
02

REPORT C tisu
*"rn& mav owftlw•

P"~ I mOtfto 4 mAkD- A280 145 :0!:

amw FIEPORT TYPE AND DAT5

4. T AN. FUNDING

940325S1.11345, AVF: 94ddc500 2
DDC-I, DACS Sun SPARC/SunOS to 680x4 Bare Ada Cross Compiler
System, Version 4.6.9

6. .uzlno rs:

National Institute of Standards and Technology
Gaithersburg, Maryland

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMNG
ORGANIZATION

latoal Ins ti Lute of6Standards and Technology
Ull ng bb, Koom 6

Gaithersburg, Maryland 20899
USA.

9. spNsoRIN ITORING AGENCY NA(S) AND V IL VA.0[10. SPONSORIN OITRING

Ada Joint Program Office LFCT AGENCY

The Pentagon, Rm3E118 EmECTE A N•m
WashingtoR, DC 20301-3080

11. SUPLME R

12a. 94-15727
Approved for Public Release; .distribution unlimited l\I\\ •Iit\1ii•

13. (MxImunm 200

Host: Sun SPARCstation IPX (under SunOS, Release 4.1.1)
Target: Motorola MVME143 (6030/68882) (bare machine)

14. SLUJECT 15. NUbUR OF

Ada programming linguage, Ada Compler Validation Summary Report, AL
3ý&yA ,V.pb Yal. Testing, Ada Val. Office, Ada Val. c, 11.y

17. SECURITY mis0. BOOM, 19. SEURrI'Y 20. LIMITATION OF

UNCLASSIFIED UNCLASSIFED UINCLASSIFED UNCLASSIFED
SWnOWd Form 29e. (Rev. 2-89)

iN DPre:Lai by ANSI SK.

2 5 o0o

AVF Control Number: NIST94DDC500_2_1.11
DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940325S1.11345
DDC-I

DACS Sun SPARC/SunOS to 680x0 Bare Ada
Cross Compiler System, Version 4.6.9

Sun SPARCstation IPX =>
Motorola MVME143 68030/i8882 (Bare Machine)

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899 Accesion For

U.S.A.
NTIS CRA&I
DTIC TAB
Unannounced El
Justification

By

Dist. ibution I

Availability Codes

Avail and I or
Dist Special

NIST94DDC500_2_1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Customer: DDC-I

Certificate Awardee: DDC-I

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS Sun SPARC/SunOS to 680x0 Bare Ada Cross Compiler
System, Version 4.6.9

Host Computer System: Sun SPARCstation IPX running under SunOS, Release
4.1.1

Target Computer System: Motorola MVME143 68030/68882 (Bare Machine)

Declaration:

I the undersigned, declare that I have no knowledge of deliberate deviations from the
-Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implezmntation listed
above.

Cuitomer tignature Date
C6mpany DDC-I
Title

Ceitficafe Awardoe Signature Date
Company DDC-I
Title

AVF Control Number: NIST94DDC500_2_1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/SunOS to 680x0 Bare Ada
Cross Compiler System, Version 4.6.9

Host Computer System: Sun SPARCstation IPX running under SunOS,
Release 4.1.1

Target Computer System: Motorola NVME143 68030/68882 (Bare
Machine)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325SI.11345 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada ali at o a 1 y AdsaValidation lity
Dr. David K. J fe as Mr. L. Arnold nson
Chief, Informat on S tems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

& AdaVa a n zaton Aa Joint Program Office

Direct ., a ter & Software David R. Basel
Engi eering Division Deputy Director,

Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

U.S.A.

TABLE OF CONTENTS

CHA TERODUCTION...................o.o.........o..... -

INTRODUCTION 1-1
1.1 USE OF THIS VALIDATION SUMMARY REPORT............. 1-1
1.2 REFERENCES * ... * 1-2
1. 3 ACIC TEST CLASSES 1-2
1. 4 DEFINITION OF TERMS 1-3

CHAPTER 2 o..........o................. 2-1

IMPLEMENTATION DEPENDENCIES............................. 2-1
2 .1 WITHDRAWfN TESTS 2-1

2 .2 INAPPLICABLE TESTS. 2-1

3 . 1 TESTING ENVIRONENT. 3-1
3C.P 2 SUMM.ARY OF TEST RESULTS 3-1

MACROC I POETERS.TION3-1APP NDI TE T N o........ o..... - 1

COMPILATION SYSTEM OPTIONSTo...... B-1
APNDIX TIOS TE Ada.....A..DA........................... 3-2APPENDIX BoC o ... o............. *... o o oo... o........ Co -1

APPENDIX F OF THE Ada STANDARD.o.............. oC-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide (UG89).

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming LanSuaQe,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units -are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be

replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, Including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from th6
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].
Validation The process of checking the conformity of an

Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B2?005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDlB02B BDlB06A
ADIB08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

The following 20 tests check for the predefined type LONGINTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range'of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

2-2

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-defattlt
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A84O use length
c..auses to specify non-default sizes for access types; this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A.oB (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAME ERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

2-3

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 72 tests.

The following tests were split into two cr more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AOlA B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83AO7A B83AO7B B83A07C B83EO1C
B83EO1D B83E01E B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BAIOO1A BA1101B BC1109A BC1109C
BCI109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CD2A83A was graded passed by Test Modification as directed by the
AVO. This test uses a length clause to specify the collection size
for an access type whose designated type is STRING; eight

2-4

designated objects are allocated, with a combined length of 30
characters. Because of this implementation's heap-management
strategy and alignment requirements, the collection size at line 22
had to be increased to 812.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE ERROR is raised on the attempt
to create an external file. This Is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 3orth 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3542

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 524
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 524 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto t -lost
comu5uter.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-I
Ada downloader runs on the Sun SPARCstation IPX and is used for
downloading the executable images to the target Motorola MVME143
68030/68882 (Bare Machine) and to capture the results. The DDC-I
Debug Monitor runs on the target Motorola MVME143 68030/68882 (Bare
Machine) and provides communication interface between the host
debugger and the executing target Motorola MVME143 68030/68882
(Bare Machine). The two processes communicate via RS-232 to
download and to upload.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-nowarning -list

The linker options specified were:

al -cpu 68030
-fpu 68882
-ram-base Oxl0000
-ram OxO, Ox3fffff
-main stack size-Oxl00000

3-2

-tcb 30
-ucC ada mvmel43.slb

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAXIN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
------- ;--

SMAXINLEN 126 -- Value of V

$BIG_IDi (l..V-1-> 'A', V-> '1')

$BIGID2 (l..V-1-> 'A', V-> '2')

$BIGID3 (l..V/2-> 'A') & '3' & (l..V-l-V/2-> 'A')

$BIGID4 (l..V/2-> 'A') & '4' & (1..V-1-V/2-> 'A')

$BIGINT LIT (l..V-3 -> '0') & "298"

$BIGREALLIT (1..V-5-> '0') & "690.0"

$BIGSTRINGI '""' & (I..V/2 -> 'A') & '""'

SBIGSTRING2 '""' & (1..V-I-V/2-> 'A') & 'i' & '""'

$BLANKS (l..V-20 -> '

SMAXLENINTBASEDLITERAL
"2:-" & (1..V-5-> '0') & "11:"

SMAXLENREALBASEDLITERAL
"16:" & (l..V-7-> '0') & "F.E:"

SMAXSTRINGLITERAL '"' & (l..V-2 -> 'A') & '""'

A-I

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

ACC SIZE : 32
ALIGNMENT : 4
COUNT LAST : 2 147 483 647
DEFAULT MENSIZE : 2#1#ES2
DEFAULTSTOR_UNIT : 8
DEFAULTSYS NAME : DACS 680x0
DELTA DOC - 2#1.O#E-31
ENTRY ADDRESS : FCNDECL. ENTRY. ADDRESS
ENTRY ADDRESS1 : FCNDECL. ENTRY. ADDRESS1
ENTRY ADDRESS2 : FCNDECL. ENTRY.ADDRESS2
FIELD-LAST : 35
FILE TERMINATOR : I I
FIXEDNAME : NOSUCHTYPE
FLOAT NAME : NO SUCHTYPE
FORM STRING : ""
FORMSTRING2

CONNOT RESTRICTFILECAPACITY"
GREATERTHANDURATION : 100000.0
GREATER THANDURATION BASE LAST : 200000.0
GREATER THANFLOAT BASELAST : 16#1.0#E+32
GREATER THANFLOAT SAFE LARGE : 16#5. FFFFF0#E+31
GREATER_ THAN SHORTFLOATSAFELARGE: 16#5. FFFF_FO#E+31
HIGH PRIORITY : 24
ILLEGAL EXTERNAL FILE NAME1 : /NODIRECTORYI/FILENAME1
ILLEGAL-EXTERNAL-FILE-NAME2 : /NODIRECTORYi/FILENAME2
INAPPROPRIATE LIRE LENGTH : -1
INAPPROPRIATE PAGELENGTH : -1
INCLUDEPRAGMAl

PRAGMA INCLUDE ("A28006DI.ADA")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006E1.ADA")
INTEGER FIRST : -2147483648
INTEGER LAST : 2147483647
INTEGER_LASTPLUS_1 : 2147483648
INTERFACELANGUAGE : AS
LESS THAN DURATION : -75000.0
LESS THAN DURATIONBASEFIRST : -131073.0
LINETERMINATOR :
LOW PRIORITY : 1
MACHINE CODE STATEMENT

AA INSTR'(AA_EXITSUBPRGRM,0,0,0, AA_INSTR INTG'FIRST,0);
MACHINE CODE TYPE : AA INSTR
MANTISSA DOC : 31
MAXDIGITS : 15

A-2

NAX INT : 2147483647KAk-INT PLUS1 1: 2147483648

KININT- : -2147483648
NAM : NO SUCH TYPE AVAILABLE
NAME LIST DACS_68Ox0
NAME_SPECIFICATION1

/home/sun2/ada/68030/test/wrk/X2120A
NAMESPECIFICATION2 /home/sun2/ada/68030/test/wrk/X2120B

NAMESPECIFICATION3
/home/sun2/ada/6803 O/test/wrk/X3119A

NEGBASED INT : 16#F000000E#
NEWHEM SIZE : 2097152
NEW_STOR UNIT : 8
NEW SYS NAME : DACS 680x0
PAGE TERMINATOR :
RECORDDEFINITION

RECORD - INSTRNO: INTEGER;ARGO: INTEGER;ARG1: INTEGER;
ARG2 : INTEGER;ARG3 : INTEGER;END - RECORD;

RECORD NAME : AA INSTR
TASK SIZE : 96
TASK-STORAGESIZE : 1024
TICK : 2#1.0#E-14
VARIABLE-ADDRESS : FCNDECL.VARIABLE ADDRESS
VARIABLE ADDRESS1 : FCNDECL.VARIABLE-ADDRESS1
VARIABLEADDRESS2 : FCNDECL.VARIABLEADDRESS2
YOUR PRAGMA : NOFLOAT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-i

5 THE ADA COMPILER

The Ada Compiler compiles all program units within the specified source file and inserts the
generated objects into the cunent sublibrary. Compiler options are provided to allow the user
control of optimization, nm-time checks, and compiler input and output files such as list files,
configuration files, the program library used, etc.

The input to the compiler consists of the source file, the configuration file (which controls the
format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
options, and Section 5.2 describes the source and configuration files.

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in section 5.3. If any diagnostic messages are produced
during the compilation, they ame output to the diagnostic file and on the current output file. The
diagnostic file and the diagnostic messages are described in Section 5.3.2.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an internal representation of the compilation unit will be
included in die program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 The Invocation Command

Invoke the Ada compiler with the following command to the SunOS shell:

$ ada (<option>) <source-or-unit>

where the options and parameters are:

35

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

OPTION DESCRIPTION REFERENCE

-[folautojinane Automatic inline expansion of local subprograms. 5.1.1
-body Compile body unit from source saved in library. 5.1.2
-check Specifies run-time constraint checks. 5.1.3
-wonflPntion-flle Specifies the configuration file used by the compiler 5.1.4
-(noldebug Generate debug infonnation. 5.1.5
-[eo]fiu Generate code for the floating point co-processors 5.1.6
-Ubrary Specifies program library used. 5.1.7
.[nollist Writes a source listing on the list file. 5.1.8
-mode Protection mode. 5.1.9
-optindze Specifies compiler optimization. 5.1.10
-[neosave.source Inserts source text in program library. 5.1.11
:specification Compile specification unit from source saved in library. 5.1.12
-([olverbose Displays compiler progress. 5.1.13
[noJwarnings Display warning from the compiler 5.1.14

.[nolxref Creates a cross reference listing. 5.1.15
<source-or-unit> The name of the source file or unit to be compiled. 5.1.16

Examples:

$ ada -list testpzog

This example compiles the source file testprog.ada and generates a list file with the name
testprogJis.

$ ad& -libzazy my.l.ibrary text

This example compiles the source file tesLada into the library my.library.

Default values exist for most options as indicated in the following sections. Options and option
keywords may be abbreviated (characters omitted from the right) as long as no ambiguity arises.
Casing is significant for options, but not for option keywords. When conflicting options are given
on the command line, (e.g. 4-st and -nolist) the last one is used.

S.1.1 -[no]auto_inline

-auto-nline LOCAL I GLOBAL
-noauto-.nline (default)

This option specifies whether subprograms should be inline expanded. The inline expansion only
occurs if the subprogram has less than 4 object declarations and less than 6 statements, and if the
subprogram fulfills the requirements defined for pragma INLINE (see Section B.2.3). LOCAL
specifies that only inline expansion of locally defined subprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subprograms from other
units.

36

. - . DACSUx4 Ba Ad M Cross Compiler System - User'sGuide

The Ada Compiler

A warning is issued when inline expansion is not achieved.

5.1.2 -body

-body

When using the option -body the Ada compiler will recompile the body of the unit specified as
panmieter to the Ada compiler (see section 5.1.16) into the current sublibrary. The source code
saved in the program library at the previous compilation of the body is used as the source code
to be compiled. If no source code is present or the body for the unit does not exist in the library,
an error message is issued. This option is primarily for use by the Ada Recompiler (see chapter
7).

5.1.3 -check

-check [<keyword> = ON I OFF (,ckeyword> = ON I OFF)]
-check ALL=ON (default)

-check specifies which run-time checks should be performed. Setting a run-time check to ON
enables the check, while setting it to OFF disables the check. All run-time checks are enabled by
default. The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL.
ALL All checks.
DISCRIMINANT Checks for discriminated fields.
ELABORATION Checks for subprograms being elaborated.
INDEX Index check
LENGTH Array length check.
OVERFLOW Explicit overflow checks.
RANGE Checks for values being in range.
STORAGE Checks for sufficient storage available.

5.1.4 -configuration-efie

-configurationjfle <file-spec>
-configuration-file config (default)

This option specifies the configuration file to be used by the compiler in the current compilation.
The configuration file allows the user to format compiler listings, set error limits, etc. If the
option is omitted the configuration file config located in the same directory as the Ada compiler
is used by default. Section 52.2 contains a description of the configuration file.

37

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

5.1.5 -[noldebug

-debug
-nodebug (default)

Generate debug information for the compilation and store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-I Ada Symbolic Cross Debugger. See Section 6.2.4.

5.1.6 -(nolfpu

-fpu (default)
-[nolfpu

If the -fpu option is specified the compiler will assume that a floating point co-processor is present
and generate code accordingly. If the -nofpu option is specified the compiler will assume that a
floating point co-processor is not prsent, and will not generate instructions for the co-processors.
Floating point operations are instead implemented by calls to run time library.

