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ABSTRACT

A new approach to the analysis of Maxwell.equations in the time domain is presented. The salient
feature of the method discussed is that they are based on the expansion of unknown functions into infinite
series of entire domain or entire subdomain basis functions and the expansion coefficients are found by
means of the method of moments procedure. Four new explicit algorithms are introduced and discussed.
The stability condition is derived in the general way based on the functional analysis techniques. An fast
and efficient absorbing boundary condition is proposed. The results of the numerical tests are presented
showing that new algorithms can achieve greater speed than a traditional FDTD technique.
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1 THEORY

1.1 Background

So far we have been considering the frequency domain formulations of the internal electrodynamic eigen-
value problems. The Fourier transform introduces the equivalence between time and frequency. Therefore
each problem involving one of these quantities has two alternative representations. The time domain for-
mulation is often used in computational physics where its potential for solving parabolic and hyperbolic
differential equations arising in diffusion, convection, conductivity or oscillatory problems was recognized
many years ago [18] but in electromagnetics the frequency domain formulations have traditionally been
preferred for the analysis of Maxwell equations. In recent years time domain techniques have increasingly
been gaining audience also in the computational electromagnetics community. Time domain algorithms
solve initial value problems, but this does not mean that eigenvalue problems are not covered by time
domain formulations because eigenvalues can be extracted from the time response through signal pro-
cessing techniques. One advantage of the time domain methods is that they allow the investigation of
transient phenomena. Additionally, they allow in principle a simple and wideband treatment of nonlinear
and nonstationary processes. The disadvantage of the time domain approach is associated mainly with
the difficulties in dealing with frequency dispersive materials.

The time domain analysis can be carried out based either on differential or integral formulations.
The integral formulations, which are particularly attractive for scattering and radiation problems, suffer
from the fact that their numerical solution is usually difficult and often accumulates discretization errors
which in turn leads to instabilities [1]. For certain geometries of the scatterers it was possible to overcome
these problems and develop efficient algorithms [2]. However, the difficulties associated with the integral
formulations are absent in algorithms for solving differential operators and consequently most research in
the area of time domain modelling of electromagnetic fields was concerned with three versatile and simple
methods based on differential representations. These three algorithms are known as the Transmission
Line Matrix (TLM), Spatial Network (SN) and Finite Difference - Time Domain (FDTD) methods. All
three techniques are well described in the open literature [3]- [91, books [32] and monographies [20]. In the
TLM and SN methods the structure under investigation is treated as a spatial network of transmission
lines and the wave propagation is described by incident and reflected voltage impulses on the mesh lines.
In the standard FDTD method the Maxwell's equations are discretized both in space and time, the
derivatives are computed by means of central difference scheme and the fields are evaluated at discrete
nodes. Although FDTD and TLM (SN) methods use different concepts and are concerned with different
physical quantities, recent study by Celuch and Gwarek [10] shows that each of them can be obtained
from the other by a sequence of suitable transformations. Hence, time domain methods currently used
in practice are formally equivalent. Their salient feature is that three dimensional space is discretized
and a mesh is formed. Samples of relevant quantities at mesh points are used to represent a physical
continuum. The sampling of the solution in space is one of possible forms of a discrete representation
of a physical continuum, characteristic for the approach which we called domain division. Alternative
technique is to use series of entire domain and entire subdomain expansion functions to approximate the
field. Let us look at time domain algorithms from the point of view of the alternative representation of
fields in order to find formulations which may broaden the range of options available for the time domain
analysis of complex problems of electromagnetics.

1.2 Series expansion with respect to all space coordinates

Let us consider the structure shown in fig. 1. It is assumed that the inhomogeneity is described by the
relative permittivity e, and permeability 14, both being in general functions of all three space coordinates
but frequency independent. Under these assumptions the Maxwell's equations are given by:

S P0,(1,Z,,Z)V X r)
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Figure 1: A cavity loaded with a dielectric inhomogeneity

These equations can be written using the following abbreviated notation

0
Lig

a
5g L 2f (2)

where L, V x (.), L2 = v x (.) and f and g are vector functions representing

the electric and magnetic field, respectively. The above notation will be used henceforth.
Replacing the time derivatives with their finite difference equivalents we get the following marching

on time equations

fn = f'_1 + AtLMgr-1/2

g9n+l/ 2 = gn-l/2 + AtL 2f, (3)

The unknown functions f, g are now expanded into series of functions.

jr =Z ý'fs(z,y,z) gn =-bg,(z,y,z) (4)

The set of expansion functions is assumed to be complete and the functions are linearly independent.
The functions are defined on the entire domain or have local supports but they are in general the time
independent functions of all three spatial variables. Substituting (4) into (3) we get

E a< fi = E a!.-Ifi + AtL, Ebin- 1/2gi

ZaIs2g = Eba-1j,+Ai nb fg
2+ g = /. gi/ + AtL 2 E af (5)

Taking the inner product of (3) with the expansion functions f, and gi results in

< fnf> = <fn-,fi> +At < Lgn-l/2j,f >

<9n+l/ 2,g, > = < go-1/2,gi > +At < L2f"ng> (6)

Using ( 5) the above equations can be cast into the following matrix form

a _a"-1 + A•-A -1 /2

,n+1/2 = i,- 1/2+ p-I_., (7)
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where a and b are the vectors containing expansion coefficients and A4, B, C, D are matrices with
elements given by the following inner products

Aji -- < Llgj, fa> Bij =< L24, gi >

Cj -- < .fj, .fi > D,• = < gj, g, > (8)

All matrices defined above are in general dense. If the expansion functions are orthonormal then C and
D are identity matrices and (7) becomes

an = a n-i + AtAb"n-/
2

bn+1-2 = bn-1/2+AtBan (9)

1.3 Series expansion with respect to selected space coordinates

So far we have presented the algorithms in which the time is discretized and the function expansion is done
in three dimensions. We shall call them total expansion algorithms. For the case when eigenfunctions of
a Laplace operator are used as a basis we will use the acronym TEE (Total Eigenfunction Expansion).
Another version of the expansion algorithm is obtained if the discretization is in time and one (or two)
selected coordinate and the expansion is done with respect to two (or one) remaining coordinates. We
shall present here a case when one space coordinate is discretized. The extension of this algorithm to
the case when two space coordinates are discretized and the expansion is carried out only for the third
one is straightforward. The space is sliced into subdomains (fig. 2) and the fields are expanded on each

Figure 2: A structure dibcretized along one coordinate

subdomain (slice) into series of expansion functions. This type of expansion we shall call partial and for
the eigenfunction expansion use the name the Partial Eigenfunction Expansion (PEE). To obtain the time
marching equations for such case we have to introduce the finite difference scheme for the calculation of
the space derivatives with respect to the discretized variable. Suppose the structure was divided into K
slices in the z direction and the slices are uniformly spaced by the distance Ad. To enable the application
of the central finite difference scheme for the calculation of the derivatives in the z direction we use the
technique used in the FDTD method. In this technique [4] different field components are defined on two
meshes, each off by half the space step from the other. This arrangement is known as the Yee's mesh.
In the present context Yee's mesh is given in one spatial dimension, which means that relevant field
components are defined on the slices that are off by half the space step. More precisely the Ekk I Hk
are given at z = kAd and H-,H", E, are defined for z = (k + 1/2)Ad. Bearing this convention in mind
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we expand fields at a suitably situated slice according to

fZ a' f,.(z,y) gn = b 9g,(zxy) k I...K (10)

The derivatives in the z direction are approximated by

FWk+I2 k (11)
SAd

Calculation of the z-derivatives involves operations on the functions defined on the adjacent slices. There-
fore, instead of equations (2) we get

5-fk = Lktgk + Li 2 (gk+1 - gk)

5i-gk = L f + Lk,(f - fk-f ) (12)

Where we have split operators L, and L2 into transverse and z- part according to

L - 1 k~(* L -~ 1 zX
coek(Z- y) ox .fok(z, y)AdLk =___o __(_, __"'-""_ _=L' -1 Vx Lk-1 -(3

2= 1( Vx(.) Lk= (- y)2 (z, y)Ad x(-) (13)

In the above equations by i we have denoted a unit vector in the z direction.
Replacing time derivatives by the finite difference scheme, expanding functions in (12) and taking

the inner products for each slice we arrive to the set of equations similar to (7) with the block diagonal
coeficient matrices given by

A = qdiagf.A[ Ak] B = qdiag [B,, B]
_ = qdiag [C] D = qdiag [2k] (14)

The elements of the submatrices are given

Aý = < (Lxt - L.Al <Lk1i- L1z)gjhfI > .. =< Lgj,+,1 ,fi >

B'il k = < (L k + Lk.)fj,,gi, > B,,= < Lfk g >

C~ = < f,".f,.>
ý = < .q.•,,,gb > (15)

For orthonormal basis functions matrices _ and D become identity matrices and we get again (9).
Thus both total and partial time-domain expansion algorithms are formally described by the same set
of equations (7) or (9). However, one important difference between the total and partial expansion
algorithms is that in the former the matrices (8) are in general dense while in the latter the matrices (15)
are always quasi diagonal.

1.4 Numerical cost of the time domain expansion algorithms

One drawback of the expansion algorithms presented in the previous section is that they may lead to higher
numerical cost than FDTD and TLM. The inner products appearing in (8) and (15) are independent of
time and can be stored in look up tables. If the cost of the calculation of inner products is neglected then
the cost of one time step of the algorithms is determined by the cost of matrix multiplication. Depending
on the basis functions used (local support versus entire domain) the overall cost may vary considerably.
Generally speaking, assuming that expansion is done using L functions, the cost of one time step is
of order O(L 2). If the matrices are sparse the cost is lower. In the FDTD and TLM method with N
nodes, the numerical cost is of order O(N). Consequently, expansion techniques are comparable in terms
of numerical cost and memory to classical time domain algorithms when L2 - N. This condition will
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easily be fulfilled in slightly and moderately perturbed homogeneous structures when eigenfunctions of
an underlaying Laplace operator are used as the expansion basis. The expansion functions have then the

space distribution of the relevant field components of modes in the corresponding homogeneous problem.

Similar conclusion can be derived regarding memory requirements. An important special case is when the

submatrices are diagonal. This takes place for homogeneous regions (or slices) when the eigenfunction
expansion is used. The numerical cost is then of order O(L) which means that the expansion algorithm
is faster than FDTD and TLM provided L < N. While in the total expansion technique this case has
little practical importance, it can be very effectively used in the partial expansion algorithm as shown in
Sections 1.5, and 2.1.

At this point it is important to note that a very efficient implementation of the expansion algorithms
may be obtained if the expansion functions are sines and cosines. Let us consider the total expansion
algorithm described by (9). Equations(6) imply that at each step one evaluates the inner products
< Lign-l/ 2 f, > and < L2 f", g9 > and these inner products are used to update expansion coefficients.
For sine and cosine functions the inner product for all testing functions can be computed in a very efficient
way using the technique described in [13]. In this technique all the inner products are computed in one
step in a sequence of inverse and forward FFTs. The procedure consists of three steps which for the total
eigenfunction expansion are

"* using inverse 3D FFT and b•-1/ 2 and a" calculate g-ll/2, P and their spatial derivatives

"* Compute functions Lign-1/ 2 and L 2fn

"* using forward 3D FFT compute all inner products < Llgn-1/ 2, f > and < L2 f" 9i >

Similar procedure can be used for the partial eigenfunction expansion algorithm with the 3D FFTs
replaced with the 2D transforms. The numerical cost of computations of inner products using FFT
was discussed in detail in [13] and depends on the number of expansion functions, number of sampling
points and the inhomogeneity size but generally it is relatively low (O(n log 2 n), with n proportional
to the number of unknowns) and additional advantage is that there is no need to create a look up
matrices A and P. Again, if the number of expansion functions is low the time domain algorithms based
on the eigenfunction expansions can be implemented using little computer storage and with the speed
comparable to that of the corresponding FDTD or TLM methods. It should be noted however, that for
large inhomogeneities, when many basis functions are needed, the performance of the function expansion
codes will be worse than traditional techniques.

