
AD-A2_go 148
co

ma
a Qob Ag nk Qon+r

vYih Many tnu
anid AcA-oakors

94 6 699

REPORT ~~~DOCUMENTATIONPAEF Ran

I = ' :di -. D4 - - -- tbw n o

1I. AGENCY USE ONLY 0lM• Biern*) RPR AE3 EOTTP N AEOEE

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Robust Agent Control of an Autonomous robot with Many Sensors JPL Grant 959333
and Actuators N00014-91-J-4038

6. AUTHOR(S)
Cynthia Ferrell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Massachusetts Institute of Technology
Artificial Intelligence Laboratory technical
545 Technology Square report 1443
Cambridge, Massachusetts 02139

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGRJONITORING

AGENCY REPORT NUMBER

Office of Naval Research
Information Systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NO0TES

None A

12a. DISTRIBUTION/AVAILABLITY STATEMENT 12b. DISTRIBUTION CODE

DISTRIBUTION UNLIMITDj________

13. ABSTRACT (MmOdmum 200 words)

This thesis presents methods for implementing robust hexpod locomotion on an autonomous robot
with many sensors and actuators. The controller is based on the Subsumption Architecture and is
fully distributed over approximately 1500 simple, concurrent processes. The robot, Hannibal,
weighs approximately 6 pounds and is equipped with over 100 physical sensors, 19 degrees of
freedom, and 8 on board computers.
We investigate the following topics in depth: distributed control of a complex robot, insect-inspired
locomotion control for gait generation and rough terrain mobility, and fault tolerance. The controller
was implemented, debugged, and tested on Hannibal. Through a series of experiments, we
examined Hannibal's gait generation, rough terrain locomotion, and fault tolerance performance.
These results demonstrate that Hannibal exhibits robust, flexible, real-time locomotion over a
variety of terrain and tolerates a multitude of hardware failures.

14. SUBJECT TERMS 15. NUMBER OF PAGES

distributed control, autonomous robot, fualt tolerance, adaptive behavior, 164
legged locomotion, behavior based control 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
N 75401-250- daS E oM (Pav. 2-89)

Pvsiclbý ANSI S by-NS .S

IC QUA~LrM-

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced 0i
Justification

By......By
Distribution /

Availability Codes

Avail and/or

Dist Special

Robust Agent Control of an Autonomous
Robot with Many Sensors and Actuators

Cynthia Ferrell1

ferrellgai.mit.edu

Massachusetts Institute of Technolgy

A revised version of the thesis submitted in partial fulfillment of
the requirements of the degree of Master of Science in Electrical

Engineering and Computer Science

1This report describes research done at the Massachusetts Institute of Tech-
nology. Support for the laboratory's artificial intelligence research is provided
in part by a NASA Graduate Student Researcher Program Fellowship adminis-
tered through the Jet Propulsion Laboratory, by Jet Propulsion Laboratory grant
959333, and in part by the Advanced Research Projects Agency under Office of
Naval Research contract N00014-91-J-4038.

4 i . . • • ' ,'o - ..

Abstract

This thesis presents methods for implementing robust hexapod locomo-
'tion and fault tolerance capabilities on an autonomous robot with many sen-
sors and actuators. The controller is based on the Subsumption Architecture
and is fully distributed over approximately 1500 simple, concurrent processes.
The robot, Hannibal, weighs approximately 6 pounds and is equipped with
over 100 physical sensors, 19 degres of freedom, and 8 on board computers.

We investigate the following topics in depth: control of a complex robot,
insect-like locomotion control for gait generation and rough terrain mobil-
ity, and tolerance of sensor and actuator failures. The complexity of the
robot and the controller is managed using a local control with cooperation
paradigm. In this approach, the control problem is distributed evenly among
the legs. Because the legs are physically coupled through the robot and
through the terrain, the legs communicate with each other to work as a
team. Robust, flexibe locomotion is implemented using ideas from insect
locomotion and strategies used by insects to traverse natural terrain. As
a result, Hannibal's locomotion exhibits many insect-like properties. Fault
tolerance is implemented via a network of processes responsible for detecting
failures and minimizing the impact of failures on the robot's performance.
By exploiting concurrency and distributedness, the system monitors, detects,
and compensates for component failures simultaneously.

The controller was implemented, debugged, and tested on Hannibal. Through
a series of experiments, we examined Hannibal's gait generation, rough ter-
rain locomotion, and fault tolerance performance. These results demonstrate
that Hannibal exhibits robust, flexible, real-time locomotion over a variety
of terrain and tolerates a multitude of hardware failures.

Thesis supervisor: Prof. Rodney A. Brooks

Contents

1 Introduction 9
1.1 The Challenge 9
1.2 The Response 11
1.3 Organization of Thesis 13

2 Hannibal 14
2.1 The Physical Robot 14

2.1.1 Legs 14
2.1.2 Body 15
2.1.3 Size 16

2.2 Sensors 16
2.3 Computing 19

2.3.1 Master processor 20
2.3.2 Satellite control processors 20
2.3.3 Serial PC bus 21

3 Controller Overview 22
3.1 Issues of Controller Design 22
3.2 Robot Behavior Control Philosophy 23
3.3 Overview of the Controller 24

3.3.1 Sensor-Actuator Level 25
3.3.2 Basic Locomotion Level 27
3.3.3 Rough Terrain Level 28

3.4 Managing Complexity 28
3.4.1 Layering 28
3.4.2 Distributedness 29

3.5 Summary 30

1

K { "i•' !' . " '

4 Basic Locomotion 32
4.1 The Hexapod Locomotion Challenge 32
4.2 Definition of terms 33
4.3 Insect locomotion 35

4.3.1 Wilson 35
4.3.2 Pearson 37
4.3.3 Cruse 40

4.4 Cruse Control 43
4.5 Modified Cruse Control 47
4.6 Pacemaker Control 51

4.6.1 Gait Behavior 56
4.6.2 Turning Behavior 59
4.6.3 Direction of Travel Behavior 62
4.6.4 Lesion Compensation Behavior 64

4.7 Performance 65
4.7.1 Definition of Terms and Stability Formulas 65
4.7.2 Stability Performance 67
4.7.3 Speed Performance 68
4.7.4 Turning Performance 69
4.7.5 Directional Performance 70
4.7.6 Lesion Compensation Performance 72

4.8 Legged Locomotion 73
4.8.1 Phoney Pony 73
4.8.2 OSU Hexapod 75
4.8.3 SSA Hexapod 76
4.8.4 Genghis 78
4.8.5 Case Western Hexapod 81

4.9 Contributions 83

5 Rough Terrain Locomotion 84
5.1 The Rough Terrain Challenge 84
5.2 Insect Locomotion Over Rough Terrain 86
5.3 Inter-leg Communication 88

5.3.1 Virtual Sensor Activated Behaviors 90
5.4 Rough Terrain Network 92

5.4.1 Loading considerations 92
5.4.2 State activated behaviors 97

2

5.4.3 Hormone activated behaviors 99
5.5 Performance 100

5.5.1 Tests 100
5.5.2 Resultss. . 102
5.5.3 Evaluation 103

5.6 Comparison with insect rough terrain locomotion 104
5.7 Comparison with legged robot locomotion over rough terrain . 104

5.7.1 OSU Hexapod. 105
5.7.2 Preambulating Vehicle II 106
5.7.3 Adaptive Suspension Vehicle 107
5.7.4 Ambler 108
5.7.5 Ghengis 110

5.8 Contributions 112

6 Fault Tolerance 113
6.1 The Fault Tolerance Challenge 113
6.2 Confinement of Errors 115
6.3 Levels of Fault Tolerance 116

6.3.1 Replication of Hardware 116
6.3.2 Redundant Control Behaviors 117
6.3.3 Robust Virtual Sensors 119

6.4 Adaptivity vs Redundancy 120
6.5 Fault Tolerance Network 122

6.5.1 Detection 123
6.5.2 Masking 132
6.5.3 Recovery 134
6.5.4 Reintegration 138
6.5.5 Catastrophic Failures 141

6.6 Performance 145
6.6.1 Tests 145
6.6.2 Results 146
6.6.3 Evaluation 148

6.7 Comparison with other systems 150
6.7.1 Robustness 151
6.7.2 Replication of Hardware 151
6.7.3 Redundant Control Behaviors 152

6.8 Contributions 153

3

.. v;;_ .

7 Conclusion 154
7.1 Review of Significant Results 154

7.1.1 Control of Complex Robot 154
7.1.2 Fault Tolerance 155
7.1.3 Robust Hexapod Locomotion 157
7.1.4 Micro-Rover Missions 157

7.2 Real Robots for Real Problems 158

4

List of Figures

1.1 Hannibal 10

2.1 Leg degrees of freedom 15
2.2 Body degree of freedom 16
2.3 Leg sensors 18
2.4 Connection of smart subsystems 19

3.1 Levels of competence of Hannibal's controller24
3.2 Global control organization 29

4.1 Locomotion definitions 34
4.2 Insect gaits 36
4.3 Pearson's model for individual leg control 38
4.4 Pearson's model for gait coordination 39
4.5 Cruse's model for individual leg control 40
4.6 Cruse's model for gait coordination 41
4.7 Cruse's mechanisms for gait coordination 42
4.8 Individual leg control circuit for Cruse Control44
4.9 Gait coordination circuit for Cruse Control 45
4.10 Gait phase shift from Cruse Control 46
4.11 Gait coordination circuit for Modified Cruse Control47
4.12 Gait coordination mechanisms for Modified Cruse Control . . 48
4.13 Modified Cruse Control gaits 50
4.14 Lesion switchboard 51
4.15 Lesion results of Modified Cruse Control 52
4.16 Individual leg control circuit for Pacemaker Control53
4.17 Gait coordination circuit for Pacemaker Control53
4.18 Oscillator implementation 54

5

•77- "T 7"

4.19 Pacemaker Control mechanism 55
4.20 Pacemaker Control gaits 57
4.21 Gait transition circuit58
4.22 Gait transition results 60
4.23 Turning circuit 61
4.24 Direction of travel circuit 63
4.25 Lesion compensation circuit 64
4.26 Stability definitions 66
4.27 Hannibal's stability margins 68
4.28 Speed performance 69
4.29 Turn performance 70
4.30 Directional speed performance 71
4.31 Lesion speed performance 72
4.32 Phoney Pony control circuit 74
4.33 SSA control circuit 77
4.34 Genghis basic locomotion control circuit 79
4.35 Case Western hexapod control circuit 81

5.1 Obstacle size definitions 85
5.2 Terrain depression definitions 87
5.3 Priority scheme for inter-leg conflicts 89
5.4 Circuit for walking with leg loading 91
5.5 Find-foothold circuit 93
5.6 Circuit for obstacle traversal 94
5.7 posture definitions 94
5.8 Medium sized obstacle traversal 95
5.9 Slope definitions 96
5.10 Inclination circuit 96
5.11 Large obstacle avoidance circuit 97
5.12 Time based terrain adaptation circuit 99
5.13 Rough terrain performance 102
5.14 Genghis rough terrain circuit 111

6.1 System hierarchy 115
6.2 Replication of hardware 116
6.3 Redundant control behaviors 118
6.4 Robust virtual sensors 120

6

6.5 Sensor states versus leg phases 125
6.6 Sensor monitor processes 127
6.7 Response of sensor monitor processes 128
6.8 Monitor consensus processes 129
6.9 Response of monitor consensus processes 130
6.10 Injury agent 131
6.11 Response of injury agent 131
6.12 Robust ground-contact virtual sensor 132
6.13 Virtual sensor masks local failure 133
6.14 Recovery to transient error 134
6.15 Dynamic re-calibration agent 135
6.16 Response of dynamic re-calibration agent 136
6.17 Recovery to permanent local failure 137
6.18 Reintegration processes 139
6.19 Response to repaired component 140
6.20 Detection of global failure 141
6.21 Masking of global failure 142
6.22 Recovery agents for global failures 143
6.23 Recovery response to global failure 144
6.24 Reintegration response to repair of global component145
6.25 Fault Tolerance performance 146
6.26 Fault tolerance response times 147

7

Acknowledgements

The MIT Al Lab provided a very inspirational, helpful, and supportive envi-
ronment throughout every stage of this thesis from conception to implemen-
tation to documentation. Special thanks to my thesis advisor, Rod Brooks,
for granting me "quality time" when I needed it, providing me with helpful
suggestions and ideas, and for being the Supreme Non-Squasher. The quality
of this thesis benefited from helpful comments and suggestions provided by
those who read earlier versions of this work: Rod Brooks, Anita Flynn, Gill
Pratt, and Mike Binnard. I am also very grateful to Anita Flynn for being
an outstanding role model, and for making the Mobot Lab a place where
wild ideas become reality. Thanks to Mike Binnard for going on food runs
for me when I refused to leave my computer. Thanks to the whole mobot
group for their support and enthusiasm.

I would like to sincerely thank my entire family for their continuing sup-
port. Finally, endless gratitude to my husband, Robert. His unconditional
love, support, and respect never failed to make me realize that life was actu-
ally quite good no matter how trying times became.

8

Chapter 1

Introduction

1.1 The Challenge

Our lab has argued the case in favor for using multiple autonomous micro-
rovers on the order of 1 to 2 Kg to explore planets on the grounds of mission
cost effectiveness, robustness, and flexibility ((Angle & Brooks 1990), (Brooks
& Flynn 1989)). Autonomous robots execute their task independent of hu-
man assistance by performing their own sensing and control. As a result,
autonomous rovers do not require sizable (and therefore expensive) ground
crew support. Also, the principal cost of a planetary mission is payload mass.
Since smaller rovers have less mass, it is feasible to send more of them cost
effectively. Multiple rovers enhance mission robustness since if a few rovers
fail, there are still others to perform the mission. Furthermore, missions can
be more flexible since groups of rovers can perform different tasks at various
locations.

Planetary exploration using autonomous robots is an interesting control
problem. The surface of Mars or the Moon is quite rugged. Undoubtedly, as
rovers explore the planet, they will encounter dangerous situations. Rovers
must operate in real-time so they can quickly respond to these hazardous
circumstances. Also, as rovers wander over the terrain, they will encounter
cliffs, rocks, slopes, and crevices. This requires rovers to sense rugged terrain
features and adapt their behavior appropriately. Rovers must also be tolerant
of hardware failures since they cannot not be repaired once components fail.

Hannibal (shown in figure 1.1) was designed and built by our lab as an

9

Figure 1.1- Hannibal.

10

experimental platform to explore planetary micro-rover control issues (Angle
1991). When designing the robot, careful consideration was given to mobility,
sensing, and robustness issues. Much has been said concerning the advan-
tages of legged vehicles over wheeled vehicles in regard to their mobility over
rough terrain ((Song & Waldron 1989), (Hirose 1984)). Since rough terrain
locomotion is fundamental for a micro-rover, Hannibal was engineered with
six 3 degree of freedom legs and a 1 degree of freedom body. Rovers must
have sufficient terrain sensing capabilities to locomote safely and effectively
over rugged terrain. To meet this requirement, Hannibal's legs are encrusted
with a multitude of sensors. For robustness and reliability considerations,
many of these sensors provide complementary information. Not surprisingly,
Hannibal is quite complex for its size. It is approximately the size of a bread
box and is equipped with 19 degrees of freedom, over 100 physical sensors,
and 8 computers.

1.2 The Response

This work presents the behavior control system implemented on Hannibal.
No simulations were used in its development-all code was directly imple-
mented and tested on Hannibal. The controller enables Hannibal to loco-
mote over rough terrain in real-time and tolerate hardware failures. These
capabilities are implemented from the bottom-up using a subsumption-based
approach where distributed networks of simple and concurrently acting be-
haviors form the robot's levels of competence. The lowest level of the control
system consists of hardware related processes such as fault tolerance, terrain
sensing, -and driving the actuators. The middle layer consists of flat terrain
locomotion behaviors that address mobility, stability, speed, and leg failure
issues. The top layer is comprised of rough terrain behaviors that enable
Hannibal to negotiate obstacles of varying sizes, terrain depressions of var-
ious depths and widths, and slopes of varying steepness. In the course of
designing these layers, we explored the following topics in detail:

o Real-time control of a complex robot. Hannibal is an intricate robot
which operates in a complex environment. The controller must pro-
cess information from over 100 physical sensors to operate 19 degrees
of freedom concurrently. The controller becomes complicated as more

11

processes are written to improve and expand Hannibal's capabilities.
The issues of scalability and modularity in controller design are am-
plified. Despite this formidable task, we want the robot to operate in
real-time using relatively minimal computing power. The complexity of
this project forces us to explore these issues beyond other autonomous
robot controllers in the field ((Brooks 1989), (Donner 1987)).

"* Robust hexapod locomotion. To effectively traverse rough terrain, Han-
nibal's locomotion control must be flexible, robust, and adaptive. Rugged
terrain exhibits numerous kinds of terrain features. The controller must
be able to detect these terrain features and evoke the robot to perform
the appropriate evasive maneuvers. Insects display impressive hexa-
pod locomotion capabilities using a distributed controller, so we have
looked to insect locomotion research for inspiration ((Cruse 1990b),
(Dean 1991a), (Pearson 1976), (Wilson 1966)).

"* Tolerance to hardware failures. Having many sensors and actuators is
a double edged sword. More components increase the hardware ca-
pabilities of the robot; however there is also more that can fail and
subsequently degrade performance. Sensor drift, transient erroneous
sensor values, sensor failures, and actuator failurer Aegrade the robot's
performance. The controller must purposefully r, .gnize when these
failures occur, so it can specifically tailor its use of sensors and actuators
to minimize the impact of failures on the robot's performance. When
on Mars, rovers do not have the luxury of repair when components
fail. Thus, we want the robot's performance to degrade as gracefully
as possible when components fail. Surprisingly little work has been
done to advance the state of fault tolerant autonomous robots given
the importance of this problem.

Hannibal's controller successfully integrates several topics into a single
system using a common framework. Previous work exploring fully distributed,
insect-like locomotion controllers has only been addressed for flat terrain
(Beer, Chiel, Quinn & Espenschied 1992), (Quinn & Espenschied 1993),
(Donner 1987)). Few rough terrain walkers are completely autonomous. For
those that are, they either require significant computing power (Krotkov,
Simmons & Thorpe 1990) or implement only a subset of Hannibal's rough
terrain capabilities (Brooks 1989). We are not aware of any autonomous

12

robot, walking or otherwise, that is fault tolerant to sensor or actuator failure.
Hannibal's controller implements all these capabilities in a fully distributed,
subsumption-based approach.

1.3 Organization of Thesis

The body of this thesis is divided into 5 chapters:
Chapter 2.: Hannibal This chapter presents a detailed description of robot

used in this research. It covers the physical design, sensing, and computing
capabilities of Hannibal.

Chapter S: Controller Organization. This chapter discusses issues of Han-
nibal's controller design (such as scalability, modularity, flexibility, adaptiv-
ity, and robustness), and how we address them. It also presents the basic
organization of the controller and provides a brief description of the control
layers.

Chapter 4: Basic Locomotion. This chapter presents the behaviors re-
sponsible for flat terrain locomotion. The design of these behaviors is strongly
inspired by insect locomotion control strategies. It defines the task, describes
the implementation in detail, presents our results, and evaluates the perfor-
mance of the system. It concludes by comparing this part of the controller
to other statically stable walking robots.

Chapter 5: Rough Terrain Locomotion. This chapter presents the behav-
iors responsible for rough terrain locomotion. The design of these behaviors
is inspired by insect rough terrain locomotion control strategies. It defines
the task, describes the implementation in detail, presents our results, and
evaluates the performance of the system. It concludes by comparing this
part of the controller to other statically stable walking robots.

Chapter 6: Fault Tolerance. This chapter presents Hannibal's fault tol-
erance capabilities. It defines the task and presents the issues involved in
designing fault tolerant systems. It describes the implementation in detail,
presents our results, and evaluates the performance of the system. It con-
cludes by comparing this part of the controller to related work.

Chapter 7: Conclusion. This chapter reviews the major results of the
thesis, and suggests areas of future work.

13

Chapter 2

Hannibal

This chapter presents the physical, sensing, and computing aspects of Hanni-
bal. Hannibal, and a duplicate robot named Attila, were designed and built
under the supervision of Prof. Rodney Brooks in the Mobile Robotics Lab
at MIT (Angle 1991). Hannibal is a small autonomous robot which performs
its own sensing and computing on board'. This robot is perhaps the most
sophisticated and complex robot for its size. A photograph of Hannibal is
shown in figure 1.1.

2.1 The Physical Robot

2.1.1 Legs

Hannibal was designed with legs instead of wheels for greater mobility over
rugged terrain. Each of Hannibal's six legs has 3 degrees of freedom (DOF)
to allow arbitrary foot placement on a surface (see figure 2.1). The lift axis
is horizontal. A rotational actuator raises and lowers the foot by rotating
the leg about this axis. The sw~ing axis is vertical which is important for the
efficiency of the robot (Song & Waldron 1989). When the leg makes a step,
most of the motion of the leg is rotation about the swing axis and therefore
parallel to gravitational forces. As a result, relatively little work is done
against gravity as the leg swings through the environment. A rotational
actuator advances the leg along the direction of travel by rotating the leg

'Hannibal receives its power from an external power supply.

14

Itd~egee ftfeedom extwuion degre of freedom

sWn dere of freedo

Figure 2.1: Each leg has three degrees of freedom.

about the swing axis. The extension axis is orthogonal to the lift and swing
axes. A linear actuator extends and contracts the leg along this axis.

2.1.2 Body

A global degree of freedom mounted on Hannibal's body links the rotation
of all six legs about their axles together (see figure 2.2). A spine actuator
is responsible for rotating the legs about this global degree of freedom. The
purpo•e of this DOF is to ensure the legs are always vertical2. Angle &
Brooks (1990) argues that the load on each of the leg motors is independent
of robot inclination if the legs are always vertical. As the robot's inclination
increases during a climb, the global rotation of the legs brings the center of
mass of the robot closer to the surface being climbed, and keeps it within
the polygon of support for any inclination.

2Thi is only true if the robot is facing up or down hill.

15

Figure 2.2: The body has one degree of freedom.

2.1.3 Size

Hannibal enjoys several benefits from its small size as argued in (Angle 1991).
Hannibal measures 14 inches long, stands eight inches high, and weight 6
pounds. Because Hannibal is small, it has relatively low mass which gives
rise to several advantages, including reduced dynamic effects, which simplifies
control. Another advantage is lower power consumption-a smaller robot can
be driven with smaller, lower power motors. The greatest advantage is a
favorable strength-to-weight ratio of the robot's structure. The strength of
a structure scales by its cross sectional area, while the weight of a structure
scales by its volume. As a structure is proportionally scaled up, its weight
increases at a faster rate than its strength. Hence, it is relatively easy to
aaake a small structure quite strong with little mass.

2.2 Sensors

Hannoi'b bas many sensors that provide complementary information. This
serves several purposes. First, multiple sensors provide the robot with more

16

information about its environment, which helps the robot behave more intelli-
gently. Second, multiple complementary sensors increase sensing robustness-
if one sensor fails, its complementary sensors can provide the robot with simi-
lar information. Third, they enhance sensing reliability since the information
from each sensor can be used to confirm the results of the other complemen-
tary sensors. This increases the confidence in the net sensor output.

Hannibal receives a tremendous amount of sensor information. The robot
has over 100 physical sensors of 5 different types to provide the robot with
over 60 sensory signals. The following types of sensors are mounted on Han-
nibal:

* Leg mounted force sensors: these are foil strain gauges that can be used
to measure loads on the leg and to detect leg collisions. There is a set
of strain gauges for each DOF of the legs. They are manufactured by
Micro Measurements.

* Joint angle sensors: These are potentiometers that measure the joint
angle for each DOF of the leg.

* Joint velocity sensors: The joint angle sensors are differentiated in
analog for each DOF of the leg.

e Foot contact sensor: This is a linear potentiometer mounted on the
ankle that measures the deflection of the foot as it presses against the
ground.

o Inclinometer: This sensing unit is made up of a +/- 45 degree roll
sensor and a 360 degree pitch sensor. This sensor is manufactured by
Spectron.

Hannibal's sensors are used to sense the immediate terrain, provide the
robot with knowledge of its physical configuration, and servo the motors
which control its DOFs to specified positions. Most of Hannibal's sensors
are mounted on its legs. These sensors provide the robot with terrain infor-
mation as the legs sweep -through the environment. Figure 2.3 shows where
these sensors are mounted on the legs and how they are labeled in this the-
sis. The strain gauges mounted on the legs measure the force the external
world is exerting on them. Hannibal uses them to sense vcrtical loading of
the legs and to detect collisions the legs suffer as they move through the

17

SPI PS

v Vi V3

SF1 F i2

V2_

Figure 2.3: Leg mounted sensors with labels.

18

1I2C 9WiW bzus

I Log~be

Figure 2.4: Hannibal's smart subsystems are linked by a serial network.

environment. The ankle potentiometer is used to sense foot loading. The
robot uses this information to find secure footiolds as it walks through the
environment. The potentiometers are used to measure joint angles of all the
robot's degrees of freedom. This information is used to servo control the
motors to specified positions and to inform the robot of its physical config-
uration. The joint velocity sensors are used to control the motors. Velocity
information in conjunction with target position information can be used to
roughly sense leg collisions. For example, if a leg prematurely stops before it
reaches its target position, the leg may have experienced a collision along the
way. The inclinometer is used to sense the robot's pitch and roll. The spine
potentiometer and the inclinometer, both mounted on Hannibal's body, are
used to control Hannibal's spine actuator to keep all the legs vertical.

2.3 Computing

19

Hannibal is a complex robot. It receives over 60 sensor signals and orches-
trates 19 DOFs3 to locomote over rough terrain. To make the design and
control of this robot manageable, Hannibal was divided into smart subsys-
tems and then linked together with a medium speed serial network (PC
bus). Each leg and the body are individual subsystems that posses a set of
sensors and actuators. As shown in figure 2.4, Hannibal is organized with
a single central processor to which 7 subsystem4 control processors are at-
tached. This allows high bandwidth communication and motor servoing to be
handled locally, with only high level communication mon the serial network.

2.3.1 Master processor

The master processor is a 15 MHz Signetics 68070. The computational ar-
chitecture is very similar to a Motorola 68010, but the 68070 has hardware
support for the PIC serial bus. This processor serves as the computational
engine of the robot and runs the behavior control code. It receives sensor
information from the robot's subsystems over the serial bus and uses this in-
formation to intelligently control the robot's behavior. It dictates the actions
the robot takes by sending position, velocity, and force control commands to
the actuators of the subsystems.

