, A, Cl, C—:, Cz, C—?l
cﬁl Cln C.'.n Au C 0 A A C C ('g C
i < - I W A I S I M I ¥ . |G .| B
o H s A" i ; A A’ cr " C; Ci
S. Clu C!- A L] Cl" C: ] A 'y A 3 Cll I C; rs Cz’ I3 C]‘l
sd C] Cg B Cs Cl A A Ca Cl B B

s See text.

of the quadrupole interaction. For example, the
reduction of 2, under O, yields the following as a

basis:
E: [—1/36 C}+‘/§§Q] ; [—‘?s;-p?s;]

n[Savfa] [Fs S]]

While this, of course, yields the same polarization
results in the physical sense, the trigonal aspect
will not be considered further due to its formal
mathematical comJ)lexities.

. Because of the different transformation proper-
ties of these components, they will most generally
permit transitions between different states of the
perturbedion. The nonvanishing matrix elements
may be deduced blvl the procedures outlined above
(section 4.3). These are the selection rules
which are applicable in a case of definite symmetry.

ermore, the relative amount of any particular
component of the multipole interaction present

will depend upon the vector potential, and in
particular, upon the direction of propagation and
state of polarization of the incident radiation. A
detailed examination of this latter feature leads
to the polarization rules for absorption of radiation.

The selection rules for most of the groups in
which we shall be interested (omitting only the
very simplest) are given in table 13. For each
rep in the left column, the states to which a
particular componeut of the multipole interaction
will permit transitions is shown in the column
under that multipole component. Generally, the
table parallels table 8, in that closely related
groups are shown with but minor modifications
on the same table. Results for pure rotation
may be obtained by dropping the “g”’—*“u’’ dis-
tinction in the tables. In a few cases, the changes
in notation and convention are sufficiently far-
reaching to require a separate table. It is
particularly interesting to note the table for
C.a, appropriate to 8 uniform magnetic field. If
we denote the general rep by Cy, (Co=4), we
see that electric dipole transitions have AM=0,
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TaBLE 13. Selection rules

Dooa x,y L, Lg,Ly,xz,ys Z3 xy
A, Aze E,, Ay E, 4, E;
Al: Ah 1g A!: El: Al: 2:
A, 4, E\, Ay E, A E,
A5 A » A Ei. Are Ea
El El E’IAIHA,U El Ez Al Az E1 El E3
El: El: EHAHAH El: ‘: l: 3: El: l: :
E‘.’ Eflu ESUEI- E‘l Es E E E Ax Az
B B,y 3eEre E. s Ere Er Fo
E& Elu ECUERU Ea E E, E; E; E;
E.’i: E;, 4y Ea: ::E:: E:: E::Eln:
(Pattern repeats for higher states)
2S1¢ 281 1S1u 2834 281, 281¢ 283, 21 253, 2S5,
Wiw Wl Wig 203 1w W1y 203w Wlu 203u 2S£u
ISJl IS.'!- 2Slu 2S5- ISI!( »91. 2S51 2S3( 2Sl' 2S7l
2834 3¢ 181 285, 2534 281 2S5 2834 2814 2870
255, 2S5u 2834 2514 P 283, 257, 295, 281y 250,
2058 :Ss. 2S!z 2S7c 205w 253.. 2S1u 2S5u 201w 2'Su
(Pattern repeats for higher states)
For Cy,, delete “‘g”’ and “u”’ and read the upper left corner as: Ce, z
Al Al
A, A,
Der z r.y L, L, L,z2,yz zt o%,zy
A Az, E,, Ay E, A,y E,
A A:, E;, 4re v v e
A:, Ax- E, Al. El' Au Eh
Az, A4, E,, A, E. 2u E,,
Bu B!u Ezu B2| E?' Bu El-
Bl- Bh Ezl Bﬂu 2u 1u 1s
Bu BI- Eﬂu Bl‘ Ez. BZ( Elz
B’I Bll Eﬂl Blu - B!u Elu
E,, E:. Ay B, E, A1 Az Es, E,, B, By, Ey,
El- Ell 12412g42¢ Elu lufl2y tu 1u2ulsly
En En BluBzuEl- EH BlngzEu Ez. A"A"Ez,
Ez. Eh 1gD2g841¢ Ez- Blu Fuls1u Ezu luéilln
Dx D%- ;S;.,D;;,, D%: 284 Dy Dy 2814 2S'n
D}i: DK' 20158784 ¢ DK- 2 1: x: K: Wiy 202y
28 2S1u 382uDigu ) 282, Dy Sy 2824Dy4
zsl: 281y 524Dy 251: 2S2u x: 281: 2 2: x:
I I 214 2834 PR 2814 252 2Ss 281,Dy
2S1e 282, 2514 3824 3824 2S1u 2510 2S1u 2S1uDsgu
For G, drop “g”’—“u”’ and amend upper left corner to read: C,, z
A.] Al
As A,
Bl Bl
B, B,
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TaBLe 13, Selection rules—Continued

Dia s z,y L, Le,L,,z8,y8 yAS rd Ty
yd i 5 ynill e B | B
Ao A4 | E ae | E i B | By
B B | E B | E A B e
BB B B | B i v
BB |4t | B |05 B BB
o Il v o S By o o R
O B T B S S

For Cy,: Drop “g”’ and “«”’ and read s in Z? column.
For Dz4: Drop “g” and “u” and read z in zy column,

Disa z I,yyﬂzﬂy L, L,,L,_zz,yz z
4 4 O E 4 E" 4
Aa 4y E A, E" A;
Ay A E" Ay E’ 4y
Ay A, E" Ay E’ Ay
E' E" A;A;EI E A;'A;'En E
Eu E’ A;'A;'En EIH A;A;E' ‘ll
DK 1‘82 ZSI ISI D}‘ D 2S| D;‘
5 S | DS, S | 28 D S
182 Dy Dy; 28, 282 281 283 A

+1, with change in parity, magnetic dipole ry,=sin 6 cos ¢i+sin @ sin ¢j+cos gk

transitions have AM=0, +1, with no change in

arity, while electric quadrupole transitions have or, . .
gM=y(’), +1, +2, with no change in parity. 90=6—;=COS 8 cos ¢i+cos 0 sin ¢j—sin 6k
In order to examine in detail the polarization
effects, let us consider a set of orthogonal unit o= 1 959=—sin ¢i+cos ¢}
vectors in spherical coordinates, "sin 6 O¢
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TasLE 13. Selection rules—Continued

¥ 3
Dy L4 Y L, Z‘s’t v YA
z8,y8
Ay, A, E, Az, E, 4,
in Au El Al- Eu AI-
Au Au E- Au El AM
) is E‘ Al. E. Ag.
E E, A, A, E, | E A A E E
E: Ec Ail :l s E: :: 1: : E:
S Sie Dy S D S
w s | Dba S| D Sie
Sy 8. Dy S Dy S
a: 1e Dy, Sie Dx: Se
Dy, Dy, S1u 83w Dysu | Dyse S1¢ B3¢ Dy, | Dy
- Dm 3g Li3e D}{- 1w D3u L35e D}i-

For C3,: Drop “g” and “u” and read z in Z* column.

Dsy z z Y L,zy L,yz L,xz 22 p?
Au A!u Bﬂ- Blu An le Bll Alz
Al‘ 2z Bﬁ. Bl] Aiu B?u Blt Alu
Az, Alu Blu B!u Al( Bll Bll A!l
A?u Al' Bl( Bz. Alu Iw 2u Aha
Bu Bzu A2I Alu Bz. A!l Alc Bll
Blu Bh Ah A“ B!- E i 1w Blu
le Blu Alu Azu Bll All Ah Bh
Bz- lg A An Blu Alu Ah B'.'u
Dy, Dy Dy Dy. Dy, Dy, Dy, Dy,
Dy. Dy, Dy, Dy, Dy. Dy [, Dy
................. y L z,L, Lyzy ||} 2220

yz 2
C;,: Omit “g”"—*“u”” and read bottom of column.
(z+1y)2 (z—1iy)z
Ss z+iy z—1iy z L+ 1L, L,—1iL, L7
(z—iy)? | (@+iy)?

A, Ci. Cre A, Ciy Cye A,

Ay Ci, Ci, 4, Ciu (& 4,

Cl CZu A- Clu Ct A Cl

Cl: 2z Al Cu z: A: Cl:

C’. Au Clu Cﬂ- Al Cll CII

C?u Al Cll CM Au Clu CZu

S S] Sbn S]y 83 SS Sl

S | Sa | S e See Sie

S SGI Slu S’I Sl Sl S3

S:: L1 Sll Sh 5: Sl: Ss:

Ss Siu Ssu Ss 8, Sy Sy

S P S v Sy Ssu
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TaBLe 13. Selection rules—Continued
Con siy | z—iy 2 Lo+iL, L,—iL, L2 (@+ipt z—iy)?
(z+1y)z (x—iy)z
4 Ci Coiu A C C- A C. C-
A Cis oo 4, Cun o al Con o
C Ca 4, Ciu C. 4 C C C.
o i 4, . o a. Cre Cae i
-1z A - C—lu -lu A. C—z. C—], Cl‘ C_;'
C—]g A. C-z. C—u Au —3s —lw Clu C—!u
C, Csy Cru Cyy Cs C, C, C 1
C:: C:: C:( C:l CS: ll: C:: C:: .{4:
—2¢ C—ln —3u ‘=2 —lg —~3z C—l: 4 € (‘—u
—2u —1g -3¢ —2¢ —1u ~3u ~2w A, Cta
C Cyu Ciu Csu C, C. C; C, C
Cie Cir Che Ce Ciu . Che Che o
C—S' C—iu —4% —3u C—z. C—a. C_s. —1g (’_5.
C_s ~2g —te -3¢ ~1¢ —4g 3 —1u —tu
(Pattern for higher Cu ., repeats)
S S;,‘ S— u S * Ss S— S S S—
Sia See i S See e Sie Sen S
S-1e ™ —3u —tu e —3¢ S_ie 83, —5e
-3 u tg -3 —1g 1u S—Su S—lu S:lu ~5u
Sie Ssu Siu Sz Sse Sie Sse Sze S,
Sa- Ss; Su 331 Su 1w S;.. Stu S—u.
—3z —lw —5u —~3u —~1e -5z —3g Otg -7
1 —1g —-8g -3 —1u —5u —3u lu -
Sh S’lu S.’!n Sh Sh SS: S51 Sh Sll
Sﬁ- S?. SS: Sh 7w Ss- Ssu Ss- S\u
~5g —3u ~Tu —~5u ~3g ~T¢ S~51 S—ll S—En
—3u -3¢ ~7x -5g —3u —Tu —5u ~-lu -9y
(Pattern for higher S.,,.. repeats)
Caa z z+1iy r—1y L, 73 L 4L, L,—iL, (x+1iy2 (x—1y)?
(x+1iypz (x—iy)z
A, Au Cl- Cﬁs Al Cll C-'u C‘-’l CM
A, A, Cy, Cse 4, Ciu Csu Cyu Cy
C Ci. Cay A, C C. A B C;
Cie o Cre A; Cun ii AL B. Cie
Cz. Czs Bu Clu sz z Clu C‘x Al
Cz. C!g B( Clz Cz- Bu Clu Ciu A -
B, B, Ciu Cau B, Cy, Cyy Cse Che
BI Bl CM C?l Bu fu CZ- Cs- Chr
C Ciy Csu B. C, C; B A C,
Cun Cir Cee B, Cin Cre B, A Cin
C&. C-'m Au Clu CA( 1 Cll Cll Bl
CE- 051 Al Ci( C.'m - C(u Chl Bn
S Siu Siu Siiw 8 S S Ss S,
Sie Sis Sux Sus Sin e S Sea Sex
an 'Sh Sh Slu Sh 3g Sll Sn Slll
Ssu 83, Sse Sie Siu 5w Siu Sz ™
S Ssu S1e Sse S 8. S S, S,
She Sie Si See She - Sen See Sie
S7l S'lu Sﬂu Sbu S7. 9z SS: Slll S3l
S7u S24 Soe Sse Sre 0% Ssu Situ Sz
3 Sy S, Sze 8 S S S S
So: Soe Sx:: S;. S:: ::: S:: S:: ::
e s 1w Y% Sll' 1g Sh S:u e
e g 1g e it ™ Sou 1w 7w