5.1.7 -library

-library <dlle-spec>
-library SADAIUBRARY (default)

This option specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a current sublibrary, the current
program library (current sublibrary and ancestors up to root) is also implicitly specified.

If this option is omitted, the sublibrary designated by the environmental variable ADA-LIBRARY
is used as the current sublibrary (see Chapter 3). Section 5.4 describes how the Ada compiler uses
the library.

5.1.8 -[nollist

-list
-nolist (default)

-list specifies that a source listing will be produced. The source listing is written to the list file,
which has the name of the source file with the extension Jis. Section 5.3.1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced, regardless of LIST pragmas in the program or
diagnostic messages produced.

38

.74 - W".

DACS Ba0x0 Dut Ada Crs Compiler System - User's Guide
The Ada Compiler

5.13 -.mode

-mode ALL I BASIC I SECURE
-mode ALL (default)

The compiler generates code to execute in a non-protected BASIC mode, or in a protected
SECURE mode according to the -mode option. Code can be generated to run in all protection
modes by specifying ALL, this way protection mode can be decided at link time. The fastest and
most compact code is generated by selecting the protection mode in which the program shall
execute. Please refer to chapter 10 for details on protection modes. Mode SECURE is only usable
if the pogrmo will be linked for a Motorola 68030 or 68040 processor.

5.1.10 -optimize

-optimize [<keyword> = ON I OFF{ ,,keyword> = ON I OFF)]
-optimize ALL-OFF

This option specifies which optimizations will be performed during code generation. The possible
keywords are:

ALL All possible optimizations are invoked.
CHECK Eliminates superfluous checks.
CSE Performs common subexpression elimination including common address

expressions.
FCT2PROC Change function calls returning objects of constrained array types or

objects of record types to procedure calls.
REORDERING Transforms named aggregates to positional aggregates and named

parameter associations to positional associations.
STACK-HEIGHT Performs stack height reductions (also called Aho Ullman reordering).
BLOCK Optimize block and call frames.

Setting an optimization to ON enables the optimization, while setting an optimization to OFF
disables the optimization. All optimizations are disabled by defaulL In addition to the optional
optimizations, the compiler always performs the following optimizations: constant folding, dead
code elimination, and selection of optimal jumps.

5.1.11 -[nolsave-source

-save.source (default)
-nosave-Murce

When -save source is specified, a copy of the compiled source code is placed in the program
library. If -nosave..source is used, source code will not be retained in the program library.

Using -hosave-source, while helping to keep library sizes smaller, does affect the operation of
the recompiler, see Chapter 7 for more details. Also, it will not be possible to do symbolic
debugging at the Ada source code level with the DACS-680x0 Symbolic Ada Debugger, if the
source code is not saved in the library.

39

DACS 68OxO Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

5.1.12 -specification

-specification

When using the option -specification the Ada compiler will recompile the specification of the unit
specified as parameter to the Ada compiler (see section 5.1.16) into the current sublibrary. The
source code saved in the program library at the previous compilation of the specification is used
as the source code to be compiled. If no source code is present or the specification for the unit
does not exist in the library, an error message is issued. This option is primarily for use by the
Ada Recompiler (see chapter 7).

5.1.13 -[nolverbose

-verbose
-noverbose (default)

When -verbose is specified, the compiler will output information about which pass the compiler
is currently running, otherwise no information will be output.

S.1.14 -[nojwarnings

-warnings (default)
-nowarnings

All warnings from the Ada Compiler are displayed when option -warnings is specified. All
compiler warnings are suppressed when -nowarnings is specified. See Section 5.3.2 for a
description of how and when warnings are reported from the Ada Compiler.

5.1.15 -[nolxref

.Xref
-noxref (default)

A cross-reference listing can be requested by the user by means of the option -xref. If the -xref
option is given and no severe or fatal errors are found during the compilation, the cross-reference
listing is written to the list file. The cross-reference listing is described in Section 5.3.1.3.

S.1.16 The Source or Unit Parameter

<source-or-unit>

This parameter specifies either the text file containing the Ada source text to be compiled or,
when option -body or -specification is used, the name of the unit to be compiled. When
interpreted as a file name, the file type ".ada" is assumed by default, if the file type is omitted
in the source file specification.

40

DACS 6O0x0 Br Adr C Compiler System - User's Guide
The Ada Compiler

5.2 Compiler Input

Input to the compiler consists of the command line options, a source text file and, optionally, a
configuration file.

5.2.1 Source Text

The user submits one file containing a source text in each compilation.

The format of the source text must be in ISO-FORMAT ASCII. This format requires that the
source text is a sequence of ISO characters (ISO Standard 646), where each line is terminated by
either one of the following termination sequences (CR means carriage return, VT means vertical
tabulation. LF means line feed, and FF means form feed):

"* A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT, LF, or FF.

"* Any of the characters VT, LF, or FF, immediately preceded and followed by a sequence
of zero or more CRs.

In general, ISO control characters are not permitted in the source text with the following

exceptions:

"* The horizontal tabulation (HT) character may tb used as a separator between lexical units.

"* LF, VT, FF, and CR may be used to terminate lines, as described above.

The maximum number of characters in an input lie is determined by the contents of the
configuration file (see Section 5.2.2). The control characters CR, VT, LF, and FF are not
considered a part of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

5.2.2 Configuration File

Certain processing characteristics of the compiler, such as format of input and output and error
limit, may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard SunOS text file. The contents of the configuration
file must be an Ada positional aggregate, written on one line, of the type
CONFIGURATIONRECORD, which is described below.

The configuration file (config) is not accepted by the compiler in the following cases:

* The syntax does not conform with the syntax for positional Ada aggregates.

• A value is outside the ranges specified.

SA value is not specified as a literal.

* LINESPERPAGE is not greater than TOP.-MARGIN + BOTTOM-MARGIN.

41

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on current
output and the compilation is terminated.

Below is a description of the record whose values must appear in aggregate form within the
configuration file. The record declaration makes use of some other types (given below) for the
sake of clarity.

type CONFIGURATION.RECORD is
record

IN-FORMAT : INFORMATTING;
OUT-FORMAT : OUTFORMATTING;
ERROR-LIMIT : INTEGER RANGE 1..32-767;

end record;

type INPUT-FORMATS is (ASCII);

type INFORMATTING is
record

INPUT-FORMAT : INPUT-FORMATS;
INPUTLINELENGTH : INTEGER range 72..250;

end record;

type OUTFORMATTING is
record

LINESPERPAGE : INTEGER range 30..100;
TOP-MARGIN : INTEGER range 4.. 90;
BOTTOM-MARGIN : INTEGER range 0.. 90;
OUTLINELENGTH : INTEGER range 80..132;
SUPPRESSERRORNO : BOOLEAN;

end record;

The outformatting parameters have the following meaning:

1) LINESPERPAGE: specifies the maximum number of lines written on each page
(including top and bottom margin).

2) TOP-MARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTFOMMARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PER-PAGE - TOP-MARGIN - BOTTOM-MARGIN.

4) OUTLINELENGTH: specifies the maximum number of characters written on each line.
Lines longer than OUT.LINELENGTH are separated into two lines.

5) SUPPRESSERRORNO: specifies the format of error messages (see Section 5.3.2.2).

42

DACS 680x0 Sam Ada Cmu Compiler System - User's Guide
The Ada Compiler

The none of a user-supplied configuration file can be passed to the compiler through the
-configuration-flle option. DDC-I supplies a default configuration file (config) with the following
content:

((ASCH, 126), (48,5,3, 100,FALSE), 200)

Top T
margin

Lines
per
page

Bottom T
margin

Out-line-length

Figure 5.1: Page Layout

5.3 Compiler Output

The compiler may proxluce output to the list file, the diagnostic file, and the current output file.
It also updates the •-mgram library if the compilation is successful. The present section describes
the text output in the three files mentioned above. The updating of the program library is described
in Section 5.4.

The compiler may produce the following text output:

1) A listing of the source text with embedded diagnostic messages is written to the list file,
if the option -list is active.

2) A compilation summary is written to the list file, if -list is active.

43

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

3) A cross-reference listing is written to the list file, if -xref is active and no severe or fatal
errors have been detected during the compilation.

4) If there are any diagnostic messages, a diagnostic file containing the diagnostic messages
is written.

5) Diagnostic messages other than warnings are written on the current output file.

53.1 The Lis File

If the user requests any listings by specifying the options -list or -. ref, a new list file is created.
The name of the list file is identical to the name of the source file except that it has the file type
"Ais". The file is located in the current directory. If any such file exists prior to the compilation,
the file is deleted.

The list file may include one or more of the following parts: a source listing, a cross-reference
listing, and a compilation summary.

The parts of the list file are separated by page ejects. The contents of each part are described in
the following sections.

The format of the output to the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

5.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

"* Pans of the listing can be suppressed by the use of LIST pragmas.

"* A line containing a construct that caused a diagnostic message to be produced is printed
even if it occurs at a point where listing has been suppressed by a LIST pragma.

S.3.1.2 Compilation Sunmmary

At the end of a compilation, the compiler produces a summary that is output on the list file if the

option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

44

DACS 68MO Bare Ads CMos Cuersymtm - usees Gowde
The Ada Compiler

2) The number of diagnostic messages produced for each class of severity (see Section 5.3.2. 1).

3) Which options were active.

4) The full name of the source file.

5) The full name of the current sublibray.

6) The number of source text lines.

7) The size of the code produced (specified in bytes).

8) Elapsed real time and elapsed CPU time.

9) A "Compilation terminated" message if the compilation unit was the last in the compilation
or "Compilation of next unit initiated" otherwise.

53.1.3 Cros-Reference Listing

A cross-reference listing is an alphabetically sorted list of identifiers, operators and character
lHIeras of a compilation uniL The list has an entry for each entity declared and/or used in the
unit. with a few exceptions stated below. Overloading is evidenced by the occurrence of multiple
entries for the same identifier.

For instantiations of generic units, the visible declarations of the generic unit are included in the
cross-reference listing immediately after the instantiation. The visible declarations are the
subprogram parameters for a generic subprogram and the declarations of the visible part of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for string
literals.

The following are not included in the cross reference listing:

"* Pragma identifiers and pragma argument identifiers.

"* Numeric literals.

"• Record component identifiers and discriminant identifiers. For a selected name whose
selector denotes a record component or a discriminant, only the prefix generates
cross-reference information.

"* A parent unit name (following the keyword SEPARATE).

45

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

Each entry in the cross-reference listing contains:

"* The identifier with at most 15 characters. If the identifier exceeds 15 characters, a bar ("I")
is written in the 16th position and the ms of the characters are not printed.

"* The place of the definitn, i.e. a line number if the entity is declared in the current
compilation unit, otherwise the ntme of the compilation unit in which the entity is declared
and the line number of the declaration.

"* The line numbers at which the entity Is used. An asterisk ("*") after a line number indicates
an assignment to a variable, initialization of a constant, assignments to functions, or
user-defined operators by means of RETURN statements.

5.3.2 The Diagnostic File

The name of the diagnostic file is identical to the name of the source file except that it has the
file type ".err". It is located in the current directory. If any such file exists prior to the
compilation the newest version of the file is deleted. If any diagnostic messages are produced
during the compilation a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each preceded by a line
showing the number of the line in the source text causing the message, and followed by a blank
line. There is no separation into pages and no headings. The file may be used by an interactive
editor to show the diagnostic messages together with the erroneous source texL

.3.2.1 Diagnostic Messages

The Ada compiler issues diagnostic messages to the diagnostic file. Diagnostics other than
warnings also appear on standard output. If a source text listing is required, the diagnostics are
also found embedded in the list file (see Section 5.3.1).

In a source listing, a diagnostic message is placed immediately after the source line causing the
message. Messages not related to any particular line are placed at the top of the listing. The lines
are ordered by increasing source line numbers. Line number 0 is assigned to messages not related
to any particular line. On standard output the messages appear in the order in which they are
generated by the compiler.

The diagnostic messages are classified according to their severity and the compiler action taken:

Warning. Reports a questionable construct or an error that does not influence the meaning of the
program. Warnings do not hinder the generation of object code.

Example: A warning will be issued for constructs for which the compiler detects that
they will raise CONSTRAINT-ERROR at run time.

Error Reports an illegal construct in the source program. Compilation continues, but no object

code will be generated.

46

DAC3 B~are A&a OmuC~ l Sys"em User's Gu"d
The Ada Compiler

Examples: most syntax errors; most static semantic errors.

Severe Reports an enor which causes the compilation to be terminated immediately. No object
enrro code is generated.

Example A severe error message will be issued if a library unit mentioned by a WITH
clause is not present in the current pgr libry.

Fatal Reports m error in the compiler system itself. Compilation is terminated immediately
error: and no object code is produced. The user may be able to circumvent a fatal error by

correcting the program or by replacing program constructs with alternatives. Please
inform DDC-I about the occurrence of fatal errors.

The detection of more errors than allowed by the number specified by the
ERROR.LMIT parameter of the configuration file (see section 5.2.2) is also considered a severe
enor.

5.3.2.2 Format and Content of Diagnostic Messages

For certain syntactically incorrect constructs the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (a carat symbol A) to the offending symbol or to an illegal

character.

The text line contains the following information:

* The diagnostic message identification "***"

* The message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error.

W: warning
E: error
S: severe error
F: fatal error

Z is an integer which together with the message number X uniquely identifies the compiler
location that generated the diagnostic message; Z is of importance mainly to the
compiler maintenance team -- it does not contain information of interest to the compiler
user.

The message code (with the exception of the severity code) will be suppressed if the
parameter SUPPRESSERROR-NO in the configuration file has the value TRUE (see
section 5.2.2).

47

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

The message text; the text may include one context dependent field that contans the name
of the oftending symbol; if the name of the offending symbol is longer than 16 characters
only the first 16 characters are shown.

Examples of diagnostic messages:

0 1OW-3: Warning: Exception COMSIPAXNT ZRROR will be raised here

320E-2: Name 03W does not denote a type

*** 535E-0: Expression in return statement missing

' 1508S-0: Specification for this package body not present in the library

5.3.3 Return Status

The Ada Compiler's return value will have one of the following values:

0: The compilation was successful, warnings may have been generated.
1,2: Fatal internal error in the nm-time system. Please contact DDC-I engineers.
3,4: Errors in command line options, compiler generates an error message indicating the

error.
5: Fatal internal error in the compiler. Compiler generates an error message indicating the

error. Please contact DDC-I engineers.
6: Severe error during compilation, e.g. a unit mentioned by a WITH clause is not present

in the library. Compiler generates an error message indicating the error.
7: Error during compilation, e.g. most syntax errors. Compiler generates an error message

indicating the error.

5.4 The Program Library

This section briefly describes how the Ada compiler changes the program library. For a more
general description of the program library the user is referred to Chapter 4.

The compiler is allowed to red from all sublibraries constituting the current program library, but
only the current sa' library may be changed.

5.4.1 Correct Compilations

In the following examples it is assumed that the compilation units are correctly compiled, i.e. that
no errors are detected by the compiler.

48

DACS 68GW Ban Ada Cross Compiler System - User's Guide
The Ada Compiler

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current sublibrary, it is deleted together with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together
with an empty body unit.