2.3.2 Satellite control processors

Each local satellite processor is a Signetics 87c751. The processor has two
responsibilities. The first is to acquire the sensor information of its subsystem
and send it to the master processor. The second is to receive commands from
the master processor to servo the actuators of its subsystem. Servo control
code running on this processor at 100 Hz servos the subsystem's actuators
to the commanded position with velocity and/or force considerations. The
processor uses the command information from the master processor and the
sensor information of its subsystem to generate the pulse width modulation
wave forms which drive the actuators.

3The robot has two additional actuators for its pan-tilt head but they were not used
in this project.

4There are ten subsystems in the complete design.

20

2.3.3 Serial PC bus

The PC serial bus is a 100 Kbaud communication system which is used to
connect the various subsystems on Hannibal. Bus transactions occur 30 % of
the time which allows the satellite processors to exchange information with
the master processor at 10 Hz. The bus is idle for 70 % of the time to allow
the satellite processors to execute their servo control code. The PC bus is
not fast enough to do real-time motor servoing, and this limitation forces
modularity on the robot.

21

Chapter 3

Controller Overview

3.1 Issues of Controller Design

Hannibal is a complex robot which operates in a complex environment. Han-
nibal's controller must process over 60 sensor signals and command 19 actua-
tors such that Hannibal effectively locomotes over rough terrain in real-time.
To satisfy this formidable task, Hannibal's controller must satisfy several
requirements:

" The controller must scale well to efficiently and effectively utilize nu-
merous sensors, actuators, and processes. Adding more sensors, actua-
tors, or processes to the system increases the load on the controller. We
do not want this additional load to result in computational bottlenecks.
If the controller scaled poorly, attempting to enhance the robot's capa-
bilities by adding more sensors, actuators, or processes could degrade
the robot's performance rather than enhance it.

" The controller must be modular so that additional sensors, actuators,
or processes can be integrated readily. Specifically, we want to be
able to quickly add or change the processes which interpret new sensor
information, utilize new actuators, or add new processing capabilities
to the system.

"* The controller must be flexible. It must characterize numerous terrain
features and control the robot to perform a variety of maneuvers to
successfully traverse rough terrain. In addition, the controller must

22

control the robot's legs and body simultaneously to effectively locomote
over natural terrain.

* The controller must be robust and adaptive. The robot's behavior
should be resilient to both environmental changes and internal changes.
Environmental changes are attributed to irregular terrain. The robot
must be able to detect these terrain variations and adapt to them ac-
cordingly. Internal changes are attributed to various hardware failures,
erroneous sensor readings, or sensor drift. The robot must recognize
these faults and minimize their effect on the robot's performance.

3.2 Robot Behavior Control Philosophy

Brooks (1986) proposed the idea of subsumption as an alternative approach to
the robot behavior control problem. This approach decomposes the control
problem into task achieving layers. Each slice in the vertical division is level
of competence. The main idea is that we can build layers of a control system
corresponding to each level of competence and simply add a new layer to an
existing set to move to the next higher level of overall competence. The lower
layers run continually and are unaware of higher layers. However, when the
higher layers wish to take control they can subsume the roles of lower levels.

The subsumption approach creates tight couplings between sensors and
actuators on the robot, separated by only very limited amounts of reasoning
in the form of simple rules. The approach is embodied in the Subsumption Ar-
chitecture which uses finite state machines augmented with timing elements
(AFSMs) to construct simple rules. The AFSMs communicate through mes-
sage passing, mutual suppression (one AFSM stops all inputs to another for
a fixed time period), and inhibition (one AFSM stops all outputs of another
for a fixed time period).

Combinations of AFSMs (also called processes) form behaviors (also re-
ferred to as agents), the building blocks of the Behavior Language (Brooks
1990). The Behavior Language is a high level language for writing sub-
sumption programs. Behaviors run concurrently and asynchronously, per-
form their own perception, monitor their input wires, perform computation,
control actuators, or send messages out their output wires. It is important
to design the controller such that conflicting behaviors are not active at the

23

,.oe

Figure 3.1: Levels of competence of Hannibal's controller.

same time. To deal with this situation, behaviors have the ability to inhibit
outputs or suppress inputs of other behaviors. Inhibition of outputs is used
when the inhibiting behavior does not want the inhibited behavior's outputs
influencing the system. Behaviors can prevent other behaviors from becoming
active by suppressing inputs used for activating other behaviors. Individual
behaviors are connected to form task-achieving modules (the robot's observ-
able behaviors), and these task-achieving modules can be grouped together
to form layers. Each layer is a level of competence which corresponds to the
robot's abilities.

The subsumption approach is a set of philosophical concepts about robot
behavior design which stresses the issues of reactivity, concurrency, and real-
time control (Mataric 1992). This approach is robust since failure of any layer
does not affect the layers below. Additionally, this organization allows for
modular addition and removal of behaviors, and thus for incremental design
and debugging. Most importantly, it allows for a tight loop between sensing
and action which can be performed quickly and with much less computation.

3.3 Overview of the Controller

Numerous papers argue in favor of behavior based control for modularity,
flexibility, robustness, and adaptability considerations ((Brooks 1986), (Maes
1990), (Rosenblatt & Payton 1989)). In addition, the subsumption approach
has been successfully demonstrated on several robots in our lab such as Toto
(Mataric 1990), Herbert (Connell 1989), Squirt (Flynn, Brooks, Wells &

24

Barrett 1989), and Genghis (Brooks 1989). Given these previous successes,
we implemented a subsumption-based controller on Hannibal written in the
Behavior Language. Hannibal's controller is perhaps the most complex be-
havior based controller currently in existence. This gives us the opportunity
to test the scalability of this approach.

Hannibal's controller consists of three levels of competence as shown in
figure 3.1. The lowest level performs basic functions such as processing sen-
sory information and commanding actuators. The middle layer implements
flat terrain locomotion capabilities. The highest layer implements rugged
terrain locomotion capabilities. A brief overview of the composition of these
levels is presented below. Later chapters will describe structure and function
of these levels in detail.

3.3.1 Sensor-Actuator Level

This level processes sensory information and sends commands to the actua-
tors. This level consists of several types of agents:

Virtual Sensor Agents

Task driven sensing is performed by the virtual sensor agents. The virtual
sensors use information from multiple sensors of lifferent and complementary
types to produce qualitative assessments of ti, robot's interaction with the
world. There is a separate virtual sensor for -ach condition the robot must
detect, such as ground contact or collisions. Thi. computations performed by
the virtual sensors are fast and simple-typically using thresholds. Using mul-
tiple sensors has several advantages: First, each sensor output contains noise
and measurement errors; however multiple sensors can be used to determine
the same property with the consensus of other complementary sensors. In
this way, sensor uncertainty can be reduced. Second, the output of a single
sensor may be ambiguous and misleading; however other complementary sen-
sors can be used to resolve this ambiguity. Third, multiple sensor data can
be integrated to provide information which might otherwise be unavailable
or difficult to obtain form any single type of sensor. Finally, if some sensors
fail, it is important the robot have other sensors it can rely on for similar
information. Here is a list of Hannibal's main virtual sensors:

* ground-contact virtual sensor

25

"* step-in-hole virtual sensor

"* over-rock virtual sensor

"* inclination virtual sensor

"* lift-velocity virtual sensor

"* swing-velocity virtual sensor

"* extend-velocity virtual sensor

Actuator agents

The actuator agents are the only agents that send commands to the actuators-
each agent commands one actuator. All requests for that actuator are sent
to the corresponding agent, but only one request is satisfied. Currently the
priority for which request is serviced is hardwired. We use actuator agents to
keep track of potential behavior conflicts over the use of the same actuator.
The following actutator agents are implemented:

"* lift agent

"* swing agent

"* support agent

"* step agent

"* spine agent

"* extend agent

Fault Tolerance processes

The fault tolerance processes and agents are responsible for recognition,
masking, and recovery from component failures. Other processes a respon-
sible for reintegrating the use of repaired components into the system. To-
gether, these processes and agents make the robot tolerant of sensor and
actuator failures. They are described in detail in chapter 6. Below is an
abbreviated list of Hannibal's fault tolerance processes and agents:

26

"* sensor-state processes

"* sensor-monitor processes

"* monitor-concensus processes

"* injury agents

"* failure-masking processes

"* transient-failure-recovery processes

"* dynamic-calibration agents

"* permanent-failure-recovery processes

"* repaired-component-integration processes

Static Calibration processes

The static calibration processes are responsible for calibrating Hannibal's
sensors at start up. Here is a short summary of the types of static calibration
agents:

"* loaded-calibration agents

"* unloaded-calibration agents

3.3.2 Basic Locomotion Level

This level encompases the behaviors aeeded to locomote effectively over flat
terrain given stability, speed, mobility, and leg failure considerations. This
level is described in detail in chapter 4. The behaviors of this layer are
strongly inspired by models of insect locomotion control. Below is an abbre-
viated list of the basic locomotion agents.

"* oscillator agent

"* speed (or gait) agent

"* oscillator-phase agents

27

7777

* turn agents

* direction-of-travel agents

* lesion-compensation agents

3.3.3 Rough Terrain Level

This level encompases the behaviors needed to locomote effectively over
rough terrain. This level is presented in detail in chapter 5. These behaviors
enable Hannibal to locomote over terrain with obstacles of various sizes,
depresios of various widths and depths, and undulations. Here is a list of
Hannibal's primary rough terrain behaviors:

"* load-walk behavior

"* traverse-low-obstacle behavior

"* find-foothold behavior

"* step-over-gap behavior

"* avoid-cliff behavior

"* slope-adaption behaivor

"* caution behavior

"* lift-body behavior

"* step-high behavior

"* impatient behavior

3.4 Managing Complexity

3.4.1 Layering

Hannibal's controller is made up of several levels of competence, and these
levels contain many processes, agents, and behaviors. In general, the lower

28

"'z 'L:y•aorlc . l --A- O-00

oooo&..ooo
Figure 3.2: Hannibal's control task is distributed among several
subsumption-based controllers.

levels are more fundamental to the function of the robot and can operate
without the presence of higher levels. When present, the higher levels domi-
nate the lower levels. Furthermore, there is stratification within the levels of
competence where higher agents dominate lower agents. Lower level agents
pass information messages to higher level agents, and higher level agents send
command messages to the lower level agents. Thus, Hannibal's controller is
layered on two different scales.

3.4.2 Distributedness

As presented in chapter 2, Hannibal consists of several subsystems. Each
subsystem has its own sensors, actuators, and servo control. All subsystems
run concurrently for Hannibal to locomote effectively. To simplify the control
of a robot of this complexity, we decomposed the global control problem into
several local control problems. We did this by implementing a subsumption-
based controller for each susbsytem which is responsible for govering the
behavior of that subsystem. Therefore, instead of controlling a robot with
over 60 sensory signals and 19 degrees of freedom with a single subsumption-

29

based controller, the task is distributed among several subsumption-based
controllers-each responsible for a subset of the overall control problem. This
is illustrated in figure 3.2. Thus, Hannibal's control structure is distributed
on two levels: the subsumption-based controller is distributed among behav-
iors, and several subsumption-based controllers are distributed among the
subsystems.

With this approach, Hannibal can be modeled as a robot which is com-
posed of several sub-robots. Each of Hannibal's subsystems (legs and body)
is an autonomous sub-robot posessing its own set of sensors, actuators, servo
control, and behavior control1. However, these sub-robots cannot function
independently from one another because they are physically coupled to each
other through the robot and through the terrain. Consequently, these sub-
robots must cooperate with one another so that the overall system can achieve
its goals. To achieve cooperation between the sub-robots, the sub-robots
communicate with each other. This is done either directly between the sub-
robots, or indirectly through special global agents which communictate a
unified message to all relevant subsystems. The theme of local control with
cooperation runs throughout this thesis and is elaborated upon in later chap-
ters.

3.5 Summary

Designing and implementing Hannibal's controller is an exercise in manag-
ing complexity. I found the subsumption approach was effective for designing
an intricate controller, and for controlling a robot of Hannibal's complexity.
Currently, the controller consists of approximately 1500 processes. In build-
ing a controller of this complexity from the bottom-up, we have demonstrated
the modularity of the design. This modulartity appears on every scale of the
controller: AFSMs form agents, agents form task-achieving behaviors, task-
achieveing behaviors form levels of competence, levels of competence form
a subsumption-based controller, subsumption-based controllers run within
intelligent subsubsystems, and these subsystems cooperate to control the
behavior of the overall robot. The controller scales well since Hannibal oper-

IThe behavior control code is distributed among the subsystems in software. Physically
all behavior control code runs on one processor.

30

atee in real-time despite the large number of concurrently running processes2 .
Furthermore, the controller is quite flexible. Each subsystem processes its
sensory information and reacts to the specific circumstances confronting it
simultaneously with the other subsystems. Finally, the behavior control is
robust and adaptive to changing circumstances. The robot readily adapts to
irregular terrain and is tolerant of hardware component failures.

2Because all of Hannibal's behavior control runs on a single processor, these processes
are simulated to run concurrently.

31

-7,

Chapter 4

Basic Locomotion

This chapter presents the development and implementation of Hannibal's
locomotion network. We present various insect locomotion models which
influenced the design of our locomotion controller. We also present a variety
of insect-model-based controllers we implemented on Hannibal to generate
a variety of stable insect-like gaits. Of these controllers, we chose the best
implementation as the foundation of our locomotion controller. We expand
the capabilities of the controller to implement turning, changing direction,
and lesion compensation. Once the description of the controller is finished, we
present our results and discuss the performance of the system. We conclude
by relating Hannibal's locomotion scheme to other statically stable walking
robots.

4.1 The Hexapod Locomotion Challenge

Hannibal must have basic locomotion capabilities before it can effectively tra-
verse natural terrain. Basic locomotion encompasses the capabilities needed
to locomote effectively over flat terrain. These capabilities extend beyond
stable locomotion. The abilities to turn and change direction are important
for mobility considerations. The ability to change gait is important for speed,
energy, and stability considerations. Lesion compensation is important in the
event of leg failure-if Hannibal's loses the use of a leg, Hannibal's gait must
change to maintain stability while walking with fewer legs.

To address this challenge, we added a layer to Hannibal's control architec-

32

ture to give Hannibal basic locomotion capabilities. The Basic Locomotion
Layer is built on top of the Sensor-actuator Layer. Insect locomotion research
has provided valuable insight as to how to implement basic locomotion ca-
pabilities on Hannibal.

To mimic insect locomotion, the locomotion controller is fully distributed
and adheres to a local control with cooperation paradigm. As argued in
chapter 3, this paradigm is also an effective means for managing Hannibal's
numerous sensors and actuators. Locomotion control is distributed evenly
among the six legs. Each local leg controller is responsible for generating the
cyclic motion of its leg. The local leg controllers run simultaneously; however,
they are not independent of one another. The six legs must work together
as a team for the robot to locomote effectively. To achieve inter-leg cooper-
ation, the local leg controllers communicate with each other to synchronize
and coordinate leg behavior. Using this approach, we have implemented the
following basic locomotion capabilities on Hannibal:

9 Locomote in a statically stable manner.

* Change speed by switching among a variety of insect-like gaits (wave
gaits).

e Change direction of travel.

o Turn with varying sharpness.

e Lesion compensation for any single leg or the two middle legs.

4.2 Definition of terms
Below are several terms we use through out this chapter. Please also refer to

the accompanying figure, (figure 4.1).

1. Protraction: The leg moves towards the front of the body.

2. Retraction: The leg moves towards the rear of the body.

3. Anterior Situated toward the front of the body.

4. Posterior. Situated toward the rear of the body.

33

! I !
I \ /_ _/ . I II |--I- -

tamsu

relativ
to body

Omscale

Figure 4.1: During the recovery phase, the leg lifts and swings to the start
position of the next power stroke. In forward locomotion, the leg moves
towards the AEP during the recovery phase. During the support phase, the
leg supports and propels the body along the direction of motion. In forward
walking, the leg moves toward the PEP during the support phase. Adapted
from (Cruse 1990).

34

5. Contralaterak Situated on directly opposite sides of the body.

6. Ipsilateral Situated on the same side of the body.

7. Rostrak. Directed toward the front part of the body.

8. Cauda. Directed toward the hind part of the body.

9. Power stroke The leg is on the ground where it supports and propels
the body. In forward walking, the leg retracts during this phase. Also
called the stance phase or the support phase.

10. Return stroke: The leg lifts and swings to the starting position of the
next power stroke. In forward walking, the legs protracts during this
phase. Also called the swing phase or the recovery phase.

11. Anterior extreme position (AEP): In forward walking, this is the target
position of the swing degree of freedom during the return stroke.

12. Posterior extreme position (PEP): In forward walking, this is the target
position of the swing degree of freedom during the power stroke.

4.3 Insect locomotion

Insect locomotion is exceptionally robust, adaptive, and versatile. We would
like Hannibal to walk with the same qualities. Toward this goal, we have used
various models of insect locomotion control to develop Hannibal's locomotion
control.

4.3.1 Wilson

Wilson (1966) presents a descriptive model for characterizing all of the com-
monly observed gaits of insects, including those resulting from amputation.
Some of these gaits are shown in figur'!, 4.2. These rules are adequate for
describing the qualitative features of leg coordination in most insects when
they walk on smooth horizontal surfaces (note they do not account for all
the empirical data).

35

sWow wave gait R3 , --- - --

R2 - - - --. --

RI - - - - mý--- --

L3 - - -

L2----- -- -- ----

RI -- --- - -- - - mm - -------ripple a R3 ,m- - -

R1 ------- ,,- --

L2 - - - - -

LI -- --- --- --

Sreturn stroke
_ _o powerstroke

Figure 4.2: Some commonly observed gaits of insects. All are members of
the family of wave '•aits. Adapted from (Wilson 1966).

36

"* A wave of protractions runs from posterior to anterior. No leg protracts
until the one behind is placed in a supporting position.

"* Contralateral legs of the same segment alternate in phase.

"* Protraction time is constant.

"* Frequency varies (retraction time decreases as frequency increases).

"* The intervals between steps of the hind leg and middle leg and between
middle leg and foreleg are constant, while the interval between the
foreleg and hind leg steps varies inversely with frequency.

4.3.2 Pearson

Keir Pearson and his collaborators investigated the neural systems that con-
trol walking in the cockroach ((Wilson 1966), (Pearson 1976)). They devel-
oped neurological models to explain the control of an individual leg and the
coordination between legs. The resulting gaits are consistent with Wilson's
aescriptive model.

The complex unit of action that controls the stepping pattern of a single
leg combines three elementary units of action-the oscillator, the servomech-
anism, and the refle3 (see figure 4.3). The oscillator generates the stepping
pattern of the leg by controlling the activation of the flexor motor neurons
and the extensor motor neurons. The flexor motor neurons protract the leg
when activated, and the extensor motor neurons retract the leg when acti-
vated. At the peak of its cycle, the oscillator generates the leg's swing phase
by activating the flexor motor neurons and inhibiting the extensor motor
neurons. The duration of this protraction command is independent of the
oscillator's period, which accounts for Wilson's third rule: "Protraction time
is constant". Throughout the remainder of the oscillator's cycle, the oscilla-
tor generates support phase by activating the extensor motor neuron. The
retraction rate varies with the frequency of the oscillator, which accounts
for Wilson's fourth rule: "Retraction time varies". The rhythmic pattern
established by the oscillator is modified by a servomechanism circuit and
a reflex circuit. The servomechanism circuit uses sensory signals fed back
to the central nervous system from joint receptors and/or stretch receptors.
The sensory feedback adjusts the strength of the supporting and pushing

37

WII

load signal adjusts dp signal delays swing
strength of push command

oscillator

extensor motor neurons flexor motor neurons

Figure 4.3: Pearson's neural circuit for controlling the stepping motion of a
single leg. An oscillator provides the stepping rhythm. It triggers a swing
command near the peak of its cycle. The swing command excites the motor-
neuron circuit that swings the leg forward, and inhibits the push circuit.
The push circuit presses the foot to the ground and draws it back. A steady
excitatory input keeps the push circuit active whenever it is not inhibited by
the swing command. Adapted from (Wilson 1966).

38

0
Pthm dfllerenoe = (lag I period) x 380

Slow WaveGait Rippe• Gait Tripod Gafit
0 0 0

Phase dlffMere's = 80 Phase Niferenoe =120 Phase difference =180

Figure 4.4: Various gaits emerge from changing the frequency of the local
leg oscillators.

contractions to match variations in load. The reflex circuits delay or prevent
the command that swings the leg forward. The input to these reflexes comes
from receptors that detect whether another leg has taken up some of the load.
For example, if a middle leg is amputated, it fails to take up the load at the
normal time. This failure delays the protraction of the front leg. When the
rear leg hits the ground it takes up some of the load, and this releases the
delayed protraction of the front leg. As a result the front and hind legs step
180 degrees out of phase instead of in phase (transitions from a tripod gait
to a slower wave gait).

The unit that controls walking is comprised of six leg-stepping units (one
for each leg) and a command neuron(s) . These leg-stepping units are coor-
dinated by coupling signals that pass back and forth between the oscillators.
The oscillators that control the legs directly across form one another maintain
a constant 180 degrees phase relationship This accounts for Wilson's second
rule: "Contralateral legs of the same segment alternate in phase". In con-
trast, the three oscillators along either side of the body maintain a temporal
lag. The fixed lags between ipsilateral oscillators account for the first part
of Wilson's fifth rule "the intervals between steps of the hind leg and middle
leg and between middle leg and the front leg are constant." The fact that
the front oscillator lags the middle, which in turn lags the rear oscillator, ac-

39

Figure 4.5: Cruse's circuit for controlling the motion of an individual leg.
The left side of the circuit determines whether the system adopts the power
stroke or the return stroke. The left relay characteristic produces the two
alternative target positions, AEP or PEP, when its input value is positive
or negative, respectively. The value of the target position is compared with
the actual leg position. The output of the left side of the circuit is sent as a
reference input to the right side of the circuit. The right side of the circuit
is a velocity-controlling feedback system. Adapted from (Cruse 90).

counts for Wilson's first rule: "A wave of protractions runs from posterior to
anterior". The final component of the walking circuit is the command neuron
or neurons, which sets the pace of walking by changing the period of the os-
cillators. With a strong command signal the oscillators cycle rapidly (makes
the period shorter). Oscillators with a fixed-lag coupling must change their
phase relationship when their period changes. Consequently, the changes in
gait are simply changes in the phase relationship between the three oscillators
on either side. See figure 4.4.

4.3.3 Cruse

Holk Cruse ((Cruse 1976a), (Cruse 1976b), (Cruse 1979), (Cruse 1980a),
(Cruse 1990b)) has studied locomotion of several animals. Among other
models, he developed two models for the locomotion of walking stick insects
Carassiu morosau. The first is a model for the control of individual legs;
the second is a model for the coordination between legs. The resulting gaits
are consistent with Wilson's descriptive model.

Cruse's model for the control of individual legs of the walking stick insect
is presented in (Cruse 1980b) and shown in figure 4.5. Each leg has a step

40

1,2, 3 1,2• i3

1. Return stroke inhibits start of return stroke.

R2 2. Start of power sroke excites start of return stroke.

1,2 3 1,2 3 3:Caudulpositioisexcitestartofretumstroke.

Figure 4.6: Cruse's circuit for leg coordination. This figure summarizes
the coordinating mechanisms operating between the legs of a stick insect.
Adapted from (Cruse 1990).

pattern generator that is responsible for the transition between the power
stroke and the return stroke. The step pattern generator transitions from
the return stroke to the power stroke when the leg reaches the AEP, and it
transitions from the power stroke to the return stroke when the leg reaches
the PEP, the load on the leg is small, and the adjacent legs are in their
supporting phase. These conditions insure the leg doesn't lift until the body
is supported by other legs. The value of the target position (AEP or PEP)
is sent as a reference position to a velocity controlling feedback system.

In (Cruse 1980a), the author presents 6 mechanisms responsible for the
coordination between legs observed in walking stick insects. These mech-
anisms are redundant in re-establishing coordination in the case of minor
disturbances. This thesis presents the three primary mechanisms. These
mechanisms effect the threshold for beginning the return stroke by adjusting
the PEP of the receiving leg. The PEP adjustment is based on the sum of
the interleg influences affecting that leg. The threshold for beginning the
power stroke (AEP) is fixed. The influences are sent between legs as shown
in figure 4.6. Figure 4.7 shows what these influences look like as a function
of leg position.

e Mecihanism,: Rostrally directed influence inhibits the start of the re-
turn stroke in the anterior leg by shifting PEP to a more posterior
position. This is active during the return stroke of the posterior leg.

41

+ mechanism output

MIwMnc 2 +1

influinno 3+

AEP-

PEPt sending leg position

time

Figure 4.7: Relation of the coordinating mechanisms to leg position.

9 Mechanism 2 : Rostrally directed influence excites the start of the re-
turn stroke in the anterior leg by shifting the PEP to a more anterior
position. This is active during the start of the power stroke of the
anterior leg.

* Mechanism 3: Caudally directed influence excites start of a return
stroke in the posterior leg. The start of the return stroke is more
strongly excited (occurs earlier), the farther the anterior leg is moved
rearward during the power stroke. This causes the posterior leg to per-
form the return stroke before the anterior leg begins its return stroke.
This is active during the power stroke of the anterior leg.

How do these three mechanisms stimulate stability and back to front
metachronal waves? As an example, let's discuss their influence on the
right front leg, Ri. For this discussion we use the leg labeling convention
of figure 4.6, and we say mechanism1 exerts influence,, mechanism 2 exerts
influence 2, and mechanism3 exerts influence3. Ri receives four influences:
influence 2 and influence3 from Li and influence, and influence2 from
1R2. Influence2 from 1R2 and LI inhibits R1 from beginning its swing phase

42

while R2 and Li are in support phase. This encourages stability by discour-
aging R1 from lifting before all of its adjacent legs are supporting the body.
Influence3 from Li stimulates R1 to start its swing phase while Li is in sup-
port phase. This influence strengthens as Li approaches its PEP so that R1
will perform its return stroke before Li finishes its power stroke. Influence,
from R2 provokes R1 to begin its return stroke after R2 performs its return
stroke. This establishes back to front metachronal waves. Ri sends three
influences: influence2 and influences to Li and influences to R2. Sending
influences to Li and R2 contributes to stability by exciting Li and R2 to
swing while R1 supports the body. Sending influence2 to Li encourages 180
degree phasing between contralateral legs of the same segment.