TaBLE 13. Selection rules—Continued

P e TV

Cia z z+iy z—iy L, 72 Lz+iL, L,—iL, (x—1y)?
(z+iy)z (x—iy)z Wz +1iy)?
Al Au Cl- C.’iu A. (V“ .'3‘ B,
Au A: Cll ‘33 u Clu du B.
('ll Clu B- Au ('ll Bl Al C3l
'l- Clt Bl Al ('lu B. Au ‘Ju
B; Bu C}- Clu Ba C3l CIJ Al
Bu B; 3z ‘Vl‘ Bu '3- -‘lu Au
CM C:hn Au B- Cx. A. B, C“
C)u 38 A z B, n 4 - Bu 'lu
Sll Slu S!u S7u Slx Sa: S?[ S.‘u
1w Su S:u S':" 1w S.’!- S7u Sbu
Sh Slu Sﬁ- Siu ‘S::u S5l Sll S‘ll
3u Sz. Sﬂ( 1z 3u (14 Slu Tw
Sh Sa- STu S3u Sh Sh SS: Sll
Su Su Sh g 5u Tu SS- Sl-
t Sre Sru St Ssu Sre Sy, Sse Sy
Sra Sie Sy, S;, Sz, Sty S Sy
(&+iy)? L.—iL, L.+il,
Sy z (x+iy) (&—1iy) L,7*
(x—1iy)? (—1iy)z (&+iy)z
A B Cy Cy A
Cy 3 B 4 Cy
B A C, Cy B
s ¢ 4 B s
S Ss Sy 7 S,
S S; Ss S, Sy
S§ S[ S1 S:{ S5
S; S3 b Ss 8
Caa z z+ iy z—1y L, 722 Lg+iLy, Lz—iL,
(@—iy)? | @+iy? @+iyz | @—ipz
'y A c; C; A’ cy ;'
A A’ Cy 2 A" C; Cz:
Cy 1 C; 4’ H C'; A
C:' ; 1 A ! C; A’
Cl 144 AI v’ ’ A[[ ”
vzl Cz A// CZ' CZI Al CE
' S S So S5 S 8, S
Sa So Su S1 S:; Ss Sl
S& Su Sl Sg Sa S7 Sz
S1 S] Ss Sn S7 So Sﬁ
So Sa S; Sl Sn Su S1
Sy 85 S: S Su A 8,
551664—61—5 61

[N




TasLe 13. Selsction rules—Continued

Qh z,y 2 LliLU thZ’
zs,y8 zy,0*
A B, A B A
A B, A, B: '™
B. A- B- Al Bl
B, 4, B, A, B,
Sl‘ Slu Sl- SS. Sl.
(1) San Sll S:ha Sl-
S![ Slu S&u Sl' SSI
t 1" Sl' SSI Slu SS-
Os r L AN zz,y2,2y
A, Tiu T E T,
4 | T Tis E. i
A Tou T, E T
an | T Toe E. »
E; T)u Th Tlt 7'23 Alz A?l El Tll T‘Zl
}u 1z 2g Tlu Tiu Alu AZu Eu ,l'lu Tln
Tl, Alu EuTlu T&u Al: El Tl. Tu Tl' T‘.’x A?l El Tl: TZ:
TI- All El 1y T?.l Alu Eu Tlu TZM lu £2u ‘4‘“‘ :u tu 42u
Tz. Azs E- Tlu Tz- Az: E: Tl. Tz. Tl‘ ng Al: El Tll 7‘21
Tre Ay By Ty Tog | Asw EuThu Tou | T T AL E, T\ T,y
Dy Dy, Dypu Dy, Dspay Dyp 28, Dy,
D}s: Dy Dspae Dy. Dypy 3/2: 2Su 3/2:
28, 28y Dyse 28, Dy, Dy, Dy, Dyp,
1S, 28, Dy, 38y Dipy 32 Dysu Dy
Dy, 23w Digu Dsppu | 284 Dige Duppe | 268¢ Dsge Dipe | 28¢ Dyge Dipee
3129 98¢ Dige Dippy | 28w Digu Dappa | 88w Dygu Dsppu | 284 Dygu Dy

and the inverse relations

i=sin 8 cos ¢r,+cos § cos ¢0,—sin ¢,
J=sin 0 sin ¢r,+cos 6 sin @8, cos P,

k=008 Gro—sin 000.

Let us further consider A as a plane polarized
wave, incident toward the origin along the vector
1o {1, points to the source of A}, and having com-
ponents along 6, and ¢, perpendicular to the
direction of propagation.

A= (4 cos ¥0,+ A sin Y¢,) exp 1(o]r-ro)+wt).
In the terminology of the Euler angles of section

3.2, the plane polarized light is incident along the ¢
axis with A parallel to the § axis. At the origin,

A’ may be resolved into components as follows:

Al=Ae'“*(cos ¢ cos 0 cos ¢—sin ¢ sin ¢)
AY=.Ae'“*(cos ¥ cos 8 sin ¢+sin ¢ cos ¢)
AY=Aet“(—cos ¢ sin 6).
The vector A changes in space only along the
direction rof and hence a variation along the z-axis,

for example, will change A according to the
component of the variation along r,.

PA_ 2A dlrry
bz_b[r-ro] ox

ormally,

Letting

oA

A A"
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TasLE 13. Selection rules—Continued

Ta r L Z3+ip2| Z3—ip?
z2,Y8,2Y
A Te T, C N
Al T, T, Ce | Cou
C, T, T, C. A
C, T T A C
Cie T, 7! A, |on
T ACC Ty A,C,C,, T, | T T
T, acciCir|alciaiTi| T | T
Dy, Dyy 38143820 | Dyge 281, 382, | 381, 282,
DK- Yog 2015 202 gu 1901w 202y 151 P
18y, Dy 1814 2820 | Digg 2814 282, | 253, Dy,
I ¢ 3914 2524 15w 2514 3820 | 2524 Dy
2‘32. D}{- !Sl- 1’5'1' DK‘ ’El( 2SIl DKI 2Sll
!Sﬁu e 101 W2 Yu iy 302y D)‘- ZSI-
T‘ r L Z’,p’
22,2,z
Al Tl Tl E
A T T, E
E Tl Tz Tl T2 Al Ai E
T A;ET T, AVET, T, T, T,
T, AMAETT, A;ET\ T, T,
Dy 1S D Dy, Dy D32
S Dy Dy 1S Dy Dypy
Dsp Dy 1S Dy Dy oS Diyps Dy 3S Dy
we have
oA 0A OA
>z =A’(i-1)> '5;=A' (§-xo) b_z=A’ (k-ro)-

Obviously, the resolution of A’ into components
to that of A, so we obtain the following

is parall

9 terms involving the derivatives of A:

0A,
oz

04,

4,

=A’ (cos ¢ cos 8 cos p—sin ¥ sin ¢) (sin 8 cos ¢)

=A’ (cos ¥ cos 8 cos ¢—sin ¥ sin ¢) (sin 6 sin ¢)

—b—z—=A’ (cos ¥ cos 8 cos $—sin ¥ sin ¢) (cos 6)

%%'=A' (cos ¥ cos 8 sin ¢-+-sin ¢ cos ¢) (sin 6 cos ¢)

e

63

%’=A’ (cos ¥ cos @ sin ¢+sin ¢ cos ¢) (sin 4 sin ¢)

o4,
oz

=A’ (cos ¥ cos 0 sin ¢}sin ¥ cos ¢) (cos 6)

%:A' (—cos ¢ sin 6) (sin 6 cos ¢)

%‘;;'=A’ (—cos ¢ sin 6) (sin 6 sin ¢)

QA,
oz

=A’ (—cos ¢ sin §) (cos 6).

These may now be combined as previously defined
(page 55) to yield

A,,=-;—A’ (cos ¢ sin 26 cos? ¢—sin ¢ sin 8 sin 2¢)
A,,,=%A' (cos ¥ sin 26 sin? ¢+sin ¢ sin 4 sin 2¢)
A’ (—cos ¢ sin 29)

A,,=% A’ (cos ¥ sin 20 sin 2¢- 2 sin ¢ sin 6 cos 2¢)

A=A’ (cos ¥ cos 28 cos ¢—sin ¢ cos 0 sin ¢)

A=A’ (cos ¥ cos 20 sin ¢+-sin ¥ cos @ cos ¢)
B,—— A’ (cos ¢ sin ¢-+sin ¢ cos 8 cos ¢)
B,=A’ (cos ¥ cos ¢—sin ¢ cos § sin ¢)
B,=A’ (sin ¢ sin 0).

We may note that A4,,+A,,+4,, is in fact zero,
and that the angular factors for the components of
B are the same as those for A with a rotation of 90°
in ¢, showing the mutual perpendicularity of B and
A. In order to obtain our final five quadrupole
components, there is a question of normalization
which must be considered. Strictly speaking, the
appropriate “base vectors” for the quadrupole
components are the normalized tesseral har-
monics of table 2 for N==2. Since we shall be
interested in relative intensities, we may omit a
common factor, which we shall here choose to be

‘/—E- With the omission of this factor, zy, 22, and

x
yz will still be the proper basis, but for the other 2,
where we have heretofore used z*—3* and 222




-y

—r*—1?%, we must now include factors of l, and ;1—*
2 203
respectively, so the balance of the term with these
two bases will become multiplied by the reciprocals
of these factors. We shall continue to denote
these two renormalized bases as p? and 72.
Finally, we must consider the resolution of the
multipole interactions into the (complex) base
vectors appropriate to the group C_, aud its sub-
groups with complex reps. The terms in z, L.,
and Z? will be unaffected by this change. In lieu

i . 1 .
of z and ¥, we shall use -5 (r-7y) and —»-)(z-—w),
/2 V2
for L, and L, a similar combination, and for p* and
. 1 3 s . .
Ty, —ls (p*+1xy) and = (p°—ixy). This requires

V2 V2
the use of the following linear combinations of
the previous terms:

5) )
A= (r—-iap) Ar=2 (anpiay
_.'\_3 0 __ ;20 0 ~L§ 0 1.4 20
B?}»— 2 (Bz )By) B—_‘ B (Br+ lBu)
44t+=}§— (‘41,'—"sz) A'{z-::\‘f' (‘1‘13—{‘14‘111:)
A2+=‘? (A,2—idy) ‘42_335- (A2Hidy).

These are all summarized in table 14,

Let us now consider some of the conclusions of
this analysis. We shall discuss in detail six cases.

1. Only one component of the eleven considered
is effective in producing the transition. In this
case, the rate of absorption will be proportional to
the Hermitian square of the matrix element, and
hence proportional to the Hermitian square of the
appropriate angular dependence factor of table 14.
Such a case is exemplified by the B,,— B, transition
in D,;, which are joined only by L,. The angular
dependence is thus (sin ¥ sin ).

2. Two components only of the eleven join the
states, these two belonging to a doubly degenerate
rep and consequently arising from the same type
of multipole interaction (e.g., in Dy, 4,, is joined
to B, by both xy and p?.. Then the total matrix
element will involve the sum of the two angular
factors for the two multipole components, and the
angular dependence willp be proportional to the
Hermitian square of the sum of these angular
factors.