1.5 Hybrid expansion algorithms

The discussion of the numerical cost involved in the time domain method of moments algorithms implies
that the application of the entire domain expansion functions makes sense only for moderate pertur-
bation. This deficiency can be overcome by modifying the algorithms so that different techniques can
be used in the different parts of computational space. It seems that the partial expansion algorithm
offers interesting possibilities, especially with regard to problems of scattering inside waveguides ( total
expansion algorithms can only be applied to cavities).

1.5.1 A hybrid PEE-FDTD algorithm

Consider combining the partial expansion method with a classical FDTD algorithm. The strategy to
obtain an optimal algorithm would be following. Use FDTD in the regions in which a fine resolution
of field is necessary (eg. near edges, media interfaces) or large perturbation exists and apply partial
expansion in the homogeneous or slightly inhomogeneous regions. Let us consider the benefits which may
be obtained form this approach. In principle any complete set of functions can be used in the partial
expansion algorithms, but we shall concentrate on the case when the eigenfunction expansion (PEE) is
used in homogeneous regions. Let us recall that in the PEE expansion functions are chosen in such a
way that they constitute a set of eigenfunctions of the Laplace operator defined on 2D region forming a
slice. In that case each expansion function satisfies the boundary condition and field equations globally
over entire slice and additionally, because the eigenfunctions of Laplace operator are orthogonal, matrices

A:",A" and V &ki are diagonal for homogeneous slices and the computations become extremely fast
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(no more than 9 multiplications and 18 additions per iteration per 6 expansion coefficients for sine and

cosine basis functions). If the PEE were also used in inhomogeneous slices, the speed of the algorithm
would decrease. However if a classical FDTD algorithm is used in inhomogeneity region the numerical
cost will be, locally, the same as the cost of an orthodox FDTD. Outside the inhomogeneity the PEE
algorithms ensures not only fast computation but also minimizes the memory usage. This is because
the eigenfunctions of the Laplace operator are selected as the basis for expansion and therefore very few
series terms at each slice would be necessary to represent field in homogeneous region.

The concept of the hybrid algorithm PEE-FDTD is shown in fig.3. The two algorithms are interfaced

Figure 3: The mesh arrangement in a hybrid algorithm

at a common slice (say z = zk) where the finite difference and partial eigenfunction expansion meshes
meet. The transition form the FDTD to PEE is done in the following way. Given a field distribution
at the z = zk, provided by the FDTD part of the algorithm, the expansion coefficients at this slice are
found by taking the inner product with each basis functions of the PEE. The inner products can be
calculated using numerical integration for a general case, or, for Fourier series field representation, the
FFT procedures can be used. To switch from PEE to FDTD the series (10) (through direct summation
or FFT) are calculated at the interface plane at the points required by FDTD.

1.5.2 A hybrid scalar PEE-vector FDTD algorithm

The time domain algorithms presented so far were formulated on Yee's mesh which is convenient for the
modeling of vector fields described by Maxwell's equation. The Maxwell's equations invoeve 3 electric
and 3 magnetic field components which means that at least 6 variables per cell are needed to characterize
the fields at each iteration. Recently, Aoyagi and al [21] noted that if the electric field is divergence free,
the Maxwell's equation can be converted to a set of three scalar second order equations. As shown in
[21] this fact can be used in a classical FDTD algorithm to reduce both the memory and numerical cost
of the algorithms. If a scalar wave approach is applied to the PEE algorithm even greater savings can
be achieved. For homogeneous sections of the structure the field is a mixture of the TE and TM modes
and as we noted in the previous sections each mode can be treated separately. The propagation of TE
and TM modes is governed by a scalar wave equation which in the time domain is given by

v- 02 •

2 2+0 = 0(16)

where 0 is a scalar potential whose transverse part satisfies the Neumann or Dirichlet boundary conditions
and v is the velocity of light in the medium. It can immediately be recognized that the transverse part
of a scalar potential can be used as the expansion term in the PEE algorithm. Consequently for each

t.
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eigenfunction 0j, at each homogeneous slice we have

45 a2 2 a

60oi + (- - V- 5-)- = 0 (17)

where 6V is a transverse wavenumber. The differentiation with respect to z and t is approximated by the
finite difference expressions yielding

v2bi,. - (At)- 2(0n 1 - 2• + On --2 + ,) = 0 (18)

This leads to an explicit algorithm
0 -+l = [2 + v 26?A 2t - 2v2 (Ad)- 2A 2t] 0 + v2(Ad- 2A2t(o0+, + ' ) -n-(19)

Or in a more compact form
0n+' = AO- + B(O!+ + on)-7-1 (20)

Sk k 'h+1 i k- sk

where A and B are coefficients. It is important to note that each time step requires only two variables
per slice and is realized with only 5 floating point operations per slice. (NB. Modern computers achieve
comparable speed in addition and multiplication [34]). A vector PEE algorithm requires 6 variables per
slice and 27 floating point operations under the same conditions (homogeneous slice). These parameters
have to be compared with other 3D implementations of time domain techniques which require, under
the most favorable conditions, at least six variables per cell and from 21 [21] to 30 [34] floating point
operations per cell per iteration. Even if we disregard the fact that the PEE uses only a low number of
functions in the homogeneous regions, the number of floating point operations required for one iteration
makes the scalar PEE three times more efficient in terms of memory and from 4 to 6 times faster than
any other published scheme. Obviously, in this comparison one has to bear in mind that the scalar PEE
is applicable only to homogeneous slices. For the remaining parts of the structure one has to use the
vector finite-difference time domain algorithm. To interface the two algorithms a common slice has to
be chosen and either the amplitudes of scalar potentials have to be calculated from the field vectors or
the other way round. A common quantity (field or potential) is calculated in the same manner as for the
vector hybrid algorithm discussed in the preceding section.

1.6 Stability of the time domain expansion algorithms

The time domain algorithms discussed in this study are explicit, which implies that the time step can
not exceed a certain value or the computations become unstable. Presently we shall derive the stability
criterion for the the total and partial expansion algorithms. Before deriving the stability criterion let us
present problem (2) in the form of a hyperbolic equation. Taking the time derivative of the first equation
and applying operator L1 to the second equation we obtain.

0-2 = L1L2 f (21)

Putting L = -L 1 L2 we get

2-2f + Lf = 0 (22)

Equation (22) is hyperbolic differential equation. Stability of the differencing schemes for parabolic and
hyperbolic equations has been studied in [171 and [351 in context of classical finite difference representation
of differential operators. The theorems used in that case are also applicable to the present method. To
investigate the stability of time marching algorithms for the hyperbolic equations it is useful to present
a problem in a canonical form

A 2tR--f + Af = 0 (23)

The time marching algorithm for the above problem is stable if the following conditions are fulfilled
[17](p.386):

A=A* >0, R=R*>0 (24)
A

R- A > 0 (25)
4-
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In other words, for the time marching algorithm to be stable it is sufficient that both operators A and
R are self adjoint and positive and additionally the operator R - 0.25A is nonnegative. The canonical
form (23) is obtained from (22) by simply writing it as

,%2t a2
-tI-f+Lf=0 (26)

Where I is the identity operator.
Comparing (26) with (23) we get R = IiA2t and A = L. It can readily be verified that operator L is
symmetric and positive. It suffices to verify the condition (25). This condition is fulfilled when

YIt_11 I L__ (27)

or2
At _< 

(28)

Thus the maximal time step in explicit time domain algorithms considered here depends on the norm of
the operator L.

For a self-adjoint bounded operator L defined in the Hilbert space Nt the norm is defined as [361

1IL11= sup I< Ly, y > 1=IAa (29)Y•X7llYll=1

where Ama: is the largest eigenvalue of L.
Let us estimate the norm of the operator L. To this end we consider a simpler, one dimensional

second order operator defined over an interval 0 < x < I

82
'= -6(z)•-•,) (30)

where b(z) > 0 is a time independent positive continuous function of x. Let D denote the domain of
operator F and assume that it allows only square integrable functions satisfying Dirichlet conditions
at both ends of the interval. Since the space of square integrable functions is infinite dimensional, the
operator F is unbounded and consequently its norm is infinite. It is necessary to calculate its norm
in finite dimensional space. This is what happens in practice because we always look for approximate
solution to the problem in a form of a linear combination of finite number of basis functions. The finite
set of basis function defines the approximate finite dimensional subspace of original domain. Consider
the following truncated set of basis functions

2--sin i < NM (31)

The basis functions (31) span a finite dimensional space ?iNU C VP in which the approximate solution is
sought for. Now it is easy to find the upper bound of the operator.

IIFI1 = I b(x)y()II < 8 IIF.II (32)

Where bin8. is the maximal absolute value of b(z) over the interval < 0, 1 >. The eigenvalues Ai of
operator Fm. are given by

Ai = b2•- 2 (33)

and consequently the norm of F

IIFiI < NX (34)bm..12

Similar derivation can be used for FA, a finite difference analogue of operator F yielding [17]

41IF4 ll _< (Ad)2 bm,,z (35)
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where Ad is the discretization step.
At this point we can return to operator IILiI. Let us consider a cube 0l with the dimensions I x I x I.

We seek the approximate solution given a finite number of expansion functions in the form of normalized

products of sines and cosines

sin i-. or cos-- i.k < NM (36,

Let D denote the domain of the original problem given by equations (2). The basis functions (36) span
a finite dimensional space "tNN C V. We calculate the upper bound of the norm of operator IILiI. Note
that IILiI < IlLmll. Where

Lm = (o0o0mmnpmin)-YV x V x (V ) (37)

and
fmi, = infEr.(z,y,z), umin = infp,(x,y, z) x,y, : E f (38)

Using the same procedure as above we find the norm of operator L in /NN.

IILII___ IILmII !5 max 1 (39)

where Vmax = (fOMOEmni,npmin)-1/2 is the maximum velocity for a plane wave in the medium filling the
structure. Using the above estimation we get the following stability condition

At < 21 (40)-ma vNm rV3_

If S1 is a rectangular prism with the dimensions a x b x I and the upper bound for i, 1, m in the trigonometric
expansion functions is KM, LM, NM then the condition (40) becomes

At <2 (41;

For partial eigenfunction expansion scheme using sine and cosine KM x LM basis functions over
rectangular a x b slices with the discretization Ad in z direction, the stability condition derived using
(35) i At< 2 

(
A <)2 

(42)

Obviously for other separable cylindrical coordinate systems with the discretization Ad in z direction.
the stability condition will be determined by the maximal value of the transverse eigenvalue (separation
constant) b2 as the functional analysis will give

2
At < (43)

Vmax N62a +()2

For the discretization of all three coordinates with steps Az, Ay, Ad we shall get the well known
Courant condition [20]

At < (44)
V J.....2± + (Ey-2 ( 2

Vma: Az)~ AyJ+ (1-d'

At this point it is interesting to observe that the derivation described above can be used for investi-
gation of the stability of compact 2-D/FDTD schemes considered by Cangellaris [19]. In fact a compact
2-D/FDTD algorithm for the analysis of waveguides is a special case of one of the partial expansion
algorithms presented in Section 1.3 with the space having two uniformly discretized cartesian coordinates
z, y and the variation in the z direction given by one basis function of the form exp(-j/3z). For this case
we get

at < (45
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This condition is identical as the one given in [33] and [19].
Finally, let us compare the Courant condition (44), valid for the classical 3D FDTD and TLM schemes

with the condition for total and partial eigenfunction expansion schemes using harmonic function expan-
sion. For simplicity let us assume that a cubical region a x a x a is considered with cubical lattice
Ax = Ay = Ad for FDTD and the number of expansion function in each direction is N.Vt for the method
of moments algorithms. Let NA = a/Ax. N& is then the number of discretization points along one
direction. The Courant condition can be rewritten as

1
AtA v5az(.)V- (46)

Comparing the above result with (40) we get the ratio of the maximum allowable time steps for the
considered algorithms AtM _ (4N)

ALA = (47)
It is seen that the method of moments algorithm can operat. with greater a time step than a classical
FDTD scheme if NM < 2Na % 0.638-a 

(48)ir -X_

The identical condition is obtained for the 3D partial eigenfunction expansion scheme with sine and cosine
basis functions. Since the idea of the time domain expansi .n algorithms consists in using a fewer number
of unknowns to represent the fields, the condition (48) is likely to be fulfilled in many practical situations.