Cruse's model for leg coordination has been tested in simulation ((Dean
1990), (Dean 1991a), (Dean 1991b), (Dean 1992a), (Dean 1992b)) and on a
robot (Beer et al. 1992). Dean successfully tested four of the six mechanisms
presented in Cruse (1990a). He used kinematic leg models in his simulation,
so the effects of friction and inertia were not addressed. The four mechanisms
include the three mechanisms described above and a targeting mechanism
that adjusts the AEP of the posterior legs (this mechanism is responsible for
the follow-the-leader gait observed in walking stick insects). Beer et al. (1992)
successfully tested the three mechanisms described above on a hexapod robot
with 2 DOF legs. Whereas Dean's goal was to reproduce experimentally
observed aspects &f walking stick insect gaits, Beer and his colleagues goal
was to produce effective robot locomotion. By removing various mechanisms
Beer and his colleagues determined that mechanism 2 promotes normal back
to front metachronal waves, and mechanism3 promotes 180 degree phasing
between cross-body leg pairs. Dean found that the mechanisms rapidly re-
coordinate the gait in response to leg perturbations. Beer et al. (1992) and
Dean (1991b) found mechanism3 is the most effective single coordinating
mechanism and mechanism2 was the least effective. Both papers report
Cruse's mechanisms produce stable metachronal coordination over a wide
range of step periods provided all the legs retract at the same velocity.

4.4 Cruse Control

Hannibal's first locomotion network implements mechanism,, mechanism 2

and mechanism 3 presented in Cruse (1990a) and in the preceding section.

43

Figure 4.8: The cyclic stepping pattern of each leg was implemented using
this circuit. The step pattern generator agent produced the step cycle by
exciting the return stroke agent and the power stroke agent in turn. The
arrows with numbers represent the direction the coordination mechanisms
were sent between the legs. The numbers represent Cruse's coordination
influences as labeled in this section.

We hoped these mechanisms would enable Hannibal to walk with stable
metachronal gaits over a wide range of step periods and would make these
gaits robust to leg disturbances. Each leg had a network of three agents as
shown in figure 4.8: a step pattern generator agent, a return stroke agent,
and a power stroke agent.

"• The step pattern generator agent is responsible for transitioning be-
tween the return stroke and the power stroke. The transition from the
return stroke to the power stroke occurs when the leg position is greater
than or equal to the AEP. In this implementation, the AEP is fixed.
The transition from the power stroke to the return stroke occurs when
the leg position is less than or equal to the PEP. It computes the PEP
from in fluence1 ,influcence2 and influences from peripheral legs.

"* The return stroke agent is responsible for lifting and swinging the leg
to the starting position of the power stroke. It is activated by the step
pattern generator. While this agent is active, it exerts mechanism,. It
receives the AEP from the step pattern generator agent.

44

Figure 4.9: This circuit implemented Cruse Control on Hannibal. A step
cycle circuit was implemented on each leg to produce the step pattern for
that leg. The coordination mechanisms (represented as numbers with arrows)
applied the appropriate constraints on the sequencing of the legs to produce
insect-like gaits.

* The power stroke agent is responsible for supporting and propelling
the body by steadily moving the leg to the PEP. While this agent was
active it exerts mechanism2 and mechanism3 . It is activated by the
step pattern generator agent. It receives the updated PEP from the

step pattern generator agent.

Figure 4.9 shows the gait coordination circuit. The form of the in-
hibitory/excitatory influences are shown in figure 4.7. The return stroke
agent implements mechanism1 by sending a negative constant in the rostral
direction during its activation and 60ms after its deactivation. The power
stroke agent implements mechanism2 by sending a positive constant in the
rostral direction starting 6Oms after its activation and ending 60ms later. The

45

R2

RI

LL

L2

1.2 __J, , - ,J , , •........ , ,

LI

inphme oitof ptet

Figure 4.10: After implementing Cruse Control on Hannibal, we found that
insufficient velocity control of the legs caused the gaits to shift in and out of
phase.

power stroke agent implements mechanism3 by sending a positive monoton-
ically increasing ramp function in the caudal direction during its activation.
The new PEP of a leg is computed from the influences it receives by the
formula

PEP = PEPdg.,,t + EInfluence1 + EInfluenceM2 + EInfluence3 (4.1)

where the standard stride length is given by

Stridet,,•&d = AEP - PEPdeIg6 a4 (4.2)

This approach was somewhat successful on Hannibal. When Hannibal's
legs were unloaded it was able to transition between gaits as a function of
step period frequency. However, this approach failed tc work once Hannibal
was put on the ground. The models proposed by Cruse require that all
the legs retract with the same velocity. Unfortunately Hannibal's velocity

46

1.,81- - IP ad,1w-

Figure 4.11: The Modified Cruse Control gait coordination circuit.

control is insufficient, so once Hannibal's legs were loaded they did not retract
with the same velocity. This caused Hannibal to change gaits randomly and
occasionally become unstable (as shown in figure 4.10).

4.5 Modified Cruse Control

Given Hannibal's velocity control is inadequate for Cruse control, we modified
the three mechanisms to make them compatible with this shortcoming. The
modified mechanisms are shown in figure 4.12. Figure 4.11 shows how the
modified mechanisms are routed between the legs.

* Modified mechanism1 : During the recover stroke send a wait message
to all adjacent legs. This enforces stability by not allowing adjacent
legs to lift at the same time.

47

md AM2 F90

AEP

PEP

mso

Figure 4.12: The influences used in the Modified Cruse Control gait coordi-
nation mechanism.

* Modified mechanism 2 : During the start of the stroke phase send a go
message in the rostral direction. This enforces back to front metachronal
waves along each side of the body.

* Modified mechanism3 : During the stroke phase send a go message
in the contralateral direction of the same segment. This enforces 180
degree phasing between adjacent contralateral legs.

The step pattern generator agent, the return stroke agent, and the power
stroke agent of each leg were also changed.

* The step pattern generator agent is responsible for transitioning be-
tween the power stroke and the return stroke. It sets a recover flag
true when it receives a go message, and it clears the recover flag
when it initiates a recover stroke. It no longer transitions from the
power stroke to the return stroke when the leg position is less than or
equal to the PEP (except for the special case of the hind legs). In-
stead, it makes the transition when its recover flag is true and it
stops receiving wait messages from the peripheral legs. However, it
still transitions from the recover stroke to the power stroke when the
leg position is greater than or equal to the AEP.

48

"* The return stroke agent is responsible for lifting and swinging the leg
to the starting position of the power stroke. It is activated by the step
pattern generator agent. While this agent was active, it exerts modified
mechanism,. The AEP is fixed.

"• The power stroke agent is responsible for supporting and propelling
the body by steadily moving the leg to the PEP. It is activated by
the step pattern generator agent. While this agent is active it exerts
mechanism2 and mechanism 3. The PEP is fixed.

Modified Cruse control is similar in concept to Cruse control. Mechanism,
of both methods effects stability, mechanism 2 of both methods effects back
to front metaclronal waves, and mechanism 3 of both methods effects 180
degree phasing of adjacent contralateral legs. In Cruse control, these effects
emerge from adjusting the PEP of the legs because swing phase coordination
of the legs depends on the time at which the legs reach their PEPs. This
is why all legs must retract at the same velocity for Cruse control to work.
In contrast, modified Cruse control forces the start of the recover stroke as
soon as the adjacent legs are supporting the body and the adjacent posterior
leg finishes its recover stroke. In the special case of the hind legs, the return
stroke starts when the leg reaches the PEP, all adjacent legs are in the sup-
porting position, and the adjacent contralateral leg has completed its return
stroke. Consequently, this approach is less sensitive to retraction velocity and
is better suited to Hannibal. The Modified Cruse control approach produces
a range of stable gaits as shown in 4.13.

Lesion compensation is implemented by treating the step pattern gener-
ator of the lesioned leg as a switchboard for the messages of the peripheral
legs (see figure 4.14). An example of this is shown in figure where L2 is the
lesioned leg. With L2 gone, Li and L3 are ipsilaterally adjacent legs. For
extra support, L3 is considered contralaterally adjacent to R2 and R3. Ll's
and L3's wait messages are routed through L2 to each other, L3's and R2's
wait messages are routed through L2 to each other, and L3's go message
is routed through L2 to L1. Effectively, the influences of the lesioned leg
are removed from the network and replaced by the influences of its adjacent
legs. Figure 4.15 shows how re-routing the coordination influences through
the lesioned leg affects the gait.

The results of the modified Cruse control are mixed. On the positive side,
Hannibal's gait coordination is robust to inconsistent retraction velocities,

49

iModk C~m CorfITdpo Gak

RI -~- - -- - -

R2--• / - -------- -- -

* . ,P. . $

R3

LI

L2 N -- - - - --- - -

*ie

Modfe CIm Co~ol Mid Range Gak

S---- ----

R2 -- - - - - - - - - - -- - - - - - - - - - - - -

R3

LI

U ---- ---------- I-----------------

iModFed C4.13 Cousol S p Wave GaMu

L2 - - - .--- - - --5 -0-L3 ". ,r -- --

*~m

Figure 4.13: Various gaits produced using Modified Cruse Control.

50

Li 1 R1 Li 1 R1

1 2 1 2 1 2

111 L2 1 21

1 2 1

L3 R3 L3 R3
3 3

Figure 4.14: By re-routing the leg coordination influences through the le-
sioned leg, gait coordination was maintained despite the loss of the leg.

it's able to transition between stable metachronal gaits from a slow wave
gait through a tripod gait, the gaits are robust to leg perturbations, and the
lesion mechanism successfully re-routes messages. On the negative side, mid-
range gaits were difficult to reproduce, and poor retraction velocity control
presents a different problem. Because Hannibal cannot consistently control
the duration of the power stroke, some legs reach the PEP too soon and wait
there until it's ok to start the return stroke. For the time period between
reaching the PEP and starting the return stroke the leg does not propel the
body. Consequently, the leg effectively becomes "dead-weight" that the other
supporting legs have to drag along1 .

4.6 Pacemaker Control

To conquer Hannibal's velocity control problem, we included pacemaker (os-
cillator) agents in the control network. The motivation for the pacemakers
is to synchronize the step cycle stages of the legs. The step cycle stages
include lift/swing, step/swing, and a sequence of support stages. During the

1Hannibal's leg design causes the stroke trajectory to move in a fairly tight arch. The
AEP and PEP are chosen to make the stride as long as possible before arching becomes
uwacceptable. Ergo if the leg continued to retract after reaching the PEP, the leg would
be worse than "dead weight" because its contribution significantly propels the body per-
pondicular to the direction of motion. This causes unacceptable torquing on the body.

51

Modified Cinoe Gait wlh R2 Disabled

R1

R2

L2

L3

S. one

disa d IsR2

Figure 4.15: Run-time data of the robot's gait before and after the right
middle leg (R2) is lesioned. The retraction velocity was set such that the
robot performed a slow wave gait. Notice that after leg R2 was removed, leg
RI began its recovery phase immediately after leg R3 finished its recovery
phase.

52

100

oecdU~r
agent

Figure 4.16: Individual leg control circuit for the pacemaker scheme.

U U

Figure 4.17: Gait coordination circuit for the pacemaker scheme. This circuit

is strongly inspired by the work of Pearson.

53

7 " "l l 1"lsl. 'l 'Il ,I

12234 15 1178910 11 12

I I I I
I I I I

I I I I I I

II I
I I1 . I/ , i I I,,! I i . I

Tubad 1121 314 1 216 1 421 23 4

I I I
I I II I I I

Figure 4.18: Implementation of leg oscillators on Hannibal. Each oscillator is
modeled as a clock which cycles through its values at regular time intervals.
The peak of the oscillator phase corresponds to osc-clock = 1. The period
of the clock corresponds to the period of the oscillator.

lift and step stages, the leg moves to the AEP. During each support stage
the leg moves an incremental distance towards the PEP. This increment is
determined so that the leg reaches the PEP during the last of the series of
support stages. Ergo all supporting legs propel the body in synchrony, and
the duration of the power stroke is equal for all the legs. The step cycle fre-
quency is adjusted by a command neuron agent. The inclusion of oscillator
agents and a command neuron agent were inspired by Pearson's work.

As described by Pearson, the oscillator agent is responsible for generating
the cyclic motion of the leg. The oscillator agent excites a lift agent, a swing
agent, and a step agent to produce the return stroke, and it excites the
support agent to produce the power stroke. Figure 4.16 shows the individual
leg control circuit, and figure 4.19 shows the influences sent between these
agents to produce the step cycle pattern. The lift, swing, and step agents
serve a similar function as the Flexor neurons, and the support agent serves
a similar function as the Extensor neurons.

* The oscillator agent: Through studying the neural system of the walk-
ing cockroach, Pearson and his collaborators experimentally determined

54

Figure 4.19: The influences used in the pacemaker gait coordination mecha-
nism. The leg lifts and swings for the first clock cycle, steps and swings for
the second dlock cycle, and supports and propels the body for the remainder
of the clock period.

the existence of a pacemaker in each leg. On Hannibal, the oscillator
agent is similar to a pacemaker. The oscillator agent is modeled as a
clock that cycles throngh its values at regular time steps (see figure
4.18). In the current implementation, the clock value changes every 0.6
seconds. It generates the cyclic movement of the leg by activating the
lift, swing, step, or stroke agents as a function of its clock value.

* The lift agent: While active, this agent commands the up-down actu-
ator to continually lift the leg.

* The step agent: While active, this agent commands the up-down actu-
ator to lower the leg until the leg supports the body.

* The swing agent: While active, this agent commands the protract-
retract actuator to move to the AEP.

* The support agent: While active, this agent commands the protract-
retract actuator to move an incremental amount tn~wards the PEP each
clock cycle. The increment is equal to S + N where S = abs(PEP - AEP)
and N = number of support stages. Consequently the transition from
the stroke phase to the swing phase occurs on the clock pulse after the
leg reaches the PEP.

55

The gait coordination network is shown in figure 4.17. The emergent gaits
of this network posses similar characteristics to Cruse's, Pearson's, and Wil-
son's model for insect gaits. These gaits are shown in figure 4.20. Regarding
individual leg control:

"* The oscillator agent keeps protraction time constant and decreases re-
traction time as step cycle frequency increases.

"* The leg position reaches the AEP when transitioning from the return
stroke to the power stroke.

"• The leg position reaches the PEP when transitioning from the power
stroke to the return stroke.

Concerning the coordination between legs, the oscillator agents are synchro-
nized and initialized such that:

"* A wave of protraction runs from posterior to anterior.

"* No leg protracts until the leg behind is placed in a supporting position.

"• The supporting legs propel the body such that no leg is "dead weight".

"* The duration of the power stroke is the same for all legs.

"* Contralateral legs of the same segment alternate in phase.

"* The intervals between steps of the hind leg and middle leg and the
intervals between middle leg and foreleg are constant.

"* The interval between the foreleg and hind leg steps varies inversely with
frequency.

4.6.1 Gait Behavior

Hannibal changes gait as a function of oscillator frequency. The network
responsible for gait transitions is shown in figure 4.21. Changing the number
of clocks per step cycle (clocks/cycle) of the oscillator changes the phase
between the metachronal waves along each side of the body. This causes
different wave gaits to emerge. The transition between gaits is smooth and

56

TVO~d GO

Ri ..R2

Li

L2

W

*no

R 1 " I

R2

Li .. - -------

L3

LU
.....

.

Sbppb Gaklln

.-- I I, I e----I..I IIIII-I-II-- -I

R1

Figure 4.20: Run-time data of various gaits implemented on Hannibal using

the pacemaker scheme.
57

Pdr dads Cdads

F-7

Figure 4.21: The network governing speed transitions. A new speed request
corresponds to changing the period of the local oscillators and re-establishing
the correct phasing between them. The top figure shows the left rear leg, L3,
in the lift phase (osc-clock = 1) when the new speed is requested. As a
result, the reset clocks agent of L3 is activated. The bottom figure shows the
reset clocks agent of L3 re-initializing the oscillator clocks of the other legs
given L3's current step cycle phase and the new oscillator period.

58

immediate. Currently, Hannibal uses three gaits: a slow wave gait, a ripple
gait, and a tripod gait. Figure 4.22 shows the robot transitioning between
various gaits. Wilson (1966) reports the slow wave gait is the slowest gait
and the tripod gait is the fastest gait observed in insects. These gaits are
implemented by a global speed agent and local reset clocks agents. The global
speed agent is similar to the command neuron(s) of Pearson's model. The
,eset clocks agents are similar to the coupling signals sent between oscillators
in Pearson's model.

9 The speed agent: Whenever Hannibal wants to change speed, this
global agent sends a new clocks/cycle value to all the oscillators. Higher
level agents command speed through this agent.

* The activate-reset-clocks agent: If a new clocks/cycle value is sent to
the oscillators, this agent finds the furthest posterior leg in the lift stage
and activates the local reset-clocks agent of that leg.

9 The reset-clocks agent: Pearson found the local pacemakers of the legs
send coupling signals between each other to coordinate the step pattern
generators. Hannibal implements a similar mechanism when changing
speed. Because a different clocks/cycle value is sent to the oscillators
whenever the robot changes speed, the values of the oscillators must be
re-coordinated to maintain a proper gait. When active, the reset-clocks
agent re-initializes the oscillators of the other legs with respect to its
osc-clock - 1.

4.6.2 Turning Behavior

Hannibal turns by adjusting two parameters: turn-direction and turn-sharpness.
The turn-direction parameter determines whether Hannibal turns to the
right, to the left, or makes no turn. The turn-sharpness parameter deter-
mines the radius of the turn. Figure 4.23 illustrates the network that gives
the robot turning capabilities.

• Global turn agent: keeps all the legs in agreement as to what kind
of turn to make by telling the leg turn agents the turn-direction and
the turn-sharpness. Higher level agents command turn-direction and
turn-sharpness through this agent.

59

~i I i a.._

"-" r' i F" -r

iI A

- g
L= '7 *

_ .a.

1: b ._ -

l --I r -. I

Figure 4.22: Run-time data of the robot transitioning between gaits ~
function of oscillator period.

60

Figure 4.23: The network governing turning. Turning is achieved by adjust-
ing the stride length of the legs along one side of the body. The local turn
agents receive rotation and sharpness values from the global turn agent. Ac-
cording to these parameters, the local turn agents compute new AEP and
PEP values for their leg. To execute the turn, the local turn agents send
these new target values to their leg's swing agent and the support agent.

61

e Local turn agents: implement the turn by changing the PEP and AEP
according to the turn-direction and turn-sharpness parameters. They
receive the return stroke target and power stroke target values from
the local direction agents and modify them as necessary to perform the
turn. If the turn-direction is straight the AEP and PEP are left alone.
If turn-direction is right the turn agents on the right side of the body
modify their AEP and PEP values by the turn-sharpness parameter,
and the turn agents on the left side of the body leave the AEP and
PEP values alone. If turn-direction is left the turn agents of the legs
on the left side of the body modify their AEP and PEP by the turn-
sharpness parameter, and the turn agents on the right side of the body
leave the AEP and PEP values alone. To modify the AEP and PEP,
the local turn agents add the sharpness value to the PEP and subtract
the sharpness value from the AEP. The turn-sharpness value can vary
the radius of curvature from a gentle arch to turning in place. The turn
agent of each leg sends the resulting return stroke target value to the
swing agent and the resulting power stroke target value to the support
agent.

4.6.3 Direction of Travel Behavior

Hannibal changes direction by swapping the swing phase and support phase
target positions between the PEP and AEP. To walk forwards, the return
stroke targets the AEP and the power stroke targets the PEP. To walk back-
wards, the return stroke targets the PEP and the power stroke targets the
AEP. Figure 4.24 illustrates the network that gives the robot the ability to
change its direction of travel.

* The global direction agent: keeps all the legs in agreement of the direc-
tion of travel by sending the local direction agents a direction parame-
ter (forward or backwards). Higher level agents command direction of
travel through this agent.

* The local direction agents: implement the commanded direction of
travel by setting the target positions of the power stroke and return
stroke according to the direction parameter. For each leg, its direction
agent sends the swing phase target position to its swing agent and the

62

Figure 4.24: The network governing the direction of travel. Changing the
direction of travel entails exchanging the target values of the swing agent and
support agent. The local direction agents receive the commanded direction
value from the global direction agent. Based on this value, the local direction
agents send the swing target position and stroke target position to the local
turn agents. If the robot does not want to turn, the local turn agents pass
these values to the swing agent and support agent. Otherwise, the local turn
agents modify these values so that the robot may change direction and turn
simultaneously.

63

Ow ~Ow

Figure 4.25: This network enables the robot to wialk in a stable fashion
despite leg damage. When the lesion agent of a leg - ,,ctive, the lesion agent
sends a message to the global speed behavior to make the robot adopt the
slow wave gait. This gait is stable even with fewer than six legs are working.
In addition, the lesion agent places the motors of its leg in brake-mode and
removes the influences of its from the rest of the network.

support phase target position to its support agent (through the local
turn agent).

4.6.4 Lesion Compensation Behavior

If a leg becomes in-operable, Hannibal changes gait so that it can walk in a
stable fashion with fewer legs. The network responsible for this is shown in
figure 4.25. Experimental findings regarding the effect of lesions on cockroach
gaits is presented in (Wilson 1966). He reports when the two middle legs of a
cockroach are removed, the animal resorts to a slower gait where a sufficient
number of legs are supporting the body at any given time. If the middle two

64

legs of a cockroach are removed the slow wave gait is still stable, but the
tripod gait and ripple gait are unstable. Consequently, the cockroach adopts
a slow wave gait. The slow wave gait remains stable in the event of losing
any single leg or losing both middle legs.

o The lesion agent: Each leg has a lesion agent that becomes active if
a leg is in-operable (chapter 6 discusses how the robot decides when a
leg is useless). The lesion agent sends a message to the speed agent to
evoke the slowest wave gait. The slow wave gait is stable with the loss
of any single leg or the loss of the two middle legs. It also disables the
leg by putting all its motors in brake mode.

4.7 Performance

4.7.1 Definition of Terms and Stability Formulas

The following definitions and theorems are presented in (Song & Waldron
1989). Most of this work was established by McGhee and his co-workers.

Definitions

For the following definitions, the leg number of a 2n-legged animal is assigned
as 1,3,5,...,2n-1 on the left side and 2,4,6,...,2n on the right side from the front
to the rear.

1. The cycle time, T, is the time for a complete cycle of leg locomotion of
a periodic gait.

2. The duty factor fli, is the time fraction of a cycle time in which leg i is
in the support phase. f•i = " where ti is the time of support phase ofC'

leg i and cj is the cycle time of leg i.

3. The leg stroke, R, is the distance through which the foot is translated
relative to the body during the support phase.

4. The stroke pitch, P, is the distance between the centers of strokes of
the adjacent legs on one side.

5. A regular gait is a gait with the same duty factor for all legs.

65

Stbi"PmW Sm Minimum of dl,d 2 andd 3

The RarSS, The FrMnt 1

LongtudLnm asMtaimargin8. f*nmm of and d 2

Figure 4.26: Graphical depiction of the stability margin and longitudinal
stability margin.

6. A gait is symmetric if the motion of the legs of any right-left pair is
exactly half a cycle out of phase.

7. A wave gait is a regular and symmetric gait where the placing of each
foot runs from the rear leg to the front leg along either side of the body
as a wave, and each pair of legs is 180 degrees out of phase.

8. A support pattern (or support polygon) of an animal or a walking ma-
chine is a two dimensional point set in a horizontal plane consisting of
the convex hull of the vertical projection of all foot points in support
phase. The contact between foot and ground is idealized to a point
contact without slip. In a real, distributed foot contact, the contact
point can be interpreted as the center of pressure.

9. The stability margin, Sm, is the shortest distance of the vertical pro-
jection of center of gravity to the boundaries of the support pattern in
the horizontal plane. See figure 4.26.

66

10. The front stability margin and the rear stability margin are the distances
from the vertical projection of the center of gravity to the front and
rear boundaries of the support pattern, respectively, as measured in
the direction of motion. The longitudinal stability margin, SI, is the
shorter of these two. See figure 4.26.

11. The longitudinal gait stability margin, S, or the gait stability margin
in brief, for a periodic gait, G, is the minimum of S, over an entire
cycle of locomotion. A gait is statically stable if S > 0. Otherwise it is
statically unstable.

Stability Formulas

"* For a 2n-legged wave gait with a duty factor in the range 1/2 _< f <
1, the longitudinal gait stability margin can be determined from the
following equation where P is the pitch, R is the stroke and

Rb = (13/(30 - 2)) x P (4.3)

If 1/2 _< 3, or if P> 2/3 and R _ Rb,

S, = (n/2 - 1) x P + (1 - 3/(4p3)) x R (4.4)

If/ 6> 2/3 and R > Rb,

S2 = (n/2 - 1/2) x P + (1/(4p) - 1/2) x R (4.5)

"* For an 2n-legged backward wave gait, the gait stability margin is

S = (n/2 - 1) x P - R/(406) (4.6)

for 1/2 < #< 1.

4.7.2 Stability Performance

To measure Hannibal's stability we computed its gait stability margin for a
variety of gaits. The gait stability margin is described in definition 11. We
used equation 4.4 to compute the gait stability margin of the slow, ripple, and

67

.4 Longitudknl Gait Staby Mawgin v. Gait

215- 8 a sowwave

2--13 ip] pple

1.5 * triPod

0a.5

0 g
forward bwad t

wave wave

Figure 4.27: Hannibal's gait stability margin for various gaits.

tripod wave gaits. A positive gait stability margin corresponds to a stable
gait (where a larger magnitude indicates greater stability). A negative gait
stability margin corresponds to an unstable gait (where a larger magnitude
indicates less stability).

Figure 4.27 presents Hannibal's gait stability margin for the three types
of wave gaits. Not surprisingly, all gaits are stable. In fact, it has been
determined that the family of wave gaits provides the optimum stability for
hexapods (Song & Waldron 1989). The figure shows a trend where slower
gaits (gaits with a larger duty factor) have a greater gait stability margin
than faster gaits (gaits with a smaller duty factor).