3. Two components only join the states in-
volved, arising from different multipole interac-
tions (e.g., 4, of Cy, will join itself by either z or
Z*). The matrix element will then include the
sum of the angular factors fo: the two components,
but one will be multiplied by a factor “q” deter-
mined by the numerical ratio of the strength of

Tavre 11, Angular dependence of multipole components

1. Electric Dipole
Al=A(—cos ¢ sin
AZ=A(cus ¥ cos 8 cos p—sin ¢ sin @)
Ad=4 leos ¢ cos 8 8in ¢ +sin ¢ cos ¢)

A‘i:;i(—‘g) (cos § cos 8—i sin y)e-ié

V2 . .
;1'1=A(—§-) (cos @ cos 8- sin y)eie
2. Magnetic Dipole
Be=A'(sin ¢ sin g,
B,=A’(—cos ¢ sin ¢ —sin ¢ cos 8 cos ¢)
B,=A4"(e0s ¢ cos ¢—sin ¢ cos 8 sin ¢)

5
R*=A1’(1‘/z—: {—sin ¢ cos §—17 ens Yle—is
\"‘TZ . . .
ls’-=.»1’(-7) (—sin ¢ cos 841 cos e
3. Flectric Quadrupole
’ /~\
Ap=d <—‘—2~‘) (—cos ¢ sin 29)

Ar.=A(cos ¢ cos 20 cos ¢—sin ¢ cos 6 sin ¢)
A=A’ (cos ¥ cos 20 sin ¢+sin Y cos § cos ¢}

P>

Apt=1%1A"{cos ¢ sin 20 cos 2¢ —2 sin ¢ 8in 6 s8in 2¢)
Azy=}%A"(cos ¢ sin 20 sin 2¢-+2 sin ¢ 8in ¢ cos 2¢)
\2
A ;+=.A|’(l,)—"~\ teos Y cos 20— sin Y cos Bleve
~
W2 .. )
A ,..:—..l’(—;—) (Cos Y cos 204 7 sin Y eos B)et®

5
A«;+=.-1’(\_T“> (sus ¢ sin 20— 2/ sin ¢ <in gie~2e

N
A= "<}f> (cos ¢ sin 204-27 sin ¢ sin girefie

the two types of interaction, and is fixed by explicit
calculations and not by general symmetry consid-
erations. The angular variation will then be pro-
portional to the Hermitian square of this sum, and
will contain g and ¢2.  If one type of interaction
is very much stronger than the other, then ¢ will
be small and it may be neglected. In the present
problem of crystal spectra, this is not necessarily
the case, and ecach case must be examined in
detail.

4. Two components join the states in question,
arising from the same multipole interaction, but
the components belong to one-dimensional reps
(as distinguished from (2)). For example, in
Dy, As, 13 joined to itself by both 72 and .2
The details here are very similar to case (3). The
matrix element will include the sum of the angular
factors. However, in contrast to (1), the term 72
is not related by symmetry to p?% so one angular
factor will again be multiplied by a factor g,
expressing the relative strength of the interaction,
and the Hermitian square will again contain both
g and ¢°. Generally, one may only expect that ¢
will in this case be nearer 1 than in case (3).

5. Only one component joins the states, but
gnother component joins another pair of states,
both of which are respectively degenerate with
the first pair. This is a frequent situation in
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C.r and its subgroups. Here the transitions
proceed independently, and the total absorption
be proportional to the sum of the Hermitian
squares of the angular factors, rather than to the
ermitian square of the sum as in previous cases.
6. If the states are joined by three components,
all belonging to the same triply degenerate rep,
a8 is the case for both electric and magnetic
dipole transitions in the cubic groups, there are

no polarization effects.

‘We shall not discuss in detail more complicated
cases. In general, the angular dependence will
include factors expressing the relative strengths
of the transitions arising from different dipole
interactions, as well as from nondegenerate inter-
actions of the same order. In specific cases, these
relative strengths may be computed from the
methods of the following section.

5. Matrix Elements

5.1. The Reduced Matrix Element

We now turn our sattention to the procedure
alternate to that which has occupied our attention
in the preceding two sections, namely, the calcu-
lation of the matrix elements of the perturbing
potentials of the crystal field and their interpre-
tation. These potentials were discussed in detail
in section 2. We have already touched upon
certain general features of the problem in section
4.3—we must now examine this situation in
more detail, and also determine the simplifying
relationships which exist among the nonvanishing
elements.

So far in our discussion of the transformation
properties of the several wave functions belonging
to a degenerate rep of a group, we have emphasized
the equivalence of these several wave functions,
as well as the properties of the rep (notably the
character and class structure) which were invari-
ant under a unitary transformation. We shall
now depart from this procedure. We are now
interested in picking out a particular set of linearly
independent wave functions, in terms of which
sgecxﬁc matrices representing the operations of
the group may be written down. This is equiv-
alent to the introduction of a specific system of
base vectors in ordinary vector analysis.

Since we start with the wave functions of the
free ion, described by the quantum number J,
with 2J-+1 lnearly independent wave functions,
we select for our basis, functions distinguished by
the quantum number M (or M, will sornetimes be
used for clarity) where M=J, J—1, J—2, . . .
—J, and such that the matrix representing rota-
tions about the z-axis is diagonsal with elements
Me™*  'We have seen from the preceding section
that wave functions belonging to different reps
(here, with different J values) are orthogonal—we
see that these 2J-+1 functions themseives belong
to different reps of the group C,, and hence are
mutually orthogonal within a given .J. These
wave functions we can write as |aJM> (in the
notation of Dirac), where « represents all quantum
numbers other than J and M. To emphasize that
such a state is one component of a 2J+1 dimen-
sion rep of the rotation group, we may also write
in the form (aJ)|JM>. A different choice of
axes will leave the (scalar) portion of the function
unaltered, but will convert the normalized com-
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ponent of the rep |JM> into a combination of
the same J and different M.

For these calculations, it will be convenient to
use the complex potentials Y# (2.9) rather than
the real C* and S¥ (2.5) as our perturhation. We
note here that these perturbing potentials actually
act upon the space coordinates of the individual
electrons, so the total perturbation is a sum of
such over all electrons. Clearly, if these poten-
tials obey a certain transformation law in the
coordinates of one electron, their sum will similarly
transform when all the coordinates of all electrons
undergo the simultaneous transformations implied
by the quantum number J, or when only the
space coordinates of all electrons undergo the
simultaneous transformation implied by the quan-
tum number L. Our problem has therefore
become that of computing the sum of terms of
the form

<a'J'M'|rY¢| aJ M > (5.1)
We shall for the time being disregard the factor 7.

According to section 4.3, we know that the
matrix element will vanish unless J’ is one of the
values J’/ arising from the reduction of the product
DX Dy, namely, J+v, J+v—1, . . . |J—v|. Let
us expand the product Y¥laJM> into a sum of
terms

3 CRA Y )T "> 6.2)

where the C-coeflicients are the Wigner coeflicients
to be discussed further in section 5.2, the term
(Y,)|ee/) represents the portion of the product in-
variant under a rotation of the axes, and |J'' M’ >
represents the JM'’-th component of the
normalized rep D), of the rotation group. We
now know that the remaining term of (5.1),
LI M |=(a'J)<J'M'| is orthogonal to all
states except [J'AL" > l.e.,

<J’A‘[" J’ ’AI’,>=3JI1116MIMII (53)
so we obtain, from (5.2) and (5.3),
Lo M |\Yelad M>=Cili@ Y llad). (5.4)

In this expression, parity is included in the a,a’.
If » is even, a and o’ must be of the same parity;
if odd, of opposite parity.



The importance of this step is that we have
placed into the term C:i the dependence of
the matrix element on M, M’, and u, and the
“reduced matrix element” (a’J’||Y.,|ja]) contains
those portions of the interaction not dependent on
these quantum numbers. If the matrix element
is evaluated for one particular M, M’, and g, then
the reduced matrix element can be obtained, and
from it the matrix element for any other M, M’,
and u. This relation was initially given by Eckart
(1930) and again by Wigner (1931) and Racah
(1942a). There is some ‘g?vergence in the litera-
ture on normalization and phase factors for these
reduced matrix elements. e have here followed
Eckart, Wigner, Rose, and others, while Racah,
Biedenharn (1952), and Simon et al. (1954) have
used as reduced matrix element a quantity greater
by a factor v2J'+1.

Eckart and Wigner have based their derivation
of this result on the ideas of the representations of
the rowation group, while Racah has developed the
algebraic application of the angular momentum
operators J,, J,, and J,, which may be interpreted
as differential rotations about the z, y, or z-axes,
respectively. Since the vectorial character of a
vector operator T with components 7%, 7°, T-!is
fixed by the general commutation rules [J,,7"}=
nT" and {J.+4J,, T*|=J (A Fn){(1Ln+1) T+, g

eneralized irreducible tensor operator of degree
i has been defined as one having 2k+41 compo-
nents and satisfying the commutation rules
[J;, TH]=nT; snd [k, TH=V(EFn)EL£n+1)
Tz+%.  Our quantity Y* is a specific example of
such an operator.

Stevens (1952) has emphasized a geometrical
interpretation of this result, and has given what
amounts to a technique for calculating certain of
the Wigner coefficients in the special case J'=J.
The bebavior under rotation of any quantity
which may be expressed in terms of variously
oriented coordinate systems, may be described by
one or more components along a set of mutually
orthogonal base vectors in an infinite number of
dimensions. Subspaces of dimension 1, 2, 3,
. - . 2J4+1 determine a particular D,, while the
individual vectors within the subspaces correspond
to the various rows of the D,. product oip(t,)wo
components, each of which lies along one of these
base vectors (such as the Y¥a/M > being con-
sidered) may itself be resolved into components
by means of the Wigner coefficients; all save the
one parallel to the third quantity <o’J’M’| will
vanish in the matrix element. Stevens also
pointed out that it is possible to form irreducible
tensors J# from the nencommuting components of
J by taking the 2v+1 totally symmetric products
of degree ». This is analogous to the process we
have already used several times in connection
with the reduction of the general product of
two vectors. We then have

<M\ Bl M>=Ciy & (JI[J D),

since this reduced matrix element is diagonal in
both « and J, and independent of a. These ma-
trix elements may themselves be calculated, giving
a set of numbers proportional to the Wigner
coefficients. Certain tables based on this proce-
dure have been given by Stevens (1952), by Elliott
and Stevens (1953a), and by Judd (1955).

5.2. Wigner Coefficients

The Wigner coefficients Ciziszz3, frequently writ-
ten (J1JoWJ M|J \J,M,M;) are the elements of the uni-
ta.rJy matrix G which will reduce the (2.J,41)
(2J:+1) dimensional direct product of the com-
ponents of D, and D,, and which will provide the
proper linear combinations of the products of
these com;l)lonents [JiM,> and |J,AM;> appro-
priate to the reduced component {JM>. The
columns of the C matrix are distinguished by the
double indices (M;, M), while the rows bear the
indices (J, M). The phase conventions implied
in (2.8) ensure that the matrix elements may be
chosen to be real. The inverse G! is merely the
transposed matrix. The orthogonality relations
for a real unitary (=orthogonal) matrix then give
us

> (WSbM M| J\Jo I M) (J\J. MM T T J M)

MM,
(5.52)

==870'0arx

> (N JoM M| Jo M) (J , Jo MM\ T JoJ M)

T
(5.5b)

=Sy B
The product of [J;1M,> and [J,M;> will, under
a rotation about the z-axis through ¢, be multi-
plied by !¢ ¢iMeé—=gt¥i+Mr’ gnd hence M=
My+M,, and all coefficients not meeting this
requirement are zero. The index M is frequently
suppressed when written in the form Cyig2’.
Because of this relation between the M, and Af,,
the sum in (5.5a) is in effect a sum over MM, only
(or M; only).

A general formula for these coefficients has been
given by Wigner, who carried out in detail the
process outlined above of reducing the direct
product matrix. Condon and Shortley have ap-
proached the problem from the standpoint of
transforming eigenstates of two commuting angu-
lar momenta J, and J, with quantum numbers
JiM, and J.M, into eigenstates of J=J,+J; with

uantum numbers J and M. They pointed out
that the vector addition coefficients may in prin-
ciple be obtained from the initial condition
(}:J Wl doled Lol +J2])=1 and from a suc-
cessive application of the J,—%.J, and J,, opera-
tors, but that a general formula is difficult to
obtain. Racah (1942a) utilizing as well the
operator J,;+1J, has provided a purely algebraic
derivation of a general formula for the coeflicients
which is relatively convenient and symmetric in
the various parameters. Based upon this for-




mula, Simon (1954) has provided a numerical
table of these coefficients, but no J greater than
% is included. Condon and Shortley have given
formulas for the cases where Jr=Y%1, ¥, and 2
while Falkoff et al. (1952) give J,=3. ’

For actual computations, a numerical table of
Wlﬁner coefficients is required. The only such
table known to the writer is that of Simon (1954).
Unfortunately, this covers an inadequate range of
values for rare-earth spectra, and relies on sym-
netry properties of the Wigner coefficients, in-

volving factors of the form (23#}_—11 v

usually somewhat awkward. To meet partially
this need for the ﬂgresent. ayplication, table 15,
containing the coeflicients Cf” to 6 decimals for
J<S, v=2, 4, 6 and =0, 2, 3, 4, 6 consistent with
the » involved has been computed. These will
permit calculation of matrix elements diagonal in
J and between states of the same parity.

