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A COMPARISON OF THE EXPERIMENTAL SUBSONIC PRESSURE DISTRIBUTIONS ABOUT
SEVERAL BODIES OF REVOLUTION WITH PRESSURE DISTRIBUTIONS
COMPUTED BY MEANS OF THE LINEARIZED THEORY'®

By CLareENCE W. MATTHEWS

SUMMARY

An analysis i3 made of the effects of compresaibility on the
pressure coefficients about several bodies of revolution by com-
paring experimentally determined pressure coefficients with
corresponding pressure coefficients calculated by the use of the
linearized equations of compressible flow. The results show
that the theoretical methods predict the subsomic pressure-
coefficient changes over the central part of the body but do not
predict the pressure-coefficient changes mear the nose. FEx-
trapolation of the linearized subsonic theory into the mixed
subgonic-supersonic flow region fails to predict a rearward
movement of the negative pressure-coefficient peak which occurs
after the critical stream Mach number has been atiained. Two
equations developed from a consideration of the subsonic com-
pressible flow about a prolate spheroid are shown to predict,
approrimately, the change with Mach number of the subsonic
pressure coefficients for regular bodies of revolution of fineness
ratio 6 or greater.

INTRODUCTION

A number of papers have been published concerning the
theoretical aspect of the effects of compressibility on the
flow over bodies of revolution (refs. 1 to 4). In the present
investigation these theoretical methods are applied to the
analysis of experimental data. Sach an analysis should
contribute to the basic knowledge of subsonic three-
dimensional flow.

Two prolate spheroids of fineness ratios 6 and 10, an ogival
body, and a prolate spheroid with an annular bump near the
nose were tested in this investigation. The experimental
pressures about the two prolate spheroids are compared with
the pressures computed by the linearized compressible-flow
theory. Several relations developed from theoretical con-
siderations of the flow about a prolate spheroid are presented
for correcting the incompressible pressure coefficients of
regular bodies of fineness ratios 6 to 10 for the effects of
compressibility in the subcritical flow range. Results
obtained from these relations are also compared with corre-
sponding experimental pressure coefficients.

SYMBOLS
] maximum radius of body
Cx nomgd-force coefficient based on plan-form area of

ellipse

1
of the

fineness ratio of body, //2b
total length of body (see fig. 1)
er critical Mack number
free-stream Mach number
local static pressure
free-stream static pressure

pressure coefficient, 11)'—_2(—'

z°V
local radius of body
cross-sectional area of body of revolution
component of local velocity parallel to free stream
free-stream velocity
component of local velocity in vertical plane perpen-
dicular to frec stream
total local velocity
component of local velocity perpendicular to z and »
z coordinate along major axis of body
a angle of attack
B=v1—Mg3
v ratio of specific heat at constant pressure to specific
heat at constant volume

v BT ERRTS

r
S(z)
u

U

v

v
w

p density
¢ velocity potential
B, ¢, w ellipsoidal coordinates (see ref. 5)
Subscripts:
¢ compressible value
1 incompressible value
er critical value
st incompressible value of flow about hypothetical
stretched body
MODELS

Sketches of the bodies of revolution tested, which show
the locations of the pressure orifices and other pertinent
details, are presented in figure 1. The ordinates of the
typical transonic or ogival body and the prolate spheroid
with an annular bump are given in table I. The ordinates
of the section of the sting support, which is a part of the
body of revolution, are those of a prolate spheroid of fineness
ratio 6. The same support was used for each body. The
couplings used to change the angle of attack were mounted
in the sting 11 inches downstream from the end of the body.

NACA TN 2518, “A of the tal Subsonic b Al Se Bodtes of Di jons ted by Means
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(a} Prolate spheroid; f=6.

{b) Prolate spheroid; f==10.

(¢) Typical transonic body.

(d) Prolate spheroid with annular bump.
(e) Angular locations of orifices.

Figure 1.—Profiles of bodies tested.

Except at the first three stations indicated in figures 1 (a)
to 1 (d), the pressure orifices were located around the body as
shown in figure 1 (¢). These orifices were spaced 15° apart
on one side of the body in order to obtain a fairly accurate
normal-force coefficient upon integration of the pressure
coefficients. The orifice at the first station was located in
the nose. The orifices at the next two stations were located
at 90° intervals around the body. The pressure orifice
openings were 0.010 inch in diameter.