4.7.3 Speed Performance

To quantify Hannibal's speed, we measured the time required for Hannibal
to walk 3 feet. We conducted this speed test for the slow wave gait, the
ripple gait, and the tripod gait. The speed test for each gait consisted of ten
trials. During the trials we adjusted the spine DOF to see if there was any
effect on the robot's speed. By adjusting the spine DOF we can make the

68

1 2 3 4 5 6 7 a

-- ''- pod

IMOW aMI

Figure 4.28: Speed performance of Hannibal.

robot lean forward or backward.
The results of the speed tests are shown in figure 4.28. The robot's feet

slip as it walks, so not surprisingly, the measured speed is slower than the
theoretical speed. Adjusting the spine DOF to the lean-forward position
increased the robot's speed. In this configuration, gravity assists the swing
actuator advance the leg forward which effectively lengthens the stride. The
lean-forward speed is fairly close to the theoretical speed. Adjusting the
spine DOF to the lean-back position caused the robot to walk slower. In this
configuration, gravity acts against the actuator as the actuator swings the
leg forward.

4.7.4 Turning Performance

To quantify the relation between the turn sharpness parameter value to the
actual turn sharpness, we measured how far the rear of the robot moves until
the robot turns ninety degrees. The rear of the robot traces a quarter of a
circle (approximately) when it completes its path; hence we are measuring
the length of this arc. We conducted this test for a variety of turn sharpness

69

IM

so

100

40

20

-.- 0- In Wm

Figure 4.29: Relation of turn sharpness to sharpness parameter.

parameter values. Turn sharpriess - 2A corresponds to turning in place
and turn sharpness - 0 corresponds to walking! straight. The test was
performed for clockwise and counter-clockwise murning directions.

The results of the turn sharpness tests are shown in figure 4.29. As
expected, the actual sharpness of the turn became greater as the turn sharp-
ness parameter value increased. The turn sharpness for a clockwise rotation
is comparable to the turn sharpness for a counter-clockwise rotation.

4.7.5 Directional Performance

We computed Hannibal's gait stability margin when it walks backward for
the three different gaits using equation 4.6. The results are presented in figure
4.27. Aguin there is a trend that as the duty factor increases the gait stability
margin increases. It is interesting to note that Hannibal actually performs
a different gait when it walks backward - it uses a backward wave gait. For
the backward gait the metachronal waves progress against the direction of
travel, whereas for the wave gait the metachronal waves progress along the
direction of travel. The backward wave gaits are less stable than the wave

70

revefes8low W

tripodi

I mforward slow wave Mrall

forward

0 50 100 150

Figure 4.30: Comparison of times required to walk three feet either backwards
or forwards.

gaits (with the exception of the tripod gait). The reason for this is as follows:
the minimum stability margin (for both the wave gait and for the backward
wave gait) occurs when a rear foot is lifted. Hence the stability margin is
determined by the position of the supporting middle leg directly ahead of
the lifted rear leg (we call it the "key" leg). For a wave gait, the key leg
is at its most backward position where it provides the maximum stability
margin. On the contrary, for the backward wave gait, the key leg is at its
most forward position where it provides the minimum stability margin.

We measured the relationship between the turn sharpness parameter
value to actual turn sharpness as '- bot walks backwards. We performed
the same set of tests as for the for case. The results are shown in figure
4.29. Again, the turn sharpness for a clockwise rotation is comparable to
the turn sharpness for a counter-clockwise rotation. It is interesting that the
robot turns much more sharply when walking backwards than when walking
forwards. We hypothesize the decrease in stability of the backward wave gait
counteracts the robot's momentum along its direction of travel. As a result,
the robot covers a shorter distance along the direction of travel per step.

71

LXR2

I RS

R2

L30

L2

I II "

0 50 100 150 200 250

Figure 4.31: Time taken to walk three feet with various legs disabled.

Consequently, the distance it travels to complete a 90 degree turn is less.
We measured the time for the robot to walk backwards for three feet.

The results are shown in figure 4.30. The robot walks slower backwards than
it does forwards. We hypothesize the decrease in stability of the backward
wave gait counteracts the robot's momentum along its direction of travel.
This could cause the robot to walk slower when using the backward wave
gait.

4.7.6 Lesion Compensation Performance

We computed the gait the stability margins for the following cases: the
robot has an outer leg removed, a middle leg removed, or both middle legs
removed. The gait stability margins were computed using geometry given
the robot uses a slow wave gait when a leg is lesioned. Insects can locomote
with stability when a leg is cut off provided it walks with the slow wave gait.
Hannibal uses the same strategy to maintain stability given the loss of a leg.

The robot is on the boarder line of stability if the lesioned leg is completely
removed. The reason is that the remaining legs are not long enough to provide

72

more compensatory support for the lesioned leg. To increase the stability of
the robot if a leg is removed would require changing physical dimensions
of either the robot's body, the legs, or both. To get around this problem,
Hannibal places the motors of the lesioned leg in brake-mode and allows the
foot of the lesioned leg to rest on the ground. By doing so, the lesioned leg
provides a minimal amount of support-enough to keep the robot stable.

We determined the speed of the robot as it walks with any single leg
disabled or with both middle legs disabled. The test involved measuring the
time required for the robot to walk three feet. The results are shown in figure
4.31. Not surprisingly, the robot was significantly slower than when it used
the slow wave gait with all legs intact.

4.8 Legged Locomotion

Research in legged locomotion is divided into several categories. Significant
progress has been made in the areas of dynamic legged locomotion for robots
(Raibert & Hodgins 1993) as well as for insects (Full 1993). Hannibal falls
under the category of statically stable locomotion. This section compares
and contrasts Hannibal's flat terrain locomotion with that of other computer
controlled, statically stable walkers. Many of the presented approaches are
inspired by biology. We address rough terrain locomotion in chapter 5.

4.8.1 Phoney Pony

Frank and McGhee's group at USC built the Phoney Pony in the mid '60s(McGhee
1976). The Phoney pony was a quadruped with 2 degree of freedom (DOF)
legs. Both the hip joint and knee joint were driven through a worm-gear, and
each joint could be in one of 3 states: forward rotation, rearward rotation,
and locked. The phoney pony was the first fully autonomous walker, and the
first walker to use a digital computer to control electronic linkages.

Joint coordination of the Phoney Pony was implemented using finite state
control which is a biologically motivated control scheme proposed by McGhee
and Tomovic in 1966. In finite state control, each leg has an identical finite-
state control circuit that generates the cyclic movement of the leg. Each con-
trol state of the leg cycle has corresponding hip rotation and knee rotation
values. As shown in figure 4.32, transitions between states depend on var-

73

Ppae TORT

2 3 d

4 bw muw

Figure 4.32: Locomotion controller for the Phoney Pony. Adapted from
(McGhee 1976).

74

ious conditions. Contralateral synchronization is implemented by the state
transitions 2 -+ 2' when the pause signal, P, is set to one, and 2' -+ 2 when
the synchronization signal, G, is set to 1. The P and G signals establish the
correct hip rotation difference between contralateral legs during the support
phase. The transition 3 --+ 4 when the interlock signal, I, is set to 1 maintains
stability by keeping three legs in the support phase at any time. Joint angle
sensors or limit switches initiate state transitions 1 --. 2,2 --* 3,4 -4 5,5 --+ 6,
and 6 -+ 1. With this approach, the Phoney Pony was programmed to per-
form a crawl gait. With a slightly modified controller, a trot gait was also
implemented.

The control scheme implemented on the Phoney Pony is similar to the
control scheme of Hannibal in several respects. Both controllers are bio-
logically motivated. Both approaches implement control with finite state
machines (although the augmented finite state machines on Hannibal are
more sophisticated). In both cases, the legs operate as monostable oscilla-
tors. For the Phoney Pony the cyclic motions were generated by a finite state
circuit on each leg. For Hannibal, the oscillator agent on each leg generates
the cyclic motion. In both schemes the legs send synchronization signals to
each other to maintain proper leg sequencing. For the Phoney Pony, the
synchronization signal was based on the difference between hip rotation of
contralateral legs. For Hannibal, agents local to the legs maintain the proper
phasing between leg oscillators.

4.8.2 OSU Hexapod

In the mid '70s, McGhee and colleagues built the OSU Hexapod at Ohio
State (McGhee & Iswandi 1979). The walker was roughly the size of a pony
and had six three DOF legs. The OSU Hexapod was a experimental means of
follow up on McGhee's earlier theoretical findings on the combinatorics and
selection of gait (McGhee 1976). The Hexapod was eventually programmed
to negotiate simple obstacles, but we will only discuss basic locomotion ca-
pabilities here.

Basic locomotion of the OSU Hexapod was implemented in a hierarchi-
cal structure. Motion planning was the responsibility of the higher level,
and joint angle coordination was the responsibility of the lower level. The
motion planner chose leg placements such that the gait stability margin is
maximized. This requires that the center of mass of the walker remain in the

75

polygon of support while the legs sequence through the gait (Song & Waldron
1989). For periodic support state sequences, the family of wave gaits (the
same gaits observed in insects) optimizes the longitudinal stability margin.
Joint angle coordination was implemented with model reference control (also
known as algorithmic contro). With this approach, the OSU Hexapod was
programmed to walk with a number of gaits, turn, and walk sideways. In this
control scheme, the computer's primary task was to solve the inverse kine-
matic equations for the leg positions chosen by the planner; this approach
was computationally extensive. The solutions to these equations were joint
angle commands for the 18 electric motors driving the legs. Servo control
is a significant capability the OSU Hexapod had, but the Phoney Pony did
not.

Locomotion control of the OSU Hexapod and Hannibal are dramatically
different, but the goal of stable locomotion is the same. The OSU Hexa-
pod's controller was designed in a top-down approach, whereas Hannibal's
controller was designed from the bottom up. The control scheme of the
OSU Hexpod is hierarchical and functionally decomposed, whereas the con-
trol scheme of Hannibal is distributed and decomposed into task achieving
agents. For example, regarding the OSU Hexapod controller, the higher level
first derives a set of wave gait foot placements based on maximizing the lon-
gitudinal stability margin; then the lower level converts these planned foot
placements into joint angle commands. In contrast, Hannibal's distributed
control network is designed so that different wave gaits emerge from the in-
teraction of the speed agent, reset clocks agents, and oscillator agents. Joint
angle coordination is implemented differently as well. The OSU Hexapod
performs inverse kinematics on foot placements to produce leg joint angles.
In contrast, Hannibal's lift, swing, step, and support agents determine the
command joint angles using either the default values of these agents or the
incoming values from other agents (such as Hannibal's turn and direction
agents). Overall, the OSU Hexapod's control is computationally expensive
compared to Hannibal's control.

4.8.3 SSA Hexapod

In the early 80s, Marc Donner implemented distributed locomotion control
on the SSA Hexapod (Donner 1987). The SSA hexapod was built at CMU
by Dr. Ivan Sutherland of Sutherland, Sproull, and Associates. Its three

76

Donneres Distributed Control Scheme

1
Li R1

1 2 1 22
1

L2 R2

1 ' I

L3 R3

1. Inhibition
2. Excitation

fý f0 - inhibition + excitation

Figure 4.33: Locomotion controller for the SSA Hexapod. Adapted from
(Donner 1987).

DOF legs were hydraulically actuated and had position and force sensing for
each DOF (among other sensors). Donner's walking algorithm demonstrated
locality of control with no global information and little computation. He
implemented the walking algorithm in OWL, a specially designed language
he wrote for real-time performance and concurrency control.

Donner's walking algorithm was inspired by insect locomotion. Individual
leg control was implemented by a separate and mostly autonomous process
responsible for generating cyclic stepping movements. Leg coordination was
implemented by an excitation mechanism and an inhibition mechanism. Each
leg process sends/receives these influences to/from neighboring leg processes
as shown in figure 4.33. The excitation and inhibition influences effect when
a leg makes the transition from the support phase to the swing phase. The
transition occurs when the leg has made more than half a stride and the
vertical force, f=, satisfies the relation f. < f. - inhibition + excitation. The
excitation influences sent ipsilaterally encourage back to front metachronal
waves. A leg sends an excitation number to its frontward neighbor when it
finishes its swing phase, and removes this excitation number when it begins

77

its swing phase. Consequently, the excitation encourages an adjacent anterior
leg to begin its swing phase when the adjacent posterior leg is in the support
phase. The excitation sent contralaterally between the rear legs encourages
180 degree phasing between pairs legs on opposite sides of the body. This
is accomplished by having each rear leg excite its crosswise neighbor when
it reaches the halfway point in its drive stroke. The inhibition mechanism
encourages stability. Each leg that is in its swing phase sends an inhibition
signal to its neighbors thereby discouraging them from entering their swing
phase. The leg removes this inhibition when it enters its support phase.
The SSA hexapod walked as well as the physical constraints of the machine
allowed using this approach. The approach also permitted the machine to
locomote when a middle leg was removed.

Hannibal's and the SSA's controller are similar in several respects. Re-
garding global comparisons, both controllers were implemented in a language
specially designeQ 6o run concurrent processes in real-time. Both controllers
demonstrate locality of control with no global information and little compu-
tation. The locomotion processes of each machine are executed concurrently
and are implemented as finite state machine circuits. Concerning specific
comparisons, it is interesting that Donner's controller is almost identical to
Hannibal's Modified Cruse controller given they were derived independently
from different models of insect locomotion. However, the mechanisms im-
plemented by the Modified Cruse controller enforce certain relationships be-
tween the legs, whereas the mechanisms implemented by Donner's controller
encourage these relationships.

4.8.4 Genghis

Genghis is a small hexapod (35cm long, 25cm across) built in the mid '80s
by the Mobile Robotics Group at MIT (Brooks 1989). Genghis is the pre-
decessor to Hannibal; it has six legs, each with 2 DOF (lift and shoulder).
Brooks programmed Genghis to traverse rough terrain and follow people, and
later Maes programmed Genghis to learn a tripod gait. This section covers
the implementation of flat terrain locomotion on Genghis (its rough terrain
abilities is addressed in the next chapter 5).

Basic walking on flat terrain is implemented by 32 AFSM's (see figure
4.34). Two of these AFSM's are for global coordination:

78

"log b•, et alpha o•
do I Pn°dvanc

W sbc copies

SonDrltms motom

O suppmssornode

Figure 4.34: Basic locomotion network for Genghis. Adapted from (Brooks
1989).

79

* Walk machine sequences the lifting of the individual legs.

e Alpha Balance machine drives the sum of leg swing angles to zero.
Forwards is positive angle, straight out is 0 --'gle, and backwards is
negative angle. When a leg advances, this machine causes all the sup-
porting legs to push backwards a little bit.

Each leg has 5 AFSM's which account for the remaining thirty AFSMs:

"* Beta Pos commands the lift motor

"* Alpha Pos commands the advance motor

"* Up Leg Trigger is activated by the Walk machine. When it receives an
input from the Walk machine, it causes its leg to lift for a predetermined
time period. This is accomplished by blocking the output of the leg
down machine to the Beta Pos machine.

" Leg Down continually tells the Beta Pos machine to put the leg down.
This message gets through to the Beta Pos machine except when the
Up Leg Trigger machine blocks it.

" Alpha Advance tells the Alpha Pos machine to swing the leg forward.
It is active when the leg is commanded to lift and blocks the Alpha
Balance message from reaching Alpha Pos. So, whenever the leg is
lifted, it is reflexively swung forward as well.

It is not surprising that the control scheme of Hannibal and Genghis are
similar given they were developed in the same lab and are programmed in
the Subsumption Architecture. We shall focus on the differences instead.
Genghis' locomotion network is less distributed. Genghis' locomotion con-
troller is only partially distributed; the leg reflexes are local, but a centralized
gait sequencer (the Walk machine) is used to generate stable gaits. In con-
trast, Hannibal's locomotion controller is completely distributed. Genghis'
locomotion controller is less flexible. Implementing new gaits on Genghis
requires changing the Walk machine in the control network. So far, a Tri-
pod Walk machine and a Ripple Walk machine have been implemented on
Genghis. In contrast, Hannibal's gaits emerge from the same network simply
by changing the duration of the support phase. Genghis' controller is less

80

Figure 4.35: Neural controller for the Case Western Hexapod. Adapted from
(Beer and Chiel 1993).

modular. On genghis, turning and directional behaviors are buried in other
agents which makes them more difficult to interface with. Hannibal's turn
behaviors and direction behaviors are distinct processes so they are more
accessible.

4.8.5 Case Western Hexapod

Beer and colleagues implemented a neural network control architecture on a
small hexapod robot with 2 DOF legs ((Beer & Chiel 1993), (Chiel, Quinn,
Espenschied, &: Beer 1992), (Quinn & Espenschied 1993)). The neural con-
troller was developed by Beer and was inspired by Pearson's flexor burst-
generator model of cockroach locomotion. The goal was to generate robust

81

,-,,..a -- ?• • •. . -, *:

hexapod locomotion using a neural network controller.

The neural network controller designed by Beer is shown in figure 4.35.
In this model, the same neural network is implemented on each leg. At the
center of each leg controller is a pacemaker neuron whose output rhythmically
oscillates. A pacemaker burst initiates a swing by inhibiting the foot and
backward swing motor neurons and exciting the forward motor neurons. This
causes the foot to iift off the ground and the leg to swing forward. Between
pacemaker bursts, the foot is down and tonic excitation from the command
neuron moves the leg backward. The output of the central pattern generator
is tuned by feedback from 2 sensors that signal when the leg is reaching the
AEP or the PEP. Approaching the AEP encourages a pacemaker to terminate
a burst by inhibiting it. Approaching the PEP encourages a pacemaker to
initiate a burst by exciting it. Inserting mutually inhibitory connections
between the pacemaker neurons of adjacent legs generates statically stable
gaits, and phase-locking the pattern generators on each side of the body
enforces metachronal waves. Using this network, the Case Western Hexapod
is capable of producing a continuous range of wave gaits by varying the tonic
level of activity of the command neuron. The system was also robust to
lesion studies performed by removing certain sensors or connections.

Beer's neural network is much truer in spirit to Pearson's model of insect
locomotion control than Hannibal's agent network. However, both control
schemes have similar organization and function. Organizationally, both sys-
tems have an oscillator on each leg that generates step patterns, a command
neuron that determines the frequency of the oscillators, and a network cir-
cuit repeated on each leg. Granted the implementation of these components
differs between the robots (Beer's is closer to Pearson's model), but the over-
all agents are similar. Both control schemes generate a range of wave gaits
by varying the oscillator frequency. Both control schemes are robust to leg
perturbations. Beer's approach has the nice property that adjacent legs put
constraints on each other, so even if the control circuit in a leg is perturbed
(removing sensor nodes or connections) the other legs coerce the perturbed
leg into functioning properly. Similarly, Hannibal's oscillators are synchro-
nized and coordinated such that if a leg is damaged, the oscillators remain
coordinated with each other.

82

4.9 Contributions

The work described in this chapter makes three contributions toward the
advancement of autonomous hexapod control. First, we implemented and
tested several fully distributed, biologically motivated locomotion controllers
on Hannibal. By doing so, we have demonstrated how various locomotion
schemes used by insects can be applied to legged robots. In addition, we have
further confirmed that a distributed control scheme using simple, concur-
rently running processes is a viable approach to controlling hexapod robots in
real-time with relatively little computational power ((Brooks 1989), (Quinn
& Espenschied 1993), (Donner 1987)). Second, we implemented a wide as-
sortment of basic locomotion capabilities on Hannibal using the local control
with cooperation paradigm. By doing so, we have explored the effectiveness
of this approach in controlling a complex system (the robot) which consists
of many concurrently running subsystems (the legs). Third, we implemented
a fully distributed, biologically motivated locomotion controller on Hannibal
that exhibits more basic locomotion capabilities than other hexapods using
similar control schemes ((Beer et al. 1992), (Donner 1987)). By doing so, we
have advanced the state of the art of fully distributed, biologically motivated
locomotion controllers.

83

P.t-

Chapter 5

Rough Terrain Locomotion

This chapter presents Hannibal's rough terrain capabilities. We present sev-
eral strategies used by insects to traverse rough terrain. Several of these
tactics inspired the design of Hannibal's rough terrain skills. We discuss how
Hannibal uses inter-leg communication to traverse rough terrain. This is a
significant aspect of Hannibal's control scheme, so we give it extra attention.
Afterwards, we present the implementation of Hannibal's rough terrain net-
work. Following this, we describe the tests we used to evaluate Hannibal's
rough terrain performance and present the results. We conclude by compar-
ing Hannibal's rough terrain control with that of insects and other legged
robots.

5.1 The Rough Terrain Challenge

Hannibal's task is to locomote over natural terrain. Naturally occurring ter-
rain has holes, cliffs, obstacles of various sizes, and undulations. To locomote
over varying terrain, the robot needs ample sensory information to recognize
changes in the terrain. The robot must orchestrate sequences of actions to
negotiate obstacles and avoid hazards. Clearly, the control problem is sig-
nificantly more complicated than for basic locomotion. Effectively managing
Hannibal's numerous sensors and actuators and controlling the robot in real-
time are important for the robot's success and safety.

We added another layer to the control architecture to give Hannibal rough
terrain capabilities. The Rough Terrain Level is built on top of the Basic lo-

84

Th. robot can walk ovr small Ob "acls The rbot can walk to the •Ie of nmeium obstaces,
but It camot wa&lk over thm

The robot must walk around kWg obstacle

Figure 5.1: Hannibal encounters obstacles of various sizes as it locomotes
over natural terrain. "Small" obstacles are objects low enough for the robot
to walk directly over. "Medium" obstacles are objects low enough for the
robot to step on top of but too big to walk directly over. Consequently,
Hannibal must walk to the side of medium sized objects. "Large" obstacles
are too big for the robot to step over. As a result, the robot must walk
around large obstacles.

85

comotion Level and is currently the top layer of the control architecture. The
processes within this layer are responsible for adapting to terrain variations,
negotiating obstacles, and avoiding hazards. Several of the rough terrain
tactics implemented on Hannibal were inspired by rough terrain tactics used
by insects. To activate the appropriate rough terrain behaviors, the system
must recognize when it is confronted by challenging terrain and what chal-
lenge consists of. The system obtains this information from its sensors (via
the output of the virtual sensors), indirectly through the state of agents, and
indirectly by observing the behavior of the system over time.

Rough terrain control is fully distributed and exploits local control of the
legs with inter-leg cooperation. Local leg control is responsible for handling
challenges that confront individual legs such as stepping over an obstacle or
finding a foothold. Effective inter-leg cooperation is vital because the legs are
physically constrained to each other through Hannibal's body and through
the terrain. Legs communicate with each other not only to coordinate and
synchronize their behavior, but also to alert each other of hazards and to
recruit the help of the other legs when necessary. Using this approach, we
have implemented the following capabilities on Hannibal:

"* Walk over small and medium sized obstacles

"* Avoid large obstacles blocking the robot's path

"* Search for footholds

"* Walk over holes

"* Avoid cliffs

"* Adapt gait to terrain roughness

"* Adapt to slopes

5.2 Insect Locomotion Over Rough Terrain

Pearson & Franklin (1984) presents results of cinematographic analysis of lo-
custs walking on a variety of terrains. They wanted to determine the tactics

86

cliff depth

gap width

Figure 5.2: Natural terrain has depressions of various sizes. We define a
"cliff" to be a terrain depression of which the robot can neither touch the
bottom nor step across. We define a "gap" to be a terrain depression of
which the robot cannot touch the bottom but can step across.

used by single legs to find a site for support, and the patterns of leg coor-
dination when walking on rough terrain'. They report three distinct tactics
used by single legs to find support sites on rough terrain:

"* Searching movements These are rapid, rhythmic, up-and-down move-
ments initiated when the leg fails to find any support at the end of a
swing phase. The searching movements caused the animal to pause in
walking, and caused the insect to stop walking when searching is ex-
tensive. They also witnessed this reflex when the insect made postural
adjustments.

"* Elevator reflea.. This consists of a rapid elevadon and extension of the
leg to lift above an object when it contacts the object during the swing
phase. When the leg steps down, the foot usually is placed on the
object. It occurs in all three pairs of legs, but is seen the most clearly
in the middle and front legs.

1They also present results for the method the insects used for stepping over ditches
and over elevated objects, but these results are not presented here. These rough terrain
tactics used by the locusts are far beyond Hannibal's rough terrain capabilities to justify
comparison.

87

* Local searching movementr. These are small, rhythmic shifts of the foot
on a potential supporting surface. Its function is to find a local region
for a suitable support site. Pearson & Franklin (1984) propose that if
the load on the leg does not quickly increase after the tarsus touches
the surface, the foot is quickly lifted and replaced on the surface at
another point. This process continues until the critical load is borne
by the leg.

In regards to gait coordination, they found the insect did not adopt a rigid
gait when walking on rough terrains. The wide range of stepping patterns was
due mainly to variation in the timing of stepping in opposite legs of the same
segment. Their findings suggest that when the locusts walk on rough terrain
they do not adopt a strategy for coordination that differs in principle from
the one used on flat surfaces. Rather, each leg appears to act independently
in finding a support site, and the basic modes of coordination of opposite
legs, and the posterior-to-anterior sequence of stepping in ipsilateral legs
are preserved. However, they did witness that the middle legs of the insect
stepped either exactly in phase or 1800 out of phase, which was not observed
on flat terrain.

5.3 Inter-leg Communication

Inter-leg communication is essential for Hannibal to successfully traverse
rough terrain. Each leg is programmed to operate as a individual subsystem.
However the legs are physically constrained to each other through Hannibal's
body and through the terrain. Consequently the task of traversing rough ter-
rain can be viewed as a team effort where the legs must work together for
the global system (Hannibal) to accomplish the task. Inter-leg cooperation
is achieved through inter-leg communication.

Hannibal's rough terrain network implements several types of inter-leg
communication. For example, if a leg is stepping in a hole or over an obstacle,
it tells the other legs to pause while it deals with the complication. It does
this by having its step agent send a message that inhibits the oscillators of
the other legs until the leg achieves ground contact (see figure 5.4). This
type of communication insures the robot's stability by preventing the robot
from advancing to the next step cycle before all recovered legs support the
body. A leg can also recruit the help of other legs. For instance, when a

88

Figure 5.3: Inter-leg behavior conficts are handled by a pre-programmed
priority scheme. Behaviors that achieve goals with a higher priority inhibit
behaviors that achieve goals with a lower priority. For example, stability
has a higher priority than obstacle avoidance. As a result, the find-foothold
behavior inhibits the backup behavior. Once the leg finds a foothold, the
robot is allowed to backup.

89

leg is trying to step over an obstacle, it asks the supporting legs to raise
the body to help it clear the obstacle. It does this by sending a message to
activate the lift-body behaviors in the supporting legs (see figure 5.6). A leg
can also alert the other legs of a dangerous situation. For example, if a leg
is stepping over a cliff, it tells the other legs to back the robot up. It does
this by sending a message to the global direction and global turn behaviors
which coordinate the direction and turn behaviors of all the legs.