In the case u=0, 3, and 6, the values for
M=J—p were calculated from the formula of
Racah and those for other values of M were cal-
culated by the use of the tables of Stevens and
others noted above (section 5.1). For p=4 and
v=4, p=2, factors corresponding to those of
Stevens were computed and used in a similar proc-

, which are

and selected entries were checked for
32 (Cii?) (€3 =0,

It is believed that errors do not exceed 2 in the
sixth decimal. In a very few cntries a seventh
decimal was carried.

It is to be noted that only positive values of

are given, and only entries for M > —-g. To ob-

tain other values required, the following special
cases of the general symmetry relations are re-
quired (diagonal in J and » even):

RN (5.6u)
Codiwy 2l =(=1)Cl} (5.6b)
C. (}3,1- p);:"z (—1)» Cnll;', (5.6¢)

The relation (5.6¢) is especially noteworthv: we
observe that (for half-integral J)

ess. For p=2, y=6 this became too unwieldly ey s
and the formula of Racah was used directly for 0.%3;}2(—1)30 333
all entries. Coefficients were all checked for
obedience to the requirement C .
and hence must be zero. This is intimately asso-
(€ vJ)2=2J +1 ciated with the essential degeneracy of Kramers
% e 2+1 discussed earlier.
TABLE 15. Wigner coefficients
cay
XM 0 1 2 3 4 5 6 7 8
1] —0.632456 0. 316228
2 —. 534522 | —. 267261 0. 534522
3 —. 516398 | —. 387298 0 0. 645497
4 -—. 500647 | —. 433200 | —. 203859 . 178376 | 0. 713506
5 —. 506369 | —. 455732 | —. 303822 | —. 050637 . 303822 | 0. 759554
6 —. 504525 | —. 468488 | —. 360375 | —. 180188 . 072075 . 396412 | 0. 792825
7 —. 503382 | —. 476415 | —. 395515 | —. 260680 |—. 071912 . 170790 . 467426 { 0. 817996
8 —. 502625 | —. 481682 | —. 418854 | —. 314140 | —. 167542 . 020943 . 251312 . 523568 | 0. 837708
>M\ 1/2 3/2 /2 7/2 9/2 11/2 13/2 15/2
3/2 | —0.447214 0. 447214
5/2 —. 478091 | —. 119523 0. 597614
7/2 —. 487950 | —. 202770 . 097590 | 0. 683130
9/2 —. 492366 | —. 369274 | —. 123092 . 246183 | 0. 738549
11/2 —. 494728 | —. 409917 | —. 240296 . 014135 . 353377 | 0. 777429
13/2 —. 496139 | —. 434122 | —. 310087 | —. 124035 . 124035 . 434122 | 0. 806228
15/2 ~. 497050 | —. 449712 | —. 355036 | —. 213022 |—. 023669 . 213022 . 497050 | 0. 828417
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TaBLE 15. Wigner coefficients—Continued
cay
M 0 1 2 3 4 5 6 7 8
J
2 0. 534523 |—0. 356348 | 0. 089087,
3 . 426402 . 071067 |—. 497469 0. 213201
4 . 402291 . 201146 |—. 245844 —. 469340 | 0. 312893
5 . 392232 . 261488 | —. 065372 —. 392232 | —. 392232 | 0. 392232
6 . 386953 . 204821 . 050672 —. 248756 | —. 442232 | —, 304035 | 0. 456052
7 . 383807 . 315270 . 127428 —. 126413 | —. 357408 |—. 441175 {—. 217795 | 0. 508189
8 . 381771 . 328747 | . 180281 —. 031814 | —. 254514 | —. 413585 |—. 413585 |—. 137862 | 0. 551447
y 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2
J
5/2 0. 308606 [—0. 462909 | 0. 154303
7/2 . 341882 | —. 113961 |—. 493829 0. 265908
9/2 . 354787 . 059131 |—. 335077 —. 433629 0. 354787
11/2 . 361298 . 154842 | —. 167745 —. 425815 | —. 348394 | 0. 425815
13/2 . 365073 . 212959 [—. 043944 —. 310988 | —. 446201 [—. 260284 | 0. 483384
15/2 . 367467 . 250811 . 044718 —. 196371 | —. 390798 |—. 429684 [—. 176929 | 0. 530786
e
N
M 0 1 2 3 4 5 6 7 8
J
3 | —0.482804 | 0.362103 |—0. 144841 | 0. 024140,
4 -. 373979 . 018699 . 411377 | —. 317882 0. 0747955
5 —. 347368 {- -. 104210 . 312631 .251842 (—. 416842 0. 130263
6 —. 335531 |--. 167765 . 184542 . 360696 . 067106 | —-. 461355 | 0. 184542
7 —. 329015 | —. 205635 . 082254 . 324080 . 289534 | —. 090479 |—. 470492 | 0. 235246
8 —. 324985 | -. 230198 . 005416 . 251864 . 346651 . 176034 | —. 211240 |-—. 457688 | C. 281654
N
‘J\M 1/2 3/2 5/2 7/2 9/2 11/2 18/2 15/2
7/2 | —0.241402 | 0. 434524 |—0. 241402 | 0. 048280
9/2 —. 273116 | . 204836 . 341393 | —. 375533 0. 102418
11/2 —. 286829 . 057366 . 358536 . 157756 |—. 444585 0. 157756
13/2 —. 294280 . 036785 . 272209 . 334007 |—.016185 |—. 469376 | 0. 210410
15/2 —. 298843 |—. 099614 . 179306 . 346658 . 235090 |[—. 155398 |—. 466195 | 0. 258997
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TansrLe 15.

Wigner coefficienis—Continued

(0 4
M -1 0 1 2 3 4 5 6
\\
1 0. 774597
2 .654653 | 0. 534522
3 . 632455 . §77350 0. 408248
4 . 624188 . 592156 .495434 | 0. 330289
5 . 620173 . 599144 . 535891 . 420669 | 0. 277350
6 . 617915 . 603023 558291 . 483494 .377965 | 0. 239046
7 . 616515 . 605405 . 572054 . 516377 . 438160 .336817 |  0.210042
8 . 615587 . 606977 . 581136 . 538028 . 477567 . 399561 . 303489 | 0. 187317
3 M —1/2 1/2 3/2 5/2 7/2 9/2 11/2
3/2 0. 632456
5/2 .621059 | 0. 462910
712 . 617213 . 534522 | 0. 365148
9/2 . 615457 . 564075 . 460566 | 0. 301511
1i/2 . 614509 . 579365 . 508862 . 402291 0. 256776
13/2 . 613941 . 588349 . 537087 .450933 | .356263 [  0.223607
15/2 . 613572 . 594088 . 555088 . 496486 . 418079 .319313 | 0. 198030
F
\ M\ -1 0 1 2 3 4 5 6
J
2| —0.563436 | 0. 345033
3| —.449467 | —. 123091 0..7233
4| —.424052 { —.245844 .136989 | 0. 560968
5| —.413449| —.200572| O .358057 | 0.554700
6] —.407884 | —.328395| —.110558 . 183513 .449089 | N 532554
71 —.404568 | —.345779 | —. 180745 . 056476 . 308827 .495260 | 0. 505389
8| —.402422 | —.357114 | —, 227940 | —. 035172 . 187317 . 391802 . 515831 | 0.477567
\M —1/2 1/2 3/2 5/2 7/2 9/2 11/2
J
5/2 | —0.345033 | 0.462910
72| —.372194 . 053722 | 0. 550482
9/2| —.381600 | —.116608 . 285631 0. 560968
12 | —.386244 | —.204837 . 099950 . 410891 0. 544705
13/21 —.388809 | —.256681 | —. 022676 . 252439 .476312 | 0. 519238
15/2 ) —.390406 | —.289807 | —. 105958 . 126363 . 354689 . 507935 . 491412
551664—61——8 69
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TasLe 15. Wigner coefficients—Continued

Cci¥
\JM\ -1 0 1 2 3 4 5 6
3 0. 494727 | —0.361208 | 0.127738
4 .383214 | O —. 434524 | 0. 289683
5 . 355945 .122813 | -—.302079 | —.308257 | 0.397959
6 . 343817 .184542 | —.163087 | —.376632 | —.147214 | 0. 465530
7 . 337140 .220710 | —.058394 | —.316265| -.335450| O 0. 505389
8 . 333010 . 243919 .017964 | —.232843 | —. 361685 | —. 247027 . 121960 | 0. 526926
\M\ -2 12 32 5/2 0 o2 1172
7/2 . 255476 | —. 442498 . 215917
9/2 .285631 [ —. 186989 | —. 381691 . 340825
11/2 .208081 | —.035120 | —.359967 | —. 227663 . 435942
13/2 . 304672 .058394 | —.255871 | —.365192 | —.070719 . 488252
15/2 . 308643 .119537 | —. 156366 | —.349645 | —. 204427 . 064249 . 517994
cly
\J\M\ -1 0 1 2 3 4 5
2| —0. 527046
3 —. 265908 —0. 564076
4 —. 186989 —. 469339 —0. 494727
5 —. 146176 —. 392232 —. 506369 —0. 423659
6 —. 120654 —. 335111 —. 472034 —. 490098 —0. 363803
7 —. 102998 —. 201972 —. 431342 —. 493065 —. 457141 —0. 315165
8 —. 089984 —. 258460 —. 393234 —. 474405 —. 486664 —. 420595 | —0. 275723
\\JM\ -1/2 1/2 3/2 5/2 7/2 9/2
52| —0.577350
7/2 —. 402015 —0. 531816
9/2 —. 311649 —. 498639 —0. 458029
11/2 —. 255476 —. 442497 —. 501745 —0. 392232
13/2 —. 216867 —. 301883 —. 487398 —. 474504 —0. 338200
15/2 —. 188584 —. 340644 —. 457792 —. 492112 —. 438906 —0. 204427
cly
M -1 0 1 2 3 4 5
J
3 0. 469340 —0. 221240
4 . 270973 . 323875 —0. 400673
5 . 201802 . 376036 . 058255 —0. 487398
] . 163087 . 360696 . 248129 —. 147214 —0. 509963
7 . 137637 . 332040 . 322787 . 079066 —. 258078 —0. 505389
8 . 119407 . 304863 . 347875 . 209882 —. 071755 —. 372080 | —0. 487838
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TasLE 15. Wigner coefficients—Continued

\JM —-1/2 1/2 3/2 5/2 7/2 9/2
712 0.442408 | —0. 334497
9/2 . 373979 186990 | —0. 458029
11/2 - 316163 324509 —.053661 | —O0. 503382
13/2 . 272507 357008 . 163319 —.223634 | —0. 509963
15/2 - 230074 . 354605 - 270834 0 —.333849 | —0. 407673
cid
M -2 -1 0 1 2 3 4
J
2 0. 745356
3 . 594588 0. 460566
1 560968 . 494727 0. 312893
5 . 546941 . 506360 . 392232 0. 226455
6 - 539583 - 511894 . 432620 .313114 0. 171499
7 - 535193 - 514990 - 456490 - 366006 . 253068 0. 134387
8 . 532354 . 516920 . 471881 . 401022 . 310630 . 200427 | 0. 108148
\ M —3/2 ~1/2 1/2 3/2 5/2 7/2
.I\\
5/2 0. 577350
772 . 550482 0. 376051
9/2 - 539792 . 440738 0. 264443
11/2 . 534366 . 469339 . 349825 0. 196116
13/2 - 531214 484930 - 397958 . 281399 0. 1512475
15/2 - 529213 | 494472 1428225 - 336926 - 230164 0. 120199
il
M —2 -1 0 1 2 3 4
J
3 —0. 541047 0. 340825
4 —. 419790 —. 079333 0. 501745
5 —. 389019 —. 195539 . 233021 0. 504505
6 —. 376632 —. 248128 . 067106 . 382472 0. 465530
7 —. 369318 —. 277104 —. 037801 | 247517 - 441640 0. 417311
8 —. 364795 —. 295182 —. 107785 - 137400 - 354765 - 454447 | 0. 370540
N —~3/2 —1/2 1/2 3/2 5/2 7/2
7/2 —0.312893 0. 458029
9/2 —. 334497 - 102418 0. 512092
11/2 —. 341495 —. 055544 . 322921 0. 487398
13/2 —. 344698 —. 141599 . 167849 . 419971 0. 441641
15/2 —. 346452 —. 194225 - 056068 - 308798 . 452034 0. 393445
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TasLe 15. Wigner coefficients—Continued

ci¥
M -3 -2 -1 0 1 2
J
3 0. 733799
4 . 568399 0. 429669
5 . 527952 . 457220 0. 273241
6 . 509963 465530 . 345246 0. 184542
7 . 500060 469098 . 383017 . 260982 0. 130491
8 . 493934 470948 . 405906 . 310016 . 200114 0. 095673,
w —5/2 —3/2 —1/2 1/2 3/2
7/2 0. 554700
9/2 . 518874 0. 339683
11/2 . 503381 . 397958 0. 223100
13/2 . 495034 . 423922 . 299758 0. 154399
15/2 . 489956 . 438230 . 344798 . 228062 0.111283

