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Preface

This present work had its inception in 1954, shortly after Professor G. H.
Dieke of The Johns Hopkins University, with the support of the U.S. Atomic
Energy Commission, initiated a program of experimental studies of the sharp
line absortion spectra of crystals. The effort was directed principally to
rare earth salt crystals, but some work was also done on the ruby and uranyl
salts. Dr. Dieke suggested to the author that a theoretical study to accompany
the experimental program would be desirable and encouraged the undertaking
of such a study.

It rapidly became apparent on surveying the problem that the techniques
of group theory would be of central importance in such a study. Early in 1955,
Dr. Charles M. Herzfeld, then of the Naval Research Laboratory in Washington,
addressed the Spectroscopy Seminar at Hopkins on the techniques of group
theory with particular application to the paramagnetic resonance of salts of
the iron group. This was the beginning of a continuing association with Dr.
Herzfeld in the stud. of group theory, an association which has been a source
of great personal and pro essional satisfaction to the author to the present time.

In August of 1955, through the courtesy of Dr. F. G. Brickwedde, then
Chief of the Heat and Power Division of the National Bureau of Standards,
and Dr. R. P. Hudson, Chief of the Cryogenic Physics Section of the Bureau,
the author was appointed a Guest Worker at the Bureau, and office space was
provided and the extensive library facilities of the Bureau made available.
This appointment continued when Dr. Herzfeld was appointed Chief of the
Heat Division.

The present work is largely an exhaustive collection of the results of group
theory which apply to the theory of atomic energy levels in crystals, together
with a careful, and detailed, but not especially abstract development of the
general theory to permit an intelligent application of the results to experimental
problems. Dr. Herzfeld, in collaboration with Professor Paul H. Meijer of
The Catholic University of America, has written a review on the general subject
"Group Theory and Crystal Field Theory", soon to be published, treating the
subject from a more abstract viewpoint of modern algebra and concentrating
on the fundamental aspects of the theory. This latter work and the present
one form a complementary pair of works on the general topic. It is hoped
that, together, they will meet the needs of most workers in the field.
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"Atomic Energy Levels ln Frystals "'

John L. Prather 3

Discrete energy levels observed within certain crystals are treated as due to perturbations
of the energy levels of the free ion by an electrostatic field arising from the crystal lattice.
The analytic procedure. for determining the field from the charge configuration are given,
and the resulting fields are classified according to their symmetry. After a general survey
of group-theoretical ideas, the applicable groups are analysed in detail, and characters
appropriate for both Integral and half-integral angular momenta of the free ion are tabulated.
These are applied to the determination of the number and type of levels arising from a free
ion level with J58. The results of this analysis are tabulated, as are the selection rules
for electric dipole, magnetic dipole, and electric quadrupole transitions. Calculation of the
perturbation matrix elements by the use of Wigner and Racah coefficients is discussed.
Examples of the application of these several techniques to specific problems are given.

1. Introduction

In contrast to the sharp lines or resolvable reported work on chromium, cobalt, and uranium
bands characteristic of the optical absorption crystals as well as on the rare earths.
spectra of free atomic and molecular systems, The year 1929 marked the beginning of an
such spectra for solids consist for the most part extensive program of investigation of these spectra
of broad absorption regions or bands without any at various temperatures by Spedding, Freed, and
resolvable structure. These spectra are therefore collaborators. The principal experimental ad-
of little used for analysis of the details of the solids vance over earlier work lay in the use of synthetic
for which they are observed, revealing only general crystals of more definite composition than the
information such as the presence or absence of natural crystals, which usually consisted of a
certain molecular groupings. Nevertheles, it was mixture of rare earths of va-ving composton.
early recognized in the development of optical Hence there had been little if any reliability in
spectroscopy that certain naturally occurrimg intercomparison of the results obtained from
,minerals did in fact show a characteristic line various crystals, even of the same nominal type.
absorption spectrum. The earliest observations This was a considerable advance over the previous
were on the crystals of salts of the iron group attempts at a systematic experimental approach
elements and of the rare earth elements, thouh to these spectra, though by today's standards
later observations have shown similar spectra in even these crystals were not of satisfactory
crystals of all elements characterized by a par- purity. These measurements were also much
tially filled inner shell of electrons. In this aiden by continuing developments in the theory
present work we shall be concerned primarily of these spectra, which we shall trace below.
with the rare-earth spectra, though we shall All of these spectra show the same general
sketch the application of the development to pattern and behavior upon reducing the temper-
other possible cases. ature. The absorption lines for various elements

The earliest data on these spectra, covering fall into groups in several regions of the spectrum-
about 50 years before 1905 are reviewed by the general wavelength regions where the lines
Kayser (see bibliography). Subsequent to the fall depend on the rare earth involved, while
discovery of the Zeeman effect in 1895, J. Becquerel details concerning the number of lines, the exact
initiated an extensive investigation on the effects position, intervals, Zeeman effect, etc., depend
of magnetic fields on the absortion lines of on the negative ions involved and on the details
natural rare earth crystals, their polarization, and of the crystal structure. In comparison with
purticularly their rotation of the plane of polariza- room temperature measurements, those at re-
tion of light (Faraday effect). These measure- duced temperatures show generally sharper lines,
ments, carried out both at room temperature and together with a slight overall shift of the groups
at liquid air temperature, are summarized in his to the red and increased separation of the lines
paper of 1908. In this same year, Becquerel and within a roup (Spedding and Bear, 1932). The
Om~nes reported on the spectra and magnetic number of fines also changes; certain "high temper-
effects at liquid hydrogen temperatures, and ature lines" disappear, while others appear or

mneasurenments at liquid helium temperatures were become more intense at lower temperatures.
finally reported in 1926 by Becquerel, Onnes, and Such lines have also been observed in solutions of
de Haas. du Bois and Elias (1908, 1911) also the ions, though these lines are generally broader
____than in the crystals.
IBasd on a dieflation submitted to the Faculty of Philosophy of Th Although there was some theoretical specula-

Johun Hopkins Unvei• arin al fulflUment of the requirements fr the tion on these spectra, no theoretically satisfactory
SuTopported in pt by the .5. Air Force ough e Air Force Office Of contributions save the derivation of empiricalBci"• 8eentance seereh fltthe Air lteeerch and bevsiopment Command, under

...... . Ad as-a en. energy level diagrams could be made prior to the• contract No. C8O and A eSID-W1.

a " uest worker, tomarl from The Georp Wasbington Univesrity. now advent of quantum mechanics. The first major
wift EDt Cdlee seozt wi-
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Scontribution directly related to the rare earth that these electrostatic fields arising from the
spectra was the calculation by Hund (1925) of the crystal must leave every level of an odd-electron
room temperature paramagnetic susceptibility of system at least twofold degenerate.
the rare earth crystals on the assumption that the Although it seemed clear that the idea of an
crystals consisted of an independent statistical electrostatic perturbation acting upon the levels
assemblage of ions, characterized by an unfilled of the free ion was the key to the problem, it was
shell of 4f electrons which became increasingly not at all certain what transitions were responsible
filled as one proceeded up the periodic table. for the lines actually observed. The situation was
The ground states of these ions were calculated complicated by utter ignorance of the actual free
on the assumption that Hund's rules for free ion spectrum, and even as recently as 1958 only
atoms were valid, i.e., that of all the terms arising that of CeIV is known (Lang, 1936). The earliest
from the given 4f* configuration, that with the suggestions were that the transition involved a
greatest multiplicity had the lowest energy, and 4f electron excited to either 5d or 6s (Spedding,
of those of this greatest multiplicity, the largest 1931; Spedding, 1933). These were based princi-
L value was lowest. For a given L-S term, the pally on analogy with the selection rules applicable
resulting multiplet was taken as normal in the to free ions. However, the sharpness of the lines
first halM of the series (the 4V shell being less than indicates a freedom from interaction with other
half filled) and as inverted in the last half of the ions which would not be expected from such levels
series. The agreement with experiment was (involving 5d or 68) having a fair probability of
quite good, save in the cases of europium and being at appreciable distances from the nucleus.
samarium, and these two discrepancies were Furthermore, the general intensity of the lines
corrected by the second order calculations of Van relative to the high concentration of ions in a
V'eck and Frank (1929), Hund having considered solid yields transition probabilities corresponding
only the lowest level of the ground multiplet as to transitions forbidden in the usual type of
contributing to the susceptibility. This agree- atomic spectra (Van Vleck, 1937). For thisreason,
ment with experiment not only gave evidence for it is today generally considered that the lines
the electronic structure of the rare earth ions in come from transitions between terms arising
the crystals, but also suggested that the effects on from the ground 4]" configuration. This view is
the magnetic properties of the ion due to inclusion strengthened by the simplicity of such sharp line
in the crystal were small in comparison with kT spectra in the salts of cerium and ytterbium
at 3000 K and also small in comparison with the (Dieke and Crosswhite, 1956) both of which have
multiplet splitting of the ground L-S term. only one excited level from the ground configura-

It was perhaps natural to assume that the line tions 4f' and 4f3, respectively. Van Vleck also
spectra observed were similarly due to the spectra made some estimates of the relative probability of
of the free ions, modified to some slight degree by transitions due to electric quadrupole radiation,
their inclusion in the crystal, but the first sugges- magnetic dipole radiation, electric dipole radiation
tion to this effect was made by Brunetti and arising from absence of a static center of smnmetry
Ollano (1929), who considered the crystal as a in the crystal field (which destroys the character-
perturbing electrostatic field on the free ion ization of levels as odd or even), and electric dipole
spectrum. This idea was also developed by radiation arising from destruction of a static center
Freed and Spedding (1929) in initiating their of symmetry by lattice vibrations. It was con-
program of experimental observations noted cluded that there was no clear quantitative reason
above. The classic paper in these early years of to reject completely any of these as being not
the theory is that by Bethe (1929). Bethe responsible for the lines observed.
pointed out that the details of the theoretical During this period (the 1930's) detailed calcula-
treatment depended on the strength of this tions were made by Penney and Schlapp (1932,
external crystal field compared to the other inter- Schlapp and Penney) based on the assumption of
actions present (principally the Coulomb inter- a cubic crystal field, adjusting the parameters to
action of the electrons and the spin-orbit inter- fit observed magnetic susceptibility data. Al-
action), and that the symmetry alone of the though good agreement with experiment in this
external field, independent of its magnitude, regard was obtained, it is in marked disagreement
would determine the number and type of levels with the spectral data. This may be ascribed to
arising from a given level of the free ion. These the insensitivity of susceptibility data (a statistical
were specifically computed by Bethe for certain average over all ions present) to details of the
symmetries, emphasizing in the process the crystal field. The same objection also applies to
importance of group-theoretical ideas for such attempts to derive the crystal field from specific
calculations, and the properties of one-electron heat data (Ahlberg et al., 1937). It is now known
wave functions under these same crystal fields that the symmetry of the cubic system is too high
were also calculated. These ideas were later to account for the spectroscopic observations.
extended to treat the Zeeman effect in crystals Apart from theoretical considerations of the
(Bethe, 1930). At about the same time, Kramers rare earth spectra alone, several general theoretical
(1929, 1930) considering principally the Faraday contributions have been made which are applicable
effect, formulated the fundamental requirement in major part to the determination of the energy
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levels of rare earth ions in crystals. Since these Recent renewed interest in these spectra and
will be referred to in detail later in this work, we the associated properties of the ions has generated
shall merely mention them for general background a requirement for a comprehensive survey andat this point. The general applicability of group development of the theoretical techniques re uired
theory to roblems of atomic structure has been for an analysis of such spectra. WhiMe the t eory
emphasized by Weyl (1928), clarified by Eckart in its most general terms is known, its applications

930), nd treated at length by Wigner (1931). in the past have either been concerned with a
e calculations of Bethe (1929) for certain sym- particular salt or ion, or have used only a portion

groups were extended by Wigner (1930) to of the theoretical equipment available, are widel
symmetries, though this was in connection scattered through the literature, and their usefu-

with problems of molecular vibrations. The ness is limited by differences in conventions of
monumental work of Condon and Shortley (1935) sign, phase, normalization, notation, etc. It is
is invaluable for the study of the free ion spectrum. the purpose of this paper to provide a compre-

While experimental data on many different hensive theoretical approach to the analysis of
crystals were collected by many observers, using these spect:ea in a form particularly adapted to
many different techniques (absorption spectra, the requirements of the experimental workers.
Zeeman effect, fluorescence spectra, magnetic In the interest of meeting this aim, mathematical
measurements, specific heat data) during the fol- rigor and long purely algebraic manipulations
lowing years, the next major advance was the ap- have for the most part been omitted, except
plication of paramagnetic resonance techniques to where necessary for an understanding of the
the rare earth crystals. A general review of this concepts and procedures involved. It is hoped
work may be found in the paper by Bleaney and that it will be of value to experimentalists in the
Stevens (1953), while additional data are given in field who have had only a general background in
the supplementary article by Bowers and Owen the ordinary theory of the atomic spectra of free
(1955). This method has the advantage of giving atomic systems.
data of high accuracy and resolution-its major Since the general problem is that of computing
limitation is in the fact that with rare exceptions the effect on the free ion of the electrostatic
only data on the ground level in the crystal are perturbations arising from the crystal lattice, we
obtained. begin by considering in section 2 the development

The next major advance in the general theory of this potential in a power series of tesseral har-
was the work of Racah (1942, 1942a,b) on complex monics, in explicit terms of the charge and position
spectra, which provided very powerful general of the ions giving rise to the field. An important
techniques for the solution of problems in many- property of such fields is their symmetry, and
electron systems. His results have been made this will be discussed in detail. In section 3, we
applicable to specific numerical calculations by shall consider the connection between the theory
the recent appearance of numerical tables by of groups and quantum mechanics. We begin
Biedenharn (1952), Simon (1954), and Simon et al. by sketching the group-theoretical ideas associated
(1954). While the procedures of Racah have with the problem of the free atom. This leads
been used in several fields, and their applicability naturally into those modifications caused by the
to the problem of rare earth spectra in crystals has inclusion of the ion in the crystal lattice. The
been mentioned by Elliott and Stevens (1953), properties of the groups involved in the present
no widespread use of them has been made in problem are then considered in detail. In section
crystal spectra problems. The general work of 4, we present explicitly the results of the consider-
Bethe (1929) on the applications of group theory ations of section 3 to the degeneracy of levels,
to the problem has subse uently been applied selection rules and polarization of lines in the
by various authors to specia? cases, but no general spectrum of the crystal. In section 5, we consider
overall survey of the possibilities has been given, the calculation of the matrix elements of the
The results have been obtained by Hellwege perturbing electrostatic potential. Finally, we
(1948, 1948a-d) without the explicit use of group conclude in section 6 b a review of the various
theory, but much elegance and conciseness is lost y
thereby, and the results are presented in a rather factors influencing the experimentally observed
cumbersome form. A general survey of these spectra, correlated with the spectra of the free
and many other aspects of the problem by Fick ion, and some examples of the application of the
and Joos (1957) has recently appeared. techniques to specific problems.

2. The Electrostatic Field

2.1. Expansion in Tesseral Harmonics where y is the angle between the directions given
by a, f, and 8, 0. The unit vectors in the two di-

Let us consider, in a given frame of reference rections are sin a cos Pi~sin a sin -J+cos ak, and
an ion with a charge q located at the point described sin 0 cos Oi-{sin 0 sin OJ +cos Ok, respectively.
in spherical coordinates as (R, a, #). The potential Thus, cos y is the scalar product of the two unit vec-
at the point (r, 0, 0) may be expressed as a series tors and cos -y=sin 0 sin a cos 0 cos •-+sin 0 sin a
of Legendre polynomials in the variable cos -, sin 0 sin #+cos 0 cas a=sin a sin 0 coo (0-0)-

3



cos 0 cos a. The potential is given, for r< R, by TAB.L 1. Normalized Legendre fundionm

V=• -0 PN(cosy). (2.1) e=-12- (35 cos' 9-30 cose 9 3)

The total potential is the sum of similar contribu- e -- = ! 0 i, ° (7 cos 0 -3 cos o) sin 0

tions from each ion of the crystal lattice. In the 2 Cos e ( s - )

above expression, the contribution of each ion is -4 5
described with reference to a different axis, and '-2- si 9 0 (7 CO8O --1) Sint a

it is convenient to refer each contribution to the

same axis, which we choose to be the z-axis of 1j 70
the given frame of reference. of=2 (3 cost e-- 1) 6= cos a sin9 3 0

This may be accomplished through the use of
the addition theorem of spherical harmonics, which f 3o -05.sin4 9
expresses PN(cos -j) in terms of a, 0, 0, and .

(Stratton, 1941). 6 2(63 cos: 0--70 cos- 09+15
0;=_ sin2 e I'•-cs0

N (N...jU)! 416 Cos 9)
PN(cos'Y) =PN(Cosa )PN(cOs 0) + 2ý; (N+M)f 0 -Vii4s COS-e-3 !65(21"o9-14CO829+1)

4--- coseO) ', 16 Sin 9

PNf(cos a) P %(cos 9) cos M (O--•). (2.2) 4 (5 9 ) 6 sin 9

-,,14 (5 Co62 0- 1) 11- 35 o"0-o o i5
The potential due to the i-th charge can then be 8 sin 0 8

be put into the form 08, 0 Cos 0 3 2 9_1) sin,•
v4==-'iis 0 cos[PNJ6=---f-PN cosse)-1) sin e" N [P N C S., N(C S0

= o,. R• , I oin o •=--- COS 0 sin' 0

N (NM)!p+2.ZT I I(cos a&) PM (cos9 0) 3 U54
M-1 1 051 = 32 s n

(cos Mo cos M,÷+ sin Mo sin M6,)]. (2.3)
_1 e=2E2(231 Cos' 0-315 cos4 o9 105 cos' 0-5)

The total potential may then be obtained by sum-

ming over all charges in the lattice. 27
As used above, the P`(cos 0) are not normalized O' =-16 (33 cos' --30 cos' 9+5 cos 9) sin 9

in the quantum-mechanical sense, since
= 2,3 (33 cos 9--18 cos' 9-1-i) sin' 9

£'1 64

J P'v (cos 9) Pk (cos 0) d (cos 0)
2 (N~kfvl=3 (11 cos' 9--3 cos 9) sin' 9

2  (N+M)! 32
SN,x J 61,'2N_.F1 (NZ M)I i 3O=- (11 cos 09-1) sine 0

32
and it is consequently convenient to define . 3V2,002 C .se

320 = / 2 N + 1 (N -- M ) l '( o s 8 . ( 2 42 ( _M) Nco 0). (24•=-" Aroo0 sine 0
64

Tabulated functions Of for N up to and including
6 are given in table 1. Similarly, the functions and z. They are given as functions of x, y, and
Ssin M0, ± cos M-0, and - constitute an intable2:

orthonormal set of functions over the interval S-= --M - ,o so
[0 2r] in the variable #. We shall define the N~O,
following tesseral harmonics, which are functions I -o
of position on the surface of the unit sphere, and CN= 9 M N* (2.5)
may be evaluated either from 9, .0, or from x, y,

4



TABLE 2. Normalized teaseral harmonies czV1,-551 (2z--xZ-y')(Z2l-y2)z
,C Iz 1412z-W-338 Vr; r5

C? l_ 1 2 5--3 rz--3z!z VT,155 I (2z--z'--y)(2xyz)

~ ±.4 ~~~3 xit, _v' 1 (8z'-'-,-y2 = (zt -•?t)

St "r3 1 k/ Sj.i.45u1I4@y-'y--P3 ~ ~ i~(z~z~ 2 (zy~S
8 v32 TI

vr-r r , A I s ,!,07 1..(Szs-xOy6z2•y,+y,)zW6 '7 r,
4_ 2 1' 4 r_ 16 0f. ±I

'l= _2 4- Sj 3 -5. I .(xl-yl)(4zyz)

./r116 •; -

2'T, r. r38 - i, ' Q 3J15+_4. 1 _, __l 5 y

4 -I rz = ''- 15. 1._y- 120(x 2
+ 5y)z

___!=_ 32 r

4 r, Q=E26.V 1 160- 120z(x-+y2)e+5z(X 2 +y 2)2l-5X$+332 -ý2- rG

= 3,r2- 1 8z'+3z•
4 3y

4
-24;gz

2
-24yaz

2 +6.•2 Q= x'2' 1 [8z$-2Oz3(x2+y2)+5z(x2+y2)2]x
16 -r

3VI=IEO 1 (4z2 -3x2-3y 2 )(xz) 1lj2- [8Z5-20Z3 (xt2 +y 2)±+5Z(Xl±yl)2]y8 r4¢ 16

3V"10 I (4z --3z2-3ys)(yz) C V 2,73 0 1 [16z-16(x 2+y 2) ±+(x±+y2)2J(z2- y)

To 8 -r; r 64 To, r

3 - 1 (6z2--x--y3)(x•--y2) S!= -2,730 1 [16z'--16(z++y2)z++(z2+y')2 ](2xy)
l 8 r4 64 To- ro

ToT
3 ,1 (6z---)(2y) 3 _. r0-&A- 3V)(x)

To= ~r r 32 .- ,r Te

3ý71(0-332)(xz) =2,. _1 (8z 2•-3S-3y2)(3zx-i)(yz)
!=8032 V- To

3C76 1 (3z--y))(yz) Q=:32 1e

3V-0 I (loz-z,-y')(4zy-4z&P)

To. 32 ~ TI

3,v2,002 I (xs-10zY2+5zy')z3S: 33 1 4 zy( x3-- yI_ ) --l 32 - T r e

,_6= 4 32 I -

3 2,002 1 (y5-IOyX5+ yZ4)Z-%/r TIz-0(ey)1(0Y) : 32 .raT

i165 1 (8x4+x4+yl+2z4yl-12•z--12y•z)x 64 Tor re

V0 1 (---y6)(z-3i•')(2xz)

51664-61-2_ __ __ __ __ _
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With these substitutivns, the potential may now indicate by a symbolic notation the operations
be written in the form which convert a given initial point into one of

equal potential. Thus, in the example just Fiven,
N (C•CTSjS•) (2.6) t operations are respectively a reflection in theS = ] +2 -z plane, a reflection in the y-z plane, and a

rotation of w about the z axis, and may be desig-
where the coefficients C•N and SN depend on the nated as a,,, c,, and C2. Finally, for a given
size and location of the neighboring ions and are point (x, y, z) one may give those 3X3 matrices
given explicitly by which transform the original point into one of

4 equal potential. If one is thoroughly familiar
N= Rp'i C• (a, '6 (2.7a) with the notation and properties of the various

2N+ 1 rotations, reflections, and the inversion, there is
no reason to prefer one of these to the other. If

S _-_1 M ( (2.7b) one does not have this familiarity, the use of the
N2N+ 1 ~RN+ INmatrices has the advantage that the effect of two

successive operations can be computed by matrix
We recall here that the i-th ion, charge qg, is multiplication without recourse to geometric

located in spherical coordinates at ( arguments. Thus, if r'=Ar and r"=Br for all r,
The terms Cf(af,,f) and SN(au,,i) represent the then r.'=ABr is also a point of equal potential
quantities (2.5) evaluated for the several pairs of as is r"... = BAr. For the problem to be considered
angles involved in the summation, here, there are only a few basic matrices which
We shall also have occasion to utilize the complex must be considered. These, together with their
form of (2.5), defining symbolic notation (Sch6nflies, 1923) are:

T M -- (C(+S),YN (--S)" (2.8) cos 0c -sin , 0 - 0

and C..=- sin 0 cos 0 C6= 43 0

This will similarly require, in lieu of (2.7a, b) the 0 1L0
coefficients

O"M 1 r - 1 _0 1
Y '( (C-iS'),(+iS. 0 - 0 2 2 0

(2.9) C4 = 1 0 0 C3= .3 1

This expression (2.6) for the potential diverges for 0 0 210
rT>R. As we shall see later, however, we shall Lo0 01
require only terms for N up to and including 6,
and we shal assume that the wave function of the
free ion vanishes sufficientl rapidly for large r -1 0 01 0 0
that negligible error is made by integrating to
infinite distances. 0= -1 0 0 1 0

2.2. Symmetry L0 1 0 0 -]
The effects of the electrostatic field on the free

ion spectrum may be separated into two categories: I
first, those depending on the qualitative nature of 1 0 00
the field (its shape or symmetry), which is ex-
pressed through the mere presence or absence of E= o 1
certain of the CQf or S-; and second, the quanti-
tative details which depend on the .;gn and magni- 0 0 0 0 -1
tude of the CIf and Sm. It is convenient to con-
sider separately these two characteristics of the
field. Thus, the point (or vector) r= (x, y, z) under

There are several standard and equivalent the operation C. becomes
techniques for describing the symmetry of the
electrostatic field. For example, given an arbi- r'-= (z cos --y sin ., x sin O+y cos 0, z).
trary point (x, y, z) of the field, one may indicate
the coordinates of all points having the same We see that this is equivalent to a rotation of the
value of the potential, such as (z, -y, z), (-z, y, z), vector about the z-axis by an angle 0, counter-
(-x, -- y, z). Another widely used scheme is to clockwise (i.e., by +0 in terms of the right-hand
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screw convention) when looking toward the origin The designation C. represents a n-fold axis of
along the positive z-axis. This may also be inter- symmetry (n=2,3,4,6), since the matrix is ob-
preted as a new description of the old point (x, y, tained from C. by restricting 0 to 21r/n. Each
z) in terms of a new coordinate system where the rotation by 2w/n yields an equivalent point in thecoordinate system has been rotated by the angle potential field and, including the original one,
0 in the opposite sense. In figure 1, we have ini- there are n such altogether. The element C" is a

tially (in two dimensions only) the vector r in the twofold axis of symmetry about the y-axis-it is
characteristic of the collections of these symmetry

Y Y. operations to be emphasized here (the noncubic
point groups) that there ii at most one axis having
more than twofold symmetry, and hence rotations

/ 1 r_.about the y-axis can be restricted to those of order
two. The element I, the inversion, is noteworthy
in the above as being the only one with a determi-
nant -1, all others being +1. Viewed as an

_ _ operation on a coordinate system, the inversion
"represents the transformation to left-handed

/ -rather than the usual right-handed system.
/ In addition to the symmetry operations given

above, there are operations which may be repre-
sented as the product of the element I with those

/ rotations given above. If we are considering a
collection of these symmetry operations con-

FiGuRE 1 taining both I and the rotation, no fundamentally
new information is obtained by considering the

x, y frame. The operation C, will then give r' products, but there are certain collections of
in the x, y frame. However, this is clearly the symmetry operations which include some of these
same as r described in the rotated frame x', y'. product operations but not the factor operations
We shall use both interpretations in the present separately. These product operations, together
work. with their symbolic notation, are as follows:

IC1 Ojah 1 2 1 -]

1 0 }E7CS IC'=[ -,1 =
O 0-

IQ=---- 1 = oVCS= so IC43= 1 00 =OA•,C4=$

'0 0 -1-'. 0 -1-

There are only a finite number of possible com- tion represents the fact that I commutes with all
"binations of these basic operations which are of powers of C.. The group C. may also be enlarged
interest in the present work. These are dia- by adding the element C (moving along the diag-
grammed in table 3 and are known as crystallo- onal to the right). Here, the heading {CRC2 }
graphic point groups, since each of the combina- represents that the various operations do not now
tions constitutes a mathematical group, the necessarily commute, but that all possible com-
elements of which leave the potential of a point binations of them and their powers are included.
unchanged. In interpreting table 3, the starting Both of these enlarged groups have 2n elements.
point is the column headed C.. The groups C, To the latter set, I may now be added (moving
lor the values of n for which we are interested, farther to the right), obtaining 4n operations.
consist of the operation C. and its n distinct From these groups containing I, in some cases
powers, so a total of n symmetry operations are groups of lower order may be obtained by sup-
represented in the group C,. This set of opera- pressing half the elements, including the element I
tions may be enlarged by adding the element I itself but not all products containing I. For
(moving along the diagonal to the left), as is example, let us consider the group C2, which con-
indicated under the heading C,,XI. This nota- tains the elements C2 and E. If we add I, we
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TABLx 3. Structure of noncubic point groups met only by terms with M=O for all N.
C.: For invariance here, V(O)=V(0+2w/n).

Order Sub- c.XI i , Ic A IC.C~I Sub- Since the terms involve sin Mo or cos M-0, it is
group gr clear that n=-M, M/2, M/3, for integral values

only, etc. We shall specify n=M, since the other

I E cases are covered by the powers of C,. which are
1 Ealso present in any group.

2 /=u CI: A point with the coordinates (r, 0, .0) under
C2  the transformation C; becomes (r, ir-0, w--,).

Since Off is a polynomial of degree N--M in cos 0
3 Q and degree M in sin 0, and cos (,r-0)=-cos 0,Ssin (ir-0)=sin 0, then ON' changes as (- 1 )Nv'*

, However, sin M(ir-o) = sin Mi cos M4,-cos Mr
sin Moý=(-1)m +l sin M,0 and cos M(,--0)=
cos Mr cos M4,+sin Mr sin Mo,=(- I)M cos Mo,.

6 Ch 1 C\ C3. Hence C terms have this symmetry for N even
and S terms have it for N odd.

8 Q D4  Dý D2d C4. I: Under this operation, the point (z, y, z)
becomes (--, -y, -z), and it is clear from

12 Qh D, ~d /D 3 ,, ,C inspection of table 2 that terms with even N have
"4 " this symmetry, while terms with odd N do not.

a,: This operation results, in rectangular coordi-
16 DI' nates, in the substitution of -z for z, and, in

spherical coordinates, in the substitution of x--0
24 DE, for 0. This is the same as the 0 substitution in

2C' and supplies a factor (--1)-M. Hence, N
I and M must both be even or both odd for this-CO'. C0, Dc , Dc. • Cc. element.

o,,: A vertical plane of symmetry exists at
b= if V(r, 0, 0+a)=V(r, 0, 0 -- a) for all values

obtain C2,,, containing Q•, E, QI, and 1. From of a. For S terms, we have sin Ml(#+a)=
this we obtain C, by considering only E and sinMacosMa+cosMf3sinMlaandsinM(M--a)=
C21=a,. Similarly, by adding C to C2, we obtain sin M,6 cos Ma-cos Mo sin Ma. This yields the
D2, which involves E, C2, C4, and C2C2. By the requirement that cos MO sin Ma=--cos M#
further inclusion of I, we obtain D2, with E, C2 , sin Ma=O. For this to be independent of a,
C4, C2C, I, IC2 , IC2, and ICC'. By suppressing cos MO=-O, MO=7r/2, 3r/2, 51/ 2 . . . and planes
I, IC2, C4, and C4C, the remaining four elements of symmetry_ exist at #=ir/2M, 31r/2A1 . . .
E, C2, IC2 (= a,) and C2a, constitute the group C2,. (2M- 1) 7r/2M. Similarly for C terms, we obtain

There are a few points which should be made the requirement that sin Mo sin Ma=O, MO=O,
clear in this connection. First, in the abstract r, 21r, 3w... and planes of symmetry exist at
mathematical sense, these groups are not all dis- #=O, rlM, 21r/M, (M-1)r/M. We shall find it
tinct. For example, the group C2 contains the convenient to distinguish these sets of planes, de-
elements C2 and E, while the group I contains scribing those arising from C terms as ao, and those
the elements I and E, and they both have the from S terms as 0

d. Note that the set a, for a
same multiplication table. On the other hand given even M includes both a, and a,, for M/2, and
there is some degree of distinction which should that any vertical plane is a plane of symmetry if
be made between the E=C' (which we might call M=O. Let us emphasize that the x-z plane (0=0)
the identity in rotation space) and the E=I' is a plane of symmetry for all C terms, while the
(which we might call the identity in inversion (
space). Strictly speaking, the identity element of y-z plane \#--2 is a plane of symmetry for C
t e groups such as C, X I is the product of these terms if M is even, for S terms if M is odd.
two separate identity elements.