TESTS

The pressures about the bodies were measured in the
Langley 8-foot high-speed tunnel through the Mach number
range 0.3 to 0.95. The angle-of-attack ranges were 0° to
7.7° for the regular bodies and 0° to 2° for the prolate
spheroid with an annular bump, The pressures were re-
corded by photographing a 10-foot 100-tube manometer
board filled with acetylene tetrabromide.

TABLE 1.—ORDINATES OF THE TYPICAL TRANSONIC
BODY AND OF THE ANNULAR BUMP PROLATE SPHEROID

. Prolate spheroid with
Transonic body annular bump
/i, percent | r/i, percent | r/l, percent | rjl, percent
0.00 0. 000 0. 1. 000

.50 482 .75 1.437
.75 . 596 1,28 1. 854
1.25 .85 2.50 2.60¢
2.50 1. 445 5.00 3.4631
5.00 2. 408 10.00 5.000
10.00 3.940 12. 50 5. 560
20.00 6. 180 12.91 5. 684
30.00 7.4%0 13.33 5.873
40.00 8121 14.16 6, 408
50. 00 8.333 1520 7. 230
80. 00 8. 182 16. 24 7. 800
70.00 7.635 17.49 8. 190
75.00 7.215 17.91 8.230
18.74 8.250
20.00 8.230
23.32 8.220
25.00 8. 000
2.8 7.810
28.31 7. 663
28.74 7.620
20.16 7.605
30.00 7.640
| 3500 7.952
i 50.00 8. 200
| 55.00 8.333
T ORS00 5. 200

' {1500 7.952 J

The free-stream pressures and Mach numbers were deter-
mined from an empty-tunnel calibration based on the
pressures at an orifice located 4 feet upstream of the model.

Several preliminary plots of local pressure coefficients as
functions of free-stream Mach number showed considerable
scatter for Mach numbers less than 0.5, probably because
of the difficulty of reading the small pressure differences and
because of the possibility that the tunnel was not held at
each Mach number a sufficient length of time to insure com-
plete settling of the manometer liquid. Because of this
scatter, it was necessary to neglect the pressure coefficients
below M,=0.5 in extrapolating the pressure-coefficient curves
to a stream Mach number of zero. The data used in the
analysis in this investigation were picked from the extra-
polated curves.

For the tests reported herein, the Revnolds number varies
from approximately 2,700,000 per foot at M,=0.40 to
3,950,000 at M;=0.94.

The wall interference may be approximately determined
by using the equations of reference 6. Since the corrections
were small, they were not applied to the pressures in the
figures which present experimental data alone; however, the
corrections, even though small, were applied to the experi-
mental data used for the comparisons between the theoretical
and the experimental values.

THEORETICAL METHODS

The theoretical subsonic pressures about a prolate spheroid
may be computed by applying the Prandtl-Glauert correction
to the incompressible potential-flow equations in the manner
suggested in reference 7. In this solution of the linearized
form of the equations for compressible flow, the body is
stretched in the free-stream direction by the factor 1/8; the
induced velocity components u— U, v, and w about the
stretched body are computed by potential-flow methods
(for prolate spheroids, see ref. 5); and the induced velocities
u— U, v, and w are corrected by the factors 1/8%, 1/8, and 1/8,
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respectively. The corrected velocities are the compressible
velocitier at the corresponding points on the original body.
The following formula, as is shown in appendix A, is the
result of the application of this method to the flow over
prolate spheroids:

2
1 Z:: -é;{l-—}é" K,,"2 sin? w sin? ay,

2 (G0

+(K, sin? w sin? a,+— " L

ll

H"F") 2K,,, sin? w sin® a.,]} (1)

where
I L ——" .
F,i=+v1—p*cos ayy—puv1—e,’* cos wsin ay,
G,=1 "‘euzﬂz

H,=+1—p*K, , cos a,,—py"ld—fe:?K,“ COS w SiNn oy

(log 1 +e")-— 2eq
" (Iog l+eu)__ 2":1_2

1—e, 1—ey
1+e,, 2e¢,,
K, (log 1 _fu)—l —e,’
[ (10 l+e" 2_6“(];':_2812)
g 1—eu 1—e, 1 —4’:12

e,,—\/l——-

tan a,;=pf tan a

The pressure coefficients may be computed from the fol-
lowing relation:

) e
P¢=[l +15- Mo’(l—[—]"l:)]' -

%

6]

Because of the nature of the transformation, equation (1)
does not hold for large angles of attack (that is, where
a=sin a ceases to be a fair approximation) or for bodies
of small fineness ratio.