Communication between locally controlled legs is essential for the legs
to maintain a cohesive effort. This is especially the case if different legs
want the robot to do different things. As shown in figure 5.3, one leg may
hit a large obstacle and want the robot to back up, whereas another leg
may be searching for a foothold and want the robot to hold still until it
finds one. This is essentially behavior conflict, but on a larger scale than is
typically encountered by other robots. Instead of having conflicting behaviors
in competition over an actuator, conflicting behaviors on different legs are
in competition over the action of all the legs. An inter-leg priority scheme,
implemented using inhibition and suppression mechanisms (Brooks 1990) is
used in cases like these to determine which leg has dominance. In general
the stability of the robot has the highest priority, so in this example the legs
wait until the searching leg finds a foothold before they perform the backup
maneuver.

The rough terrain network handles slopes, gaps in the t-rrain, cliffs, low
obstacles, and obstacles too large to step over. The system must recognize
when it is confronted by a hazard and what the hazard is. The system obtains
this information directly through sensor values, indirectly through th te
of agents, and indirectly by observing the behavior of the system over I.•Lle.
Each of these cases is addressed below.

5.3.1 Virtual Sensor Activated Behaviors

The virtual sensor activated behaviors react reflexively to rough terrain. As
presented in chapter 3, virtual sensor agents combine actual sensor data to
detect a specific type of walker-terrain interaction. In the case of rough
terrain, virtual sensors detect hazards such as slopes, obstacles, or holes in
the robot's path. For each type of hazard, there is a virtual sensor designed
to detect it and a rough terrain behavior designed to handle it. When a
virtual sensor detects a hazard, it activates the corresponding rough terrain

90

Word a•

inhibit if no ground contact

Figure 5.4: To enforce stable locomotion, the step agents of the recovering
legs prevent the robot from advancing to the next step cycle unless the recov-
ering legs support the body. Here, the right rear leg is in the recover phase.
The step agent of this leg inhibits the oscillators of the supporting legs until
the output of ground-contact virtual sensor of this leg is true. When this is
the case, the step agent releases the oscillators of the other legs.

91

behavior.

5.4 Rough Terrain Network

5.4.1 Loading considerations

When walking, the robot should not transition to the next step cycle until all
recovering legs have contacted the ground. This way, the robot does not begin
the next step cycle until its legs are supporting the body. The ground-contact
virtual sensor is responsible for detecting when a recovering leg is loaded. Its
output is true when the leg is sufficiently loaded, otherwise its output is
false. The step agent of each recovering leg inhibits the oscillators of the
supporting legs until the recovering leg achieves ground contact (see figure
5.4). Once the recovering leg is sufficiently loaded, the output of the ground-
contact virtual sensor is true, and its step agent releases the oscillators of
the supporting legs. When all recovering legs are loaded, the oscillators are
free to begin the next step cycle.

Holes in the terrain

When a leg steps into a hole it tries to find a foothold (see figure 5.2). The
step-in-hole virtual sensor is responsible for detecting holes in the terrain.
Its output is true when the foot reaches its lowest position but fails to make
ground contact, otherwise its output is false. When it determines the leg is
stepping in a hole, it activates the find-foothold behavior. The find-foothold
behavior activates the recover phase of the leg and sets the AEP equal to
one foot diameter beyond the current foot position. If the foot does not find
a foothold looking in the current direction, it reverses the search direction
once it reaches the search limit point. The behavior searches betweeli the
anterior and posterior search limit points until the search is successful or
until it is deactivated by another behavior. While performing the search,
the step agent of the leg inhibits the motion of the other legs by pausing
their oscillators. When the foot makes contact with the terrain the search
is successful, the find-foothold behavior releases the oscillators, and walking
resumes. See figure 5.5.

92

p1, vA

rnhtip t obthr otc. It no
ground contact

Figure 5.5: For each leg, the find-foothold agent is activated once the output
of the step-in-hole virtual sensor is true. While active, it generates the
searching pattern by making the leg's oscillator agent repeat the recover
phase with new target values. Meanwhile, the leg's step agent makes the
robot pause by inhibiting the oscillators of the supporting legs. The find-
foothold agent is de-activated when the output of the pound-contact virtual
sensor is true.

ctaversable obstacles

When a leg hits an obstacle during the swing phase, it tries to step over the
obstacle. The swing-collision virtual sensor detects obstacles in the robot's
path. Its output is true when the leg collides with an obstacle during the
recover phase, otherwise the output is false. When its output is true, it
activates the step-high behavior of the same leg. Because the elbow DOF is
significantly slower than the other DOF's, the step-high behavior inhibits the
motion of other legs until the leg completes the step-high maneuver. This is
accomplished by pausing the oscillators of the other legs. While the other
legs are waiting, the step high behavior lifts the leg as high as it can by
fully extending the elbow. Once the leg is fully raised, it moves to the AEP
and clears the obstacle if the obstacle is small enough. After the leg reaches
the AEP, the behavior prepares for the step phase by contracting the elbow
until the ankle is vertical. Once the ankle is vertical, the step-high maneuver
is complete, the step-high behavior releases the oscillators, and walking is
resumed. See figure 5.6.

When a leg hits an obstacle, it tells the supporting legs to lift the body

93

Figure 5.6: For each leg, the step-high agent is activated when the output of
the swing-collision virtual sensor is true. When active, the step-high agent
causes the foot to rise off the ground by activating the extend-elbow agent.
Once the elbow is fully extended, the leg swings to its target value. The
swing agent de-activates the step-high agent when the leg reaches the target
value. Once this occurs, the elbow is contracted and the leg steps down.

average body height elevated body height

Figure 5.7: The robot's body can be elevated by activating the lift-body
agents of the supporting legs. For example, when the output of a leg's swing-
collision virtual sensor is true, the swing-collision virtual sensor activates the
lift-body agents of the supporting legs. This helps the collided leg clear the
obstacle.

94

Figure 5.8: When the robot's foot is stepping on a medium sized obstacle, the
foot needs to be lifted higher during the recover phase. Otherwise, the foot
will drag along the top of the obstacle as the robot swings the leg forward.

higher. If the output of the swing-collision virtual sensor is true, it activates
the lift-body agents of the supporting legs. Each lift-body agent extends
the shoulder DOF of the supporting legs. When the lift-body agents of the
supporting legs are active simultaneously, the robot's body height is increased
(see figure 5.7). This helps the collided leg clear the obstacle while it tries to
step over the obstacle.

Walking over an obstacle

When a leg is stepping on a fairly high obstacle, the robot lifts its leg higher
during the recover phase, so its foot doesn't drag along the surface of the
obstacle (see figure 5.8). The step-over-rock virtual sensor detects when the
foot is stepping on an obstacle. It's output is true when the leg is loaded as a
result of contracting the elbow instead of lowering the shoulder, otherwise its
output is false. When the leg is stepping on an obstacle, the step-over-rock
virtual sensor tells the step-high agent of the same leg to clear the obstacle
during the recover phase of the next step.

slopes

When the robot walks on sloping terrain, it keeps its center of mass withing
its polygon of support. The inclination virtual sensor senses the inclination
of the robot. Its output is true when the inclination-error is sufficiently

95

Figure 5.9: Hannibal servos its spine motor to keep its legs vertical when
walking over undulating terrain. This maintains the robot's stability by
keeping its center of mass withing the polygon of support.

body

hKOW~ I - incinometer

agentpri Sp~oteftiomfeter

Figure 5.10: The inclination virtual sensor sends the pitch-error value to the
spine agent. When this error is too large, the spine agent is activated and
reduces the pitch-error by servoing the spine actuator. When the inclinome-
ter's pitch value equals the reference pitch value (pitch-error = 0), the robot's
legs are vertical.

96

kwal
wa apsm swngooms~lo

Figure 5.11: This network causes the robot to back away from obstacles that
are too large to step over. The backup agent is activated when a leg collides
with and obstacle after its foot is lifted as high as possible off of the ground.
The global backup agent sets the number of steps the robot walks backwards
and the turn sharpness based on the avoid-obstacle message. The direction
of rotation is set such that the robot turns away from the obstacle.

large, otherwise it is false2 . When the inclination virtual sensor output is
true, it activates the spine agent. The network is shown in figure 5.10. The
spine agent servos the spine potentiometer until the inclination sensor error
is sufficiently small. This effectively servos the supporting legs until they are
vertical as shown in figure 5.9. When the supporting legs are vertical, the
center of mass of the robot is within the polygon of support.

5.4.2 State activated behaviors

The state activated behaviors respond to terrain information obtained through
observing the state of other behaviors.

Large obstacles

2 The spine actuator moves too slowly to make the quick, small adjustments necessary to
continuously servo the inclination error to zero. To get around this problem, the inclination
virtual sensor places a small "dead-zone" around the vertical inclination position.

97

The robot avoids obstacles too large to step over based on the state of the
step-high agents of the front legs (or the rear legs if the robot is walking
backwards). When either front leg collides with an obstacle during the re-
cover phase, the step-high agent of that leg sets its stepped-high flag. If
the leg collides with an obstacle when the stepped-high flag is set, the leg
assumes the obstacle is too high to walk over and tells all the legs to avoid
the obstacle by sending an avoid obstacle message to the backup behav-
ior. The backup behavior is a global behavior that coordinates the direction,
turn direction, and turn radius of the legs. When active, it causes the robot
to walk backwards, angle away from the obstacle, and then resume walking
forward. The network is shown in figure 5.11.

Cliffs

The robot retreats from cliffs based on the state of the find-foothold behavior.
When the find-foothold behavior is active and either front leg finds ground
contact searching rearwards, the leg assumes it is stepping over a cliff and
tells all the legs to retreat by sending an avoid cliff message to the backup
behavior. The backup behavior causes the robot to backup from the cliff,
about face, and resume walking away from the cliff.

Resume forward direction of travel

Given the robot is walking backwards, it resumes walking forward based on
the state of the direction agent, and either the state of the find-foothold
behavior, or the state of the step-high agent. First consider the case where
the find-foothold behavior is active when the robot is walking backwards and
the leg finds ground contact searching in the forward direction. Under these
circumstances the leg assumes it has backed up to a cliff and tells all the
legs to change direction. Next consider the case where the robot is walking
backwards and a rear leg collides with an obstacle while its stepped-high
flag is set. Under these circumstances the robot assumes the obstacle is too
high to step over and tells all the legs to change direction. The leg tells the
robot to resume walking forward by sending a walk-forward message to the
global direction agent.

98

find-lootthold

agent - slow wave

step)-high WN ._ed caution • rp
agent SM ~tMagent do•-• • tripod

incdinaaon L

agent

agent

Figure 5.12: When the rough terrain agents of any leg become active, they
increase the caution level of the robot. As the caution level rises, the robot
adopts a slower gait. Hence, as the terrain becomes more challenging, the
robot switches to gaits with larger gait stability margins.

5.4.3 Hormone activated behaviors

The hormone activated behaviors respond to terrain information obtained
through observing the behavior of the system over time.

Cautious behavior

The robot's caution level influences the robot to change gait as a function of
terrain roughness. Each time the robot encounters a hazard such as stepping
into a hole or hitting an obstacle, the activated rough terrain agent increases
the robot's caution level (see figure 5.12). If no hazards are encountered,
the caution level decays. At the lowest caution level, the robot assumes the
terrain is relatively flat and uses the tripod gait. This gait is the fastest of
the wave gaits and simultaneously lifts the maximum number of feet. At the
mid range caution levels the robot assumes the terrain is fairly rough and
uses the ripple gait. The ripple gait is the robot's medium speed gait and
simultaneously lifts fewer feet in the air than the tripod gait. At the highest

99

caution level, the robot assumes it is in extremely rough terrain and uses the
slow wave gait. This gait is the robot's slowest gait and keeps the maximum
number of feet on the ground. The robot also uses the slow wave gait when
it is in immediate danger. For example, if the robot thinks it is stepping over
a cliff, it increases the caution level to the slow wave gait range. This causes
the robot to use the slow wave gait when backing up from the cliff.

Impatient behavior

The robot's impatience level excites the robot to resume walking if the robot
has been stationary for a sufficiently long time. It accomplishes this by
temporarily lesioning the leg responsible for the hold up. When a leg is
lesioned, the other legs ignore its inhibition of their oscillators. If a front leg
is lesioned while walking forwards, or a back leg is lesioned while walking
backwards, the robot assumes the terrain is too difficult for it to proceed in
that direction and resumes walking in the opposite direction. For all other
cases, the robot assumes the terrain is traversable in the direction of travel.
For example, if a middle leg steps in a hole, it stops the other legs and searches
for a foothold. For each cycle of the oscillator that the robot stant' sill, the
impatience level rises. When the impatience level rises above its threshold,
the robot is "frustrated" enough to ignore the inhibitory influences of the leg
trying to find a foothold, lesions that leg, and resumes walking without it.
While the robot is walking, the impatience level decays. When the impatience
level is sufficiently low, the robot resumes using the lesioned leg.

5.5 Performance

5.5.1 Tests

Individual obstacle tests

These tests challenged Hannibal's ability to handle a single type of obstacle
in its path. They were designed to test the performance of specific virtual
sensors as well as specific rough terrain behaviors. They were used to de-
termine if Hannibal could correctly characterize the type of obstacle in its
path and respond to it. To test the robot's performance with respect to a
particular hazard, the test terrain was flat with the exception of the terrain

100

feature. Only one leg encountered the challenge at a time. The following
terrain features were tested:

"* Obstructive objects of varying heights and shapes

"* Cliffs

"* Holes or gaps in the terrain

"* Inclines

"* Declines

Multiple obstacle tests

These tests challenged Hannibal's ability to handle multiple terrain features
in its path. The hazards could be of the same type or of different types. The
robot could encounter the hazards sequentially or concurrently. The tests
were designed to test the flexibility of the controller. They were used to
ascertain Hannibal's ability to adapt its behavior to changing circumstances,
test the legs ability to handle local terrain features concurrently, and test the
legs ability to behave in a unified manner-particularly when behaviors on
different legs may be in conflict. We did not bother to test all permutations
of terrain features as there are too many to test. Instead, we chose a few
sample terrains to test various capabilities. The following terrains were used
(other terrains were used as well but served redundant purposes):

"* Small plateau This terrain causes the robot to frequently encounter cliffs
while walking forwards, backwards, or turning. The terrain tests the
ability of the robot's legs to maintain a cohesive effort since behaviors
on different legs want the robot to move in different directions.

"* Multiple small obstacles This terrain causes the robot's legs to traverse
obstacles concurrently. It tests the robot's ability to handle local terrain
features simultaneously.

" Crevice This terrain causes the robot's legs to sequentially step over
the gap. It tests the ability of the legs to address a hazard in rapid
succession.

101

traversable size
terrain feature minimum size maidmum size

small obstacle size < 1/3 average body height 1 12 averge body height (elevated)
1/3 average body height (normal stance)

medium obstacle size 1/3 average body height 5/6 average body height

large obstacle size 5/6 average body height > 5/6 average body height

gap width < 3/4 stidde length width 3/4 stride length width

cliff depth 1/4 average body height > 1/4 average body height

incline slope < 15 degree slope 15 degree slope

decline slope < 20 degree slope 20 degree slope

Figure 5.13:

e Small object on plateau This terrain causes the robot to handle different
types of challenges. It tests the robot's ability to coordinate obstacle
avoidance which the legs perform this individually, with hazard avoid-
ance which the legs perform this as a team.

Naturally occurring terrain

We tested Hannibal's ability to traverse naturally occurring terrain in two
environments. The first environment is a simulated lunar surface (also known
as the "sandbox"). Our lab built the sandbox to test Hannibal and our other
robots in a more realistic setting. The sandbox consists mostly of gravel, with
some sand, and rocks of various sizes. The second environment is Mars Hill
in Death Valley, CA. This location has an uncanny resemblance to terrain
images taken of Mars. It is characterized by a fairly firm, undulating, sandy
surface with scattered rocks.

5.5.2 Results

Figure 5.13 quantifies Hannibal's performance at traversing various aspects of
rough terrain. These results were gathered from the individual obstacle tests.
The values are primarily determined by the physical capabilities of the robot.
Hannibal successfully traversed the sample terrains of the multiple obstacle
tests provided the terrain features remained within the values of figure 5.13.

102

Similarly, Hannibal successfully traversed natural terrain provided the terrain
features remained within the values of figure 5.13.

5.5.3 Evaluation

Hannibal successfully handles a wide assortment of terrain features. The
rough terrain controller pushes the envelope of Hannibal's physical capabil-
ities. Obviously if the robot had greater physical capabilities such as larger
work spaces for the legs, better leg kinematics, greater strength to weight
ratio, etc. the robot could traverse more challenging terrain. These issues
are beyond the scope of this work, and we will not address them further.
It would be interesting to implement a similar control network on future
generation legged robots for comparison.

Local leg control with inter-leg communication has proven to be an ef-
fective means for Hannibal to traverse rough terrain. Each leg is responsible
for handling the rough terrain challenge it faces concurrently with the other
legs. Consequently, the legs can simultaneously handle obstacles local to
themselves. This ability was demonstrated in the multiple small obstacles
test. Inter-leg communication has demonstrated its importance in several re-
spects. First, each leg behaves as a scout for the other legs and alerts them of
common dangers. In this manner, the local terrain view of each leg is shared
with the other legs. This ability was demonstrated in the tests using cliffs
and large obstacles. Second, inter-leg communication enables the legs to act
as a team. By working together, each leg accomplishes more than could if it
had to fend for itself. For example, by asking the supporting legs to elevate
the body, a leg can clear an obstacle it would not be able to clear otherwise.
This was demonstrated in the individual obstacle tests using obstructive ob-
ject of varying heights and shapes. Third, inter-leg communication enables
the legs to maintain a unified effort, and the inter-leg priority scheme main-
tained the unified effort even when behaviors of different legs were in conflict.
This ability was demonstrated by the small plateau test.

103

5.6 Comparison with insect rough terrain
locomotion

Several of the same rough terrain tactics observed in locusts are implemented
in Hannibal's rough terrain network. The find-foothold agent in conjunction
with the step-in-hole virtual sensor implement the searching movements and
local searching movements observed in locusts. The step-in-hole virtual sen-
sor activates the find-foothold agent when the load on the foot is not sufficient
and the foot is fully extended. Consequently, the find-foothold agent is ac-
tivated either when Hannibal steps in a hole, or when there is insufficient
loading on the foot after it completes the recovery phase. While the find-
foothold agent is active it causes Hannibal to pause or stop (by inhibiting the
motion of the other legs) until the search for a foothold is is successful. This
behavior is also observed in locusts. The step-high agent in conjunction with
the swing-collision virtual sensor implements the elevator rtflex observed in
locusts. Hannibal uses similar tactics as the locusts for gait coordination.
Each leg of Hannibal is responsible for handling the holes and obstacles it
encounters, but the strategy for gait coordination remains the same. Con-
sequently, the basic modes of coordination are preserved, but the timing of
stepping between the legs varies as the legs compensate for the terrain.

5.7 Comparison with legged robot locomo-
tion over rough terrain

A common goal of legged locomotion research to develop walkers capable
of traversing terrain too rough for wheeled vehicles. Several dynamically
stable legged machines have been designed to study rough terrain locomotion
(Raibert & Hodgins 1993). However, this section compares and contrasts
Hannibal only to statically stable rough terrain walkers.

Rough terrain locomotion has been tackled using two different approaches:
closed loop and open loop. In the closed loop approach, sensory information
about the state of the machine and its interaction with the environment
is used to compute the machine's actions during run time. Consequently,
closed loop systems are able to adapt to the unexpected provided they have
adequate sensing capabilities. In contrast, the open loop approach requires

104

all important knowledge about the machine and the environment be given a
priori. This knowledge is used to compute the machine's interaction with its
environment before run time. Consequently, open loop systems rely on accu-
rate information about the world and require good models of the interaction
between the system and the world if accurate planning is to be achieved.

5.7.1 OSU Hexapod

The OSU Hexapod, introduced in chapter 4, was the testbed for the control
algorithm proposed in McGhee & Iswandi (1979). This paper formalizes
the rough terrain problem for legged vehicles (the free gait problem) and
demonstrates the feasibility of generating a solution to the problem in real-
time with a computer using a simulation. Its control strategy is centralized
and open loop.

To solve the free gait problem, the control algorithm makes three assump-
tions. First, the algorithm assumes it is given a terrain map that provides
global knowledge of the terrain. Second, it assumes it is given a motion trace
(a path defining the body trajectory provided by a navigation system) that
does not contain any obstacles too large to step over. This is a significant
assumption for real-time control because computing the motion trace is quite
expensive-it requires detailed knowledge about the kinematics of the machine
and considers a combinatorially large set of possible leg motion sequences.
Third, it assumes the task of placing a foot on a chosen foothold is easy
for a statically stable system. With these assumptions, the solution of the
free gait problem is reduced to the heuristic selection of reachable and suit-
able footholds along the motion trace; suitable footholds are terrain locations
that provide adequate support, maintain stability of the system, and moves
the system toward the goal. Raibert & Hodgins (1993) term this approach
the body motion-then-footholds paradigm. The heuristic used for the OSU
Hexapod is to lift the legs with the least kinematic travel available in the
direction of travel, while putting legs into support with the largest available
travel. This heuristic extended each support state to increase the probabil-
ity that it would overlap with the next support state. The OSU Hexapod
demonstrated its ability to negotiate small obstacles and climb down a step
while operated under joystick control.

The solution to the free gait problem assumes a functional decomposi-
tion of the rough terrain problem into perception, modeling, planning, and

105

control modules. Each module requires the output of the preceding module,
so control proceeds sequentially. The solution to the free gait problem pre-
sented in McGhee & Iswandi (1979) is part of the planning phase (navigation
is the other part). It assumes the perception, modeling, and navigation tasks
are complete and give their results (the terrain map and the motion trace)
to the free gait planner. It also assumes the results of the free gait planner
(the sequence of footholds) can be easily executed by the control module.
These are weighty assumptions as the perception, modeling, navigation and
control tasks are difficult and computationally extensive tasks in their own
right. Consequently, although McGhee & Iswandi (1979) argue the free gait
planner can perform in real-time, the whole system may not.

Hannibal's approach to solving the rough terrain problem is radically dif-
ferent from the approach of the free gait planner. Hannibal's control system
does not assume the existence of a terrain map or a motion trace, and it does
not try to solve the free gait problem. Hannibal's control scheme decomposes
the rough terrain problem into task achieving modules that execute concur-
rently and in real-time (Brooks 1986). The system is built from the bottom
up where higher layers add more capabilities to the system. Given Hannibal
only has tactile sensing ability, its highest control layer enables Hannibal to
to wander over rough terrain in real-time. It chooses foot placements and leg
adjustments based on its real-time interaction with the terrain. Eventually
higher layers of control and more sophisticated sensors (compass, vision, etc.)
could be added to give Hannibal the ability to navigate purposefully.

5.7.2 Preambulating Vehicle II

The Preambulating Vehicle II (PVII) is a quadruped developed at the Tokyo
Institute of Technology (Hirose 1984). The PVII is fairly small, weighing 10
kg and measuring 870 mm in length. Each of its legs is a 3 DOF pantograph
that translates the motion of each actuator into a pure Cartesian translation
of the foot (each actuator translates the foot along one axis). This special
linkage removed the burden of computing kinematic solutions to foot trajec-
tories thereby signilicantly simplifying control. Each foot had two contact
sensors at the bottom and around each foot.

The PVII uses closed loop control, and traverses rough terrain by imple-
menting reflex-like control. The sensors on each foot sense when the foot
is pressing against anything and how hard. This enables the robot to use

106

,- r.. , W, ýi,
,7-

-

its feet as sensing probes to initiate three reflex-like algorithms. If a foot
switch signals contact as the foot advances forward, a reflex-like algorithm
causes the foot to be pulled back, lifted, then advance forward again. An-
other reflex-like algorithm causes support legs to push downward if a load
cell in the foot indicates it is not bearing an adequate vertical load. The
third reflex-algorithm causes the leg to lift higher if the foot makes contact
with an object during the swing phase. An oil-damped pendulum measuring
body inclination triggers a fourth reflex which causes the relative altitude of
the feet to be adjusted so the body remains level'.

The control scheme of the PVII and Hannibal are similar in two respects.
The first similarity is reflexive control. The PVII's reflex-algorithms enable
the quadruped to climb up and down steps of arbitrary height and step length
without a model of the terrain and without human intervention. Similarly,
several of Hannibal's rough terrain agents such as the find-foothold agent or
step-high agent give the legs reflexive behaviors. The second similarity is
simplification of leg control. The legs of the PVII were specifically designed
to simplify the joint angle coordination problem. In essence, the linkage
design computes the inverse kinematic solutions to move the foot along a
desired trajectory instead of the computer. Hannibal simplifies the joint
coordination problem by continuously sensing the legs' interaction with the
terrain. For example, instead of computing the angles for a specific trajectory
which causes the leg to step over a ditch, Hannibal uses its leg sensors to tell
it when it is stepping on a good foothold. If it is not stepping on a good
foothold, it uses its sensors to help find a good foothold.

5.7.3 Adaptive Suspension Vehicle

The Adaptive Suspension Vehicle (ASV) was built in the mid '80s at Ohio
State (Song & Waldron 1989). The ASV is a large hexapod vehicle designed
for self contained locomotion on natural terrain. It stands 10ft tall, 15ft long,
and weighs 3 tons. The 3 DOF legs are pantographs that used displacement
hydraulic pumps to drive the joints.

The ASV traveled on rough terrain without global information. An oper-
ator rides in ASV to provide steering and speed commands while computers

31n later work (Hirose 84), the free gait problem was investigated in simulation using
a hierarchical controller. The solution to the free gait problem and how it relates to
Hannibal's control scheme has already been discussed.

107

control the stepping motions of the legs. It used force sensors in the leg
actuators and a force distribution control algorithm to accommodate varia-
tions in the terrain-without foothold selection or planning. In the absence of
a visual sensor or human foothold selection, the ASV has demonstrated its
ability to travel on gentle slopes, walk through a muddy cornfield, and walk
over railroad ties.