Compilation of a library unit which Is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit if the current sublibrary
contains a subprogram declaration or a generic subprogram declaration of the same name and this
declaration unit is not invalid. In all other cases it will be treated as a library unit, i.e.:

* When there is no library unit of that name.

* When there is an invalid declaration unit of that name.

* When there is a package declaration, generic package declaration, an instantiated package,
or subprogram of that name.

Compilation of a library unit which is an instantiation

A possible existing declaration unit of that name in the current sublibrary is deleted together with
its body unit and possible s, bunits. A new declaration unit is inserted.

Compilation of a secondary unit which is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. The new
body unit is inserted.

Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibrary it is deleted together with its possible subunits. The new
subunit is inserted.

5.4.2 Incorrect Compilations

If the compiler detects an error in a compilation unit, the program library will remain unchanged.

Note that if a file consists of several compilation units and an error is detected in any of these
compilation units, the program library will not be updated for any of the compilation units.

5.$ Instantiation of Generic Units

This section describes the order of compilation for generic units and describes situations in which
an error will be generated during the instantiation of a generic unit.

49

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

S.5.1 Order of Compilation

When instaniating a generic unit, it is required that the entire unit, including body and possible
subunits, be compiled before the first instantiation. This is in accordance with the [DoD-83]
Chapter 10.3 (1).

5.5.2 Generic Formal Private Types

This section describes the treatment of a generic unit with a generic formal private type, where
there is some construct in the generic unit that requires that the corresponding actual type must
be constrained if it is an array type or a type with discriminants, and there exists instantiations
with such an unconstrained type (see [DoD-831 Section 12.3.2(4)). This is considered an illegal
combination. In some cases the error is detected when the instantiation is compiled, in other cases
when a constraint-requiring construct of the generic unit is compiled:

1) If the instantiation appears in a later compilation unit than the first constraint-requiring construct
of the generic unit, the error is associated with the instantiation which is rejected by the
compiler.

2) If the instantiation appears in the same compilation unit as the first constraint-requiring
construction of the generic unit there are two possibilities:

a) If there is a constraint-requiring construction of the generic unit after the instantiation, an
error message appears with the instantiation.

b) If the instantiation appears after all constraint-requiring constructs of the generic unit in that
compilation unit, an error message appears with the constraint-requiring construct but it will
refer to the illegal instantiation.

3) The instantiation appears in an earlier compilation unit than the firt constraint-requiring
construction of the generic unit, which in that case will appear in the generic body or a
subunit. If the instantiation has been accepted, the instantiation will correspond to the generic
declaration only, and not include the body. Nevertheless, if the generic unit and the instantiation
are located in the same sublibrary, then the compiler will consider it an error. An error message
will be issued with the constraint-requiring construct and will refer to the illegal instantiation.
The unit containing the instantiation is not changed, however, and will not be marked as
invalid.

5.6 Uninitialized Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

50

DACS Biare Ada Cr Compiler System - User's Guide
The Ada Compiler

5.7 Program Structure and Compilation Issues

The following limitations apply to the DACS-680x0 system:

"* Each source file can contain, at most, 32.767 lines of code.

"* The name of compilation units and identifiers may not exceed the number of characters given
in the INWPUT.LI ENGTH parameter of the configuration file.

"* An integer literal may not exceed the range of INTEGER, a real literal may not exceed the
range of LONG-FLOAT.

"* The number of formal parameters permitted in a procedure is limited to 64 per parameter
specification. There is no limit on the number of procedure specifications. For example the
declaration:

procedure OVER-LIMIT (INTEGER01,
INTEGER02,
... f

INTEGER66: in INTEGER);

exceeds the limit, but the procedure can be accomplished with the following:

procedure UNDER-LIMIT (INTEGER01 : in INTEGER;
INTEGER02 : in INTEGER;

INTEGER66 : in INTEGER);

The above limitations are diagnosed by the compiler. In practice these limitations are seldom
restrictive and may easily be circumvented by using subunits, separate compilation, or creating new
sublibraries.

51

52

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2_147_483648 .. 2_147_483_647;

type FLOAT is digits 6
range -3.4028234666385E+38 .. 3.4028234666385E+38;

type LONGFLOAT is digits 15
range -1.7976931348623157E+308 .. 1.7976931348623157E+308;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-I

6 THE ADA LINKER

The DACS-680x0 linker must be executed to create a program executable in the target
environment. Linking is a two stage process that includes an Ada link using the information in
the Ada piogram library, and a target link to integrate the application code, run-time code, and
any additional configuration code developed by the user. The linker performs these two stages with
a single command, providing options for controlling both the Ada and target link processes. This
chapter describes the link process, the options to the DACS-680x0 linker, and the configuration
of the linker.

6.1 The Link Process

TIle linking process can be viewed as two consecutive phases that are automatically carried out
when issuing the link command al.

The link process is carried out in the following steps:

"* Determination of Ada compilation units to include in the target program.

"* Checking the validity of the included units according to the Ada rules.

"* Determination of an elaboration order for the target program.

"* Group units and tasks into classes (for security critical applications, see chapter 10).

"* Generation of an object module to invoke the elaboration of the included Ada compilation
units. This module is called the elaboration module.

"* Determination of attributes of the program being linked (see section 6.7).

"* Generation of an initialization module.

"• Generation of option file(s) to the target linker.

"* Invocation of the target linker.

The tasks of the first three steps are described in chapter 10 of the [DoD-83]. the last five steps
are described in detail in the following sections.

6.2 The Invocation Command

Enter the following command to the SunOS shell to invoke the linker

$ al (<option>) cunitname>

where the options and parameters are:

53

DACS 680x0 Barm Ada Cros Compiler System - User's Guide
The Ada Linker

OPTION DESCRIPTION REFERENCE

-[nolboot Generate boot module. 6.2.1
-[meIcldas le Class file name. 6.2.2
,CPU Select Target board CPU. 6.2.3
-[noldebug Generate debug information. 6.2.4
-defaults Save options as new linker defaults. 6.2.5
-(nolUtry Alternative program start label. 6.2.6
-(nolexceptions Control of exception management. 6.2.7
-[nolexecutable Name of executable file. 6.2.8
-[mnoltiu Control of which floating point processor is used. 6.2.9
-[noiheap Control of memory management. 6.2.10
-[nolnit..lle Initialization file name. 6.2.11
-Interruptstack Interrupt stack description. 6.2.12
-(nojitcb Number of Interrupt Task Control Blocks allocated. 6.2.13
-[nolkeep Do not delete temporary files. 6.2.14
-library The library used in the link. 6.2.15
-[nollogll-e Log file name. 6.2.16
-[nojlogical-memory Logical memory specification. 6.2.17
-nmin_"sk Main task specification. 6.2.18
-[nolmap Keep linker map file. 6.2.19
-mnm.details Setup values for MMU registers. 6.2.20
-mode Execution mode. 6.2.21
-[noloption..flle Linker option file name. 6.2.22
-ram Physical RAM memory specification. 6.2.23
*ramJbase Base address for RAM sections. 6.2.24
-ram-sections Description of RAM memory sections. 6.2.25
-[noirom Physical ROM memory specification 6.2.26
-[no~romhuse Base address for ROM sections. 6.2.27
-[4nolrom..seLons Description of ROM memory sections. 6.2.28
-rts-stack-use Amount of memory used by RTS. 6.2.29
-[noiscod Supervisor code sections. 6.2.30
-[nolsdat Supervisor data sections. 6.2.31
-[noistatistics Print statistics. 6.2.32
-[noltarget-options Options to the target linker. 6.2.33
-task.defaults Default values for tasks. 6.2.34
-[nojtcb Number of Task Control Blocks allocated. 6.2.35
-ucc-llbrary UCC library name. 6.2.36
-[nolucod User code sections. 6.2.37
-[nojucst User constant sections. 6.2.38
-[noludat User data sections. 6.2.39
-[nojusr-library A user supplied object library. 6.2.40
-[no]vector Interrupt vector description. 6.2.41
-[nolverify Print information about the link. 6.2.42
-[noiwarnings Print warnings. 6.2.43
<unit-name> Name of the main unit. 6.2.44

54

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

All options and option keywords may be abbreviated (characters omitted from the right) as
long as no ambiguity arises. Casing is significant for options but not for option keywords.

For all option values specifying a 32-bit address, 2-complement wrap-around is performed on
negative numbers, e.g. -romm.base=--l is equivalent to -romrbase=Oxffffffff.

6..1 .[nolboot

.boot
-noboot (default)

If -boot is specified an absolute file suited to gain control upon a reset is generated. The first two
longwords in the RTSCODE section contain the start Program Counter and the interrupt stack
address. If -noboot is specified the absolute file does not contain the reset information. -boot is
not valid when option -debug is specified, see section 6.2.4.

6.2. -[no]class-file

-.lass.file <file.aname>
-noclass-flie (default)

Specifies the name of the file containing the class specifications. The syntax of class specifications
is described in chapter 10, where the concepts of classes are described as well. This option is
only legal if option -mode is set to SECURE or SAFE.

6.2.3 -cpu

-cpu 68020 I 68030 I 68040
-cpu <highest licensed> (default)

Specifies the Motorola Central Processing Unit (CPU) on the target board. The -cpu option must
match the actual CPU on the target board, as this option directs the Ada Linkers selection of RTS
and supporting libraries. This option defaults to the highest CPU for which the DACS-680x0 has
been licensed, with 68020 being the lowest and 68040 being the highest.

6.2.4 -[noldebug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is required
to enable symbolic debugging. If -nodebug is specified, the Ada linker will skip the generation
of debug information, thus saving link time, and will not insert the debug information into the
chosen sublibrary, thus saving disk space. Note that any unit which should be symbolically
debugged with the DDC-I Ada Symbolic Cross Debugger must also be compiled with the -debug

55

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

option. See Section 5.1.5. -debug is not valid, when options -boot or -vector INIT are specified,
see sections 6.2.1 and 6.2.41.

6.2. -defaults

-defaults

Sam the currn setting of all options and parameters, except the -daults option itsel. as new
defaults for the linker. The defaults am saved in the file specified by the environmemal variable
ADAJIMKDEFAULTS. When this option is pmsent, no actual linking will take place. For a
complete description of the Ada Linker defaults system. please refer to section 6.3.

6.2 -[nolentry

-entry <string>
-noentry
-entry "Ada.ELABSEntry" (default)

The -entry option specifies the entry name of the program. If -entry is not specified the entry
point is the start of the elaboration module.

6.2.7 -[no~exceptions

-exceptions (default)
-noexceptions

If -exceptions is specified the exception management routines are included in the target program.
If -noexceptions is specified, the exception management routines are not included in the program,
and the program will abort if the program raises any exceptions. If -noexceptions is specified
and the target program has the exception attribute (see section 6.7) a warning is reported, and the
exception management routines will not be included.

6.2.3 -[nolexecutable

-executable <flle-name>
-noexecutable
-executable <main.unit>.x (default)

The -executable option specifies the file name of the absolute file created. <file-name: is used
as name for the absolute file. If -noexecutable is specified the absolute file is not created.

56

DAC SkO3m Ads Cro w Symm - utes Oulde
The Ada Line

6.23 4uwNMOru

-fPe 6=1 I i4p~m 3116 2

4Pum "M2 (default)

Spuidfles the floating point co-processor available on the target system. If -cpu 63040 has been
specified. 40 GM81 is not alowed. u sdie MC68040 FPU emulates the MC68882 coprocessor
and not die MC5881 coprocesso. If .-nopu is specified and the target progran contains any
floating point inatmnc - eror aa emuaes is issmed. See section 6.7 conceuing the float attibute.
If all compilation units required for execution ame compiled with -nofpu option no floating point
insauctions are generated and a link with -nofpu will never fail.

"6.2.10 -[nolbeap

-map (default).nobeap

If -heap is specified and the target program has the heap attribute (see section 6.7) then the
storage management routines are included in the target program. If -noheap is specified the
storage management routines are not included in the program. When -nobeap is specified and
the target program has the heap attribute, an error is reported and linking terminates.

6.2.11 -[nojiniL.fle

-init-file <fie-name>
-nolnltfle (default)

The -initfile option specifies the name of a user supplied initialization file. <fle-namne> is used
as name for the initialization file. If -noinitfile is specified, the linker generates an initialization
file with the name cpreflx>_initsrc. It is assumed that the initialization file is an assembler
source file.

"6.2.12 -Interruptstack

-IntrupLstack [NOSTART I START=,wddrm,][,SIZE=,:numberm]
-Interruptstack NOSTARTSIZE=IW240 (default)

Specifies the creation of the internipt stack. If START=:address is specified the interrupt stack
pointer is initialized to <address>. If NOSTART is specified the linker allocates the interrupt
stack in the section RTSDATA. START=caddress is not valid when -mode is set to SECURE
or SAFE. If SIZE=<numuer> is specified the <numberm bytes is allocated for the interrupt stack.

57

DACS 680x0 Bar Ada Cross Compiler Sysmn - User's Guide
TIM Ada Linker

6.2.13 -(nolkb

-cb <number>
.noitcb

*ltcb S (default)

The 4tcb option specifies the m ber of imterrupt comiol blocks to allocate. If -b c umber
is specified then <number> of inmeupt control blocks ame allocaied, wher <uamber must be
in the rane 1..32767. V -mootcb is specified and fhe target program has the inerrupt attribute (see
section 6.7) then an error is reported and tie abwlute file is not croated. If the target program
does not have the interrupt attribute the 4tcb option is ignored.

6.2.14 -[nolkeep

-keep
-nokeep (default)

If -keep is specified temporary linker files ate not deleted, otherwise they ame deleted. See also
section 6.5 about temporary linker files.

6•..15 Iibrary

-library <fle-name>
-library SADALIBRARY (default)

The -library option specifies the current sublibrary, from which the linking of the main unit will
take place. If this option is not specified, the sublibrary specified by the environmental variable
ADA-LIBRARY is used.

6.2.16 -[no]logJfile

-log~fle <fle-namnW
-noloJIe (default)

Specifies that linker information shall be written to a file named <file-name>. The log file will
coutain all vaification information specified by the -verify option and all statistics specified with
the -statistics option, plus warnings and errors messages, a listing of the class file (see section
6.2.2), an expanded list of the class file specifications, a detailed description of each compilation
unit included in the program, and a link summary.

58

DACS a Sm Ads C.s (Donr System - Unes.Ouide
The Ada inker

6.2.7 4*osbglaL-mnuory

4.gi-mmory <darLd:. -dmMaddr>,,end addr>)
m aLmem (default in BASIC mode)

- _mmlt ory Ox1 W,O MffffW (default in SECURE and SAFE mode)

The -l - rspnecifies the logical memory areas available for task stacks and task heaps
In the pro ..n. i is only legal when option -mode is set to SECURE or SAFE.
MTe bgial memoy must be disjoint from the physical memory (see section 6.2.23).