The compressibility effects indicated by application of the
linearized theory of compressible flow to prolate spheroids
are not apparent from equations (1) and (2). The effects
may be shown simply for the special case of the center of &
prolate spheroid at zero angle of attack. As shown in
appendix B, the following relation is obtained:

Pe (14 log8 Sf—log 2f
r=(+ =t 37) [r=d o—lgpl @

Thus, the theoretical solution indicates that the ratio of the
compressible pressure coefficient to the incompressible pres-
sure coefficient on bodies of revolution will vary conformably

with a function of log g and f rather than with 1/8 as in two-
dimensional flow. Equation (3) may be reduced to the form
P, log 8
J AR —log 2f
Another and easier method of obtaining an approximate
solution of the linearized equations for very thin bodies may
be found in references 2 to 4. This method consists of in-
tegrating an approximated source-sink distribution to ob-
tain the induced-velocity ratios from which the pressure
coefficients may be computed. Since the sourcesink dis-
tribution is approximated by the derivative of the cross-
sectional area with respect to the length of the body, this
method is more generally applicable to bodies of revolution
than is the method of applying the Prandtl-Glauert correc-
tion to the exact incompressible-flow solution. It is shown
in appendix A that, for prolate spheroids at zero angle of
attack, this method gives the following result:

which is presented in reference 8.

1
(. T\, .,
NG
RN
2

l+Jl2 +6 l2
Two approximate forms which show the effects of com-
pressibility can be obtained from equation (4) by considering

(a) the difference, (P.—P;), and (b) the ratio P./P, of the
compressible and the incompressible values. These two

#)

2,2
relations may be reduced to the following forms when gl?
2 »2
is considered small with respect to (1-—-%) or ;7
P~ P28 F (5)
| log 8
P 1oz 27 ®)

Both relations indicate that the effect of compressibility on
the subsonic flow about a body of revolution at any given
Mach number is to lower the pressure coefficients over a
large part of the body. These relations for the effect of
compressibility are in accord with similar equations pre-
sented in references 2 and 3.

RESULTS AND ANALYSIS

COMPARISON OF EXPERIMENTAL AND THEORETICAL PRESSURE
DISTRIBUTIONS

The local pressure-coefficient distributions are presented
in figures 2 to 6 for various values of free-stream Mach
number. Figures 7 to 9 are replots of some of the data of the
preceding figures corrected for wall interference, together
with results of the theoretical calculations by means of
equations (2) and (4). Figures 2 to 6 show a decrease in the
experimental pressures over the central part of the body
with increasing Mach number, as predicted by equation (5).
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However, figures 7 to 9 indicate that the linearized theory
prediots a decrease in the pressures over the entire body,
whereas the experimental data show that a point on the body
exists ahead of which the pressures increase rather than
decreage. (See also figs. 2 to 6.) The lack of agreement of
the linearized theory with the experimental results near the
nose of the body is to be expected because of the assumptions
made in its derivation. It might be pointed out that the

effect of compressibility on the experimental pressure co-
efficients is approximately to rotate the pressure-coefficient
distributions about the point at which the incompressible
pressure coefficient is zero. The actual point about which
the rotation may be considered to take place shifts its
location from slightly downstream of the stream-pressure
point on the top of the body to slightly upstream of the
stream-pressure point on the bottom of the body.
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Frouas 2.—Experimental pressure distributions over several bodies of revolution at sero angle of attack,
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As the flow approaches and exceeds the critical stream
Mach number, a further change in the pressure distributions
occurs. This change of shape (figs. 2 to 5) is essentially a
rearward movement of the negative pressure peak. The
nature of this change is emphasized in the plots for M,=0.950
of figures 7 and 8. These figures show that the linearized
theory does not predict the shift in peak pressures which
occurs as the flow becomes supercritical.