1.7 Absorbing boundary conditions

One of the most important issues in treating open problems is a proper definition of the boundary condi-
tions at the places where no physical boundary exists. This problem occurs also in the partial expansion
algorithm (the total expansion can be used only in completely closed structures) when the geometries
involving waveguides have to be modeled. The waveguiding structure is assumed to be uniform in the
propagation direction and guided modes propagate along the structure without attenuation. Since the
structure is infinite, then the application of an algorithm with the space discretization in the propagation
direction would imply division into an infinite number of slices. To minimize the time of computations
and reduce the computer storage, the number of slices has to be kept as small as possible. The way of
achieving this is to consider only a section of a waveguide and introduce the boundary conditions at its
both ends which simulate the infinitely long structure.

The problem of keeping the computational space as small as possible, is one of the most fundamental
in all time domain methods using finite differencing scheme in the modeling of uniform infinite structures
and is known as the problem of the Absorbing Boundary Condition (ABC) or Radiation Boundary
Condition (RBC). The name Absorbing Boundary Condition comes from the physical interpretation
of the conditions which model infinitely long structures. If the structure is uniform then the forward
propagating wave does not give rise to any backward traveling waves. So if a section of the waveguide
is considered the conditions at its extremes have to be specified in such a way that a wave impinging
on them can not cause any reflection. From the point of view of an observer inside the guide the
wave would get completely absorbed. Traditional FDTD schemes use usually different schemes based on
the decomposition of wave equation into a operators describing one way propagation (towards or away
from the boundary), approximation of the resulting operator using the Taylor series or Pade rational
approximation and setting to zero the expression representing the wave travelling back to the interior
of the structure [20]. This process results in the Mur's first and second order conditions [12]. Mur's
conditions and their modifications are very popular in time domain analysis of open space problems
when the propagation is not dispersive. In the waveguiding structures especially when the dispersion
is large the Mur's ABC are not satisfactory. One approach used for highly dispersive structures is to
replace waveguide by a long section of a lossy transmission line. Recent publications show [26] that with
this approach the return loss better than -80dB can be obtained in the octave band at the numerical
cost ranging from few hundred to few thousand memory cells and floating point operations per iteration.
Alternative approach sometimes called the time domain diakoptics [22, 23] is also being considered by
some authors.
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1.7.1 Time domain diakoptics

The diakoptics is the technique in which a large system is first decomposed into modules, each module is
analyzed separately and the solution for the complex system is achieved by finding the relation between
the solutions obtained for individual modules [29]. Diakoptics, by nature of the algorithm, is particularly
well suited for modern multi processor, parallel and massively parallel computers [301. The concept of
system segmentation is frequently used in network and field theory in time and frequency domain. To
present this technique in the context of ABC for waveguides, we shall express the problem in the language
of the theory of linear systems.

Suppose the structure is infinite in the z direction and we want to analyze the wave propagation in this
direction using the partial eigenfunction expansion scheme (PEE). To this end we consider a section of
the structure consisting of K slices spaced by Ad. We use Yee's mesh so that relevant fields are calculated
on the slices that are off by half the space step. Calculation of the fields at last location z = (K + 1/2)Ad
requires calculation of the following expression

a-- K+ 112(tn) k g+I(tn) - OK(tN) (49)
Ad

This can be done only if we specify 10K+1 (in) which is equivalent to imposing an ABC at : = (K + l)Ad.
To find the value of OK+1(tn) consider a linear system shown in fig.4.

A~t) h(t)/H1-s)~ t

F(s) R(s)

Figure 4: A linear system

The system has the transfer function H(s) where s the variable of Laplace transform. The Laplace
transforms of the input F(s) and output R(s) signals are related via

R(s) = F(s)H(s) (50)

This relation can be written in the time domain as

r(t) = f(t) * h(t) (51)

where * is the symbol for the convolution integral and h(t) is the impulse response of the system. For
functions sampled at time instances iAt, the response r, = r(nAt) is evaluated by the summation

n-1

rn = At E fm-,rhn, (52)
m= 1

If we assume that r(t) and f(t) are the fields at z = (K+I)Ad and z = KAd, respectively then using (51)
we may calculate the value of the field at z = (K + 1)Ad hence imposing an ABC at the extreme slice of
the guide. In the case of the PEE analysis of a waveguide the transfer function approach allows us to find
the ABC by convolving the impulse response of an elementary slice of the guide of the length Ad with
the field at z = Ad. Referring back to the concept of diakoptics we see that the interior of the analyzed
guide and the ABC are two modules which can be analyzed separately and the response of the whole
system will be given, in time domain, by the convolution. For TLM method the time domain diakoptics
treatment of ABC condition was initially implemented by individually convolving signals at each point
of discretization [231. This approach is computationally inefficient so very recently it has been refined
for the ABC in homogeneous guides by first converting the discrete representation of fields into modes
and convolving each mode separately (24, 251. It has to be noted that for the PEE the eigenfunction
representation is an inherent feature of the algorithm so the solution of the ABC problem using time
domain diakoptics seems to be a good choice.
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1.7.2 Low cost algorithms for efficient implementation of absorbing boundary condition in
the PEE

At this point it has to be noted that unless the impulse response is short the calculation of the convolution
is very time and memory consuming. Typically around 1000 memory cells and a similar number of floating
point operations at each iteration is needed to obtain low return loss. In order to reduce the computer
time it is necessary to find algorithms which allow the computation of convolutions required to model
ABC fast enough.

Finite impulse response approach The most straightforward approach to accelerate the computa-
tion of the convolution is to limit the duration of the impulse response. In this way an elementary section
of the guide is modelled via an approximate "black box" with a finite impulse response FIR. Bearing
in mind that the Laplace and Fourier transforms are closely related via the substitution s = jW, we may
find the transfer function of a section of a waveguide the length Ad by finding its frequency response.
For the time harmonic (expjw) fields the propagation in the z-direction is described (in the frequency
domain) by the factor exp[-j13(w)z] The transfer function H(jw) is then

H(s) = H(jw) = e-jc11(w)Adc = e-jcO(w)4, (53)

where 6(w) is the propagation constant and c is the velocity of the light. Ifthe guide is nondispersive
then 6(w) = Aw/c, with A being a constant, and hence

h(t) = b(t - AAr) (54)

where b(t) is the Dirac function. From the above equation it can be concluded that a nondispersive guide
behaves as an ideal, nondistorting all p-ss filter which introduces only the time delay AAr. If the time
step At in the PEE algorithm is chosen so that lAt = AAr, with I being an integer, then the ABC is
determined by simply substituting

tIK+1(t.) = V'K(tn.-) (55)

In other words, in a nondispersive guide the field at z = (K + 1)Ad is completel, determined by the field
at z = KAd by I = AAd/(cAt) time instances earlier. In the dispersive guide the situation is different
because in this case the impulse response may be in general infinite. If the frequency behavior of 83(w) is
known then an approximate ABC can be obtained by taking the inverse Fourier transform of the transfer
function and time limiting the impulse response, so that the convolution can be performed fast enough.

In order to illustrate this concept in more detail let us consider the electromagnetic wave propagation
in a rectangular waveguide with a local inhomogeneity. The guide is excited by the bandwidth limited
signal with the upper frequency limit lower than the cutoff frequency of the first higher order mode. Under
these assumptions only a fundamental mode can propagate away from the inhomogeneity. If we apply
the PEE method to the analysis of this guide then the expansion coefficients correspond to the mode
amplitudes. The coupling between expansion functions (modes) takes place only at the slices located in
the region of inhomogeneity. Outside the inhomogeneity the expansion functions are not coupled and
therefore the time evolution of the expansion function can be found at a marginal numerical cost. Note
that since the operating conditions allow only a single mode propagation, then if we terminate the guide
sufficiently far away from the inhomogeneity, the higher order modes excited in the inhomogeneity region
will die out and we will have to specify only the ABC for one propagating mode (If more than one mode
would be allowed to propagate then a separate ABC would have to be specified for each propagating

mode in the same way as for the fundamental mode). The dispersion characteristic of modes supported
in the rectangular waveguide are known and consequently the impulse response function required for the
ABC is also known

h(t) = F-'fe-y(w)&d} (56)
where Y-I is a symbol denoting the inverse Fourier transform and

7(W) =./W - w2/c (57)

with c denoting the light velocity and w, being the cutoff angular frequency of a mode. A cylindrical

waveguide is a high pas filter. From the circuit theory we may conclude that its impulse response is

FUJNCI1ON EXANSION ALGORITHMS 79

.f 7 am ,,,f,(xy,z) g- -f Y, b-, g,(x~y,z) (4)
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causal. We can now consider the behavior of the impulse response. Since it is difficult to calculate the
impulse response analytically we replace the section of the waveguide by an ideal nondistorting high pass
filter with the stop band (-w•,wc). The transfer function of an ideal filter is

H(jw) = (1 - Gw€(w))e-j'ar (58)

where Ar = Ad/c and G (jw) is the gate function which equals unity in the stop band and vanishes
outside. The impulse response can now readily be found (normalization constants neglected)

we sin(w€(t - Ar) (9
h(t) = 6(t - Ar) - w(t- Ar) (59)

Note that the second term's roll off is proportional to t. The distance between first zeros is 2r/w,.
and if we truncate the impulse response at this point, the ABC will be modelled by convolving using
approximately 2r/(wcAt) samples. The ideal filter are nonphysical and therefore their impulse responses
are acausal but this analysis can be used as a guideline for determining the truncation point in real guides.

Adaptive prediction The situation is more difficult when p(w) is not known. For this case lef ýis write
the transfer function of a slice of a dispersive guide as H(s) = Hi(s)Hd(s) where Hi(s) is nsfer
function of an nondispersive guide and Hd(s) represents the distortion introduced by the di :i. In
terms of the "black boxes" the section of the guide is now replaced by the cascade of an all pa&. .ondis-
torting filter (a delay line) and a filter (bandwidth limited or all pass) with nonlinear phase characteristic.
The Hi(s) and Hal(s) are defined as follows

Figure 5: A system representation of a dispersive waveguide

Hi(s) = Hi(jw) = ei-AwA? (60)

Hd(s) = Hd(jw) = e-j[€f(w)-Aw]- (61)

In a physical waveguide the dispersion is significant at low frequency and gradually vanishes as the
frequency increases. Therefore,

lim [co(w) - Aw] = 0 (62)

The value of Ar depends on the discretization step but can be arbitrarily small. Consequently, the
argument in the exponent may be made small for all w's and the transfer function Hd(jw) can be
approximated by two term Taylor series

Hd(s) = Hd(jw) = e-j[eO(w)-AW]jT t 1 - j[cO(w) - Aw]Ar (63)

Let us put P(w) = j[cl(w) - Aw]Ar Since we are considering only causal systems (P(w) satisfies the
Paley-Wiener criterion [16]) the P(jw) is the Fourier transform of function p(t).