Hannibal and the ASV share the task of rough terrain traversal; how-
ever, the purpose of the two systems is quite different. Consequently, the
two systems were designed to address different aspects of the rough terrain
locomotion problem. The intent of the ASV was to build a legged "truck"
that an operator could drive in rugged terrain. The constraint of carrying an
operator has two important implications for the control of the ASV. First,
stability is an extremely important issue if a person is on board the vehicle.
Second, the vehicle should offer a fairly smooth ride so the operator doesn't
get jostled about. Hence the control of the ASV concentrated on force distri-
bution to address these considerations. In contrast, Hannibal was designed
to be completely autonomous. Stability is an important issue, but falling
for Hannibal is not as devastating as it would be for the ASV. In fact, one
advantage of Hannibal's small size is the superior strength to weight ratio
over larger systems. The superior strength to weight ratio helps the robot to
survive a fall.

5.7.4 Ambler
The Ambler is an autonomous hexapod built at CMU in the early '90s
((Krotkov & Simmons 1992), (Krotkov et al. 1990), (Nagy, Whittaker &
Desa 1992)). The Ambler is huge, standing approximately 18 feet tall and
weighing about 2500 kg. Its 6 legs are arranged in two stacks on central
shafts. Each leg has 3 DOF: a revolute shoulder, a revolute elbow, and a
prismatic vertical axis. A six axis force sensor is mounted on each foot and
a 3-D scanning range finder is mounted on top of the robot.

The Ambler locomotes over rough terrain using a traditional central-
ized control scheme. Locomotion is functionally decomposed into perception,
modeling, planning, and control. The perception module uses the 3-D scan-
ning range finder to gather terrain data. The modeling module uses this data
to construct and maintain a local terrain map that can be used for locomo-
tion guidance and short range navigation. The planning module is divided

108

into two parts: the gait planner and the leg recover planner. The gait plan-
ner chooses footholds and body advances based on the local terrain map. It
computes cost maps to indicate the "goodness" of each potential foothold on
a 10 cm grid. Different cost maps are made of the terrain based on different
considerations such as stability and reachability. The gait planner combines
cost maps using weighted sum and selects footholds on the grid with the low-
est cost in the composite cost map. The leg recovery planner determines the
trajectory that gets the foot to the desired foothold without hitting obstacles.
It creates a configuration space for the elbow and shoulder joints by growing
terrain obstacles and other legs by the radius of the foot plus an uncertainty
factor, and then searches the space using the A* algorithm for the minimum
cost path to the goal. These trajectories are sent to the control module where
they serve as the intended set of walker motions that comprise the next gait
cycle. The control module evaluates the effect of these planned motions on
the walker-terrain interaction. This is done by predicting and assessing the
foot forces resulting from the planned motion. If the predicted foot forces
are acceptable, the walking cycle proceeds: first the body attitude is leveled
into acceptable range, second the body altitude is brought to desired height,
third the vertical actuators are locked out, fourth the body is propelled hor-
izontally, and fifth the leg executes the recovery phase. Once the leg steps
and makes ground contact, the new foothold is evaluated for stability for
subsequent walker motions. If foothold is acceptable, the next planned gait
cycle proceeds. Otherwise the gait planner chooses a new foothold location
and determines the corresponding leg motions to realize the new foothold.
There is also a reactive element of the control module whose function is to
bring the body close to level in case of dynamic support failure. Using this
control scheme, the Ambler is able to walk across obstacle fields with rolling
sandy terrain, ditches, 300 ramps, and boulders that fit under the Ambler's
legs and body.

The control concerns of Hannibal are diametrically opposed to the control
concerns of the Ambler. Many of these differences result from the drastically
different scale of the two physical systems. The Ambler stands 18 ft tall.
Stability is of critical importance to the Ambler because of its enormous
size. To insure stability, the Ambler plans every step and body movement
with great care. It builds terrain maps so the Ambler can carefully select its
footholds. Foot placements are chosen so the center of mass of the system al-
ways remains in the conservative polygon of support. Foot placement forces

109

are analyzed in detail before and after the step is taken to insure the terrain
supports the robot, and the foot will not slip. Leg trajectories are planned so
no leg collisions occur during the return stroke, and only one leg performs a
return stroke at a time. Body altitude and attitude are carefully monitored so
the system does not become unstable. To perform the required computation
in reasonable time, the perception, modeling, planning, and control are im-
plemented in a task control architecture using several dedicated processors.
In extreme contrast, Hannibal stands 8 inches tall and assumes stability. Its
low, broad stance is extremely stable, and falling is not a concern because
the spine motor is designed to rotate the legs to a standing position if the
robot finds itself on its back. " The emergent wave gaits generated by the
locomotion network keep the center of mass within the polygon of support.
Since it's survivability does not require the robot to carefully plan its gaits,
planning and modeling are not necessary for the robot to wander over rough
terrain. Instead it uses many sensors to continuously monitor its interaction
with the terrain, and uses this information to govern its actions.

5.7.5 Ghengis

The locomotion network presented in chapter 4 is extended to enable Ghengis
to traverse rough terrain as shown in figure 5.14. The rough terrain capabili-
ties presented in Brooks (1989) include force compliance, pitch stabilization,
and walking over low obstacles.

* The beta force machine and beta balance machine written for each leg
implement active compliance with the terrain. The force machine mon-
itors the forces on the beta motor during the step phase. The beta
balance machine sends out a lift-up messages when this force is too
high. It has a small dead-band where it sends out zero move messages
that pass through the defaulting switch on the up-leg trigger machine
and eventually suppresses the leg down machine.

e The alpha collide machine is responsible for lifting the leg higher on
the next step if the leg suffers a swing collision. It monitors the alpha
forces during the swing phase and writes a higher value to the height

4It is feasible that the robot would survive a moderate fall given it's strength to mans
ratio. The strength to maw ratio improves as the system decreases in size.

110

Figure 5.14: Genghis rough terrain network.

register of the up-leg trigger machine if the alpha force is large. The
up-leg trigger machine resets this value on the next step.

* The feeler machine written for each whisker is responsible for lifting a
front leg higher for the next step if the whisker on the same side suffers
a collision.

*The forward pitch machine and backward pitch machine are responsible
for minimizing the pitch of the robot. These machines monitor the
high-pitch conditions on the pitch inclinometer and inhibit the local
beta balance machine output in the appropriate circumstances.

Inter-leg communication is the most significant difference between Ghengis'
and Hannibal's rough terrain networks. As described earlier in this chapter,
inter-leg communication enhances the cooperation between the legs. Ghengis
does not have this capability, and its legs function less as a team because of
it. For example, when Ghengis approaches a tall obstacle the local behavior
of the leg causes it to lift higher. However, if the leg does not succeed in

111

clearing the obstacle, the other legs do not know that the front leg is having
problems. Consequently, they continue to walk forward thereby repeatedly
shoving the front leg into the obstacle.

In general, Genghis implements fewer rough terrain capabilities than Han-
nibal. Genghis has no means for sensing terrain depressions, so it falls into
holes and walks over ledges. Genghis is also more limited in the steepness of
slopes it can handle. Genghis does not have a spine DOF like Hannibal, so
Genghis' center of mass falls outside its polygon of support once the terrain
becomes too steep. Genghis also does not have any time-varying behaviors
such as adapting its gait to suit terrain difficulty. As a result, Genghis is
more limited than Hannibal in the types of terrain it can handle.

5.8 Contributions

The work described in this chapter makes several contributions toward the
advancement of autonomous hexapod control. First, we have implemented
various rough terrain tactics used by insects on Hannibal. By doing so, we
have demonstrated how fully distributed, biologically inspired rough terrain
capabilities can be applied to legged robots. Second, by testing Hannibal on
various test terrains, we have demonstrated that local control with cooperation
is an effective means of controlling a complex system (systems consisting of
several concurrently running subsystems) in a complex environment. Third,
we have implemented rough terrain capabilities on Hannibal comparable to
those of sophisticated walkers, but on a dramatically smaller scale and requir-
ing significantly less computing power. In doing so, this work advances the
state-of-the-art of fully distributed, biologically inspired legged locomotion
control for rugged terrain.

112

Chapter 6

Fault Tolerance

This chapter presents Hannibal's fault tolerance capabilities. In the following
sections, We define the task and present the issues involved in designing
our fault tolerant system. Following this, we motivate our approach and
present our implementation in detail. Then, we describe the tests we used to
evaluate the performance of our system and discuss our results. We conclude
by comparing our system to similar work in the field.

6.1 The Fault Tolerance Challenge

For Hannibal, having many sensors and actuators is a double edged sword.
Multiple sensors provide more reliable sensing and a richer view of the world.
More actuators provides more degrees of freedom. However, more compo-
nents also means there's more that can fail and subsequently degrade per-
formance. Physical failures can be attributed to either mechanical failure,
electronic failure, or sensor failure. Subtle changes in the state of the robot
such as sensor signal drift also degrades performance. Hannibal's task is to
locomote in rough and hazardous environments. As it scrambles along, it
can subjected to repeated bumps, snags, and stresses. This places significant
wear and tear on Hannibal's hardware. Not surprisingly, components fail or
uncalibrate over time.

Hannibal experiences various types of sensor and actuator failures. Other
types of failures can occur, such as computing system failures or software fail-
ures, but these failures occur far less frequently. Sensor failures are the most

113

common failure on this robot. Hannibal experiences a sensor failure approx-
imately once every two weeks. These failures have a variety of causes. For
instance, sensor wires break because of the stress the moving joints subject
them to. Sensor mounting problems such as insufficiently clamped joint angle
potentiometers cause signal drift. The reference value of the strain gauges
drift over time as well. The metal case of the joint angle potentiometers are
not electrically isolated well from rest of system which can cause erroneous
sensor readings. The second most frequent type of failure are actuator fail-
ures. Actuator failures occur about once every three months. The shaft of
the shoulder motor has a tendency to break off over time. Sometimes motor
clampings loosen so the motor rotates within its mount. As the motor rotates
in its mount, the motor's drive signal wires twist and eventually break from
stress.

Fault tolerance is implemented on Hannibal using a distributed network
of concurrently running processes. To tolerate hardware failures, a set of fault
tolerance processes are written for each component. These processes are re-
sponsible for detecting faults of their respective component, and minimizing
the impact of the failure on the robot's performance. By exploiting concur-
rency and distributedness, the system monitors, detects, and compensates
for component failures simultaneously.

The fault tolerant network addresses the following objectives:

"* Fast response time to failures: Hannibal operates in a hazardous en-
vironment. Consequently, Hannibal must detect and remedy failures
quickly or else its safety may be jeopardized. This means failures must
be detected and compensated for before system performance degrades
to an unacceptable level.

"* Graceful degradation of performance: Hannibal's performance must
degrade gracefully as failures accumulate. This requires Hannibal to
maintain the highest level of performance possible given the functional
state of the hardware.

"• Access to all reliable resources. More sensors and actuators enhance
system performance provided they are functional. Hence, Hannibal
should reincorporate the use of repaired components.

"* Fault coverage: The robot can suffer from a variety of failures. Failures
can be permanent or transient. Some failures have a local effect while

114

system

Application Software Level

scdon -- e . I a I high W

Hardware Level

Figure 6.1: Sensor and actuator failures effect these levels of Hannibal's
system hierarchy.

others have a global effect on performance. Sensors may uncalibrate.
Furthermore, the robot should be able to recover from different combi-
nations of failures. Failures can occur individually, concurrently with
other failures, or accumulate over time.

6.2 Confinement of Errors

Sensor and actuator faults affect various levels of Hannibal's system hierarchy
as shown in figure 6.1. The sensor-actuator hardware level is the lowest level,
low level control is the intermediate level, and behavior control is the highest
level. The low level control is equivalent to the Sensor-actuator Level of the
control architecture, and the high level control is equivalent to the Basic
Locomotion and Rough Terrain layers of the control architecture. Clearly
sensor or actuator failures affect the hardware level of the system. Sensor
failures affect the low level control because the virtual sensor agents use
information from real sensors to compute their results. Consequently, sensor
failures may cause the virtual sensor results to be incorrect. If this is indeed
the case, then the high level control is also affected by sensor failures. The
virtual sensor agents are responsible for activating the correct behavior at the
appropriate time. However, if the results of the virtual agents are incorrect,

115

- - - - -l I Ip~~ idwa

amddwoeLee o SoftwareI I
sensor arlbtrator

shoulder pot.A I

shoulder pot. taly x 1 2 m contr

IC

Figure 6.2: Replication of components is often used at the hardware level to
make the system tolerant of hardware failures.

then the wrong behaviors will be activated.
It is important to detect and confine errors to the lowest possible level

in which they occur. If an error is not confined to the level in which it
originated, then higher levels must detect and compensate for the fault. As
an error propagates up the levels of the system hierarchy, it affects increasing
amounts of system state. Longer response times to error correction means the
error manifestations become more diverse. Hence, detecting and confining
errors to the lowest possible level of the system hierarchy maximizes the
effectiveness of the recovery procedures and minimizes the impact of the
error on system performance.

6.3 Levels of Fault Tolerance

Given that hardware failures affect various levels of the system, fault toler-
ance techniques can be implemented at each level. Below, we present possible
fault tolerance strategies for each level, and describe the merits and short-
comings of each method.

6.3.1 Replication of Hardware

116

Given we are concerned with sensor and actuator failures, reliable sensing and
actuating hardware is desirable. Replication of hardware is commonly used
to enhance hardware reliability. Several systems, such as those presented in
(Gray 1990) and (Siewiorek & Johnson 1981), use this approach to achieve
robustness. In Hannibal's case, this would correspond to replicating sensors
and actuators. For a sensing example, multiple potentiometers could be used
to sense a particular joint angle as shown in figure 6.2. An arbiter gathers
the joint angle values of each potentiometer and sets the accepted joint angle
value to be the most common value. The application software uses this value
as the joint angle. Failure of a joint angle sensor is detected if its value
does not agree with the other sensors' values. However, the failure is masked
because the most common value is accepted as the actual value. Assuming
the majority of the potentiometers work properly, recovery from the failure
is immediate because the software is given the correct joint angle value.
Consequently, hardware failures are detected and confined to the hardware
level of the system hierarchy.

Ideally we could detect, confine, and correct hardware errors at the hard-
ware level. By doing so, the application software need not be alerted to these
failures. However, this approach has some drawbacks. First, replication of
sensors and actuators is expensive. Second, it assumes that a majority of
replicated components are working. Ideally, Hannibal should perform reli-
ably with a minority of functional sensors. Third, Hannibal's size and weight
constraints restrict how may sensors and actuators can be mounted on the
robot. Therefore it is impractical to enhance sensing or actuating capabilities
on Hannibal by using this approach. However, Hannibal was designed with
multiple sensors and actuators that provide complementary capabilities. For
example, Hannibal can use several different sensors to detect ground contact,
and it can lose the mechanical function of a leg and still walk. Hannibal's
control system must be clever in the way it uses its existing sensors and
actuators to compensate for sensor or actuator failures.

6.3.2 Redundant Control Behaviors

Fault tolerance techniques using redundant sets of control strategies have
been investigated in Payton, Keirsey, Kimple, Krozel & Rosenblatt (1992).
The redundant strategy approach implements fault tolerance in high level
control and addresses high level failures. For example, a high level failure oc-

117

High Level ApplcMaton Software I

pltchup withI
fins no

I pitch up wfth forward (
ballast prorac

Iincrease buoyancy to) select perfoWTI8Jnc
cI switchevaluator

use p t

Figure 6.3: Robust behavior can be implemented using redundant strategies.

curs when the robot encounters a situation it was not explicitly programmed
to handle. In the redundant strategy approach, the controller is designed
with redundant strategies to perform a task. A performance model exists for
each strategy, and a failure is detected if the behavior's actual performance
is worse than the behavior's expected performance. If the first strategy tried
does not suffice, the controller eventually tries another strategy. The con-
troller goes through its repertoire of strategies until it finds a strategy with
acceptable performance instead of unsuccessfully trying the same thing over
and over. Payton et al. (1992) gives an example of an autonomous submarine
trying to avoid the ocean floor (figure 6.3). There are several strategies the
submarine can use to avoid the bottom: pitch up using fins, pitch up using
the forward ballast, increase buoyancy, and use prop to back away from the
bottom. The preferred strategy is to pitch the vehicle up using the fins. If
the fin actuator is broken the submarine will not adequately avoid the bot-
tom using this approach. After the controller determines the submarine is
not avoiding the bottom well enough, it recovers by switching to the pitch
up with forward ballast strategy. If the performance is still unsatisfactory,
the controller continues to try other strategies until the performance is ac-
ceptable.

The redundant strategy approach is not well suited for hardware failures.
First, it does not specifically address the cause of the problem, it only ad-

118

dresses the symptoms. It may take several tries before the controller finds a
strategy that works. For example, let us say Hannibal has redundant walk-
ing behaviors - each behavior implements a different gait. If a leg fails, some
of these gaits are unstable. The redundant strategy approach requires that
Hannibal undergo unstable locomotion until the controller finds a gait that
is stable with the loss of that leg. It is more desirable if Hannibal could
recognize which leg failed and adapt its gait to specifically address the fail-
ure. Second, the redundant strategy approach inherently requires that the
hardware errors manifest themselves in the robot's behavior before the con-
trol system can detect something is wrong. Ergo, the performance of the
infected behaviors must degenerate to an unacceptable level before the con-
troller takes corrective action. This could be detrimental to a robot that must
function in a hazardous environment. Take for example, the case where a
sensor used by the step-in-hole virtual sensor is broken. The performance of
the step-in-hole virtual sensor would have to sufficiently degrade before the
control system would take notice of the failure. It would be unfortunate if
Hannibal's control system had to wait until Hannibal walked off a cliff be-
fore it could determine the step-in-hole virtual sensor wasn't working well.
Hannibal's survival could depend on detecting, masking, and recovering from
errors in the low level of the control system - before the errors infect high
level behaviors.

6.3.3 Robust Virtual Sensors

Hannibal's controller uses robust virtual sensors to confine hardware failures
to low level control. Robust virtual sensors are virtual sensors which remain
reliable despite sensor failures (figure 6.4). Recall that the virtual sensors are
responsible for characterizing the robot's interaction with its environment
using sensor information, and for activating the robot's behaviors. If the
virtual sensors give the correct output despite sensor failures, then the robot
will continue to do the right thing at the right time despite these failures.
For example, if the ground-contact virtual sensor can correctly determine
ground contact despite failure of the force sensor, the behaviors that use
ground contact information will not be affected by this failure.

Robust virtual sensors are appealing because they confine the effect of
faults to low level control and prevent errors from infecting high level control.
This approach effectively compensates for local failures. Local failures (also

119

Hr s' I Low L*MAWNconSoftww I gh L& AMppstica Softmi

Ik I •U behavior coi loc
I I

I. I

Figure 6.4: Robust virtual sensors remain reliable despite sensor failures. We
use them to make Hannibal tolerant of sensor failures.

called non-catastrophic failures) are failures whose effect is confined to the
leg on which it occurs. For example, the failure of a leg's ankle sensor is a
local failure because it affects that leg's ability to sense ground contact, but
it does not affect the ability of the other legs to sense ground contact.

Unfortunately, it is not possible to confine the effects of all sensor-actuator
faults to low level control. Some failures affect the behavior of the overall
system - we call these failures global .failures. Global failures (also called
catastrophic failures) must be compensated for within high level control. For
example, if a leg's shoulder actuator fails then the leg cannot support the
body. Consequently, this failure affects the global stability of the robot. The
high level control must compensate for this failure by changing the robot's
gait so the robot can walk in a stable manner with one less leg.

6.4 Adaptivity vs Redundancy

For the reasons presented above, we have chosen to compensate for local
failures within low level control and to compensate for global failures in high
level control. How should we implement the robust virtual sensors to address
local failures? How should we implement the high level behaviors to address
global failures? A common approach is to exploit redundancy to achieve ro-
bustness. To handle local failures, we could create redundant virtual sensors
for each leg-terrain interaction of interest to the controller. For example, we
could design three redundant ground contact virtual sensors that use differ-

120

ent sensors to sense ground contact. Each redundant ground-contact virtual
sensor would vote for either ground-contact - true or ground-contact -

false, and the verdict would be determined by majority vote. To handle
global failures, we could write redundant walking agents where each agent
implements a different gait. The controller could activate a given gait agent
depending on which legs have failed. However, we found that implementing
our fault tolerance capabilities using redundant agents was inappropriate for
our application (for reasons we present below). Instead, Hannibal's fault
tolerance capabilities are implemented using adaptive agents. The use of
adaptive agents distinguishes Hannibal's implementation of robustness from
other implementations.

We initially tried using redundancy to achieve robust virtual sensors on
Hannibal, but abandoned it for the following reasons. First, there is no way
the controller can obtain a reliable verdict once the majority of the sensors
fail. Second, code size grows significantly with this approach because multi-
ple virtual sensor agents are written for each leg-terrain interaction we want
to determine. Given Hannibal's small program memory this is an important
consideration. Third, once a sensor fails, all virtual sensors that use informa-
tion from that sensor become less reliable. Hence, a minority of sensor failures
could adversely affect the majority of redundant virtual sensors. Payton et
al. (1992) presents an example where all the virtual sensors that activate
avoid bottom behaviors use an altitude sensor. If tOe altitude sensor fails,
then the reliability of all these virtual sensors d -aerates. Consequently,
the avoid bottom performance of the submarine degrades with the failure
of one sensor. Finally, the inherent reliability of relýndant virtual sensors
is not uniform. Virtual sensors that use more sensory information generally
produce a more reliable result than virtual sensors that use less sensor in-
formation. For example, say we designed three redundant ground-contact
virtual sensors: GCPFA which uses position, force, and ankle information,
GCA which uses ankle information, and GCF which uses force information.
Hence, GCPFA is more reliable than both GCA and GCF. We may want to
reflect the relative believability of virtual sensors by weighting their votes
so that two less reliable virtual sensors cannot override the vote of a signifi-
cantly more reliable virtual sensor. However, if the position sensor fails then
GCPFA becomes less reliable than GCA and GCF. Suddenly we what GCA
and GCF to override GCpFA. In essence, the differences between the inher-
ent reliability of redundant virtual sensors, and the effect of failed sensors on

121

their reliability significantly complicate the arbitration process.
The approach Hannibal uses to implement robust virtual sensors is sub-

stantially different from the approach described above because it exploits
adaptivity instead of redundancy. One adaptive virtual sensor (instead of
several redundant virtual sensors) exists per leg for each leg-terrain interac-
tion of interest to the controller. As sensors fail, the adaptive virtual sensors
maintain reliable performance by changing how they use their sensor informa-
tion. For example, when a failure is detected, the appropriate virtual sensors
are alerted of the failure and respond by reconfiguring the way they uses
their sensory information. This entails ignoring the input from the broken
sensor and changing the way they use information from the reliable sensors.
In this manner, the virtual sensors use their most reliable sensors to produce
the most reliable result. If the failed sensor starts working again, the virtual
sensor reintegrates the previously failed component.

The approach Hannibal uses to tolerate catastrophic failures also exploits
adaptivity instead of redundancy. When a leg suffers a catastrophic failure it
is not usable. High level control must change the gait so locomotion remains
stable with one less leg. A redundant approach might involve implement-
ing redundant walking behaviors where each behavior exhibits a different
gait. This is undesirable because of the extra code space required to im-
plement each gait behavior plus the gait switching mechanism. In contrast,
the adaptive approach implements one walking behavior which can alter its
gait by changing a parameter. Low level control is responsible for detect-
ing catastrophic failures and alerting high level control. High level control
is responsible for adapting the robots behavior so that locomotion remains
stable.

6.5 Fault Tolerance Network

The following sections describe the distributed network that implements fault
tolerance on Hannibal. As with the rest of Hannibal's control system, fault
tolerance is implemented with concurrently running processes. Fault toler-
ance consists of four phases: error detection, masking, recovery, and rein-
tegration. Non-catastrophic faults affect local control. They are detected
within the low level network and compensated for within the virtual sen-
sors. In this way, these faults do not affect the high level performance of the

122

system. Catastrophic faults unavoidably affect global system performance.
They are detected within the low level control and compensated for within
the high level control.

In the following sections we illustrate Hannibal's fault tolerance processes
through an example. The example we use to illustrate tolerance to local
failures is a robust pound-contact virtual sensor. Keep in mind that this
example is of only one virtual sensor on one leg which uses only a few of the
sensors on that leg. Similar processes run concurrently on the same leg to
make its other virtual sensors robust as well. The example we use to illustrate
tolerance to global failures is a broken shoulder actuator. Similar processes
run concurrently on the same leg to tolerate other global failures as well. All
these processes are implemented on each leg and run simultaneously.

6.5.1 Detection

The detection processes are responsible for recognizing sensor and actuator
failures. Detection is the hard part of the fault tolerance problem because
the robot doesn't know a priori the correct behavior of the sensor. For
example, if the robot had an accurate terrain map, then it could compare
its leg's sensor readings with the terrain map. The robot could essentially
go through a process like "I know the ground is flat ahead, so when I step
down my sensors should eventually tell me I have ground contact", or "I
know there's a hole ahead, so when I step down my sensors should tell me
I'm stepping in a hole". If a sensor does not behave as expected, then the
robot can conclude that sensor is broken.

However, Hannibal does not know what its sensory outputs should look
like for any given step cycle. This is because Hannibal does not know what
the terrain looks like before hand. Furthermore, Hannibal cannot predict
what the terrain looks like because the terrain can change dramatically. For
example, Hannibal's leg sensors could tell it that the leg is stepping on the
ground one step cycle and stepping in a hole the next. In this case the sensor
outputs for both step cycles look different from each other, yet both are
correct. But there's also the case where the robot's leg sensors say the leg
is stepping on the ground when in reality the leg is stepping in a hole. The
robot does not know hi•ether its sensors are reflecting reality or not!

When should the rolot believe its sensors? Hannibal determines the
reliability of its leg sensors by evaluating the output of its leg sensors in the

123

context provided by both the time history of the leg motion and the output
of complementary leg sensors. To illustrate this idea more clearly, imagine
the following: you wake up in the morning and you want to know what the
temperature is outside. You look at the thermometer outside your window
and it reads 90 degrees Fahrenheit. However, you feel the window and find it's
ice cold. The temperature sensors in your hand complement the thermometer
reading. From evaluating the reliability of the thermometer in the context
provided by the temperature time history and complementary temperature
sensors in your hand, you conclude the thermometer is broken and ignore
it. Hannibal essentially goes through the same process to determine the
reliability of its sensors.