6..1$8 -.mintask

-.mainJask [PR1ORITY=cnumnberA]
[,NOTIMESUCE I ,TIME-SLICE=-creab
[,NOFLOAT I IFLOAT]
[,NOSTACKSTART I ,STAC`KSTART=caddress>]
[,STACKSIZEmcnunber>]
[,HEAPSIZE=cnumber>]

-. nainask PRIORITY=12,NOTIMESUCEFLOATNOSTACKSTART,\
STACK.._SZE=10240,HEAPSIZE= 10240 (default)

The -main-tsk option specifies priority, time slice, use of floating point co-processor, stack
stan,, stack size and heap size for the main task. If PRIORITY=<number> is specified and the
pragna PRIORITY has not been applied then the main task has the priority <number> which
must be in the range 1..24, otherwise it has the priority specified in the pragma. If the
TIMlE.SLICE=<rea> is specified then the main task has the time slice <real> (<real> must be
in the form -cnumber>.cnumber->). If NOTIMESUCE is specified the main program does not
have a time slice. If FLOAT is specified the main program may use the floating point
co-proMessor. The state of the co-processor will not be saved as part of the main task context. If
NOFLOAT is specified the main program must NOT use the floating point co-processor. If
STACKSTART=<address> is specified the main stack pointer is initialized to <address>. If
NOSTACK..START is specified the linker allocates the stack for the main program in the section
RTS..DATA, and initializes the stack pointer. STACK.START=<address> is not valid when
-mode is set to SECURE or SAFE. If STACKSIZE=<number> is specified then <number>
of bytes is allocated for the main program stack If HEAPSIZE=<number> is specified then
<numberm of bytes is allocated for the main program heap.

6.2.19 -[noumap

-ap
-nomap (default)

-msp directs the linker to keep the map file. The map file contains information about memory
layout of the program. The name of the map file is <main-unitLname>.nmp. Please refer to
[Microtec-al for a description of the map file.

59

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

6.2.20 -(.oluumu-detals

-*u m dea [TIA=4ubumeNOTr ,TIBz<numbeu>j
(,1NOTIC i ,TIC=<rnumber>%[,NOTiD I ,TED--number,)
[(PAGLESIZ= umbert](,SEGMENTSIZE=<cnumber>]

.nonmu.ddetaIs (default in 3ASIC mode)
.umu..dOtuil TIA=7,T1=7,TIC=6,NOTIDPAG _SIZE= 12,SEGMENT_.SIZE=2.

(default in SECURE and SAFE mode)

Specifies values for the MMU Trtuladon Comnul Registers. -mmudetails is only legal when
-mode is set to SECURE or SAFE. -emat-imalls is only legal when MODE is set to BASIC.
The parmnee values are all number of bits. TIA to TID specifies the number of bits to use on
MMU table level A to D. PAGE-SIZE specifies the number of bits used for each pogp accessed
by a pags descriptor entry in the MMU tables. SEGMENT-SIZE specifies the number of bits
used for a segment of the logical memory assigned to each task group. The segment of a task
group contains the task group heap and stacks of all tasks of the task group. Please refer to
[MOTOROLA-a] and (MOTOROLA-b] for a detailed description of the MMU and its registers.

A number of constraints apply to the keywords of the option:

" If -cpu 68030 is specified, the following values are valid for the keywords of the
.rnmmu etails option: TIA, TIB, TIC and TEI) must be in the range 2..15; NOTIB,
NOTIC and NOTID can also be used. PAGESIZE must be in the range 8..15 for page
sizes between 256 bytes and 32K bytes. SEGMENT..SIZE must be in the range 9.30 for
a segment size between 512 bytes and 1 gigabyte.

" If -cpu 68040 is specified, the following values are valid for the keywords of the
-mmu..detalls option: TIA and TIB must be 7, TIC must be 5 or 6, and NOTID must
be used. NOTIB and NOTIC cannot be used. PAGE-SIZE must be 12 or 13 for a page
size of 4K bytes or 8K bytes. SEGMENT-SIZE must be 18 or 25 for a segment size of
256K bytes or 32M bytes.

"* SEGMENTSIZE must be equal to PAGE-SIZE + TID or PAGE-SIZE + TID + TIC
or PAGE-SIZE + TiD + TIC + TIB.

"* PAGE-SIZE must be equal to or greater than each of TIA + 2, TIB + 2, TIC + 2, and
TID + 2.

"* If NOTIB is specified, both NOTIC and NOTID must be specified as well, otherwise if
NOTIC is specified, NOTID must be specified as well.

"* The sum of TIA, TIB, TIC, TID and PAGE-SIZE must be equal to 32.

The default value of -nua..details in SECURE and SAFE mode defines a four level address
translation table tree with each page having a size of 4 Kbytes ad each logical segment having
a size of 32 Mbytes. See section 10.5 for fiuther description of how the values for -mmuudetails
is utilized.

60

DM3S S~ m Ada CMN Systm - sees Gluide
Mae Ada Li*rie

6.2.1 -Mmd

-mode BASIC I SECURE I SAFE
-mod. BASIC (default)

Specifies how the program shall execute. BASIC means that all code executes at supervisor
peivilee level ie. dte is memory prtection of neither code nor dta. SECURE mode and SAFE
mode mum dt code ma data cun be protected using the MMU and specified by use of the
-d•u..flie opdiom -mode is set to SECURE or SAFE the -claussf option must be specified
as well. In SECURE mode all objects allocated by alloca r ae allocated on the stack of the task
executing the allocator, while in SAFE mode they an allocated on the heap of the task executing
the afocamr. SECURE and SAFE modes cam only be selected when option -cpu is set to 68030
or 68040. See chapter 10 for a complete description of modes.

"6..2 -4.o)optkim.e

-opdmo lle 4ile-name>
*nooptionflte (default)

The -optlon-lle option specifies the name of the target link option file. <file-name> is used as
the name for the target link option file. If -nooptlion.flle is specified the Ada linker generates
an option file with the name cmainuniLname>.opt.

6.2.23 -ram

-ram trtMaddr>,<en d-addr>(,start.addr>,,end..addr>}
-ram OOxAffff (default)

The -ram specifies the physical RAM memory available for the executable program.

6.24 -ram-mbe

-ram.bme <address>
-ramibase 0Wl0000 (default)

The -rambmue option specifies the base address for the program placed in RAM memory. The
prosrm sections specified in option -ramnsections are placed consecutively from the address
specified with this option. In SECURE and SAFE modes, the base address will always be page
aligned. The address must be within the physical RAM memory specified in option -ramn

61

DACS 680x0 Bae Ads Cross Compiler System - User's Guide
The Ada Linker

~22 -ram~.uctfans

-ram-uetoms <cadonnme:,,<secwtioname>}
-ru..s n SUPER-CODESUPERDATAUSERCODE,\

USER.CONS,USER-DATA (default)

The -ramLsecdons option specifies the sections to be placed in RAM memory. The sections ae
placed in the specified order from the address specified with option -rau Valid section

amus ame SUPER-CODE. SUPER-DATA, USEL.CODE, USER-CONS and USER-DATA (see
section 6.).

6±226 -[nolrom

-rem - rsta..addr>,<end-addr>$,<strtaaddr>,,end-addr>)
-. orom (default)

The -rom specifies the physical ROM memory available for the executable program.

62.27 -[norom-base

-rombasn <address>,
-noromMse (default)

The -rom-bas option specifies the base address for the program placed in ROM memory. The
program sections specified in option -rom-sections are placed consecutively from the address
specified with this option. In SECURE and SAFE modes, the base address will always be page
aligned by truncating the address with the number of bits specified in option -mmi.details
keyword PAGE-SIZE, i.e. the base address will be the start of the page appoimed by the
specified address. The address must be within the physical ROM memory specified in option
-rouLl

60.28 -[nolrommse ns

-romm ectlons <sco..nanme{,<section..name,)
-norom-sectlons (default)

The -rommctlons option specifies the sections to be placed in ROM memory. The sections are
placed In the specified order from the address specified with the -rom-bmae option. Valid section
names am SUPERCODE, USER-CODE and USERCONS (see section 6.8). By default no
sections are placed in ROM.

62

DACS Baso em Ada CaMs cbmplr Syman - Users Guide
The Ada inker

6." -rtt..tt use

-rtsjmacLnme <number>
-ru.stack.un 0 (default)

Specifies the amount of extra stack spce allocated in each task for the use of user supplied code
in the RTS. If the Ada code interfaces to any extemally supplied user code (e.g. by use of the
-urwlbrary option) execuing in supervisor mode, -rts-stack-use should be set to the amount
of stack cosumned by this external code. The Ada Linker determines how much RTS stack space
it will need for the RTS operations, and will automatically allocate the minimum necessary RTS
stack spsce

6.2.30 -[no]scod

-. cod cstring>{,ctdrn)
-noced
-sced RTSCODE (default)

Specifies which program sections are to be placed in the supervisor code space. -noscod indicates
that no program sections should be placed in the supervisor code space. See section 6.8 about
program sections.

6.2.31 .(nolsdat

-sdat ,strin{>(,cstring>)
-nosdat
-. dat RTSJ)ATA (default)

Specifies which program sections are to be placed in the supervisor data space. -nosdat indicates
that no program sections should be placed in the supervisor data space. See section 6.8 about
program sections.

6.232 .[nojstatistics

.statistics
-nostatistics (default)

-statistics specifies that statistics should be displayed about the compilation units included in the
program and their dependencies, otherwise no statistics is displayed. If option -logJfile is specified
(see section 6.2.16), the statistics will be included int the log file as well.

63

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

6,2.33 -[noltarget-options

-target-optiom <sdtng>
-notargestoptions (default)

-targetoptions specifies additional options to the target linker. <string> will be added to the
options for the target linker when the Ada Linker invokes the target linker. For instance if
tarp.optionM "-f e" is specified, 4f c will be added to the target linker options, resulting (in

this cue) in the external symbol cross-reference table being included in the linker map file. If
-noargeLoplons is specified no additional options, apart from the options determined by the
Ada linker itself, will be added to the options for the target linker.

6.34 -task-defbults

.task-efaults [STACK.SIZE=<number>][,PRIORXTY=cnumber>]
[,NOTIMESLICE I ,TIME-SLICE=<reai>J

- -task.defaults STACKSIZE=10240,PRIORITY= 12,NOTIMESLICE (default)

Specifies the default values to be used for task creation. The defaults specified will be used when
creating tasks which do not contain pragma priority or the length clause specifying the stack size.
If STACKSIZE•.number> is specified then <number> of bytes is allocated for a task stack.
If PRIORITY=<number> is specified then <number> is used as the priority of the task. The
specified priority must be in the range I to 24. If TIMESLICE=<real> is specified then <real>
specifies the number of seconds to use as the time slice for the task; <real> has the form
<number>.<number>. If NOTIME.SLICE is specified the task does not have a time slice. If
the target program does not have the tasking attribute (see section 6.7) the -task-defaults option
is ignored.

6-3 -(noltcb

-tcb <number>
-notcb
.tcb 10 (default)

Specifies the number of task control blocks to be allocated. If -tcb 0 or -notch is specified and
the target program has the tasking attribute the linker reports a error and no absolute file will be
produced. This option is ignored if the target program does not have the task attribute (see section
6.7).

6.2.36 -uccJbrary

-ueelibrary <file-name>
-oceAbrtry $ADAUCC (default)

The -uccllbrary option specifies the name of the UCC library to include in the target program.
If the UCC library is not specified the environmental variable ADAUCC is used as file name.

64

DAC 68Wk Dues Ad& CrowU Conviler System -Usrn's Gulide
Ma Ads Linker

.- (nojucod

-,,cod atrlmg$,<c'irlnp•

.uco ADA-CODE (default)

Specifies which program sections am to be placed in the user code space. -noucod indicates that
no prgram sections should be placed in the user code space. See section 6.8 about program
setos

*L2 -[nojucat

-uest cstring(,<strinp)
.nouest

-ucst ADA-CONS (default)

Specifies which program sections am to be placed in the user constant space. .noucst indicates
that no program sections should be placed in the user constant space. See section 6.8 about
program sections.

6.2.39 -[noludat

-udat <strinp(,<string,)
-noudat
-Udat ADA-DATA (default)

Specifies which program sections ame to be placed in the user data space. -noudat indicates that
no program sections should be placed in the user data space. See section 6.8 about program
sections.

6.2.40 -(nojur/Jlbrary

-usr.lbrary cfe...name>, (<file_mnane>)
-nousr.ibrmry (default)

When specified the object files and object librauies denoted by file.name is included in the link,
otherwise no user library is included in the link.

6.2.41 -[nolvector

-vector [NOADDRESS I ADDRESS=caddress>][,COPY I ,INIT]
-novector
-vector NOADDRESS,COPY (default)

65

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

Specifies creation of the interrupt vector. If ADDRESS is specified the interrupt vector is placed
at caddress>. When NOADDRESS is specified, the interrupt vector will be placed in the section
RTSDATA. If COPY is specified the interrupt vector active when the program was invoked is
copied. If INIT is specified the interrupt vector is initialized by the routine AdaUCCD$InitIV.
-novector specifies that no initialization of the interrupt vector takes place. The program can
hereby be invoked by an interrupt. After program invocation the interrupt vector can potentially
be modified. INIT is not valid when option -debug is specified, see section 6.2.4.
ADDRESS=<addrus> is invalid when -mode is set to SECURE or SAFE.

6.L42 -[nolverify

-verify [ALL][,ELABORATIONORDER][,COMMANDS][,PARAMETERS]
-noverify (default)

Determines the type and amount of information generated. If ELABORATION-ORDER is
specified the elaboration order is displayed, if COMMANDS is specified the commands executing
the various subprocesses are displayed, if PARAMETERS is specified the active parameters and
options are displayed, and if ALL is specified all of the above mentioned information is displayed.
If option -log-file is specified (see section 6.2.16) the information will be included in the log
file as well.

6.2.43 -[no]warnings

-warnings
-nowarnings (default)

Specifies whether warnings should be generated or not. Warnings are generated when conflicts
between target program attributes and specified options are detected, and when a package does
not have a body.

6a44 The Main Unit Parameter

<unit-name>

The main unit must be a parameterless procedure and must be present in the library. The main
unit name is a required parameter.

6.3 The Linker Defaults System

As it can be seen from the description of options above, default values exist for all options.
However, it is possible to change the initial setting of default values and even have several
configurations of default values for the Ada Linker. The Ada Linker default values are controlled
by use of the option -defaults and the environmental variable ADALINKDEFAULTS.

66

DACS N•t) Bau Ada Cross Compiler System - User's Guide
The Ada Linker

The Ada Linker obtains its option and parameter values in the following way: First, options are
initialized with the default values indicated in the above description of options. Second, new
option and parameter defaults are loaded from the file indicated by the environmental variable
ADA..INKDEFAULTS, if this points to an existing file. And third, options and parameters are
given the value specified in the invocation command of the Ada Linker.

When the option -defaults is specified, the current value of options and parameters are saved as
new defaults in the file identified by the environmental variable ADAJINKDEFAULTS. Note
that ADA.LINKDEFAULTS is not defined as a environmental variable when the DACS-680x0
is distributed by DDC-I, so an explicit definition is necessary.

Assume that the default value of -itcb should be 25 instead of 5, and that the new default settings
should be saved in the file DEFAULTS.LINK. The following commands could be used:

$ setenv ADA-.LINXL.DEFAULTS DEFAULTS. LINK
$ al -defaults -itcb 25

These commands will create a new file called DEFAULTS.LINK in the current directory (if it
does not exist already) and save the new linker default values in this file. As long as
ADA.LINKJDEFAULTS keeps its current value of DEFAULTS.LINK, all linking performed in
the current directory will have a -itcb default value of 25. Note that one should normally assign
a fully expanded file name, like /home/ada-users/user2/work/DEFAULTS.LINK, to
ADALINK-DEFAULTS to ensure that the correct default file will be found no matter in what
directory the linking is performed.