The rearward shift of negative pressure peaks which occurs
on the top of the body (figs. 3 (a), 4 (a), and 5§ (a)) seems
to be changed to a forward shift on the bottom of the body
(figs. 3 (c), 4 (¢), and 5 (c)). It is reasonable to assume
that part or all of this forward movement of the bottom
negative pressure peak may be explained by the positive
pressure field which exists ahead of the under part of the
sting support.

A comparison of figures 7 and 9 shows that the linearized
theory gives better results for the body of larger fineness
ratio. The pressures about the prolate spheroid of fineness
ratio 10 are in better agreement with theory even for the
stream Mach number of 0.950 than are the pressures about

15

the body of fineness ratio 6. It may also be observed that
the theoretical pressures about the piolate spheroid of fine-
ness ratio 10, which are calculated by the two different
methods, are in excellent agreement; thus, these results
show that, for bodies of fineness ratios of 10 or greater, the
simpler method of computing pressures presented in refer-
ences 2 to 4 is fairly reliable.

INFLUENCE OF CHANGING NOSE SHAPE

The effects of changing the shape of the nose of a body
are seen by comparing figures 2 (a) and 3 with figures 2 (¢)
and 5. The incompressible pressure distribution is changed
as may be expected. However, the nature of the effect of
compressibility is the same for this body as for the prolate
spheroid of fineness ratio 6. The incremental pressure
changes are almost the same, and the rotation and shifts of
pressure peaks are very similar for both bodies. This com-
parison shows that the effects of compressibility do not
depend to a great extent on body shape so long as the body
does not depart from the specifications required for the
application of the linearized equations,
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INFLUENCE OF FINENESS RATIO

The influence of fineness ratio on the effects of compressi-
bility may be observed by comparing figures 2 (a) and 3 with
figures 2 (b) and 4. These figures show that increasing the
fineness ratio reduces the changes in pressure caused by
varying the stream Mach number. This effect is predicted
by the linearized theory in equation (5). It may also be
observed that the pressure peaks are less prominent and do
not shift their location to the extent found for the bodies of
lower fineness ratio. The changes in the shape of the pres-
sure distributions are also reduced and comparable changes
occur at higher Mach numbers. The delay in the change of
the shape of the pressure distribution is demonstrated by
comparing figures 7 and 9 at M,=0.95. For the prolate
spheroid of fineness ratio 6 a marked change in the pressure

distribution has already occurred, whereas for the body of
fineness ratio 10 the shape of the pressure-distribution curve
is almost the same as at lower Mach numbers. A considera-
tion of the observed effects of increasing the fineness ratio
indicates that such a change definitely reduces the effects
of compressibility.

INFLUENCE OF ANGLE OF ATTACK

It may be shown by the use of the linearized theory that,
at least to a first approximation, the lift and moment forces
on a body of revolution are not affected by changes in Mach
pumber. (See ref. 4.) The validity of this prediction is
demonstrated in figure 10 which shows that the variation of
the normal-force coefficient with Mach number is small for
both the /=10 and f=6 prolate spheroids.
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Ficure 10.—Theeffect of compressibility on the normal-force coefficicnts
over the forward half of two prolate spheroids of fineness ratios 6 and 10.

INFLUENCE OF AN ANNULAR BUMP

A study of the effects of compressibility on the velocities
about an infinitely long body containing surface waves (ref.
9) shows that these effects become two-dimensional in nature
when the length of the surface waves becomes small with
respect to the body radius. Since an annular bump on a
body of revolution approximates these conditions, the flow over
such a bump may also be expected to show two-dimensional
effects. An examination of figures 2 (d) and 6 shows
that the range of pressure coefficients found in the flow over
a prolate spheroid with an annular bump is of the same order
as that found in two-dimensional flow, The two-dimensional
nature of the flow over an annular bump is further demon-
strated by comparing the pressure coefficients with the Von
Kérmén relationship (ref. 10) for the effects of compressibility
on two-dimensional flow (fig. 11). Figure 11 shows fair
agreement between the Von Kérmén relation and the experi-
mental relationships for those regions of the body where the
flow does not separate and the slope of the body is reasonably
small; namely, the 8.33-, 11.5-, 13.6-, 16.5-, 17.9-, and 19.8-