We shall now investigate, term by term, the S,: This operation transforms (r, 0, 4) into(ret DTr--0, .0+ (r/2)) and Om transforms as (-)'M
symmetry possessed by the tesseral harmonies Mans

tabulated above. The overall symmetry of a S terms involve sin M( i+(r/2)) =sin Mo cos Mr/2
given potential will then be at least that of those +cos Mo sin Mr/2. M odd yields a cos Mo term
symmetry elements common to each term of the which we reject, and M even yields (- 1 )-"2 sin Mo.
potential expansion. Conversely, if the symmetry Thus S terms transform as ( I)N-im for M
is known from other considerations we shall kno even. For C terms, the 0 contribution is the
what terms must be included to Aescribe such a same as for S terms and cos M(O+ (r/2)) =cos M0
condition. cos M•/2--sin Mo sin Mir/2. As for S terms, we

C.: For this element to be present, the potential reject M odd and in 4 obtain (--1)"/ cos MO for
must be independent of 0, a condition which is M even. C terms then transform as (--1).-.-i,
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just as S terms. The overall requirement for $% On the other hand, it is also clear that all expan-is then that both M and N--jM" must be even. sions of the field (2.6) must be physically equiva-
S,: Since this element is defined as CI, it is lent, and that a choice between two differing de-

necessary and sufficient that both Cs and I be scriptions of the same field is merely a matter ofpresent for this element to be present, and it need choosing the simplest description. Following uni-
not be considered separately. versal convention, the principal axis of symmetry

Based on the above analysis and discussion, the in the preceding considerations has been taken to
symmetry elements present in each of the tesseral be the z-axis, and in the calculation of the coeffi-harmonics of table 2 have been given in table 4. cients (2.7) this will have to be determined by an
An analysis of table 4 will indicate the potential inspection of the given configuration of charges,
coefficients (2.7) which must be included to repre- as will also the location of any y-axis (C). Any
sent a potential appropriate to the groups of other choice of axis will, in general, yield a more
table 3, and the results of this analysis are given complicated expansion, and the symmetry will be
in table 5. Two oints are worthy of note in the apparently (but not actually) lower.
use of table 5. In each case where, for a given It would be well to dis'cuss further the point
Ml and N both C and S are shown, the first S mentioned in the preceding subsection concerning
appearing is shown in parentheses. This repre- the planes of symmetry. For a given N and M,
sents the fact that, though both are consistent with both C terms and S terms describe planes of sym-
the required symmetry, the S term may be sup- metry, differing merely in their orientation with
p-essed by a suitable rotation about the z-axis, respect to the vertical coordinate planes. Clearly,
This may be done, of course, for any one C, S any linear combination of these two terms also
pair, but only for one. All other indicated combi- represents a set of planes of symmetry, at some
nations of C aind S must then be allowed, and this intermediate angle. If only one N and M (other
one S omitted. Second, with the potential terms than M=0) is present, the linear combination will
considered, it will be noted that the groups D6 represent no more information than will either one
and Co. cannot b, distinguished from the group alone. The general preference arises from the fact
Deh of higher symmetry, nor can Ca be distinguished that the actual calculation of matrix elements in
from C,,. Further analysis of the potential terms section 5 will be done through the Y terms (2.8)
shows that the coefficients S,, allowed in D1, and rather than the C and S terms. It will be seen
S8 in Ce,, neither of which is allowed in D,,, are from (2.9) that the suppression of S terms (as far
the lowest order terms separating these three as possible) will yield real coefficients for the
groups. Similarly, S1 in C, will separate it from matrix elements. A conventional preference for
C6,., where this coefficient is forbidden. Finally, C terms then implies the z-z plane as the pre-
it will be noted that the groups D., C., and C,. ferred vertical plane of symmetry, and the y-axis
have been omitted from the table. These sym- for the operation C;, since IC; is then a reflection
metries do not arise from the electrostatic fields in this preferred plane. Sometimes (e.g., D3 ,), we
considered here. shall admit S terms and keep C as the y-axis

rather than adopt some other axis in the plane
2.3. Preferred Coordinate Systems as C;.

Once an expansion has been obtained in a given
In considering the expansion of the potential coordinate system, that in any other coordinate

(2.6) and the calculation of the coefficients (2.7), system may in principle be obtained from the fact
it is clear that the coefficients (2.7) will depend that each of the terms (2.5) or (2.8) in the new
upon the choice of the coordinate system used. coordinate system will be expressible as a sum of

TABLE 4. Symmetry elements in tesaeral harmonics

M 0 1 2 3 4 5 6

N=1 C.U. A, U,
2 CMaJ u,Suh u.JIC ClIte, a.
3 C•a, 046, C0,S, C84 .C 4 CC•oc€r.S,vu, a.JIC; C,1G;qaqr, C SWB. CWU'I.CS,
5 C.Ou. ao dff C•O. CIG , c .
6 CoiG~a. S4Uh 0.1c; CftIG~ahu. C&HC;CS. So CJ"GrhdrS. C&McO. CG1C;04O.Se

2 VdI CaikaG
3 uGadc CdrdS4  0C;~~ 4hg

S
4 Gd 1  Cqlaiad C.lu.S. CalaeosS
5 VACdC2 C2QGS 4  CAr Au4  C14;rdqWAr
6 ad' C2IGGd CSIOdaS. CIloAqgS4  C~jaar GVUs

9
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TABLE 6a. Transformation of tesseral harmonics the 2N+ 1 terms of the same value of N but of
different M in the old coordinate system. While

c0 ci sq Sgeneral formulas have been derived for such rela-
o'\01 tions (Wigner, 1931), a detailed study has been

carried out for a second coordinate system 0'
obtained by a rotation of 0 by -120' about the

CIO 0 1 0 (i+--k) axis. This is equivalent to a cyclic

C 0 1 permutation z--z---x of the variables; i.e., the
functions Qv (y,z,x) and S% (y,z,z) were evaluated

Si 1 0 0 in terms of Cm (x,y,z) and SO (x,y,z). The results
of this evaluation are presented as the matrices of
table 6. It should be noted that these matrices are
orthogonal.

TABLE 6c. Transformation of tesseral harmonics

TABLE 6b. Transformation of tesseral harmonics 0\' 0\ 1 C1 i C. S3 S! S;

t COS C o Si Si
0'CS 0 0 0 0 0 0

0Q 0C 0 0 0 0 -- 0 -5

CIO0 0 0ý 0 1 CI 4-' - ~ 0

¢" 0 0 0 0 0 0 C 0 0 4 0 0 0

2 -2 4 4

Si 0 1 0 0 0 Si 4:6 0 C 0 0 04 4

Si 0 0 0 1 0
S! 0 0 0 0 0 1 0

4 4

TABLE 6d. Transformation of tesseral harmonics

01 0 C! C! C! C! C! Sa S" S4, St

! 0 -• 0 --5s0

Q• 0 0 0 0 0 0 r2 0 r-4
i -4

8 0 0 0 -0
C! 0: 0 0~ 0 0

4 4

4: 02 0 0 _C0 0 0F

0:_T 0 V: 0 0 0 0 0

8 0 0 0 0 0

S! 0 f0 07 1 0 0 0 0
4 4

S: 0 0 0 0 0 -: 0 0

Si :', -A 0 0 0 0 0

Si 0 0 0 0 0 _C4 0 0
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TABLzu 6e. Tran~formasion of cue~ral harmonic&

,1 c ci Q, C: Si Si S! Si S"

ci o 4i--5 o _'!9 o 3i1o o o
Q ~ 0165 C70 0 3(- 0 0 0 0 08 16 16

Ql 0 0 0 0 0 0 0 0
--16

0 0 0 8 0 0 0 0 0

ci o o o - o 13 3V5
16 16 16

0i C21' 0 W2 0 1c•o o ¢ o 41o o o o o~5 o8 16 16

Ci o o o 2o o o- o 11"- 16--6

8 4 -8

S1 0 0 0 0 0 0 0 -~ 0 0
2 2

SI 7 N6 0 2ý: 0 0 0 0 0 016 o 16
S o o o o o o a o 1
st 0_0_0 0 0o _ 0 0 3 0 02 2

16 8 16

2.4. Cubic Point Groups the diagonals of the coordinate planes. T has
4 threefold axes, of which at most one can be

In addition to the 27 noncubic point groups of along a coordinate axis, but has also three mutually
table 3, there are 5 point groups known as the perpendicular twofold axes. Rotations of these
cubic groups. While these are not known to groups will be generally designated C. for rotations
arise in natural rare earth crystals they are impor- 2r,
tant in the consideration of crystals of other types; - and they may be further distinguished by
e.g., the iron group, and some data on rare earth primes. However, the distinctive conventions of
ions have been obtained by the inclusion of the section 2.2 which are appropriate for Dne and its
ion in a foreign lattice of cubic symmetry (Low, subgroups, cannot be adhered to for these high
1958). We shall therefore complete the discussion symmetries. These symmetries cannot arise from
by considering these groups. considering the symmetry elements common to

The five groups are assigned the symbols 0, a sum of terms as in the previous cases, but
Or,= (OX I), T, T--= (TX I), and Tj, but only four depend upon certain fixed ratios in the coefficients.
distinct abstract groups are involved since T, and In other words, these may be viewed as higher
O are isomorphic. The group O has 24 elements symmetries arising from "accidental" values of
and represents the purely rotational symmetry the coefficients in a case of lower symmetry.
of the cube (or octahedron), while Ox, 48 elements, As a particular example, let us consider the
represents the full symmetry of the cube. T is group D14, representing the rotational symmetry
of order 12 and represents the pure rotational of a rectangular prism, with potential coefficients
symmetry of the tetrahedron, while Td, a subgroup (table 5) r,, 092. C60, Q S6, and Q7. The z and y
of 0, with 24 elements, represents the full sym- axes are equivalent, but the long dimension, the
metry of the regular tetrahedron. Tk is also of s axis wiZf generally be different. If the prism
order 24. actually becomes a cube, the z, y, and z axes will

These groups represent a higher degree of sym- all be equivalent. Hence we expect that any
metry than our previous considerations have sug- combination of these terms which is invariant
gested. In particular, 0 includes fourfold axes under a substitution ---y--z->z will represent a
along z, y, and z threefold axes along the principal higher symmetry, in this case 0. This is just the
diagonal of eac;h octant, and twofold axes along substitution considered in table 6. We see, for
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TABLE 6f. Transformation of tesseral harmonics
0 Q Q Q C! Q Si S: $I so, S:

Cl0 0 40 0 0 0 0 o o o o o o

C: -~T 17 -- - z- 32 0 0 0 0 0

Cl 0 0 0 0 0 0 0 -o 0 _•3- o -
16 4 16

o 2 o 13 3o /

32 0 0 0 0 0 0

9 a o o aoa o o16 0 0 0 0 0 16
:0 173/' 0 V"-6 0 1

32 0 32 - 32 0 -L 0 0 0 0 0 0

SI 1 1 ~ ~ 9 0 0 0 0

3! 0 0 0 0 0 0 0 1 0
T6 1-6Q S I30 3 ý: 0 0 -0 0~ 0 0

s: o o o o /_ o _9 o • o

QI 0 0 0 0 0 0 0 8 8E5 0 NL2 0 -E

16 16 16

6 o •i0 3 V'- 0 ý6- / 0 0 0
1-'--6 3--'1--0 0 N(66 0 0 0 0 0 0 0

exmpe thtC eome aombnton ofCan th o axis arsn a / pcilcs of D• symty

seoddge em n rce o ths fte CC;S o C-,- o~ and CL Snewo no hv

16 16 16

fourth degree. Although both Ci and Ci yield data corresponding to table 6 to apply our previous
Cj, if the coefficients are in the ratio C•: C=-- method, we shall set up a charge configuration
/7-: •/5 the Ci will cancel and the combination having the desired symmetry and orientation,

evaluate the coefficients (2.7) and determine the
C-2-V5Cif will be invariant under the operation necessary relations among them. This has been

v# done in detail as an example in section 6--we
of table 6. Similarly, if C~ :21= -1: 'VT, C and report merely the result at this point. The
C arising from the transformation wfi vanish coefficients (i7, S•, and Si must vanish, while the
and (c-Vf7 Ci will also be invariant. SI will ratios among the nonvanishing coefficients are
admix S: forbidden in D4 , so S must also vanish. 0:c0=-07:2• and C:C C-_=24:2210:0.

We conclude then that under these conditions, In this case as well, C• and c:°ar the only adjust-
we have but two coefficients, 02 and 67 left to fi able parameters to fix the strength of the fleld
the strength of the field, and the symmetry is O) The group T may likewise be considered either
rather than D,. In fact, all of the terms alowed as a special case of D)2, where the z, y• and z axes
also contain I as a symmetry element, and the all become equivalent, or as a speia case of CD

symm.etry is even higher, i.e., O•. The dis- with the principal threefold axis of the figuretction between not a d i rise from potential vertical. In the former case, the allowed coeffi-
terms of higher order. cienta scre: to; th; of the CC, 67', 7; Qa, Si, and n t ,

On the other hand, the cube may be considered sym, ry and o7. A onsideration of these terms
as standing on a corner with a threefold axis along and table 6 shows that the following conditions

of abe .imlaly i 06:0 ý, ad eprtmeelyth rsut t hi tTh



must be met: In evaluating the coefficients for the threefold
00=012=0 S12 is arbitrary C-=O S-=S=o axis vertical, we have again had recourse to the

C CO establishment of a specific configuration, namely,
C,:C=.,7.' C5:C =--:7 that of the regular tetrahedron itself. This will

and CG:C= -- 11:V95"5. yield terms for T, rather than T or T.. Con-

The constants 8-s C,*, Cg6 and C' can be considered figurations for these latter symmetries are con-

the variable coefcients describing the strength of siderably more complicated, and have not been

the field. The symmetry becomes Ti if the only evaluated for this orientation. The nonvanishing
one of these terms lacking the element 1, S3, is coefficients must meet the following conditions:
suppressed. If we start from the case of D•d
symmetry instead of merely D2, we obtain Td C03:C--= V5:2 C*:C Q -,1-5-- :5 and
symmetry but must suppress the coefficient C,
leaving S5,, C°, and C*. Q :CQ:C'-=4 23:77 r5:35T.

3. Groups, Characters, and Representations

3.1. Representations and Quantum Clearly, the precise form of the matrices depends
Mechanics on the particular choice of original wave functions,

and any other set, related to the original set by a
Let us consider a Hamltonian H, and sl (i--- unitary transformation may be selected and will

1,2, . . . n) an n-fold degenerate solution of the yield a transformed representation of the group.
Schroedinger equation H4,,=E4,. Let us further Pf it is possible to find a transformation such that
consider a group of transformations (generally the group operations cause only m of the n wave
rotations or the inversion) which may be applied functions to transform among themselves, and the
to this equation. If an element of the roup is P, remaining n-m functions among themselves, the
with inverse P-1, then PH4,-=PE~k,, which may be representation is said to be (fully) reducible,
rewritten as otherwise irreducible. Following Melvin (1956),

(PHP-1)(P4,,)=E(P4,). (3.1) we shall for brevity speak of an irreducible repre-
sentation as a "rep". If the representation is a

This we interpret as yielding a transformed rep, the degeneracy is said to be essential, since
Hamiltonian (PHP-1 ) and a transformed solution the n wave functions may be transformed into
P4 of the Schroedinger equation. Let us now each other purely by symmetry operations. If
assume that the Hamiltonian is invariant under the representation can be reduced into two or
the group of operations; i.e., that PHP-'=H or more reps, the degeneracy is essential between
PH=HP, and that Q is another operation of the wave functions belong to the same rep, but "acci-
group. Then (3.1) becomes H(Pj,) =E(P4#j), and dental" when wave functions belonging to different
P4, must be a solution of the original wave equa- reps are concerned, since wave functions belonging
tion with the same energy; i.e., it must be a linear to different reps are not related to each other
combination of the original wave functions purely by symmetry operations. Accidental de-

generacy is either due to a purely fortuitous con-

4t 'o (3.2) sequence of the numerical parameters of the sys-
tem under consideration, or to the presence of
additional symmetry not previously consideredSSimilarly W•,-=- Q,•, and (QP)4,-=-- (QP)•,4,. (sometimes called "excess degeneracy"). An ex-

Ths tample of this latter will be considered in connec-
Thus the effecs each operation of the group may tion with Kramers' theorem (section 4.2), which

states that all levels of an atomic system with an
importance of the concept becomes most evident odd number of electrons will be at least twofold
when we consider the product QP as the operation degenerate under the influence of external fields
P followed by the operation Q: of purely electrostatic character. In this case, it

will be seen that wave functions belonging to
Q(P*,)=-Q(313 •--1t)=:QA&P•i4' different reps of the rotation-reflection group may

actually be related by symmetry with respect to
=.:P:gýQapJ.-. (3.3) time reversal.

Thus, the matrix for (QP) is the product of the 3.2. Rotations in Three Dimensions
matrix for P by that for Q. These unitary
matrices are called a "representation of the group One of the transformations in which we shall be
because any relation between elements of the particularly interested is that of an arbitrary rota-
group is also a relation between the matrices corre- tion of the coordinate axes in three dimensions, so
sponding to the group elements. we shall now examine this in some detail. Let us
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consider a fixed (x, y, z) reference frame, and a the unit vector u with direction cosines (a, 0, Y).
movable frame (%, V f), the origin of the lat- Observe that r may be resolved into a component
ter being fixed at the origin of the (x, y, Z) parallel to u, (r.u)u, and a component perpen-
frame. We assume initially that the f, V, and r dicular to u, (r-(r.u)u), and that the vector (U X r)
axes coincide with the x, y, and a axes, respec- is perpendicular to both and has the same
tively. Any rotation will move the (Q, q, r) frame magnitude r sin (u,r) as the latter-
to some new orientation which is uniquely deter- T de o sin of r al th l r-
mined by the rotation performed. We are in- The component of r along u, (r.u)u will be
terested in the various ways of specifyin" the unchanged, while the perpendicular component
orientation of the (Q, V, r) frame and its relation to r- (r.u)u will be rotated through the angle w
the rotation involved, into (r--(r.u)u) coo w+(uXr) sin &a. Thus,

It is clear that there will be three independent
quantities to be specified, two to fix the direction r-=r cos •+(1-cos o)(r.u)u+(uXr) sin w.
of the axis of rotation and one to fix the angle of (3.4)
rotation about this axis. Consider a vector r
fixed in the (Q, t, f) frame rotated through an This may be written as the matrix equation
angle w about an axis fixed in (x, y, x) containing r'==D(u,aw)r, where(cos o- (1--cos c?) (1--cos ow)o--y sin (o (1 -cos w)a-y+p sin

Di(u,)= -(l--cosw)a+y sin c cos t+ (1--cos w)# (1--cos w)#y--a sin (3.5)

*.(1--coos w)ay-- sin w, (1-cos w)y-f+a sin W cos 'd (1--cos (d)9?

and r,r' are the column vectors (•, t, ') or (x, y, z), necessarily implies a corresponding linear sub-
and (x', y', z'), respectively. stitution among the components of a vector,

Since r is fixed in the (%, rI, ?) frame, its comn- which we interpret as a rotation of the vector.

ponents in that frame are the same before and Likewise, any linear combination of the 2N+1

after the rotation- they are the same as '.ts coor- tesseral harmonics of degree N (or any quantity

dinates (z, y, z) Lefore the rotation in the fixed having similar transformation properties) may
frame. be viewed as a vector in a space of 2N+ 1 dimen-

The direction of the (1, q, r) frame may be deter- sions, with the 2N+ 1 tesseral harmonics serving
as the unit vectors. An element of 9 may also

mined then by applying this relation to the vectors be represented by a rotation matrix in this 2N+ 1
(1, 0, 0), (0, 1, 0), and (0, 0, 1) in turn. dimensional space. Our choice of properly nor-

The set of all three dimensional rotations con- malized tesseral harmonics ensures that the
stitutes a group which we shall designate as 9?3. resulting matrices are orthogonal. In terms of
The set of real matrices, D, (u,,) is orthogonal, hence this concept, the matrices of table 6 are the
unitary, and meets the requirements of section matrices Dv for N=1,2,3,4,5,6 and
3.1 for a representation of the group. (Note that
D, is a particular element of Di.) It is important 1 (2wj-k), w= 21r
that the group of matrices A) be not confused i- i )
with the group of abstract operations .Ta, but
this requires a clear understanding of the differ- A general rotation may also be described by a
ence between a group and any particular repre- point along the direction of u and at a distance w.
sentation of the group. In elementary work, a frm the orilin. All rotations are thus represented
three-dimensional rotation is invariably thought as points within or on the surface of a sphere of

of as an operation on a vector. This is adequate radius r. More precisely, the points represent the
in these elementary cases since this leads as we results of the rotation, while the details of the
have seen, to a particularly simple faithful repre- rotation are fixed by prescribing a path from the

sentation (a unique matrix for each operation) of origin (representing the original orientation) to this

the group. However, we have already mentioned particular end point. It is important to notice
in section 2.3 that an element of *a will induce that all points of the closed sphere represent dis-

not only the linear substitution D1 among the tinct orientations, save those on the surface where
three components of a vector but also a linear diametrically opposed pairs of points represent the

substitution D, among the 2 W+1 components of same orientation, being attained by a rotation r
the tesseral harmonics of degree N (table 2). All about oppositely directed axes. Consequently,
these substitutions are equally. well representa- there are two essentially different types of paths
tions of 9t, and they are faithful for N>O. by which one can go from the or'n to another

Geometrically, a vector may be resolved into its point within the sphere. Thus, if it is desired to

components, which are the teaseral harmonics of
degree 1, which lie along the three coordinate reach the point 2' 0 in the (U o) space, this

axes, so that a linear substitution among the com- /
ponents of the teaseral harmonics of degree 1 could be accomplished by a single rotation2 about



the y-axis, and the resulting path is a straight line use *, the angle between q and the intersection of
the z-y and the C planes. Experimental

from (0, 0, 0) to 0, !, 0 On the other hand, a workers (Dieke and Crosswhite, 1956) have found2 convenient an alternate choice x, the angle be-rotation by r about the -- V axis will be repre- tween f and the intersection of the x-z and E-V
sented by a straight line from (0, 0, 0) to (0, -r, planes. These angles are related by the equation0). Since the letter point is equivalent to (0, r, 0), x=xoý+*, where tan xo---cos 0 tart 0. If 8=900,
a further rotation 2 will result in a path from then x=4-.

A major advantage of Euler's angles is that any
given orientation of the (1, q, r) frame can be

(0, 7, 0) to\0, 0). We have thus reached obtained by three rotations in succession about the
coordinate axes. For these rotations, the matrices

0 ) by two different paths. These are es- (3.5) take on a particularly simple form, and their
2 / product, expressing the general form of (3.5) in

sentially different since there is no continuous terms of Euler's angles, may be computed directly.
deformation of the paths, keeping the end points The three rotations are:
fixed, which will cause them to coincide. Paths 1. A rotation by 0 about the z," axes (which
which can thus be made to coincide are said to initially coincide). The •- plane remains in
be of the same homotopy class, otherwise they the z-y plane, but the t-r and the ,7-r planes are
are of a different homotopy class. There are rotated by the angle 0.
only two homotopy classes for rotation in three 2. A rotation by 0 about the 17 axis. This will
dimensions. We shall call them Po (for paths bring the r axis into its final position, as specified
involving no points on the surface of the sphere by # and a. The t-, plane will no longer be in
or an even number of pairs of such points) and the z-y plane, but their intersection is the 17 axis.
P, (paths involving an odd number of pairs of 3. A rotation by # about the r axis. This will
points on the surface of the sphere). bring the t and ?I axes to their final orientation.

It is frequently more convenient to describe In performing these rotations, it will be noted that
directly the orientation of the (% , r ) frame than each one is carried out in the (f,,j, •) frame, which
to describe the rotation as above; i.e., we give is generally in a different position each time as a
directly the angles between the two frames. The result of the preceding rotation in the sequence.
general technique is due to Euler, and the three The same final configuration can be obtained by
angles which must be specified are known as rotating abo:t the (x, y, z) frame axes, provided,
Euler's angles. There are a great numLer of that the sequence of the angles is reversed. In
different choices which can be made, and indeed other words, a rotation of the (% , r) frame first
have been made by various authors, a freedom about the z-axis by the angle V', then about the
which complicates considerably comparisons be- y axis by 0, and finally about the z-axis again by
tween different authors. We shall follow here the angle 0, will yield exactly the same final
what seems to be the most frequent choice by orientation of the (Q, ql, r) frame. This may be
recent American writers on the subject (Edmonds, established either by purely geometric considera-
1957; Rose, 1957). The position of the r axis "ions, or by specific multiplication of the matrices
be specified by 6, the angle between r and z, and invol Using this latter sequence of angles, we

by 0, the angle between z and the projection of r obtain from (3.5)

in the x-y plane. These are just the usual spherical if
coordinates of the unit vector along the r axis in
the (z, r, z) system. For the third angle, we shall u=(0, 0, 1), o=o or or u=(0, 1, 0), =0

s in o 0 n os -sin

s R#=[ 0(1M= 0 1i 0 j R#= sin Cos

0 --sin O 0 cos 0 0

and their product &1 4R# yields the matrices of the representation D, of 9t3, now in terms of the three
Euler angles,

rcos cos 0 cos J--sin 0 sin ÷ -cos 0 cos 0 sin J--sino cos cos 0 sin0"

D,(*,0,#)=[sin 0 cos 0 cos *+Cos 0 sin , -sin 0 cos 0 sin #+cos 0 cos 4 sin 0 sinoj (3.5a)Cos -- sin cos •sin 0 sin# cos 0'
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Since these matrices are orthogonal, the inverse of U=U,#U#U#. Thus,a given matrix is its transpose. In terms of u,w,
this amounts to reversing either the vector u or /e-9#/2 0
the sign of the angle of rotation. In terms of the U 'O e0'O'2)
Euler angles, the inverse amounts to reversing the
sign of the angles and also their sequence. In
eneral, we shal not indicate the variables for 2 e-to/2 0
1 (or for Dv), since either set may be used. 0 u,--othird extremely important description of

three-dimensional rotation arises from the Cayley- 2
Klein parameters. Let us consider the general -___- .
2X2 matrix with complex elements, which we r 2 c 2 s0n
shall write in the form 2 +2c-s• - sn

(ae:: be' L e 2 sin0 e 2 os÷ - • (3.7)

1 22
Just as in the previous discussion distinguishingwhere a, b, c, and d are real nonnegative numbers, between 9?, and Di, we have here an abstractand a, 0, -y, and 5 are real numbers. This matrix group of unitary unimodular transformations in

contains eight arbitrary parameters. If we require a complex space of two dimensions, and a partic-
that it be a unitary matrix U, four conditions of ular representation of the group through the
restraint on these parameters are imposed, and matrices (3.7). The abstract group we shall desig-
there remain but four independent quantities. nate as U2, the particular representation by the
These four conditions are: a=d; b=c; al +b 2=1; collection of U matrices (3.7) as D,/2. The ele-
and 2a+, =29+y+w. The further condition ments of the representation D112 may be given
that det U=-+ 1 requires that 2a+5=• , leaving either in terms of the Euler angles as in (3.7), or
three independent quantities. We can then in terms of the unit vector u and the angle w,
write though we shall not give the latter form here ex-

plicitly. Since it will not generally be necessaryto indicate the variables, we shall generally write
-- e-'D ae- the matrices merely as D,12 (instead of U) to parallelour earlier distinction between D% and Di.

remembering that a2 +b2- 1. The independent Let us consider the implication of this transfor-
parameters are then, essentially, a, a, and 0. mation in more detail. We first observe that the

Further, let matrix R can be written in the form

be a Hermitian matrix with a trace of zero, t , where the 2X2 matrices are the Pauli matrices
and r being arbitrary real numbers. A unitary corresponding to the x, y, and z-components, re-
transformation spectively, of the spin angular momentum oper-

URU-'•-R' (3.6) ator. If we let (Q, %, t) be a unit vector, the
matrix R is the operator corresponding to the pro-

will leave invariant the Hermitian property, the jection of the spin angular momentum in the
trace, and the determinant, so R' can 9e written direction given by the unit vector (, 17, r). Let

us consider for simplicity U for 0=4-=O. R'=

z -iy URU-' may similarly be written

R=Qcos0- -1 sin ~
Furthermore, det R'=-(z-+ +z5)=-det R'=- (1 0
-(•z,+V+). If we interpret the sets of numbers
(%, r, ') and (z, y, z) as the coordinates of a point in I s-i + 0
the movable (1, v, 0) system and the fixed rx , Z) + (1 cos b sin )
syrstem, respectively, we see that the transforma- C 0/ ) 0 -
tion leaves unchanged the distance of the point
from the origin, so that the transformation can be This corresponds to our interpretation that the
interpreted as a rotation. The matrix U can be vector with components (Q, 1, r), fixed in the
explicitly calculated in terms of the Euler angles (%, f, ') frame, is given a rotation about the z--
by finding the matrices U,, U#, and U,, so that axis, positive in terms of the right hand screw
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convention. R' is now the operator correspond- sional rotation group in the stricted mathematical
ing to the projection of spin in the new direction, sense of the term. It has become customary to
t described in the movable system by (Q, , r), refer to D% as a "two-valued" or "ambiguous"

but described in the fixed (x, U, z) system by representation, and the abstract group U2 as the
-=-•cos4-itsino y=qcoso+ýsin4 z=r. double rotation group. If a rotation is specified

Note that the Pauli matrices retain their form, i.e., by giving the initial and final configuration of
they are expressed in the fixed (x, y, z) frame. axes, the matrices N) are fixed apart from the
However, we can also write sign. The sign may also be fixed if the detailed

course of the rotation is also prescribed. Clearly,
the matrix Dm is a continuous function of the

W=t variables 0, 0, 4, and becomes the unit matrix for
0) no rotation at all. In other words, if the initial

01) and final axes are the same, we know only that
(0 -iet1\r (1 0\ the appropriate D% matrix is either the unit 2X2

+1 ( matrix or its negative, while the detailed knowl-
edge that no rotation at all has occurred (or one
involving a path in the (uco) space of homotopy

where t, -q, and r retain their original values, and class P 0) enables us to fix upon the unit matrix as
the Pauli spin matrices have been transformed to the appropriate one. Generally, if two axes are
the form appropriate to the new t, q, r axes, related by the Euler angles 0, 0, # we will select
Recalling that this is a rotation by +4, this should D3 (0, 6, P) if the transformation is of homotopy
be equivalent to a rotation of the physical system, class P0 , and -D%(o, 0, ý) if of class P1 .
the fixed x, y, z axes, and the spin functions de-
scribed therein, by -0. In other words, generally, 3.3. Group Theory and the Free Atom or Ion
a transformation of the spin operators u, by U is
equivalent to a transformation of the spin func- The Hamiltonian for a free atom contains the
tions themselves by U- 1 . More formally, con- following types of terms:
sider 0=R p, where 0 and p are spin wave func-
tions. This expression, under the transformation 1
U, yields 1. Kinetic energy terms p2

U6=URU-'U, or Z'= 2,,
2. Central field potential terms--Ze±+V'(r

1)
which represents merely the transformation of r,
each side of the expression to a new frame of 2

reference; in other words, essentially the same 3. Electrostatic repulsion terms -- V'(r,)
angular momentum measurement. From the
standpoint of a simple rotation of R to measure
angular momentum in the new direction fixed by 4. Spin-orbit interaction terms ý(r)l-s,.
R' as considered in the original frame of reference,
we are interested in the quantity R'---URU-1 4' In the above, the V'(r,) is selected so that the
-X which is generally different from #. This overall effect of the third term is minimized. In
new measurement may be transformed by U- 1 to addition to the terms of the free ion Hamiltonian,
give we shall also be interested in the effects of the

crystal lattice potential V discussed in the pre-
U-'X=U-1 [URU- 1]UU-'1=R[U-',]. ceding section and of an external magnetic

field B. Consequently, we shall be interested in
In other words, the rotation of R to R', URU- 1  the operations which leave invariant these various
gives the same result as the inverse transformation terms in the Hamiltonian.
of the spin wave functions by U-1. Since we are Let us first consider terms (1) and (2) only.
usually interested in transforming wave functions, In this case, each electron is considered to move
we shall write D --=U-1 rather than D --=U. independently of the detailed motion of the other

The presence of the half-angle functions in this electrons present, their mutual interaction appear-
transformation reflects the very special properties ing in an averaged form in the V'(r,) term. Term
of the spin transformations. In particular, the (1) gives the Laplacian operator, which may be
rotation #'=0+2 r, -=-0+2r, 4,-=4-+2" clearly viewed as a scalar product of two vector operators
yields an orientation of axes identical to that des- and is therefore invariant under an arbitrary rota-
ignated by o, 6, 4,. On the other hand, it may be tion of coordinate axes about the force center.
seen that DN(#', 6', 0')=---D4(#, e, 4). Thus, Since second derivatives are involved, it is also
for each change of orientation in ordinary three- invariant under the inversion. Similarly, the
dimensional space, there are two matrices corre- second term involves only the scalar magnitude
sponding to this in the two-dimensional spin space. of r which is invariant under the same two opera-
For this reason, the set of matrices D% does not tions. The solutions of the Schrodinger equation
constitute a representation of the three-dimen- for one electron for these two terms only are

18



characterized by the quantum numbers n, 1, mi, matrix can be reduced into sub-niatrices DL of
and m,, and have a degeneracy equal to 2(21+1), dimensionality 2L+-1, where L ranges from
there being 21+1 values of m, and 2 values of m, 14+4 to I11-4l. The restrictions of the Pauli
all belonging to the same energy and all related to principle require that the four-dimensional spin
each other by the particular choice of coordinate matrix be simultaneously reduced, yielding a
axis. These 21+1 functions are just the functions three-dimensional submatrix D, and the unit
(2.8). Thus a rotation of the coordinate axes will 1 by 1 matrix Do. This reduction of the spin
cause each of the 21+1 functions in the new set of transformation matrix corresponds to the well-
axes to be expressed in terms of all 21+1 functions known existence of triplet and singlet states in
referred to the old axes, yielding a 21+1 dimensional two-electron spectra. For our immediate pur-
representation of the rotation as in section 3.2. poses, perhaps the most noteworthy point is the
It is shown in the general theory of groups that disappearance of the ambiguity in sign of the spin
for all nonnegative integral values of I these repre- transformations. This is a general characteristic

sentations are in fact reps. General formulas for of atoms or ions with an even number of electrons.
the matrix elements in terms of Euler's angles The reps of 112 are infinite in number and are of
have been given by Wigner (1931). Specific ex- both even and odd dimensionality. Those of even
amples of these matrices using a real basis (2.5) dimensionality include Di and others designated
rather than the complex basis (2.8) have already as D3/2, D5/2, etc., the dimensionalities being
been given in table 6. It is further to be noted 2, 4, 6, . .. , respectively. These representations
that, for 1>0, the representation is faithful, i.e., are all faithful, and hence all are double-valued
there is a unique matrix corresponding to each representations of the three-dimensional rotation
rotation. We shall designate the rep by D,, its •oup. The odd dimensional reps are the
elements by D1. D0 1 2 . . . previously discussed as reps of the