Sensor failure recognition is performed using two methods. The first
method exploits the context provided by the time history of the leg motion.
Remember, the robot does not know what the correct sensor behavior is for a
given step cycle. However, the robot does know the plausible leg motions be-
cause the plausible leg motions are the behaviors that have been programmed
for the leg. We call the set of plausible leg motions the model. If the leg sen-
sors reflect a plausible leg motion, i.e. they agree with the model, then the
robot has some confidence that the sensor is working. However, we could
still have the case where the robot's sensors do not reflect reality although
they reflect a plausible reality. For instance, a sensors could say the robot is
stepping on the ground when it is really stepping in a hole. To overcome this
problem, the second method exploits the context provided by complementary
sensors. If reliable complementary sensors agree with the sensor in question,
i.e. they confirm the robot is stepping on the ground, then the system has
more confidence that sensor. The confidence level in a sensor is reflected by
a pain parameter affiliated with that sensor. The pain level is the inverse
function of the confidence level.

Sensor Model

It is possible to model sensor behavior if the behavior of the leg is known.
Rotational potentiometers measure leg joint angle, strain gauges measure leg
loading and linear potentiometers measure foot loading. Hence the motion of
the leg and the leg's interaction with the environment directly affect sensor
output. To model plausible sensor behavior, we first classify the leg behavior
in terms of states. Each phase of the step cycle is divided into four possible leg

124

Ibuwa* i I I Imwont i tr

P I 9L a!• ki

V.• - ,

daaapot• eir. •ou•u gm~.. he •earpoU~ ear.

$mtat sMaN Stmdie Mae state M meption state

Figure 6.5: The relationship of sensor output to step cycle phase and leg
state for the sensors used by the ground-contact virtual sensor.

states: St,,,, Smi$•d., Sw, and $ v ,. The Stat, S,,mjic, and Sn, states
account for the typical behavior of the leg. The S•=•,Oj state accounts for
leg-terrain interactions that may occur during that phase but typically don't.
For example, during the step phase Sw corresponds to ground contact and
S. . corresponds to stepping in a hole. We assume the leg behaves as
programmed (unless a catastrophic failure occurs), so the constraints on the
transitions between leg states for each phase of the step cycle are known.
A set of sensor values corresponds to each leg state. From this sensor-state
relationship, we derive a model for plausible sensor behavior. The sensor
model consists of the expected transitions between sets of sensor values given
the plausible transitions between leg states. The transformation from leg
states to sensor values were derived experimentally by observing sensor values
as the robot walked through its environment. Figure 6.5 shows how sensor
output varies with step cycle phase and leg state for various sensors.

A process is written for each sensor that classifies the sensor's values into
leg states. These processes are called sensor-state processes. There can be a
several to one mapping between sensor values and leg states, so there can be
ambiguity as to which state the leg is in given a sensor value. During the step

125

phase, for example, the same ankle displacement value could indicate St.,t,
Smid, or S.. since the ankle is not compressed for all these states.
However, the constraints on the transitions between leg states reduces this
ambiguity. A properly functioning sensor's output indicates a sequential and
timely transition between leg states such that Star -- S,,i& --# Sd,,. The
constraint on when S.=,, occurs depends on the phase. For example,
S of the step phase indicates the leg has stepped in a hole, so it
occurs after St., and S,,m,•. If a sensor's output deviates from these leg
state transitions, the sensor is likely to be broken.

This approach to modeling the sensor behavior makes several assump-
tions. As mentioned earlier, it assumes the leg moves as programmed. This
is a reasonable assumption since the controller treats a leg as broken if it fails
to move as programmed. Consequently, further monitoring of the sensors is
not necessary. It assumes the sensor models are tuned to the robot's envi-
ronment (i.e. if Hannibal were to walk in mud the sensor behavior may not
look plausible although the sensors are ok). This is a reasonable assumption
since robots are typically designed to perform in a given environment. It also
assumes that failed sensor behavior and reliable sensor behavior do not look
alike (failed sensors aren't trying to fool you). It also assumes the reference
values used to compute the ranges are correct. Therefore the sensor reference
values used by the models must be updated to compensate for uncalibration.

Monitoring Individual Sensors

Each sensor has a process that monitors the sensor performance. These
processes are called sensor monitor processes and they exploit the context
provided by the time history of the leg motion. Figure 6.6 illustrates these
processes. Each sensor's monitoring process uses the corresponding model of
acceptable sensor-state transitions to detect sensor failures. Essentially, if a
sensor's behavior does not reflect plausible behavior, then the confidence in
that sensor decreases. Each process monitors the transitions between states
by recording when each state occurs. A clock variable is incremented every
0.1 second during each step cycle phase, and it is initialized to zero every
transition between step cycle phases. Each sensor monitoring process records
this clock value in the following manner: when the sensor value indicates
S,,, the clock value is written in T=t,.t, when the sensor value indicates
S,nndd. the clock value is written in T,idduC, and when the sensor indicates

126

sensor montior processes

lift state Model

clesme actvatlon

pain

pain

An~e Doi Ankle

Figure 6.6: The sensor monitor processes for the ground-contact virtual sen-
sor and step-in-hole virtual sensor.

S.wj the clock value is written in Tw. If the sensor value indicates S,,,
the appropriate time variable is updated according to when the exception is
expected to occur. For example, during the step phase the process updates
T.d when S.,. occurs because the possibility of stepping in a hole occurs
at the end of the step phase. Whenever a time variable is incremented, the
monitor process examines the contents of the time variables and checks that
a timely and sequential transition of leg states is upheld. If the sequential
and time constraints of state transitions are upheld, the process inhibits that
sensor's pain parameter, otherwise it excites it. Figure 6.7 presents run-time
data for the sensor monitor processes of the vertical force sensor.

Monitoring the Consensus of Sensors

Each step cycle phase has a consensus monitor process that monitors agree-
ment between complementary sensors. Figure 6.8 illustrates the consensus
monitor processes. The sensor-state processes categorize sensor values into
leg states; this provides a common measure for comparing sensor behavior.
The consensus monitor processes use discrepancies between sensor-state val-
ues of complementary sensors to detect sensor failures. As each leg moves
though its step cycle, each sensor casts one vote for each leg state that corre-

127

F1 output

Wine

Time reco•d of states

4

3-

2Agreement between sensor ans model on
7

16"

5
4
3
2

0+

F1 pain level from monitor sensor processes
146

44--

Figure 6At: Response of the sensor monitor processes to vertical force sensor
failure. Once the sensor fails, the actual sensor behavior frequently disagrees
with the modeled sensor behavior. Consequently, the sensor's pain level
increases.

128

sento dactivation

PlP-stme energy P1

F1 P1toe con rPpainF1slt W, Monitor F1 pain

ProcssesI

I n-Ankle pain

Figure 6.8: The monitor consensus processes for the ground-contact virtual
sensor and the step-in-hole virtual sensor.

sponds to its value. For example, ankle sensor - 0 corresponds to Sg.,t,
Smiddie, or S.,•, so the ankle sensor votes for each of these states. Every
0.1 second, the consensus monitor processes tally the votes for each state
and filter out votes for implausible states. Constraints on the motion of the
leg determines the plausible states of the leg. For example, given the last
state was S.t, the current -t- te could either be St, (provided the leg has
not been in this state too long), or it could be in Smjije. Hence St, and
Sidle are plausible states whereas S•j is an implausible state. The actual
state is taken to be the plausible state with the largest number of votes. If
there is a tie between plausible states, the actual leg state is taken to be
the sequentially higher state. Each time a leg state is elected, each sensor's
votes are compared with the newly elected leg state. If a sensor voted for
the elected state the consensus monitor process inhibits that sensor's pain
parameter, otherwise it excites it. Figure 6.9 presents run-time data for the
consensus monitor processes for the ground-contact virtual sensor.

Injury Agents

An injury agent for each sensor determines whether the sensor is working
or broken by monitoring the sensor's pain level (figure 6.10). As described
above, each sensor's sensor-monitor process and consensus monitor process
excite its pain parameter when a discrepancy occurs, and inhibit the pain
parameter when no discrepancy occurs. The level of the pain parameter

129

Elected leg state

excpfln.

and - =

mkidbd- C- w j ' w

F1 state vote

.xq:)Ir. a * == =

i I

atM 40 ~ 400000 Cn 040000

F1 pain level from monitor concensus processes

7-

5 .
4
3
2

0

Figure 6.9: Response of the monitor consensus processes to vertical force
sensor failure. Once the sensor fails, it disagrees frequently with the comple-
mentary sensors. Consequently, the sensor's pain level increases.

130

•, ,N-

Figure 6.10: The injuryagentsifrthvitaseos buwihsnos

Pa -W Pv pmni

fll F1ke " k
fl .lnI5: ' P1 vt-luuwi

Outpt fom F inuryagent

F1 dF1spai

Figure 6.10: The injury agents inform the virtual sensors about which sensors
are working and which sensors are broken.

Pain level from both monitor proousese

1 , .1

fi1 broken1

0.n

Output from F1 injury agent
F1 disabled

Figure 6.11: The injury agent of the vertical force sensor determines when
the sensor has failed. The output of the injury agent is "1" when the sensor is
working and "0" when the sensor is broken. It classifies the sensor as broken
once the pain level exceeds the threshold value (the maximum pain level is
15).

131

ground contct virua sensor

.I-I

Figure 6.12: Illustration of a robust ground-contact virtual sensor.

increass upon excitation and decreases upon inhibition. The injury agent
compares the sensor's pain level with a threshold value. If the pain level

exceeds the threshold, the injury agent declares the sensor is broken, and
when the pain level is below threshold, the injury agent declares the sensor
is working. See figure 6.11.

6.5.2 Masking

The masking processes are responsible for removing the effects of local faults
so that these faults do not affect high level behaviors. Masking is performed
by the virtual sensors. A minor form of masking is also performed by the con-
sensus monitoring processes. The injury agents continually inform the virtual
sensors and consensus monitor processes about which sensors are fumctional
or broken. Once informed of a broken sensor, the masking processes within
the virtual sensors and consensus monitor processes remove the effects of the
broken sensor.

To uphold the integrity of the elected leg state, the consensus monitoring
processes disregard information from broken sensors. Provided the elected

132

F1 failed
Fl-gc,

1G. / E l m k F1lfaglure

ground contact

I output uneffdcted by F1 failure

Figure 6.13: The virtual sensor continues to sense ground contact reliably de-
spite the failure of the vertical force sensor (ground-contact = 1 corresponds
to "true" and ground-contact = 0 corresponds to "false").

leg state is rorrect, the consensus monitor processes can detect valid disagree-
ments between a sensor's leg state vote and the actual leg state. However,
the wrong leg state could be elected if votes from broken sensors are hon-
ored. Therefore, if a sensor is faulty, the sensor consensus process removes
the broken sensor's votes ` the leg state election process. In this way, the
leg state is determined only by functional sensors, and the result remains
reliable despite failures.

The virtual sensors mask sensor failures by disregarding information from
failed sensors. To show how this is implemented, we use the ground-contact
virtual sensor as an example (see figure 6.12). The ground-contact virtual
sensor uses information from the shoulder potentiometer, the ankle displace-
ment potentiometer, and the vertical load strain gauge. Each sensor value
is passed through a filter. The filter outputs true if the value satisfies its
condition for ground contact, otherwise it outputs false. The filtered re-
sults are sent to a decision process that combines these results to determine
whether the leg is contacting the ground or not. This process also receives
inputs from the injury agent of each sensor. If an injury agent declares its
sensor is broken, the decision process ignores the broken sensor in computing
the output. Consequently the final ground-contact decision is made only by

133

Pain level response to rnmte erro

S
76
5
4
32
o I.I P1 iJi.: lal. il11li: l:

Figure 6.14: The effect of transient errors are filtered out by the pain mech-
anism.

functional sensors. Figure 6.13 presents run-time data of the masking process
performed by a ground contact virtual sensor.

6.5.3 Recovery

The purpose of recovery is to return the system to an operational state once
components fail. The new operational state should have as many of the
original resources available as possible, and the transition to this new state
should have minimal impact on normal system operation. We want the sys-
tem to recover from transient errors as well as permanent errors. Transient
errors result from occasional erroneous sensor values or sensor drift. Per-
manent errors result from sensor failure. Recovery takes three forms: retry
addresses transient errors, dynamic recalibration addresses sensor drift, and
reconfiguration addresses permanent failures.

Retry

Erroneous sensor values are filtered out by the pain mechanism. In essence,
the pain mechanism provides a means for "retrying" a sensor if it produces a
bad value. Instead of calling a sensor broken after it produces an erroneous
sensor reading, the pain mechanism continually adjusts the pain level of
the sensor. The pain threshold of each sensor is set such that a series of
errors must occur before the pain level rises above threshold. However, since
the error is transient, the sensor displays normal behavior during subsequent
cycles, and the pain level diminishes. In effect, occasional errors are averaged

134

po spate
Pl:20TM assifier

dyDamic R._elbrto

crecabs ten f

Figure 6.15: The updated reference values are sent to the sensor-state pro-
cesses.

out and carry little weight for determining whether a sensor is functional or
broken. Figure 6.14 illustrates the pain level's response to spurious sensor
values.

Dynamic Recalibration

Dynamic recalibration processes are written for each sensor. These processes
update t's look at the e bte sensor model processes. Examples
of reference values ae pl-max, pl-min, p1-max, fp-sNh, ankle-rest, etc..
These values are used to compute the state transition values for the sen-
sors. It is important to deal with sensor uncalibration because the sensor
models become less accurate as the reference values become less accurate.
The dynamic recalibration behaviors assume sensor gain remains constant;
hence any uncalioration is attributed to DC offset only. This is a reasonable
assumption given Hannibal's leg sensors.

To illustrate how the dynamic recalibration agents update the reference
values, let's look at the pl-recalibrate agent as an example. The reference
values for the shoulder potentiometer axe pl-max, pl-atin, pi-support, and
pl-command. PI-max corresponds to the largest potentiometer value when
the leg is lifted, pi -in corresponds to the smallest potentiometer value when
the leg has stepped down (i.e. stepping into a hole), pi-support is the ini-
tial position the leg moves toward to find ground contact, and pl-command
is the commanded lift position. Updating pl-max involves monitoring the
potentiometer during the recover phase and finding the value at its high-
est point. The dynamic recalibration process sets this value to the updated
pl-maax value. Updating pl-min is somewhat problematic since the robot

doesn't step into holes frequently. Consequently, the p1-mn value could sig-

135

I I

I Ipolte

P1 data
250.
200.

150

100

50 .

Updated P1-ma va_.
250',
200 - I -.. mU

U I.

150 7

100-

Rea~raedreference values

200 - P1-max

150

100 P1-min
50

0 1 d"e

Figure 6.16: Dynamic recalibration takes place during the recovery phase.

136

PAR b n n s oo v*Wu semnso
w funadonal senors

vft acdW k

- 200 200 3
"Wly

pund fa 2W00 2W0 a

poelMM 20 200 9
WA"

po2on 200 200 120

Figure 6.17: Performance of the ground-contact virtual sensor as a function
of sensors used. The reliability is maintained at the expense of response
time as fewer sensors are used. The slower response time is reflected by the
'pause' column. The robot does not proceed to the next step cycle unless
all stepping legs attain ground contact. Thus, if the ground contact decision
takes longer, the robot waits an additional time interval between steps. This
reduces the walking speed of the robot.

nificantly drift before the pl-recalibrate agent has the opportunity to update
the p1-min value. To overcome this difficulty, the pl-recalibrate agent com-
putes the updated pl1-mn value from the updated p1-max value and sample
pl1-ax and p1-,in values stored in memory (these sample values are deter-
mined experimentally). Once updated, the pl-recalibrate agent sends these
values to the shoulder potentiometer model process (figure 6.15). Figure 6.16
presents dynamic recalibration data for the shoulder potentiometer.

Reconfiguration

As sensors fail we want system performance to degrade gracefully. In fact, we
want to maintain the highest level of performance given the functional state

137

of the robot. To accomplish this, the virtual sensors specifically tailor their
use of sensor information to minimize the impact of sensor failures on virtual
sensor performance. Virtual sensor performance consists of reliability and
response time. We have found, by experimental means, that virtual sensors
perform better as more sensors are used.

The virtual sensors can achieve faster response times without compro-
mising reliability, provided sufficient quantity and type of sensors are used.
To illustrate this, we look at the ground contact virtual sensor as an exam-
ple. The ground-contact virtual sensor uses information from three types of
sensors to ascertain leg loading: shoulder position, ankle displacement, and
vertical force. Velocity and position are the only types of information the
position sensor offers to determine loading. Loading can be inferred from the
position sensor when the leg is pre maturely stopped above its lowest possi-
ble position. The force and ankle sensors directly measure loading and do it
faster than the position sensor - the leg does not have to stop moving before
they signal loading. Thus, if only the position sensor is working, the leg
must come to a complete stop in the vertical axis to satisfy the condition for
ground contact. However, if a force or ankle sensor is working, the condition
for the position sensor can be relaxed so that it is satisfied sooner. In this
case, the position sensor satisfies the condition for ground contact if either
the downward velocity is sufficiently small or zero. Similarly, if all sensors
are working, the conditions for the force and ankle sensors can be relaxed
as well. Hence, the response time of the ground-contact virtual sensor can
be sped up if more sensors are used without compromising reliability. Fig-
ure 6.17 presents our results for how performance relates to the number of
sensors used for a ground-contact virtual sensor.

6.5.4 Reintegration

The robot's performance is enhanced if more sensors are used. The purpose
of reintegration is to reincorporate repaired sensors so the robot uses the
maximum number of reliable sensors. Repaired sensors are sensors that were
previously faulty but behave well again. Reintegration is useful if a sensor is
broken and then fixed, or if the sensor was incorrectly classified as broken.
In either case, we call a sensor 'broken" if it's pain level is above threshold,
and we call it "repaired" if the sensor's pain level rises above threshold and
then lowers below threshold.

138

Nmor mcmms

Figure 6.18: Both the sensor monitor processes and the consensus monitor
processes assist in reintegratng repaired sensors.

Both the sensor monitor processes and sensor consensus processes induce
reintegration of repaired sensors (figure 6.18). They accomplish this by in-

hibiting the pain parameter. If a failed sensor exhibits normal behavior, the
sensor's behavior agrees with the modeled behavior again. Consequently,
the sensor monitor process inhibits the pain parameter. Similarly, if a failed
sensor exhibits normal behavior, the sensor behaves in consensus with other
functional sensors again. Consequently, the sensor consensus process also in-
hibits the pain parameter. Eventually, the sensor monitor process and sensor
consensus process lower the sensor's pain level below threshold. Once this
occurs, the sensor's injury process tells the virtual sensors that the sensor is
working. The virtual sensors respond by reincorporating the repaired sensor
in computing their output. Hence, the influence of the repaired sensor is
reintegrated into the control system. Figure 6.19 presents run-time results
for reintegration of the ankle sensor.

139

200-, ,anke date

ox~l -o nt

end M__
mid- - w cw

start _______ _____________

time

Anklmes in An stat ote

"ime

.8 l agiemes n t wId stat es endi•

I~mI
4-

Ankle pain I..l..
ime

time
Figure 6.19: Once the ankle sensor is repaired, the sensor monitor processesand consensus monitor processes reduce the pain level of the sensor

140S.. , , , n u uii1

A A A

F1 pin I"

15

10AI

:I A A

0 -I M

Figure 6.20: When the shoulder actuator fails, the shoulder position sensor,
the ankle sensor, and the vertical force sensor look as if they have failed.

6.5.5 Catastrophic Failures

Global failures are detected in low level control, but must be compensated
for in the high level control. Hip actuator failures, hip potentiometer failures,
shoulder actuator failures, and shoulder potentiometer failures are global fail-
ures. These failures effectively prevent the leg from behaving as programmed.
This is obviously the case if an actuator fails. If a joint angle potentiometer
fails, the servo processors have no way of knowing the positional error, so
they cannot servo the actuator. In the event of a global failure, the leg is
rendered not usable, so the robot must modify its behavior to function with
fewer legs.

Detection

Global failures are detected by the same processes used for detecting local
failures. Potentiometer failures are found using their respective sensor mon-
itor process and consensus monitor process. Actuator failures are inferred
through concurrent failure of sensors whose behavior depends on that ac-

141

shoulder motor disabled
p1 -ok

0fl-ok
1

0 ankle-ok

------ ------------------
0 ground-contact
1 - --- -- --

0 ----- _

Figure 6.21: If the shoulder actuator fails, the ground-contact virtual sensor
masks its output from the high level control.

tuator working. Once an actuator fails, all dependent sensor models are
invalid. Consequently, the corresponding sensors look as if they have failed
even though this may not be the case. If the shoulder actuator fails, for ex-
ample, the ankle sensor, vertical loading sensor, and shoulder position sensor
all appear broken to the monitoring processes (figure 6.20). Once a global
failure occurs, it is irrelevant whether the local sensors appear broken because
the leg is not usable anyway. The detection of global failures can be reduced
to detecting potentiometer failures only. This is the case since the monitoring
processes detect joint angle potentiometer failure when either type of global
failure occurs.

Masking

Once a leg fails, the output of its ground-contact virtual sensor is not valid.
The ground-contact virtual sensors of the stepping legs influence when the
next step cycle occurs. Each recovering leg inhibits the supporting legs from
proceeding to the next step cycle until it attains ground contact. Thus,

142

low level control high level control
lesion mechanisms

P"ig gnt lesioh-tv77-

pipain I!leg-pain _ , ,%edi

Figure 6.22: The leg-pain parameter and leg-injury agents are affiliated with
high-level control.

it is important to mask the effect of non-valid ground-contact virtual sen-
sors or else they may adversely affect the robot's gait. To prevent this
from happening, the output of the ground-contact virtual sensor defaults
to ground-contact = true for all broken legs (figure 6.21). By doing so,
the effect of renegade ground-contact virtual sensors on the robot's gait is
removed.

Recovery

Given a global failure, high level control agents compensate by lesioning
the broken leg. Each leg has a lesion mechanism which is responsible for
lesioning the leg once it suffers a global failure. Within high level control,
each critical potentiometer has a leg-pain parameter and a leg-injury agent
associated with it (figure 6.22). Each leg-injury agent receives messages from
its corresponding low level potentiometer injury agent every 0.1 second. If a
message indicates the potentiometer is broken, the corresponding leg-injury
agent excites the appropriate leg-pain level. The leg-pain level automatically
decays every three seconds. If a leg-pain energy level rises above the lesion
threshold, the corresponding leg-injury agent activates the lesion behavior.
The lesion behavior disables the leg and adopts a gait that is stable without
the use of the damaged leg (figure 6.23). The lesion behavior is described in
chapter 4.

143

Recovery response to motor failure
11ankle-ok

1 fl,-ok

0 1
Spl'ok

adaptgaMo± i

II

1.-slow I,,

S.•esioni'l---'

leg pain
16-
14

12
10

8

6-
4.

2

Figure 6.23: When the shoulder actuator fails, the system responds by le-
sioning the leg.

144

logpainu

14- leg failed leg failed
12- I
10

8-1

I -

cor time

Figure 6.24: The system occasionally retries to use the leg. If it works again,
the system reincorporates the use of that leg.

Reintegration

If the broken leg is repaired or the leg was wrongly determined to be broken,
high level agents reintegrate the leg. This is accomplished by occasionally
testing the leg to see if it is functional again. Leg reintegration is performed
by the lesion mechanism. After the leg-pain level rises above the lesion
threshold, the leg-injury agent is prevented from exciting the leg-pain level.
Consequently, the leg-pain level decays slowly back towards zero. When the
leg-pain level lowers to the retry threshold value, the system tries to use the
leg and the leg-injury agent is allowed to increase the leg-pain level (figure
6.24). If the leg is still broken the leg-pain level raises above threshold, and
the process repeats. If the leg works the next time it is tested, the leg-pain
level decays to zero. Once this happens, the system acknowledges the leg is
functional again, de-activates the lesion behavior, and resumes using the leg.

6.6 Performance

6.6.1 Tests

Several tests were conducted to determine the system's response to various
types and combinations of failures. The tests involved inflicting the desired

145

Failures Addressed
f tlum etetd tpm offMUM oCoUranft of fulkMu fault toleranttechnique

pi high WMve
effect plx gait adptation

motor drift individuIal
local processor eg. Isson log

I concurrent l lull

fI permnaent accumulative roust vil sensor
la e anide

ag. ground contact
I Manis sep In W~e I

Figure 6.25: The system is tolerant of a variety of types and combinations
of failures

fault and observing its effect on the robot's behavior while the robot walked
through its environment. We tested sensors with a local effect and sensors
with a global effect. Permanent sensor failures were inflicted by disconnecting
the power, ground, or output wires to the sensors. Broken wires are the most
common cause of permanent sensor failure on Hannibal. Sensor uncalibration
was induced by adjusting the reference voltage offset of the sensor signals;
uncalibration also occurred naturally over time. Transient errors are difficult
to force but arose during the course of the tests. Different combinations
of permanent errors were tested as well. We disabled sensors individually,
concurrently, and sequentially over time. We repeated the concurrent and
sequential tests by disabling the sensors in v.arious permutations. Actuator
failures were evoked by disconnecting the wires to the motor. On one occasion
the shoulder actuator shaft sheared off, so we had the opportunity to test for
motor shaft breakage as well.

6.6.2 Results

The results of the tests described above are presented in figure 6.25. As
shown, the system is quite flexible and responds to a wide variety of types
and combinations of failures. We conducted the tests by evoking various
types and combinations of sensor faults on the left front leg (the same pro-
cesses run on the rest of the legs). The tests were performed while Hanni-
bal walked over flat terrain with holes and cliffs. Within this environment,

146

Response Time of System
reeorn tmeo rePon tdme @o rep nse ieofP1 1 PRO,- rcovery• rew"We.,m w

iobeJ gffect wi"hin 2 step cycles wMhin 2 step cycles within 2 step cycles

lo* effect less than 1 step cycle less on 1 stop cycle less than I step cycle

Figure 6.26: The fault tolerance processes have fast response times.

the interesting virtual sensors are the ground-contact virtual sensor and the
step-in-hole virtual sensor. Consequently, we focused our tests on the sensors
used by these virtual sensors and the actuators that affect the behavior of
these sensors. Hence, the sensors and actuators involved in the tests are the
shoulder potentiometer, ankle displacement sensor, vertical force sensor, and
shoulder actuator. It is interesting to note that the system responds to the
failure of a local leg processor as well. Once a local leg processor fails it
cannot send the leg sensor signals to the main processor. Consequently all
sensors look as if they have failed, and the system responds by lesioning the
leg.