P(jw) = j0 p(t)e-jwtdt (64)

If p(t) is discretized in the time domain with the time step At the integral is replaced by the finite
complex Fourier series

N
(j,) ft ~(65)

i=0
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The transfer function of the system is then
N

H(s) ft Hi(jw)(l - P(jw)) = e-jAwr- E p(iAt)e-J,(At+Ar) (66)
i=O

We can now calculate the impulse response h(t). The impulse response is then

h(t) = 6(t - AAr) - E p,6(t - (iAt + AAi-)) (67)
i-O..N

The impulse response given above describes the cascade of a delay line and a digital filter of the order
N with unknown weighting coefficients pi. The unknown coefficients can be found using the system
identification approach. One possible solution could be to select two adjacent slices located at - = kAd
and z = (k + 1)Ad, k + 1 < K which have the same cross section as slices terminating the guide. The
relation between input and output signals between these two adjacent slices is the same as for the K-th
and K + 1-st slice. We may now sample the signals at the input and output of the test section and
find the set of coefficients pi which minimizes the error between the actual response and the response
predicted by (67). An advantage of using a digital filter approach is the possibility to synchronize the
filter with the time step of the field modelling method. This allows one to take into account the effect
of numerical dispersion. Additionally, the coefficients pi can be computed at a low cost using recursive,
self adapting algorithms [15]. It should be mentioned that system identification models have been very
recently used with success to accelerate the computations of the time domain electromagnetic simulators
[28] or diakoptics in which modules were modeled with classical FDTD algorithm (27].

Off line identification The evaluation of the convolution can be immensely accelerated if the response
function can be represented suitably chosen discrete model. Such an approach has been already proved
to be very useful in development of time domain algorithms for frequency dependent materials [20] and
therefore it is useful to consider this technique for the realization of the ABC in the PEE method.

Suppose the impulse response is given by

L

h(m) = ag(m) (68)
l=1

with L and gi being a small integer and a function defined for 0 < t < oo, respectively. Let us assume
that the expansion functions are given by

gi(m) = e-*'" (69)

We additionally assume that the expansion functions can be evaluated recursively so that

g9(m + 1) = Alg,(m) (70)

with Al = exp(-at) The convolution is expressed then as

n-I L

r(n) = At E Easgl(m)f(n - m) (71)
m=1 1=-

Using the recursion (70), the convolution is evaluated through a compact formula

L
r(n) = At p, (n) (72)

=-1

where
pi(n) = aiAif(n - 1) + Alpl(n - 1) (73)

It is seen that the computations are reduced to merely an update formula for pl. For the case of frequency
dependent material considered in [20J, the impulse response is specified analytically so the expansion
coefficients could be calculated using the Prony method. Alternatively a suitable recursion algorithm can
be implemented using the off line identification process similar to the on line technique described in the
preceding subsection. The advantage of the off line identification is that the ABC can be modelled prior
to time domain computations and hence reduce the numerical complexity of the PEE.
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Figure 6: Geometry of a rectangular resonator loaded with a dielectric slab used in numerical test to
validate TEE and PEE algorithms. The dimensions are width a = 12Ad, heigth b = 6Ad, length c = 8AL,
slab parameter c, = 3.75, slab centered, slab with w varying.

2 VALIDATION OF THE ALGORITHMS

2.1 Time domain algorithms

All time domain algorithms presented above, except for the hybrid scalar PEE-FDTD scheme, have been
implemented and tested for the case of the rectangular resonators or waveguides containing dielectric
slabs. The eigenfunctions of the Laplace operator with Dirichlet or Neumann boundary conditions were
used as the expansion functions and the inner products were calculated using the Fast Fourier Transfrom
approach. The algorithms have been found stable provided the time step did not exceed the critical
values given in Section 1.6. Some numerical results for the expansion algorithms with sine and cosine
expansion functions are given in Table 1 where the normalized resonant frequencies Ad/A are compared
for fundamental mode in a rectangular resonator obtained from a section of a waveguide shown in fig.6
using the total and partial eigenfunction expansions algorithms with the data FD-TD published in [9]
and the transverse resonance method. The parameter Ad is the discretization step used in the FDTD
and PEE algorithms. The agreement is very good for all cases included in the table. Subsequently a

Table 1: Comparison of the results for the normalized resonant frequencies Ad/A obtained using expansion
algorithms with the published data [9] for the rectangular resonator with a dielectric slab (fig.6)

[] TRM Partial Total F5)-TD[9
TR 1Expansion Expansion

w = 0 0.07511 (exact) 0.07502 0.07511 0.0750
w = 2Ad 0.0522 0.05253 0.05153 0.0517
i; = 4AdF 0.0445 0.04456 0.04433 0.0442

hybrid vector PEE-FDTD algorithm presented in Section 1.5.1 was tested. For this algorithm the cutoff
frequency of the EHN1 of a rectangular guide loaded with a dielectric slab shown in fig.7 was computed
and compared with the results obtained with a classical FDTD technique. The dimensions of the guide
were taken to be 20 by 6 mm. The slab is placed on the wider wall in the symmetry plane of the structure
and has the width 4mm and relative permittivity of 2.5. Three caes were considered corresponding to
the slab height of 0, 4 and 6 mm. Although the structure is symmetric, the symmetry was not exploited
during the computation. In all tests the identical excitation, space discretization (Ad = .5mm, time step.
At = .9Ad/(c0 v2), and number of samples N = 8000 were assumed. The results are given in Tables 2
and 3 together with the CPU time for a DELL 466/L personal computer. For the FDTD algorithm alone
the CPU time for the assumed discretization mesh was 53s and was identical for all three cases.
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V

Figure 7: Geometry of a rectangular guide loaded with a dielectric slab used to validate the vector hybrid
time domain method of moments showing PEE and FDTD meshes

Table 2: Comparison of the results and CPU times for the cutoff frequencies of EH~I mode in the 20 by
6 mm rectangular guide loaded with a dielectric slab (c,. = 2.5, w = 4mm, h - varying) using only FDTD
and PEE algorithms for number of expansion functions N and the localization of the interface planes as
parameters

Slab height FDTD CPU PEE CPU
h = 0 mmn 26.0475 0Hz 53s 26.0625 GHz 2s
h= 6.mm 19.9075 Hz 5 19.0375 0Hz 2s

h=4mm 20.1875: Hz 53s

For the slab height of 0mm and 6mm and the discretization along the wider side of the waveguide,
it is possible to use PEE algorithm with homogeneous slices only. Since only one expansion function
is needed for the mode considered, the CPU time is 2s or 26.5 times faster than the FDTD. For the
slab height of 4mmr slices in the slab region are inhomogeneous and therefore the hybrid vector PEE-
FDTD algorithm was used. The slab region was treated with the FDTD and the lateral homogeneous
regions were calculated with PEE. The CPU time depends on the localization of the interface plane
and the number of expansion functions used in the PEE part of the algorithm. When the interface is
at XS = 7.5 and Z2 = 12.5mm, i.e. when the FDTD mesh is terminated only one slice away from the
inhomogeneous region, the CPU time of the hybrid algorithm varies from 18s (for 1 expansion function)
to 279 (for 5 expansion functions), with most of the time (14s) consumed by the FDTD computations.
The error introduced by low number of expansion functions is the largest if only one term is used but
for this structure is lower then 0.1m compared the result obtained from pure FDTD calculations. The
error decreases as the interface plane is moved away from the inhomogeneity. This is due to the fact
that higher order terms in the field expansion correspond to higher order waves traveling in the lateral
direction. These modes are attenuated so their contribution to the field of the EHyi mode becomes less
significant. If the interface planes are located at zi = 5 and t2 = 15mm, only one term in the PEE part
is sufficient to obtain exactly the same results as with purely FDTD technique. The CPU time for this
cane is 319 of which 28a is spent in the FDTD part. The increase in the number of expansion terms does
not change the results.

No tests so far have been carried out for the hybrid scalar PEE-FDTD discussed in Section 1.5.2 but
since scalar version of PEE it is about 5 times faster than a vector algorithm even larger speed up factors
may be expected for the structure considered above.
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Table 3: Comparison of the results and CPU times for the cutoff frequencies at EHlI mode in the 20
by 6 mm rectangular guide loaded with a dielectric slab e, = 2.5, w = 4mm, h = 4mm using a hybrid
algorithm with the number of expansion functions N and localization of the interface planes as parameters

N PEE-FDTD Error CPU CPU CPU Speedup tel
(GHzl rel. to FDTD FDTD part PEE part combined to FDTD (53s)

Interface of algorithms at z = 7.5, z = 12.5 mm

I1 20.2075 + 0.1% 14s 4s 18s J 2.9
3 20.1975 +0.05% 14s g9 23s 2.3
5 r 20.1975 +0.05%. 14s 13a 279 1.96

Interface of algorithms at z = 6.5, z = 13.5 mm

-1 20.195 +0.02573_ 19s 4s 23s 2.3
3 20.1925 +0.01 b 199 8s 27s 1.96

Interface of algorithms at z = 5,: = 15 mm

1 20.1875 0% 28s 3s 31s 1.7
3 20.1875 0 U7 28s 6s 34s 1.55

2.2 Absorbing boundary condition

The absorbing boundary condition was implemented for the case of the TE1 O mode in a rectangular
waveguide. The off line identification procedure consisting in expanding the dispersive part of the impulse
response into series of the Leguerre polynomials was used do model the dispersive part of the waveguide.
The expansion can be written in the following form

p
hal(t) = E cLi(t) (74)

i=1

where Li (t) denotes the Leguerre polynomial of the order i. The Leguerre polynomials have the advantage
of yielding an always stable model. Prior to simulation a wide band signal shown in fig.8 was propagated
using the PEE algorithm for 600 time steps and its samples taken at two adjacent slices were recorded.
Based on this data the expansion coefficients in (74) were found and used during the actual simulations.
Fig.9 shows the return loss of the AEC in a 10.16 by 22.86mm rectangular waveguide. The solid, dashed
and dashed dotted lines correspond to p = 2, p = 5 and p = 10 in expansion (74), respectively. It is seen
that even for the lowest approximation order the results are excellent as the return loss is lower than -80
dB over a very wide frequency band. The worst performance is seen near the cutoff frequency. Fig.10
shows the close up of the cutoff region it is seen that increasing the approximation order the the quality
of the ABC improves quickly. Since the practical structures do not operate at cutoff frequency -20 dB
return loss at this point will have no influence on actual modeling. It should be noted that the numerical
cost of implementing the proposed ABC is extremely low. The overhead is marginal as the calculation
of response requires only a few times the number of expansion terms of extra floating point operations
and the storing the a few expansion coefficients. It has to be noted that this cost is a few orders of
magnitude lower than in the most recently published results [23, 25, 24, 26] of the other authors, where
form few hundreds to few thousand of extra floating point operations at each time step and a similar

number of additional memory locations was used to achieve a similar performance of ABC.
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Figure 8: The excitation used for off line identification of the ABC
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Figure 9: The return loss of the ABC for a TEIo mode in a 10.16 by 22.86mm rectangular waveguide.
The solid, dashed and dashed dotted lines correspond to two, five and ten Leguerre polynomials used in
expansion (74), respectively
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Figure 10: The return loss of the ABC for a TEIo mode in a 10.16 by 22.86mm rectangular waveguide.