REPORT 1155—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

'2.0 ’ l l
x/1
-8 (percent)
o 833
a (15
-6 o 136
:
v 16
~14}— e 179 \P"
e 98B \
v 270 k
-12}— v 460
— The von K N
[(
A0 (ret. 10) ~— \ Py
Q \ }
‘S' -8 [
£ I
': i
- K
® \ !
2 -4 e A |
i 'Ol
Y} et =i o
N
e —t—
0 s v
2 ] n
4 T
6 "\T
I N
B8 23 4 5 6 7 £ 9 10

Free-stream Moch number, M

Ficure 11.—Experimental pressure distributions over a prolate
spheroid with an annular bump. a=0°.

percent stations. The 15-percent station is highly irregular
and cannot be explained by either two- or three-dimensional
theories. The other stations are severely affected by separa-
tion phenomena. The Von Kérmdn relation, however, fails
to explain the phenomena once the critical speed is exceeded.
CORRECTION OF INCOMPRESSIBLE PRESSURE DISTRIBUTIONS FOR THE
EFFECTS OF COMPRESSIBILITY

Equations (5) and (6) suggest that an incompressible pres-
sure distribution might be corrected for the effects of com-
pressibility by considering a pressure-increment type of
function such as P,— P, or a rate-of-increase type of function
such as P,/P,. In order to show whether the effects of com-
pressibility may be expressed by such functions, a number
of the pressures over the regular bodies at zero angle of
attack have been plotted in figure 12 in terms of P./P, and
P.,—P, against z/l and M, Tunnel-wall corrections have
been omitted, but the omission does not affect the conclu-
sions. An examination of both functions shows that, except
at supercritical Mach numbers, the values of P./P, and
P.— P, are roughly constant between the 25-percent and the
50-percent stations. Over the forward part of the body, the
values are more variable.
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The P./P, function becomes discontinuous in the neigh-
borhood of P,=0. This behavior may be attributed to the
fact that the pressure coefficient is zero at the incompressible
stream-pressure point and, since one of the effects of com-
pressibility is to shift the stream-pressure point, discon-
tinuities may be expected in the neighborhood of this point.
However, since the pressures in this region are small, a wide
variation in P,/P; may be permissible without serious error
in the corrected results.

The P.— P, correction may also be expected to become
irregular in the region of the nose. The experimental curves
show that this function changes sign in the neighborhood of
the stream-pressure point so that any correction function of
this type should iaclude the position on the body. However,
such 8 function cannot be obtained from the linearized
method as this method does not indicate the change of sign
shown in the experimental data.

The experimental values of P.— P, and PP, at the cen-
ters of the regular bodies are compared with equations (5)
and (6) in figure 13 in order to show the validity of the pre-
diction of the effect of compressibility by the linearized
potent’~1-*_»w theory. It is observed that equation (6)

26 T T T T T
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Fraure 13.—Theoretical compressibility correction functions com-
pared with experimental results. «=0°; 3l-=50 percent,

within its limitations predicts the effects of compressibility

. . e 1

for three-dimensional flow whereas the relation §= g
1

which is used to predict the compressibility effects of two-
dimensional flow, does not. It may also be observed that
equations (5) and (6) predict the effects of compressibility
with about the same degree of accuracy.

The correction functions are applied to several incompres-
sible pressure-coefficiént distributions in figure 14, which
are compared with the corresponding experimental distribu-
tions. It is shown in figure 14 (a) that increasing the fineness
ratio of the prolate spheroid from 6 to 10 or reducing the
bluntness of the nose, which is the essential difference between
the ogival body and the prolate spheroid, extends the region
of the body for which corrections can be made from the
20-percent station for the prolate spheroid of fineness ratio 6
forward at least to the 10-percent station for the sharper-nose
bodies. The P./P; function expresses the effect of compres-
sibility more accurately in the vicinity of the nose than does
the P,— P, function. This result is to be expected since one
of the effects of compressibility already noted is the rotation
of the pressure distribution, which is accounted for by the
P[P, expression but not by the P,— P, expression.