For a single electron, as in hydrogen or in the three-dimensional rotation group, but these latter
Salkali-type atoms or ions, term (3) in the Hamil- are not faithful. Aside from the identity rep D%,

tonian vanishes. So long as term (4) is neglected, any element D.,, J integral, corresponds to ±D.,
the transformation of the 21+1 values of m, and J half-integral. This is a point of greatest im-
the two values of m, are completely independent portance when considering the representations of
of each other, and may even be described with the point groups, as we shall see shortly.
respect to different coordinate axes. The general The introduction of term (4) into the Hamil-
transformation may be represented by a matrix tonian now requires the reduction of the (2S+ 1).
of 2(21+1) dimensions, the direct product of D% (2L+ 1) dimensional direct product into a diagonal
and D,. Upon the introduction of term (4), the array of sub-matrices Dv, where J=-L+S,
independent transformation of spin and orbit no L+S--1, . . . IL-SI. Here, the integral S
longer leaves the Hamiltonian invariant. The in- yields integral J and the spin ambiguity remains
variance of the scalar product of two operators suppressed. In certain atoms, the magnitude of
(e.g., i.-) is founded upon the assumption that the various terms in the Hamiltonian requires
each is referred to the same set of axes. The that term (4) be introduced before (3). The re-
group of allowed transformations is now less gen- duction of the various matrices must then be
eral, since both spin and orbit must simultane- accomplished in a different order, corresponding
ously undergo the same rotation. The 2(21+1) to the j-j coupling scheme rather than the L--S
dimensionsal matrix is still an element of a repre- scheme discussed above. For 3 or more electrons,
sentation of the group of allowed transformations, the details can become increasingly complicated,
but it is no longer irreducible, and it may be but the general features remain the same. In

transformed by a new choice of wave functions particular, integral J's without spin ambiguity
into a diagonal matrix of sub-matrices of dimen- a ppear for systems with an even number of

sionality 2(+-)D-1 and 2(1--)+1. The correct electrons, while half-integral J's corresponding to
choice of wave functions is precisely that dictated double-valued representations of pure rotations

by the usual transformation from a Mi, m, to j, appear for systems with an odd number of

mj representation in one-electron spectra. The electrons.
wave functions are determined by the coefficients There is another symmetry which must be

known variously as Wigner, Clebsch-Gordon, or considered at this point, that of the inversion.

vector addition coefficients, and yield allowed Terms (1), (2), (3) in the Hamiltonian depend only

values of the total angular momentum j=1+J or on the length of a vector or vector operator and

i=it-. hence are invariant under the transformation from

A similar argument is applicable to the case of a right-handed to a left-handed coordinate system.

two electrons. Without terms (3) and (4) in the The angular momentum operator, orbital or spin,

Hamiltonian, all transformations are independent has the transformation properties of a cross prod-

and most generally yield a matrix of 22(211+1)s uct of two vectors, i.e., an axial vector or pseudo-

(24+1) dimensions. The introduction of term vector. Although the two vectors will change sign

(3) now excludes those transformations affecting on inversion, their product will not and the vector

differently the space parts of the two one-electron operators (pseudovectors) 1 and a as well as the

wave functions, and the space portion of the Hamiltonian term l.a are also invariant. It is
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important to note at this point the distinction proach is one of great generality and provides a
between a vector and its description. Let us con- very concise systematic framework for stating the
sider the vector r= (z, y, z) and t= (u, v, w), with results obtained. Furthermore, the principles of
rXt=--(yto-zt, zu--zw, •v-yu). If we now switch group theory (or essentially similar arguments)
to a left-handed system, the vector r remains the are used to determine what matrix elements of the
same, but it is now described by (-x, -V, -z). perturbing potentials vanish if the second approach
Likewise, t remains the same but its description is used and to calculate the magnitude of those
becomes the negative of the original. On the which do not vanish. Hence, the two approaches
other hand, the product rXt retains the same are not really so divergent as might at first sight
description, but is consequently a different vector appear to be the case. In this work, the contribu-
since it is now in a left-handed system. The dis- tions to the problem which can be made with the
tinction between a quantity and its description is use of group theory will be studied in detail before
a fundamental one which must on occasion be proceeding to the alternate considerations of calcu-
made very carefully. If we consider a one-elec- lations involving specific matrix elements. While
tron wave function p(x, yj, z, a), the description of it is not the intent of this paper to furnish a general
this state in the inverted frame is 4.(-x, -y, -za, treatise on group theory, and a general acquaint-
s), the description of an angular momentum being ance with at least the basic definitions will be
invariant. * is a homogeneous polynomial of de- presumed, certain concepts will be examined in
gree I in the variables x, y, z and the transfor- detail and applied as the necessity arises.
mation under the inversion is that of (-1)' and Let us consider the very simple group C3, con-
that of a n-electron system (--1)"•. Strictly sisting of the elements CQ, Cl, and E. We shall
speaking, of course, 2l1 will not have a definite describe the group in terms of the effect of its
numerical value when terms (3) and (4) in the operations on the basis triangle of figure 2a,
Hamiltonian are introduced, but only down taking CQ as a counterclockwise rotation of the
through term (2). Nevertheless, the introduction triangle by 1200. In the present configuration,
of (3) and (4), invariant under the inversion, will the operation CQ will cause the vertex (1) to
admix only wave functions of the same value of appear at the point previously occupied by (2),
(--1) which may be used to describe states of (2) at that occupied by (3), and also (3)--(1).
the free atom orion. In addition to J, the states We may shorten this to C3 : (1)-0(2)--(3). We
may be designated even or odd, (g or u, respec- may also describe the operations in terms of their
tively) depending on (--1)r". effect on the triangle in figure 2b, where we see

that we also obtain C: (1)-0(2)-0(3). Notice
3.4. Group Theory and the Perturbed Ion that figure 2b differs from figure 2a only in that

Ca has been applied to the basis triangle before
It is the primary purpose of this paper to con- we use it to describe the group. We could also

sider in detail the effects of terms in the Hamil- have applied C1 to figure 2a before describing the
tonian arising from the crystal lattice perturba- operation, and again would have obtained C3 :
tion V and from the external magnetic field B. (1)-->(2)--(3). A study of the operation C1 will
There are two techniques which may be used in show that, using any of these basis triangles,
the solution of the problem, both of which must we obtain Cj: (1)->(3)--0-(2) as its description.
be used in a complementary fashion for a complete Thus, il we restrict ourselves to transformations
discussion. One technique is to apply further the within the group under discussion, there is no
theory of groups, reducing the representation of transformation which will cause CQ and CQ to have
the state of the free ion according to the reps of the same description in terms of their effect on
the appropriate electrostatic-magnetic field sym- the basis triangle. Let us now consider the group
metry group. This technique will yield the num- D3, where we have added to our original set of
ber of levels, their description in terms of their three elements three rotations of 1800 about axes
behavior under the allowed symmetry operations, in the x-y plane, described in terms again of figure
and selection and polarization rules for various 2a as Ca: (2)--(3); C;: (1)-0(2); and C2: (1)-(3).
types of transitions. The method will not yield Still restricting ourselves to transformations within
purely numerical details, such as the relative posi- the group, let us consider the effect of CQ in terms
tions of levels, their variation with electric and of the basis of figure 2c derived from figure 2a by
magnetic field intensities, or transition probabili- the application of C2. here we see that we obtain
ties (save for the vanishing forbidden transitions). Cs: (1)-(3)-0(2), but this is the same as CG,
The other technique is to calculate to some degree
of approximation the matrix elements of the per- (I, (3)

turbinig potentials in terms of the free ion wave
functions, interpreting the results in the frame-
work of the usual perturbation theory. In the V) (3) M

final analysis, this latter procedure will yield not
only the numerical details not obtained from the (3) (2) (2)

former technique, but can be so interpreted as to
yield all of the results that the former technique b
will give. Nevertheless, the group-theoretical ap- Fiouau 2
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described in terms of figure 2a. We thus see that traces of these g matrices is said to be the char-
in our first case Ca and C1 were essentially different, acter of the representation. The importance of
in that none of our allowed transformations permit the concept lies in the invariance of the trace underthem to have the same descriptioa, while in the a unitary transformation Tr P'=Tr UPU 1--
second came at least part of this essential difference Tr P. We see immediatel that if U is a matrix
has been lost. This difference is expressed b the of the representation, then il is an element of the
notion of class. In the first case C, and a are class of P and all elements of the same class have
said to be in a different class, while in the second the same trace. If U is a matrix reducing the
case they are said to be in the same class, representation into two or more reps, the character

More generally, if we consider the general trans- of the representation is the sum of the characters
formation, P'=TPT-1 and limit ourselves to of the component reps. This latter fact will allow
transformations T belonging to the group of P, us to determine what reps may be present in a
we see that P' is also in the group of P, and is given representation without actually finding the
defined as being in the class of P. For each T of particular U necessary to accomplish the reduction.
the group a P' is obtained, not necessarily dis- This latter procedure is precisely what we have
tinct, and the complete set of P' constitutes the outlined above in sketching the application of
class of P. Clearly, if P and T commute, P'=P. group-theoretical ideas to the description of states
In an Abelian group, where all elements commute, of free atoms or ions, and what we wish to examine
ever element is in a class by itself. Conversely, in detail when considering the effect of the intro-
if P is distinct from P, then P and T must not duction of the crystal field V and the external
commute. The separation of a group into classes magnetic field B. Before the introduction of the
may be accomplished either by geometric con- external fields, the Hamiltonian is invariant under
siderations such as outlined above, or by formal arbitrary rotation (of the simple or double group)
computation. The formal computation is aided and inversion, and the wave functions are trans-
by the following considerations. Let N be the formed by D, and (- 1)z4, respectively. After
set of group elements which commute with P. the introduction of the external fields, the Hamil-
It may be shown that this set of elements is in tonian is now invariant only with respect to sub-
fact a subgroup (possibly the entire group) called goups of the original group of transformations.
the normalizer of P. Any element of N Pts the The original rep of the complete group will not in
transforming element yields a P'=P. Let K be general be a rep of this smaller group but merely
a group element not in N (K does not exist if the a representatior', reducible into reps of the smaller
normalizer is the whole group). Then K as the group. This is the expression of the fact that the
transforming element T yields a P' different from original 2J+ 1 fold degenerate level will under the
P, but any element in the complex KN yields the influence of these external fields split into several
same P' as does K. Similarly, if L is a group levels of lower degeneracy. The character of the
element not in N or KN, it will yield still another original representation is the sum of the characters
P", but all elements in LN will yield the same P". of the reps into which the state splits. We shall
Generally, if the group order is g and the order of now outline the method whereby this determina-
the normalizer is n, the ratio g/n, an integer, is tion of the component reps may be accomplished.
called the index of N, and the group may be split
into gin complexes, one of which is the subgroup 3.5. Group Characters and the Rep-Dr
N. All of the elements of the class of P may thenbe obtained by transforming P with an element Let us consider a finite group of g elements,

* from each of these g/n complexes. Hence the with the elements separated into classes. There
class of P has g/n distinct elements. will, in general, be several reps for this group.

These considerations may be applied to the Let us write the trace in the i-th rep and j-th class
gru The se d cnd atioven s man bexample. To the as xji. For a given i, j will assume values fromSgroup D) discussed above as an example. The 1 to n, where n is the number of classes and xt
group order is 6, and the elements which coin- will be a set of numbers, generally complex and
mute with C3 are E, CQ, CI. Hence the index of not necessarily all distinct. Strictly speaking,
the normalizer is 2, and there are two elements in the set of numbers XIj for all j and a given i con-
the class of C6, one of which is C, itself, the other stitutes the character, while the number xj for a
of which may be obtained by transforming C, with particular i and j is merely L he trace of a matrix,
any one of C2, C, or C;. To accomplish this and one component of the -haracter. This may
latter we need the multiplication table for the be emphasized by considenng the character as a
Cgrup elements, usually summarized as C o=fQ= E, vector x, in a space of n dimensions, with the n

C ,=CCI. The other element in the class of C, components, x×j. This is a distinction which is
is CA -C=CC&C= CC6Cj=C- ,aswasgeometri- usuay either overlooked or ignored. We shall
cally shown above. C, commutes only with itself now introduce a weighted trae, ioe defined as
and E, so the order of its normalizer is 2, its index
is 3, and there are three elements in the class of C2. jIN where N, is the number of elements in
These are C2 and the products of C6 with Ca and C. g X,

If we have a set of g unitary matrices forming a the class j, and correspondingly, a weighted char-
representation of a group of order g, the set of acter • Fundamental to our further considera-
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tions will be the orthogonality theorem for these order and class structure of the group. Thus, for
weighted characters, which we shall state without the group D3 discussed above, with six elements

p roof, referring to Wigner (1931) for details, and three classes, we have 21+1+1=6, and the
his theorem states the following: maximum essential degeneracy will be 2

1. The weighted character f for a given i is a We shall begin our discussion of the character
normalized vector in the Hermitian sense in a of specific repsby considering the reps Dr, initially
space of n dimensions. Symbolically limiting J to 1. The ideas of class, character,

and orthogonality just discussed were with specific
reference to finite groups, but are applicable to

- l (3.8) infinite groups with but minor modification, the
i-i most far-reaching being in the orthogonality rela-

tions. In this case the finite sums cited are re-

2. The weighted characters belonging to dif- placed by integrals over parameters defining the

ferent reps are orthogonal in the Hermitian elements of the group. We shall not require the

serse, theorem for infinite groups to be discussed here.
A matrix D1 expresses a transformation of a

•.•,(3.9) vector r (Q, 7, ý) into a vector r'(x, y, z). The
transformation is orthogonal, leaving the length
of the vector unchanged, and may be viewed as a
rotation about an axis along rXr' with an angle of

3. The set of weighted characters E for a1l i r-r'
forms a complete set in the space of n dimensions, rotation w such that cos w-Ir-lr'" To resolve the
in terms of which the weighted character of any group elements into classes note that we can first
representation may be expanded. If E is such a rotate the vector r into the x-y plane and, if

weighted character, with components ,�- -Lj, necessary, perform a rotation about r so that' r'
will also lie in the x-y plane. We thus transform
Di into a rotation about the z axis where it will,

Z=5a•e and a=t-R--- (3.10) from (3.5) for U-=-(0, 0, 1) assume the form
i-i

Two important, conclusions may be immediately r cos w -sill co 0

drawn from this theorem. We observe that, since R -sin
the weighted characters form a complete set in a Rl sin COS W 0

space of n dimensions, there must be n of them.00 1
In other words, the index i as well asj must assume 0 0

values from 1 to n, and the number of reps is equal
to the number of classes of the group. The
orthogonality theorem suggests that we consider We see that all rotations with the same angle of

these weighted characters as the elements of a rotation are in the same class, and that the trace

nXn matrix. The orthonormality (3.8) and (3.9) is 1±2 cos w. It is important to observe that the

in the rows (i.e., in the index i) implies a similar fundauiental interval of w and the complete range

relation in the columns (i.e., in the index j). In of the character, here a vector with an infinite
number of components, may be obtained with w

particular, we have -f i•* = between the limits 0 and 7r. This reflects the fact
1-i that a rotation, -w about a given axis is equiv-

where j= E refers to the class of the unit element. alent to a rotation w about an oppositely directed
The unit element is always in a class by itself, so axis. Thus every rotation is in the same class as
Nz-=. The matrix corresponding to the unit its inverse.
element in any rep is the unit matrix of the di- Pieparatory to considering other integral values

dd of J, let us transform Rl(w) to the purely diagonalmensionality d• of the rep, so x•,=d, and •-• form R•(w) given by

Consequently,

C ~' 0 0 '

implies .dA=g. (3.11) R(,w)= 0 1 0

0 0-0

For the finite groups under consideration, there

will be a unique solution to this relation in terms
of integral values of di. The dimensionality of This is the matrix describing the effect of a rota-
the reps (and hence the maximum allowable tion about the z axis on the three states (+ 1, 0,
essential degeneracy) will be determined by the -- 1) of a p electron. For a d electron, we know
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that such a rotation may be described by the range of the parameter W/2 in defining the group
matrix element is (0, v) corresponding to w in three dim-

•e+,g 0 0 0 0 ensions on the interval (0, 21), again confirming
the double nature of this group in describing real0 O0"' 0 0 0 rotations. Let w(, be the angle, less than r, re-
lating two orientations of three-dimensional axes,

(u)- 0 0 1 0 0 the corresponding diagonalized two-dimensional
matrix beingo 0 0 e-* 0[ / .

o 0 0 0 e-210, RI(wo)=Ie2 0

Since there is a unique 1 to 1 correspondence be-tween the matrices D% and D2, it follows that any with character 2 cos poni/2. The other two-
matrix D2 may be brought into the form Rj,() by dimensional matrix corresponding to the same
the transformation corresponding to that bringing orientation of three-dimensional axes is then
D, into R'o(w). Here the trace is 1+2 cos c+2 given by
cos 2w. A similar argument holds for other in- -2:-2w2 0
tegral J. A general expression xj(w) is then given )

by e t '. This is a geometrical progression in ,-i(w+2.

which the first term is e-f"', the common ratio ( 2+

is e"-, and which contains 2J+ 1 terms. The _e-+ R()

general formula for the sum of such a progression 0o
gives Caw _ /

T_--e ( The character of Ri(wo+21r)=2 cos (wo/2+±r)=
--2 cos w0]2. Hence these two elements of Di

which may be simplified to corresponding to the same three-dimensional rota-
tion have different traces and belong to different

sin (2J+ 1) • classes, unless the trace is zero. This latter occurs
Xj40) 2. (3.12) for wo=r, at which point the two matrices become

sin-O 0 0
Ri(,r= andRj(31r)=(We see from an inspection of this formula that (k0r)= and 0()

the relations considered for D, hold generally for For real rotations of ir, the two elements are in the
integral J, namely, x(o))=x(--o), and that w on sor clas because they are the
the interval (0, r) covers the allowed range. same class, because they are then reciprocal

Let us now consider the group for J half- elements.
1 For higher half-integral values of J, with a

integral, initially limiting ourselves to J=y. unique 1 to 1 correspondence with the elements of
Anyga unitiarly lmatrixnmaybedagoneliveds a the group Dj, a similar reduction to diagonal formAny unitary matrix may be diagonalized, and must b- obtainable, yielding

Di will assume the particular form / ) e+i 0..... 0 0
k o a* 0 + i(J- D)•. 0 0

where tal is + 1. This diagonalized form of D 0
can be written as

[ei'0]00 . . . e-•(Ji-)• 0

By equating the trace of this matrix to that of the 0 0 . . . 0nondiagonalized matrix (3.7), we obtain iThe trace of this matrix is a geometrical progres-
cos [€+ cos COS2 cs sion of the same form as the earlier one for integral

2 2s J, so the general formula (3.12) will still be valid.
a relation between the angle of rotation w and the Values of xJ(w) have been calculated for w and
Euler angles 4, 0, 4,. We see that in this group, as J of interest and are presented in table 7. In
well as in that with integral J, every element further confirmation of previous discussion, for
and its inverse are in the same class, since the integral J, w/2 need only range from 0 to -r/2, since
character does not depend on the sign of cw and the numerator is an odd polynomial of the de-
that the classes are determined by the parameter nominator, and the numerator and denominator
w. The character of this rep is 2 cos w/2. The will change sign at the same time. For half
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TAzLu 7. A character table for the reps D.,

S00 600 900 1201 1800 2400 2700 300* 3600
2V/6 2r/4 23r/a " 4r/3 6r/4 101/6 2w

0 1 1 1 1 1 1 1 1

1/2 2 -J5 r 1 0 -1 -- r2 -- A'3 -2
1 3 2 1 0 -1 0 1 2 3

3/2 4 - 0 -1 0 1 0 -- r3 -4
2 5 1 -1 -1 1 -1 -- 1 1 5

5/2 6 0 -2- 0 0 0 -12 0 -6
3 7 -1 -1 1 1 -1 -1 7

7/2 8 -- ,r'3 0 1 0 -1 0 * -8
4 9 -2 1 0 1 0 1 -2 9

9/2 10 -V - -1 0 1 -[2 2 -10
5 11 -- 1 1 -1 -1 -1 1 -1 11

11/2 12 0 0 0 0 0 0 0 -12
6 13 1 -1 1 1 1 - 1 1 13

13/2 14 [0 -- r2 1 0 -- 1 [2 -- ýf -14
7 15 2 -1 0 -1 0 -1 2 15

15/2 16 N/3 0 -1 0 1 0 -V3 -16
8 17 1 1 -- 1 -- 1 1 1 17

integral J, the numerator will be a product of an twice as many elements in the corresponding sub-
odd function of sin w/2 and an odd function of groups. For this reason the structure of the sub-
cos w/2. No new values are obtained by going to groups for half-integre" J will be different from
negative values of wo, since again the numerator those for integral J .nd must be considered
and denominator will both change sign together separately. We shall .itially limit ourselves to
at c0. However, the odd terms in cos w/2 those subgroups appro- -iate for integral J.
change sign at w/2=v/2, so that the range (0, 2r) We shall examine n, -e closely the detailed
in 6, will give distinct traces in this latter case. structure of those groups listed in table 3, ex-
This is due, of course, to the fact that the division cluding temporarily the infinite groups listed at
between the two homotopy classes of D, occurs the bottom of the table and the cubic point groups.
at w= a rather than at -=-0. These we divide into four general types:

3.6. Noncublc Crystallographic Groups 1. The cyclic groups C.
2. The dihedral groups D.

We shall now consider the details of the sub- 3. The holohedric groups C, X I, D X I
groups of Dj in which we shall be interested. 4. The hemihedric groups, which are the sub-
Upon the introduction of the crystal field and/or groups of the holohedric groups which do not
the external magnetic field the general rotation- contain I alone but only in products with rotations.
inversion invariance of the free ion Hamiltonian The cyclic groups C. are Abelian, of order n.
is destroyed and only those transformations which The elements of the group are the various powers
leave invariant terms representing these external of C. with C1= E. Every element is in a class by
fields are admissible. These were defined in itself; consequently, there are n reps for the group.
section 2 in terms of the elements D, XI. Because The dihedral groups D,, n>1, are of order 2n,
of the unique I to 1 correspondence between and include the n powers of C. and products of
D1XI and DXI for integral J>0, the structure these n elements with the elements C2'. Products
as a group of the allowed transformations for all of C. and C' are related by C.C-= C-;•C. Hence
integral J>0 is the same as those of the perturbing the group in non-Abelian for n>2. If n=2,
fields. This correspondence does not hold for 3 every element is in a class by itself, otherwise the
half-integral. In this case we apin select out of class structure is more complicated. For n>2,
D.XI those transformations which correspond in the element Cl, and its inverse C.-1 are in the
terms of DAXI to invariance of the perturbin same class. If n is odd, there are n-1 powers of
fields. However, there are two elements o¶ C, (eliminating the unit element in a class by
DI× I, J half-integral, corresponding to the same itself) which are grouped by pairs into 2- classes.
transformation in terms of DiXI, so there will be a
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The a products of C4 with the powers of C, are all also be eliminated, so we obtain for the class
in the same class, so we have a total of structure of C6,: E; C,, Ci; IC4, ICdC, ICQ which

S--1i a+3 is the same as that of Ds (i.e., the unit element,
2 2 •two elements of order three, and three elements of

classes. For n>2 and even, the element Ca" order two). Furthermore, the multiplicative rela-
is its own inverse and like E is in a class by tions between the elements of Cs, are the same as
itself. The other n-2 powers of C. fall into n-2 those between corresponding elements of D3. The

t product of two elements of C3,, neither containing
classes, each with two elements. The n products I or both containing I clearly follows the parallel
of the form C%" will in this case fall into two relations in D3. If only one contains I, say IQC;,
classes, one with k even, the other with k odd. its products with the elements E, C6, CM yield I
Here the total number of classes is given by times the products of E, Cs, C1 with the element

-CC of D3. We shall see later the importance of
2"-•2----3+n. the fact that not only is the class structure the

same, but that the corresponding multiplication
The case for ---3 has been discussed above table is the same (though the latter implies the

(section 3.4) in detail in connection with the former) for the two groups.
definition of class. In the present work, this is We maygeneralize these considerations, and
the only case we shall be concerned with, though assert that the structure of any hemihedric group
a little geometric consideration on the symmetry is the same as that of the pure rotation group
of the pentagon, heptagon, etc, will confirm the from which it is derived through the intermediary
above discussion of odd n. Since n is odd, an holohedric group of double order. Such groups
axis of the form C will pass through a vertex and are said to be isomorphic. The only difference,
the opposite side of a n-gon. For n even, such mathematically superfcial, is in the geometric
axes will join either opposite pairs of vertices or designation of the operations involved. The pri-
sides, and no operation of the group either repre- mnry significance of this for the present is that the
sents a rotation about a line joining a vertex and a number of actually independent groups to be con-
side, or will transform a rotation about one type sidered is considerably less than the 27 finite groups
of axis into one about the other. enumerated in table 3, and that only the struc-

The holohednc groups DX I, C.XI contain tures of the pure rotation groups and the holo-
twice as many elements as D., Ca and hence are hedric groups have to be considered.
of order 4n or 2n, respectively. Since I commutes
with all elements, the group C.XI is Abelian. It 3.7. Noncubic Double Groups
is interesting to note that for odd n it is also cyclic
since the group can be written in terms of the We now turn our attention to the double groups,
powers of CI, with (IC.)*=I. In the case of which we shall designate as 11Cs,, uD,,, etc., de-
D. X I, if A, B, and X are elements of D_ such that pending on the corresponding subgroup of D1 ' I.
A=XBX-', the element IX will similarly trans- this notation will be used when it is desired to
form B into A. Thus the addition oaf Ito the particularly emphasize the double group. Usually
group elements does not affect the class structure we shall merely imply these groups through the
of those elements not containing I. On the other use of the symbols C,,, D6,, etc., in connection with
hand IA-=X(IB)X-'-(IX) (IB) (IX)- 1 so the half-integral J. Some of these groups were first
class structure of those elements containing I ex- considered by Bethe (1929). The problem was
actly reproduces that of those elements not con- ama considered by Opechowski (1940), who
tamting c clarified many of the ideas involved. We shall

Let us consider the relations between Da, DX I begin with the groups 11C.. The element of
(= DN) and the hemihedric subgroup C3,. D3 D% for 0=2w/n, 0=4-=O is, from (3.7), [ID=-U- 1]
contains six elements in three classes as follows: the matrix
E;C, Q;C1,CCCI. Du contains these three
classesand threemore:I; IC, IC;IC4, ICA, MI"C . o 0
We will now consider which elements must be
suppressed to eliminate I as an element of the r " .3
group without reverting to D,. Clearly, I must
itself be eliminated, as well as the class of CQI This is obviously the element of a cyclic group of
since (CQI)'L-I If the class of IC; is eliminated order 2n. We shall call this nC., observing that
we are back to I)D, so we retain these three ele- -- 10 )
ments, noting that we cannot obtain I from powers nc is given by the matrix which
of these elements as was done with IC, since the
square of any of them is the unit element. In we usually designate by R. The unit element is
looking at the classes not containing I, we must then R2. As in the case of C., each element of
retain E to have a group, and the class of Ca must nC. is in a class by itself. The groups C,. and
be retained, since Q=--)-(IC)C[) and both of uC. are isomorphic. The inverse of nQ is
the latter are retained. On the other hand, C4 nCi'---Rn -'.
(ICM)---I, so we conclude that the class of C4 must The double dihedral groups consist of the powers

25



of uC., and the powers and products of the matrix spitinto A, RA"1) and (A(", R ). Ifniseven,
t0 h ,ese are of the same order; if n is odd, these are

D(O, -, 0)=nC-4 with nC. and of the same order for even k, and of different
- 1  0 order for odd k. The sole exception to this will

its powers. The element nC4 is of order 4; its occur if k-=n/2 (which will require n to be even),
square is R. We note from direct multiplication where there is but one element in the class (AS12)
of the corresponding matrices that ,) (nC-)- and the two elements AS/ 2, RA"' 2 are in the same
(uC;')( n C;). Groups such as this are called class.
dicyclic groups, and have the defining relations as Let us now consider the classes of B and B.
abstract groups A--B2=R, R-=-E, A-'B-BA, If n is odd, the class of B contains A2B, A'B,
a group of order 4n. The class structure may be . . . Al-IB, RAB, RA3B . . . RAx-2B, but it
determined from the matrices themselves, or from does not contain RB, nor does it contain AB.
the defining relations of the abstract group. The class of AB also contains AB. . . . B
A pictorial argument is here inapplicable ab initio, RB, RA2B. . . RA*-1B. On the other hand, the
but we shall investigate the relations between the class of B contains B, AB, A2B .I.. A'-IB, so
structure of DR and 11D.. We shall use the the class of B will split into two classes, one con-
defining relations. taining B and RAB, the other containing AB and

The elements which commute with A clearly RB (and other elements as indicated above). If
include the 2n powers of A, but no element in- n is even the class of B will still include only the
volving B will commute with A (unless A-'A, even powers of A times B, but An-=R will now be
which implies that A=R and that n=1, which is included, so B and RB are now in the same class.
excluded, since n>2). Thus the order of the The class of B now involves only B and the even
normalizer of A is 2n, its index is two, and there powers of A times B, so for n even the class of B

are two elements in the class of A, which we see will not split, but will merely contain twice as

immediately from the defining relations are A manv elements.
and A-'. Generally, AV and A` will be in the e may summarize this behavior by the fol-
same class, except when k=n, since A"=R com- lowing diagram, where we give in one column the

mutes with all elements and is in a class by itself. typical classes of D. , in the next column the cor-

The normalizer of B consists of B, R, B3, and rendng
E, of order 4 and index n, so there are n elements even a.
in the class of B, obtained by transforming B n odd
with the first n powers of A. We have ABA-'=
A2B:, A2BA-2 A4B; etc., or generally the even D_ __D.

powers of A, times B. We have left over the E (E)
class of AB, with normalizer AB, R, (AB)3, E. (R)
The n elements in the class of AB may likewise be (Ak, AR-k) (Ak, RA--k)
obtained by transforming by the first n powers of (A -k, RA")
A, yielding generally the odd powers of A times B. (B, B, A2B..) (B, RAB, A2B..)
Summarizing, there is the class of E with one ele- (RB, AB, RAD..
ment, the class of R with one element, the (n-1) n even
claqqPs of At with two elements, the class of B
with n elements, and the class of AB with n (E) (E)
elements. Altogether there are n+3 classes. (R)
We notice that the class structure is the same for (Ak, A"-k) (Ak, RAR-k)

both odd and even n. (A"-k, RAk)

It will now be interesting to compare the class (A./2) (A, RA.")

structure of ,,D. with that of the group D. from (B, A2B, AIB. .) (B, RB, A2B, RA2B. .

which it is derived. Let us -.ýýrite the defining (AB, A3B, AsB.) (AB, RAB, AIB, RAIB,.
relations of D. in terms of the albstract elements
A and B as A--B2=E; AB=- BA-1, so that we We see that the class structure of ND. follows the
distinguish corresponding elements by italics, same pattern for both odd and even n; the pattern
Let us further, in n D., write powers of A varies in the case of DR, in particular, for classes
greater than n in terms of products of powers of of elements of order 2. Results of the comparison
A less than n and the element R. Thus, AR+'= may be summarized into the following rules, first
RAV, and A--=Ai2---=RA*-t. Let us consider given by Opechowski:
the class of A, which is (A, A-). There are four 1. For each class of DR of order other than 2,
elements in 1,D. corresponding to these two, there are two classes of nD. each having the same
A and RA to the first, A-I--RAR-i and AR-' to number of elements as the class of D5 .
the second. These four elements are in separate 2. If there is but one class in D. of order 2 (a is
classes by pairs (A, RA"-') and (RA, A"-i). If n odd), this will in ED,. follow rule (1).
is even, these are both classes of order 2n. If n 3. If there are two or more classes in D. of
is odd, A is of order 2n, but RA is of order n. order 2, (a is even) i.e., there are two or more
Similarly, the class of A", A"- will generally mutually perpendicular two-fold axes, these classes
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will not split in 11D, but will contain twice as We observe that the set of numbers, and 1,--1
many elements. These rules also hold for the constitute reps for the factor groups. We may
cubic groups, essentially special cases of D, or D,. then obtain four reps for the whole group by
Finally, we may observe that we deduced the associating with each of the three factor groups
existence of nr+3 classes in 11D.. This should be the two reps. This would generally yield six reps,
considered in the light of the above rules with the but those arising from the rep 1, 1 are the same
(n-k3)/2 classes of D. (n odd), all of which split for all three factor groups. These reps are tabu-
in 11D. or 3-+n/2 classes for n even, where n/2 lated below. Those numbered 1-3 are obtained
classes split in nD,. from the corresponding factor group by the associ-

The relations between the double pure rotation ation 1, -1 of the factor group, while (4) arises
groups and the associated holohedric and hemi- from 1, 1.
hedric groups is the same as between the single E C ; C, CC;
rotation groups and their associated holohedric (1) 1 1 -1 -1
and hem'ledric groups, and therefore need not be (2) 1 -1 1 -1discussed separately. (3) 1 -- 1 -- 1 1