The solid, dashed and dashed dotted lines correspond to two, five and ten Leguerre polynomials used in
expansion (74), respectively
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3 DISCUSSION

3.1 Algorithm limitations and their applicability to complex problems

The time domain algorithms based on the method of moments and the eigenfunctions expansion are in
general less versatile than classical FDTD schemes. One limiting factor is that the structure has to be
entirely (for the TEE) or partially (for the PEE) closed ( As discussed further, this restriction can be
overcome in the PEE if the spherical coordinate system is used). Also because the eigenfunction are
available in analytical form only for simple domains, the TEE and PEE are restricted to the analysis
of the problems which can be described within such domains. Additionally, the method of moments
procedure requires computation of inner products. The numerical cost involved in this process limits the
applicability of TEE and PEE to weak and moderate inhomogeneities.

These drawbacks can be alleviated in two ways, one is to replace the eigenfunction expansion with
the basis functions with local support. This approach leads to a formulation which may be regarded
time domain version of the finite element method. The other possibility is to combine the PEE with a
classical FDTD. The hybrid technique will be particularly useful in structures where the inhomogeneities
are separated one from the other by homogeneous regions. One problem with a classical FDTD method
is that the field from one inhomogeneity to the other has to be propagated, because of the stability
requirements the time step size is usually small and if the smallest feature size is also small then the
propagation of a field through homogeneous regions requires vast amounts of computer store and time.
If the homogeneous regions can be treated with scalar PEE algorithm great savings in computer CPU
time and memory resources can be achieved as it often suffices to propagate a few low order modes and
additionally the scalar PEE algorithm offers near ultimate speed. The scalar PEE may be regarded here
as a fast field propagator. As shown in the numerical tests the hybrid algorithms are also extremely useful
to implement the ABC in homogeneous guides so their implementation can offer a significant speed up
in the analysis of complex microwave structures.

Examples of practical structures. It should be noted that there many practical complex structures
whose geometries are suitable for the application of scalar hybrid PEE-FDTD. For instance most compo-
nents using rectangular waveguide such as waveguide to coax transition, all kinds of E-plane ad dielectric
filters, septa, T- and &_H junctions which lead to 3D problems can easily be represented in a combination
of PEE and FDTD meshes with 2D homogeneous slices filling most of the volume. In such structures
the speed and memory improvement should be significant. Also many 2D structures, including most of
planar transmission lines can be described in a hybrid mesh with ID "slices" located in homogeneous
part and FDTD mesh located only in the vicinity of strips, slots etc. The hybrid approach solves here
the problem encountered in a classical FDTD where the fine mesh density required in near the small
geometrical features has also to cover large homogeneous regions.

3.2 Free space problems

Hybrid PEE-FDTD techniques seem promising for problems of field scattering or radiation in the free
space. Here the best approach is to place an object in spherical domain and use the FDTD mesh inside
the sphere and the eigenfunction expansion outside. In the PEE part of the algorithm we discretize the
space along the r direction and use spherical harmonics for the expansion in the V and 0 directions. In
spherical coordinates an open space may be treated as a spherical waveguide [14] which propagates the
TE and TM modes. For an open space the wave impedance has the resistive character only if kr > n
where n is the order of the spherical Bessel functions. The modes with the resistive impedance radiate
while those with the imaginary character of the impedance are confined to the region in the neighborhood
of the sources. Hence low order spherical harmonics can be used to describe radiation (scattering) from
the sources contained in a sphere of the radius comparable with the shortest wavelength of interest (ie
satisfying kr > n). Note that the field expansion in the spherical coordinates uses Fourier series in the
ip direction so the FDTD and PEE can be easily interfaced through the FFT. There could be a few
advantages of this approach. First, we can expect that a hybrid algorithm would require much fewer
unknowns than in the FDTD. Second, ABC's can be easier to implement on mode by mode basis as
discussed in Section 1.7. A very good performance can be expected. Third, the PEE can be used as a
field propagator to allow analysis of fields at larger distances.
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3.3 Future developments

Having created the theoretical basis for the algorithms and validated the key techniques, it is possible do
define future research directions. There are four topics which seems worth pursuing.

1. A full implementation of a scalar PEE-FDTD algorithm. As shown this algorthm offers near
ultimate speed requiring little computer store.

2. Optimisation of the new ABC for highly dispersive structures. The results obtained so far represents
the qualitative and quantitative leap in speed, memory and performance compared to the solutions
currently used. The emphasis in future research should be placed on the reduction of the reflection
at cutoff frequency.

3. The development of the hybrid PEE-FDTD scheme for open space. This can expand the applica-
bility of the methods of moments in time domain.

4. A basic theoretical research in order to develop a suitable set of entire domain expansion func-
tions for 2D inhomogeneous regions. The PEE algorithm currently requires homogeneous slices
in order to achieve great speed. With a suitable basis constructed basis, taking into account the
inhomogeneities of 2D slices abd allowing the arbitrary shapes of the region, the hybrid PE E-FDTD
algorithm should give the same versatility as FDTD but at a much greater speed for practically all
microwave structures which can be analyzed by current time domain methods.

All four topics are promissing from the point of view of numerical cost reduction and can be investigated
at the Technical University of Gdadisk.
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SUMMARY
Series function expansion algorithms of the time-domain analysis of boundary value problems are discussed.
Electromagnetic fields inside a structure under investigation are expanded into series of basis functions and
the expansion coefficients are found by means of the Galerkin method. The numerical cost of algorithms
is discussed and a cost efficient approach is proposed for formulations using sine and cosine expansion
functions. Compared with conventional time-domain methods the algorithms described show the time evol-
ution of the expansion coefficients rather than the samples of a physical continuum at discrete nodes.

1. INTRODUCTION

The Fourier transform introduces the equivalence between time and frequency. Therefore each
problem involving one of these quantities has two alternative formulations. For many years the
frequency-domain formulations have been preferred for the analysis of Maxwell equations. A
plethora of frequency-domain numerical methods have been developed and applied to various
boundary value problems in electromagnetics. In recent years time-domain techniques have
increasingly been gaining an audience. Most research in the area of time-domain algorithms for
the modelling of electromagnetic fields was concerned with three versatile and simple methods.
These three algorithms are known as the transmission line matrix (TLM), spatial network (SN)
and finite difference, time-domain (FDTD) methods. All three techniques are well described in
the open literature and therefore we cite here only a few sources. '" In the TLM and SN methods
the structure under investigation is treated as a spatial network of transmission lines and the wave
propagation is described by incident and reflected voltage impulses on the mesh lines. In the
FDTD method the Maxwell's equations are discretized both in space and time, the derivatives
are computed by means of central difference scheme and the fields are evaluated at discrete
nodes. Although FDTD and TLM (SN) methods use different concepts and are concerned with
different physical quantities, a recent study by Celuch-Marcysiak and Gwarek6 shows that each
of them can be obtained from the other by a sequence of suitable transformations. Hence, time-
domain methods currently used in practice are formally equivalent. Their salient feature is that
three-dimensional space is discretized and a mesh is formed. Samples of relevant quantities at
mesh points are used to represent a physical continuum. Obviously, while solving complex
problems we have always to contend with approximate answers, but nevertheless sampling of the
solution in space is only one, not necessarily the most efficient, form of a discrete representation
of a physical continuum. For instance in the frequency-domain methods this form of approximation
is present in the finite difference techniques and to a certain extent also in the method of lines.'
Other algorithms use different representations of fields. One of the most popular frequency-
domain techniques consists in field expansion in the series of basis functions. Depending on the
algorithm, expansion functions are defined locally or over the entire domain. They can be just
mathematical functions or have a physical meaning of, for instance, modes. The expansion
coefficients of are most often found using the methods known from functional analysis, such as
the method of moments (Galerkin, Ritz), or least squares.1s Expansion of the fields in series of
basis functions underlies such techniques as finite elements, coupled modes, mode-matching,
point-matching and iterative eigenfunction expansion,'o-1s to mention only the most powerful.
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To the author's best knowledge, the only attempt so far to apply function expansion in the time-
domain analysis of shielded microwave structures was published by Nam et a .7/ 'Me expansion

function used in that case was obtained using frequency-dependent equations and the algorithm
was far more complicated than that of classical time-domain methods.

This introduction shows that, as far as the approximation techniques are concerned, the time-
domain methods of the modelling of electromagnetic fields have used so far only a small fragment
of a range of choices existing in the frequency domain. In view of that fact the aim of this paper
is to look at time-domain algorithms from the point of view of the alternative representation of
fields, in order to find formulations which may broaden the range of options available for the
time-domain analysis of complex problems of electromagnetics.

2. ANALYSIS

We shall be concerned with the time-domain analysis of shielded structures. Of particular interest
are resonators and cylindricil waveguides inhomogeneously loaded with non-dispersive isotropic
materials. One possible structure is shown in Figure 1. It is assumed that the bounding walls are
perfect electric or magnetic conductors and that the inhomogeneity is described by the relative
primitivity, e,, .,nd permeability, pi, both being in general functions of all three space coordinates.
Under these assumptions the Maxwell's equations are given by

a E = I V×xH

at Eoe((Xy,z)
a7 -1 Vxa H = ( 1 ) V x E (1)at JLoI.L,(XY,Z)

where to and po are the permittivity and permeability of the free space.
These equations can be written using the following abbreviated notation

a

5g= = 2 f (2)

where .j = ilkoe,(xy,z) V x (.), 22 = -1/ploi,(xy,z) V x t.) and f and g are vector
functions representing the electric and magnetic field, respectively. The above notation will be
used henceforth.

Replacing the time derivatives with a finite difference equivalents we get the following time-
matching equations

fm = -1 + &Tgn-1/2

g..+.12 = g.- 1/3 + At•22P (3)

The unknown functions f, g are now expanded into series of functions.

1

Vaw .Apsil emtyo h rbe
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f" - e, f1 xy,z) 8r" I &, g~xy,z) (4)

The set of expansion functions is assumed to be complete and the functions are linearly indepen-
dent. The functions are defined on the entire domain or have local supports but they are in
general the time-independent functions of all three spatial variables. Substituting (4) into (3) we
get

I pf, - , ai,-If + A, ,, b,--12,

2 ,+1g - Zb-,1/2g, + A X2 'I a.i (5)

Taking the inner product of (3) with the expansion functions f, and g, results in
(.f',,) = (f-',.f,) + ( -",,

(=+1/2,g,) (g,-1l 2, g,) + t(.T2p", g,) (6)

Using (5) the above equations can be cast into the following matrix form

a" = a"-' + AtC-'Ab"W- 2

bn+1/2 = b"-1/ 2 + AtD-Ba" (7)

where a and b are the vectors containing expansion coefficients and A, B, C, D are matrices with
elements given by the following inner products

Ay = (Xigi,f,) b4 = (.yzf,g,)

CV = qj,fi) z)q = (g,, g,) (8)
All matrices defined above are in general dense. If the expansion functions are orthonormal then

C and D are identity matrices and (7) becomes

a" = a"-' + AtAb"-112

b"+ 1/= b"- 1/2 + AtbBan (9)

So far we have presented the algorithms in which the time is discretized and the function
expansion is done in three dimensions. We shall call them total expansion algorithms. Another
version of the expansion algorithm is obtained if the discretization is in time and one selected
coordinate and the expansion is done with respect to two remaining coordinates. This approach
combines the FDTD method with the expansion algorithms decribed above. The space is sliced
into subdomains (Figure 2) and the fields are expanded on each subdomain (slice) into series of