Several configurations of Ada Linker defaults is possible, simply by changing
ADALINKDEFAULTS to denote different linker default files depending on the desired
configuration. By the same method, different users can have different linker default values, simply
by having ADAIJNKJDEFAULTS denote different files.

When option -defaults is specified no actual linking takes place; only the current value of the
options and parameters are saved as new defaults. Before saving the new defaults, all options are
checked to have a valid value without consideration of other options. If this is not the case, an
error is reported and the new values are not saved as defaults. However, no check on
interdependence between the options are performed when specifying new default values, e.g. it is
possible to set -mode SECURE as default value without specifying a default value for -class-file.
The interdependence between option values is checked only when an actual linking will be
performed, i.e. when -defaults is not specified.

To reset the Ada Linker Defaults to the factory setting, simply use the command:

$ setenv AMD XIK_DAL . AULTS ""

which will ensure that no linker defaults fie will be read when the linker is invoked. If the file
denoted by ADA..LINKDEFAULTS will not be used again, the file can be deleted. The current
linker defaults setting can be viewed with the option -verify PARAMETERS, see section 6.2.42.

67

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

6.4 Environmetal Variables Used by the Ada Linker

When the Ada linker is executed, the following environmental variables are used:

VARIABLE PURPOSE

ADAJLBRARY Identifies the default library used by all DACS tools. It is the lowest
level sublibrary in the program library hierarchy. This default may
be overridden by the -library option.

ADA-LINI-DEFAULTS Identifies the file containing the Ada Linker defaults. Defaults are
saved in this file when the option -defaults is used.

ADAUCC Identifies the library containing the User Configurable Code, e.g. an
UCC library supplied by DDC-I. This default may be overridden by
the -ueeibrary option.

6.5 File Names Used by the Linker

During the link, the following temporary files are created in the current default directory:

<prefix>_iniLsrc
<prefix>-iniLobj
<prefix>_elab.src
<prefix>_elab.obj
<prefix>_end.src
<prefix>_end.obj
<pmfix>.opt
<prefix>_<unit..no>.obj
<main-unit-name>.opt
<maJn_unit_name>.com

If the -keep option is used <prefix> is the main unit name, otherwise <prefix> is the process
identification (pid).

If linking for SECURE or SAFE mode (see section 6.2.21), the main unit and each defined class
will result in the generation of a target linker option file.

6.6 Return Status

After a linking the return value of the Ada Linker will reflect if the linking was successfully
completed. The following return values are possible:

68

DACS 680x0 Bm Ada Cross Compiler System - Uuses Guide
The Ada Linker

0: The link was successful. Warnings may have been generated during the link process.
1: An error occurred during the link process, e.g. the Ada Linker is unable to find the UCC

file. The Ada Linker will generate an error message stating the cause of the eror.
2: An internal error has caused the Ada Linker to abort, please contact DDC-I engineers.

6.7 Program Attributes

The linker evaluates the following attributes of the target program:

"* Tasking constructs
The target program has the task attribute when Ada tasking constructs are used.

" Floating point constructs
The target program has the float attribute when the program uses the floating point
co-processor. The target program will only use the co-processor instructions to implement
operations on floating point types.

"* Interrupts, entries or procedures
The target program has the interrupt attribute when the program contains address clauses
for task entries or the PRAGMA INTERRUPTHANDLER.

"* Exception handlers
The target program has the exception attribute if the program contains any exception
handlers.

" Heap
The target program has the heap attribute when the program contains allocations or
deallocations on the heap.

" Secure execution
The target program has the secure attribute if the program is compiled with option -mode
set to SECURE or SAFE. In this case the MC68030/MC68040 on-chip Memory
Management Unit is used to protect code and data segments and for controlling storage
checks.

The linker uses the attributes to generate the initialization module, to issue warnings if a
combination of options is in conflict with the attributes of the target program, and to determine
the proper RTS to include in the target link.

If a program contains interface calls interfacing to code which requires tasking, uses floating point
instructions or storage management, the Ada compilation unit must contain a pragma to set the
appropriate attribute. Please refer to Chapter 12 for details.

69

DACS MOW Bare Ad& Cr. Compiler System - User's Guide
The Ada Linker

6 Program Sections

The compiler uses the following program sections:

Section Contents

RTSCODE Run-Time System code
RTSDATA Run-Time System data
ADAJCODE Compiler generated code
ADA-CONS Compiler generated constants
ADA-DATA Compiler generated data

Table 6.1: Program sections

The program sections RTSDATA and ADA-DATA must be in RAM memory. The program
sections RTSCODE, ADACODE, and ADA-CONS are not modified by the execution of the
program and may be placed in ROM. All sections must be placed in either RAM or ROM
memory.

The linker groups the program sections into 5 new sections: SUPER.CODE, USER-CODE,
USER-CONS, SUPER-DATA and USER-DATA. CODE and CONS sections can be stored in
ROM if desired. DATA sections must be placed in RAM. In SECURE and SAFE mode the
SUPER and USER sections can be accessed when executing at supervisor prvilege level, while
only USER sections can be accessed when executing at user privilege level (please refer to
[MOTOROLA-a) and [MOTOROLA-b] about supervisor and user privilege level). In BASIC mode
the SUPER and USER sections can be accessed both when executing at supervisor privilege level
and when executing at user privilege level.

When including user defined sections e.g. modules written in assembler, each of the compilers
program sections and the user defined sections must be specified to the linker as one of the RTS
program sections using the options -udat, -sdat, -ucst, -ucod and -seed.

6.9 The Initialization Module

The initialization module defines constants, allocates memory, and contains the code for
initialization of the processor and the RTS. The initialization module for a given target program
depends on the program attributes and the options given to the linker. The initialization module
is generated as an assembler file with the name <prefix>.jniLsrc. The assembler is invoked to
produce the object file with the name cpreflx>nWLobj. If the -keep option is used <prefix> is
the main unit name, otherwise prefx> is the process identification (pid).

6.9.1 The Initialiation Constants

The initialization module def.!-s the following externally visible symbols which ame constants used
by the run-time system.

AdaINITDl0splaySize

The size of the display vector in bytes. Thig symbol is always defined.

70

DAS G6O Base Ada Cuu C •M qi Ssmr. - Uses auide
The Ada UIate

AdaJET$bkturupStadkSlae

The size of the intetnipt stack in byses. Tbis symbol is defined when dhe .lntamrptstack option
is specified.

Ada-JNTSMainStackSin

The byte size of the stack for the main task. This symbol is always defined.

Adas IT$aInHeapSiz

The byte size of the heap for the main task. This symbol is defined when option -mode is
specified to SECURE or SAFE.

AdaINIT$ thultThneSlke

The default time slice for tasks. The symbol defines an integer, the unit is in SYSTEM.TMCKS.
The symbol is defined when the target program has the task attribute. If the NOTIME.SLICE
is specified, the value of the symbol is @.ffffffl.

AdaJMT eaultPriorlty

The default priority for tasks. The symbol is defined when the target program has the task
attribute.

AdaINIT$MainPriority

The priority for the main task. The symbol is defined when the target program has the task
attribute.

AdaINITSMainTnieSlice

The time slice for the main program. Same convention as AdaENITDefultTimeSfice.

AdaINITSDefultStackSize

The stack size for tasks for which the 'STORAGESIZE is not applied. This symbol is only
defined if the target program has the task attribute.

AdaJNITSRTSStackUse

The unount of memory reserved on the stack of each task to be used by the RTS.

AdaINIT$MalFPUse

Specifies whether or not the main task may use the floating point co-processor or the 68040 FPU.

AdaJNJT$TCBComut

The number of task control blocks allocated minus one. This symbol is only defined when the
target program has the task attribute.

71

DACS 6SWxO Bare Ada Cros Compiler System - User's Guide
The Ada Linker

AdsiNrr$1TCBCount

The number of imerupt task control blocks allocated minus one. This symbol is only defined
when the MWe program has the interrupt attribute

AdaJNrrh4upwStackAre@Si=

The size of the ana to allocafe supervisor stacks from, which can be allocated to tak rurming
on user privilege level. This symbol is only defined when option -mode is specified to SECURE
or SAFE.

AdaVNTSuperStackCount

The maximum number of supervisor stacks minus one, which can be allocated to tasks running
on supervisor privilege level. This symbol is only defined when option -mode is specified to
SECURE or SAFE.

Ada&NrlTMasnSuperStackSize

The size of the supervisor stack allocated for the main task. This symbol is only defined when
option -mode is specified to SECURE or SAFE.

AdaINIT$HuapHeaderCount

The number of heap headers allocated minus one. A heap header contains a pointer to the heap
and a heap semaphore (if the program contains tasking). This symbol is only defined when option
-mode is specified to SECURE or SAFE.

AdaINIT$DefaultHeapSlze

The size of the heap allocated for a task. This symbol is only defined when option -mode is
specified to SECURE or SAFE.

AdaMNITSPageSize

The logical/physical page size measured in number of bytes. This symbol is only defined when
option -mode is specified to SECURE or SAFE.

AdaJNIT$PageWidth

The number of bits used as offset within a page, log 2 of page size. This symbol is only defined
when option -mode is specified to SECURE or SAFE.

AdaLNIT$LogSegenttWIdth

The number of bits used as offset within a segment. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

AdaNITSMMUTIA

The Translation Control Register's Table Index A value. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

72

DACS 6zO0 Sar Ada Cross Compiler Symm - Uer's Guide
The Ada Lifker

Ada.NITSMMUTID

The Translation Control Register's Table Index B value. Tzws symbol is only defined when option
-mode is specified to SECURE or SAFE.

AdaINITSMMUTIC

Tha Translation Control Register's Table Index C value. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

AdaINITSMMUTID

The Translation Control Register's Table Index D value. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

AdaNXTSTLMMFreeCount

The size of a table describing free logical memory within all active task groups. This symbol is
only defined when option -mode is specified to SECURE or SAFE.

6.9.2 Initialization Code

The initialization module contains code for initialization of the RTS components included in the
target program. The initialization steps are executed in the same sequence as they anm listed. When
the initialization code is called, the interrupt priority level (IPL) mask in MC68OxO Status Register
is assumed to be 7 and the active stack is assumed to be the interrupt stack.

Initialization of the Interrupt Stack

The interrupt stack pointer is initialized. This initialization is only performed when the option
-.nterrupt.stack is specified.

Initialization of the Main Stack

The mode is changed to use the master stack pointer and the master stack pointer is initialized.
This initialization is only performed if option -nmin-task, keyword STACK-SIZE > 0. If option
-mode is set to SECURE or SAFE the supervisor main stack is initialized instead.

Initialization of the Interrupt Vector

The interrupt vector is either copied from the interrupt vector defined by the VBR register, or
initialized completely, depending on the -vector option. If the -novector option is specified the
interrupt vector is not initialized.

Initialization of the Virtual Memory Manager

If option -mode is set to SECURE or SAFE the Virtual Memory Manager is initialized. The.
VMM initialization generates internal data structures concerning free physical RAM memory
specified by option -ram and free logical memory specified by option -logical-memory.
Furthermore, MMU tables are created for supervisor code mapping all code as read only, user

73

DACS 680x0 Bar Ada Cross Compiler System - User's Guide
The Ada iUnker

code mapping Ada code as read only, and supervisor data mapping all physical RAM memory as

specified with option -ram as mad/write.

aa of Clams

Initialization of classes is performed if option -mode is set to SECURE or SAFE. For each class
a user data memory mapping table is generated. The table contains constants, stack, heap and
permanent data for the class itself and data from other classes according to the rights defined in
the class file in specified with option -c.loJI.

Igtializatlon of the 68OxO Interrupt Vector Entries

The interrupt vector entries for the 68O exceptions that are used by the RTS are initialized by
calling Ada_UCC_E$1nitMPUIV (see the Configuration Guide [DDC-b] for more details). This
initializition is only performed if -noexceptions has not been specified and the target program has
the exception handler attibute.

Initialization of 6U8x Interrupt Vector Entries

The interript vector entries for the 6888x or 68040 FPU exceptions that are used by the RTS are
initialized by calling AdaUCCJ:SInitFPUIV (see the Configuration Guide [DDC-bJ for more
details). This initialization is only performed if -noexceptions has not been specified, and the
program has the float and exception handler attributes.

Initialization of the Storage Manager

The parameter list defining the memory available to the storage manager is created and the storage
manager is initialized. The storage manager is only initialized when the target program has the
heap attribute.

Initialization of Exception Handler

Initialization for pre-handlers is performed.

Initialization of the Timer

If the target program has the task attribute, the timer is initialized by calling
AdaUCCA$1nitTimer (see the Configuration Guide [DDC-b] for more details). The timer may
also be initialized when the package Calendar is included in the program, but that depends on the
implementation of package Calendar. The implementation supplied by DDC-I will use the timer.

User Specified Initialization Code

At this point, user specified initialization code is called. Please refer to Section 6.2.11 for details
on user specified initialization code.

Initialization of Frame Heap

The permanent frame heap headers on the outermost level are initialized. A frame heap header is
a stnictire of heap elements at current block level.

Initialization of the Main Program

74

DACS 6800 Darn Ada Cma Comilner System - Use's Guide
The Ada Linker

The initialization of the main program allocates and initializes the display vector and initializes

die frame pointer and the display pointer (A6, A5).

Initlailhation of the Tasking Kernel

If the target program has the task or the interupt attribute, the tasking kernel is initialized. The
initialization of the tasking kernel creates the main task. The initialization of the tasking kernel
will also change the IPL to 0. If the program have neither of the menioned attributes, the tasking
kernel is not initialized, but the IPL is dUnged to 0.

Invocation of the Elaboration Module

The elaboration module is invoked and will execute the target program. The elaboration module
is invoked by a branch and will return by a branch or a trap if linked in SECURE or SAFE
mode.

Termination of the Main Task

Upon return fom the elaboration module, the main program must wait until all tasks have
terminated. If the target program has the task attribute, the routine in the tasking kernel terminating
the main program is called. If not, the only task (the main task) is already terminated and no
action is required.

Preparation for Termination of the Program

To ensure proper termination the IPL is raised to 7, the Master Stack will be the active stack
afterwards.

Invocation of User Defined Termination Code

Transfers control to the user supplied termination routine AdaUCCB$Exit (see [DDC-b]). Please
refer to Section P.I.4 for details on user specified termination code (PRAGMA RUNDOWN).

6.93 Initialization

The initialize module allocates memory for the RTS data structures that depends on the target
program or on options to the linker. The following data areas are defined, and made addressable
by the symbols:

AdaT11$InterruptVector

The address of the interrupt vector. This symbol is defined when the option -vector is specified.
If ADDRESS-<address> is specified an absolute section is created at <address>, the symbol is
equated to <address>, and 1024 bytes is allocated for the interrupt vector. If -novector is specified
the symbol is not defined and the memory not allocated.

AdaINIT$lnterruptStack

The start address of the interrupt stack. This symbol is defined when the option -interrupt-stack
is specified. If START=<address> is specified an absolute section is created at <address>, the

75

DACS 6M0x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

symbol is equated to <address> and the number of bytes specified with SIZE are reserved.

Otherwise the interrupt stack is allocated in the RTSDATA section by a DS directive.

AdaNITSMainStack

The start address of the main program stack. The symbol is defined when the option -main-Jask
is specified. If START=fiddresm is specified then the symbol is equated to -caddress> otherwise
the main stack is allocated in the RTS..DATA section by a DS directive.

AdaVGTV~aWnqfty

A pointer to the main display when the program has no tasking. The memory is only allocated
when the target program has the task attribute.