3.8. Reps and Characters (4) 1 1 1 1
SWe shall now examine briefly the notions of an We are now prepared to discuss the characters

invariant subgroup and of a factor group. We of the re s of specific groups, to tabulate their
shall see that these, together with the orthogo- numeric values, and to systematize the descrip-
nality relation for group characters, will permit us tion of states in terms of their behavior under the
to derive the characters for most of the finite grup operations, just as the quantum numbers
groups in which we shall be interested. While L,S, and J, and Mz, Ms, and MJ describe the
these group characters have been derived by very behavior of states under general rotations. In the
general considerations, a detailed study will prove original work of Bethe (1929), the various reps
to be very instructive. Let us consider a sub- were designated generally by r, and distinguished
group S of G, of order 8 and index n (ns=g). If by numerical subscripts such as r 3 , r5, etc. This
X is any element of G, S is an invariant subgroup notation has persisted in this field, though it has
if XSX-I= S, or XS= SX. This does not imply no systematic meaning and does not suggest the
that every element S, of S commutes with X ,but actual behavior of the state under consideration.
only that XS-=-SIX, or that the set of elements An alternate notation has been highly developed in
X S is the same as the set SX, differing only in the connection with the theory of groups as applied to
order if at all. If n=2, we may expand G into molecular vibrations (Herzberg, 1945; Mulliken,
the sum S± ST, where T is an element of G not 1955), and it is a modification of this that we shall
in S, or into the sum S+TS. We see that ST=TS, employ. While we shall discuss the notation ap-
or that any subgroup of index 2 is an invariant plicable to each group as it is discussed in detail
subgroup. It is clear that S is either a class of G below, it seems desirable to cover the notation
or a sum of classes, generally at this time, particularly to point out

Let us associate with each element X of G the variations from the notation appropriate to molec-
complex SX. While there are g X's, there are ular spectra.
only n distinct complexes SX. Let P and Q be We shall consider first the single groups, i.e.,
elements of G with product PQ=R. The asso- those appropriate to integral J. We shadl find
ciated complexes, similarly multiplied, give (SP) that the reps are of dimensionality three, two, or
(SQ)=-SSPQ=S(PQ)--(SR), since S commutes one. Those of dimensionality three, which arise
with any group element, and SS= S. We thus see only in the cubic groups, are designated by the

Ssymbol T. If the inversion is a group element,
elements themselves or for the associated coi- the symbol will carry the subscript "g" or "u", as
plexes SP, SQ, and SR. These n complexes appropriate, and, if necessary, they may be further
• onstitute a factor group of order a, the unit ele- distinguished, essentially by convention, by sub-
ment being S. The importance of the factor group scripts "1" or "2". Two-dimensional reps will be
for our purposes lies in the fact that any rep of the designated as E, again with a "g" or "u" if appro-
factor group will likewise be a rep of the original priate. The two-dimensional reps of D..h and
group. Since the factor groups are of lower order, C.,, infinite in number, will be found to corre-
their reps may frequently be found by inspection. spond to the pair of states ±-Mr of the free ion*

As an illustration of these ideas, let us consider they will thus be distinguished by M, appended
the oup D2 with elements E C, C., CC,. Since as a subscript. For these two groups, molecular
C,, C,, and C ;C, are all of order 2, E and any one spectroscopists use the symbols 11, A, $, etc. It
of them will constitute a subgroup of index 2, and is believed that the notation of the present work
hence an invariant subgroup. There are thug is more adaptable to crystal spectra, since D.i,

F three "proper" factor groups (of order >1 and and C., are only useful approximations to a case
<4): of lower symmetry, where the "E" notation is also

used in molecular spectroscopy.
1 : (E, C,) (C,, CC) 2: (E, C.) (C2, CAC,) One-dimensional reps have as elements numbers,

3: (E, CC,) (C6, CQ). real or complex, of magnitude 1. If all elements
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are real, i.e., +1 or -- 1, they am designated as The dihedral groups are less easily analyzed.
"A" if the element for rotation about the z-axis The reps (and characters) for %, were obtained
is +1, "B" if the element is -1. They may be above m connection with the illustration of the
further distinguished by subscripts 1 2 according aplication of the factor group concept. In terms
as the element for rotation about the y0axi s o numbering there used, we shall describe (4) as
+ 1 or -1; g or s for the inversion; or (")or (") At, (1)as A2, (2) as B1, and (3) as B2. Here
for +1, -11 res tively, for reflection in the x-y again, A is used for reps which are. totally sym-
plane. While this is the general policy to which metric for rotations about the Z-axis, being dis-
the molecular notation conforms, it is usually tinguished by subscripts according to the behavior
abandoned in the case of the group D2 or D.p. for rotations about the secondary y-axis. B is
This is because the z, V, and z axes are distinguish- used where the basic rotation about the z-axis is
able only by convention, and the reps are called antisymmetric, and again distinguishing various
B,, B, B3. This does not seem to be warranted; behavior for rotations about the y-axis.
even the assignment of subscripts in the B's must The group D& contains the invariant subgroup
be done by convention, so one may as well con- (E, C3, CI), so two reps are obtained as the rep
form to the general rule. If the elements are not (1, 1) and (1, -1) of the factor group. Since
all real, we use the symbol C,, according to the (3.11) admits of the solution 22+1+12=6, the

uantity (;/F)T. The general procedures of molee- other rep is two-dimensional and its character
arspectroOpy merge a complex rep with its may be deduced from the orthogonality relation

conjugate, which must as appear as a two-dimnen- for group characters. The one dimensional reps
sional rep designated as "E". We are interested are designated as A, and A2, while two-dimensional
in distinguishing th reps because of their separa- reps generally are designated as E.
tion when a magnetic field is applied. For D4, 8 elements in 5 classes, eq (3.11) admits

The double groups do not appear in problems the solution 22+12+12+11+11=8, so there are
of molecular vibrations. Their reps are of dimen- four 1-dimensional reps and one 2-dimensional
sionality four, two, and one. That one of di- rep. Since (E, C,, C1, Q is an invariant sub-
mensiomdlity four is the appropriate collection of group, two reps are again the reps of the factor
the elements of the rep D31 of U2, so we .desgnate grup (1, 1) and (1, -- 1), designated A, and A,.
it as D313 here also. some of those of dimension- ma also verify that (E,C) is an invariant
ality two which appear are similarly collections of sub up, whose factor group is isomorphous with
elements of D%, which we continue to desi ate , the structure (E, Cl) (C., C4) (Cq, CqCj)
as D•; those two dimensional reps not so desig- C,C CC). A1 and A, of D2 give no new reps,
nated are assigned the symbol 2, where "f" but B1 and B2 of I% will give us new reps, which
represents the idea of "spin" or "specific", the we shall designate as B, and B2 in this case also.
anterior subscript for a two-dimensional rep, and The two-dimensional rep E may now be found
the posterior one (if necessary) by convention, from the orthogonality condition.
S m.iarly the one-dimensional reps are designated In the case of D,, 12 elements in 6 classes,
"" with a distingui subscript according 2 +21+12+12±1'+12=12. The group C, is an
to te root of 1 involved in the rep.

The reps of the cyclic groups C. are all one- variant subgroup, and the (1, 1) and (1, --1) of

dimensional. It is clear hat just as the group its factor group C, are A, and A2 respectively of

consists of the i powers of Cj so also will the n Do. The group C, is also an invariant subgroup,
os sotepowers of serveasa rep. tiso siwilrly te *with factor group D,, whose reps B, and B2 give
powers of al1 serve as a reB. It is similarly clear 'B and B2 of Do. Finally, the group (E, C,) is an
that the n pwers of invariant subgroup with factor group D3, whose
rep, where may be 2, 3, 4, . . . n. If k=n, we rep E will yield a new rep E2 of D6. We find
designate it by A, a general notation for a rep from the orthogonality condition the rep E/.
where every rotation about the z-axis is the unit The reps are numbered according to the reps of
one-dimensional matrix. If n is even, for k=n/2 D.,, with which they may be correlated (table 10).
we use B, similarly a general notation for a rep For the double groups generally cyclic or di-
where the element of the rep corresponding to the cyclic, (E, R) is an invariant subfroupwhose
basic group element C. is the I X I matrix ( 1). factor group is the corresponding single u
In other words, A is a symmetric rep, B an anti- so the reps of the single group ar also reps of te
symmetric rep. Note that C,_ is the complex double group, as we have alresdY seen in the case
conjugate rep to C,. o

The double cyclic groups C. are isomorphous of the cyclic groups. For any half-integral J,
wiThthe cyclicgroup s nd hencewthe orpsa thes the traces of DF(E) and D,(R) are (2J+1)

with the group C.. and hence the reps are the and -- (2J+ 1), respectively. Hence we see that
various powers of (Z`1)4 . For k even, we desig- we cannot resolve a faithful representation for
nate the rep by Oa or A or B since t will then half-integral J into a sum of reps, any one of
be also the corresponding rep of C.. For k odd, which has the same trace for E and R. This
we shall cal thermeBp S f~ r spin or speciflc) to latter is clcarly the case for those reps derived
emphasize that it is peculiar to the double group. from the invariant subgroup (E, K), namely those
8, and A,.. -sre complex conjugate reF. no which are also reps of the single group, so we con-
that, if•/iu,,',l thenW/1----, el1--/l. dude that they will not be useful for describing
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states arising from an odd number of electrons. hedric groups are isomorphous with the corre-Those reps which are culiar to the double sponding (in the sense of table 3) pure rotation
groups we shall call speci aeic reps (the basis for the grup and hence have the same reps. Most of"S" notation in the cyclic groups used earlier); these hemihedric reps are described just like the

we include the non-specific reps tor the complete- corresponding pure rotation reps. The excep-
ness required by the orthogonality theorem and tions are the groups DI, C&, C., and S,. For the
for the treatment of selection rules, first three of these, the reps are classified accord-

ul)ý contains 8 elements in 5 classes, o ing to behavior under the operation ICQ= a-,,, sym-
22 -'+l+l2+l2+1'8. The four 1-dimensional metric reps carrying a (') while antisymmetric
reps are the reps of D2, so the only specific rep is reps have (`). D7 is further subclsssified accord-
two-dimensional. It is obvious that this must be mg to C;. This difference in notation is peculiar
equivalent to the appropriate elements of Dq, or to the single groups-the specific reps of all hemi-
in other words, the representation is its own rep. hedric double groups will be designated like those
We shall emphasize this by designating the rep of the corresponding pure rotation group. In the
as D4 . case of S4, isomorphic with C,, the generating ele-

ttD3 has 12 elements in 6 classes, whence ment is taken as the operation IC=C4IGC2 =C,4a,,
22+22+11+12+12+12'=12. Half of these are which is usually considered as the fundamental
the reps of Dý, so there are two specific one di- rotation-reflection operation. This is why the rep
mensional reps and one specific two-dimensional C, of S, corresponds to 03 of C. rather than to
rep. We observe that (E, nCl, RnC6) is an in- of C4.
variant subgroup. Its associated complexes 3.9. Infinite and Cubic Groups
(cosets) are GA,, nCxnC, RuCmC), GCa, R,
RnQC) and (mxCsx, RuC, RnCjnC) yielding a We have finally to discuss the infinite groupsSfator group isomorphous with C4. The reps A involving infinitesimal rotations about the z-axis,
and B of C4 yield no new reps, but C, and Ca will namely C., C.y, D., D®,1  C.,, and the cubic
yield specific reps which we shall distinguish as groups. In C., the group operation consists of
S, and Sý. Because of these two 1-dimensional arbitrary rotations C(o) such that C(,) C(4)=
reps into which the representation from D could C(e) C(',)--C(+ 4h), and that C(2fr)=C(0).
perhaps split, we cannot conclude that the repre- If k is any number, e' will meet the first require-
sentation from D is also a rep here, but this ment, but the second limits k to a real integer,
proves to be actually the case if the two-dimen- positive or negative, including zero. If k=0, we
sional character is calculated from the ortho- shall call the rep A, otherwise Ct. For the group
gonality relations. As before, we call this rep D%. rrC., the first of the above conditions holds, but

u D4 has 16 elements in 7 classes. Since the second is replaced by C(2r)=-C(O). Here
22+22+22+12+12+12+12=16, we find on sub- k must be half-integral, positive or negative, and
tracting the reps of D4 that there are but two we designate the reps by S2, (2k is an odd integer).
specific reps, both two-dimensional. One of these C49 is C. XI, so the reps for this group will carry
must be t4; the other, derived from the ortho- the subscript "g" or "u".
gonality relations, we shall Call A t r In D., the group elements consist of the rota-

go hasy4relements, in 9hclasses.Equation tions C(o) and the rotation C, such that CqC(O)=
(311has 24 elements in 9 classes.2Equati C(--O)C;. Considering C. as an invariant sub-

group, the reps (1, 1) and (1, -1) of the factor
12=24. Eliminating the reps of D1, we have group C2 yield reps A, and A2 of D.. As discussed
three specific reps, all two-dimensional. One of under C,., e"* will serve as a rep insofar as C(0)
these must be D%. Unfortunately, we cannot is concerned, but the operation C; makes elk" and
obtain either of the other two characters by the etM-0 equivalent. Except when k-O (which gives
methods used so far, and an alternate procedure A, and A2 ) our rep for C(o) must have the two-
must be used. We obtain from table 7 the char- dimensional form
acter of the representation arising from D3/2, which 0
is four-dimensional and hence reducible. By appli- e' 0
cation of the expansion theorem (3.10) we see (o e
that D% is included once in the representation.
The other rep involved we shall call 2Si. The and C0 will assume the form
final rep may now be obtained from the ortho- 0 _1)
gonality theorem as 2S2.

The holohedric groups, single or double are (2 0
A defined as the direct productofthe group (E, i) = I

with a pure rotation group. The reps may be which will transform C(o) into C(--). It may
'A obtained as products of the reps (1, 1) and (1, - 1) be shown that there are no other reps. These res

of I with those of the pure rotation group. The we shall call Et, where k is a positive integer. In
reps are designated like those of the pure rotation the case of 12D.., the reps become
group, with the additional subscript "g" if (1, 1) e/g/ \/o1
is used and "u" if (1, -- 1) is used. xxC(o) )= Q;C+----

It has already been pointed out that the hemi- ( e- -l 0)
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and we shall designate them as ,8, (k odd). Reps and [C.] with N,. and N. elements, respectivelI of D., will have the additional subscripts "g" or will be a total of N.Nb elements, not neTIsMIy"u", while reps of the hemihedric group C.. will all distinct, which may themselves be written as
be designated like those of D.. a sum of clfases [CJ, or [C.[Cj=-•N..,.[C,],

In the _group 0, thee n 24 elements in 5 with NLk. a small nonnegative integer. A par-
classes. These are the class of , 1 element; the ticular q may not appear at all, or may appear
class of C,, 6 elements; the class of Ca, 3 elements; more than once. It my be shown (Murnaghan,
the class of C%, the body diagonal axes, 8 elements; more that t ean me th e folowngandtheclm o Q(hee, ; s nt lon th yaxi), 1938) that thi expansion implies the following
andtheclassof. ( (here, Cg mnot along the P-axis), relation between the traces of the i-th rep:8 elements. (3.11) gives 3'±3'+2'+1S+l'-24.
The set of elements (E, 3C., 8C0) is an invariant N.N•.xjx,=xa&MN•6,;N,x,.
subgroup with factor group of order 2. Its reps
(1,1) and (1, -i1) are the reps A., and A2 of 0. if where xi, is the trace of the unit element, i.e., the
we consider D, for Jf1l, we find that neither A, dimension of the rep. By developing in detail
nor A2 is in the representation. Since it cannot the multiplication table of a group, sufficient
be reduced to A,+E or As+E (E being the two- relations may be found to calculate the complete
dimensional rep), it must itself be one of the three. character table of any group. In the present
dimensional reps. These are generally designated case, we already have all but two of the seven
as T-this particular rep we shall call Ti. Dr, possibilities for nT. A solution of these equa-
J=2, contains neither At, A,, or TI, so it must tions for xwa= 2 will then give the desired
reduce to E+T,, but we cannot separate them. characters.
On going to J=3, we find from this seven-dimen- 3.10. Table of Group Characters
sional representation, A, and T, accounting for The foregoing considerations have been sum-
four. The remaining three must then be T, marized in table 8, a table of group characters for
which, subtracted from the J=2 case leaves E. both the single and double groups in which we
The groups 0, and T, follow our previous con- shall be interested. Each portion of the table is
siderations on pure rotation, holohedric, and constructed around one of the single holohedric
hemihedric groups. The reps of T, parallel groups. Typical elements of the various classes
those of 0. of the group, together with an indication of the

The double group n0 i has 48 elements. The total number of elements in the class, are shown
splitting into classes, as compared with the group to the right of the group designation, while the
0, follows the same rules as for the dihedral designations of the several reps are shown under
groups given in section 3. 7 so the class structure the group designationL For convenience, we also
is: E (1); R (1); ,C, (6); R.C, (6); nC2 (6); QC3 give the notation of Bethe (1929). The characters
(8); Rrzd% (8); ,C4nCz (12). (3.11), after elimi- For the various classes and reps are the entries in
nating the reps of 0, indicates three reps for u0 , the table. The classes, reps, and characters for
two 2-dimensional and one 4-dimensional. As the corresponding pure rotation group may be
usual, D• is one of these reps. D3/2 in this case obtained by dropping all classes containing Iand
is also a rep, the four-dimensional one. The the subscripts "g" and "u" on the reps.
remaining rep obtained from orthogonality we Above and to the left of each basic character
call S. table are shown the classes and reps of the corre-

The group T 12 elements, may be separated sponding hemihedric groups. Re appropriate
into the clas k (1); C2 (3); C3 (4); and C1 (4). group designations are given upward and to the
It is interesting to note that, in spite of the rela- left of that of the basic holohedric group, while
tively high symmetry, a rotation Cs and its the class structure is given along the same row
inverse C---Cj are in different classes. (3.11) and the several reps in the same column, so that
yields 3'+1'+12+12=12. The elements (E,3C2) both classes and reps correspond to those of the
constitute an invariant subgroup, with a factor holohedric group. A careful study of these will
group of order 3, C,. The reps A, C, and C2 of indicate very clearly the relations between a holo-
Ca are thus the one-dimensional reps A, C1, and C, hedric group and its hemihedric derivatives.
of T. The rep T may then be obtained from The characters and reps for the specific reps of
orthogonality and completeness considerations. the double groups are given in table 8 immediately
The prup ,T, 24 elements divides (section 3.7) below the reps of the single groups. Because of
into E (1); R (1); nC6 (6); nC, (4); RnCh (4); the frequent splitting of the classes of the single
nC1 (4); and R,,Cj (4). Subtracting off the proup into two classes discussed above, there will
reps of T, we have 2+2'+2±2-=-12, indicating reps in such cases be two characters for each class of
we shall call DA, As, and 282. As the notation the single group. If A is a class element of the
suggests, D4 is its own rep. Unfortunately, our single group, the first double group character will
previo.s techniques for finding reps fail in this be that for the class of hA, the second for that
case, since the reps as1 and A always appear of RnA. Upon inspection, it will be seen that
together and cannot be separated. We must such pairs of characters have opposite signs, while
therefore proceed to a more general method. those arising from classes of the single group which

The product of any two classes of a group [C"I do not split are all zero.
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TABLE 8. A table of group characters-Continued

C. - E IC,

C2,% E C2  IC2

A" B, 1 -1 1 -1
B. 1 -1 -1 1

A' A, 1 1 1 1
A. 1 1 -1 -1

SI S11  --1 -i 1 -1 i --,s. i 1 -- 1 i -- i -- 1 1 -- i i

S3  s I 1 -1 -- i 1 -1 -- i
S3 .. 1 -1 -- i -1 1 i --

S2  E I

A.. 1 -- 1

A, 1 1

Tz E 61C, 3C, 61C; 8C, _

Oh E 6C 4  3C2 6C; 8C; I 61C4 31C 2 6IC2 8ICS

A 1  A4,(r 1) 1 1 1 1 1 1 1 1 1
A1.. 1 1 1 1 1 ' -1 -- 1 -- 1 -- 1 --1

A, A2,( r 2) 1 -1 1 -1 1 1 -1 1 -1 1
A 2. 1 -1 1 -1 1 -- 1 -- 1 -1

E E,(r,) 2 0 ' 0 -1 2 0 2 0 -1
E.0 2 0 0 1 -2 0 -2 0 1

T, T 1,(r,' 3 1 --1 -1 0 3 1 -I -- 0

r,. 3 1 -1-1 0 -3 -1 1 1 0

T2  T 4,(Ur5  3 -1 -1 1 0 3 0-1 -- 1 0

T. 3 -1 -1 1 0 -3 1 1 -1 0

D" D,,(r,) 2 -2 Vi--2 0 0 1 -1 2 -2 ý -- '2 0 0 1-1

Da. 2 -2 -2 -- V2 0 0 1 -1 -2 2 -- v2 -VF 0 0 -1

2S 2S,(r 7) 2 -2 Vi- •f2- 0 0 1 -1 2 -2 -vi -V2 0 0 1 -1

2S., 2 -2 -2 %/2i 0 0 1 -1 -2 2 -i -N'2 0 0 -1

D32 D 3/ 2, Pr.' 4 -4 0 0 0 0 -- 1 1 4 -4 0 0 0 0 --
DV 2. 4 -4 0 0 0 0 -- 1 1 -4 4 0 0 0 0 1-1

E 3C, 4C3  4Q I 31C 2  41C, 41C,

A, 1 1 1 1 1

C1. , I I w 2W
C1. 1 1-1 -w1 -W2

C2 , W2 ca W21
C2. 2 w2 1 1,2

1 1 • • -1 -- 1 ---w _-w

, 3 0 0 3 10 0
T. 3 0-1 0 -3 1 0 0

D., 2 -2 0 1 - - 1 2 -2 0 1 -
DS. 2 -2 0 1 -1 -1 1 -2 2 0 1 1 -1 1

-, 2 -2 0 - w _W
2 W

2  2- 0 _W2,

2S1.. 2 -2 0 w - WW -2 2 0 -w w W2 W

As2w 2 -2 0 1 -. -- 1. 2 -2 0 W
2  - - 1 W

2$2 2 -2 0 W
2 

_W
2  -- W O -2 2 0 -_W W2  -(
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4. Degeneracy, Selection Rules, and Polarization
4.1. Splitting of Free Ion Levels tions. For a pure magnetic field, we shall consider

only a uniform field with symmetry C.,. In case
We are now in a position to apply the results of both fields are present, the appropriate group is

our previous considerations to the problem of the grou of those symmetry oprations common
degeneracy in the presence of a perturbing external to the electric and magnetic ields. Unleyss the
field. The general procedure has been covered magnetic field is parallel to one of the symmetry
in the previous section; we onsider here the spe- axes of the crystal field, there will in general be
cifie example of a free ion level described as no symmetry common to both perturbations.

4. . .. l in a fi3•h•eldof3C1, symme- In accordance with our previous discussions,
try. From table 8 we obtain the class structure the physical implication of this reduction is that
of C-6. as E, 2q, 2, Q, 31% 31C3 C. The all one dimensional reps appearing in the reduction
traces of the matrices of the rotation group J=4 represent states arising from the free ion level J,
corresponding to the first four of these classes which are not related by symmetry to any of the
may be obtained directly from table 7. Those for other states so arising. These states, then, are
the last two classes will be -1 times the traces either nondegenerate or "accidentally" degenerate,
of the corresponding pure rotation. We obtain the latter being due to numerical values of the
the following for the character table of a reducible parameters hence very improbable in any actual
representation of C6,. We also include for imme- case. Any two-dimensional rep represents a pair
diate convenience the reps A, and A 2. of states from the original 2J+ 1 which are

essentially degenerate, being related by symmetry
operations, but not degenerate with the other

E 2 2CQ C2  3IC. 31CC 2J-1 states. Similarly for any reps of higher
. . ..... _ __ dimension. If a particular rep appears only once

4. 9 -2 -0 -1 in the reduction the state or states it represents
A, 1 1 1 may be uniquely associated with a particular
A2 1 1 1 -- combination of the original 2J+ 1 states. If the

rep appears more than once there will be two or
more states of the original 2J+ 1 having the same

The expansion theorem for group characters symmetry properties, and the appropriate states
(3.10) was given in terms of the weighted traces in the crystal may be a linear combination of

these. This can only be determined from the
&J numerical parameters involved. These consider-

•--- •j ations are modified by Kramers degeneracy to be

and considered in detail in section 4.2. Certain pairs
of reps are noted in table 9 as being Kramers

j= ... IVixj, conjugate states. These states, even though
ygý belonging to different reps, are degenerate if the

perturbing field is purely electrostatic.
but it is usually more convenient to use the It is often of considerable interest to follow the
traces directly. Thus a,=E,.Z (3.10) becomes gai behavior of a given level during the introduction
= .Njx*X. Using this latter form, we obtain for of perturbing fields of increasingly lower symmetry.

: MFor example, one may wish to see the effect on thelevels under D3d symmetry of a reduction of sym-
+3()(--1)+3(1)(--)=0, so A, will not ap- metry to C3,. This may be accomplished by the
pear in the reduction. Likewise, 12 aA2=1(1)(9) correlation table, table 10. Since most of the
+2(1) (--2) +2(1) (0) + 1(1) (1) +3 (--1) (--1) groups with which we are presently concerned are
+3 (-1) (-1) = 12, so A 2 will appear in the reduc- subgroups of D., we start with the reps of D_.
tion once. For each group of lower symmetry, the designation

The results of this and similar calculation for all of the level or levels is given in the appropriate
the subgroups of Dr of present interest are given column. Again, the pure rotation groups are not
in table 9. As in table 8, the results for the pure given separately, requiring only the suppression
rotation groups are not given separately, and may of "g"-"u" in the associated holohedric group.
be obtained from the associated holohedric group The procedure involved here is the application to
by omitting the "g"- "u" distinction. Only the the characters of the reps of D.t, precisely the
group I has been omitted; this has no symmetry same procedures as were applied to the rotation-
apart from the inversion, and states are either inversion group characters in constructing Table 9.
A, or A.. The integral range of J is from 0 to 8, Notice that here, in many cases, the rep of D,., is
while half-integral J ranges from ) to 1%. If only still a rep of the subgroup, since the levels fre-
electric fields constitute the perturbation on the quently remain twofold degenerate.
free ion, the appropriate group may be obtained For an example, let us consider the state 2.
from table 5 or from crystallographic considera- under the influence of a crystal field of symmetry
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TAU•L 9. IVe and number of perturbed levelB

0 1 £ $ 4 5 6 7 8

g u g u 9 u g u g u 9 u 9 u u

A1 . 1 1 1 1 1
A1 , 1 1 1IA,,: 1 1 1 1

A,1 1 1 1

,.1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

E .1 1 1 1 1 1 1
Dco E,, 1 1 1 1 1 1 1

Es1 1 1 1 11 1 1 1 1 1
E4,E4 . 1 1 1 1 1

1 1 1 11
E4.

B,. 1 1 1 1
B,1 1 11E5.

B,. I1 1 I
B,1 11

El

E7 1 1

A,, 1

A, 1 1 1 1 11 1 1
A2  1 1 1 1 1 1 1 1

C,,,1 1 1 1 1 1 1 1 1 11 1 1 i 1 1

B., E,1 1 1 1 11 11 1 1 1

B7  1 I11III 1
E• I 1I I I 1 1

A, 1 1 1 1 1 1 1 1
1E1 11 1111 1 1

1E11 11 11 1
1E 11 11 1

CA. 11 1 1 1 1 1 11
C1,1.1 1 1 1 1 11

A.

C& Cdl# 1 1 1 1 1 1 11
Cd,. 1 1 1 1 1 11
cd2,411 1 1 1 11
cd,5. 11 1 1 1 1
C•b. II11 1 1
Cd,.. 1 11
C •4. 1 11
Cd,7g 1 11

Chin. 1

Cbs. 1 1

Note: The states C.,, C_.,, and C.., C....., are Kramers conjugate states.
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TAUia 9. Typ and num of perturbed levela-Continued

0 1 9 8 4 5 6 7 8

g u g u 9 u g u g u g u g u g u g u

Ate I 1 1 2 1 2
At,, 1 1 2 1 2A,. 1 1 1 2 1
A,, 1 1 1 1 2 1
BDo&1 1 1 1 1 1

D. • B,, 1 1 1 1 11
B,1 1 1 1 1
B2 ,1 1 . 1 1 1

1l1 1 1 2 2 3 3
E_. 1 2 2 3 3
B2, 1 1 2 2 2 2 3
Ex 1 1 2 2 2 2 3

A 1 1 1 1 1 2 1 1 22 1
ABs 1 1 11 1 2 2 1 2

Co.e B2 1 1 11

E, 1 2 2 2 1 3 3 3 3
E1 11 1 2 2 2 2 2 22 2 3 3

A 1 1 1 1 12 11 12 1

D3,, A" 1 1 1 1 1 1 1
D A, d• 1 I I 1 11 I 1 21 11 2

A!' 1 1 11 1 1 2 1 1

E 1 11 1 2 12 2 2 22 3 3 3
E"1 1 1 11 22 2 2 23 2 3 3

A,, 1 2 1 2 1 3
A,.1 2 1 2 1 3

AA, 1, 1 2 1 2 2
A,1 1 2 1 2 2

D4. B1, 1 1 1 1 2 2 2
B1 1 1 1 2 2 2

B,, 1 1 1 1 2 2 2
B1 1 1 1 2 2 2

BE, 1 2 2 3 3 4 4
E.1 1 2 2 3 3 4 4

A, 1 1 1 2 1 1 2 2 11 2 3 2
A, 11 1 2 2 1 1 22 1 2 3

C_, B, 1 11 11 11 12 22 2 2 2
B, 1 11 I 1 12 22 2 2 2

E 11 1 2 2 2 2 3 3 3 34 4 4 4

A, I 1 1 2 11 1 2 2 1 2 3 2
A, 11 1 1 1 2 1 1 2 2 2 2 2

Dw B, 1 1 1 1 2 1 1 2 2 2 1 2 3
B2 11 1 11 11 2 2 1 2 2 2 2

E 11 1 2 2 2 2 3 3 3 3 4 4 4 4
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TABLz 9. Type and number of perturbed level--Continued

0 1 5 S 4 5 6 7 8

g u g u g u g u g u g ug asg u g u

A,, 1 1 1 2 1 3 2 3
A. 1 1 2 1 3 2 3

Dlu A2, 1 2 1 2 2 3 2
As. 1 2 1 2 2 3 2

E, 2 2 3 4 4 5 6
E. 1 2 2 3 4 4 5 6

A, I 1 1 2 2 1 1 2 3 2 2 3 3 2
C3. A2 1 2 1 1 2 2 1 2 3 3 2 2 3

1 1 2 2 2 2 3 3 4 4 4 4 5 5 6 6

At, 1 2 1 3 2 4 3 5
A,. 1 2 1 3 2 4 3 5

A21 1 1 2 2 3 3 4 4
D, A:. 1 1 2 2 3 3 4 4

B,, 1 1 2 2 3 3 4 4
B,1 1 2 2 3 3 4 4

B2, 1 1 2 2 3 3 4 4
B2. 1 1 2 2 3 3 4 4

A,I 1 2 1 2 3 2 2 3 4 3 3 4 5 4
A3 1 1 2 2 1 2 3 3 2 3 4 4 3 4 5

C2. B, 1 12 2 2 2 3 3 3 3 4 
4  

4 4
B, 1 1f1 12 2 2 2 3 3 3 3 4 4 4 4

A. 1 1 1 1 1 3 3 3
A. 11 1 1 1 3 3 3

B, 2 2 2 2 2 2
B. 2 2 2 2 2 2

C,, 1 1 1 2 2 3 3
C" , 1 1 1 2 2 3 3

CQ. 1 1 2 2 2 2 3
C2. 1 1 2 2 2 2 3

C4, 1 1 2 2 2 2 3
C4. 1 1 2 2 2 2 3

C51. 1 1 1 2 2 3 3
C5. 1 1 1 2 2 3 3

Note: The states (C,,, Co.), (C,., Co.), (C2,, C4,), (C2., C4.) are Kramers conjugate states.

A' 1 1 1 1 2 1 2 1 23 23 2 3 2
Al 1 1 12 1 2 1 2 12 32 3 2 3

CA C 1 1 1 1 2 1 2 22 22 3 3 3
C1 1 11 11 2 2 2 2 23 2 3 3

C, 11 11 12 12 22 22 33 3
C,° 1 1 11 11 2 2 2 2 23 2 3 3

Note: The states (M, Q) and (C,', C;') are Kramers conjugate states.
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TAEBL 9. Type and number of perturbed levele-Continued

0 5 S $ 4 5 6 7 8

g u g u g u g u g u g u g u g u g

A, 1 1 1 3 3 3 5 5 5
A. 1 1 3 3 3 5 5

So C,* 1 2 2 3 4 4 5 6
CI. 1 2 2 3 4 4 5 6

C2, 1 2 2 3 4 4 5 6
CSI 2 2 3 4 4 5 6

Note: The states (Cl., C2#) and (C,., C2..) are Kramers conjugate states.

A, 1 1 1 1 3 3 3 3 5
A, 1 1 1 1 3 3 3 3 5
B. 2 2 2 2 4 4 4

C,, B. 2 2 2 2 4 4 4
C . 1 1 2 2 3 3 4 4
C 1 1 2 2 3 3 4 4
CS, 1 1 2 2 3 3 4 4
Ca, 1 1 2 2 3 3 4 4

Note: The states (C,,, C3,) and (Cl., C3.) are Kramers conjugate states.

A 1 1 1 2 1 2 3 2 3 2 3 4 3 4 5 4
S4 B 1 1 2 1 2 1 2 3 2 3 4 3 4 3 4 5

C, 1 11 12 2 2 2 3 3 3 3 4 4 4 4
Ca 1 11 12 2 2 2 3 3 3 3 4 4 4 4

Note: The states C, and C3 are Kramers conjugate states.