Figure 6.26 presents the response time of the system to recover from
failures and to reintegrate repaired components. The system recovers from
failures quickly enough such that the robot's behavior does not have to de-
grade to an unacceptable level before the failure is compensated for. It also
reintegrates repaired components quickly so the system readily has access
to its reliable resources. It is possible to tune the recovery-reintegration
response time of the system by adjusting various parameters. The recovery-
reintegration response time to local failures is tuned by adjusting the pain
level threshold, the pain excitation gain, and the pain inhibition gain. For
example, the response time is sped up by either lowering the pain threshold
or increasing the excitation gain. Increasing the inhibition gain slows the
response time and encourages the system to reintegrate components earlier.
The recovery-reintegration response time to global failures is tuned by ad-
justing the lesion threshold of the leg-pain level, the retry threshold of the
leg-pain level, the leg-pain excitation gain, and the leg-pain decay rate. For
example, the recovery response time is sped up by increasing the leg-pain

147

excitation gain or lowering the lesion threshold. The reintegration response
time is increased by increasing the leg pain decay rate or increasing the retry
threshold. Clearly a balance must be achieved between tuning the system for
a fast response time while taking care not to make the system too sensitive
to transient faults.

6.6.3 Evaluation

To evaluate the fault tolerant aspects of Hannibal's system, we discuss them
in relation to the following topics:

Completeness of fault detection

The system successfully detects a wide assortment of common failures. It dis-
tinguishes between non-catastrophic failures and catastrophic failures. Re-
garding local failures, it recognizes which type of sensor has failed. Regarding
catastrophic failures, the system recognizes potentiometer failures. Actuator
failures appear as the massive failure of all sensors whose behavior depends
on that actuator. Local processor failures appear as the massive failure of all
sensors whose values are communicated to the main processor by that pro-
cessor. When these types of catastrophic failures occur, the corresponding
potentiometer(s) appear broken. Furthermore, all catastrophic failures evoke
the same recovery procedure. Hence, the system only looks for potentiometer
failures to detect catastrophic failures.

Fault coverage

The robot successfully recovers from a wide assortment of failures. The
system recovers from sensor failures, actuator failures, and local processor
failures. It addresses failures with a local effect as well as failures with a
global effect. It handles transient errors, sensor uncalibration, and permanent
failures. It compensates for various combinations of failures: failures that
occur individually, concurrently with other failures, or accumulate over time.
It tolerates these combinations of failures in various permutations.

148

Confinement of errors

The system effectively prevents sensor and actuator failures from adversely
influencing robot behavior. To accomplish this, the detection processes moni-
tor the sensor outputs and alert the system of failures as they arise. This nips
the failure problem in the bud because the system can effectively compen-
sate for failures once it knows when and what type of failures have occurred.
For example, robust virtual sensors filter out the effects of non-catastrophic
failures so the failures do not influence the robot's behavior. Potentiometer
injury processes evoke the lesion behaviors when catastrophic failures occur,
so the loss of the leg does not cause the robot to become unstable.

Response time to failures

The system successfully detects and recovers from failures before the robot's
performance degrades to an unacceptable level. A fast response time is im-
portant for successfully implementing error confinement. After all, it does
not do the system much good to implement the dection and recovery pro-
cedures in the low level control if it takes them a long time to respond to
failures.

Extent of graceful degradation of performance

The recovery processes maintain the robot's performance at the highest level
given the functional state of the hardware. Because the system purposefully
recognizes failures, the recovery processes can specifically tailor the robot's
use of sensors and actuators to minimize the effects of failures on the robot's
behavior. At the virtual sensor level, the recovery processes tradeoff speed for
reliability as the number of functional sensors decreases. At the locomotion
level, the recovery processes trade off speed for stability as the number of
usable legs decreases.

Availability of reliable resources

The reintegration processes reincorporate repaired components so the robot
has access to all its reliable resources. This is important because the more
sensors and actuators the system can use, the better its performance will be.

149

The reintegration response time is relatively fast so the system does not have
to wait long before it can reuse repaired components.

Division of fault tolerance responsibilities among hardware and
software

Our system implements all fault tolerance capabilities within software. We
chose not to implement fault tolerance capabilities at the hardware level for
weight and expense considerations. Consequently the code size was signif-
icantly increased. We estimate the fault tolerance processes to require the
same amount of code space as the locomotion code and rough terrain code
combined. In other systems it may make sense to make a more even tradeoff
between code size and hardware weight and expense.

Survivability of the system

The survivability of the robot depends on many variables; hence, it is difficult
to determine for our system without running extensive tests. Survivability is
determined by how many and what kinds of failures the robot suffers. It also
depends on the type of terrain the robot is walking over. However, the causes
of these failures are diverse, and the rate at which these failures occur is not
well understood at this time. Assuming the robot walks on flat terrain, the
robot can locomote using only its shoulder and hip potentiometers. Hence,
the minimum number of failures the robot can withstand before it can no
longer walk in a stable fashion is two catastrophic failures on different legs
provided the failures do not occur on the middle legs. This lower bound is
determined by the physical constraints governing the stability of the robot.
The maximum number of failures the robot can withstand before it can no
longer walk in a stable fashion is 54 (48 non-catastrophic failures, 3 catas-
trophic failures on the left side middle leg, and three catastrophic failures on
the right middle leg). Hence, it is possible for the robot to locomote with a
small minority of its sensors working.

6.7 Comparison with other systems

Fault tolerance is relatively unexplored area of autonomous robot research.
In this section, we compare our approach to related work in the field.

150

6.7.1 Robustness

The issue of robustness is commonly discussed in autonomous robot control
architectures. Behavior based control architectures such as Brooks (1986)
are robust because the loss of functionality of part of the controller (such
as a layer of competence) does not result in a complete break-down of the
controller. Chiel et al. (1992) argues the neural network locomotion controller
implemented on the Case Western Hexapod is robust because the the loss
of certain parts of the controller (such as sensor nodes) does not prevent
the robot from walking. As another example, Chiel et al. (1992) argues
that the controller is robust to the loss of a leg because the slowest gait
the controller generates maintains stability with the loss of a leg. These
arguments for robustness imply that robustness means that a system can
still behave reasonably despite some loss of functionality of the controller.

Fault tolerance, in contrast, specifically deals with the detection and com-
pensation of failures. Hannibal's controller purposefully recognizes failures
and specifically compensates for them. In this way, the system maintains
its best possible performance given the functional state of the system. For
example, the controller presented in Chiel et al. (1992) does not tolerant
of physical sensor failure. If a potentiometer physically failed, there would
be no positional error, and leg could no longer be servo controlled. Their
controller assumes the leg can still be servo controlled when a sensor node
in their network fails. Similarly, their controller is not tolerant of leg fail-
ure because it does not detect when a leg has failed or automatically adapt
the robot's gait to maintain stability. In contrast, Hannibal's controller is
tolerant of these failures.

6.7.2 Replication of Hardware

Replication of hardware is commonly used to enhance hardware reliability.
(Kabuka, Harjadi & Younis 1990) and (Lin & Lee 1991) present multiple pro-
cessor architectures for robotic systems which can tolerate processor failures.
Both papers parallelize the problem they want to solve (vision or inverse kine-
matics) and distribute the problem over the parallel network. If a processor
fails the network reconfigures itself and redistributes the work load on the
remaining processors. Fault tolerant computing systems presented in (Gray
1990) and (Siewiorek & Johnson 1981) exploit replication of VLSI hardware

151

to achieve fault tolerance. The low cost of VLSI replication makes this ap-
proach feasible for this application. In contrast, complex systems such as
the Boeing 757 and the Space Shuttle use replication of hardware to achieve
fault tolerance at a significant expense.

Fault tolerance by replication is fairly straight forward. The system is
made tolerant of a particular type of component failure by replicating it
and ignoring the components that exhibit a minority behavior. Duplica-
tion of hardware/software increases the fault tolerance of the system, but
it doesn't necessarily provide enhanced capabilities or performance over the
non-replicated system. In contrast, the approach presented in this chapter
has the advantage of using components with complementary yet different
capabilities to achieve fault tolerance. Since the components have different
capabilities, they can be used for different purposes. Hence the additional
components not only enhance the fault tolerance of the system, but they
also provide additional capabilities and performance beyond what the sys-
tem would have were it to use fewer components.

6.7.3 Redundant Control Behaviors

Fault tolerance techniques using redundant sets of control strategies has been
investigated in (Payton et al. 1992). We have previously discussed this ap-
proach in section 6.3.2, but we briefly repeat our discussion here for the
reader's convenience. In this approach, the controller is designed with re-
dundant strategies to perform a task. A performance model exists for each
strategy, and a failure is detected if the behavior's actual performance is
worse than the behavior's expected performance. If the first strategy tried
doesn't suffice, the controller eventually tries another strategy. The con-
troller goes through its repertoire of strategies until it finds a strategy with
acceptable performance instead of unsuccessfully trying the same thing over
and over.

This high level approach is not well suited for hardware failures. First, it
does not specifically address the cause of the problem, it only addresses the
symptoms. It may take several tries before the controller finds a strategy that
works. In contrast, our approach purposefully recognizes the type of failure
and compensates for the failure by specifically tailoring its use of reliable
components to minimize the effect of the failure on the robot's performance.
Second, the high level approach inherently requires that the hardware er-

152

rors manifest themselves in the robot's behavior before the control system
can detect something is wrong. Ergo, the performance of the infected be-
haviors must degenerate to an unacceptable level before the controller takes
corrective action. In contrast, our approach detects and masks the effect of
failures within the low level control. This prevents the hardware failures from
manifesting themselves in high level control where they degrade the robot's
performance to an unacceptable level.

6.8 Contributions

There are several contributions this work makes towards achieving fault tol-
erant autonomous robot systems. First, this work presents an autonomous
robot which can purposefully recognize sensor failures quickly and reliably.
Second, the robot specifically and dynamically tailors its use of sensors and
actuators to minimize the impact of failures on its performance. Third, the
robot dynamically reintegrates repaired components to enhance its perfor-
mance. I have tested the capabilities of this system by physically disabling
and enabling the robot's sensors and actuators. I have found the system rec-
ognizes and compensates for sensor and actuator failures with a fast response
time. It tolerates a variety of sensor failures such as uncalibration, erroneous
readings, and permanent failures. It also tolerates various combinations of
failures such as individual failures, concurrent failures, and accumulative
failures. It handles minor failures such as a broken ankle sensor as well as
catastrophic failures such as a broken leg. This is the only autonomous robot
we know of with this level of fault tolerant capabilities.

153

Chapter 7

Conclusion

7.1 Review of Significant Results

7.1.1 Control of Complex Robot

Expanding the capabilities of robots tends to make them more complicated.
Equipping robots with more sensors increases the quantity and reliability of
information the robot can extract from its environment. The robot can use
this information to help it behave more intelligently. Providing robots with
more actuators increases the physical capabilities of the robot (arms, hands,
improved locomotion, active vision, etc.). Programming the robot with more
behavioral capabilities makes it more flexible and versatile in the tasks it can
perform. As the field of autonomous robot control advances, we will want to
design robots with greater capabilities to perform more challenging and com-
prehensive tasks. Understanding how to manage complexity of autonomous
robot control is a relevant issue which will be present in the future.

We demonstrated the subsumption approach (Brooks 1986) is effective
for designing an intricate controller, and for controlling a robot of Hannibal's
complexity. The current implementation consists of approximately 1500 con-
currently running processes performing diverse tasks such as terrain sensing,
rough terrain locomotion, and fault tolerance. In building a controller of
this complexity from the bottom-up, we have demonstrated the modularity
of the design. The controller scales well since Hannibal operates in real-time
despite the large number of concurrently running processes.

We demonstrated the local control with cooperation paradigm is an effec-

154

-. 7A -W-- -

tive means of controlling a robot of Hannibal's complexi-y. We tested this
approach by running Hannibal on various test terrains. The control was
quite flexible as the legs were able to handle obstacles local to themselves
simultaneously with the other legs. Furthermore, through communication
each leg behaves as a scout for the other legs and alerts them of common
dangers. In this manner, a high level terrain view local to each leg is shared
with the other legs. Communication between legs also enabled them to act
as a team. By working together each leg accomplishes more than U• could if
it had to fend for itself. Finally, inter-leg communication enables the legs to
maintain a unified effort, and the inter-leg priority scheme maintained the
unified effort even when behaviors of different legs were in conflict.

Since all of Hannibal's control code runs on a single processor, the con-
troller code can only be scaled until its requirements exceed what the master
processor can provide. A logical step would be to implement behavior con-
trol on multiple processors. The scalability of this architecture is limited by
communication bandwidth of the behavior code processors. This may not be
a stumbling block for this implementation since the subsystems perform local
functions the majority of the time and communicate with the other systems
on a relatively limited basis.

7.1.2 Fault Tolerance

Fault tolerant behavior is important for autonomous mobile robots whether
their task is grand or mundane. Building autonomous mobile robots capable
of performing tasks in environments that are either too dangerous or unsuit-
able for humans has been a long term goal of the field. Planetary exploration
with autonomous micro-rovers is one such example. These tasks require that
the robot perform its task for long periods of time without the luxury of
repair when components fail. It is vital to the success of the mission that the
robot continue to function effectively despite component failures. For day to
day goals, anyone who works with real autonomous robots is familiar with
how frequently their hardware fails. Sensor and actuator failures are not
surprising given how often the robots bump into things, rattle components,
snag wires, and stress connectors as they move through their environment. It
would be nice if we did not have to stop our research to repair the robot every
time something fails. Given that a primary advantage of autonomous robots
is their ability to perform tasks without human assistance or intervention,

155

it is surprising the issue fault tolerance remains relatively unexplored. As it
becomes more important for our autonomous robots to perform for extended
periods of time without repair, fault tolerance must be investigated in depth.

We demonstrated that an autonomous robot which effectively tolerates
component failures using a distributed network of concurrently running pro-
cesses. A set of fault tolerance processes were created for each component.
These processes are responsible for detecting the faults of their respective
component, and for minimizing the impact of the failure of the robot's per-
formance. By exploiting concurrency and distributedness, the robot moni-
tors, detects, and compensates for component failures simultaneously. We
tested the robot's fault tolerance capabilities by evoking a variety of failures
in different combinations. We found the robot compensates for them before
the robot's performance degrades to an unacceptable level.

We demonstrated that an autonomous robot can reliably and purpose-
fully detect sensor failures by comparing the sensor's actual behavior with
its expected behavior and with the behavior of complementary sensors. This
has two important implications. First, if the system can recognize when com-
ponents have failed, then it can purposefully tailor its use of its remaining
sensors and actuators to minimize the impact of the failure on the robot's
performance. Second, if the sensor can recognize when components are work-
ing, then it can purposefully integrate the use of all working components to
enhance the performance of the system. This is useful for reintegrating re-
paired components. We demonstrated both these capabilities on Hannibal.

Fault tolerance for autonomous robots is a new area of research full of
possibilities for future work. We have demonstrated initial fault tolerant
capabilities on Hannibal, and there is plenty of room for improvement. The
sensor behavior signatures (the models referred to in chapter 6) used by the
sensor-state processes are hardwired. As a result, Hannibal can only reliably
detect sensor failures in environments for which it has sensor signatures.
For example, Hannibal's sensors may look different than what it expects if
it were to walk in mud. It is a logical step to have Hannibal learn new
sensor signatures over time so that it may recognize sensor failures in new
environments. Furthermore, more work needs to be done in understanding
how fault tolerance capabilities can be implemented on robots with different
kinds of sensors and different numbers of sensors.

156

7.1.3 Robust Hexapod Locomotion

Legged biological systems are very effective in traversing terrain too rough
for wheeled vehicles. Understanding how to build legged robots with loco-
motive capabilities comparable to those of biological systems has been a long
standing goal in the field (Raibert & Hodgins 1993). Implementing models
of insect locomotion on hexapod robots helps us to design robust locomotion
controllers as well as gain insight into insect locomotion control (Quinn &
Espenschied 1993).

We demonstrated how various insect locomotion tactics can be applied to
hexapod robots. On Hannibal, we implemented several insect-based locomo-
tion controllers as well as several rough terrain strategies used by insects. We
tested the controllers by walking the robot on both flat and rugged terrain.
The resulting locomotion was flexible and robust.

We have further confirmed that a distributed control scheme using simple,
concurrently running processes is a viable approach to real-time locomotion
control of hexapod robots with relatively little computational power ((Brooks
1989), (Donner 1987)). We have demonstrated this through implementing
and testing a rough terrain locomotion controller with significantly more
capabilities and on a much larger scale than past systems using a similar
approach.

Future work for robust hexapod locomotion could take two different
paths. On the biological path, it would be interesting to implement a rough
terrain controller which is truer in spirit to real insect rough terrain locomo-
tion. Other locomotion controllers are more strongly motivated by biology
than ours, but they only address flat terrain locomotion. On the engineering
path, it would be interesting to implement a similar controller on a different
hexapod for comparison. We feel our controller pushed the physical capa-
bilities of our hardware too soon. Furthermore, it would be interesting to
implement rigorous climbing capabilities with a more capable robot.

7.1.4 Micro-Rover Missions

In regards to controller design for a planetary micro-rover, this thesis tackles
relatively low level control issues. We have addressed several topics involved
in wandering over challenging terrain for extended periods of time. How-
ever, higher levels of competence (such as navigation or mission scenario

157

behaviors) are required for Hannibal to perform a complete mission. These
additional layers could be added to the current controller. Our experience
thus far indicates that the controller is modular and scales well, so adding
these additional layers of competence is feasible and an area of future work.

7.2 Real Robots for Real Problems

In conclusion, we find this work of particular interest because the controller
was implemented and tested on a physical robot of significant complexity. We
argue it is important to study the behavior control systems on a real robots.
As robots become more complex, the difficult issues in control are magnified
to the point where they cannot be ignored or only partially addressed. It is
important that all aspects of the control system be implemented and tested
on real robots of sufficient complexity to make sure the integrated system
works in the real world. By developing our controller on a physical system,
we were forced to make sure all the pieces fit together at every stage. This
also helped us maintain a common framework when implementing diverse
capabilities. Finally, testing our controller on a physical system served as
a strong reality check for our rough terrain locomotion and fault tolerance
implementations.

158

Bibliography

Angle, C. (1991), 'Design of an Artificial Creature', Masters Thesis, MIT.

Angle, C. & Brooks, R. (1990), Small Planetary Rovers, in 'Proceedings
of IEEE International Workshop on Intelligent Robots and Systems',
Ibaraki, Japan, pp. 383-388.

Beer, R. & Chiel, H. (1993), Simulations of Cockroach Locomotion and Es-
cape, in 'Biological Neural Networks in Invertebrate Neuroethology and
Robotics', Academic Press, Inc., Boston, pp. 267-286.

Beer, R., Chiel, H., Quinn, R. & Espenschied, K. (1992), Leg Coordination
Mechanisms in Stick Insects Applied to Hexapod Robot Locomotion, in
'IEEE International Conference on Robotics and Automation'.

Brooks, R. (1986), 'A Robust Layered Control System for a Mobile Robot',
IEEE Journal of Robotics and Automation RA-2, 14-23.

Brooks, R. (1989), 'A Robot that Walks; Emergent Behaviors from a Care-
fully Evolved Network', Neural Computation 1:2, 365-382.

Brooks, R. (1990), 'The Behavior Language; User's Guide', MIT A. I. Memo
1227.

Brooks, R. & Flynn, A. (1989), 'Fast, Cheap, and Out of Control; A Robot
Invasion of the Solar System', Journal of the British Interplanetary So-
ciety 42:10, 478-485.

Chiel, H., Quinn, R., Espenschied, K., & Beer, R. (1992), 'Robustness of
a Distributed Neural Network Controller for Locomotion in a Hexapod
Robot', IEEE Transactions on robotics and automation 8, 293-303.

159

Connell, J. (1989), 'A Colony Architecture for an Artificial Creature', MIT
Artificial Intelligence Lab Technical Report 1151.

Cruse, H. (1976a), 'The Control of Body Position in the-stick insect (Carau-
sius morosus), when walking over uneven terrian', Biological Cybernetics
24, 2&-33.

Cruse, H. (19766), 'The Function of the Legs in the Free Walking Stick INsect,
Carausius morosus', Journal of Comparativ Physiology 112, 235-262.

Cruse, H. (1979), 'A New Model Describing the Coordination Pattern of the
Legs of a Walking Stick Insect', Biological Cybernetics 32, 107-113.

Cruse, H. (1980a), 'A Quantitative Model of Walking Incorporating Central
and Peripheral Influences: II. The Connections between the Different
Legs', Biological Cybernetics 37, 137-144.

Cruse, H. (1980b), 'A Quantitative Model of Walking Incorporating Cen-
tral and Peripheral Influences: I. The Control of the Individual Leg',
Biological Cybernetics 37, 131-136.

Cruse, H. (1990a), 'Coordination of Leg Movement i, Walking Animals',
European Conference on Artifial Life 13, 105-119.

Cruse, H. (1990b), 'What mechanisms coordinate leg movement in walking
arthropods', Trends in Neurosciences 13, 15-21.

Dean, J. (1990), 'Coding Proprioceptive Information to Control Movement
to a Target: Simulation with a Simple Neural Network', Biological Cy-
bernetics 63, 115-120.

Dean, J. (1991a), 'A model of leg coordination in the stick insect, Carausius
morosus: I. A geometrical consideration of contralateral and ipsilateral
coordination mechanisms between two adjacent legs', Biological Cyber-
netics 64, 393-402.

Dean, J. (1991b), 'A model of leg coordination in the stick insect, Carau-
sius morosus. II. Description of the kinematic model and simulation of
normal step patterns', Biological Cybernetics 64, 403-411.

160

Dean, J. (1992a), 'A model of leg coordination in the stick insect, Carau-
sius morosu,. III. Responses to perturbations of normal coordination',
Biological Cybernetics 66, 335--343.

Dean, J. (1992b), 'A model of leg coordination in the stick insect. Carausius
morosus. IV. Comparisons of different forms of coordinating mecha-
nisms', Biological Cybernetics 66, 345-355.

Donner, M. (1987), Real Time Control of Walking, Birkauser, Boston.

Flynn, A., Brooks, R., Wells, W. & Barrett, D. (1989), 'Squirt: The Proto-
typical Mobile Robot for Autonomous Graduate Students', MIT A. I.
Memo 1220.

Full, R. (1993), Integration of Individual Leg Dynamics with Whole Body
Movement in Arthropod Locomotion, in 'Biological Neural Networks
in Invertebrate Neuroethology and Robotics', Academic Press, Inc.,
Boston, pp. 267-286.

Gray, J. (1990), 'A Census of Tandem System Availability Between 1985 and
1990', IEEE Transactions on Reliability 39, 409-417.

Hirose, S. (1984), 'A Study of Design and Control of a Quadruped Walking
Vehicle', International Journal of Robotics Research 3, 113-133.

Kabuka, M., Harjadi, S. & Younis, A. (1990), 'A Fault-Tolerant Architec-
ture for an Automatic Vision-Guided Vehicle', IEEE Transactions on
systems, man, and cybernetics 20, 381-393.

Krotkov, E. & Simmons, R. (1992), Performance of a Six-Legged Planetary
Rover: Power, Positioning, adn Autonomous Walking, in 'Proceedings
of IEEE International Conference on Robotics and Automation', Nice,
France, pp. 169-174.

Krotkov, E., Simmons, R. & Thorpe, C. (1990), Single Leg Walking with
Integrated Perception, Planning, and Control, in 'Proceedings of IEEE
International Workshop on Intelligent Robots and Systems', Ibaraki,
Japan, pp. 97-102.

161

Lin, C. & Lee, C. (1991), 'Fault-Tolerant Reconfigurable Architecture for
Robot Kinematics and Dynamics Computations', IEEE Transactions
on Systems, Man, and Cybernetics 21, 983-999.

Maes, P. (1990), 'How to Do the Right Thing', A. L Lab Memo 1180.

Mataric, M. (1990), 'A Distributed Model for Mobile Robot Environment-
Learning adn Navagation', MIT Artificial Intelligence Lab Technical Re-
port 1228.

Mataric, M. (1992), Behavior-Based Control: Main Properties and Implica-
tions, in 'Proceedings of IEEE International Conference on Robotics and
Automation, Workshop on Intelligent Control Systems', Nice, France,
pp. 46-54.

McGhee, R. (1976), 'Robot Locomotion', Neural Control of Locomotion
pp. 237-264.

McGhee, R. & Iswandi, G. (1979), 'Adaptive Locomotion of a Multilegged
Robot over Rough Terrain', IEEE Transactions on Systems, Man, and
Cybernetics SMC-9, 176-182.

Nagy, P., Whittaker, W. & Desa, S. (1992), A Walking Prescription for
Statically-Stable Walkers Based on Walker/Terrain Interaction, in 'Pro-
ceedings of IEEE International Conference on Robotics and Automa-
tion', Nice, France, pp. 149-156.

Payton, D., Keirsey, D., Kimple, D., Krozel, J. & Rosenblatt, K. (1992), 'Do
Whatever Works: A Robust Approach to Fault-Tolerant Autonomous
Control', Journal of Applied Intelligence 2, 225-250.

Pearson, K. (1976), 'The Control of Walking', Scientific American 235, 72-
86.

Pearson, K. & Franklin, R. (1984), 'Characteristics of Leg Movements and
Patterns of Coordination in Locusts Walking on Rough Terrain', Inter-
national Journal of Robotics Research 3, 101-112.

162

p e l' ., . .-7..':..

Quinn, R. & Espenschied, K. (1993), Control of a Hexapod Robot Using a Bi-
ologically Inspired Neural Network, in 'Biological Neural Networks in In-
vertebrate Neuroethology and Robotics', Academic Press, Inc., Boston,
pp. 267-286.

Raibert, M. & Hodgins, J. (1993), Legged Robots, in 'Biological Neural
Networks in Invertebrate Neuroethology and Robotics', Academic Press,
Inc., Boston, pp. 267-286.

Rosenblatt, K. & Payton, D. (1989), A Fine-Grained Alternative to the Sub-
sumption Architecture for Mobile Robot Control, in 'International Joint
Conference on Neural Networks', Washington, D. C., pp. 317-323.

Siewiorek, D. P. & Johnson, D. (1981), 'A Design Methodology for High
Reliability Systems: The Intel 432', The Practice of Reliable System
Design pp. 621-636.

Song, S. & Waldron, K. (1989), Machnies that Walk, The Adaptive Suspen-
sion Vehicle, The MIT Press, Cambridge, MA.

Wilson, D. (1966), 'Insect Walking', Annual Review of Entomology.

163