HOMOGENEOUS / INHOMOGENEOUS

/ SLICE SLICE

2. I I E)~u INHOMOGENEO-US, I ,

S. , .2.. -. •oI gomtr-"e h pe-ia e •'1/ uguim
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expansion functions. This type of expansion we shall call partial. To obtain the time-marching
equations for such a case we have to introduce the finite difference scheme for the calculation
of the space derivatives with respect to the discretized variable. Suppose the structure was divided
into K slices in the z-direction and the slices are uniformly spaced by the distance Ad. To enable
the application of the central finite difference scheme for the calculation of the derivatives in the
z-direction we use the technique used in the FDTD method. In this technique 2 different field
components are defined on two meshes, each off by half the space step from the other. This
arrangement is known as Yee's mesh. In the present context Yee's mesh is given in one spatial
dimension, which means that relevant field components are defined on the slices that are off by
half the space step. More precisely the E,*, Ey, H*, are given at z = kMd and Hk HkE*E are
defined for z = (k + 1/2)Ad. Bearing this convention in mind we expand fields at a suitably
situated slice according to

fk" a,",&(xy) ga= b?,gj,(xy) k = 1, ... , K (10)

The derivatives in the z-direction are approximated by

* 112 - (11)
az Ad

Calculation of the z-derivatives involves operations on the functions defined on the adjacent
slices. Therefore, instead of equations (2) we get

ataf k•Agk + ( - gy)

at
*~gk = •e*f, + ze(fh -f,_) (12)

Where we have split operators 21 and 22 into transverse and z- part according to

1 I

.•,= (x,y)Vx() , X (xy)Ad " x()•e•, = o•,(x•)v, x (. &e&,= ,(x,y)Ad .)(3

In the above equations by I, we have denoted a unit vector in the z-direction.
Replacing time derivatives by the finite difference scheme, expanding functions in (12) and

taking the inner products for each slice we arrive at the set of equations similar to (7) with the
block-diagonal coefficient matrices given by

A = qdiag [A'k,A''t] B = qdiag JB'k,B''kJ

C = qdiag [CV D = qdiag [D•J (14)

The elements of the iubmatrices are given

A'/- ((V, - Ze,)g1,,fj,) A* = (•,g 1 ,,)

K,- (Mt + AL)fhsiogi B~k - - _",

q- (fjthft, )

- (Sj,,gs,) (15)

For orthonormal basis functions matrices C and D become identity matrices and we get again
(9). Thus both total and partial time-domain expansion algorithms are formally described by the
same set of equations (7) or (9). However, one important difference between the total and partial
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expansion algorithms is that in the former the matrices (8) are in general dense while in the
latter the matrices (15) are always quasi-diagonal.

Compared with the FDTD method the expansion algorithms show the time evolution of the
expansion coefficients rather then field components at nodes. Obviously the expansion algorithms
have to use timestep small enough to prevent the instability. At this point it is not possible to
give one stability criterion for the algorithms discussed as it depends on the choice of the expansion
functions.

3. BASIS FUNCTIONS

Before we discuss the numerical cost involved in the time domain expansion algorithms we shall
consider the choice of expansion functions. As we indicated earlier, in both total and partial
expansion algorithms individual basis functions can have local support or be defined in the entire
domain or subdomain (slice). The advantage of the first approach is that it increases the sparsity
of the matrices. On the other hand choosing the basis functions which have the space distribution
of the relevant field components of modes in the corresponding homogeneous problem, we obtain
the following advantages

(1) expansion functions satisfy the boundary conditions
(2) owing to the orthogonality of mode functions in homogeneous problems, the inner products

at homogeneous slices (Figure 2) in the partial expansion algorithms result in diagonal sub-
matrices A'", A"k, B"fk, B"It

(3) the time-marching algorithms receive a new physical interpretation. They can now be viewed
as the equations describing mode coupling due to inhomogeneity. This interpretation allows
a straightforward investigation of mode interaction in loaded guides and resonators

(4) for small inhomogeneities only a few expansion functions will be sufficient to approximate
field distribution with good accuracy

A suitable choice for the time-independent basis functions which have the distribution of modes
of a homogeneous structure are the eigenfunctions of the Laplace operator. The detailed discussion
of the choice of the complete basis for arbitrarily shaped domains and the relation between the
eigenfunctions of Laplace operator and modes of a homogeneous structure is given in Reference
15. This discussion shows that for the total expansion algorithms and arbitrarily shaped region
closed by the perfect electric conductor S we may use the following representation of fields

E = (aitj + ae)D

H - (b,h, + b'hi) (16)

where e, and h, are solenoidal eigenfunctions of a vector Laplace operator

V2e + ke=O V2h+)h=O (17)

with suitable boundary conditions, and e. and W, are potential functions obtained from eigen-
functions of a scalar Laplace operator

V2,6 + X4= 0 (18)

with Dirichlet (for the derivation of el) and Neumann (for hW) boundary conditions. Here functions
es and h, correspond directly to the modes of a homogeneous resonator. In the case of the
partial eigenfunction expansion a suitable form of representation involving time-independent basis
functions is

E = (aje, + ae, + a0;,',)

H • (b.1 h., + bvbm + b;,h;#) (19)
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Subscripts z and i refer to z and transverse component, respectively. Functions e,,. hb, e:, are
obtained from the eigenfunctions of a scalar Laplace operator with Dirichlet boundary conditions
and functions h, %, kh are derived from the eigenfunctions of a scalar Laplace operator with
Neumann boundary conditions. In terms of TE and TM modes, functions e,, h,, e;, contribute
to TM modes in a homogeneous guide and h,j, eu, bh, produce TE fields.

For simple regions, S, it may be also possible to expand each field component separately
using the eigenfunctions of a scalar Laplace operator with mixed Dirichlet/Neumann boundary
conditions.

4. NUMERICAL COSTS OF THE TIME-DOMAIN EXPANSION ALGORITHMS

One drawback of the expansion algorithms presentt.d in the previous section is that they may
lead to higher numerical cost than FDTD and TLM. The inner products appearing in (8) and
(15) are independent of time and can be stored in look-up tables. If the cost of the calculation
of inner products is neglected in the algorithms then the cost of one timestep of the algorithms
is determined by the cost of matrix multiplication. Depending on the basis functions used (local
support versus entire domain) the overall cost may vary considerably. Generally speaking, assuming
that expansion is done using L eigenfunctions, the cost of one timestep is of order O(L2). If the
matrices are sparse the cost is lower. In the FDTD and TLM method with N nodes, the numerical
cost is of order O(N). Consequently, expansion techniques are comparable in terms of numerical
cost and memory to classical time-domain algorithms when L2 - N. This condition will easily be
fulfilled in slightly and moderately perturbed homogeneous structures when the basis functions
have the space distribution of the relevant field components of modes in the corresponding
homogeneous problem. A similar conclusion can be derived regarding memory requirements.

At this point it is important to note that a very efficient implementation of the expansion
algorithms may be obtained if the expansion functions are sine and cosines. Let us consider the
total expansion algorithm described by (9). Equations (6) imply that at each step one evaluates
the inner products (•tg"j-1 2, f,) and (22 f",gj) and these inner products are used to update
expansion coefficients. For sine and cosine functions the inner product for all testing functions
can be computed in a very efficient way using the technique described in Reference 14. In this
technique the all inner products are computed in one step in a sequence of inverse and forward
FFls. In a nutshell the procedure is

* using inverse 3-D FFT and bo-l/2 and a" calculate g-12̀ , f, and their spatial derivatives
* Compute functions .Zir-12 and e22.
* using forward 3-D FFT compute all inner products (.Tn- 112, fj) and (Z2fPgj)

The numerical cost of such computations is relatively low and there is no need to create look-
up matrices A and B. A result the time-domain algorithms can be implemented using very little
computer storage and with a speed comparable to that of the corresponding FDTD or TLM
methods.

It is beyond the scope of this paper to discuss in detail the numerical implementations of the
algorithms presented herein. However, both total and partial expansion algorithms have been
implemented and tested by the author for case of the rectangular resonators containing dielectric
slabs. The eigenfunctions of the Laplace operator with Dirichlet or Neumann boundary conditions
were used as the expansion functions and the inner products were calculated using fast Fourier
transform approach described in the above section. The algorithms have been found stable. Some
numerical results for the expansion algorithms with sine and cosine expansion functions are given
in Table I and Reference 16. Table I compares the results obtained for fundamental mode in a
rectangular resonator shown in Figure 3 using the total and partial expansions algorithms with
the data FDTD published in Reference 5 and rigorous methods. It can be noted that the results
in the table obtained with the expansion algorithms are in a very good agreement with the
reference values which confirm the validity of the analysis proposed in this paper.

5. CONCLUSIONS

Algorithms of the time-domain analysis of inhomogeneously loaded microwave structures have
been described. The methods proposed are based on the expansion of fields into complete series
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Table I. Comparison of the results for the normalized resonant frequencies .A/A obtained
using expansion algorithms with the published data' for the rectangular resonator shown

in Figure 3

Partial Total
TRM expansion expansion FDTDs

w - 0 0.07511 (exact) 0.07502 0-07511 0.0750
w - 2A 0.0522 0.05253 0-05153 0-0517
w = 41/ 0-0445 0.04456 0.04433 0.0442

C

Figure 3. The geometry of the problem used in the numerical test (a - 12W, b = 6a1, c = 8A, 4, 3.75)

of basis functions. The resulting equations show the time evolution of the expansion coefficients.
With a suitable choice of basis functions this feature allows one to investigate propagation of
separate modes and their mutual interactions.
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Stability of the Time Domain

Total Eigenfunction Expansion Algorithm

Michal Mrosowski
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ABSTRACT

The paper presents the derivation of the stability
condition for the total eigenfunction expansion al- f L1g
gorithm for the solution of Maxwell's equations.
The algorithm uses the method of moment solu- & = LJ (1)
tion for space and leap-frog differencing scheme for
time. The stability condition of the algorithm is where L, = x (.), L2 = x (.)
derived by investigating the properties of operators and f and g are vector functions representing the
in suitably defined Hilbert spaces. The approach is electric and magnetic field, respectively. Instead of
general and can be used for other iterative algori- discretizing the fields, equations (1) are solved by
thins. means of the method of moments and only time

derivatives are calculated using the finite differen.

1. INTRODUCTION cing scheme. Replacing the time derivatives with
finite difference equivalents we get the following

At present there are two algorithms, namely the time marching equations

TLM and FD-TD [11,12], which dominate the arena f" = r-2 +WLig'-" 2

of time domain solution of Maxwell's equations. In g+1/2 = n-1/2 + AtL2 rn (2)

both methods the space is discretized and derivati-
ves are approximated by finite differences. If, howe- The unknown functions Jg are now expanded into
ver, the sampling of at the me-h nodes is replaced series of functions.
by the series expansion of fields and the expansion
coefficients are found using the method of moment, jr = Eafi(zpz) gn = •bigi(z,y,z)
new algorithms can be created. Two such algori- (3)
thins have been recently proposed by the author of Expansion function are defined on the entire
this contribution [3], [4]. domain. A sensible choice for the electromagne-
A simplest time domain algorithm based on the tic fields are the eigenfunctions of Laplace opera-
concept briefly described above is called a total tor with suitable boundary conditions. Applying a
eigenfunction expansion (TEE) [3], [4]. Let us con- standard method of moment procedure by taking
sider a set of coupled differential equations reflc, the inner product of (2) with the expansion func-
ting the form of Maxwell equations tions fi and gi we get

APMC'93 Vol 1/9-21



< f, i > = < rf-,,f > Putting L =-LL 2 we get

+A < 1g" 2 , f > 82+At < Lo- ,• >f + L 0o (8)< g,• l 2 g > _ < go•- / gi > F

+ At < L2.r,,, > (4) L is an elliptic differential operator with positive
coefficients so (8) is hyperbolic differential equation.