The increasing error which results from increasing the
stream Mach number is shown in figure 14 (b). At
M,=0.800, the incompressible pressure coefficients about the
fineness ratio 6 prolate spheroid may be corrected with a
fair degree of accuracy as far f .ward as the 5-percent station.
As the Mach number i1 ~reases, the divergence between the
corrected values and the experimental values in the region
of the nose increases and, with still greater Mach nvmbers,
tends to spread toward the center. At M;=0.940, which is
supercritical for the prolate pheroid of fineness ratio 6, the
correction formulas are still applicable at the center, so that
successful extrapolation of the linearized theory into the
supercritical range is found to depend on the section of the
body to which the extrapolation is applied.

As may be expected, the success of the linearized theory in
expressing the effects of compressibility decreases as the
angle of attack increases. The principal reason for this
result is that an angle of attack involves a pressure peak on
the forepart of the top of the body, which moves rearward
when the stream Mach number approaches and exceeds the
critical value for the body. Since the correction formulas
either rotate or translate the incompressible pressure distri-
bution, they cannot express this change in the shape of the
pressure distribution. This phenomenon is demonstrated
in figure 14 (c), which presents a comparison of the corrected
pressure-coefficient distributions and the experimental dis-
tributions of the flow about the prolate spheroid of fineness
ratio 6 at several angles of attack. Even though the shift of
the peak pressure is not accounted for in the correction for-
mula, the corrected distributions are not seriously in error
at the peaks and the agreement improves over the midportion
of the body. Thus, if some error is permissible, these for-
mulas may be applied for angles of attack as high as 7° or 8°.
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Figure 14 (c) indicates that equation (6) does not correct
as satisfactorily over the central parts of the body at angles
of attack as equation (5). This lack of agreement is due to
the compressibility effect on the lift forces. It has already
been shown that the lift forces are not much affected by
compressibility; hence, the increments of the pressure
coefficients due to compressibility are about the same for
the top and bottom of the body. Since the absolute values
of the pressure coefficients are less on the bottom of the
body and greater on the top than if the lift forces had not
been present, equation (6) will overcorrect the pressure
coefficients on the top and undercorrect those on the bottom.
The same reasoning shows that equation (5), which gives
a constant increment over the entire body, will express the
compressibility effect with an angle of attack better over
the central part of the body to which it applies than will
equation (6).

CONCLUSIONS

The results of the tests made on several bodies of revolu-
tion have shown the following effects of compressibility on
three-dimensional flow:

1. In general, the compressibility effect is to increase the
pressure differences over a body of revolution. The pressure
distributions are approximately rotated about a point near
stream presaure and the negative-pressure peaks are moved
rearward.

2. The linearized modification of the compressible
potential-flow equation will predict the pressures over the
central part of the body but will not predict the changes in
pressure ahead of the stream-pressure point nor will it pre-
dict the change in shape which occurs with supercritical flow.

3. The correction formu!

ﬂ_.l_z log 8
P ' —log 2f
and
21
Pc—‘Pr: })gﬁ

(where P, and P, are the pressure coefficients for compress-
ible and incompressible flow, respectively, f is the fineness
ratio, and B=41—M,;? in which M, is the Mach number)
may be used approximately to correct incompressible-flow
pressures over the central part of streamline thin bodies of
revolution; the errors will increase as the supercritical Mach
number is approached and exceeded. Since P,/P,; rotates
the pressure distribution, this correction is better to use at
zero angle of attack; however, the form P.—P, expresses
the effects of angle of attack more correctly and should be
used when an angle of attack other than zero is involved.

4. The effects of compressibility are approximately the same
for various bodies of the same fineness ratio, provided the
body shape satisfies the requirements of the linearized theory.

5. Increasing the fineness ratio terds to reduce the effects
of compressibility.

6. The effects of compressibility on an arnular protuber-
ance of short chord on a body of revolution tend to follow
more nearly two-dimensional laws than three-dimensional
laws.

7. Lift forces and moments over the forward part of the
body are relatively unaffected by compressibility.

LANGLEY AERONAUTICAL LABORATORY,
NaTioNaL ApvisorY COMMITTEE FOR AERONAUTICS,
LancLey FieLp, Va., November 5, 1951.