5.3. L=S Coupling and the One-Electron
Approximation

It is well to emphasize at this point that the
relation (5.4) involves no approximations—these
we shall introduce in evafuating the reduced
matrix element. The first of these is the approx-
imation of L-S coupling, i.e., the state la}M>
may be written |aJM> =%‘,ISLSZIILM3>

L

(LSM_M;|LSJM), and consequently,

La' M’ |4 M >= EM (L'S’"J'M'|L'S’' MiMy)

<B'L'S’ M M|Y4|8BLSM Ms>(LSM M;|LSJM).
(5.7)

We now recall that Y% does not act upon the spin
coordinates of the system, that it is thus a scalar
quantity with respect to S, and therefore

<B'L'S'MM|Y4|BLSM Mg>=bss/ L JYRTE

<B'L'SMM|Y4|BLSM Ms>.  (5.8)
This will reduce (5.7) to the equation
L' M Y5 M > =835, >

MMy,
(L'SJ'M'|L’'SM{ M)
<8’ L'SM;M, |Y4| BLSM_ Ms>(LSM_ Ms|LSJM).
(5.9)

All other matrix elements vanish—in particular
we see that there are no matrix elements between
terms of different multiplicities. Also we see that
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(5.4) is again applicable, and obtain

<P L'SM/Ms|Y4BLSM Ms>=(LvL'M{|LvM_y)
(8'L’'S|Y,||8LS). (5.10)

Hence, we can write (5.9) in the form

<B'L'SJM'|Y4,|BLSJIM>= 3
MM,

(L'SJ"M’|L'SM;Ms)(LvL' M| LyMyu)
(LSM. M| LSJM) (8L’ S||Y,||BLS), (5.11)

and this expression is also (5.4). If we multiply
both expressions by (JvJ'M’|JvMy), introduce
the requirement that M;=M,+u, and sum over
M, the expression on the right of (5.4) will reduce
to («’J’||Y,]|ef) by (5.5a) while the right side of
(5.11) becomes

E{ (Jo' M | JvMp) (L' ST M'\L' S(My+ 1) M)
[t
(LvL'[My+p)| LvMn)

(LSM M;|LSTJM)(B’'L'S||Y,||BLS). (5.12)

Such & sum of the product of 4 Wigner coeffi-
cients appears recurringly in the theory of complex
spectra. The properties of such expressions were
first studied extensively by Racah (1942a), and
they have consequently become known as Racah
coefficients. In the present application the essen-
tial significance of (5.11) is that the two states
JM and J'M’ are ‘“uncoupled” into LSM My
and L'S’M;M; so that the effect of the Y
acting only on the L part (i.e., the space coordi-
nates) may be determined. The Racah coeffi-



) in connection with such
uncoupl or recoupling of angular momenta.
The Racah coefficient in (5.12) depends on six
parameters JJ’, LL’, 8, and »; in_spite of the
explicit aX})earance of the projection quantum
numbers M, M’, M;, M;, and p, they are elimi-
nated in the summation.

Although a general algebraic formula for these
coefficients is quite unwieldy, numerical tables
have been computed by Biedenharn (1952) and
bﬁr Simon et al. (1954). The first of these carries
the entries in a closed fractional form, the other
has a ten-place decimal form. In order to clarify
difference in notation, let us rewrite (5.12) as

cients appear generall

@I [Vollad)= 3 CL7C o\ 5

8 J'O L »I/
MM, (M +s) Mg M

Cringy B'L'S|IY,|IBLS). (5.13)
Omitting algebraic details, the use of the sym-
metry relations for the Wigner coefficients will
permit this to be transformed into

(—qyera-rr=s [GJI DL +1)
(2S+1)(2v+1)
Eh C}{{ISLSC(MfML) (M'—z—m,_) d

CJ\{I‘L(M'—:{’—ML)’OL‘;(M:M)J' - (8’ L’ S||Y,|IBLS)

and a"direct comparison with the notation of this
with eq (1), page x of Simon et al. will give

(I [[Ysllad) = (—=1)FHST =2+ 1) (2L +1)
W(JLJ'L’;S%)(8'L’S||Y,|IBLS). (5.14)

The six-parameter expression W is tabulated in
Simen et al. for J,J’<15/2; L, L’ <9/2 (though of
course a half-integral L has no significance in the
present application) S<3 and »<8, though the
useful range of values may be extended through
the use of the symmetry relations given in the
introduction to the tables.

We are now in a position to make comparisons
between quantities which depend only on the
ratios of the matrix elements for a given §’L’S,
BLS combination, but for additiomf details we
must evaluate the reduced matrix element
(B’L’S(’JI_Y.[ |6LS). In princiﬁle, this maybe accom-
plished in a way similar to the derivation of (5.13)
1.e., we now assume that the state | LSM Ms>> may
be written as a sum of antisymmetrized products
of one-electron wave functions |nim,m,> and
the matrix element (5.10) can be expressed in
terms of one-electron matrix elements such as

<n'U'mimy|Y¢|nlmym,>.

Unfortunately, this procedure has several limi-
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tations. First, there is the additional assumption
that the state involves only one configuration of
the free ion. In the present case, it Is expected
that configurations other than 4/* will interact
with the surroundings and other rare earth jons
to such an extent that they will no longer be char-
acterized by sh energy levels, but by broad
levels or bands. 'The sharpness of the observed
lines suggests that the contribution of other
configurations to the wave functions of the free
ion is, at least as far as the energy is concerned,
negligible. It is quite possible that contributions
from other configurations are responsible for
features such as intensities and polarization; this
will be discussed further in the following section.
An additional disadvantage is that, unlike the
transformation from a JM representation to an
LS representation, there is no general formula for
passage from the LSM M representation of a
state to its one-electron reeé'esentation. The
general method of Gray and Wills (Condon and
hortley 5°) may be used, but each configuration
must be considered by itself, and no general
formula can be derived.

5.4. The Rare Earth Ground Terms

In the evaluation of the matrix element (5.10)
we are free to select any consistent set of the
projection quantum numbers; we shall therefore
consider the specific element [M;=L';M;=_8]

<B'L’SL’S|Y*|BLSLS>==(LvL’L’| LvLy)
(8’L’S||Y,|BLS).

By selecting the maximum values of the projec-
tion quantum numbers, we shall find that the
transformation to the one-electron representations
is thereby simplified considerably.

For any particular rare earth, the analysis is
best carried forward in a systematic manner,
beginning with the ground state. In accordance
with Hund’s rules, for 4/ we select the highest
allowed multiplicity, and then the highest L
consistent with this multiplicity. The correspond-
ing antisymmetrized products of one-electron wave

. . + - +
functions are usually written {mlm,mg g }; for

(5.15)

+
example, in this notation we start with 132 l} for
4+ + + +—4++ + t+ F
Nd, 531613} for Eu, {33210-1-2-3| for
Tb, etc. While the analysis may be carried out
for any con%umtion, we shall consider the specific

example of Nd. .

Let us begin with {32 1}::]‘1 6%>- The appli-
cation of the symmetric operator ¥ =L,—iL,
(Condon and Shortley 5%3) yields {55} =17 5 3 >-

+4+ 4
A second application of .#. yields 2+3 {32— 1}

4 3 1
+10 {310l =vZ2PT 43> The state g5 [VI0




§§—+}—2ﬁ{§ﬁ}] is orthogonal to |I 4 g> and
is also a quartet with M,=4 and hence is the
state [‘G 4 g>- Repeated application of &£

will yield the states|*F 3 5>,'D23 >, and|50 3>,
all of which arise from 4/ (Condon+ a.ﬂd Shortley
able1). Similarly, beginningwith {332}=[L85>

we can obtain the state )K 7 %>. There are
a total of four states with M, =6, Ms=%; namely

PL6>,K 65>, 162> and [T62>. Thefirst
two are obtained by a further application of &
while the latter is obtained from |‘Isg> by the
operator &_=8;—1S,. The fourth state is then
I 6 %>.

In endeavoring to continue this process to states
where M;=35, we find that in addition to those
arising from higher values of L or S, that there are
two additional states with M,=5, M;=4. They
must be therefore both described as [2H 5i>,and
additional labels are neces to distinguish them.
The usual procedure is to explicitly diagonalize the
submatrix of electrostatic interaction between the
two states (Condon and Shortley 7%), but further
work of Racah (1949) has shown that a more
abetract classification of states based on group
theory is possible. The former technique has
btfaeEn applied by Judd (1955) to the specific case
of Eu.

In any perturbation calculation, the matrix
elements first to be considered are those between
different states of a degenerate level. In the
rare earth ions, and in crystal spectra generally,
the one most important level is the ground level.
While the great significance of optical spectros-
copy, in contrast to magnetic resonance measure-

ments, lies in data provided concerning excited
levels, a general ion-by-ion analysis of the excited
levels is a major undertaking, and only the
explicit details for the ground multiplet will be
developed here. As a specific example, we shall
further consider the case of Nd, where (5.15)
becomes

<4fs ‘I6%Y24f3‘16?§’>

+++ +++
_—_<{3 21 } Y‘,’l{s 21 }>- (5.16)

We shall here insert again the factor r* in the
potential, omitted since (5.1) since it is invariant
under the transformations we have been consider-
ing up to this point. Again recalling that »Y? is
an electrostatic perturbation upon the individual
electrons, we see that it is a spin-free quantity of
Condon and Shortley type F (6°), and (5.16)

3 + +
becomes > <4f m{r’0%°|4f m >, where <1>°=—/.1:
m=1 v2r

and 0% is given in table 1. The spin terms of the
matrix element give 41, the ¢ terms give merely

;_ and the @ integral is
var

Tr & _1_
f o7eler sin 6 do =\/2"2' L ¢ (3m, 3m)
]

where ¢’ is given in table 1° of Condon and Short-
ley. For t%le time being, we shall write the r
integral as <7 >.

By evaluating (5.14) and (5.15) for all the rare
earths, the reduced matrix elements for the

und levels apart from the term <(r”>> have
%l:én computed and presented in table 16. The
reduced L-S matrix elements are included princi-
pally for information, though they are directly
useful in cases where the electrostatic perturbation
is greater than the spin-orbit interaction, or where
the electrostatic and spin-orbit perturbations must
be considered simultaneously.

6. Applications

6.1. General Considerations

In this concluding section, we shall discuss
further the general significance of the preceding
sections in the interpretation of crystaf spectra,
the connection mentioned at the beginning of sec-
tion 3.4 between the iroup—theo technique of
sections 3 and 4, and the matrix element calcula-
tions of section 5, and shall illustrate the applica-
tion of these general techniques to specific
problems.

Generall({, 8 spectrum may be considered as
understood if the spacing of the energy levels is
known, the effect upon them of a magnetic field,
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selection and polarization rules and relative inten-
sities of lines, and all these are correlated with the
structure of the atom responsible for the spectrum.
These may all in principle be obtained from a
knowledge of the initial and final states of the
transition involved in the spectral line. Unfor-
tunately, our knowledge of these initial and final
states is largely a matter of approximation which
is not always entirely satisfactory. This is true
both for the free ions and for the perturbed ions
in the crystal. Let us review briefly the situation
for the free ion.

The good quantum numbers for the wave func-
tions of the free ion (section 3.3) are the parity
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TABLE 186.