A, 1 1 3 3 5 5 7 7 9
C2, A. 1 1 3 3 5 5 7 7 9

B, 2 2 4 4 6 6 8 8
Bu 2 2 4 4 6 6 8 8

C. A' 1 1 2 3 2 3 4 5 4 5 6 7 6 7 8 9 8
A" 1 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8

A, 1 1 1
A,,1 1 1 1

A,, I1 1
A,. 1 1 1

04 E, 1 1 1 1 1 2
E. 11 1 1 1 2

T7, 1 1 2 1 2 2
TI. 1 1 1 2 1 2 2

72,, 1 1 1 1 2 2 2
2.1 1 1 2 2 2
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TwA 9. Type and numbem of perturbed /ad&-Continued

0 1 5 8 45 6 7 8

u u 0 u 1 u t u g u g u 9 tg 9 u

A, I 11 1 1 11A, 1 1 1 1 1 1

Td R 1 1 1 11 11 11 12 2

T 1 1 12 1 1 2 2 2 2 2
7S I1 1 11 11 2 2 1 2 2 2 2

A, 1 1 2 1 1
A, 1 1 2 1

C,. 1 1 1 1 1 2CI. 1 1 1 1I
Th

C,. 1 1 1 1 1 2
CS,; 1 1 1 1 1 2

T. 1 2 2 3 3 4 4
T, 1 2 2 3 3 4 4

Note: The states (C,., C,.) and (C,., C2.) are Kramers conjugate states.

1 8 5 7 9 11 1i 15

ii T

g u g u g u g u 1 u g u g u g u

,8,* I I I I 1 I I 1
S18,. 1 1 1 1 1 1 1 1

,87* 1 1 1 1 1 1 1
as,.. 1 1 1 1 1 1 1

D.4 ,8,. 1 1 1 1 1 1,8,.. 1 1 1 1 1
1 875j 1 1 1 1 1
187.. 1 1 1 1 1

28q. 1 1 1 1

C. :8S&II

18,. 1 1 1 1

as,S,,. 1 1

28,,.1 1I. 1 1 1 1 1 1
28,1I,1I 1 1
2. 81 1 1 I .I II. 1 1

,,1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

8,1 11 1 1 1
281 1
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TABLM 9. Type and number of perturbed ivel--Continued

1 8 5 7 9 1 81
u u g u g u g u g u g u u

... 8k-,. 1 1 1 1 1 1 1 1

S*., 1 1 1 1 1 1 I

8C. , 1 1 1 1 1S ,-.q . 1 1 1 1 1

8-,-, 1 1 1 1
c., st.•. 1 1 1 1

8l 1 1 1
8.,n 1 1 1

8*33, 1 11
8*13. 1

S*131
8,s1. i

Note: The states (S.e, 8-.,) and (S.., S-..) are Kramers conjugate states.

D%. 1 1 1 1 1 2 3 3
1 1 1 1 1 2 3 3

D,* 2SI. 1 1 1 2 2 2 3
,8.. 1 1 1 2 2 2 3

5S•. 1 2 2 2 2 2
282. 1 2 2 2 2 2

D 1 1 11 11 1I1 12 2 3 3 3 3
Co. 1 11 11 1 2 2 2 2 2 2 3 3

82 1 1 2 2 2 2 2 2 2 2 2 2

D 1 11 2 1 2 2 2 3 2 3 2
D3 8 1 11 11 12 2 2 2 2 2 3 3

3SS 1 1 12 1 2 1 2 2 2 3 2 3

D%, 1 1 1 2 3 3 3 4
44D. 1 1 1 2 3 3 3 4

D4 A 2S. 1 2 2 2 3 4 4
:S,. 1 2 2 2 3 4 4

C', D 1 1 12 2 3 3 3 3 3 3 4
______1 1 2 2 2 2 2 2 3 3 4 4 4 4

D D 1 1 1 2 2 2 3 2 3 3 3 4 4 4
2-'* 111 112 1 2 2 2 3 3 4 3 4

SD, 1 1 2 3 3 4 5 5
"�1 1 2 3 3 4 5 5

"3 d 81, 1 1 1 2 2 2 3
.1 1 1 2 2 2 3

1 1 1 2 2 2 3
8. 1 1 1 2 2 2

Note: The states (S,,, S3.) and (8g., S..) are Kramers conjugate states.
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TABLZ 9. Type and number of perturbed ll-Continued

Ug u g u g u 0 u g u g U g

D 1 1 1 2 2 3 3 3 3 4 4 5 5 5 5
CS, s, 1 11 11 12 2 2 2 2 2 3 3

1 11 1 1 1 2 2 2 2 2 2 3 3

Note: The states (S1, S3) are Kramers conjugate states.

sit 1 1 1 2 3 3 3 4
St. 1 1 1 2 3 3 3 4
8.3 1 2 2 2 3 4 4
8S. 1 2 2 2 3 4 4

C44 S5, 1 2 2 2 3 4 4
S.1 2 2 2 3 4 4
S7. 1 1 2 3 3 3 4

1 1 1 2 3 3 3 4

Note: The states (Sit, S7t), (S1., S7 .), (S3,0 S',), (S3., $5u) are Kramers conjugate states.

81 11 1 2 1 2 2 2 3 3 3 4 3 4 4
83 1 1 1 1 2 2 2 3 2 3 3 3 4 4 4

S4 85 1 1 2 2 2 3 2 3 3 3 4 4 4
S7 1 12 1 2 2 2 3 3 3 4 3 4 4

Note: The states (S1, 8;) and (S2, 8•) are Kramers conjugate states.

D2 4 D%, 1 2 3 4 5 6 7 8
Dx,, 1 2 3 4 5 ; 7 8

Si, 1 1 1 1 1 2 3 3
S.1 1 1 1 1 2 3 3
S3 1 1 2 2 2 3
83.. 1 1 1 2 2 2 3

C64 851 1 2 2 2 2 2
S.. 1 2 2 2 2 2
87,@ 2 2 2 2 2
,.1 2 2 2 2 2

89, 1 1 1 2 2 2 3
8.. 1 1 1 2 2 2 3
8S,, 1 1 1 1 1 2 3 3
811. 1 1 1 1 1 2 3 3

Note: The states (8,,, 81.1), (S.A., S.,. ,), ( 3, (S., SO.), (8A, 871), (8A., S.7.) are Kramers conjugate states.

1I 1 1 21 2 2 23 2 3 2
13 11 12 22 22 2 3 3

C S5  1 12 12 12 22 3 2 3
57 1 21 2 1 2 2 2 3 23

8, 1 1 2 2 2 3 3

8 1 1 2 2 2 3

Note: The states (S., Sn), (8,, S,), (SV, S•) are Krarmers conjugate states.
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TABLZ 9. Type and number of perturbed levels-Continued

91 5 7 9 11 13 15

9 u g u g u g u g u g u g u g u

S:, 1 2 3 3 4 5 5
S.. 1 2 3 3 4 5 5

S,3 2 2 2 4 4 4 6
Se S3- 2 2 2 4 4 4 6

8 e 1 2 3 3 4 5 5
S3. 1 1 2 3 3 4 5

Note: The states (S1i, S3,), (SI., S5.) are Kramers conjugate states. The states (S3., S.) appear an even num-
ber of times as Kramers conjugate pairs.

C2. D% ~1 1 12 2 3 3 4 4 5 5 6 6 7 7<8 8

C24 Si, 1 2 3 4 5 6 7 8
S1. 1 2 3 4 5 6 7 8
S" 1 2 3 4 5 6 7 8
83.. 1 2 3 4 5 6 7 8

Note: The states (S,,, S39) and (SI., Ss2 ) are Kramers conjugate states.

Dso 1 1 1 1 1 1D•,. 11 1 1 1 1

O Dlg 1 1 2 2 2 3
Dh. 1 1 1 2 2 2 3

1 1 1 2 2
2S. 1 1 1 2 2

Tj D% 1 11 11 1 2 2 2 2 2 3 3
2S I I I I 1 1 2 1 2 1

DM. 1 1 2 1 2 3 2

2D 1% 1 1 1 2 3
T 2 ,8 .. 1 1 1 2 2 2 3

2820 1 1 1 2 2 3

N82. 1 1 1 2 2 2 3

Note: The states (2S, 2•82,) and (GIS., A82.) are Kramers conjugate pairs of states.

45



~~in4~~ z~~aI z z .

-q 44 9 Qa a 4 Qa .aaca * a*AT ATD a a.. ac 4!

.~ 46



4 411 4I 4I W4 " 4 41 W411 WI 4WC1f

6WI6 .W606N.60:: 06.W06 .WNN WWIN .64

T. T " II =41 I I0ýr2C 2 t Z QC oC ý D t oC 0 0 00 o& 0 O r 0c)0

q i

IN 4 31 . IN . IN WIN 41 N *NI 447



E6 where table 5 shows that potential coefficients but its behavior under lower symmetry does not
CICg; C|CICI; CIC! and C: are present, and depend upon the rep of D-, from which it arose.
table 9 shows that there are two states A,. and In a manner of speaking, the columns of table 10
one each of A2., B,., and B2., indicating that the are first differences of the entries of table 9.
original fivefold degeneracy of the state S. has Table 11 shows the reduction of the reps of the
been destroyed. If the terms C°, C0, and Ca' are cubic group into the reps of their own cubic sub-
more significant than the rest, an initial approxi- groups, and into reps of the noncubic groups.
mation using these terms only leads to D.A sym- Here, we have considered the two possibilities
metry, with states A,., E1 3 , and F,2.. The inclu- which may arise in destroyg cubic symmetry.
sion of C6 will reduce the symmetry to D,,, but the Thus, the group 0 mayereduced to D, by
states retain their designation. On the other destroying the threefold axes, or to D, by destroy-
hand, the inclusion of C! will reduce the sym- ing the fourfold axes. In either case, the principal
metry to DOA, leave the A. level unaffected, leave axis remaining is considered to be the principal
the EZ, level unaffected save for a redesignation to axis of symmetry.
E., and cause the E2, level to split to Bý, and While our discussion has been that appropriate
BA,. If we now include all terms, we see that E. to the weak-field case (sections 3.3, 3.4), the
of Do splits to B,. and B,. of Dý,, and that the results are immediately applicable to both the
states B1, and B2. of D4A become A1, and A2., intermediate field case and the strong field case.
respectively, in DIa. This A1 , state can interact In the former, the external pcrturbation is stronger
with the A,. state from the original D,,, approxi- than the spin-orbit interaction. Consequently,
mation, so that a rigid correlation with the states instead of reducing the representation DLXDa
of D.A has been lost. into those reps of the group leaving invariant the

Table 10 has been so constructed that the same spin-orbit term in the Hamiltonian, i.e., D,, we
process may be followed for still lower order reduce the representation into those reps of the
groups. For every column in the table, its sub- group leaving invariant the crystal field potential
groups are found further to the right in the table V. Since the spin is not included in the Hamil-
(or in the same column without the "g"--"u"), and tonian at this stage of the approximation, we
the designation of any level under increasingly reduce DL only into reps X,. This may be
lower symmetry may be followed across the table. done by using table 9 for L instead of J
Entries of the same line have significance only (here, the double groups will not appear, since
with respect to the allowed subgroups of any given L must be integral). The rep for the wave
group. Thus, there is no correlation between
parallel entries in Dv, and DO, though either may function, including spin, will then be X, XD8 .
be correlated with D2h. All splittings of double- We shall parallel spectroscopic notation for such
degenerate reps have been correlated to ensure a state by using the appropriate symbol from
consistency. Since the basic entries of the table table 8 for the rep X,, with an anterior superscript
are the reps of D.a,, any desired rep of some other 2S+ 1 for Ds, the whole being placed in paren-
group must be found from the table by inspection theses. If the spin-orbit interaction is now intro-

TABLE 11. Reduction of the cubic groups

0A I Th Td• h DD4  TA DA S6 Td T D2d Ca.

A,, A, A A,, A,, A, A,, A, AI A A, A,A,. A, A A,., A,. A, A,, A, A2 A B, A2

A2, A, A2 B, A2, C,1, A,, C", E C1 C2 AB,_ E
A2. A,ý A, BI, A2, C,, A,, C1. T, T A2B A2E
E, C,C21 E A B1, E. C2, A,. C2 T2 T B2E AIE
E. C:0C,. E A,.B,. E. C'u A,. C' D Dj. D% D)

,S Dj 2S DMT1 T, T, 9,A,, EA,, T, A2,B,,B2, A ,CC, D,28 , AS D4 28 D,,S,8
T2. Tu T, EA,. E.Aj. TD ADB%,B. A .CC,

T% EBD, E%.1B [ Dm. S,

D%. D%. 29' D,4 A,, :St . D4,,S

D, 2s , D%, S, D. 88,
28, 82, 3 282c D%, ,8,D,8,,8,

,8, S, D%, 2S. 8,Dm., 282. 8,,S35
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duced, the rep X• XDs is now merely a representa- 2 nonequivalent electrons, and then consider the
tion, so that it must be reduced according to the restrictions imposed on equivalent electrons by the
overall symmetry of the problem, which is still operation of the Pauli principle. We shal take
that of the crystal field V. If X, is one-dimen- the configuration pp in a field of C, symni'iry.
sional, the splitting which arises is that of the The threefold degeneracy of a p stale (aparl from
spin states only through Ds, and the angular mo- spin) is completely lifted, and we obtain (table
mentum is said to be quenched; if X, is of dimen- 9 for 1.) a,; b,; and b2 for each electron, so the con-
sionality greater than 1 but less than 2L+1, the figuration breaks up into (a,)(a,); (al)(b2); (b?)
orbital angular momentum is partially quenched. (a,); etc., a total of 9 possibilities corresponding
This verbally depicts the effect on the orbital to the original 9 orbital possibilities in pp. The
angular momentum of the strong crystal potential spin transformation will be DXD•. The intro-
field V, which destroys (X, one-dimensional) or duction of the details of electrostatic interaction
limits (I<Xjr<2L+-1) any further influence on cannot cause any further splitting of the orbital
the angular momentum either by spin-orbit inter- wave function, since all the states are one dimen-
action or by a moderate external magnetic field. sional, though a relabeling may occur. The re-
Still another intuitive view is that the crystal po- quirement fur totally antisymmetric wave func-
tential partially or completely fif.es the orientation tions will require that the spin transformation
of the angular momentum in the lattice, so that D34XD% be reduced to Do and D,, giving the usual
these other influences have no further effect. singlet and triplet states, respectively. Thus, (a,)

As an example, let us consider the 7F2 level of (a,) becomes (a,)(a,)('A,) and (a,)(a,)-A0); (bN)
the europium trivalent ion, the symbol indicating (b%) becomes (b,)(b2)('AO) and (b%)%(b,)OA2); etc.
a reduction of D.XD3 to D2 by spin-orbit inter- Note that this latter state is distinct from (b%)
action. A weak perturbing field D4. will (table (bJ)(A2), which is also an allowed state in the
9) split this 2, level into states described as reduction. The further introduction of spin-orbit
CF)A,,; (CF)B1,; (CF)B2,; and (CF)E,. An inter- interaction now requires the reduction ofX, XD,
mediate case field D4, will split the 7F term (table for the singlet states, Xj XD, for the triplet states,
9 for 3,) into ('A2); (CB,); (B2,); and 2 (7E,), a in accordance with the overall symmetry of the
total of (2S+1)(2YH1)=-49 states. The intro- problem, which is still that of the external crystal
duction of the spin-orbit coupling will now cause field potential V. Consider (b,)(b2)(A,). The
each of these to be split further. Consider the character of A2 is (1, 1, --1, -- 1), while the char-
level (A2,). The rep A2, in Dh has the character acter of D, in C2. (even parity for a spin transfor-
(1, 1, 1, -- 1, -- 1, 1, 1, 1, - 1, -- 1), while the mation) is (from table 7) (3, -- 1, -- 1, -- 1), so the
representation frzim Da has the character (parity character to be reduced is (3, -- 1, 1, 1), giving
even, since it is a spin representation) (7, -- 1, -- 1, A,, B1, and B2. We may write the final states,
-1, -1, 7, -1, -1, -1, -1), so the representa- then, as pp(b,)(b%)OA,)A,, or pp(b,)(b2)(A2)Bj,
tion A2, XD3 has the character (7, - 1, -- 1, 1, 1, for example.
7, -- 1, -- 1, 1, 1) and is reducible into A,,: B1,; If the electrons are equivalent, i.e., p2', we write
B,,; and 2E,. The final states may be designated (a,)2 instead of (a,) (a,), and we cannot distinguish
(1A2,)Aj,; (7A2,)BI.; (CAU)B,,; and 2('A2.)E-. (al)(b,) from (bO)(a,). Furthermore, the Pauli
This notation parallels that of the usual L-S principle requires the spin state of opposing spins
coupling scheme. The labels inside the paren- for the orbital states (a,)2; (b,)2; and (b2)2, so that
theses indicate the approximate transformation these appear as singlets only. The remainder of
properties of the state for transformations of spin the orbital states may appear either as singlets or
and orbit separately which leave invariant the as triplets. Apart from these considerations, the
Hamiltonian, while the final designation is the development follows that of the nonequivalent
accurate specification of the behavior of the state electrons. A possible final state would be Written
under the simultaneous transformation of spin p2(b,)2(IA,)A,.
and orbit. We have selected here a particularly simple case

In the strong field case, we introduce the crystal in that there is no orbital degeneracy present in
field in our sequence of approximations (section the reduction of DA for a p electron. The require-
3.3) before considering the details of the electro- ments of the Pauli principle are then particularly
static interaction of the electrons, retaining only easy to satisfy. If the reduction yields a two-
the initial central field average V'(r,). We now dimensional rep, or remains three dimensional,
specify our initial energy by giving only the con- the development must be followed more carefully.
figuration, and the reduction of the representa- We introduce the procedure by considering, in the
tions begins at this point. As a matter of notation, concepts of the present work, the familiar opera-
following Mulliken (1955), we shall designate the tion of the Pauli principle in labeling the levels of
reps and characters for a single electron by lower the configuration p' itself. We imagine a uniform
case letters (e.g., a2,). If there is but one electron, magnetic field such that the resulting perturba-
there is no distinction between the intermediate tion in the Hamiltonian, -M.B, has the sym-
field and strong field cases, and we proceed as metry C.,,. The degeneracy of each p electron
outlined for that case. is lifted, and we have (table 9) the states a., cl.

We shall illustrate the procedure for the case of and c.._ for each electron. Because of the Pauli
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principle, the state (cl.) 2C2, occurs with anti- inversion, which should be considered at this
parallel spins only; i.e., a singlet state. We see time. This is the symmetry of "time-reversal".
that ao state C,• for n greater than 2 arises. This was initially considered by Kramers (1929,
We then infer from table 9 that there exists a 1930) in connection with the rotation of the
singlet level L=2 in the configuration when the plane of polarization of polarized light. The
magnetic field is removed. Similarly, we deduce matter has been thoroughly considered by Wigner
a triplet L=1 and a singlet L=0. (1932) in the nonrelativistic case in which we are

A similar process can be used if the crystal field here interested, and more recently by Klein (1952).
leaves degeneracy in the 1-electron wave functions. We shall outline here the principal concepts in-
The differences are two: first, it is generally more volved referring the reader to the original papers
convenient to remove the degeneracy by the for additional details.
imaginary application of an electrostatic potential Classically, the reversal of time in a mechanical
of a symmetry which is a subgroup of that actually system is accomplished by the reversal of the
present; second, the correlation of states in this direction of all velocities (or momenta) by the
additionally perturbed problem with those of the substitution r'=r, p'=--p. Quantum mechan-
primary perturbation is not unique, and several ically, we assume that this is also time reversal, if
alternatives must be considered. a similar substitution s'= -- s is made for any spin

Let us further consider p2, this time under the angular mome2ntum involved. In the case of a
symmetry C4,, where 1, reduces to a, and e. Our free atom, the Hamiltonian H(r, p, s) involves
problem really lies in the study of (e)', since p and s in kinetic energy terms with p 2 and
(al) (e) can yield either triplet or singlet, and spin-orbit interaction terms with p-s, both of which
(a,)' is necessarily a singlet. Without the con- are invariant under the time-reversal operation.
siderations of the Pauli principle, (e) 2 yields A , , This invariance of the Hamiltonian remains under
A 2, B 1, and B2, both triplet and singlet, and the the influence of external perturbations of a purely
Pauli principle will suppress certain of these terms, electrostatic character, in which case the vector
Since (e), including spin, represents 4 states, we potential A may be set equal to zero and the

expect states altogether. Let us reduce scalar potential V(r) introduced. This invarisnce
2u is destroyed by the application of magnetic fields-

the symmetry to C2.; (e) becomes b,±+b2 , and the a term p.A arises in the Hamiltonian, which is
allowed orbital states are (bl) 2; (b2)2; and (b,)(b%). linear in p and changes sign on time reversal.
The first two are both A, and necessarily singlet, In general, then, we shall seek an operator
while the third is A 2 , either singlet or triplet, so K such that KH(r,p,s)K-'=H(r,-p,-s), and K4'
we have our total of six states. If we examine (r,s,t)=i,(r,-s,-t). Since the operator K repre-
table 10 for the relations between these states of sents a transformation of our wave functions, we
C2, and states of C4,, we see that A , in the former shall require it to be a unitary operator. If we
implies either A, or B, in the latter. Since we -IM
have A, twice in C2, and cannot have either A, or consider the spin-free theory,with* (r,t) =,k(r)e ",

B, more than once from (e) 2 in C4,, we conclude we see that the operation t-- -t is accomplished
that both are present in C4, as singlet terms, merely by taking the complex conjugate, an opera-
However, the singlet, or the triplet, A 2 implies tion we shall call K0. Insofar as the spin-free
either A 2 or B2, and we cannot decide which is the theory is concerned, this is sufficient; the p operator
correct choice. If we reduce the symmetry to C' -ihvbecomes-p= +ihvupon taking the complex
instead of C2,, (e) reduces to (cl) and (cO), yielding conjugate. Let us now consider the Pauli spin
singlets (c,) 2 and (c3)2, and singlet and triplet theory for one electron. The Pauli spin matrices
(cO)(cO). The first two give B states, while the
third gives A states. Examination of table 10 /0 10) /0 -- \ (1 01
shows that B in C4 implies either B, or B2 in C1,. s1=( su= s
Again, since we have two of the former, and are 1 i 0 1-
allowed at most one of each of the latter, we
conclude the presence of singlet B, and singlet B2 , are both unitary and Hermitian. The trans-
together with the singlet A, previously deduced, formation Kos 1K0-r=--sy since s. is purely
The triplet state if. C2, implies either A2 or B2 in imaginary, but s. and s,, both real, are invariant
C4 ., while the triplet state in C4 implies either A ,  under K 0. Hence, in order to effect the reversal
or A 2. Obviously, the only choice consistent with of s. and s,, we seek yet another operator, which
both is the triplet A 2. We have, thus, 'A,; 3A2 ; must also be a unitary operator U, such that it'B1 ; and 'B2 . The balance of the problem then commutes with r, p, s,,, and K0, but anticommu tes
follows previous discussion. In general, each with s, and s, so that U s, U---= -s. and simi-
problem must be considered as an individual case. larly for s,. This latter requirement is met by sy

itself, or by some product of s, with a complex
4.2. Kramers Degeneracy number a of modulus 1. To ensure commutation

with K0, the product as, must be real, which
There is one very important symmetry oper- follows if a=%, so that U-is and K=K0is,.

ation, in addition to spatial rotations and the Note that the operator U is still unitary but no
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longer Hermitian. For n electrons, +J,,=0- and KOa=Kip,--KiK,,= -iK4'.+iJi
=a, so the two sets of functions .0 and 0, are

U= (i)N 1 )1(81)2(s6)( . . . not related by time reversal or otherwise, and any
degeneracy present is presumably only an acci-

Physically, it is clear that time reversal and any dental degeneracy. Practically speaking, this
rotation-inversion operation commute. Mathe- means that our set of wave functions may be
matically, the inclusion of the operator K in an chosen to be real, and that in such a case time
extended group of the form D.XIXK cannot be reversal yields no connections among the set of
accomplished since K is not a linear operator. real functions that are not already present as a
The basic rules for the operator K were given by result of the rotation-iversion symmetry. If
Wigner as: there is an odd number of electrons, Ko---K•-

1. K"-=UKeUKo0-U'4-(-1)"*, since U is 0,0 and we cannot so separate the 0 and fi sets
real, K]•=1, and s2--=1. of wave functions as we did above. Hence the

2. K (a4-+b0)=a*KV,+b*Ko. This shows the rep must appear twice once for p and once for
nonlinearity of K. K4, orthogonal to it. Ti'he only actual such cases

3. (,)---(K, o)-(UKo,UKo))=(KP,K0). are the reps S&,S3 . of So and 83 of C3 and it may
Applying (3) and (1), we have (K4,O)= (K4, be verifie from table 9 for S6 that they do in fact
KAplyn (3),and (1), ea ( ,-( We see that appear only an even number of times in any
the Hermitian scalar product must be zero if n reduction of a group of half-integral J.
is odd, or that 4, and K4b are then orthogonal and In case (2), Q,,=zQ , yields KQ4-=-QKP,
hence linearly independent, yet have the same =-Qt1K4,.. Since therepR* is not equivalent to R,
energy if KH=HK. This is the content of 4, and K4, belong to different reps of the group and
Kramers Theorem as usually stated, namely, hence are orthogonal (section 4.3), but have the
that every level for an odd-electron system is at same energy. Hence a separation of a rep such
least twofold degenerate under the influence of as E of C3, into C, and C2 of C3 by an electrostatic
external perturbations of a purely electrostatic field does not imply a removal of the degeneracy.
character. We must examine further the inclu- It is complex conjugate reps such as these which
sion of the operator K into our previous con- are usually grouped together into a single two-
siderations on group representations. dimensional rep by workers in the field of molec-

We shall consider the following three cases ular spectroscopy.
(Frobenius and Schur, 1906; Wigner 1932): The equivalence of R and R* in case (3) requires

1. The rep R is real, or may be put into some the existence of a unitary matrix S such that
equivalent form which is wholly real. This refers SRS-I=R* or S*R*(S-)*=R, so S*SRS- 1(S-')*
to the elements R of the rep not merely the traces. =R or S*SR--RS*S. We see that S*S

2. R cannot be made real, and R* is not commutes with every R and hence must be a
equivalent to it. multiple of the unit matrix, say cE, with c of

3. R cannot be made real, but R* is equivalent absolute value 1. With S*S=cE, we have S*=
to R. cS--=c(S)*, where S is the transposed matrix of

For the finite groups a calculation of 1Z x(R 2) will S. This is a consequence of the unitary property
y a of S. The conjugate of this relation is S=c*S,yield 1, 0, or -- 1 in cases (1), (2), or (3), respec- adtetasoeo hsgvs9cS ial

tively. Case (1) occurs for integral J in Dr and and the transpose of this gives =-c'S, finally
in all its subgroups save those one-dimensional giving S-c*(c*)S, so (c*)--1 or c--1. If
reps where complex numbers appear explicitly c-=-+1, we have S with +1 along the minorSdiagonal and zero elsewhere--in this case R---R*
in the character table (table 8). The only such and case (1) applies, so we take c as-1. Then S
specific reps of the double groups are S3,, S2 . of wl cosi of altera + 1 and -1 TheS~will consist of alternate +1 and -- 1 along the
A$e and S3 of nC3. Case (2) holds in those one- minor (nonprincipal) diagonal. Incidentally, this
dimensional reps where there are obviously coin- requires that the dimensionality of S be even.
plex characters. The only two-dimensional reps
in this category are the pairs GS1 ,,.S2,), (SI., Let us put S in the form such that ±1 is in the
AS2.), and (GSI,2S2) in the groups IT, and IT. upper right corner, and let us label the rows and
Case (3) does not hold for any reps of the single columns of S and the R matrices by the numbers
groups, but holds for all those of the double j, j-1, j-2,... -j, where j is half-integral.
groups not in (1) or (2).

In case (1) let us consider a group operation Q Then
such that QO•=ZQtj4'jand KQ,=QK Q , = (-1- 1)- _ and (S-) b (1 1)0-I+1_-)
so the function K4 will transform like 4,
under the operations of the group. Let us further The transformation SRS- is then as follows:
consider 0,=4---+K~L' and O--i(•v,-K~g). Clearly
#, and , transform only among themselves under R
the group operations. Furthermore, if there is an &

even number of electrons, K --= K••-+ K•'-= K*j -
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and terms of the form
i ~ ~(SRS-1)X =- ( - 1)-8,, ( --1 )'+'+'Rk(,_) € =J(r) ', (S,) r•(S,) ... rS)

• Since- (- 1)2i•! '-Rc-.,)( 0-• (-1 )d-CR(-e) (-d). Snc

This latter term must then also be (R*)X, since R Sr(S)= iSr(3)=( 8  )

and R* are equivalent by the transformation S. and
We now consider !.+zs.K0=f*(r)(--1)2 *r,(--8)r(--2) . .. (-S.).

and It will be noted that K will commute with L2 , S2

and JP, but not with L., S, or J,. If f(r) belongs
KQ4,P= QK#,. to the eigenvalue L and ML, f* (r) will belong to

L, -MUL if the usual phase factor (-1)ML is-- Q*&K =-(-)b•-aQ bK4a supplied. Similarly, the original spin terms,
b b belonging to S, Ms will belong to S,--Ms with the

or
Q(- 1 )4Ka=ZQ (-Q ) _ (-1)bKJb. phase factor (-_1) 2 +Ms. Thus

b

If we compare this with the transformation on K#,(L,ML,SMs)
4P a obtaining O4' a= Q(_a)(_b)0 b we see that =_

(- 1)aKo 6 will transform like J,_, under the group

operations, and that (-1-0-K4._. will transform like The transformation from L,ML,S,M11s to L,S,J,
4,.. The linear combination a=4'a+(--1)-aK4.a M, is accomplished by the Clebsch-Gordan
will transform in a similar fashion under the group coefficients (section 5.2), which have phase factors
opera-tions. Further, we observe that such that
K-a.=K40.+(-1)aKi# K#6-- (--1)"4_q C-•L 24,_ (- .L+S-FCL M"

K4' UvML MSSJ (_ )L+S-r-MLS

- In a state described by J,M.,, we must also intro-

since our convention has "a" half-integral, (- 1)" duce this factor, and we obtain finally

is purely imaginary and K(--1)4=(--1)-= K0'(L,S,J,M,)
--(--1)a, and KV24,= -- a. The important point

is that the set of functions o.(a=j, j- 1, . . . --j) =(IL(_I)Ms(_I)2(-1)L+S-Jb(L,S,J,AM•)
transform among themselves under the group
operations, and that the operator K merely yields- M L+S+ L
a wave function which, apart from a phase
factor, is already in the set. Similarly, if Tefo(-l) ws+sf•.=i(••--(--)'K•_a rh •wilastrnFly' The factor _ 1) 2We shall neglect, but the

fla~i#a&1)KO-a) the !2. will also transform
among themselves under the group operations and
time reversal, but will not involve the 0a. Hence term (--1)J--M is of some importance, since we
we conclude that the introduction of time reversal shall be considering states which are a linear
does not require any additional essential degen- combination of states with the same J and different
eracy in case (3). Mr. There will be a physically significant shift

For emphasis, we shall summarize the cases of relative phases among the components of such
where we find that the symmetry of time reversal states when passing to the time-reversed state.
(with external electrostatic fields only) gives us
degeneracy beyond that expected from previous 4.3. Orthogonal States and Vanishing Matrix
considerations. Elements

1. States belonging to complex conj uate reps
are degenerate. This is the case for both an odd Before proceeding to the consideration of
or even number of electrons, selection rules and polarization, we shall digress

2. The reps S3,, S&, of S6 and S3 of C3, arising here briefly to consider certain aspects of the
from odd-electron systems will always occur twice, calculation of matrix elements of the form
once for 4' and once for its orthogonal but degen-w
erate conjugate K*. which will be required at this time,

Finally, let us consider deferring to the next section additional details.

K---- (i(S)(S.)2 . . . (S,)K Let us assume initially that X= 1. Let 0. and 4'i
belong to reps (1) and (2) respectively of the

operating on a wave function consisting of 21 appropriate symmetry group, so that any group
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operation Q will yield _ and 4.4. Selection Rules and Polarization

Q•=•Q•. , where Q• and Q• are the same Selection rules and polarization rules are in-

etwo rtimately connected, and we shall consider them
if the reps (1) and (2) are the same, otherwise together. We shall consider in detail the effect
they are distinct. The operation Q on V,*p then of an incident perturbing electromagnetic radia-
gives 'Z Q(2)- QM V M -- ilk bf Q-- The tion superimposed upon the static electric and/or

matrix with elements Q,, jk is called the direct prod- magnetic field already present. In a region of

uct of Qcs)* and Q(l), written Q(2)*x(). If these space not including the sources of the field, the

latter are of dimensionality n1 and n2, then the di- perturbin diati is usually described byi
rect product is a nin•Xnsn 2 matrix. Obviously, associated vector potential A, with the auxiliary
QW"),((i) is an element of a representation of the requirement V'A=O, which will allow us to set the
group-its trace is P salar potential V=O. The fields E and B are

the product of the traces of the two "factor" then given by c - and B=vXA. This

Smatrices. vector potential modifies the classical Hamiltonian
In general, Q(2)*X(1) will be either a rep or a sum

of reps, in which latter case it may be reduced by term for one electron, - p, to
the methods of the preceding section. In either
case, we obtain ZQba.,.(•),.Pz=_ Q#--, P±./ 3)

i lk k - d 1 / e . '• 2 12 e . • e 2 )

•_ . . . where 4,(3),4.(4,) etc., are the com- - (P-c A)=- p2-- p.A-c A-p-- A2)•

binations of * appropriate to the reduced Neglecting the term in A2, we obtain as the pertur-
representation. Our original integral then be- bation term

comes E QQ,(d d•÷ Q(4) (4 dT. . .