APPENDIX A

DERIVATION OF THE EQUATIONS FOR THE COMPRESSIBLE PRESSURE COEFFICIENTS OF THE FLOW ABOUT A PROLATE
SPHEROID

The solution of the linearized compressible-flow equation
for a prolate spheroid requires a derivation of the relation
for the incompressible velocities about the body. The in-

velocity components obtained by differentiating the potential
equation are

compressible velocities about a prolate spheroid are defined | %*__ 1—u’ K. cos a— pv(1 —#2)(1 —e’) K, cos wsin a‘
by the potential equations given in reference 5. These | U 1—e®%®™* 1—e®u?
equations may be combined and written . e
£'+1 LA “‘/(I—T—“f)—(l——e—)K oS w C0S a
e=Upn¢ cos a+ A (cos a)u(2 g'log 1>+ U 1—e?u?
(1 —e . . .
B (sin a)y/1 —py 21— (2 log §'+} g_,g‘_ 1) cosw (7) +“1—(_e——2;~? K, cos®w sin a+ K, sin’w sin a > (8)
The values of the constants 4 and B which satisfy the | w* _ uy(1—u3)(1—¢)
] L =t K,sinwcosa
required boundary conditions are U 1 —e2p?
U —
A= T 1 o tot1 “l(i 26? K,sinwcoswsina—K,sinw cos wsin a
t—1 2 B—1 ’
where
U
— 1
B foo—2 1 log $ot+1 1*_—*;%)—23 W
Co(®—1) 2 fo—1 K,=1— 1+e %
o ()
where ¢, is the value of the coordinate which represents the 1=e/ 1—e . (o
body. It may be shown that the eccentricity of the cllipse . 14e %2 ’
og )
— 4b2_l where [ and 2b are the lengths of the major K—1— I—e) 1—¢
’ log (11¢ 2e(1—2¢%
and minor axes of the prolate spheroid. Since the fineness 8 T—ﬁa) 1=t
ratio f is equal to /25, f—‘\/ 1—‘— The incompressible | gnd 4* »* and w* are the velocity components in a coordi-
— nate system alined with the r-axis of the body. These
velocmes are transformed to the u, », and w components by the following equations:
* K
z%:% cos a+% sin a
* ¥
%=—~% sina+% cos a ¢ 10)
w_w
U U
With the preceding transformation, the velocity equations (8) become
%= 1:%;? (v1—p2cos a—pu+y/1—e? cos w sin a)(y1—u? K, cos a—py'1—e* K, cos w sin a)+ K, sin’w sin’a
1 — 3 — —_— . . g .
%=—IT62;‘-,(1/1—“’ sin a+puvy1—e? cos w cos a) (/1 —u? K, cos a—p+/1—¢* K, cos w sin a)+ K, sin*w cos a sin a (11)
w vi—e? . — — . . .
o= _.“l _e,:, sin w(y1—p? K, cos a—p+1—~e® K, c0s w sin a)— K, sin w cos w sin «
27
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These equations may be rewritten more simply by setting
F=1=3 cos a—puy/1—¢* cos w sin
Fi={1—43 sin a+uy1—e? cos w cos a
H=\1—13 K, cos8 a—puy1—é K, cos w sin a
G=1—¢'s?

Fa=py1—e?sin w

Then
3 U K sinto sin'a )
%= F'H+K, sin’w cos « sin « L (12)
%:-%I—J—K, 8in w cos w sin « )

The method of correcting for compressibility discussed in
the text can now be approximately applied by increasing the
fineness ratio by 1/8 and reducing the tangent of the angle
of attack by the factor 8. Thus,

e..—‘/l—— (13)

tan a,,=pf tan a (14)

and

where ¢,; and a,, are the eccentricity and the angle of attack
of the stretched body. Although this stretched body differs
slightly from the properly stretched body, the approximation
is very close for large fineness ratios and small angles of
attack. It may be shown that the properly stretched body
is an ellipsoid having three unequal axes; however, under the
present restrictions the two minor axes are very nearly
equal, so that only small errors will be caused by the above
approximation of the stretched body.