The above equations can be cast into the following Stability of the differencing schemes can be studied
matrix form using the methods of functional analysis. In [5] such

1 = +- + At -'AA'- 1 / 2  an approach was used for the case of classical finite
difference representation of L. The theorems used

n+1/2 = ,s-1/2 + AtD-1jan (5) in that case are also applicable to this method. To
investigate the stability time marching algorithms

wherefi and A are the vectors containing expansion for the hyperbolic equations it is useful to present
coefficients and ,4, •, •, are matrices with ale- aprbe inacoialfm

ments given by the following inner products

A,,= L~,,~> ~=L~,,~>(I +A2tR)±-f + AfO= (9)8t2Aij = < L19j,fi > Bjff=<ILdj,gi >" 8tl'' 2R)' A 0(9

C,, = <f t i > Di3 =< gi,gi > (6) Where I is the identity operator.

The time marching algorithm for the above pro.
2. STABILITY CONDITION blem is stable if the following conditions are fulil-

The algorithm described above was proven to pro- led [5]:

vide an accurate solution for Anhomogeneously lo- A = A > 0, R = R > 0 (10)
aded rectangular resonator [3], [4]. However, during R - 0.5A > 0 (11)
the numerical tests it was observed that the maxi-
mal time step size depends on the number of func- In other words for the time marching algorithm to
tions used in the expansion. This time step size is be stable it is sufficient that both operators A and
a key factor which allows one to derive the stabi- Rt are sel& adjoint and positive and additionally the
lity criterion for the algorithm. For the FD-TD and operator Rt - 0.5A is nonnegative. The canonical
TLM method the stability criterion is know as a form (9) is obtained from (8) by simply multiplying
Courant conditions, but the stability of TEE algo- it by 2 and writing the result as
rithm has never been examined yet. This contribu-
tion will present the results of the stability analysis (I + -- I)A -f+ 2Lf = 0 (12)
of the TEE algorithm

Presently we shall derive the stability criterion Comparing (12) with (9) we get R = I/A21 and

for the the total expansion using trygonometric se- A = 2L It can readily be verified that operator L
ries expansion. Before deriving the stability crite- is symmetric and positive. It suffices to verify the
dion let us present problem (1) in the form of a condition (11). This condition is fulfilled when
hyperbolic equation. Taking the time derivative of
the first equation and applying operator L2 to the j2tŽ 2- fIL1l (13)

second equations we obtain. or

At< (14
N-f = LjL2f (7) - (14
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is seen that the stability depends on the norm of
operator L. The norm of the operator depends 3. CONCLUSIONS

the space it acts in. Let us estimate the norm of The derivation of the stability condition for the
operator L in a finite dimensional linear space total eigenfunction expansion algorithm for the so-

ed by trigonometric functions. lution of Maxwell's equations is presented.. The sta-
Suppose that the inhomogeneity is located in- bility condition of the algorithm is derived using

e a cubical resonator with the dimensions I x l xl. the methods of functional analysis. The approach
e expansion functions are normalized products is general and can be used for other iterative algo-
sines and cosines of the form rithms.
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Derivation of Stability Condition
for the Time Domain Method of Moments Algorithms

Using Functional Analysis Approach

Michal Mrozowski
Department of Electronics,

The Technical University of Gdaisk
80-952 Gdafisk, POLAND.

ABSTRACT

This contribution presents the derivation of the stability condition for tirnrit
domain method of moment for linear hyperbolic differential equations The
algorithm uses the method of moment approach for space variables and finite
difference scheme for time. The stability condition of the algorithm is derived
by investigating the properties of operators in suitably defined Hilbert spaces.
The method discussed in this contribution has been developed in context of
the time domain analysis of Maxwell's equations but the approach is general
and can be usd for other explicit algorithms.

INTRODUCTION

Functional analysis is one of the most powerful tools of the theoretical
investigation of the basic properties of numerical methods. The methods of
functional analysis are commonly used in the mathematical physics, numer-
ical mathematics and computer science but seldom in engineering. At the
same time the engineering creates demand for new more efficient numerical
methods which would provide a sufficiently accurate solution as fast as pos-
sible. This results in the constant improvements of published algorithms by
researchers who adapt them to their particular needs without investigation
of the properties of modified algorithms. For instance, explicit algorithms
for the solution of initial value problems have recently received much atten-
tion among researchers involved in the numerical analysis of electromagnetic
fields. Two methods belonging to this class, known as finite difference-time



domain (FDTD) and transmission line matrix (TLM) algorithms have in-
tensively been developed in the last decade. Their salient feature is that
electromagnetic field is analyzed in the time domain and the samples of rel-
evant physical quantities at nodes located at the discrete points in space are
used to represent a physical continuum. These two methods are constantly
being improved. The improvements include the application of graded meshes
or non orthogonal cells, application of local approximations or extension of
the basic algorithms to the new class of materials such as ferrites or disper-
sive media. Also new concepts of space representation of fields have been
introduced. The sampling at discrete points can be replaced by the expan-
sion into the series of basis functions and the expansion coefficients found by
the method of moments procedure.
Recognizing the progress achieved in the recent years in the time domain
analysis of electromagnetic fields, it should be noted, that the explicit al-
gorithms underlaying these methods are not unconditionally stable and the
improvements introduced to algorithms affect their stability. In this contri-
bution we shall present how the effects of the algorithm modifications can be
investigated using the functional analysis.

STABILITY ANALYSIS OF EXPLICIT TIME DOMAIN
ALGORITHMS

Let us consider a hyperbolic differential equation

92
-. f + Lf-O (1)

where L is a linear elliptic differential operator with positive coefficients. The
hyperbolic equation of this type, supplemented by conditions at t = 0 can
be solved for t > 0 using a classical finite difference explicit algorithm. For
L being a Laplacian the stability criterion for the algorithm is known as the
Courant condition. For other operators it is convenient to use the methods
of functional analysis. In [21 such an approach was used for the case of finite
difference representation of L. The theorems used in that case are general
so it is very instructive to show how they can be applied for other explicit
algorithms.



To investigate the stability of a time marching algorithms for the hyper-
bolic equations it is useful to present a problem in a canonical form

(I + A2tR)-f + Af = 0 (2)

Where I is the identity operator.
The time marching algorithm for the above problem is stable if the following
conditions are fulfilled 121:

A=A*>O, R=R*>O (3)
R- 0.5A > 0 (4)

In other words for the explicit algorithm to be stable it is sufficient that both
operators A and R be self adjoint and positive and additionally the operator
R - 0.5A be nonnegative.
A linear operator F defined in a Hilbert space (H, < .,. >) is self adjoint if
for any x,y E H

< Fx, y >=< x, Fy >* (5)
An operator F is positive F > 0 (or nonnegative F > 0 ) when for all
x E H,x 0 0 we have

<Fz,z>>0 or <Fx,x >Ž__0 (6)

The canonical form (2) is obtained from (1) by simply multiplying it by 2
and writing the result as

(I + •-2I)-f + 2Lf = 0 (7)

Comparing (7) with (2) we get R = I/A 2t and A = 2L
If operator L is symmetric and positive than the stability condition is

11•--LtIJ 2! JIL11 (8)

or 1
At _(9)

It is seen that the stability depends on the norm of the operator L. The
norm of the operator depends on the space it acts in.



STABILITY ANALYSIS FOR THE TIME DOMAIN METHOD
OF MOMENTS

Let us consider a one dimensional second order equation

02 82

f-b (x) f = 0 (10)

f(x,to)=fo(x), f(x=o)=f(x=a)=o (11)

where b(x) > 0 is a time independent continuous function of x, Instead of
using the finite difference representation of 2 let us combine the explicit
algorithm with the method of moments. To this end we will use the finite
differences for the approximation of time derivatives, expand the function
f(x) into series of sines

f (x) = _ sin(irrx/a) (12)

and use the inner product

< u,v >= fo uvdx (13)

to find the expansion coefficient at any instance of time. (A detailed deriva-
tion of the time domain method of moments for Maxwell's equations can be
found in 11)
It can easily be verified that operator

L= -b(x)-2(14)

is positive and self adjoint. This case was considered previously so we may
conclude that the algoritlun is stable if

1
At <S I` (15)

At this point it is necessary to estimate the norm of L. The problem is
defined in the Hilbert space spanned over sine functions. The norm of L in
such a space can be estimated as follows

IILII : IILm ll = <Lmxx> b_ (16)lixa2



where • is the maximal value of b(x) over the interval 0 < x < a.

We may conclude that the explicit algorithm combined with the method of
moment with sine series will be stable if the time step is chosen such that

S_ a

At _<i (17)

Note that maximal time step is inversely proportional to number of basis
functions.

Obviously, the same procedure can be applied to other types of expansion
functions, including for instance finite elements. It is important to note
however that the time step in the explicit algorithm depends not only on the
operator (equation) solved but -also on the way the approximation of space
is constructed.

CONCLUSIONS

The application of the functional analysis to the investigation of the stability
of time domain algorithms has been presented. The method can easily be
applied to the investigation of the properties of novel time domain schemes
for Maxwell's equations such as the ones proposed in [1].
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A Hybrid PEE-FDTD Algorithm for Accelerated
Time Domain Analysis of Electromagnetic Waves in Shielded Structures

Michal Mrozowski
Department of Electronics,

Technical University of Gdalsk
80-952 Gdailsk, POLAND.

ABSTRACT: A new algorithm for the time domain analysis of electromagnetic waves in shielded
structures is presented. The algorithm combines the FDTD with a recently developed partial
eigenfunction expansion (PEE) scheme to obtain acceleration in numerical calculation and savings
in computer memory. An example of the application of the algorithm is presented showing an
overall speed improvement.

INTRODUCTION

Time domain techniques are gaining increased popularity in the analysis of electromagnetic
waves because of their ability to treat complicated geometries over a wide frequency range. Be-
cause the most popular time domain algorithms are explicit, the stability of the algorithm puts a
restriction on the maximum allowable time step. Additionally, to obtain fine resolution of fields
near singularities, mesh size is reduced thereby increasing the computer storage. The computation
time and memory requirements are therefore critical parameters for time domain algorithms. Be-
cause of that some research effort has recently been devoted to the acceleration of the traditional
methods by the application of the signal processing [21 techniques, graded mesh schemes [1] or
elimination of redundant field components [3].

This contribution presents a new algorithm for shielded structures which consists in the replace-
ment of the FDTD calculation in homogeneous shielded subregions by eigenfunction expansion.
The eigenfunction expansion schemes in time domain proposed in [4] rely on the expansion of
the unknown functions of selected space variables into series of basis functions and application
of method of moment procedure to find the expansion coefficients. One version of the algorithm
called the Partial Eigenfunction Expansion (PEE), is obtained if the function expansion is done
with respect to two selected space coordinates while the third spatial coordinate and time are
discretized in a way analogical to the finite difference scheme. By combining such an approach
with a classical FDTD algorithm an improvement in speed can be obtained for an important class
of shielded structures.