The basic argument we shall use here is that our mc (pA+Ap)
integral, i.e., the matrix element, represents a e
physically significant quantity and hence cannot =--2- --.

depend on the choice of any symmetrically equiva- 2m[

lent reference frame. Consequently, the terms Since p is, apart from a constant factor, the vector
of the form 1; Qfylbd)dr must either actually be operator v, the term (p.A) vanishes and our final

independent of Q or must vanish. If the rep (3) H'=--me A.p. This acts on each electron indi-

is actually independent of Q, it is then in fact the vidually, and the total perturbation requires that
completely symmetric or identity rep of the group, this be added for all electrons in the atom. If a
and we must ascertain the conditions under which ... ._t
the rep is present in the representation Q(2)*X(O). system is initially in a state .i-a4ae A the

The identity rep has the character + 1 for every probability COC* that the system under the in-

group operation, so the orthligonality theorem for fluence of the time-dependent perturbation H' will
at a later time be in the state *b is determined by

group characters tells us that - E :. Q, a,. is the
g Q adC, = e

number of times the symmetric rep occurs in the -- I f J'.H'H .d
reduction. But we recall that E F Qth

(* Q(2), and this latter expression is so we shall investigate this integral.
Sae The components of A are functions of (x, y, z, t).

merely the orthogonality theorem applied to the We shall assume that the variation of A with t is
characters of the reps (1) and (2), which is zero un- harmonic. We shall not require explicitly the
less (1)=---(2). Hence we conclude the very harmonic factor elo" in the following development

important result, that states belonging to different and shall generally omit further reference to it; i.e.,

reps of the appropriate symmetry group are (XA y, z, t)=A(z, y, z) el". For the wavelengths

orthogonal. of light in which we are interested, X is of the order
orThegnample jof 10-' cm. In comparison with the order of size
The example just considered took X= 1. If X of the atom, 10- cm, to a first approximation the

itself, either a function or operator, transforms as variation of the components of A with (x, y, z)
a rep or sum of reps of the symmetry group, the may frequently be neglected. We shall see that
product Xk(-) must first be reduced. If this this approximation may be inadequate for our
reduction does not contain the rep (2), then the purposes, and we will improve this approximation
integral must vanish, by developing the components of the vector po-
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tential in a Taylor's series about the origin. This even must combine with odd terms. If J=O,
will yield 1.XO=1., and we obtain the restriction that

J=O does not combine with J=O.
M\ ID~A,\ As\ The other set of 9 terms in H' does not itself

A.(yz)=A;+z I,) 0 +y - +)-,' transform under a single rep of the rotation group,and must be separated into terms, each one of

where the derivatives are evaluated at the origin, which does so transform. The 9 terms consist of
Similar relations hold for A. and A,. To this the general products of the 3 components of the
approximation, H' becomes vector r with those of the vector p. It is well

known that three linearly independent terms
S/(MI\ arise from the vector product rXp, and a fourth

H'=-- -me 1 . -(A°P)ZP+A:pv+Al'p.)+ &-)'zx arises from the scalar product r.p, leaving five
terms constituting the components of an irre-

6Aa\ _ducible tensor of rank 2 (in contrast to the original
+ by• YP+ zp.2+( XP set of 9 components, which is also a tensor but

not irreducible). In the terminology of the pre-
+(h~'\ , +~'i .+ i [A.) cedingparagraph, we have 1.Xl.=2,+ 1,+O,. In+- y/p'i't-z zP\- ax \ PJ order to exhi it these more explicitly, let us[bM\, [A.) [a'\ + 4,)ff

-) YP-- zp" consider YP- + aB d
The first three of these terms will involve matrix a sA.n (,+t)
elements of the components of p only, since AO and subtracting -W XP + a p, the ex-
is a constant. The general quantum-mechanical pression may be brought in to the form

equations of motion allow fV p*,dr to be written
d 1/A bA,+A\

as *aE-E)#r#,.dr. Note that our inegral y 's- (p+r,

now involves the time-independent wave func- +! - (xp--yp,),
tions. Thus, these three terms can be written in 2 & 6y
terms of the components of the vector r rather
than of p. Since a is the classical electric dipole, and a similar relation may be derived for the other
transitions induced by these three terms are 2 pairs of similar form. This process amounts to
called electric dipole transitions. Let us assume finding the antisymmetric portion of the original
temporarily that there is no external perturbation 9 components, viewed as a 3X3 matrix. We
apart from the radiation, so that J and parity observe that the first factor of the second term is
remain good quantum numbers. Let us consider the z component of vXA-=-B and that the second
an initial state transforming as Jt, J#0. Each factor is the z component of r Xp= L, so, including
of the vector components x, y, and z will transform the other 2 pairs of terms, we have a contribu-
as 1. (i.e., as the components of an odd state tion-- -eB.L to H'. Since the quantity--- L
J=1). Applying our previous considerations, 2mc 2me

dthe character of the repJis-e",forbothproper is the magnetic moment operator, transitions
- fbtarising from these terms are called magnetic

and improper rotations, while that for 1, i dipole transitions. The components ofL (a
(e- 0+ 1 + el*) for proper rotations and (--1) times pseudovector) transform as I, in contrast to the
this for improper rotations. The product of the electric dipole's I., sc here even states combine
characters for pure rotation yields with even, or odd with odd. We may note at

this point that we have not yet included any
j i terms in our radiative perturbation representing

(e-+lm+e)) edMim the interaction of the radiation with the spin
- -( ~l" of the electron. This may be accomplished at

+i J-1 this point (in a more or less ad hoc manner)

by using --2-• (L+2S) as the interaction with

and (-1) times this for the improper rotations. the magnetic part of the incident radiation, though
It is immediately clear that the direct product this will not change the transformation properties
I5 XJ, yields (J-1).+J,+(J+1), and (from of the term, since spin is also an angular momen-
section 4.3) our final state arisin from the tum operator with the transformation 1,. It will
transition must be one of these. This is equiva- be recalled from section 3.2 that the transforma-
lent to the well-known selection rule AJ=O, ± 1, tion (3.6) is equivalent to a rotation among the
and a particular example of Laporte's rules, where components of the spin angular momentum
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operator (then called R) and hence equivalent to SOXJ,=-(J+2),+-(J+-1),+J,+(J--l),+(J-2),,
a transformation like the three components of so the general selection rule is AJ=±-±2. ±1, 0.
a state J=l. If J=1, 2,X1,=$,+2 +1,, so J=1 does not

In considering the other six linearly independent combine with J=0. Likewise, 2,XO,=2,, so
terms, we again have recourse to the general J=O does not combine with J-0 or J==1.
quantum mechanical equations of motion. In We have up to this point considered that the
particular, we obtain symmetry present was that of the full three-di-

mensional rotation-inversion group. If this is not
( -E-E fthe case, the 3 electric dipole components, the 3

fA T magnetic dipole components, and the 5 electric
quadrupole components will belong to different

and reps of the symmetry group. These may be de-
termined from table 9 for 1., 4,, and 2,, respec-

) im (" tively, and the detailed correlation may in most
cases be obtained from table 10. The use of
table 10 after an initial application of table 9 for
the group D.,, (for noncubic fields) is perhapsIf we further simplify the notation by writing most convenient. The reduction to D., will

A.. for (-_) and A., for + our re- separate both 1. and 1, into one 1-dimensional rep
f -- -- and one 2-dimensional rep, while 2, yields one

maining perturbation can be written in terms of 1-dimensional rep and two 2-dimensional reps.
the matrix elements of These may be followed to lower symmetries with

table 10. Details may be obtained from table 8.
(Az'+Ay,-'+A,,z'+Aw, zy+Azz+A,,yz). For example, L, belonging to 1, yields, in D.,,.

belonging to A2,, while L. and L, both belong to
In lieu of x2, y', and z2, let us consider the linearly Ei,. Upon reducing the symmetry to C,, L, now
independent combinations becomes A2 while L. and L now both belong to

E. If we consider the reduction from D.Y, to
rz=z2+p+z22 C.,, we see that El, splits into C0, and C-,,. How-

ever, these do not represent the transformation of
either L. or L,, but of L.TiL, and L--iL,, re-

P2=z1__Y2 spectively. In this case, and also for the sub-
groups of C.,, we shall consider these latter, along

with the inverse relations with L,, as the three linearly independent com-
ponents, each of which involves only one rep of
the symmetry group. Similarly, we shall resolveX`=1 P•-'+ r'--I Z' the eletri dipole term r into x, y, and z for most

groups, using X+iy, z-iy, and z for the subgroups
!/'-i r_ Z•_A p• of C.,, and the electric quadrupole components

into Z2, zz, yz, p2, zy, or, alternatively, Z2 , z(z+iy),
z(z-iy), (z+iy)', and (z-iy)2. These resolutions

z 2-j Z2•- r2 . are presented in table 12.
As usual, there are two possibilities for the

cubic groups, one in which the z-axis is an even-fold
Substituting, we have as our perturbation the axis and one in which it is an odd-fold axis. This
matrix elements of makes a difference only for the quadrupole com-

ponents, since the electric and magnetic dipole
YJ(iA,,+ IA.+± A,)+Z2(IA,_ JA._- JA.) components remain indistinguishable under these

symmetries. If we consider the z-axis to be an
+p'(JA.f--IA.)+A.,T/+A.,rz+A,,yz. even-fold axis, i.e., C4 for 0 and O0, S4 for Td, C2

for T, and T, the five real quadrupole components
Of these six terms, that in r' is the 0, term, in- remain a satisfactory basis for the resolution in allOf casee excep terms that copnet in T'% and Ttrm
variant under rotation and inversion, and here whses except for two components in T, and T,
actually zero, since A,,+A•+A,,-=div A=0. where we require the normalized components
Notice that the terms Z2, V-, etc., are, apart fro , 1 1
normalization factors, the tesseral harmonies of 1[(•+iC1] and 1 I--iq]degree 2 (table 2). -[C

The remaining five terms are the components
of the quadrupole moment and transitions aris- transforming as C7, and C2 respectively.
ing from them are called electric quadriupole If we take the "-axis to be the C3 axis in these
transitions. The general selection rule is here cases, we find that these quadrupole components,
given by a consideration of the 8, transformation the tesseral harmonies of degree 2, do not serve as
properties of the quadrupole moment. If J>2, a basis for the reduction of the 2, representation
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TADLz 12. Multipoi. mo, omma iranormations

Z Y L L, P XS YE ZY

DB A. El. A2. A I ,, A 2, Ail Ei, EBit B, B,,

CDM ., EA At A" Fn A, A1  E, E' ES E'

Td To, T, 7', T, TZ T, B' K' F2' ' T',

7' . T'. T., T, T, T', N' T, T., (,) To
D#A H1. B1. A2. E,, El A,, Al, EBg E Bl , E,

BD R E. AB B E A2, A,, E E. B,, B2,
Cot E, A A. E, F A, A, El E. B, B2

B' B'tL~ A," B"' I B", A ' A,' B" E" E' E'
Dad E. B. A,. E, E. A%, A,, E, E, B, E,

B~ E B, B E A2 A, E E B, B2
C,. E E A, E E A2 AI E E BE B,

DiB2. B,. A,,* B,, Bit A2, A,, B,, B2, A,, A,,
C,. E E A, B E A2 A 1  B B E E

C4. B, B, A, B, B, A2 A , B, B2 A I A2
C2 B. B. A. B, B, A, A, B, B, A, A,

C, A' A' A" A' A' A" A" A' A'

x+iy x--iy Z L.+iL, L.-iL. L, Z2 (z+iy)z (x--iy)z (x±+iY)2 (x-iy)2

Cwh C,. C-,. A. Cis C-., A, A, Ci, C-,, C2, C- 2.

C5, C,. C,. A, C, C, A , A , C, , C,, ,

C, C; C; A" C1' C; A' A' C1' C;' C; C
s. C1. C,. A. C., C,, A, A, C,, C2. C,. C1.

S4 C, C, B C C, A A C3 C, B B

See text.

of the quadrupole interaction. For example, the will depend upon the vector potential, and in
reduction of 2, under O, yields the following as a particular, upon the direction of propagation and
basis: state of polarization of the incident radiation. A[ detailed examination of this latter feature leads

E: - -- S to the polarization rules for absorption of radiation.
L 3 3 3 3 The selection rules for most of the groups in

which we shall be interested (omitting only the
T,[: + Cl + F l very simplest) are given in table 13.For each

L3 3- L-3- j 3 L rep in the left column, the states to which a
particular componeut of the multipole interaction

While this, of course, yields the same polarization will permit transitions is shown in the column
results in the physical sense, the trigonal aspect under that multipole component. Generally, the
will not be considered further due to its formal table parallels table 8, in that closely related
mathematical complexities, groups are shown with but minor modifications

Because of the different transformation proper- on the same table. Results for pure rotation
ties of these components, they will most generally may be obtained by dropping the "g"'-V " dis-
permit transitions between different states of the tinction in the tables. In a few cases, the changes
perturbed ion. The nonvanishing matrix elements in notation and convention are sufficiently far-
may be deduced by the procedures outlined above reaching to require a separate table. It is
(section 4.3). These are the selection rules particularly interesting to note the table for
which are applicable in a case of definite symmetry. C..,, appropriate to a uniform magnetic field. If
Furthermore, the relative amount of any particular we denote the general rep by CM, (Co=A), we
component of the multipole interaction present see that electric dipole transitions have AM=O,

56



TABLE 13. Selection rules

D.& x,y L, L1 ,L,,xz,yo V ,xy

A,, A2 . El. As, Ell A, E

A,. A,, El, As. El. A,: E2..

A., A,. E1 . A Ell As, B,A,. A1l El, A:: AE.AAs. E2.

Fig El. E,.A,..Ai. E, E3 A1 5 A,, EI.E
Ell` El, E2 A15 A2 , E1.. & B,,.A,.A E1 . E,1 BF..

B72 Es. E3 .E1.. B, E3 .E1, Es, E,,,
EB,. F2, EBE1 , EB2. E3.E, . E2-. EtB.A3,.A2..

3 E3. E,..E2 . EB,, E,,. E3, Es,2 ,,

(Pattern repeats for higher states)

2S28 2S I. 3 281, 28,• 283, 281, AS3 28S,
28I3 383. 18.• 282. ,S3, 381, 2S3. 23,. 8,3. 283.

2S3:. 283. 3.1 282, 2S3:. 281.. S . 28A. 281.. 2 7.

A8, 28. 2S3.. 287. 282, :S3: 287, As2 283 :SA
8.. 285, 2S3 2S7. 28. 2S3.. 287, 2S2. 281.S 2S2..

(Pattern repeats for higher states)

For Ce•, delete "g" and "u" and read the upper left corner as: C., z

A, A1
As A2

Dot, z x.y L, L.,L,,xz,yz Z2 p,Xy

A1, A2.. E,. As, El, A,, E2,
A,: As, El Ag2 . El. A,. EB2

AB, A,.l. E1 . EA1  A2, E2,
A,2 A ,A, Ell A,.. EA.. A2 . E3  .

BE, B2E. B. ,. B2 , E2, Big EA,
BI, B,, BB2, BsE. BBE2 . B. A ,..

B2, B3.. 2 .D. B, B2 , E221 ED
B2s. Big E, Blu &. B2. El.

ElE 1.. A3 ..A2..E2.. Ell AI,A 2,E2, ElB1 ,28I
El.. Ell A3 1A2,E 2 , El.. A1..A 2..B2 .. E1.. B3..B2 .E.B.

B2, Es.. B. 1..B,.E,. E2, B1 ,B2,E1 , E2, jA.,
132, E2 , B15 B2lE1 , E2.. B1 ..B,.E 1 . E2.. A1 ..A2.E.B

,8,. 38,. 2S, D34. 28, 2  %D D4. 2S,2 2S2D,,8%, D34. 383.:. D84..82 281,Dh 382, 28, A1 D
383. 83 281- I, 38DH83. 2 81.. :282.. 282.. 2S1..DH..

222S8 2IIA 2 2SI. 2S2 22. 2S,.D%.

For C4,, drop "g"-"u" and amend upper left corner to read: Cs, •

A3  A,
As A,
B, B3
B2 B2
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TABLE 13. deection rdu--Continued

Ds a L. L.,L.,zaPY ZS P, xy

A A,, A A: E A B B
AT.: A,2 , A,. H, All: B,, B',.

A:., A,. H A, E, A, B,, B,,, A,, A E A B3 B

B,, B,, E. B, E, B, A, A,
B,, B,, , Big RE, B,, A,, A,,

B2, B,, E, B,. E: B,2 A2, A,.

H, E. AI.A2.Bi.B,. E, A,,A2,B,,B2, R, E, E,
E H. AIA2sBigB,, E. A,.AB,.B2. E, E. E.

DH. j. z.D%. D.j. 2S.DN. D%. 3S. :S.

2S. 2S 2S.D34, 2S. 2SDj4. 2S., D%. D•j.

For C4,.: Drop "g" and "u" and read x in Z2 column.
For DId: Drop "g" and "u" and read s in zy column.

D3, _,ytpxy L. L,.L,.zz,yz Z2

A; A;' E' A' E" A;
A; A,' E' A, E" A;

A;' A, E" A;' E' A;'
A;* A; E" A;' E' A;'

E' E" A;A;•' E' A;'A;'E" E'
E,, E' A;'A;'E" E" A;A;E' E"

D A 28 Sz 22 Dh DP AS D•j
2: , S, DHS D A8,D
A D,, D% ,S, A8 .8,1282 28

+ 1, with change in parity, magnetic dipole r,=sin 0 cos •i+sin 0 sin oj+cos 8k
transitions have =M-0, ± 1, with no change in
parity, while electric quadrupole transitions have bro
&M=O, ±1, ±2, with no change in parity. 0o--- --Cos 0 cos 0-{cos 0 sin Oj-sin A

In order to examine in detail the polarization
effects, let us consider a set of orthogonal unit 1 bro • -
vectors in spherical coordinates, 4

I0 ni-- -
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TABLU 13. Selection ruee--Continued

Did s z,y L. PV

xa,ya

A,, A2. E. A, E A,,
A,. A,, E, A,. E, A,.

A:: A,. E. A, A2,

EA, E. AA.A2.B. E, A,. A,E, E,
E, E, A,, Ai, E, E. Ai, A2. E. E.

Sig ,S,. D%* Si D31. i

S. Sit D,,. s3. D%,. Si.
D%, D,. A,. DA, DE , A A3 E. D,

For C3,: Drop "g" and "u" and read z in Z2 column.

D s y L-,xy L.,yz L,,xz Z2,p,

A,, A,, B,. B,. A,, B,, B,, A,,
At. A,, B,, B,, A2, B2. B,, A,,

A,, A,. B,, B,, A,, B,, B2, A,,
A2. A,, B,, B,, A,. B., B,, A2.

B,, B,, A,, A,, Bi, Ai, A,, Bi,
B,, B2, Ai, A,, B2. A,, A., B,,

B2, B,, A,. A B A,, A,, B,,
B,, B,, A,, A,, B,:, A,. A2,, B,,

D.il Dj. D%. D3,. D•. D%. D•j. D%.

-y,L. xL, L,,xy ---------------- z,Z2,p2
y z xZ

C2.: Omit "g"-"u" and read bottom of column.

(z+iv)z (Z-iy)z

SG x+iy x--iy L.+iL, L,-iL, L,,Z'
(X-iy)' (x+iy)'

A, C,. C2. A. C,, C', A,
A, C,, C,, A, C,. C2. A.

C,, C. A, C,, C,, A C,,
C,, C,, A , C,, C,, A, C,,

C,, Au C. C,. A, C,, C,,
C2, A , C,, C2, A.u CI, C2,

s,, 8,. 6 S. 8, S3, ,',
8,i. Si S ,, 8,, 8,. 8,. 8,.

,,3 S5. 8,, 8,. S, S, s
5 ,. 8,, 83, 8, 8, ,. 8,.

8,, Si, S. , 8, Si. ,,. S,:
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TABLE 13. Selection rules-Continued

CO A +iy --iy x L,+iL, L.--iL, L,,Z (z+iy)2 (x--iy),
(+iy) z (z -iy)z

A, C,. C-i. A. C,, C-, A, C C,,
SAC C-,. A. C2 : C-2.

C,, C,. A. C,. C2, A, CIS C,, C...,,
C1. C, A, C,, C2. A. C'. C3. C-,.
C-, C A. C-,. C-,. A, C-2, C-, C, A,

C2, C3. C,. C2. C3. C,. C2, C,, A.,C2. -C•C3, C .i C2. C3. CI : C2. C4. A.4
C-2 -1 C3 C-2. C-1, C-3. C-• A, (-4,
C-,: C-1, C-38 C-21 C-1. C-3. C_:: A: C-4.

C, C4. C2., CQ. C4, C2. C3, C,, Ci,
C3. C•, C._ C3. C4. C2. C3. C5. C,.
C--3, C-. C-. C-3, C-2, C- 4, C- 3, C-,, C..-,
C,.. C-,, C-., C-.. C-2...- C-4, C-3. C-,. C- 5.

(Pattern for higher C..,., repeats)

S- 8,, 8S3.-,, 8. S3, S- S, S3, S- 3,S, S-1,, SIS S. S-1:-, s.Ss

82., 8,., 8- ,.,S8,, 8, S,, 8-,. S7  S-..,. 8 ,, S, 8,, 8I S., 87. S-,.

8--, 7., 8-3. S-,. S7, 8-, S 3- 5,, ,S-5
S-,. S-lit -, 8-3, S-,,S. 8-3. S-1. S3. S-3.

S,., 87. S,. 8. S5, 83, S., S., S,,S-. S-,, S-", S-3S1 S-. S-5. S-3 S11 S-7.
S, S. S. S. S-, 8-3, S5• 8-9,s_5. s_,. s_,. Sis T.83 ,, S."

(Pattern for higher 8..,,. repeats)

C,9  z X+iy x- iy L,.ZV L.±iL. L.-- iL, (xiy" (x--iy)t
(x~iy)z (x-iy)z

A, A. C,. C., A, C,, C,, C2, C,
A., A, Ci C3, A. Ci C3., C2., C4.,

c,, C,. C2. A. C, C2 A, B, CS,
C,. C,, C, A C,. C,. A. B. C,.
C,, C2., B. C,, C2, B, C,, C,. A,
C2. C, B, C,, C 2.B Bu C. C,. A.

B, B. C,. C, B, C4, C21 C, C,
B. B, C,, C2, B. C,. C2. C,. C,.

C, C,. C,. ., C, C B, A, C2,
C. C4, C, B,, C. C,: ,B, A. C2.
C, C,., A. C,. Ca A, C,, C,, B,
C,. C,, A, C4, C,. A. Cu,. C,. B.,

SI t. S. S 3S, S, St
St s. S, S3,. s:1, S:S: ý:S. ,,So.

83.S. s. ,,, s s, 8,its, S2, Sl,S,., 8,, 83, 8,, 8,. 82., 8,,., S,. 8t.

83. 8, ,, ,, 8,,S,., 8. 87. , ,.
85, S. St. S,. S2, ST, S, S,, S,
s,,. 8 ,, 87, S3, s,,. S7. S3. s,., S.
8, S7. So., S5. 87, 8it, Sit, 8,,, 3
87., 87, 8,, 85, 87. 89. 82., 8,,., S3.,

8so 8,., S,,., ST so, Sits S7, 8, 82,

Sits 8,,. S,,, 8ou 8gf 8,,, 8so 8,., 8S.,

8,,., S,,, 8,, 8,, 8,,. 8,. Sg.: S3. 87.
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TABLE 13. Selection rules--Continued

C44 9 x+iy X-iy L., Z2 L.+iL, L.-iL, (x-iy)2
(x+iy)z (x-iy)z kx+i-y)2

A, A. C,, G.3 A, c", ', B,
A. A, C,, C3, A. cl,. CQ. B.

C(, Cl. B. .A. (',. B. A, C3.
c,. C1e B, A, (',, B. A. (,,.

B, B. C3. C,. B, C3, C,, A,
B. B, (3, (7, B. C3. Cf. A,

C-3, G. A. B. C3, A, B, C(,
(73, C3, A, B, C3 . A. B. Cl,

Sig ,St. S3. 87U Sig S,, S7, $5,S,, ,Si, S3  S7, S. ,$3. 87. 8,5

8,, S3 . 8,. St. 8,, 8, St, 7,,S3. ,$3. S&. Si. ,S3. S': . St. S'.

S,, S3. l S. $3. Sl, 8, S3, S,,
Z3, S5, 87, S3, 8,. 87, S3 . ,..

S7, S7. 8 ,. S5. 8 7, Sig S5. S,,
$7, 87, S,, 8S, 8,, S. IS3 . 83,

(x +iy)l L.--iL, L. +iL,
S4  z (x + iy) (x-iy) L,72

(x-iy)" (x -iy)z (x+iy)z

A B C, G7 A
C( (.-' B A C',

B A C3 C( B
G3 C, A B ('3

S, $6 83 8? S,
83 87 85 S, S3

83 S, ,7 $3 ,5
8,7 S3 8,5 87

C3 z x 'iy x-iy L,,Z2 L.+iL, Lx-iLI
(x-iy)' (x+iy)l (x+iy)z (x-iyz

A' A" c c A' C C'
A" A' c' C2" A" C, C2

C Cl' C, A' C; C'• A"
C; C'- A" C"' G2 A'

c; C"' A' C C2 A" 11
c;A cl A" cL' C' A' Ci

8, 87 So 83 S, S3 /S1
83 S S,, 87 83 85 8,

86 8, 8, 8, 83 87 83
87 -, S3 S,- 87 89 81

so 83 S6 S, so si S7
S11 53 57 8, Si, 8, so
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TAUBL 13. Selection ru/de--Continued

C ,I, PY L,,Lv LoZ2
Z4IY1 Z• y,

A, B. A. B, A,
A. B, A, B. A.

B, A. B. A, B,
B. A, B, A. B.St $3. s,. 33, I
8. 83, S1, 83, B1.

83, St. St. S I 831S3. St. St. S1. S3.

Ok r L Z2,P xz,yz,xy

,, Ti. T,, TI,
A 1 , Tt, 7', 8 T2.

A 2 , T2. T2, E, T I,A11 T2 T2u R. TI.

E, TI u T2. TI, T'21 A,, A2. E. TI. T.2,
14% TI, T'2, TI. T2. A,. A2. E. TI. T+.I
T, A,. E.T, T,, TT, AT,, TA,. A,, ' 'r, , T2. .
TI. A,, E, TI, T27 A:, R. T', T2 . T,. ,T2 , A,. E: T,, T2•,

T2, A2.BE. T,. T2. A21 E, TI, T2, T7, T, A,. E. 7',, 7T.
T2. A2, E. T, TL,. A2.E. TI. T2: T,. T2. A,. E., Ti. T,

D3, D%. D 31 2. D8, D 3/2* D3 12, 2S, D/ 2,eDj,, D%. D3/2, Djj. D3/2v, D3/2•. 28,, D312.

2S, 28, D312. 2S, D3212  D3/2, D~ D12,3

DU 2, 28* D. D3 /2,, 2S, D4. D3/ 2, 28, D x D3 t, 2  2SR D•, D//,2
D312. 28, DM, D312 , 2S. Dh. D312. 2S. V11 D3D12. S. Dh. D3 12,

and the inverse relations AO may be resolved into components as follows:

i=sin 0 cos Oro+cos 0 cos $o--sin #o AO=Aei"(cos ' cos 0 cos 1--sin 0 sin 0,)

j=sin 0 sin Oro+cos 0 sin $0 +cos 0#0 AO=AeI"(cos 4 cos 0 sin to+sin 4. cos 0)

k=cos Oro-sin 0. AO,=Ae""(-cos 4' sin 0).

The vector A changes in space only along the
Let us further consider A as a plane polarized direction r0 and hence a variation along the z-axis,
wave, incident toward the origin alon the vector for example, will change A according to the
r0 fro points to the source of A], and having corn- component of the variation along r0. Formally,
ponents along *o and #o perpendicular to the
direction of propagation. 6A 6A b[r.ro0

A=(A cos Oo+A sin 4#o) exp i(v[r.r]+ct).
Letting

In the terminology of the Euler angles of section
3.2, the plane polarized light is incident along the r 6A =A,
axis with A parallel to the axis. At the origin, 6[--ro]
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TAILM 13. Selection rules-Continued 'ffiA' (cos 4' cos 0 sin O+sin 4, cos 4) (sin e sin 0)

Tr L Zl+ip' Z2-i p
zyszy ---"=A' (cos J, cos 0 sin 0+sin 4, cos 4) (cos 0)

A, T. T. C, C21A. T , T. C•, C2.6AC, T.T T, C2, A, -?A-, (--cos k sin 0) (sin 0 coso)

C1. T, T. C2. A,

C2•, T, T, A, C1, A' (-os sin 0) (sin 0 sin 0)

T A A., C. C2,T A, C1, C3, T, T. T,
T,: A, CC,, T, A: C1, C,. T. T7 T.A A

D%. D34. S 1 .282. D~ 2SI 2S2, 2SI, 2S21 -- =A'(-cos 4 sin 0) (cos 6).
D%. D%. 2S), 282. D%., 2S,. •2$2. 2SI, $2S2.

D%, ,S2, ,S,. DA, ,.t, ,S,, ,.=, D%. These may now be combined as previously defined

S,1. D ,,S 282,, D. ,SI,. ,, ,8,. D%. (page 55) to yield
,3,t Djj. ,S,. z32,. Dx.,• ,8,, D%, ,SIR 1
82,. D,%. 2S,, SS,, D. 2,S, 2S,. D%. 2S,. Azz=2 A' (cos 4 sin 26 cose --sin 4 sin 0 sin 24)

T d r L 7 , 2 , p 1 2T z,dz, L A,,,=A' (cos 4 sin 26 sin 4O+sin 4' sin 0 sin 20)

A, T7 TB 1
A T, T E A,,=IA' (--cos 4 sin 20)

E T, T2 TA ET A, ATE
7', A2 E T T, A, E 2 T7 , T ,T2 Ax,= A'(cos 4 sin 20 sin 2.A 2 sin4 sin 0 cos 20)

D34 2S D312 D,, D3/2 Ds/

2S D3 D3/2 28 D312 D3,2 Ax,=A' (cos 4 cos 20 cos 4--sin 4 cos 6 sin 0)D31n D% 2S D3/2 D% 2-S D3/2 D% 2S D3/2

A,=A' (cos 4' cos 20 sin ±+sin 4 cos 8 cos 0)

B,= -A' (cos 4' sin 4+sin 4' cos 0 cos q)

we have B,=A' (cos P cos 4-sin 4 cos 6 sin 0)
6A 6 A , M•

.AI(i.r0), -A' (j.r0), -z--AA(k.ro)- B,=A' (sin 4P sin 6).