AdaINIrSTCBAddress

The start address of the memory allocated for the task control blocks. The memory is allocated
when the target program has the task attribute.

AdaINTITCBAddress

The start address of the memory allocated for interrupt task control blocks. The memory is
allocated when the target program has the interrupt attribute.

AdaINITCurrlTCBcinterrupt-no>

One long word is allocated for each interrupt vector entry that the target program references.

AdaINIT$SuperStackArea

The start address of the area from which supervisor stacks are allocated. Only supervisor stacks
for tasks at user privilege level are allocated in this area. The memory is only allocated when the
option -mode is set to SECURE or SAFE.

AdaNIT$TempHeap

The address of the memory for Frame heap header for allocation of temporary objects on the
outermost lexical level.

AdaJNITfHeapHeaderArea

The start address of the memory allocated for heap headers. The memory is only allocated when
the option -mode is set to SECURE or SAFE.

AdaINIT$FcTable

The start address of the memory allocated for the Function Code Lookup table used by the MMU.
The address must be 16 bytes aligned. The memory is only allocated when the option -mode is
set to SECURE or SAFE.

AdaNIT$FreePageCount

76

DACS 681M But Ada Crmo Compier Symmem - User's Guide
The Ada Linker

The address of the memory allocated for the number of free physical pages. The memory is only

allocated when the option -mode is set to SECURE or SAFE.

AdaJNTSFreePageList

The address of a pointer, addressing the list describing the free physical pages for each task group
(see chapter 10). The memory is only allocated when the option -mode is set to SECURE or
SAFE.

Ada-VlITWrfePagelndex

The address of the memory pointing at the next free physical memory area in
AdaNIT$FreePageTable. The memory is only allocated when the option -mode is set to
SECURE or SAFE.

Ada.NIT$FreePageTable

The start address of the memory allocated for the table of physical RAM memory areas used
inidally. The contents of the table is derived from the option -ram. The memory is only allocated
when the option -mode is set to SECURE or SAFE.

AdaINlTSFreeSegmentlndex

The address of the memory pointing at the next entry with a free segment in
AdaIN[TSFreeSegmentTable. The memory is only allocated when the option -mode is set to
SECURE or SAFE.

AdaJNIT$FreeSegmentTable

The start address of the memory allocated for the table of free logical memory segments. The
memory is only allocated when the option -mode is set to SECURE or SAFE.

AdaNIT$FreeSegmentTop

The address of the top of the free segment stack. The memory is only allocated when the option
-mode is set to SECURE or SAFE.

AdaJNITrFreeSegmentStack

The start address of the memory allocated for the stack of deallocated segments. The memory is
only allocated when the option -mode is set to SECURE or SAFE.

Ada_INITSTLMMFreeAra

The start addreb of the memory allocated for the table describing the free logical memory within
all active task groups. The memory is only allocated when the option -mode is set to SECURE
or SAFE.

77

DACS N80x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

6.10 The Elaboration Module

The elaboration module is generated as an assembly file, and the assembler is invoked to produce
the actual object module. The assembly file is named <preflx>ezlab.src and the object file name
is cpreflx>_elab.obj.

The elaboration module has the entry point AdaELABSEntry, which is invoked from the
initialization module by a branch.

6.10.1 BASIC Execution Mode

The elaboration module has the following structure, when -mode is set to BASIC:

NAME ADAELAB
CHIP <selected cpu>
XDEF Ada-ELAB$Entry
XREF AdaINIT$ElabExit
XREF M$<main-unit.no>_1
XDEF R$<unit-no-l>_O
XREF M$<unit-no-l>_0
XDEF RS<unit-no_2>_O
XREF M$<unit-no_2>_O

SECTION ADA-CODE

AdaELAB$Entry: bra. 1 M$<unit-no.l>-0
RS<unit.no-l>_0O: bra. 1 MS<unit-no_2>-O
R$<unit.no_2>_ O:

bsr. 1 M$<main-unit-no>_1
moveq.1 #O,dO

bra. 1 AdaINIT$ElabExit

END

The elaboration module branches to the elaboration for each of the included compilation units, and
the elaboration code will branch back to the elaboration module. The elaboration code for a
compilation unit will be identified by the label M$<unit.now>0 where <unitLno> is the unit
number of the compilation unit. The return point is identified by the label R$<unit-.no>_0.

6.10.2 SECURE and SAFE Execution Mode

When linking with option -mode set to SECURE or SAFE, the elaboration module has the
following structure:

78

DACS 6800 Bare Ada Cres Comptler Symsem - User's.Guide
The Ada Linker

NAME ADAELAB
CHIP <selected cpu>
XDEF AdaELABSEntry
XREF AdaINIT$ElabExit
XREF M$<main.unit-no>_1
XREF AdaTKX$Elaborate
XREF AdaTKX$CallMain
XREF AdaINIT$MainClass
XREF N$<class3name-1>
XREF N$<classaname_2>

XDEF R$<unitno-l>_0
XREF M$<unit-no-l>-0
XDEF R$<unit-no_2>_O
XREF M$<unit-no_2>_O

SECTION ADA-CODE

AdaELABErntry: lea.]1 N$<class3name>, a0
lea.1 M$<unit.no>-1, al
bsr. 1 AdaTKXSElaborate

lea.1 N$<class.name>, a0
lea.1 M$<unit-no>-1, al
bsr. 1 AdaTKXSElaborate

lea.1 N$<class.name>, a0
lea.]1 M$<main-unit-no>_1
moveq.1 #O,dO

bar.]1 AdaTKX$CallMain
lea.]1 AdaINIT$ElabExit, a0
moveq.1 #O,dO
moveq.1 #1,d7
trap #13

R$<uniitno.l>. O:
R$<unit.no_2>_ O:

R$<unit-no_<u>>_0O: moveq.1 #O,d7
trap #13
END

The elaboration of each compilation unit is handled by AdaTKX$Elaborate which takes a class
name and an elaboration code label M$<unit-no>_O. The return point is identified by the label
R$<unit.no>.O. The elaboration of each compilation unit runs at user privilege level, but the
setup for the elaboration of each compilation unit must run at supervisor privilege level. To switch
from user privilege level to supervisor priyilege level a trap operation is executed, and the
elaboration of the next unit will proceed.

79

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

6.10.3 Execution of the Main Program

When all the compilation units have been elaborated the main program is called. The main
program is identified by the label M$<mainunitno>_l. If the main program returns, register
dO is cleared to signal successful completion, and control is passed back to the initialization
module.

Please note that all transfer of control between the initialization module, the elaboration module,
and the elaboration code is implemented by branch instructions. The branch instructions are used
because the elaboration code may allocate objects on the stack, and consequently stack balance
cannot be assumed.

6.11 Linker Examples

This section contains a number of linker examples. It is assumed that the compilation unit example
is compiled into the default program sublibrary, that the environmental variable ADALIBRARY
has been equated to the default sublibrary and that the environmental variable ADAUCC has
been equated to an User Configurable Code Library suitable for the target board on which the
linked program will be executed. DDC-I provides UCC libraries for the Radstone CPU-3A and the
Motorola MVME133, MVME143 and MVME165 boards.

Example: 1

$ al -noheap example

The program will start at address Ox10000, and the heap is not initialized. If the target program
has the heap attribute an error message is issued.

Example: 2

$ al -ram 0xlOOOO,Oxfffff example

The program will start at address Ox10000, and the heap will be placed within the address range
Ox10000 to Oxfffff. This is the simplest form of a link that will support all Ada constructs.

Example: 3

$ al -ram base Ox4000 -ram OxO,Oxfffff example

The program will start at address Nx4000, and the heap will be placed within the address range
0x4000 to Oxfffff. Physical memory below address 0x4000 is not used.

80

DACS E68 Sm Ads Cucm Compier Symm - User's Oukie
MTe Ada Linker

Example: 4

$ al -roa•.sections SUPZR._CODE, USZR._CODZ, USZLR-CODI\
-ram.aections SUPZR.k.A, USZR.D&TA\
-ram 0z200000,Ox2fffff -rom-base 0x200000\
-ram OxO,Oxfffff -ram-base OxO example

The sections SUPERCODE, USER-CODE and USER-CONS am placed in ROM from address
0x200000. The sections SUPER-DATA and USER-DATA are placed in RAM from address

Wx0. The part of the address range Wx0 to Oxfffff not used by the SUPER-DATA section is used
as heap space.

Example: 5

$ al -rom..sections SUPZRCODe -rom-base 0x200000\
-ram-sections SUPERDATA -ramnbase OzO\
-scod RTS_CODK, ADA-CODE, ADA-CONS\
-noucod -noucst -vector INIT -boot\
-ram OxO, Oxfffff -rom 0x200000, Ox2fffff example

As example 4 but a module containing reset information is produced. The reset address is
0x200000. The interrupt vector is completely initialized. The first two long words of section
RTSCODE contains the initial PC and the initial interrupt stack pointer, consequently
RTSCODE must be the first section to load in order to control the reset address.

Example: 6

$ al -ram OxlOOOO, Oxfffff\
-vector ADDRZSS=0x70000, COPY\
-interrupt-stack START=0x70000, SIZE=Ox8000\
-main-task STACKSTART-Ox68OOO, STACKSIZZ=OxSOOO, \

PRZORITY=3, TINESLICZ=0.2, FLO&T\
-task-defaults ST&CXSIZE=0x8000,PRIORITY=4, \

TIM._SLICZ=O. 1 example

The start address of the program is Oxl10000. The interrupt vector has the address 0x700O0 and
is a copy of the interrupt vector defined when the Ada program gains control. The interrupt stack
has start address at Ox70000 and the size 0xW000. Please note that the first byte used in the stack
is Ox6ffff and the stack grows by decrementing the stack pointer (stack grows "down" in memory).
The main program stack's start address is 0x68000, and the size is 0xW000, the main program
has a priority of 3 if prgmag priority does not apply, the time slice is 0.2 seconds and the main
program uses the floating point co-processor. The defaults used for task stack size is 0x8000, a
priority of 4 and a time slice of 0.1 second.

81

DACS 68Mx0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

Example: 7

$ al -init.file my-file.arc -option-file my.file.opt example

The linker was not able to generate an adequate initialization and option file, and the user decided
to use his own. The my-ile.src file contains the assembly source for the initialization module,
and the my-file.opt contains the option file for the link. With this form of link the user has full
control over the option file and the initialization module.

Example: 8

al -mode SCURN -class-file example.cls\
-ram 0xlOOOO, Oxfffff\

-mmu-cdetails SZGMENTSIZZ=16, PAGSIZE-lO, \
TIA•"8, TIB=8, TIC=6 example

Execution of the program will be in SECURE mode. The class specification is in the file
example.ds. Heaps and dynamic allocated stacks will be placed in address range Ox10000 to
Oxfffff. The MMU Translation Control Register is setup with a page size of IK bytes, and TIA
= 8, TIB = 8, TIC = 6, TID = 0, each class gets 64K bytes of logical memory for heaps and
stacks.

82

APPENDIX F - IMPLEMENTATION DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS-680x0 required in
Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

F1.1 PRAGMA INTERFACE-SPELLING

Format: pragma INTERFACE.SPELLING(<subprogram-name>, <string>)

Placement: The pragma may be placed as a declarative item.

Restrictions: Pragma INTERFACE.SPELLING must be applied to the subprogram denoted
by <subprogram-name>. The <string> must be a string literal.

This pragma allows an Ada program to call routines with a name that is not a legal Ada name,
the <string> provides the exact spelling of the name of the procedure.

F1.2 PRAGMA INTERFACE-TRAP

Format: pragma INTERFACETRAP(<subprogram-name>, <string>, <integer>)

Placement: The pragma may be placed as a declarative item. -

Restrictions: The <subprogram-name> must denote a procedure or a function for which pragma
interface to AS has been applied. The <string> must be a string literal. The
<integer> must be greater than 3.

The pragma allows the programmer to implement assembler routines that need access to the run-
time system code or data in a link mode independent manner. The string literal is used as the
name for a global linker symbol, when the linker implements the call to the user supplied
subroutine. The string literal must be unique when linking a program containing calls to
subprograms for which INTERFACETRAP is applied. The integer is used as an index to the
table of entry points in the kernel and must likewise be unique. When the integer is chosen, please
consult the package RTSTRANSFERINDICES (see appendix C.8) to avoid conflicts with the
indices used by the run-time system and support packages.

When control is passed to the user supplied routine register A4 contains the value of the
stackpointer prior to the call; A4 is the only way to access parameters for the routine. The routine
must maintain stack balance and must return by a RTS.

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

For a program linked with the SECURE or SAFE mode it is checked that the task executing the
routine has the "change mode to supervisor" privilege. The check is performed before control is
passed to the user supplied routine.

FI.3 PRAGMA INITIALIZE

Format: pragma INITIALIZE(<sftingJiteraTI)

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

When the pragma is applied the linker will, as part of the initialization code generate a call to the
subprogram with the name <string-literal>. The call will be performed before the elaboration of
the Ada program is initiated, with the interrupt mask in the Status Register at 7. If several
pragmas INITIALIZE are applied to the same program the routines ame called in the elaboration
order, if several pragmas INITIALIZE are applied to one compilation unit the routines ame called
in the order of appearance. If several compilation units apply pragma INITIALIZE to the same
routine the routine is only called once.

FI.4 PRAGMA RUNDOWN

Format: pragma RUNDOWN(<stringliteral>)

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Similar to pragma initialize, but the subprogram is called after the main program have terminated
and in thý --verse order of the elaboration order.

FlZ PRAGMA TASKS

Format: pragnm TASKS;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the task atuibute. If the code that is interfaced by a pragma
INTERFACE uses any tasking constructs, the compilation unit must be marked such that the
linker includes the tasking kernel in target programs that reference the compilation unit.

DACS 680x0 BBat Ada Cross Compiler Systm - User's Guide
Implemntaton Dependent c trnscs

FI.6 PRAGMA FLOATS

Format: pragma FLOATS;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the float attribute. If the code that is interfaced by a pragma
INTERFACE uses any floating point co-processor instnuctions, the compilation unit must be
marked such that the linker includes initialization of the floating point co-processor in target
programs tiat reference the compilation unit.

FI.7 PRAGMA INTERRUPTS

Format: pragma INTERRUPTS;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the interrupt attribute. If the code that is interfaced by a pragma
INTERFACE uses any interrupts, the compilation jnit must be marked such that the linker
include the interrupt handling in target programs that reference the compilation unit.

FI. PRAGMA STORAGE-MANAGER

Format: pragm STORAGE-MANAGER;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the heap imbute. If the code that is interfaced by a pragma
INTERFACE uses the storage manager, the compilation unit must be marked such that the linker
include initialization of the storage manager in target programs that reference the compilation unit.

F1.9 PRAGMA INTERRUPTHANDLER

The pragma INTERRUPT-HANDLER is defined with two formats.

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

FI.9.1 PRAGMA INTERRUPT-HANDLER for Task Entries

Format: pragnma INTERRUPT-HANDLER;

Placement: The pragma must be placed as the first declarative item in the task specification that
it applies to.

Restrictions: The task for which the pragnma INTERRUPT-HANDLER is applied must fulfill
the following requirements:

1) The pragma must appear first in the specification of the task and an address clause must
be given to all entries defined in the task. see below.

task fih is
pragma interrupt-handler;
entry handlerl;
for handleri use at 254;
entry handler2;
for handler2 use at 255;

end fih;

2) All entries of the task must be single entries with no parameters.