Reduced maltriz elements

Element L s J =2 r=4 r=6
b — —
%3) o 3 1/2 0. 325732 0. 360856 0. 491065
5/2 —. 301569 . 261168 0
772 —. 307788 . 289329 —. 245532
Pr++ - —
Trosrs 5 1 . 276822 . 261529 . 455018
6 —. 265205 -. 224931 . 321183
5 —. 249840 --. 174353 . 136505
4 —. 260040 —. 208628 . 261268
Nd+++ —- — _
o 6 3/2 . 106082 . 168698 . 642369
9/2 —. 098820 —. 131239 —. 356506
11/2 —~. 091864 —. 006145 —. 099840
13/2 —. 093887 —. 106106 —. 169019
15/2 —. 101524 —. 144946 —. 457704
+++ e
ll;l(z)l+++ 6 2 . 106082 168698 . 642369
4 . 095469 115742 . 260356
& . 084208 054866 —. 090686
6 . 083901 061345 —. 087596
7 . 089965 . 088311 062990
8 - 100398 . 139515 420886
Sm+++ -
Dn)}*’“' 5 5/2 . 276822 . 261529 . 455018
5/2 . 217802 . 102885 0
7/2 . 160051 —. 033771 . 262972
9/2 . 155288 —. 038079 . 220158
112 . 174559 —. 007942 . 210017
13/2 . 208638 . 070737 . 112678
15/2 . 253811 . 193261 —. 228851
Eut++ 3 3 . 325732 —. 360856 . 491065
Tb++
0 0 0 0
1 ~. 199469 0 0
2 —. 012363 —. 150786 0
3 . 054289 . 060143 —. 081844
4 . 032147 . 171347 . 259348
b . 138409 . 130764 —. 227510
6 . 265202 —. 168697 . 064237
Ga+++ 0 7/2 0 0 0

Note 1: Where no J value is given, the tabulated quantity is (8LS|Y.IIBLS), otherwise (8LSJ]|Y.II8LSJ).
Note 2: For the second ion of the above pairs, all signs change.

“g” or ‘“y”, the total angular momentum J and
its component M. The strict selection rules
AJ=0, +1 (04>0) for electric and magnetic dipole
radiation, and AJ==0, +1, 2 (0430, 04>1) for
electric quadrupole radiation, with change in
parity in the first case, no change in the last two,
were calculated in section 4.4. There is no phy-
sical significance to a selection rule on M in the
absence of a nonspherical perturbation. If the
spin-orbit interaction is small, L and S approxi-
mately describe a state and we obtain selection
rules in L similar to those in J, while in § we ob-
tain AS=0 for electric dipole or quadrupole transi-

tions, AS=0, +1 (04>0) for magnetic dipole

Y gl 7 ot

transitions. Thus, consider a transition proba-
bility for electric dipole radiation involving the
matrix element {f'L’'SJ'M’|er|BLSJM). If
J’'=J+1 so the transition is allowed in J, but
L’'=L+2, it will be forbidden in L, and will be
nonzero only if the spin-orbit interaction has mixed
terms with szatial angular momentum Z-1 in
either L or L’ or both., The application of a
magnetic field splits a state into 1ts 2J+1 com-
ponents with a splitting determined to a first approx-

imation by the matrix element of—i-,% (L+28)-B,

yielding the usual expression for the Landé
g-factor. Selection rules for M now become sig-
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nificant, and we have AM=0, +1 for either type
of dipole radiation, AM=0, +1, +2 for quadru-
pole transitions, and their associated polarization
effects.

The perturbing potential V (2.6) wil! influence a
state |aJM> in general by four types of matrix
elements, the effects of which we shall examine in
detail. These are:

1. Matrix elements diagonal in «, J, M.

2. Matrix elements diagonal in a, J.

3. Matrix elements diagonal in a.

4. Matrix elements nondiﬁnal in a, though
perhaps diagonal in J and M. These matrices
(or rather, approximations to them) may be
calculated by the methods of section 5, though
the scope of table 15 itself will suffice only for
elements of types (1), (2), and those of (4) diagonal
in parity and J. We will now examine the effect
on the original level of these several matrix
elements.

Matrix elements of type (1) arise from potential
terms with » even, u=0. Their effect is to split
the level into pairs of states +M (and the single
level M=0 for integral J) in the ratios indicated
bly table 15. The inclusion of these matrix
elements only results in an initial axial field
approximation which is sometimes useful. The
selection rules on J and parity, as well as any
approximate rules on L and S, remain valid, as do
those on M corresponding to the free ion in a
magnetic field. This case corresponds closely to
s reduction in symmetry from D, to D_, which
differs through the inclusion of matrix elements of
types (3) and (4) which are diagonal in M.

Elements of type (2) arise from potential
terms with » even but p>0, still with the ratios
determined by table 15 and of the same order of
magnitude as those of type (1). The solution of
the secular determinant for elements of (1) and
(2) together will yield the first approximation to
the energies of the perturbed states as well as the
zero-order linear combination of states with
various M required for higher order perturbation
calculations. States with M values differing by
# will interact and M will no Ionger be a good
quantum number for these states. However, if
2.J is less than the lowest i involved, there will be
no matrix elements of this type and the rules for
(1) only will still be valid. This situation will
occur for levels of low J in fields of high sym-
metry. Generally, the selection rules for JJ and «
will still bold. Selection rules on M will apply to
those states which do not involve a combination
of M values, and can be applied to the components
of those states which do involve a mixing of two
or more M states.

Type (3) matrix elements still involve only
potential terms with » even, since « includes the
parity quantum number. The addition of these
matrix elements to our scheme destroys the
validity of J as a quantum number which has
held for (1) and (2). These elements are those
between various J values of a given L-S term,
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since they are still diagonal in a. In order of
magnitude, these elements are as large as those of
types (1) and (2), since all three come from the
same reduced L-S matrix element (table 16) and
differ only in the associated Racah and Wigner
coefficients (5.14, 5.4). Their effect is numerically
somewhat smaller, since terms they contribute in
perturbation theory are divided {y the ener,
differences between the unperturbed levels.
state of given J=J, will be mixed directly with
other J values such that {J—Jo|< v. The selec-
tion rules for the free ion J are now either poor
or completely worthless, depending on the numeri-
cal parameters. Since botﬂ the upper and lower
states of a transition can involve a range of J,
the effective selection rule is merely AJ<2v+1.
Matrix elements of type (4) will generally be
numerically the smallest of the four types. They
arise from all terms in the potential (2.6), this
being the only one of the four where the terms
with odd v are included. Such elements, at least
as far as the ground state is concerned, involve
relatively distant levels, so the influence on the
splitting of the ground state will be small and lie
perhaps more in the overall position of the level
with respect to the unperturbed level. Perhaps
the most important effect of such elements is on
the selectior: rules and the associated polarization
effects, and in the intensity calculations. Just as
elements of type (3) destroyed J as a quantum
number, so will these destroy « as a quantum
number. « includes the specification of the con-
figuration and consequently the parity of a state.
In the most general case, there will be matrix
elements for even » between 3{" and higher even
configurations, such as 4/*~?542, and for odd » be-
tween 4" and 4f"'5d. These latter elements
destroy the parity of the state and lift the restric-
tions of Laporte’s rule for electric dipole transi-
tions. Intensities corresponding to electric dipole
transitions between states principally 4/* in char-
acter must, therefore, be computed from these ex-
tremely small inter-configurational matrix elements
and are therefore extremely weak; nevertheless, all
crystal spectra are in any absolute sense quite
weak amf such transitions must be considered in
the case of any nonholohedric perturbing potential.
The further effect of a uniform magnetic field
will depend to a large extent on the degeneracy
allowed by the electrostatic perturbation. The
magnetic field does not allow any remaining de-
generacy; hence, levels degenerate in the electro-
static field, including the Kramers conjugate
states, will be split by a term linear in the mag-
nitude of the field B which can be computed from
a solution of the associated secular determinant.
The average magnetic moment of any nondegen-
erate state is zero (Van Vleck, 1932; Klein, 1952)
80 these states will show no first order effect for
weak magnetic fields. If the crystal field leaves
two or more levels relatively close together, a case
of intermediate or strong magnetic field approxi-
mation can be observed and the level will show a




finite displacement from its B=0
less the magnetic field and crystal
axes are parallel, there will generally be no sym-
metry and no selection rules. Marked variation
of intensities of lines has been observed in the
crystal Zeeman effect. A more specific example
of some of these considerations will be given in
section 6.2,

tE)osition. Un-
eld symmetry

6.2. A Crystal Field

The direct approach to a crystal problem is to
obtain the crystag structure by Xi?fraction measure-
ments, geometric considerations, or other crystal-
lographic techniques. These techniques do not
locate the lighter ions with sufficient accuracy,
particularly water of crystallization, which con-
tribute greatly to the crystal field. As an illustra-
tion of the procedure, let us consider a possible
short range structure for rare-earth chlorides of
the form XCl;-6H,O (H. S. Robertson, informal
communication) where 6 Cl~ (three from adjoining
X) are in two borizontal planes equidistant from
X, forming an equilateral triangle in each plar-
the two triangles being rotated 60° to each other
about a vertical axis. The water molecules [con-
sidered as dipoles] are then located along the
X—Cl lines.

While detailed calculations were not carried out
due to uncertainties in the various distance pa-
rameters, certain features of considerable interest
may be obtained through partial application of

l()2.7 ). The above charge array may be described
Y
=0 ayp_13=7—0 Bi-2=0
2 4x
BI—6=_;_r ﬁ1—9=‘§ ﬂm-:z‘:g Bia—s=7
ﬂxu—:s=§ Q3n=QPany1=—€ Bat2=¢€

and we shall take 8 as a variable parameter. There
are a total of 18 charges in this array. Those
above the z—y plane have the indices 1-9, while
those below have 10-18. Indices of the form 3n
refer to Cl-, 3n+1 refers to OH~ and 3n+-2 refers

to H*. The angular portions of the gotential
were calculated over a range from §=0° to 90°.
The angular factors (2.4) were obtained from the
tables of Tallgvist (1908). This table is not
widely available, but no other table covering its
range has been prepared to the knowledge of the
writer. The National Bureau of Standards table
(1945) covers values of M only up to and includ-
ing 4.

erforming the summation (2.7), the only
generally nonvanishing coefficients are (N<6)
a3, O}, O3, G5, C%, and (%, thou%h this may be de-
duced directly from table 5 without explicitly per-
forming the summation. The values of these,
apart from a radial factor of the form

—1 -1 1
e (R¥+1+R¥+*+W*)

are given in table 17. Certain general qualitative
features may be noted by inspection. For =0
(corresponding to all charges being located along
the vertical axis), the symmetry is D., (table 5).
For other angles, the symmetry is generally Dy,
while at 90° (a planar configuration) it is Da. A
particular exception occurs for #=54°44" where
the symmetry is “accidentally” O,, belonging to
the cubic point groups (section 2.4). For this
value of 4, the three pairs of charge axes are
mutually perpendicular and the (% term vanishes.
For other values of 6 (e.g., 31°), other coefficients
vanish, but there is no general theoretical signifi-
cance to this. It is to be noted that for 6<C10°,
the terms responsible for departure from Dga
8 1etry are small, while in the vicinity of §=90°
tﬁe terms causing departure from D symmetry
are large and quite sensitive to small angular
variations.

Most features of even this simple problem re-

uire the specification of the radial distances of
the ions, as well as the average radial integrals
(r") of the wave functions. On the other hand,
aspects of the Zeeman effect can be understood
without further knowledge of these parameters,
and these aspects are most important for under-
standing more complicated cases. Let us assume

TaBLE 17. A representalive crystal field

] a &1 G (&1 (&1 (&

0° 9. 5120 7. 0898 5. 8991 0 0 0
10° 9. 0818 6. 0491 4. 1557 0. 0765 0. 2113 0. 0001
20° 7. 8430 3. 3675 0. 4242 . 5575 1. 3485 . 0063
30° 5. 9450 0. 1662 —2. 2064 1. 6053 3. 0365 . 0619
40° 3. 6168 —2. 2617 —1. 9088 3.0170 3. 7557 . 2795
45° 2. 3780 —2. 8802 —0. 8756 3. 7074 3. 3393 . 4953
50° 1. 1392 —3.0311 . 3326 4. 2850 2. 3851 . 8007
L10 )8 0 —2. 7571 1. 3109 4. 6604 0. 7915 1. 1740
60° —1. 1890 —2. 0494 1. 9068 4. 8160 —. 4338 1. 6716
70° —3. 0870 —0. 0269 1. 2322 4. 2086 —2. 5978 2. 7282
80° —4. 3258 1. 8852 —0. 7794 2. 4595 —2. 3645 3. 6146
90° —4. 7560 2. 6587 —1. 8435 0 0 3. 9624

o See text.