We may note that A,,+A 1,+A,, is in fact zero,
Obviously, the resolution of A' into components and that the angular factors for the components of
is parallel to that of A, so we obtain the following B are the same as those for A with a rotation of 90'
9 terms involving the derivatives of A: in 4', showing the mutual perpendicularity of B and

A. In order to obtain our final five quadrupole
" A,--A" (cos 4' cos 6 cos 0--sin p' sin 0) (sin 0 oso ) components, ithere is a question of normalization

which must be considered. Strictly speaking, the
appropriate "base vectors" for the quadrupole

6A= (components are the normalized tesseral har-
A A' (cos J os 0 cos -- sin J sin 0) (sin 0 sin 0) monies of table 2 for N=2. Since we shall be

interested in relative intensities, we may omit a
(cs ccommon factor, which we shall here choose to be
-(cos c cs.) With the omission of this factor, xy, 2z, and

-- A' (cos 4' os 6 sin 4+sin 4' cos •) (sin 6 cos 4) yz will still be the proper basis, but for the other 2,

a where we have heretofore used x'-y2 and 2z'
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_X _ 2 1 AOL.E It. A4ngular dtcpettilerte of mutiipole ror porten Is
-x--y 2, we must now include factors of r and -= " deednc f _lp _ omoet

respectively, so the balance of the term with these 1. Electric Dipole
two bases will become multiplied by tile reciprocals AO =A (-cos 4' sin 0"

of these factors. We shall continue to denote A,'=A fcos p cos o sin c-psin k sic 0)
these two renormalized bases as p2 and Z2. A,' A (1 4' CO 6 sin ' +sin 4 cos 0)

Finally, we must consider the resolution of the AO.A(<) (cos 4' c0 - ill 4
multipole interactions into the (complex) base

groupAC-and(its sub-c(es 4' cns O-+i sin 4')e'*
vectors appropriate to the group C., and its sul-
groups with complex reps. The terms in z, Lz,
and Z2 will be unaffected by this change. In lieu 2. Magnetic sipnole

I I B,=A'(sin 4' sin 6)
of x and y, we shall use -x (x+ iy) and --- (X--iaS, B- =A'(-cos 4, sin P - sin k cos o sns o)•,'2 • 2 " •=A.eos encs 'P-sin 4' cos 6 sin 0P)

for L• and L, a similar combination, and for p2 and B (-sin 4' cos 6-i Cos ce-1
I (p24iXy) and 1 (p2_--iuj). This requires

A2 -,2B-=A ) (--sil 4' cs 6+i eCos ý)ei
the use of the following linear combinations of
the previous terms: Electric Qumprle

A0 . . '40 ".t L (-e Cos 4, rin 20)

A- (2 ' Y A4 A'kcos P cos 20 cos 0--sill 4' cos 0 sin 0)

+-2 A,,-=A'(eos 4 Cos 20 sin 0+sin 4' cos e cos 0)
Ap

2
- JA'kcos 4' sin 26 cos 2'p-2 sin 4' sin 0 sin 2o)

BBB-ti2' ý,sin 20 sin 20+2 sin 4' sin 0 cos 24,)

-A,+=.I '(' ecns p co 20-i sin 4' Cos 0)e s

A,+=) (A, ..- iA.) Ai ..1)... I' A(', € n 4 cos 20 + isin 4, c, 0en-

A12+-•-. ( C)(os 4, in 20--2i 'ill t}'in 0ýe-2ýý

A 2+=• (1,2-- iA,) A1. --- (At )- •-4s2i)
2A-=.t' (cos 4 sin 206 2i sin 4' sin 0,PUc1

These are all summarized in table 14.
Let us now consider some of tile conclusions of

this analysis. We shall discuss in detail six cases, the two types of interaction, and is fixed by explicitcalcuhlations and not by general symmetry consid-
1. Only one component of the eleven considered Lrations and g enera l s try censid-

is effective in producing the transition. In this orations. The angular variation will then be pro-
case, the rate of absorption will be proportional to portional to the Hermitiin square of this sun, aid
the Hermitian square of the matrix element, and will contain q and q2. If one type of interaction
hence proportional to the Hermitian square of thle is very much stronger than the other, then q will
appropriate angular dependence factor of table 14. be small and it may be neglected. In the present
Such a case is exeniplified by the Bfat f, transition problem of crystal spectra, this is not necessarily
in D4 , which are joined only by L,. The angular the ease, and each case must be examined independence is thus (sin e sin b)L. detail.Twoecomponenth s only of thel eleven o th 4. Two components join the states in question,

2. Two components only of the eleven join the arising from the same multipole interaction, but
states, these two belonging to a doubly degenerate the components belong to one-dimensional reps
rep and consequently arising from the same type (as distinguished from (2)). For example, in
of multipole interaction (e.g., in Dsh, A,, is joined Dh, A2g is joined to itself by both 72 and ,2.
to Ez, by both xy and p2 . Then the total matrix The details here are very similar to case (3). The
element will involve the sum of the two angular Matrix element will include the sum of the angular
factors for the two multipole components, and the factors. However, in contrast to (1), the term 72
angular dependence will be proportional to the is not related by Svmnetrv to p

2
, so one angular

Hermitian square of the sum of these angular factor will again ')e muliiplied by a factor q,
factors. expressing the relative strength of the interaction,

3. Two components only join the states in- and the Hermitian square will again contain both
volved, arising from different multipole interac- q and q2 . Generally, one may only expect that q
tions (e.g., A, of C6, will join itself by either z or will in this case be nearer 1 than in case (3).
ZI). The matrix element will then' include the 5. Only one component joins the states, but
sum of the angular factors fo: the two components, another component joins another pair of states,
but one will be multiplied by a factor "q" deter- both of which are respectively degenerate Witth
mined by the numerical ratio of the strength of the first pair. This is a frequent situation in
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C,,, and its subgroups. Here the transitions no polarization effects.
proceed independently, and the total absorption We shall not discuss in detail more complicated
will be proportional to the sum of the Hermitian cases. In general, the angular dependence will
squares of the angular factors, rather than to the include factors expressing the relative strengths
Hermitian square of the sum as in previous cases, of the transitions arising from different dipole

6. If the states are joined by three components, interactions, as well as from nondegenerate inter-
all belonging to the same triply degenerate rep, actions of the same order. In specific cases, these
as is the case for both electric and magnetic relative strengths may be computed from the
dipole transitions in the cubic groups, there are methods of the following section.

5. Matrix Elements

5.1. The Reduced Matrix Element ponent of the rep lJM> into a combination of
the same J and different M.

We now turn our attention to the procedure For these calculations, it will be convenient to
alternate to that which has occupied our attention use the complex potentials Y', (2.9) rather than
in the preceding two sections, namely, the calcu- the real C( and S" (2.5) as our perturbation. We
lation of the matrix elements of the perturbing note here that these perturbing potentials actually
potentials of the crystal field and their interpre- act upon the space coordinates of the individual
tation. These potentials were discussed in detail electrons, so the total perturbation is a sum of
in section 2. We have already touched upon such over all electrons. Clearly, if these poten-
certain general features of the problem in section tials obey a certain transformation law in the
4.3-we must now examine this situation in coordinates of one electron, their sum will similarly
more detail, and also determine the simplifying transform when all the coordinates of all electrons
relationships which exist among the nonvanishing undergo the simultaneous transformations implied
elements. i)y the quantum number J, or when only the

So far in our discussion of the transformation space coordinates of all electrons undergo the
properties of the several wave functions belonging simultaneous transformation implied by the quan-
to adegenerate rep of a group, we have emphasized tum number L. Our problem has therefore
the equivalence of these several wave functions, become that of computing the sum of terms of
as well as the properties of the rep (notably the the form
character and class structure) which were invari- <a'J'1I'Jr'Y",[J•1 51
ant under a unitary transformation. We shall
now depart from this procedure. We are now We shall for the time being disregard the factor r'.
interested in picking out a particular set of linearly According to section 4.3, we know that the
independent wave functions, in terms of whichi matrix element will vanish unless J' is one of the
specific matrices representing the operations of values J" arising from the reduction of the product
the group may be written down. This is equiv- DXD,,namely, J+,,J+--1, .... iJ--I. Let
alent to the introduction of a specific system of us expand the'product YOlaJMI> into a sum of
base vectors in ordinary vector analysis. terms

Since we start with the wave functions of the 7 CM-M(YtJ)1J"M" > (5.2)
free ion, described by the quantum number J, MJ
with 2J+1 linearly independent wave functions,
we select for our basis, functions distinguished by where the C-coefficients are the Wigner coefficients
the quantum number M (or Af, will sometimes be to be discussed further in section 5.2, the term
used for clarity) where M=J, J-l, J-2, . . . (Y,IlaJ) represents the portion of the product in-
-J, and such that the matrix representing rota- variant under a rotation of the axes, and IJ"M">
tions about the z-axis is diagonal with elements represents the M"-th component of the
.Me'M .We have seen from the preceding section normalized rep D.v,, of the rotation group. We
that wave functions belonging to different reps now know that the remaining term of (5.1),
(here, with different J values) are orthogonal-we <a'J'M'- (a'J') <J'M'I is orthogonal to all
see that these 2J+ 1 functions themselves belong states except IXJ'M'>, i.e.,
to different reps of the group C., and hence are
mutually orthogonal within a given J. These <J'M'I J"M">=&j,.,,",'5 , (5.3)
wave functions we can write as IaJM> (in the
notation of Dirac), where a represents all quantum so we obtain, from (5.2) and (5.3),
numbers other than J and M. To emphasize that
such a state is one component of a 2J+1 dimen- <a'J'M'IYIaJM>•-1=CM,1,(a' J'IYJIadJ). (5.4)
sion rep of the rotation group, we may also write
in the form (W) IJM>. A different choice of In this expression, parity is included in the a,a'.
axes will leave the (scalar) portion of the function If V is even, a and a' must be of the same parity;
unaltered, but will convert the normalized com- if odd, of opposite parity.
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The importance of this step is that we have since this reduced matrix element is diagonal in
placed rnto the term Ci; the dependence of both a and J, and independent of a. These ma-
the matrix element on M, M', and p, and the trix elements may themselves be calculated, giving
"reduced matrix element" (a'J'IVY,1 jja) contains a set of numbers proportional to the Wigner
those portions of the interaction not dependent on coefficients. Certain tables based on this proce-
these quantum numbers. If the matrix element dure have been given by Stevens (1952), by Elliott
is evaluated for one particular M, M', and A, then and Stevens (1953a), and by Judd (1955).
the reduced matrix element can be obtained, and
from it the matrix element for any other M, M', 5.2. Wigner Coefficients
and ,u. This relation was initially given by Eckart
(1930) and again by Wigner (1931) and Racah The Wigner coefficients Cmm frequently Writ-

(1942a). There is some ivergence in the litera- ten (J1 J2JM[J1 J 2A1A•M) are the elements of the uni-
ture on normalization and phase factors for these tary matrix C which will reduce the (2J,+-1)X
reduced matrix elements. We have here followed (2J•+-1) dimensional direct product of the com-
Eckart, Wigner, Rose, and others, while Racah, ponents of DA1 and D, 2 and which will provide the
Biedenharn (1952), and Simon et al. (1954) have proper linear combinations of the products of
used as reduced matrix element a quantity greater these components 1JJM 1> and J2A12> appro-
by a factor -2JX+ 1. priate to the reduced component IJM>. The

Eckart and Wigner have based their derivation columns of the C matrix are distinguished by the
of this result on the ideas of the representations of double indices (M,, IV2 ), N hile the rows bear the
the rotation group, while Racah has developed the indices (J, Al). The phase conventions implied
algebraic application of the angular momentum in (2.8) ensure that the matrix elements may be
operators J,, J,, and J,, which may be interpreted chosen to be real. The inverse C-' is merely the
as differential rotations about the x, y, or z-axes, transposed matrix. The orthogonality relations
respectively. Since the vectorial character of a for a real unitary (=orthogonal) matrix then give
vector operator T with components TP, TO, T-' is us
fixed by the general commutation rules [Jz,T]= E (JIJ2M hIM[JJ 2JjM)(JIJ2MI'IiJJ2ýJj'M,)
nTP and [J--iJ,, T7]=/(l=Tn)(l±n+1) TP-e, a M,'M,
generalized irreducible tensor operator of degree

has been defined as one having 2k± 1 compo- •&IJJaMM. (5.5a)
nents and satisfying the commutation rules Jj 1J2JM)
[J,, T]]]=nT• and [J+±iJU, T.'] =/kTn)(k±n+l) (JI M
Tl'-1. Our quantity Yl, is a specific example of
such an operator. -,M1 M.&,f 2 - (5.5b)

Stevens (1952) has emphasized a geometrical
interpretation of this result, and has given what The product of 1JAM1 > and IJ 2M 2> will, under
amounts to a technique for calculating certain of a rotation about the z-axis through 0, be multi-
the Wigner coefficients in the special case J'=J. plied by elM,# eM2¢=e"'M+M2)' and hence AI=
The behavior under rotation of any quantity M11+M1 2, and all coefficients not meeting this
which may be expressed in terms of variously requirement are zero. The index Al is frequently
oriented coordinate systems, may be described by suppressed when wTitten in the form
one or more components along a set of mutually Because of this relation between the A1T and Alt2,
orthogonal base vectors in an infinite number of the sum in (5.5a) is in effect a sum over Al1 only
dimensions. Subspaces of dimension 1, 2, 3, (or M 2 only).
. . . 2J+ 1 determine a particular Dj, while the A general formula for these coefficients has been
individual vectors within the subspaces correspond given by Wigner, who carried out in detail the
to the various rows of the Dl. A product of two process outlined above of reducing the direct
components, each of which lies along one of these product matrix. Condon and Shortley have ap-
base vectors (such as the Y, IaJM> being con- proached the problem from the standpoint of
sidered) may itself be resolved into components transforming eigenstates of two commuting angu-
by means of the Wigner coefficients; all save the lar momenta J , and J2 with quantum numbers
one parallel to the third quantity <a'J'M't will JlM and J2M 2 into eigenstates of J=J,±J 2 with
vanish in the matrix element. Stevens also quantumr numbers J and Al. They pointed out
pointed out that it is possible to form id ibl that the vector addition coefficients may in prin-
tensors Jd from the noncommuting ompirreicibe ciple be obtained from the initial conditiontensrs f fom te nncomutng cmpoent of (JJ2JJ2tJJ2[J,+J•][J,+J2])=1 and from a suc-
J by taking the 21± 1 totally symmetric products applicatono[J heJ2 1 U, and from ea-cessive application of the J 7 --iJr and J1• opera-
of degree Y. This is analogous to the process we tors, but that a general formula is difficult to
have already used several times in connection obtain. Racalh (1942a) utilizing as well the
with the reduction of the general product of operator J.+iJ1 has provided a purely algebraic
two vectors. We then have derivation of a general formula for the coefficients

which is relatively convenient and symmetric in
<aJM'IJjaJM> UC~jA (JIIJIIJ), the various parameters. Based upon this for-
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mula, Simon (1954) has provided a numerical and selected entries were checked for
table of these coefficients, 'but no J greater than% is included. Condon and Shortley have given
formulas for the cases where J2=%, 1, %, and 2, • C ) M)O-
while Falkoff et al. (1952) give J2 =3.

For actual computations, a numerical table of
Wigner coefficients is required. The only such It is believed that errors do not exceed 2 in the
table known to the writer is that of Simon (1954). sixth decimal. In a very few entries a seventh
Unfortunately, this covers an inadequate range of decimal was carried.
values for rare-earth spectra, and relies on sym- It is to be noted that only positive values of A
metry properties of the Wigner coefficients, in-volving factors of the form (b2J+l \II are given, and only entries for Mr> -eTo ob-2J 1 ,which are tain other values required, the following spec
usually somewhat awkward. To meet partially cases of the general symmetry relations are re-this need for the present application, table 15, quired (diagonal in J and Y even):
containing the coefficients CMZ to 6 decimals for
J<8, -=2, 4, 6 and )=O, 2, 3, 4, 6 consistent withth-e P involved has been computed. These will-C M , (5.6a)
permit calculation of matrix elements diagonal in
J and between states of the same parity. C'M÷)_j M -J__ Cj (5.6b)

In the case u-=O, 3, and 6, the values for
M=J--• were calculated from the formula of C (56eRacah and those for other values of M were cal-
culated by the use of the tables of Stevens and
others noted above (section 5.1). For j= 4 and The relation (5.6c) is especially noteworthy: we
P=4, u= 2 , factors corresponding to those of observe that (for half-integral J)
Stevens were computed and used in a similar proc-
ess. For p=2, Y=6 this became too unwieldly C "'-(_l)3C _'
and the formula of Racah was used directly for -J33 3 -
all entries. Coefficients were all checked for
obedience to the requirement and hence must be zero. This is intimately asso-

1=2J+l ciated with the essential degeneracy of Kramers2P+ 1 discussed earlier.

TABLE 15. Wigner-coefficients

\31 0 1 2 3 4 5 6 7 8

1 --0.632456 0. 316228
2 -. 534522 -. 267261 0. 534522
3 -. 516398 -. 387298 0 0. 645497

4 -. 509647 -. 433200 -. 203859 . 178376 0. 713506
5 -. 506369 -. 455732 -. 303822 -. 050637 . 303822 0. 759554
6 -. 504525 -. 468488 -. 360375 -. 180188 .072075 . 396412 0. 792825

7 -. 503382 -. 476415 -. 395515 -. 260680 -. 071912 . 170790 . 467426 0. 817996
8 -. 502625 -. 481682 -. 418854 -. 314140 -. 167542 . 020943 . 251312 . 523568 0. 837708

\M 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

3/2 -0. 447214 0. 447214
5/2 -. 478091 -. 119523 0. 597614
7/2 -. 487950 -. 292770 . 097590 0. 683130

9/2 -. 492366 -. 369274 -. 123092 . 246183 0. 738549
11/2 -. 494728 -. 409917 -. 240296 . 014135 . 353377 0. 777429
13/2 -. 496139 -. 434122 -. 310087 -. 124035 . 124035 . 434122 0. 806228

15/2 -. 497050 -. 449712 -. 355036 -. 213022 -. 023669 . 213022 . 497050 0. 828417
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TABLE 15. Wigneroedffienta8-ConUnued

M 0 1 2 3 4 5 6 7 8

2 0. 534523 -0.356348 0.089087,
3 .426402 .071067 -. 497469 0. 213201
4 .402291 .201146 -. 245844 -. 469340 0.312893

5 .392232 .261488 -. 065372 -. 392232 -. 392232 0.392232
6 .386953 .294821 .050672 -. 248756 -. 442232 -. 304035 0. 456052
7 .383807 .315270 .127428 -. 126413 -. 357408 -. 441175 -. 217795 0.508189

8 .381771 .328747 .180281 -. 031814 -. 254514 -. 413585 -. 413585 -. 137862 0. 551447

X 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

5/2 0. 308606 -0. 462909 0. 154303
7/2 .341882 -. 113961 -. 493829 0. 265908
9/2 .354787 .059131 -. 335077 -. 433629 0. 354787

11/2 .361298 .154842 -. 167745 -. 425815 -. 348394 0. 425815
13/2 .365073 .212959 -. 043944 -. 310988 -. 446201 -. 260284 0. 483384
15/2 .367467 .250811 .044718 -. 196371 -. 390798 -. 429684 -. 176929 0.530786

Al 0 1 2 3 4 5 6 7 8

3 -- 0.482804 0.362103 -0.144841 0.0241402
4 --. 373979 .018699 .411377 -. 317882 0.074795s
5 -. 347368 . 104210 .312631 .251842 -. 416842 0. 130263

6 --. 335531 -. 167765 . 184542 .360696 .067106 --. 461355 0. 184542
7 -. 329015 -. 205635 .082254 .324080 .289534 -. 090479 -. 470492 0. 235246
8 -. 324985 -. 230198 .005416 .251864 .346651 .176034 -. 211240 --. 457688 0. 281654

M 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

7/2 -0. 241402 0.434524 -0.241402 0. 0482805
9/2 -. 273115 .204836 .341393 -. 375533 0. 102418

11/2 -. 286829 .057366 .358536 .157756 -. 444585 0. 157756

13/2 -. 294280 .036785 .272209 .334007 -. 016185 -. 469376 0. 210410
15/2 -. 298843 -. 099614 .179306 .346658 .235090 -. 155398 -. 466195 0. 258997
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TABLr 15. Wigner coefficient--Continued

cA•I

\ -1 0 1 2 3 4 5 6

1 0. 774597
2 .654653 0. 534522
3 .632455 .577350 0. 408248

4 . 624188 . 592156 . 495434 0. 330289
5 . 620173 . 599144 . 535891 . 429669 0. 277350
6 . 617915 .603023 .558291 .483494 .377965 0. 239046

7 . 616515 .605405 .572054 . 516377 .438160 .336817 0. 210042
8 . 615587 .606977 .581136 .538028 .477567 .399561 .303489 0. 187317

M -1/2 1/2 3/2 5/2 7/2 9/2 11/2

Jý-

3/2 0. 632456
5/2 . 621059 0. 462910
7/2 .617213 .534522 0. 365148

9/2 . 615457 . 564075 . 460566 0. 301511
11/2 . 614509 . 579365 . 508862 . 402291 0. 256776
13/2 . 613941 . 588349 . 537087 . 459933 .356263 0. 223607

15/2 . 613572 . 594088 . 555088 . 496486 . 418079 . 319313 0. 198030

M -1 0 1 2 3 4 5 6

2 -0. 563436 0. 345033
3 -. 449467 -. 123091 0. -' !233
4 -. 424052 -. 245844 .136989 0. 560968

5 -. 413449 -. 299572 0 .358057 0. 554700
6 -. 407884 -, 328395 -. 110558 .183513 .449089 0 532554
7 -. 404568 -. 345779 -. 180745 .056476 .308827 .495260 0. 505389

8 -. 402422 -. 357114 -. 227940 -. 035172 .187317 .391802 .515831 0. 477567

\ M -1/2 1/2 3/2 5/2 7/2 9/2 11/2

5/2 -0. 345033 0. 462910
7/2 -. 372194 . 053722 0. 550482
9/2 -. 381690 -. 116608 . 285631 0. 560968

11/2 -. 386244 -. 204837 . 099950 . 410891 0. 544705
13/2 -. 388809 -. 256681 -. 022676 . 252439 . 476312 0. 519238
15/2 -. 390406 -. 289807 -. 105958 . 126363 . 354689 . 507935 . 491412
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TABL, 15. Wiper coeffiiene--Continued

cli:

\-10 12 3 4 5 6

3 0. 494727 -0. 361298 0. 127738
4 .383214 0 -. 434524 0. 289683
5 .355945 .122813 -. 302079 -. 308257 0. 397959

6 .343817 .184542 -. 163087 -. 376632 -. 147214 0. 465530
7 .337140 .220710 -. 058394 -. 316265 -. 335450 0 0. 505389
8 .333010 .243919 .017964 -. 232843 --. 361685 -. 247027 .121960 0. 526926

S- 1/2 1/2 3/2 5/2 7/2 9/2 11/2

7/2 . 255476 -. 442498 . 215917
9/2 . 285631 -. 186989 -. 381691 . 349825

11/2 .298081 -. 035129 -. 359967 -. 227663 .435942

13/2 . 304672 . 058394 -. 255871 -. 365192 -. 070719 . 488252
15/2 . 308643 . 119537 -. 156366 -. 349645 -. 294427 . 064249 . 517994

\ M 0 1 2 3 4 5

2 -0. 527046
3 -. 265908 -0. 564076
4 -. 186989 -. 469339 -0. 494727

5 -. 146176 --. 392232 -. 506369 -0. 423659
6 -. 120654 --. 335111 -. 472034 -. 490098 -0.363803
7 -. 102998 -. 291972 -. 431342 -. 493065 -. 457141 -0. 315165

8 -. 089984 -. 258460 -. 393234 -. 474495 -. 486664 -. 420595 -0. 275723

N -1/2 1/2 3/2 5/2 7/2 9/2

5 -0.577350
72 -. 402015 -0. 531816
9/2 -. 311649 -. 498639 -0.458029

11/2 -. 2&7 -. 442497 -. 501745 -0.392232
13/2 -. 216867 -. 391883 -. 487398 -. 474594 -0.338200
15/2 -. 188584 -. 349644 -. 457792 -. 492112 -. 438906 -0.294427

CIA'

Y ; --1 0 1 2 3 4 5

3 0.469340 -0.221249
4 .270973 .323875 - .409673
5 .201802 .376038 .058255 -0.487398

6 .163087 .800696 .248129 -. 147214 -0.509963
7 . 137637 . 332940 .322787 .079068 -. 258078 -0. 505389
8 . 119407 . 304863 . 347875 .209882 -. 071755 -. 372080 -0. 487838
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TABLE 15. Wigner coefficients-Continued

\ IV -1/2 1/2 3/2 5/2 7/2 9/2

7/2 0. 442498 -0. 334497

9/2 .373979 .186990 -0. 458029
11/2 .316163 .324509 -. 053661 -0. 503382

13/2 .272507 .357008 .163319 -. 223634 -0. 509963
15/2 .239074 .354605 .270834 0 -. 333849 -0. 497673

S -- 2 -1 0 1 2 3 4

2 0. 745356
3 . 594588 0. 460566
4 . 560968 . 494727 0. 312893

5 . 546941 . 506369 . 392232 0. 226455
6 .539583 .511894 .432629 .313114 0.171499
7 . 535193 . 514990 . 456490 . 366006 . 253968 0. 134387

8 . 532354 . 516920 . 471881 . 401022 . 310630 . 209427 0. 108148

"Al -3/2 -1/2 1/2 3/2 5/2 7/2

5/2 0. 577350
7/2 .550482 0. 376051
9/2 .539792 .440738 0. 264443

11/2 .534366 .469339 .349825 0. 196116
13/2 .531214 .484930 .397958 .281399 0. 151247,
15/2 .529213 .494472 .428225 .336926 .230164 0. 120199

M -2 -1 0 1 2 3 4

3 -0. 541947 0. 349825
4 -. 419790 -. 079333 0. 501745
5 -. 389919 -. 195539 .233021 0. 504505

6 -. 376632 -. 248128 .067106 .382472 0. 465530
7 -. 369318 -. 277194 -. 037801 .247517 .441640 0. 417311
8 -. 364795 -. 295182 -. 107785 .137400 .354765 .454447 0. 370540

M -3/2 -1/2 1/2 3/2 5/2 7/2

7/2 -0. 312893 0. 458029
9/2 -. 334497 .102418 0. 512092

11/2 -. 341495 -. 055544 .322921 0. 487398

13/2 -. 344698 -. 141599 .167849 .419971 0. 441641
15/2 -. 346452 -. 194225 .056068 .308798 .452034 0. 393445
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TABLE 15. Winer coeffickis--Continued

cmit

--3 -2 -1 0 1 2

3 0. 733799
4 . 568399 0. 429669
5 . 527952 . 457220 0. 273241

6 . 509963 . 465530 . 345246 0. 184542
7 .500060 .469098 .383017 .260982 0. 130491
8 .493934 .470948 .405906 .310016 .200114 0. 095673o

MJ - 5/2 -3/2 -1/2 1/2 3/2

7/2 0. 554700
9/2 .518874 0. 339683

11/2 .503381 .397958 0.223100

13/2 .495034 .423922 .299758 0. 154399
15/2 .489956 .438230 .344798 .228062 0. 111283

5.3. L-S Coupling and the One-Electron (5.4) is again applicable, and obtain
Approximation

It is well to emphasize at this point that the
relation (5.4) involves no approximations -these (0'L'SIIYjjIILS). (5.10)
we shall introduce in evaluating the reduced
matrix element. The first of these is the approx- Hence, we can write (5.9) in the form
imation of L-S coupling, i.e., the state cJM>
may be written laJM> =--IfiLSMLMs> <#W'L'SJ'M'IY1,LSJM = Z

mt. MLM,
(LSM.,MSILSJM), and consequently, (L'SJ'M'lL'SMWMa) (LPL'tLILMLy)

<aJ'M'IYPIaJM2>= F. (L'S'J'M']L'S'MLM., (LSMA'MsILSJMA)(#'L'SVIY, lllLS), (5.11)
M11ML

<3'L'S'AMl''IYIIILSMrMs>(LSML.MslLSJ'M). and this expression is also (5.4). If we multiply
both expressions by (JJ'l'IJJ,M,.), introduce

(5.7) the requirement that ML=ML+ti, and sum over
M, the expression on the right of (5.4) will reduce

We now recall that Yl does not act upon the spin to (a'J'IIYJJaJ) by (5.5a) while the right side ofcoordinates of the system, that it is thus a scalar (5.11) becomesquantity with respect to S, and therefore
SZ (JvJ'M'IJJMM)(L'SJ'M'IL'S(ML +) Ms)

#' L 'S'M~ s'JYIJgLSM•IMs> =B,S-,M $•• dML

<'L'S2j,9jY, LSMMs>. (5.8) (LIL'[ML±,LI ILMLP)

This will reduce (5.7) to the equation (LSMIM 8,ILSJM)(f'L'SIIY,IILS). (5.12)

<a'JMy1,'YaJM>.=&a, Z Such a sum of the product of 4 Wigner coeffi-
M,.ML cients appears recurringly in the theory of complex

spectra. The properties of such expressions were
(L'SJ'M'I L'SMLM8 ) first studied extensively by Racah (1942a), and

<W'L'SMWM, IY1,I #LSMMB> (LSMLMtILSJM). they have consequently become known as Racah
coefficients. In the present application the essen-

(5.9) tial significance of (5.11) is that the two states
JM and J'M' are "uncoupled" into LSMLMs

All other matrix elements vanish-in particular and L'S'M,,M3 so that the effect of the Y,'
we see that there are no matrix elements between acting only on the L part (i e. the space coordi-
terms of different multiplicities. Also we see that nates) may be determined. the Racah coeffi-
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cients appear generally in connection with such tations. First, there is the additional assumption
uncoupling or recoupling of angular momenta. that the state involves only one configuration of
The Racah coefficient in (5.12) depends on six the free ion. In the present case, it is expected
parameters JJ', LL', S, and v; in spite of the that configurations other than 4P' will interact
explicit appearance of the projection quantum with the surroundings and other rare earth ions
numbers M, M', ML, Afs, and p, they are elimi- to such an extent that they will no longer be char-
nated in the summation. acterized by sharp energy levels, but by broad

Although a general algebraic formula for these levels or bands. The sharpness of the observed
coefficients is quite unwieldy, numerical tables lines suggests that tJbe contribution of other
have been computed by Biedenharn (1952) and configurations to the wave functions of the free
by Simon et al. (1954). The first of these carries ion is, at least as far as the energy is concerned,
the entries in a closed fractional form, the other negligible. It is quite possible that contributions
has a ten-place decimal form. In order to clarify from other configurations are responsible for
difference in notation, let us rewrite (5.12) as features such as intensities and polarization; this

will be discussed further in the following section.

(a, j,11y'1 aj)= Z CJC, L,' 8 P L V An additional disadvantage is that, unlike the
- -ML I, (ML+#)Mf CM transformation from a JM representation to an

LS representation, there is no general formula for
m, sJ(f,'L'SI1Y.IIMLS). (5.13) passage from the LSMLMs representation of a

"state to its one-electron representation. The

Omitting algebraic details, the use of the sym general method of Gray and Wills (Condon and

metry relations for the Wier coefficients w*l Shortley 58) may be used, but each configuration

pernmit this to be transformed into must be considered by itself, and no general
formula can be derived.

2+8-J,-, (J±I)(2L'±1) 5.4. The Rare Earth Ground Terms
(N (2S+1)(2a+l) In the evaluation of the matrix element (5.10)

2 .MTLSC S L' 3' we are free to select any consistent set of the
" MML (M+ML)(J--M-ML) projection quantum numbers; we shall therefore

consider the specific element [Mý=L';Ms-S]
L L' J L 'M J'

SMI,(MW-M-ML) C-M(A--M) -(O'L'S1lYJ LS) 8<'L'SL'SlyfWI LSLS>= (L 1L'L'" LPLp)

and a7direct comparison with the notation of this (#'L'SlFY.kdLS). (5.15)
with eq (1), page x of Simon et al. will give By selecting the maximum values of the projec-

(a'j',[IyUaj)=(_l)L+S-.J,-,•(2J+l)(2L'+,) tion quantum numbers, we shall find that the
transformation to the one-electron representations

W(JLJ'L';SP)aO 'L'S][Y,JJl LS). (5.14) is thereby simplified considerably.
For any particular rare earth, the analysis is

The six-parameter expression W is tabulated in best carried forward in a systematic manner,
Simon et al. for J,J'< 15/2; L,L'< 9/2 (though of beginning with the ground state. In accordance
course a half-integral L has no significance in the with Hund's rules, for 4* we select the highest
present application) S<3 and _<8, though the allowed multiplicity, and then the highest L
useful range of values may be extended through consistent with this multiplicity. The correspond-
the use of the symmetry relations given in the ing antisymmetrized products of one-electron wave
introduction to the tables. functions are usually written 1mlmlm• . • ; for

We are now in a position to make comparisons ++t
between quantities which depend only on the example, in this notation we start with 13211 for
ratios of the matrix elements for a given O'L'S, +++++++l J+-++ + + +1
OLS combination, but for additional details we Nd, 132'10--1--21 for Eu, +33210-1-2-31 for

must evaluate the reduced matrix element Tb, etc. While the analysis may be carried out

(fl'L'SIIYIJ ILS). In principle, this maybe accom- for any configuration, we shall consider the specific

plished in a way similar to the derivation of (5.13) example of Nd. t+++i 2
i.e., we now assume that the state ILSMW.M8> may Let us begin with 1321I=JI6 > The appli-
be written as a sum of antisymmetrized products
of one-electron wave functions Inim m,> and cation of the symmetric operator ._1=L--iL,
the matrix element (5.10) can be expressed in (Condon and3Shortley5i3)yields{• 4J 5
terms of one-electron matrix elements such as 1 32 2

,, ,mmY , ima,> A second application of Y_ yields 2ý3/ 132-11

Unfortunately, this procedure has several limi- 2 {310b= 1'I 4 •>. The state •2 [-!'i
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3++ +1 4++-[1 is orthogo 3 ments, lies in data provided concerning excited
132-1j-23nt1 and levels, a general ion-by-ion analysis of the excited
is also a quartet with ML,=4 and hence is the levels is a major undertaking, and only the

3 explicit details or the ground multiplet will be
state (G4 2>. Repeated application of .V_ developed here. As a specific example, we shall

3 , 3 , further consider the case of Nd, where (5.15)will yield the statesl'F 3 '>,14D22>,and I05>f becomes

all of which arise from 4Jl (Condon and Shortley <4f$ 4 1631Y. 3 I
3 = 2 
f'18 -o4f. 

41 6
ablel'). Similarly, beginningwith 1332= L82>1 2 ~ =< +3+2+1J Yff, + >. (5.16)
we can obtain the state 11K 7 5>. There are

a total of four states with M.=6, Ms=!, namely We shall here insert again the factor r" in the
1 1potential, omitted since (5.1) since it is invariant

6 1 d 1> under the transformations we have been consider-
2' ,2 , 1 ing up to this point. Again recalling that r'Y, istwo are obtained by a further application of .Y_ an electrostatic perturbation upon the individual

while the latter is obtained from 1'I63> by the electrons, we see that it is a spin-free quantity of
2 bCondon and Shortley type F (669), and (5.16)

operator 5f_=S--iS,. The fourth state is then + I I + 1
6!>. becomes E <4f m r'O,° 4f m >, where D°--

In endeavoring to continue this process to states and 0t is given in table 1. The spin terms of the
where M,=5, we find that in addition to those matrix element give +1, the q terms give merely
arising from higher values of L or S, that there are 1and the integral is
two additional states with ML=-5, M.= 1. They a e2vt
must be therefore both described as 12H 5J>,and
additional labels are necessary to distinguish them. 0C - s2+ 1
The usual procedure is to explicitly diagonalize the J0eOO sin 0 dO - , c, (3m, 3m)
submatrix of electrostatic interaction between the

two states (Condon and Shortley 78), but further where c' is given in table 16 of Condon and Short-
work of Racah (1949) has shown that a more ley. For the time being, we shall write the r,
abutract classification of states based on group integral as <rl>.
theory is possible. The former technique has By evaluating (5.14) and (5.15) for all the rare
been applied by Judd (1955) to the specific case earths, the reduced matrix elements for the
of Eu. ground levels apart from the term <r'> have

In any perturbation calculation, the matrix been computed and presented in table 16. The
elements first to be considered are those between reduced L-S matrix elements are included princi-
different states of a degenerate level. In the pally for information, though they are directly
rare earth ions, and in crystal spectra generally, useful in cases where the electrostatic perturbation
the one most important level is the ground level, is greater than the spin-orbit interaction, or where
While the great significance of optical spectros- the electrostatic and spin-orbit perturbations must
copy, in contrast to magnetic resonance measure- be considered simultaneously.