3) The entries must not be called from any tasks.

4) No other tasks may be specified in the body of the task.

5) The body of the task must consist of a single sequence of accept statements for each of the
defined interrupts, see below:

task body fih is
-- local simple data declaration, no tasks.

begin
accept handleri do

<statementlist>;
end handler1;
accept handler2 do

<statementlist>;
end handler2;

end fib;

6) The only tasking construct that may be used from the body of an accept statement is
unconditional entry calls. Several unconditional entry calls may appear in the body of an
accept statement but only one entry call must be made during the handling of the interrupts.

7) Any procedures called from the accept body may not use any tasking constructs at all.

8) A given entry must only be accepted once within the body of an FIH.

9) No exceptions may be propagated out of the task body.

If the restrictions described above are not fulfilled, the program is erroneous and the result of the
execution unpredictable. The compiler cannot and is not checking all the restrictions, but attempts
to perform as many checks of the requirements as possible.

DACS 68kO BSa' Ada Cross Compiler System - User's Guide_ m--on Depmdent Charterisics

The ptagma INTERRUPT-HANDLER with no parameters allows the user to implement
immediate response to exceptions.

Fl.9.2 PRAGMA INTERRUPT-HANDLER for Procedures

Format: pragnma INTERRUPT-HANDLER(procedure-nameinteger-literal);

Placement: The pragma must be placed as a declarative item, in the declarative part.
immediately after the procedure specification.

Restrictions: The procedure for which pragma INTERRUPT-HANDLER applies must fulfill the
following restrictions:

1) The pragma must appear before the body of the procedure.

2) The procedure must not be called anywhere in the application.

3) No tasks may be declared in the body of the procedure.

4) The only tasking construct that may be used from the body of the procedure is
unconditional entry calls. Several unconditional entry calls may appear in the body of the
procedure, but only one entry call may be made during the handling of the interrupt.

5) Any subprograms called from the procedure must not use any tasking constructs at all.

6) The procedure must have no parameters.

7) No exceptions may be propagated out of the procedure.

If the restrictions described above is not fulfilled the program is erroneous and the result of the
execution unpredictable. The compiler cannot and is not checking all the restrictions, but attempts
to perform as many checks of the requirements as possible.

The pragma INTERRUPT-HANDLER for procedures defines the named subprogram to be an
interrupt handler for the interrupt vector entry defined by the integer-literal.

FI.10 PRAGMA NOFLOATING.-POINTS

Format: pragma NO.FLOATINGPOINTS(task-id)

Placement: The pragma must be placed as a declarative item, in the declarative part, defining
the task type or object denoted by the task-id.

Restrictions: The task(s) denoted by the task-id must not execute floating-point co-processor
instructions.

This pragma informs the compiler and run-Lime system that the task will not execute floating point
co-processor instructions. Consequently the context switch needs not save and restore the state of
the floating point co-processor yielding improved performance.

DACS 680x0 Bae Ada Cross Compiler System - User's Guide
Implmena on Dependent Characteristics

FL.II PRAGMA SUPERVISOR-TASK

Format: pragma SUPERVISOR-TASK

Placement: The pragma must be placed immediately after the task declaration of the task
declaring it as a SUPERVISORTASK.

Restrictions: The pragma has no meaning if linking with BASIC mode.

This pragma informs the compiler and run-time system that the task shall execute at the supervisor
privilege level, all other tasks will execute at user privilege level when linking with SECURE or
SAFE mode. In BASIC mode all tasks execute at the supervisor privilege level.

FI.12 PRAGMA ACCESSTYPERETAIN-HEAP

Format: pragnma ACCESSTYPE.-RETAINHEAP

Placement: The pragma must be placed as a declarative item in the declarative part, immediately
after the procedure specification.

Restrictions: The pragma can only be used when linking in BASIC mode.

This pragma suppresses garbage collection of access types, when leaving the scope of the access
type declaration.

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

DACS 68O0d Bu Ada Cras Compiler System - User's Guide
lInpiemanttion Dependent Characteristics

F.3 Package SYSTEM

package SYSTEM is

type ADDRESS is new INTEGER;
subtype PRIORITY is INTEGER range 1 .. 24;
type NAME is (DACS_680X0);
SYSTEMNAME: constant NAME - DACS-680X0;
STORAGE-UNIT: constant 8;
MEMORY-SIZE: constant :- 2#1#E32;
MININT: constant : -2-147-483-648;
MAXINT: constant :- 2-147-483-647;
MAX-DIGITS: constant :- 15;
MAX-MANTISSA: constant :- 31;

FINE-DELTA: constant :- 2#1.0#E-31;
TICK: constant :- 2#1.0#E-14;

type interface-language is (AS,C);

end SYSTEM;

The basic clock period SYSTEM.TICK is not utilized by DACS-680x0. The real time between
each successive timer tick will be a multiplum of SYSTEM.TICK, but the actual time between
each timer tick depends on a given target board and is specified in the User Configurable Code
(UCC).

F.4 Representation Clauses

The DACS-680x0 fully supports the 'SIZE representation for derived types. The representation
clauses that are accepted for non-derived types are described in the following subsections.

F4.1 Length Clause

Some remarks on implementation dependent behavior of length clauses are necessary:

"* When using the SIZE atuibute for discrete types, the maximum value that can be specified
is 32 bits.

"• SIZE is only obeyed for discrete types when the type is a part of a composite object, e.g.
arrays or records.

"* Using the STORAGESIZE attribute for a collection will set an upper limit on the total
size of objects allocated in this collection. If further allocation is attempted, the exception
STORAGE-ERROR is raised.

"* When STORAGE-SIZE is specified in a length clause for a task. the process stack area
will be of the specified size.

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Depcndent Characteristics

F4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of INTEGER'FIRST
+ I..INTEGER'LAST - 1.

F4.3 Record Representation Clauses

When representation clauses are applied to records the following restrictions are imposed:

"* If the component is a record or an unpacked army, it must start at a storage unit boundary
(8 bits).

"* A record occupies an integral number of storage units (words) (even though a record may
have fields that only define an odd number of bytes).

"* A record may take up a maximum of 2 giga bits.

"* A component must be specified with its proper size (in bits), regardless of whether the
component is an array or noL

"* If a non-array component has a size which equals or exceeds one storage unit 32-bits the
component must start on a storage unit boundary.

"* The elements in an army component should always be wholly contained in 32-bits.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses are not otherwise utilized by the compiler.

Pragma PACK on a record type will attempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the small scalar components and
larger components will follow in the order specified in the record. The packing begins at the first
storage unit after the components with representation clauses.

F4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following characteristics:

"* If the declaration of the record type is done at the outermost level in a library package, any
alignment is accepted, otherwise only longword alignments are accepted.

" Any record object declared at the outermost level in a library package will be aligned
according to the alignment clause specified for the type. Record objects declared elsewhere
can only be aligned on a longword boundary. If the record type is associated with a
different alignment, an error message will be issued.

* If a record type with an associated. alignment clause is used in a composite type. the
alignment is required to be longword; an error mnessage is issued if this is not the casc.

I IMf

DACS M Dare Ada Cuss Compiler Sysme - User's Guide
"- I 'IP don D aractristcs

F.5 Implementation-Dependent Names for Implementation.Dependent Components

None defined by the compiler.

FA Address Clauses

This section describes the implementation of address clauses and what types of entities may have
their address specified by the user.

F6.1 Objects

Address clauses are supported for scalar and composite objects whose size can be determined at
compile time if the address is specified.

F6.2 Task Entries

Address clauses are supported for task entries. The following restrictions applies:

"* The affected entries must be defined in a task object only, not a task type.

"* The entries must be single and parameterless.

"• The address specified must not denote an interrupt index which the processor may trap.

"* If the interrupt entry executes floating point co-processor instructions the state of the
co-processor must be saved prior to execution of any floating point instructions, and restored
before the return.

The address specified in the address clause denotes the interrupt vector index.

F.7 Unchecked Programming

Both UNCHECKED-DEALLOCATION and UNCHECKED-CONVERSION are supported as
indicated below.

F7.1 Unchecked Deallocation

Unchecked deallocation is fully supported through the procedure UNCHECKEDDEALLOCATION
as defined in [DoD-83] 13.10.1.

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

F7.2 Unchecked Conversion

Unchecked conversion is fully supported through the procedure UNCHECKED-CONVERSION as
defined in [DoD-83] 13.10.2. Unchecked conversion is only allowed between objects of the same
"size". However, if a scalar type have different sizes (packed and unpacked), unchecked conversion
between such a type and another type is accepted if either the packed or the unpacked size fits
the other type.

F.8 Input/Output Packages

In many embedded systems, there is no need for a traditional 1/0 system, but in order to support
testing and validation, DDC-I has developed a small terminal oriented 1/0 system. This U/O system
consists essentially of TEXT.IO adapted with respect to handling only a terminal and not file 1/0
(file 1/O will cause a USE-ERROR to be raised) and a low level package called
TERMINAL-DRIVER. A BASIC.IO package has been provided for convenience purposes,
forming an interface between TEXT-1O and TERMINAL-DRIVER as illustrated in the following
figure.

TEXTIO
BASICIO

TERMINAL-DRIVER
(H/W interface)

Figure F. 1:

The TERMINAL-DRIVER package is the only package that is target dependent, i.e., it is the
only package that need be changed when changing communications controllers. The actual body
of the TERMINALDRIVER is written in assembly language, but an Ada interface to this body
is provided. A user can also call the terminal driver routines directly, i.e. from an assembly
language routine. TEXT-O and BASICIO are written completely in Ada and need not be
changed.

BASIC.IO provides a mapping between TEXT-1O control characters and ASCII as follows:

TEXT-IO ASCII Character

LINE-TERMINATOR ASCII. CR
PAGE-TERMINATOR ASCI I.FF
FILE-TERMINATOR ASCII.EM (ctrl Z)
NEWLINE ASCII.LF

Table F. 1: Mapping between TEXT-1O and ASCII

DACS 680H 0 Bar Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

The services provided by the terminal driver are:

1) Reading a character from the communications port.

2) Writing a character to the communications port.

FS.1 Package TEXTIO

The specification of package TEXTIO:

pragma page:
with BASICIO;

with IOEXCEPTIONS;
package TEXTIO is

type FILE-TYPE is limited private;

type FILE-MODE is (IN-FILE, OUTFILE);

type COUNT is range 0 .. INTEGER' LAST;
subtype POSITIVE-COUNT is COUNT range 1 .. COUNT' LAST;
UNBOUNDED: constant COUNT:- 0: -- line and page length

-- max. size of an integer output field 2#.... #
subtype FIELD is INTEGER range 0 35;

subtype NUMBER-BASE i.s INTEGER range 2 16;

type TYPE-SET is (LOWER-CASE, UPPER-CASE);

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

pragma PAGE;
-- File Management

procedure CREATE (FILE : in out FILE-TYPE;
MODE : in FILE-MODE :-OUTFILE;
NAME : in STRING :-"";
FORM : in STRING :-"

procedure OPEN (FILE : in out FILE-TYPE;
MODE : in FILE_.MODE;
NAME : in STRING;
FORM : in STRING :-"

procedure CLOSE (FILE : in out FILE.TYPE);
procedure DELETE (FILE : in out FILETYPE);
procedure RESET (FILE : in out FILE-TYPE;

MODE : in FILELMODE);
procedure RESET (FILE : in out FILE.TYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;
function NAME (FILE : in FILE-TYPE) return STRING;
function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE return BOOLEAN;

pragma PAGE;
-- control of default input and output files

procedure SET-INPUT (FILE : in FILETYPE);
procedure SET-OUTPUT (FILE : in FILETYPE);

function STANDARD-.INPUT return FILE-TYPE;
function STANDARD-OUTPUT return FILE-TYPE;

function CURRENT-._INPUT return FILE-TYPE;
function CURRENT-OUTPUT return FILE-TYPE;

pragma PAGE;
-- specification of line and page lengths

procedure SETLINELENGTH (FILE : in FILE-TYPE;
TO : in COUNT);

procedure SETLINELENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILE-TYPE;
TO : in COUNT);

procedure SETPAGELENGTH (TO : in COUNT);

function LINE-LENGTH (FILE : in FILE-TYPE)
return COUNT;

function LINELENGTH return COUNT;

function PAGELENGTH (FILE : in FILE-TYPE)
return COU11 T-

function PAGE_:E::GTH return COUNT;

18-4

DACS 6 So0 Urn Ads CQmm Compier System - us's Guide
Iut'launwon Dependent Cbarcwscs

pragiua PAGE;
-- Column, Line, and Page Control

procedure NEN-LINE (FILE : in FILE-TYPE;
SPACING : in POSITIVE-COUNT :- 1);

procedure NEW-LINE (SPACING : in POSITIVE-COUNT - 1);

procedure SKIP-LINE (FILE : in FILE-TYPE;
SPACING : in POSITIVE-COUNT :-1);

procedure SKIP-LINE (SPACING : in POSITIVE-COUNT :- 1);

function ENDOFLINE (FILE : in FILE-TYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;

procedure NEW-PAGE (FILE : in FILETYPE);
procedure NEW-PAGE;

procedure SKIP-PAGE (FILE : in FILE-TYPE);
procedure SKIP-PAGE;

function ENDOFPAGE (FILE : in FILE-TYPE) return BOOLEAN;
function ENDOFPAGE return BOOLEAN;

function ENDOFFILE (FILE : in FILE-TYPE) return BOOLEAN;
function ENDOFFILE return BOOLEAN;

procedure SETCOL (FILE : in FILE-TYPE;
TO : in POSITIVECOUNT);

procedure SETCOL (TO : in POSITIVECOUNT);

procedure SET-LINE (FILE : in FILE-TYPE;
TO : in POSITIVECOUNT);

procedure SET-LINE (TO : in POSITIVECOUNT);

function COL (FILE : in FILE-TYPE)
return POSITIVE-COUNT;

function COL return POSITIVE-COUNT;

function LINE (FILE : in FILE-TYPE)
return POSITIVE-COUNT;

function LINE return POSITIVE-COUNT;

function PAGE (FILE : in FILE-TYPE)
return POSITIVE-COUNT;

function PAGE return POSITIVE-COUNT;

DACS 680x0 Bare Ada CMss Compiler System - User's Guide
Implementation Dependent Characteristics

pragma PAGE;
-- Character Input-Output

procedure GET (FILE : in FILE-TYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE-TYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILE-TYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE-TYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

procedure GET-LINE (FILE : in FILE-TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GET-LINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUT-LINE (FILE : in FILE-TYPE;
ITEM : in STRING);

procedure PUT-LINE (ITEM : in STRING);

DACS 680x0 Bae Ad& Cmu Compiler Sym - User's Guide
ImpimemdonDepender Chaancwhrstics

pragma PAGE;
-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGERIO is

DEFAULT-WIDTH : FIELD : NUM'WIDTH;
DEFAULT-BASE : NUMBERBASE :- 10;

procedure GET (FILE : in FILE-TYPE;
ITEM : out NUM;
WIDTH : in FIELD :- 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD : 0);

procedure PUT (FILE : in FILE-TYPE;
ITEM : in NUM;
WIDTH : in FIELD :- DEFAULT-WIDTH;
BASE : in NUMBER-BASE :- DEFAULTBASE);

procedure PUT (ITEM : in NUM;
WIDTH : in FIELD :- DEFAULT-WIDTH;
BASE : in NUMBER-BASE :- DEFAULTBASE);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
BASE : in NUMBER-BASE :- DEFAULTBASE);

end INTEGERIO;

DACS 680x0 Bam Ada Cross Compiler System - User's Guide
Implementation Dependent Charactensrics

pragma PAGE;

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits*<>;

package FLOAT-IO is

DEFAULTFORE : FIELD : 2;
DEFAULT-AFT : FIELD : NUM'DIGITS - 1;
DEFAULT-EXP : FIELD : 3;

procedure GET (FILE in FILE-TYPE;
ITEM out KUM;
WIDTH in FIELD :- 0);

procedure GET (ITEM out NUM;
WIDTH in FIELD : 0);

procedure PUT (FILE : in FILE-TYPE;
ITEM : in NUM;
FORE : in FIELD :-DEFAULT-FORE;
AFT : in FIELD :- DEFAULTAFT;
EXP : in FIELD :- DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD :-DEFAULT-FORE;

AFT : in FIELD : DEFAULT-AFT;
EXP : in FIELD : DEFAULTEXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD :- DEFAULT-AFT;
EXP : in FIELD :- DEFAULTEXP);

end FLOATIO;

• • • .••. i•• •,. .. . ,.-.