77




that we have the case §=0° of the preceding table
17, i.e., D_) symmetry. We see from table 9
that the 2./+1 states are separated into doubly
degenerate pairs corresponding to £+ M, plus (for
inteiml J only) a nondegenerate state Af=0.

The application of & uniform magnetic tield par-
allel to the z-axis will reduce ths symmetry to C_,
and all levels are now nondegenerate. The splitting
is given by twice the diagonal matrix element
(M%L,+2S,IZ\I) B, since the —M level is de-
pressed by this same amount and there are no
nondiagonal elements, L,+2S, having no de-
pendence on ¢. If the field is applied parallel to
the y axis, the only S{mmehry remaining is Cy,, but
this is referred to a horizontal axis, rather than a
vertical one. The secular determinant will now
involve matrix elements of L,+2S,. This has
a ¢ dependence of the form e*'¢, and will have
nonvanishing matrix elements between states dif-
fering in M %)y 1. Thus, of all the 4 M pairs, a
transverse magnetic field will have no diagonal
elements and will have nondiagonal elements only
in the case of +%. The magnitude of this ele-
ment will be 4v(J+3)(J—%+1) g8B and the
splitting will be twice that or (J-+3) g8B.

If we now proceed to the planar case Dy, we

see from table 10 that for J< g the states remain

as in the D_, case and the Zeeman effect for
these lower o values is unchanged. For J=3, the
original pair M= 33(E},,1,) now splits into two
nondegenerate states By, and By, ,,, which are

1 1 1
the stat:es'.v—§ +3>+J§l—3> and \Til+ 3>

1

V2
in the potential with nonzero matrix elements
between terms where AM=+6. These states
will show no first-order Zeeman effect, either
longitudinal or transverse. For J=4, we see that
the states coming from 42 and +4 have the same
symmetry (F,,.;,), and while we still have degen-
erate pairs, their properties will depend upon the
solution of the associated secular determinant.
One pair will be given by an expression of the
form a| 44>+ (1- -¢®)}| F 2> while the other will
be of the form (1—a?)}|+4>—a|F2>. The
coefficient @ will be fixed by the magnitude of (3.
For these terms, the longitudinal Zeeman splitting
will be 2[4a*—2(1—a?)]=12a*—-4 and 2[4(1—a?)
—2a*]|=12a®—8, respectively, while the trans-
verse effect remains zero. This longitudinal
effect thus depends explicitly on the erystal field.
For J=3, a similar phenomenon takes place

through a combination of ‘ + %> with| F g>,

—3>>, respectively. This arises from the ¢*%

and the longitudinal effect will again depend
(‘:;Blimtly on the crystal field. A major difference

occur in the transverse effect—here there are
nonvanishing off-diagonal matrix elements of the

form < -; L428, i % >, in the secular determinant
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and there will be a transverse Zeeman splitting,
also depending explicitly oa the crystal field.
Under stil]l lower symmetries than Dy, the
Zeeman effect in odd-electron systems becomes
increasingly dependent on the crystal field, since
Kramers degeneracy remains in all cases, or
vanishes in first order in most even-electron
systems where the crystal field states generally
become nondegenerate.

6.3. The Flucrescence Spectrum of the
Terbium Ion

Because of the inexact knowledge of the radial
parameters necessary for further work on the
direct approach to a solution of a given problem,
the more common procedure is to utilize the quan-
tities <7V >C¥ and <r¥>S8% as adjustable param-
eters to fit as best as possible the observed data.
This leaves the radial wave function integrals
combined with the crystal field parameters—they
are frequently left in this form since fu -ther infor-
mation about either one of them separately is not
readily available. We shall illustrate this pro-
cedure by some considerations of the fluorescence
spectrum of TbCl;-6H,0.

he experimentally observed fluorescence lines
(Singh, J. H. U., Dissertation, 1957}, ob=erved both
at 4.2°K and 2.2°K, are given in table 18. The
exciting light, unpolarized, is incident along the
crystal axis (the z axis). For both temperatures,
the spacing of each level from the lowest of its
group is given, the average of the two temperature
values, and the spacing of this (to the nearest
c¢cm™!) from the mean of the group. The overall
mean for each group is also given. The fluorescent
light is observed on the side of the crystal opposite
the incident radiation, also along the z-axis.
The fluorescent lines are relatively wealk and are
enerally observed without regard to polarization;
%owever, a few plates were taken at 4.2°K show-
ing polarization (electric vector along = or y).
These data were made available by private com-
munication from Dr. Singh and are also included
in table 18. In the interpretation of fluorescence
spectra it should be remembered that the spectra
may originate near the surface of the crystal, and
that local fields, different from those in the main
body of the crystal, may significantly affect the
regularities expected.

The Tb ion has the configuration 4f°. Accord-
ing to Hund - rule, the ground state is a "F multi-
plet with lowest, with J from 5 to 0 above
the lowest. The fluorescence spectrum is caused
by transitions from a higher level (probably *D
but this is not important for the present consider-
ations) to various levels of the ground multiplet.
Qualitatively, the agreement with experiment is
excellent. The groupsoflines Z, Y, X, W, V, U,
T, correspond to J=86, 5, 4, 3, 2, 1, and 0, in that
order. Within each group, there are 2J+-1 lines,
indicating that the -rystal field has removed all
degeneracy. This is confirmed by the absence of
any first order Zeeman effect.




TaBLE 8. Fluorescence spectrum of ToCl3-6 H,0

; (4.2°K) (2.2°K)
: Line
i ¥ Ay v Ay ar ar— Avm zy
Z, 20538. 81 0. 00 20538. 77 0. 00 0. 00 —167
p 20503. 66 35.15 503. 72 35. 05 35. 10 —132
Zs 498, 20 40. 61 498. 33 40. 44 40. 52 —127 No
Z, 461. 26 77.55 461. 59 77.18 77. 36 —90 data
Zs 454 97 83. 80 83. 80 —83 -
A 380. 70 158. 11 379. 70 159. 07 158. 59 —8 Z=20372
Z; 369. 16 169. 65 370. 19 168. 58 169. 12 2
Zg 359. 49 179. 32 359. 27 179. 50 179. 41 12
Zy 347. 85 190. 92 190, 92 24
Zy 306. 14 232. 67 305. 73 233. 04 232. 86 66
Zy 239. 08 299. 73 238. 33 300. 44 300. 08 133
Zy 193. 84 344. 95 192. 86 345. 91 345. 43 178
Zs 179. 61 359. 20 179. 33 359. 44 3569, 32 192
Y 18433. 00 0. 00 18433. 04 0. 00 0. 00 —127 5 W
Y. 413. 02 19. 98 413. 02 20. 00 19. 99 —107 s W
3 400. 92 32. 08 400. 99 32. 05 32. 06 —95 w S
£ 359. 26 73. 74 359. 41 73. 63 73. 68 —53 s w
s 341. 00 92. 00 341. 09 91. 95 91. 98 —~35 s W Y ==18306
Y, 333. 69 99, 35 99. 35 —27 s W
Y; 308. 29 124.71 308. 57 124, 47 124. 59 —2 Y
s 294. 96 138. 04 295. 90 137. 14 137. 59 11 s W
£ 250. 87 182,13 182.13 55 3w
Yy 124. 83 308. 17 124. 82 308. 22 308. 20 181 ??
Y 107. 90 325. 10 107. 81 325. 23 325. 1% 198 ?27?
X, 17193. 56 0. 00 17193. 49 0. 00 0. 00 —74 w oW
X 188. 20 5.29 5.29 —~69 W W
X, 184. 65 8. 91 184. 76 8. 73 8. 82 —65 s -
X 135. 74 57. 75 57.75 —~16 5 W X=17120
X; 131. 91 61. 65 131. 98 61. 51 61. 58 -12 s W
Xe 104. 88 88. 61 88. 61 15 vw
X, 067. 31 126. 25 067. 52 125. 97 126. 11 52 “
X, 056. 26 137.23 137. 23 63 “
X, 013. 94 179. 62 014. 48 178. 81 179. 22 105 “
W, 16162. 72 0. 00 16162. 85 0. 00 0. 00 -g8 wow
W, 080. 68 82. 17 82,17 —15 S
W, 070. 26 92. 46 070. 33 92. 52 92. 49 —5 wow _—
W, 043. 44 119, 28 043. 44 119. 41 119. 34 22 w8 W=16065
Ws 037. 91 124, 81 037. 95 124, 90 124, 86 27 wow
W 032. 99 129. 73 032. 87 129. 98 129. 86 32 s W
W, 028, 07 134. 65 028. 12 134. 69 134. 69 37 s w
i 15499. 89 0. 00 —145
Va 430. 03 69. 86 —75 _
T 297. 53 202. 36 57 1"=15355
“. 292. 94 206. 95 62
Vy 253.19 246. 70 15253. 17 101 vw s
U, 15001. 25 0. 00 —23 S VW —
U, 14994. 68 6. 57 —17 VW 8 ['=14978
Ty 938. 41 62. 84 40
T 14691, 73 T: :14692
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Let us consider the quantitative details. For
best results, our theory requires L-S coupling
and a crystal field splitting small compared to the
multiplet separation. We may check the validity
of I8 coupling by the interval rule, taking the
separation of the mean of adjacent groups and
dividing by the higher J value. We obtain, in
em™!, the following:

J=4 264
J=3 237

J=2 158.5
J=1 286

J=6 344

This is not especially impressive for very good
obedience to Z-S coupling requirements. Let us
also calculate the total spread of a grou?, divided
by the separation of the group mean from that
for the next lower J. We obtain:

J=6 0.174 J=4 0.170 J=2 0.653
J=5 .274 J=3 .190 J=1 .220

This indicates that the influence of adjacent levels
may be rather significant. The irregularity here
for J=2 is quite interesting; it is only partially
due to the irregularity shown in the interval rule
check, since the total spread of J=2 is 247 cm™!
while that of J=3 is only 179 cm™!.

In beginning an analysis, we must first obtain
some idea of the symmetry. From table 9, we
see that the only symmetries giving no degeneracy
for an even-electron system are Dj, Ci, Ca,
and C,. The overall crystal symmetry suggests
either C,, or Cy. From table 5, we see that
D.» requires the following potential coefficients:
) 8 2’2 C% C% O C4 Ot Ci. The lower symmetry
C., is obtained by the inclusion of odd potential
terms, which will influence the energy splittings
by a very small amount (section 6.1), while C,,
will include even S terms. These latter will
strongly influence the energy splittings. In order
to reduce the number of independent parameters,
we shall assume D,,, which will be energetically
equivalent to C,,.

In deducing the field parameters, we need to
know not only the encrgies of the levels but also
the free ion M values from which they come.
Where the crystal field does not remove all
degeneracy, this may be partially obtained from
the Zeeman splittings. For the present case, the
only source of such information is the polariza-
tion data.

We begin our detailed analysis with the simplest
nontrivial case J=1. We have three levels at
~—23, —17, and +40. The only potential terms
of D, contributing to matrix efements within
J=1 are C3and Ci. It is a natural first guess to
consider that the C} term causes a splitting of
the state |0> to +40, and |+1> and |—1> to
—20, with a small spl’itting of the latter two to
~—17 and —23 by C%. This is not necessarily the
case, and must be in agreement with the polariza-
tion data.