6. Applications

6.1. General Considerations selection and polarization rules and relative inten-
sities of lines, and all these are correlated with the

In this concluding section, we shall discuss structure of the atom responsible for the spectrum.
further the general significance of the preceding These may all in principle be obtained from a
sections in the interpretation of crystal spectra, knowledge of the initial and final states of the
the connection mentioned at the beginning of sec- transition involved in the spectral line. Unfor-
tion 3.4 between the group-theory technique of tunately, our knowledge of these initial and final
sections 3 and 4, and the matrix element calcula- states is largely a matter of approximation which
tions of section 5, and shall illustrate the applica- is not always entirely satisfactory. This is true
tion of these general techniques to specific both for the free ions and for the perturbed ions
problems, in the crystal. Let us review briefly the situation

Generally, a spectrum may be considered as for the free ion.
understood if the spacing of the energy levels is The good quantum numbers for the wave func-
known, the effect upon them of a magnetic field, tions of the free ion (section 3.3) are the parity
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TABLu 16. Reduced matrix elements

Element L S J V=2 --4 1,6

Ce+++ 3 1/2 -0. 325732 0. 360856 -0. 491065

5/2 -. 301569 .261168 0
7/2 -. 307788 .289329 -. 245532

Pr+++ 5 1 -. 276822 -. 261529 .4455018Tm+++
6 -. 265205 -. 224931 .321183
a -. 249840 -. 174353 . 136505
4 -. 260040 -. 208628 .261268

Nd.. 6 3/2 -. 106082 -. 168698 -. 642369
Er+...

9/2 -. 098820 -. 131239 -. 356506
11/2 -. 091864 -. 096145 -. 099840
13/2 -. 093887 -. 106106 -. 169019

15/2 -. 101524 -. 144946 -. 457704

Pm6 2 .106082 .168698 .642369Ho++..

4 .095469 .115742 .260356
5 .084208 . 054866 -. 090686
6 .083901 .061345 -. 087596
7 .089965 .088311 .062990
8 . 100398 .139515 .420886

Sm+. 5 5/2 .276822 .261529 -. 455018
5/2 .217802 .102885 0
7/2 .160051 -. 033771 .252972
9/2 . 155288 -. 038079 .220158

11/2 . 174559 -. 007942 .210017
13/2 .208638 .070737 .112678
15/2 .253811 .193261 -. 228851

Eu3 3 .325732 -. 36085& .491065Tb ..
0 0 0 0
1 -. 199469 0 0
2 -. 012363 -. 150786 0

3 -. 054289 .060143 -. 081844
4 .032147 . 171347 .259348
5 . 138409 . 130764 -. 227510
6 .265202 -. 168697 .064237

Gd++ 0 7/2 0 0 0

Note 1: Where no J value is given, the tabulated quantity is (0LAjIY,[I#LS), otherwise (PLSJIIYIIjLSJ).
Note 2: For the second ion of the above pairs, all signs change.

"g" or "u", the total angular momentum J and transitions. Thus, consider a transition proba-
its component M. The strict selection rules bility for electric dipole radiation involving the

a zAJ=-0, ± 1 (0-)0) for electric and magnetic dipole matrix element (O'L'SJ'M' er j#LSJM. If
radiation, and AJ==0, ±1, ±2 (0--0, 0-al) for J'=J+l so the transition is allowed in J, but
electric quadrupole radiation, with change in L'=L±2, it will be forbidden in L, and will be
parity in the first case, no change in the last two, nonzero only if the spin-orbit interaction has mixed
were calculated in section 4.4. There is no phy- terms with spatial angular momentum L+-1 in
sical significance to a selection rule on M in the either L or L' or both. The application of a
absence of a nonspherical perturbation. If the magnetic field splits a state into its 2J+1 com-
spin-orbit interaction is small, L and S approxi- ponentswithasplitting determined to afirstapprox-
mately describe a state and we obtain selection
rules in L similar to those in J, while in S we ob- imation by the matrix element of---me
tain AS=O for electric dipole or quadrupole transi- yielding the usual expression for the Land6
tions, -S=0, I (0-O0) for magnetic dipole g-factor. Selection rules for M now become sig-
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nificant, and we have AM=0, +-1 for either type since they are still diagonal in a. In order of
of dipole radiation, AM=O, ±-1, ±2 for quadu- magnitude, these elements are as large as those of
pole transitions, and their associated polarization types (1) and (2), since all three come from the
effects, same reduced L-S matrix element (table 16) and

The perturbing potential V (2.6) will influence a differ only in the associated Racah and Wigner
state iaJM> in general by four types of matrix coefficients (5.14, 5.4). Their effect is numerically
elements, the effects of which we shall examine in somewhat smaller, since terms they contribute in
detail. These are: perturbation theory are divided by the energy

1. Matrix elements diagonal in a, J, M. differences between the unperturbed levels. A
2. Matrix elements diagonal in a, J. state of given J=Jo will be mixed directly with
3. Matrix elements diagonal in a. other J values such that IJ-J 01 •< P. The selec-
4. Matrix elements nondiagonal in a, though tion rules for the free ion J are now either poor

perhaps diagonal in J and M. These matrices or completely worthless, depending on the numeri-
(or rather, approximations to them) may be cal parameters. Since both the upper and lower
calculated by the methods of section 5, though states of a transition can involve a range of J,
the scope of table 15 itself will suffice only for the effective selection rule is merely AJ<2v±+.
elements of types (1), (2), and those of (4) diagonal Matrix elements of type (4) will generally be
in parity and J. We will now examine the effect numerically the smallest of the four types. They
on the original level of these several matrix arise from all terms in the potential (2.6), this
elements. being the only one of the four where the terms

Matrix elements of type (1) arise from potential with odd P are included. Such elements, at least
terms with v even, p=o. Their effect is to split as far as the ground state is concerned, involve
the level into pairs of states ±M (and the single relatively distant levels, so the influence on the
level M=O for integral J) in the ratios indicated splitting of the ground state will be small and lie
by table 15. The inclusion of these matrix perhaps more in the overall position of the level
elements only results in an initial axial field with respect to the unperturbed level. Perhaps
approximation which is sometimes useful. The the most important effect of such elements is on
selection rules on J and parity, as well as any the selection rules and the associated polarization
approximate rules on L and S, remain valid, as do effects, and in the intensity calculations. Just as
those on M corresponding to the free ion in a elements of type (3) destroyed J as a quantum
magnetic field. This case corresponds closely to number, so will these destroy a as a quantum
a reduction in symmetry from Di to D_,,, which number. a includes the specification of the con-
differs through the inclusion of matrix elements of figuration and consequently the parity of a state.
types (3) and (4) which are diagonal in M. In the most general case, there will be matrix

Elements of type (2) arise from potential elements for even v between 4fJ and higher even
terms with Y even but i 540, still with the ratios configurations, such as 4fJ- 25d2, and for odd v be-
determined by table 15 and of the same order of tween 4ff and 4f-'5d. These latter elements
magnitude as those of type (1). The solution of destroy the parity of the state and lift the restric-
the secular determinant for elements of (1) and tions of Laporte's rule for electric dipole transi-
2) to her will' yield the first approximation t tions. Intensities corresponding to electric dipole

the energies of the perturbed states as well as the transitions between states principally 4 in
zero-order linear combination of states with acter must, therefore, be computed from these ex-
various M required for higher order perturbation tremely small inter-configurational matrix elements
calculations. States with M values differing by and are therefore extremely weak; nevertheless, all
; will interact and M will no longer be a good crystal spectra are in any absolute sense quite
quantum number for these states. However, if weak and such transitions must be considered in
2J is less than the lowest 1 involved there will be the case of any nonholohedric perturbing potential.
no matrix elements of this type and the rules for The further effect of a uniform magnetic field
(1) only will still be valid. This situation will will depend to a large extent on the degeneracy
occur for levels of low J in fields of high sym- allowed by the electrostatic perturbation. The
metry. Generally, the selection rules for J and a magnetic field does not allow any remaining de-
will still hold. Selection rules on M will apply to generacy; hence, levels degenerate in the electro-
those states which do not involve a combination static field, including the Kramers conjugate
of M values, and can be applied to the components states, will be split by a term linear in the mag-
of those states which do involve a mixing of two nitude of the field B which can be computed from
or more M states. a solution of the associatcd secular determinant.

Type (3) matrix elements still involve only The average magnetic moment of any nondegen-
potential terms with v even since a includes the erate state is zero (Van Vleck, 1932; Klein, 1952)
parity quantum number. The addition of these so these states will show no first order effect for
matrix elements to our scheme destroys the weak magnetic fields. If the crystal field leaves
validity of J as a quantum number which has two or more levels relatively close together, a case
held for (1) and (2). These elements are those of intermediate or strong magnetic field approxi-
between various J values of a given L-S term, mation can be observed and the level will show a
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finite displacement from its B=0 position. Un- to H-. The angular portions of the potential
less the magnetic field and crystal field symmetry were calculated over a range from 0=0 to 900.
axes are parallel, there will generally be no sym- The angular factors (2.4) were obtained from the
metry and no selection rules. Marked variation tables of Tallqvist (1908). This table is not
of intensities of lines has been observed in the widely available, but no other table covering its
crystal Zeeman effect. A more specific example range has been prepared to the knowledge of the
of some of these considerations will be given in writer. The National Bureau of Standards table
section 6.2. (1945) covers values of M only up to and includ-

in 4.
6.2. A Crystal Field in performing the summation (2.7), the only

The direct approach to a crystal problem is to generally nonvanishing coefficients are (N< 6)
obtain the crystal structure by diffraction measure- C0., CQ, C0, C0, CQ, and Ct, though this may be de-
ments, geometric considerations, or other crystal- duced directly from table 5 without explicitly per-
lographic techniques. These techniques do not forming the summation. The values of these,
locate the lighter ions with sufficient accuracy, apart from a radial factor of the form
particularly water of crystallization, which con-
tribute greatly to the crystal field. As an illustra- e - -1
tion of the procedure, let us consider a possible --- +I 2+R
short range structure for rare-earth chlorides of
the form XCl3.6H 20 (H. S. Robertson, informal are given in table 17. Certain general qualitative
communication) where 6 CI- (three from adjoining features may be noted by inspection. For 0=0
X) are in two horizontal planes equidistant from (corresponding to all charges being located along
X, forming an equilateral triangle in each plar- the vertical axis), the symmetry is D-h (table 5).
the two triangles being rotated 600 to each other For other angles, the symmetry is generally Dad,
about a vertical axis. The water molecules [con- while at 90' (a planar configuration) it is Dh. A
sidered as dipoles] are then located along the particular exception occurs for 0=-54044' where
X-CI lines. the symmetry is "accidentally" Oh, belonging to

While detailed calculations were not carried out the cubic point groups (section 2.4). For this
due to uncertainties in the various distance pa- value of 0, the three pairs of charge axes are
rameters, certain features of considerable interest mutually perpendicular and the C0 term vanishes.
may be obtained through partial application of For other values of 0 (e.g., 310), other coefficients
(2.7). The above charge array may be described vanish, but there is no general theoretical signifi.-
by cance to this. It is to be noted that for 0<10',

the terms responsible for departure from D=h
a1-9=- alo-1 -8=w-0 #,-3= symmetry are small, while in the vicinity of 0=90'

2w 4ri the terms causing departure from Dh symmetry
04-6=- 17-9= 6• 0-12= j613_-.r,-- are large and quite sensitive to small angularvariations.

5w Most features of even this simple problem re-
016-•8•-- •-=q 3 ,+1-e q3,+ 2=-e quire the specification of the radial distances of

the ions, as well as the average radial integrals
and we shall take 0 as a variable parameter. There (re) of the wave functions. On the other hand,
are a total of 18 charges in this array. Those aspects of the Zeeman effect can be understood
above the x-y plane have the indices 1-9, while without further knowledge of these parameters,
those below have 10-18. Indices of the form 3n and these aspects are most important for under-
refer to CI-, 3n+l refers to OH- and 3n±2 refers standing more complicated cases. Let us assume

TABLE 17. A representative crystal field

02 Q Cle (3 1,ce

00 9. 5120 7. 0898 5. 8991 0 0 0
100 9.0818 & 0491 4.1557 0. 0765 0.2113 0.0001
200 7. 8430 3. 3675 0. 4242 .5575 1. 3485 .0063
300 5. 9450 0. 1662 -2. 2064 1. 6053 3. 0365 .0619
400 3.6168 -2.2617 -1.9088 3.0170 3.7557 .2795
450 2. 3780 -2. 8802 -0. 8756 3. 7074 3. 3393 .4953
500 1. 1392 -3. 0311 .3326 4.2850 2. 3851 .8007
oO" 0 -2.7571 1.3109 4.6604 0.7915 1.1740
600 -1.1890 -2.0494 1.9068 4. 8160 -. 4338 1. 6716
700 -3. 0870 -0. 0269 1. 2322 4. 2086 -2. 5978 2. 7282
800 -4.3258 1.8852 -0.7794 2.4595 -2.3645 . 6146
900 -4. 7560 2. 6587 -1- 8435 0 0 3. 9624

oSee text.
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that we have the case 0=0' of the preceding table and there will be a transverse Zeeman splitting,
17, i.e., D.. symmetry. We see from table 9 also depending explicitly oa the crystal field.
that the 2J+1 states are separated into doubly Under still lower symmetries than D&, the
degenerate pairs corresponding to ±M, plus (for Zeeman effect in odd-electron systems becomes
integral J only) a nondegenerate state 11=0. increasingly dependent on the crystal field, since

The application of a uniform magnetic field par- Kramers degeneracy remains in all cases, or
allel to the z-axis will reduce th, symmetry to C.,, vanishes in first order in most even-electron
and all levels are now nondegenerate. The splitting systems where the crystal field states generally
is given by twice the diagonal matrix element become nondegenerate.
(M +L, 2S, I Al) B, since the -M level is de-
pressed by this same amount and there are no 6.3. The Fluorescence Spectrum of the
nondiagonal elements, L2+2S, having no de- Terbium Ion
pendence on o. If the field is applied parallel to
the y axis, the only symmetry remaining is C21, but Because of the inexact knowledge of the radial
this is referred to a horizontal axis, rather than a parameters necessary for further work on the
vertical one. The secular determinant will nw direct approach to a solution of a given problem,
involve matrix elements of L1+2S,,. This has the more common procedure is to utilize the quan-
a 0 dependence of the form e*i#, and will have tities <7->(X and <rN>Sf as adjustable param-
nonvanishing matrix elements between states dif- eters to fit as best as possible the observed data.
fering in M by 1. Thus, of all the ±A-1 pairs, a This leaves the radial wave function integrals
transverse magnetic field will have no diagonal combined with the crystal field parameters-they
elements and will have nondiagonal elements only are frequently left in this form since ft. :ther infor-
in the case of ±41. The magnitude ,f this ele- mation about either one of them separately is not

wille(J-+1) B and the readily available. We shall illustrate this pro-
ment will be wicJ+) thacedure by some considerations of the fluorescence
splitting will be twice that or (J+]) g,•B. spectrum of TbCl,.6H 20.

If we now proceed to the planar case DOA, we The experimentally observed fluorescence lines

see from table 10 that for J_<5 the states remain (Singh, J. H. U., Dissertation, 1957), ob-erved both
at 4.2'K and 2.2'K, are given in table 18. The

as in the D13 case and the Zeeman effect for exciting light, unpolarized, is incident along the
these lower J values is unchanged. For J=3, the crystal axis (the z axis). For both temperatures,
original pair M=-±-3(E 3,,3.) now splits into two the spacing of each level from the lowest of its
nondegenerate states Bg.,, and B,,. 2,, which are group is given, the average of the two temperature

t1he states-' +3>± ' -3> and -' + 3> values, and the spacing of this (to the nearest
-V2 -3 -2 cm-1) from the mean of the group. The overall

1 mean for each group is also given. The fluorescent
-•- -3>, respectively. This arises from the eL6'* light is observed on the side of the crystal opposite

i tthe incident radiation, also along the z-axis.
in the potential with nonzero matrix elements The fluorescent lines are relatively weak and are
between terms where AM= ±6. These states generally observed without regard to polarization;
will show no first-order Zeeman effect, either however, a few plates were taken at 4.2'K show-
longitudinal oi transverse. For J=4, we see that ing polarization (electric vector along x or y).
the states coming from ± 2 and ±44 have the same These data were made available by private corn-
symmetry (E2,.2.), and while we still have degen- munication from Dr. Singh and are also included
erate pairs, their properties will depend upon the in table 18. In the interpretation of fluorescence
solution of the associated secular determinant. spectra it should be remembered that the spectra
One pair will be given by an expression of the may originate near the surface of the crystal, and
form al ± 4> + (1-- a)4 4. 2 > while the other will that local fields, different from those in the main
he of the form (l-a 2 )i y±4>-agTn2>. The body of the crystal, may significantly affect the
coefficient a will be fixed by the magnitude of (1-. regularities expected.
For these terms, the longitudinal Zeeman splitting The Tb ion has the configuration 4JS. Accord-wilb 2[42 1a) 22- an [(-2)
will be 2[4a--2(1-a 2 )]=12a--4 and 2[4(l-a2 ) ing to Hunw! rule, the ground state is a 7Finulti-
-2a 2 1-12a 2-8, respectively, while the trans- plet with d lowest, with J from 5 to 0 above
verse effect remains zero. This longitudinal the lowest. I'he fluorescence spectrum is caused
effect thus depends explicitly on the crystal field, by transitions from a higher level (probably 5D
For J=", a similar phenomenon takes place but this is not important for the present consider-

7 wih 5
through a combination of 7 >with T > ations) to various levels of the ground multiplet.

2 ý Qualitatively, the agreement with experiment is
and the longitudinal effect will again depend excellent. The groups of lines Z, Y, X, 11, V, U,
explicitly on the crystal field. A major difference T, correspond to J=6, 5, 4, 3, 2, 1, and 0, in that
will occur in the transverse effect-here there are order. Within each group, there are 2J+1 lines,
nonvanishing off-diagonal matrix elements of the indicating that the -rystal field has removed all

form < ,2 S, a >, in the secular determinant degeneracy. This is confirmed by the absence of
2,2 any first order Zeeman effect.
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TABLE 18. Fluorescence spectrum of TbC13.6H20

(4.2 0 K) (2.20 K)
Line

V} Az, Av A,--Av,7 x y

Z, 20538.81 0.00 20538.77 0.00 0.00 -167
Z 2  20503.66 35.15 503.72 35.05 35. 10 -132
Z3 49& 20 40.61 498 33 40.44 40.52 -127 No
z, 461.26 77.55 461.59 77. 18 77.36 -90 data

S454.97 83.80 83.80 -83
380.70 158. 11 379.70 159.07 158. 59 -- 8 Z=20372

Z, 369.16 169.65 370.19 168.58 169.12 2
Z9 359. 49 179. 32 359. 27 179. 50 179. 41 12
Z, 347.85 190.92 190.92 24
ZIO 306.14 232.67 305.73 233.04 232.86 66
Z11  239. 08 299. 73 238. 33 300. 44 300. 08 133
Z12 193. 84 344. 95 192. 86 345. 91 345. 43 178
Z13  179.61 359. 20 179. 33 359. 44 369. 32 192

Y', 18433.00 0.00 18433.04 0.00 0.00 -127 s wv
1 413.02 19.98 413.02 20.00 19.99 -107 s w

1 3  400.92 32.08 400.99 32.05 32.06 -- 95 w S
Y4 359. 26 73. 74 359. 41 73. 63 73. 68 -53 s w
1. 341.00 92.00 341.09 91.95 91.98 -35 s w Y=18306
Ye 333.69 99.35 99.35 -27 s w

Y- 308.29 124.71 308.57 124.47 124.59 -- 2 s w
1, 294.96 138.04 295.90 137.14 137.59 11 S w
yo 250. 87 182. 13 182.13 55 s w
Y10 124. 83 308.17 124 82 308.22 308.20 181 ? ?

Y, 107. 0 325.10 107.81 325.23 325. 16 198 ? ?

X, 17193.56 0.00 17193.49 0.00 0.00 -74 w w
X2 188.20 5.29 5.29 -- 69 w w

X3 184.65 8.91 184.76 8.73 8.82 -65 S
X4 135.74 57.75 57.75 -16 s w X= 17120
X, 131.91 61.65 131.98 61.51 61.58 -12 s w
X6 104.88 88 61 88.61 15 vw

X7 067. 31 126. 25 067. 52 125. 97 126. 11 52
X, 056.26 137.23 137.23 63
X, 013.94 179.62 014.48 178.81 179.22 105 "

W, 16162. 72 0. 00 16162. 85 0. 00 0. 00 -- 98 w w
W2 080.68 82.17 82.17 -15 s

I7 070. 26 92 46 070. 33 92. 52 92. 49 -- 5 w w
IV, 043. 44 119. 28 043. 44 119. 41 119. 34 22 w s W= 16065
W, 037. 91 124 81 037. 95 124. 90 124. 86 27 w w
IT* 032.99 129.73 032.87 129. 98 129.86 32 s w

W17 028.07 134.65 028.12 134.69 131.69 37 s w

V, 15499.89 0.00 -145
V 2  430.03 69.86 -75
Y3  297.53 202.36 57 I= 15355
V, 292. 94 206. 95 62

Ir, 253.19 246.70 15253.17 101 vw s

U1  15001.25 0.00 -23 s vw
U2  14994 68 6.57 -17 vw s U= 14978

U3  938 41 62. 84 40

T 14691.73 T,:14692
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Let us consider the quantitative details. For From table 14, where radiation in the z direc-
best results, our theory requires L-S coupling tion correspnds to 0=0=0', iP=O0 for x polari-
and a crystal field splitting small compared to the zation and #=90° for y polarization, we see that
multiplet separation. We may check the validity x-polarized radiation may be produced by either
of L-S coupling by the interval rule, taking the Ax, B,, or A, ,, while y-polarized radiation may be
separation of the mean of adjacent groups and produced by A,, B,, or A,,. Thesp are the electric
dividing by the higher J value. We obtain, in dipole, magnetic dipole, or electric quadrupole
cm-', the following: terms, respectively. We shall assume that the

transitions are magnetic dipole in character. W e
J==6 344 J=4 264 J=2 158. 5 do not know the symmetry of the upper state in

the fluorescent spectrum, but there are only 4 pos-
J=5 237 J=3 237 J=1 286 sibilities in a Dm symmetry. From table 13 we

deduce the allowed lower state for each possible
This is not especially impressive for very good upper state as follows:
obedience to L-S coupling requirements. Let us
also calculate the total spread of a group, divided
by the separation of the group mean from that Upper B.(U,) B-( UI)
for the next lower J. We obtain: state

J=6 0. 174 J=4 0. 170 J=2 0. 653 A,, B13, BI,
A,: B,, B, ,

J=5 .274 J=3 .190 J=1 .220 B,, A2 , A,,
B 2, A,, A,,

This indicates that the influence of adjacent levels B2, A,, A2,

may be rather significant. The irregularity here
for J=2 is quite interesting; it is only partially The identification of U, and U2 of table 18
due to the irregularity shown in the interval rule ide irenthat of be ant in of one
check, since the total spread of J-2 is 247 cm- t ideally requires that they be present in only one
while that of J=3 is only 179 cm-1. of the two polarizations, rather than "very weak,"

In beginning an analysis, we must first obtain but the actual behavior is quite close to this ideal.

some idea of the symmetry. From table 9, we We now turn to table 9, and find that the lower

see that the only symmetries giving no degeneracy Btan e 1, isvn otre the

for an even-electron system are D2,, C,, C,,, lowrand Bg,. Since A ta is not present in the

and C,. The overall crystal symmetry suggests lower group, we conclude that the upper state is

either C2, or C2h. From table 5, we see that either A, or A2,, that the lower states at -23

D,•h requires the following potential coefficients: and -J17 are B,, and BW , while the other stateell C0 CO C2 C2 C2 C4 •C.Telwrsmer from J= 1 is A2,. We cannot uniquely assign
2 4 o 2 4 6 4C Q. Th oesmer

CZ, is obtained by the inclusion of odd potential B,, and R,, to a particular one of the -23, -17
C,, s otaied y te icluson f od ptenial levels. The upper level is presumably 'D, and a

terms, which will influence the energy splittings

by, a very small amount (section 6.1), while C2, q,1 level under D21 gives both At, and A2, levels.
will includee mevenS terms.eThese"latterh Interestingly enough, the same results, without
strongly influence the energy splittings. In order gi and 'uV subscripts, hold for C2, symmetry.
strongly red lucene numer ondergypende Int para ters We now see from table 10 that B,. and B2, arise
to reduce the number of independent parameters, from the state E,, of D~h, i.e., they come from
we shall assume Dmn, which %vll be energetically M= +1 and our earlier guess is confirmed.equivalent to C2, nodrt aheemxmmsipiiyi h

In deducing the field parameters, we need to In order to achieve maximum siiplicity in the

know not only the energies of the levels but also cilculations, it is in general desirable to use zero-

the free ion M values from which they come. (,rder wave functions which belong to reps of the

Where the crystal field does not remove all symmetry group. In the present case, the state

degeneracy, this may be partially obtained from 10> belongs to,,, but the states + 1> and I-1>
the Zeeman splittings. For the present case, the are not appropriate, and we must use the (es-

only source of such information is the polariza- sentially real) combinations Bl,: I-1Ž-1>+
tion data.-ý

We begin our detailed analysis with the simplest 11 1
nontrivial case J=1. We have three levels at -1-+ ±1> and B: --- We shall
-23, -17, and +40. The only potential terms 'ý2

of D2h contributing to matrix elements within frequently abbreviate these as 11+> and I1->,
J= 1 are CO and C0. It is a natural first guess to respectively. We now introduce the perturbation
consider that the C2 term causes a splitting of V=r'(C +Cl0C,2). Since the potential V is
tho state 10> to ±40, and 1±1> and 1-1> to symmetric under D2, and our three zero order
-20, with a small splitting of the latter two to wave functions belong to different reps, all non-
-17 and -23 by C0. This is not necessarily the diagonal matrix elements vanish, and the energies
case, and must be in agreement with the polariza- are merely <OIVI0>, <1-+-IVI+> and
tion data. <I-JVj1->. It is a general characteristic of
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crystal field problems that one must be freely ableto shift from complex to real forms of wave func- <0IV12+>---- (.("-/"2- C•l~ -12)Y42's/4"r-4•-

tions and vice versa, as the symmetry demands. C

In the present case, we have from (2.9) YI=C 2-- Y

and Yl,=--v'-=-- 2. Hence <OiV1O>=1 -<2+aVn2+d> (C 242=l± 242 ) Y<r 4 >

(al1IYI1a1)6•82Y0<r2>=40 cm-' or, from tables

15 and 16, (0.199469)(-0.632456) Y°<r2>=40 (C +24+C, 42) Y4<r 4>
cm-1, so that Y<rY2>=-317.1 cm-1. Similarly, 2 4 2_4

22 242Y40 <r> 24 4

ý(C,1201+-e~ 12)4y4<r >+C _ .42Y2<r4><l+1V1l+>=(Q1 llY2JJa)•C l•+c1g) yo 10 __ , o2 Y4,

+2(C12+ C1-22') Y-1<r2>=17 cin. -VJ->=Ci2 Y<r4>- ÷C- Y4<r4 >2 -- I _ ,2 o 4

Recalling (5.6) and using the value of Y, just com-
puted above, we obtain (0.199469) (0.774597) These may be simplified by observing that C02:
12<r 2>=+3, or Y-=19.4 cm- 1. The sign of C24:C242=6:--4:l tICf42=-3_/8 242.

Y2 is ambiguous, since the state 11+> could eintroduce the following abbreviations,
equally well have been assigned to -23 cm'. we
These results, while interesting, are really not too <OJVJO>=V0  <-2JVJ+2>=-
profound, since we have only two independent
energies relative to the mean of the group, and <--IVl--I>--
we had two adjustable coefficients at our disposal.

When we proceed to the J=2 case, we see that the matrix elements may be simplified to:
the allowed levels (table 9) are (2) A,,, A29, Bit,
and B2,. In contrast to the J=l case, the B1, <01VI0>=V0
and B, are j1-> and 11±>. By using table 10,
we see that A15 and A2 arise from 1±2>. In <2-IVI2+>=- V0±+
particular A,, is g2+> while A2, is 12->. These
may most conveniently be deduced from the 1
transformation rules of table 8, in comparison <2-lVJ_->-- V0-fl
with the tesseral harmonics of table 2, keeping in 6
mind the phase convention for odd positive M of l__V~l---_ 2

(2.8). The only nondiagonal matrix elements v0+6
in the resulting secular determinant will be
<OV12+>, so that we have only one second /
degree equation to solve for the energies. <0VI2±>=---/• (-C2) 6 _1_-%_3

The polarization data are available only for the
state at +-101 cm- 1 . This has polarization like 2
the state Bi, or B2, of J=l, and hence is presumn- <I-[VI1 ->=-7 V0 _3
ably also I1+> or I1-->. We do not have any
polarization data on the other levels, so we do
not know which states are which. We are there- The form of these matrix elements suggests the
fore forced to a trial-and-error process. The physical situation. The C(2 term splits the 2J+1
additional potential parameters significant for levels into one at V2, a pair at -- V 0 and a pair
J=2 are 0Q Q• Q. If we select 11+> as 101 3

cm-' and any one other as [1->, this will fix 1
C, and C2, so that only Q is left to fit the other at -V0 . The first pair is then further split by
three levels. Cs - into states separated by 2& The second pair

In attempting this process, the work is some- is also split into two separated by 20 through C!,
what simplified by observing that (a2IIY1lI12) is but one of these interacts further (via C2) with
very small, and that second degree terms will 10> through the nondiagonal matrix element
have only a small contribution to the matrix
elements. Consequently, they were disregarded 1
for the trial and error work, and were included 2
later for a more exact calculation. The required The trial and error fit was actually tried for all
matrix elements are, omitting the factor (a2 Y4 Ica2) possible pairs of states as 11+> and II->. The
common to all, best fit was obtained for 101 (in agreement with

the polarization data) and -75. With this pre-
liminary information, the second degree terms

<OVIO>=Cl'Y°<r4 > were included in the matrix elements, the fourth
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degree coefficients were chosen for a least squares If we compute the levels from the second and
fit in the energy, and the following were obtained: fourth degree terms only, we obtain a set of levels

which show a rather surprisingly similar trend to

E (obs) E (cale) State the actually observed levels, which include the
effect of sixth degree terms. Unfortunately, the
polarization data both here and for still higher J

101 108.0 1+> does not appear to follow either the rules appro-
62 65. 9 12- > priate for Du symmetry found adequate for lower
57 45, 4 o. 820 1 0> ±0. 572 2+> J, or any other pattern easily amenable to analysis.

-145 -133.5 0.820 12+>-0. 572 10> In particular, the states given do not especially
I_ I even suggest the reported polarization data.

<r 4>Yo=-187.8 cm- 1 <r'>YI=1,141 cm-i

<r'>Y4=--626.2 cm-1 E (obs) E (calc) State

The fit is only fair. There are three possible
sources of inaccuracy in the treatment. The first 37 45.1 0.948 1 - > -0. 31913+ >
of these is the possibility of deviation from the 32 36.9 . 756 3-> -. 654 1->

27 21.8 .7840> -. 620 2+>
L-S coupling approximation. This would appear 22 8. 6 .620 0> 4-. 784 2+>
essentially in the values of the reduced matrix -5 -14.8 .31911> +.94813+t >
elements. Purely from the empirical standpoint, -15 -28. 0 12->
they could be treated as additional parameters to -98 -69.6 0.75611-> +.654 3->

provide a better fit to the data. A second appre-
ciable source of discrepancy is the interactions
with other states, principally those within the There is obviously a considerable amount of work
ground multiplet. The nondiagonal Wigner co- yet to be done before the Tb spectrum is under-
efficients and Racah coefficients are both generally stood. Experimentally, there is need for more
of the same order of magnitude as the diagonal attention to polarization data for fixing the charac-
ones, and the reduced L-S matrix elements of ter of the states involved. Theoretically, there are
table 15 are appropriate for all combinations with- several lines of endeavor to be pursued. The
in the ground multiplet. Nondiagonal matrix ele- problems become numerically so tedious that
ments can therefore be of appreciable magnitude machine calculation is probably required for fur-
and, in view of the relatively small multiplet ther success. The first of these is a systematic
splitting, could become quite important in a more machine calculation of nondiagonal Wigner co-
refined theory. Finally, there is also the possibil- efficients. The published table of Simon (1954)
ity that the symmetry is such as to require the is inadequate in range, and the extension of table
inclusion of Sv terms. This almost doubles the 15 by desk calculations is almost out of the ques-
total number of parameters. This will, of course, tion. For the most part, the tables of the Racah
permit an adjustment to the data, but there is no coefficients (Simon et al., 1954) are adequate, so
clear requirement for the inclusion of these terms. that the availability of Wigner coefficients would
It may be noted here again that the earlier check permit a study of nondiagonal contributions to the
on multi p let separation showed a distinct anomaly energies. Furthermore, it appears that in prob-
for the J=2 group. lems of low symmetry, such as the present one,

Let us now turn our attention to J=3. Our there will be a requirement for trial-and-error
allowed states are as follows: calculations. These are well adapted to machine

A2,: 10> and 12+> Al,: 12--> calculations, but are again, except in very sim-
ple cases, almost out of the question for desk

Bl,: 13+> and 1+> B2,:I1-> and 13->. calculators.
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