DACS 6hk0O Bare Ada Cros Comper Syssem - User's Guide
Imt 11 o1 Depav Oammaeris

pragma PAGE;

generic
type NUM is delta <>;

package FIXEDIO is

DEFAULT-FORE : FIELD :-NUM'FORE;

DEFAULT-AFT : FTELD :- NUM'AFT;
DEFAULTEXP : FIELD :- 0;

procedure GET (FILE in FILE-TYPE;
ITEM out NUN;
WIDTH in FIELD : 0);

procedure GET (ITEM out NUN;
WIDTH in FIELD :-0);

procedure PUT (FILE : in FILE-TYPE;
ITEM : in NUN;

FORE : in FIELD :-DEFAULT-FORE;
AFT : in FIELD : DEFAULT-AFT;
EXP : in FIELD : DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD :-DEFAULT-FORE;
AFT : in FIELD : DEFAULT-AFT;
EXP : in FIELD :- DEFAULTEXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD : DEFAULT-AFT;
EXP : in FIELD :- DEFAULTEXP);

end FIXEDIO;

DACS 6NOx0 Bam Ada Cross Compiler System - User's Guide
Im~p~leflion Dependent Characteristics

pragma PAGE;
-- Generic Package for Input-Output of Enumeration Types

generic
type ENUM is (<>);

package ENUMERATIONIO is

DEFAULT-WIDTH : FIELD :- 0;
DEFAULT-SETTING : TYPE-SET : UPPER-CASE;

procedure GET (FILE in FILE-TYPE; ITEM : out ENUM);
procedure GET (ITEM : out ENUM);

procedure PUT (FILE FILE-TYPE;
ITEM in ENUM;
WIDTH in FIELD := DEFAULT-WIDTH;

SET in TYPE-SET := DEFAULTSETTING);
procedure PUT (ITEM in ENUM;

WIDTH : in FIELD : DEFAULT-WIDTH;

SET : in TYPE-SET - DEFAULTSETTING);

procedure GET (FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPE-SET :- DEFAULTSETTING);

end ENUMERATIONIO;

pragma PAGE;

-- Exceptions

STATUS-ERROR :exception renames IOEXCEPTIONS.STATUSERROR;
MODE-ERROR :exception renames IOEXCEPTIONS.MODEERROR;
NAME-ERROR :exception renames IOEXCEPTIONS.NAMEERROR;
USE-ERROR :exception renames IOEXCEPTIONS.USEERROR;
DEVICE-ERROR :exception renames IO-EXCEPTIONS.DEVICEERROR;
END-ERROR :exception renames IOEXCEPTIONS.ENDERROR;
DATA-ERROR :exception renames IOEXCEPTIONS.DATAERROR;
LAYOUT-ERROR :exception renames IOEXCEPTIONS.LAYOUTERROR;

pragma page;
private

type FILE-TYPE is
record

FT : INTEGER :- -1;
end record;

end TEXTIC;

190

DACS 680x0 Bare Ada Cus Compiler System - User's Guide
ImplemDependent Characteristics

F&.2 Package IOEXCEPFMONS

The specification of the package IO-EXCEMTlONS:

package IOEXCEPTIONS is

STATUS-ERROR : exception;
MODE-ERROR : exception;
NAME-ERROR : exception;
USE-ERROR : exception;
DEVICE-ERROR : exception;
END-ERROR : exception;
DATA-ERROR : exception;
LAYOUT-ERROR : exception;

end IOEXCEPTIONS;

F&3 Package BASIC-1O

The specification of package BASIC-1O:

with IOEXCEPTIONS;

package BASICIO is

type count is range 0 .. integer'last;

subtype positive-count is count range 1 .. count'last;

function get-integer return string;

-- Skips any leading blanks, line terminators or page terminators.
-- Then reads a plus or a minus sign if present, then reads according
-- to the syntax of an integer literal, which may be based.
-- Stores in item a string containing an optional sign and an integer
-- litteral.

-- The exception DATA-ERROR is raised if the sequence ofcharacters dces
-- not correspond to the syntax described above.

-- The exception END-ERROR is raised if the file terminator is read.
-- (This means that the starting sequence of an integer has not been met)

-- Note that the character terminating the operation must be available
-- for the next get operation.

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implemen aion Dependent Characteristics

function get-real return string;

-- Corresponds to get-integer except that it reads according to the
-- syntax of a real literal, which may be based.

function get-enumeration return string;

-- Corresponds to get-integer except that it reads according to the
-- syntax of an identifier, where upper and lower case letters are
-- equivalent to a character literal including the apostrophes.

function get-item(length : in integer) return string;

-- Reads a string from the current line and stores it in item;
-- If the remaining number of characters on the current line is
-- less than length then only these characters are returned.
-- The line terminator is not skipped.

procedure put-item(item : in string);

-- If the length of the string is greatez than the current maximum line
-- linelength the exception LAYOUT-ERROR is raised.

-- If the string does not fit on the current line a line terminator is
-- output. Then the item is output.

-- Line and page lengths - ARM 14.3.3.

procedure set-line-length(to : in count);

procedure set-page-length(to : in count);

function line-length return count;

function page-length return count;

-- Operations on columns, lines and pages - ARM 14.3.4.

procedure new-line;

procedure skip.line;

function end-of-line return boolean;

procedure new-page;

procedure skip-page;

192

DACS O m Ada = Compfe Sysm - Usr's Guide

function end-of-page return boolean;

function end-of-file return boolean;

procedure se3tco1(to in positive-count);

procedure set-line(to in positive-count);

function col return positive.count;

function line return positive.count;

function page return positive-count;

-- Character and string procedures.
-- Corresponds to the procedures defined in ARM 14.3.6.

procedure getcharacter(item out character);

procedure getstring(item out string);

procedure get.line(item : out string;

last : out natural);

procedure putcharacter(item : in character);

procedure putstring(item : in string);

procedure putline(item : in string);

-- exceptions:

USE-ERROR : exception renames IOEXCEPTIONS.USE-ERROR;
DEVICE-ERROR : exception renames IOEXCEPTIONS.DEVICEERROR;
END-ERROR : exception renames IOEXCEPTIONS. END-ERROR;
DATA-ERROR : exception renames IOEXCEPTIONS.DATAERROR;
LAYOUT-ERROR : exception renames IO-EXCEPTIONS.LAYOUTERROR;

end BASICIO;

DACS 680x0 Bam Ada Croms Compiler System - User's Guide
Implementation Dependent Charteristics

F&4 Package TERMINAL._DRIVER

The specification of package TERMINAL-DRIVER:

package terminal-driver is

procedure put.character(ch : character);
procedure flush;

function get-character return character;

procedure purge;

private

pragma interface (AS, put-character);
pragma interface.spelling (put .character, "Ada-UCCG$PutByte");

pragma interface (AS, get-character);
pragma interface.spelling(get.character, "Ada -UCCG$GetByte");

pragma interface (AS, flush);
pragma interface.spelling(flush, "Ada-UCCG$FlushOutput");

pragma interface (AS, purge);
pragma interface-spelling(purge, "AdaUCCG$PurgeInput");

pragma initialize("AdaUCCG$InitIO");
pragma rundown ("AdaUCCG$C1oseIO");

end terminal-driver;

F8.5 Package SEQUENTIALIO

As files are not supported, the subprograms in this package will raise USE-ERROR or
STATUSERROR. The specification of package SEQUENTIAL_1O:

-- Source code for SEQUENTIAL-IO

pragma PAGE;

with IO-EXCEPTIONS;

generic

type ELEMENT-TYPE is private;

194

DACS 6NOWO Bare Ada Cm. Compiler Symem - User's Guide

package SEQUENTIALIO is

type FILE-TYPE is limited private;

type FILE-MODE is (IN-FILE, OUTFILE);

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILE-TYPE;
MODE : in FILE-MODE :-OUT-FILE;
NAME : in STRING :- "";
FORM : in STRING : "");

procedure OPEN (FILE : in out FILE-TYPE;
MODE : in FILE_.MODE;
NAME : in STRING;
FORM : in STRING :- "");

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE-TYPE;

MODE : in FILE-MODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;

function NAME (FILE : in FILE-TYPE) return STRING;

function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN;

pragma PAGE;
-- input and output operations

procedure READ (FILE : in FILE-TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE-TYPE;
ITEM : in ELEMENTTYPE);

function ENDOFFILE(FILE : in FILE-TYPE) return BOOLEAN;

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implemetation Dependent Characteristics

pragma PAGE;
-- exceptions

STATUS-ERROR :exception renames IOEXCEPTIONS.STATUS-ERROR;
MODE-ERROR :exception renames IOEXCEPTIONS.MODEERROR;
NAME-ERROR :exception renames IO-EXCEPTIONS.NAMEERROR;
USE-ERROR :exception renames I0_EXCEPTIONS. USE-EROR;
DEVICE-ERROR :exception renames IO.EXCEPTIONS.DEVICEERROR;
ENDERROR :exception renames IO-EXCEPTIONS.ENDERROR;
DATA-ERROR :exception renames IOEXCEPTIONS.DATA-ERROR;

pragma PAGE;
private

type FILE-TYPE is new INTEGER;

end SEQUENTIALIO;

F8.6 Package DIRECTIO

As files are not supported, the subprograms in this package will raise USEERROR or
STATUS-ERROR. The specification of package DIRECTIO:

pragma PAGE;
with IOEXCEPTIONS;

generic

type ELEMENT-TYPE is private;

package DIRECTIO is

type FILE-TYPE is limited private;

type FILE-MODE is (IN-FILE, INOUTFILE, OUTFILE);

type COUNT is range 0..2-147-483-647;
subtype POSITIVE-COUNT is COUNT range 1..COUNT'LAST;

196

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILE-TYPE;
MODE : in FILE-MODE :- INOUTFILE;
NAME : in STRING :- "";
FORM : in STRING :- "");

procedure OPEN (FILE : in out FILE-TYPE;
MODE : in FILEMODE;
NAME : in STRING;
FORM : in STRING :- "");

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE-TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;

function NAME (FILE : in FILE-TYPE) return STRING;

function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN;

107

DACS 6M Baio Ada CUs Compiler System - Ur"s GuideImpen azon Dependen Circeic

pragma PAGE;
-- input and output operations

procedure READ (FILE : in FILE-TYPE;

ITEM : out ELEMENT-TYPE;
FROM : in POSITIVECOUNT);

procedure READ (FILE : in FILE-TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE-TYPE;
ITEM : in ELEMENT-TYPE;
TO : in POSITIVE.COUNT);

procedure WRITE (FILE : in FILE-TYPE;
ITEM : in ELEMENTTYPE);

procedure SETINDEX(FILE : in FILE-TYPE;
TO : in POSITIVECOUNT);

function INDEX(FILE : in FILE-TYPE) return POSITIVE-COUNT;

function SIZE (FILE : in FILE-TYPE) return COUNT;

function ENDOFFILE(FILE : in FILE-TYPE) return BOOLEAN;

pragma PAGE;
-- exceptions

STATUS-ERROR : exception renames IO-EXCEPTIONS.STATUSERROR;
MODE-ERROR : exception renames IO-EXCEPTIONS.MODE--ERROR;
NAME-.ERROR exception renames IOEXCEPTIONS.NAMEERROR;
USE-ERROR exception renames IOEXCEPTIONS.USEERROR;
DEVICE-ERROR exception renames IOEXCEPTIONS.DEVICEERROR;
END-ERROR exception renames IOEXCEPTIONS.ENDERROR;
DATA-ERROR exception renames IOEXCEPTIONS.DATA-ERROR;

pragma PAGE;
private

type FILE-TYPE is new INTEGER;

end DIRECTIO;

F.9 Package CALENDAR

Package CALENDAR is as defined in [DoD-83] section 9.6, except for a new procedure
SET-TIME, which has been added to the package. SET-TIME allows setting of TIME for the
duration of the executing program. SET-TIME parameters follow the same conventions as the
parameters for SPLIT. The specification of package CALENDAR:

198

DACS 680x0 Bare Ada Cm Compller System - User's Guide
Implemenwtion Dependent Chaacteristics

PRAGMA PAGE;

PACKAGE calendar IS

TYPE Time IS PRIVATE;

SUBTYPE Year-number IS Integer RANGE 1901..2099;
SUBTYPE Month-number IS Integer RANGE 1..12;
SUBTYPE Day-number IS Integer RANGE 1..31;
SUBTYPE Day-duration IS Duration RANGE 0.0..86-400.0;

FUNCTION clock RETURN Time;

FUNCTION year(date: Time) RETURN Year-number;
FUNCTION month(date: Time) RETURN Month-number;
FUNCTION day(date: Time) RETURN Day-number;
FUNCTION seconds(date: Time) RETURN Day-duration;

PROCEDURE split(date: IN Time;
year: OUT Year-number;
month: OUT Month-number;
day: OUT Day-number;
seconds: OUT Day-duration);

FUNCTION time-of (year: Year-number;
month: Month-number;
day: Day-number;
seconds: Day-duration :- 0.0) RETURN Time;

FUNCTION "+" (left: Time;
right: Duration) RETURN Time;

FUNCTION "+I (left: Duration;
right: Time) RETURN Time;

FUNCTION "-" (left: Time;
right: Duration) RETURN Time;

FUNCTION ... (left: Time;
right: Time) RETURN Duration;

FUNCTION "<" (left, right: Time) RETURN Boolean;
FUNCTION "<-" (left, right: Time) RETURN Boolean;
FUNCTION ">" (left,right: Time) RETURN Boolean;
FUNCTION ">-" (left,right: Time) RETURN Boolean;

PROCEDURE set.time(year : IN Year-number;
month : IN Month-number;
day : IN Day-number;
seconds : IN Day-duration);

TIME-ERROR: Exception; -- ... can be raised by
-- time-of , "+" and "-"

PRIVATE

END calendar;

199

DACS 68W0 Bame Ada Cruo Compiler Syma - User's GuideDqmC e nt Ch r aceitcs

F.10 Machine Code Insertions

Machine code insertions ame allowed using the instructions defined in package MACHINECODE.
All arguments given in the code statement aggregate must be static.

The machine language defined in package MACHINECODE is not 680x0 assembler, but rather
Abstract A-code which is an intermediate language used by the compiler.

200