From table 14, where radiation in the z direc-
tion corresponds to 6=¢=0° ¢=0° for z polari-
zation and ¢¥=90° for y polarization, we see that
z-polarized radiation may be produced by either
A, B,, or A,,, while y-polarized radiation may be
produced by A;, B, or A,,. These are the electric
dipole, magnetic dipole, or electric quadrupole
terms, respectively. We shall assume that the
transitions are magnetic dipole in character. We
do not know the symmetry of the upper statc in
the fluorescent spectrum, but there are only 4 pos-
sibilities in a Dy, symmetry. From table 13 we
deduce the allowed lower state for each possible
upper state as follows:

Upper B,(Uy) Bz(U)
state
Al' B’_Y‘ [}] I3
2 Bls Bﬂ:
1 2 All
By, Ay Asq

The identification of U, and U; of table 18
ideally requires that they be present in only one
of the two polarizations, rather than “very weak,”
but the actual behavior is quite close to this ideal.
We now turn to table 9, and find that the lower
state 1, yields in D, symmetry the states Ay,
B,,, and B,. Since A, is not present in the
lower group, we conclude that the upper state is
either A;, or A, that the lower states at —23
and —17 are B, and B,, while the other state
from J=1 is A,. We cannot uniquely assign
B, and B,, to a particular one of the —23, —17
levels. The upper level is presumably °D; and a
4, level under D,, gives both Ay, and Ay levels.
Interestingly enough, the same results, without
“g” and “u” subscripts, hold for C,, symmetry.
We now see from table 10 that B, and B, arisc
from the state £, of D, i.e., they come from
M=41 and our earlier guess is confirmed.

Tn order to achieve maximum simplicity in the
calculations, it is in general desirable to use zero-
order wave functions which belong to reps of the
symmetry group. In the present case, the state
|0> belongs to Ay, but thestates |[+1>> and {—1>
are not appropriate, and we must use the (es-

1
:/;l*l>+

1 1 1
E‘+l> and Bg,:;/—§|—1>—;,§[+l>. We shall

frequently abbreviate these as [I+>> and [1—2>,
respectively. We now introduce the perturbation
V=r(C3C{+C2C2). Since the potential V is
symmetric under D,, and our three zero order
wave functions belong to different reps, all non-
diagonal matrix elements vanish, and the energies
are merely <0[V|0>, <1+|V|1+> and
<L1—|V[1=>. Tt is a general characteristic of

sentially real) combinations By,:




crystal field problems that one must be freely able
to shift from complex to real forms of wave func-
tions and vice versa, as the symmetry demands.

In the present case, we have from (2.9) ¥3=C%

and Y§=Y;’=\71503. Hence <0[V|0>=
(a1]{Y||el)CiB' ¥3<r2>=40 em™! or, from tables
15 and 16, (0.199460)(—0.632456) ¥3<7*>=40
em™!, so that ¥Y3<r2>=—317.1cm~'. Similarly,

<LHVIL+>=@IYallan| @5+ -1 73
+3 (O + 0L <> = —17 em

Recalling (5.6) and using the value of Y7 just com-
puted above, we obtain (0.199469) (0.774597)
T3<r*>=+43, or ¥2=194 cm~!. The sign of

3 1s ambiguous, since the state [1+> could
equally well have been assigned to —23 cm™.
These results, while interesting, are really not too
profound, since we have only two independent
energies relative to the mean of the group, and
we had two adjustable coefficients at our disposal.

When we proceed to the J=2 case, we see that
the allowed levels (table 9) are (2) A, As, By,
and Bj. In contrast to the J=1 case, the B,
and By, are |1—>> and |1+>>. By using table 10,
we see that A;, and A, arise from |[£2>. In
particular A,;is |2+ > while Ay is |2—>. These
may most conveniently be deduced from the
transformation rules of table 8, in comparison
with the tesseral harmonics of table 2, keeping in
mind the phase convention for odd positive M of
(2.8). The only nondiagonal matrix elements
in the resulting secular determinant will be
<0|V|2+>>, so that we have only one second
degree equation to solve for the energies.

The polarization data are available only for the
state at 4101 ecm~!. This has polarization like
the state B,, or B, of J=1, and hence is presum-
ably also {1+> or [I—>. We do not have any
polarization data on the other levels, so we do
not know which states are which. We are there-
fore forced to a trial-and-error process. The
additional potential parameters significant for
J=2 are C? C? Ci. If we select {1+ > as 101
cm™! and any one other as kl—>, this will fix
O? and C}, so that only C} is left to fit the other
three levels.

In attempting this process, the work is some-
what simplified by observing that (a2||Y,||a2) is
very small, and that second degree terms wi
have only a small contribution to the matrix
elements. Consequently, they were disregarded
for the trial and error work, and were included
later for a more exact calculation. The required
matrix elements are, omitting the factor (a2} Y4||e2)
common to all,

<LO|VI0>=CRYi<r>

- - e e i o bl ki S
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1
<0|Vl2+>=;/“-2- ((3-£+CENYI<>

2
=== C37Yir>
V2

<2+|Vi2+ >=% (O +C 3 Yi<r>
+5 (03P +CLI) TI<r>
=03V >+ C P>
<V >=01Y<r >+ C Y <>
<I=|V=>=C0RYi<r>—C375<r>
L= |VR2=>=08Ti<r>—C 38V i<r>
These may be simplified by observing that C2i2:
Ci: C3*=6:—4:1 and that C32=—+3/8 C_382. If
we introduce the following abbreviations,
<OVIo>=V, <—2V|+2>=8
<-1V|-1>=3
the matrix elements may be simplified to:

<ovio>=V,
<2V >=L Vit 8

<2—|Vi2—>=; Vo—p

V(14 >=2 Vits

<Oz >=—ryfS () =L 85
<=V —>=—2 Vs

The form of these matrix elements suggests the
physical situation. The €} term splits the 2J-1

levels into one at V,, a pair at —-gVo and a pair

at %Vo. The first pair is then further split by

% into states separated by 26. The second pair
is also split into two separated by 28 through (4},
but one of these interacts further (via C%) with
|0> through the nondiagonal matrix element

1
—3 V38

The trial and error fit was actually tried for all
Eossible pairs of states as |1+ > and |1 —>>. The
est fit was obtained for 101 (in a%reement with
the polarization data) and —75. With this pre-
liminary information, the second degree terms
were included in the matrix elements, the fourth




degree coefficients were chosen for a least squares
fit in the energy, and the following were obtained:

E (obs) E (cale) State
101 108.0 { {14+>
62 65.9 | [2—>
57 45.4 ( 0.820 [0>+40.572 |2+ >
—75 —85.81 l1—>
—145 —133.5 | 0.820 [24+>—0.572 [0>
< >Y)=—187.8 cm™! <r*>Y}i=1,141 ecm™!
<M >Yi=—626.2 cm~1
The fit is only fair. There are three possible
sources of inaccuracy in the treatment. The first

of these is the possibility of deviation from the
L-8 coupling approximation. This would appear
%sentialﬁ)y in the values of the reduced matrix
elements. Purely from the empirical standpoint,
they could be treated as additional parameters to
provide a better fit to the data. A second appre-
ciable source of discrepancy is the interactions
with other states, g‘rincipal those within the
ground multiplet. The nondiagonal Wigner co-
efficients and Racah coefficients are both generally
of the same order of magnitude as the diagonal
ones, and the reduced L-S matrix elements of
table 15 are appropriate for all combinations with-
in the ground multiplet. Nondiagonal matrix ele-
ments can therefore be of appreciable magnitude
and, in view of the relatively small multiplet
splitting, could become quite important in a more
refined theory. Finally, there is also the possibil-
ity that the symmetry is such as to require the
inclusion of S% terms. This almost doubles the
total number of parameters. This will, of course,
permit an adjustment to the data, but there is no
clear requirement for the inclusion of these terms.
It may be noted here again that the earlier check
on multiplet separation showed a distinct anomaly
for the J=2 group.

Let us now turn our attention to J=3. Our
allowed states are as follows:

Ay:|0>and 24> Ay 2>
By 13+>and [14+> Bad1—> and |3—>.

If we compute the levels from the second and
fourth degree terms only, we obtain a set of levels
which show a rather surprisingly similar trend to
the actually observed levels, which include the
effect of sixth degree terms. Unfortunately, the
polarization data both here and for still higher J
does not appear to follow either the rules appro-
priate for Dy, symmetry found adequate for lower
J, or any other pattern easily amenable to analysis.
In particular, the states given do not especially
even suggest the reported polarization data.

E (obs) E (cale) State

37 45.1 | 0.948 |1+ > —0.319 |3+ >
32 36.9] .756183—> —.6541—>
27 21.8 | .784 (0> —. 62024+ >
22 8.6 . 620 (0> +.784 {24+ >
—5 —14. 8 L31914+> 4.948 3+ >

—15 —28.0 [2—>

-—-98 —69.6 | 0.756 [1—> +.654[3—>

There is obviously a considerable amount of work
yet to be done before the Tb spectrum is under-
stood. Experimentally, there 1s need for more
attention to polarization data for fixing the charac-
ter of the statesinvolved. Theoretically, there are
several lines of endeavor to be pursued. The
problems become numerically so tedious that
machine calculation is probably required for fur-
ther success. The first of these is a systematic
machine calculation of nondiagonal Ve;gner co-
efficients. The published table of Simon (1954)
is inadequate in range, and the extension of table
15 by desk calculations is almost out of the ques-
tion. For the most part, the tables of the Racah
coefficients (Simon et al., 1954) are adequate, so
that the availability of Wigner coefficients would
permit a study of nondiagonal contributions to the
energies. Furthermore, it appears that in prob-
lems of low symmetry, such as the present one,
there will be a requirement for trial-and-error
calculations. These are well adapted to machine
calculations, but are again, except in very sim-
ple cases, almost out of the question for desk
calculators.
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The scope of activities of the Netionel Buseas of Standerds at its ahingson,

y ite mejox loboratosion in W D.C., and Boulder,
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deacription of the activitian, uammmmmwdﬁ-mm

WASHINGTON, D.C."

Elsotricity and Eloctronics. Resistance and Roactance. Elwotrom Devicss. Elvctvical Instrumeuts, Magnetic
Mosswrements. Diclectrics. Engineering Electronics. Elsotromic Instrumentation. Electrechemistry,
%ﬂuw. and v .

. b . Photometry snd Colorimetry. Optical Instraments. Photogrephic Technology. Length.

Heat. Temperature Physics. Thermodynamios. i i
cals B ysics. Cryogenic Physics. Rhoology. Molecular Kinotics. Free Radi-

::;::mﬂel- Spectroscopy. Radiometry. Mass Spoctrometry. Solid State Physics. Electrom Physics. Atomic

N m&:mhymwﬁnmmx«ymﬁﬂwlﬁm
Chemistry. Electrodeposition. Moloculer Structure and Propertics of Gases. Physical Chemistry. Thermo-
Mechanics. Sound. Mechanicsl Instrumests. Fluid Mochanics. Emgincering Mochanics. Mass and Scale,
Capacity, Density, and Fluid Meters. Combustion Comtrals.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer
Structure. Plastics. Dental Rescarch.

Moetallurgy. Thermal Metallurgy. Chemical Metallurgy. Mochanical Metsllurgy. Corrosion. Metal Physics.
Mineral Products. Eagineering Ceeamics, Glass, Befractovies. Enameled Metals. Constitution and Micro-
structure.

Building Technology. Structural Engimcering. Fire Protection. Air Conditioning, Hesting, and Refrigerstion.
Floor, Roof, and Wall Coverings. Codes and Safety Standards. Heat Transfer. Concreting Materiale.

Applied Mathematics. Numerical Aualysis. Computation. Statistical Engineering. Mathomatical Physics.
Data Processing Systesns. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital
Systems. Analog Systems. Applications Engincering.

o Office of Basic Instrumentation. o Office of Weights and Measures,
BOULDER, COLORADO

Cryogenic Engimcering. Cryogenic Equipment. Cryogesic Procosses. Propertics of Materisls. Gas Liquefaction.
Radio Propagation Physics. Upper Atmospbere Rescarch. Joncsphere Rescarch. Regular Prediction Services.
Sus-Earth Relationships. VHF Research. Radio Warning Services. Airglow and Aurora. Radio Astronomy and
Axctic Propegation.

Redie Propagation Englassring. Dsta Reduotion Jastramentstion. Radio Neise. Tropospheric Mossuroments.
Tropesphoric Analysis. Propagaticn-Terrain Effects. Radis-Metsorclegy. Lower Atmosphere Physics.

Radie Standavds. High-Froquency Eloctrical Stondards. Radio Broadeast Servics. Radio and Microwave Mate-
risds. Atomic Frequency sud Time Standards. Electseuic Colibeation Contar. Microwave Cleouit Standesds.
vqumm Modalation Systems. Amtensa Ressurck. Navigation Syssews. Syseems Analysis.
Field Operations.
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