The induced velocities in compressible flow are now de-
termined by substituting a,, and e,, in equations (11) and

multiplying the resulting velocity increments g— i, U’ and
by the factors 1/8%, 1/8, and 1/8, respectively, or
N _ 2 1T(2)
(U)e— 1 +ﬂ2 [(U)ll 1]
v 1 /v
@).=5). * as)

0@

The pressure coefficients for compressible flow may be com-
puted from the velocities by the following formula:

I e et K O

2T

where
@).-@).+@).+@). (16
Combination of equations (12), (15), and (16) yields

V: o1 H,’
l—--(—ﬁ=-ﬂ-§ {1 G. K"u

(—;—,-—1) [(1 —-H"F") +(K,,“ sin? w sin? a,,+H5F"> —
(H"F”) —2K,,, sin® v sin? a,,]} an

where the subscript st is used to indicate that the various
functions so identified are based on the values of ¢ and «
associated with the stretched body. (See egs. (13) and (14).)
A simpler first approximation may be obtained by consid-
ering the approximate relation

u—U
rmma(t7E),

(772 @)~

P=—2 (H"F"—-l +K,,, sin’® w sin? a,,) (18)

2 wsin? a;—

Since

A simpler equation may be developed for the pressures
over a prolate spheroid at zero angle of attack by consider-
ing the method of approximate source-sink distributions
described in references 2 to 4. In these references, it is
shown that

(2 UY L[ SOE=it
Pc— 2 (—U‘)C—EJ; [(33—[)2-{'-32]‘2]3/2 (19)
where ¢ is a coordinate along the major axis of the body and

S’(t) is the derivative of the cross-sectional area of the body
with respect to £, For a prolate spheroid,

S(t)“:rrz—‘&r—ll’qt—gw—lgfﬁ
from which
so=2150_12F (2
Thus

P—2—b~2j; (1 Da—va

= F8rT

After integration and collection of terms
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APPENDIX B

REDUCTION OF PRESSURE-COEFFICIENT FORMULAS TO OBTAIN SIMPLE FUNCTIONS FOR CORRECTING
INCOMPRESSIBLE PRESSURE DISTRIBUTIONS FOR THE EFFECTS OF COMPRESSIBILITY

Two functions which may be used to express the relation
between the pressure coefficients in compressible and incom-
pressible flow are the ratio and the increment between the
two coefficients P, and P;; that is, P,/P, and P,— P, Both
functions may be expressed in simple equations by substitut-
ing the pressure-coefficient functions for the midpoint of the
body into both the ratio function and the increment func-
tion. In order to simplify equation (17) let u=0, sin a,;=fa,
and K, =1k, or k;;,=1—K,,,. Then,

2
1=~ [ 2= S Ko 1) B, 70— 2000 | (21)

For small values of 1__;

V2
P‘=1_Tﬁ
Also, for large values of f
Ka“—-)2
Hence
p=Ll ok, B 40 2ok
= | 2u— St~ B G~ k) |
Since f*°=1 at M;=0
2
P 1 [2k.,—"—é;——4a=(1—p’)(pﬁaz—k,.)]
P8 2k— k¢ '

Since 4a*(1—*)(f’a®—k,;) is small compared with 2k,,, the
term containing a may be neglected; thus

P, 1k 2t
e Lka- B
P Bk 2=k, @2)

In order to reduce this equation to previously published
forms (refs. 4 and 8), it is necessary to reduce k:

log (i—j—g —2e

k=l—K.=lo (1 +e)__ 2¢
B\1—¢) 1—¢
3
Substituting e, =1 -% and the approximate form ¢,;=1— 2%;

in this equation gives

B (log 2/ —log 6~ 1)
k= pTTog 27— log B—/* @)

and

_log25—1
Tlog 2f—f?
These equations show that both &,,/8* and &, are of order of

magnitude 1/f* and, therefore, small with respect to 2.
Hence, the approximation (see eq. (22))

P,_ 1 ky
P, gk,

k (24)

(25)
is valid.

If equations (23) and (24) are used in equation (25), the
following equation is obtained:

P._ log 8 f*—log 2f
P‘—(1+1_]°g 2f) [fz—ﬂ2 (log 2f —log B) (26)

or for large fineness ratios

P, log 8
¢—1+1—log 2f 27
which may be changed to its equivalent form
P‘__. i=g_]2g_ﬁ_ (28)

Equation (20) obtained by the source-sink-distribution
method will also reduce to equations (27) and (28) for the
central part of the body.
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