FORMULATION

As the FDTD is a well known technique, let us begin with the presentation of the second scheme,
namely the Partial Eigenfunction Expansion (PEE). Consider a dielectric inhomogeneity located in
a rectangular waveguide (fig.1). In the PEE the computational space is sliced into subdomains and
the fields are expanded on each subdomain (slice) into series of expansion functions which depend
only on transverse coordinates and fulfill the boundary conditions on the guide periphery. The
function expansion is done in two dimensions for each slice separately while the variations in the
third spatial dimension and time are handled using the finite difference approximations. Suppose
the structure was divided into K slices in the z direction and the slices are uniformly spaced by
the distance Ad. Using the finite difference approximation of derivatives in the z directions the
Maxwell's equations can be written in the following operator form

"- Ltgk+Lk,(gk+.--gk)

5jgk - Lktft, +" Lk.(f&k -/k-) (1)



where fk and g9 are vector functions representing the electric and magnetic field at the k-th slice

and
L k, x 0.1L, o,,)d

Co eo,(zy) = foEr(Zr y)Ad X ()Lk - I V, I (. L'- -

2 = T (z,) r0 V,x) Lk= Popr(z, y)Ad x (: ) (2)

In the above equations by i we have denoted a unit vector in the z direction.
The fields are now expanded separately on each slice according to

A(W) = (1o,1 ()fs(z,(y) gk = Yb,i(t)g.(z, y) k = .. K (3)

where aj,, bib are the expansion coefficients (time dependent) and fi, (z, y), g, (z, y) are the basis
functions. The next step is to introduce the expansion (3) into (1) and replace time derivatives
by finite difference formulas. This results in equations in which the only unknowns, for a fixed
time instant, are the expansion coefficients at all slices of the structure. To evaluate the expansion
coefficients we take the inner product of equations valid for a given slice with expansion functions
and use the orthogonality property of the expansion functions. As a result we arrive at [4]:

an = 'n-l+AtAbn-1/2

bn+1/2 = b-1/2 +AtBa_ (4)

where At is the time step, a and b are column vectors containing expansion coefficients for all
slices and superscript n denotes the time step. The matrices A and B contain the inner products
and have the following str",.'ture

A = qdiag[A!k, All kqdiag[k ,B"k] (5)

The elements of the submatrices are given

= <LIJ =< Lij1+1,fik >

R'ý k = <(Lks+ Lk)fj.,gi. > Bi'= < L/j"_,,k > (6)

Equations (4) show that expansion coefficients for all slices are updated at each time step as a
result of mutual interactions of fields due to the inhomogeneity introduced by space dependence
of constitutive parameters. As far as numerical cost is concerned, the most critical point in the
PEE algorithm is the calculation of the inner products on inhomogeneous slices. However for
inhomogeneous slices a classical FDTD algorithm can be used. Combining these two time domain
techniques we create a hybrid method in which different algorithms are used in different parts of
the computational space. The FDTD is used in the regions in which a fine resolution of field is
necessary (eg. near edges, media interfaces) and the PEE is applied in the homogeneous subregions.
This hybrid approach results in savings in numerical effort and computer memory. This is because
the PEE is extremely efficient for homogeneous slices as matrices 1', A!1 and &I k, B" k are
diagonal so that the computations are fast especially when the expainonl7inctions are chosen in
such a way that they constitute a set of eigenfunctions of the Laplace operator defined on 2D region
forming a slice. In that case each expansion function satisfies the boundary condition and field
equations globally over entire slice. As a result very few expansion terms are needed to accurately
describe field at each slice. The FDTD and PEE algorithms are interfaced at a common slice. The
transition form the FDTD to PEE is done in the following way. Given a field distribution at the
z = zk, provided by the FDTD part of the algorithm, the expansion coefficients at this slice are
found by taking the inner product with each basis functions of the PEE. To switch from PEE to
FDTD the series (3) are calculated at the interface plane at the points required by FDTD.

NUMERICAL EXAMPLE
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In order to verify the hybrid algorithm the cutoff frequency of the EH 1I of a rectangular guide

loaded with a dielectric slab shown in fig.2 was computed and compared with the results obtained
with a classical FDTD technique. For both algorithms the identical excitation, space discretization
(Ad = .5mrn), time step, and number of samples were assumed. The results are given in Table 1.
For the FDTD algorithm alone the CPU time for the assumed discretization mesh was 53s. For the
hybrid algorithm, the slab region was treated with the FDTD and the lateral homogeneous regions
were calculated with PEE. The CPU time depends on the localization of the interface plane and
the number of expansion functions used in the PEE part of the algorithm. When the interface is
at z, = 7.5 and Z2 = 12.5mm, ie. when the FDTD mesh is terminated only one slice away from
the inhomogeneous region, the CPU time of the hybrid algorithm varies from 18s (for 1 expansion
function) to 27s (for 5 expansion functions), with most of the time (14s) consumed by the FDTD
computations. The error introduced by low number of expansion function is the largest if only one
term is used but for this structure is less then 0.1% compared the result obtained from pure FDTD
calculations. interface plane. The error decreases as the interface plane is moved away from the
inhomogeneity. This is due to the fact that higher order terms in the field expansion correspond to
higher order waves traveling in the lateral direction. If the interface planes are located at z, = 5

and z 2 = 15mm, only one term in the PEE part is sufficient to obtain exactly the same results
as with purely FDTD technique. The CPU time for this case is 31s of which 28s is spent in the
FDTD part.

CONCLUSIONS

A new hybrid PEE-FDTD algorithm for the time domain analysis of electromagnetic waves in
shielded structures was introduced. The obtained results indicate that it is possible to obtain the
acceleration of time domain calculation by using the PEE algorithm in homogeneous parts of the
structure. The results presented in this letter indicate that it is possible to obtain improvement in
the speed of time domain computation of 3D and 2D shielded structures in which the homogeneous
regions are predominant such as microstrip lines, coplanar guides, and discontinuities in planar
guides.
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Table 1: Comparison of the results and CPU times (DELL 486/66) for the cutoff frequencies of
EHII mode in the 20 by 6 mm rectangular guide loaded with a dielectric slab C,. = 2.5, w = 4mm,
h = 4mm using a hybrid algorithm with number of expansion functions N and the localization of
the interface planes as parametersIN PEE-FDTD re.Error CPU C u CP Speed up rel.1

rel. to FDTD FDTD part PEE part combined to FDTD (53I)
[ Interface of algorithms at z x 7.5, z = 12.5 mm ]

1 20.2075 GHz + 0.1% 14s 49 18s 2.9
3 20.1975 GHz +0.05% 14s 9s 238 23
5 20.1975 GHz +0.05% 14s 13s 27s 1.96

[ [nterface of algorithms at z 5, z = 15 mm

1 20.1875 GHz 0% 28s 3s 31s..
20.1875 GHz 0% 28s 6s 34s 1.55

Figure 1: A structure discretized along one coordinate

Yt

I4 __j

wag-

Figure 2: Geometry of the guide used in the numerical test showing FDTD and PEE meshes (Slab
centered with respect to x=a/2, c, = 2.5, dimensions: h = 4mm, w =4mm, a=20mm, b=6mm)
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Stability Condition
for the Explicit Algorithms of

the Time Domain Analysis of Maxwell's equations

Michal Mrozowski
Department of Electronics,

The Technical University of Gdafisk
80-952 Gdafisk, POLAND.

ABSTRACT

This contribution presents the derivation of the stability condition for various types of time
domain algorithms used in the solution of linear hyperbolic differential equations which arise in
the investigation of transient electromagnetic fields. The stability condition of the algorithm is
derived by investigating the properties of operators in suitably defined Hilbert spaces. Compared
to the classical von Neumann stability analysis, the functional analysis approach gives more
general results which can be easily applied to some recent and possible future time domain
schemes.

INTRODUCTION

Explicit algorithms for the solution of initial value problems have recently received much
attention among researchers involved in the numerical analysis of electromagnetic fields. Two
methods belonging to this class, known as finite difference-time domain (FDTD) and transmis-
sion line matrix (TLM) algorithms have intensively been developed in the last decade. Their
salient feature is that electromagnetic field is analyzed in the time domain and the samples of
relevant physical quantities at nodes located at the discrete points in space are used to represent
a physical continuum. These two methods are constantly being improved. The improvements
include the application of graded meshes or non orthogonal cells, application of local approxi-
mations or extension of the basic algorithms to the new class of materials such as ferrites or
dispersive media. Also new concepts of space representation of fields have been introduced.
Recognizing the progress achieved in the recent years in the time domain analysis of electro-
magnetic fields, it should be noted, that the explicit algorithms underlaying these methods are
not unconditionally stable and the improvements introduced to algorithms affect their stability.
Consequently there is a need to investigate the stability criteria for new schemes [6]. In this
contribution we shall present how stability of different algorithms can be investigated using
functional analysis.

STABILITY ANALYSIS OF EXPLICIT TIME DOMAIN ALGORITHMS

Let us consider a hyperbolic differential equation

92

-•f + Lf - (1)

where L is a linear differential operator. The hyperbolic equation of this type, supplemented by
conditions at t = 0 can be solved for t > 0 using a classical finite difference explicit algorithm
[2]. It is a known fact that the explicit algorithms are conditionally stable. The approach
most frequently used to derive the stability condition is known as the von Neumann stability
analysis [2, 51. This analysis involves local expansion of unknown functions into Fourier series
and assumes the finite difference representation of the operator. If L is a Laplacian, the von
Neumann approach leads the formula known as the Courant - Friedrich - Levy condition. More
general results can however be derived using an alternative approach based on the functional
analysis.
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To investigate the stability of explicit algorithms for the hyperbolic equations it is useful to
present a problem in a canonical form:

a2
A 2tRN--f + Af = 0 (2)

The time marching algorithm for the above problem is stable if the following conditions are
fulfilled [1] (p.386):

A=A* >0, R=R'>0 (3)
A

R- - > 0 (4)
4-

In other words, for the time marching algorithm to be stable it is sufficient that both operators
A and R are self adjoint and positive and additionally the operator R - 0.25A is nonnegative.
The canonical form (2) is obtained from (1) by simply writing it as

A 2t a2
E -INf + Lf = 0 (5)

Where I is the identity operator.
Comparing (5) with (2) we get R = I/A 2t and A = L. It can readily be verified that operator
L is symmetric and positive. It suffices to verify the condition (4). This condition is fulfilled
when

!L_ _I1 IILI_ _ (6)
-A2  4

or
2t _<(7)

Thus the maximal time step in explicit time domain algorithms considered here depends on the
norm of the operator L.

For a self-adjoint bounded operator L defined in the Hilbert space ?i the norm is defined as
[3]

IILII= sup I < Ly, y > 1= A (8)

where Amaz is the largest eigenvalue of L.

STABILITY ANALYSIS FOR ONE DIMENSIONAL PROBLEM

One important conclusion which follows from the functional analysis approach is that the
stability condition depends on how the unknown functions are represented. This is because the
norm of the operator depends on the space it acts in. When solving a particular problem we
choose the way the functions are represented and the criteria to measure the accuracy of our
solution. This choice is equivalent to the choice of a functional space and affects the norm of
the operator and thus the stability condition. To illustrate this problem in more detail let us
consider a one dimensional problem

82 892
5- - b(z) F-,f = 0(9)

(z, to) =Jo(z), f(z = 0) = f(z : 1) = 0 (10)

where b(z) > 0 is a time independent continuous function of z,
One possible way of solving the above problem is to use a classical finite difference approach

but let us find the solution by means of the method of moments. Let V denote the domain
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of operator L and assume that it allows only square integrable functions satisfying Dirichlet

conditions at both ends of the interval. By equipping the domain D with an inner product

< u'V>= 10 d uv l)

we specify it in terms of the Hilbert space.
It can easily be verified that operator

02L = -bx•(12)

is positive and self adjoint. However if we would like to calculate its norm in this space we note
that the operator L is unbounded and consequently its norm is infinite. Its norm becomes finite
however, if the operator is allowed to act in a finite dimensional space. This is what happens in
practice because we always look for approximate solution to the problem using a finite number
of elements to represent a function. Let us now expand the function f(z) into series of basis
functions

f(X) = cfi(X) (13)

and use the inner product (11) to find the expansion coefficient at any instance of time.
The finite set of basis function defines the approximate finite dimensional subspace of original

domain. Consider the following truncated set of basis functions

"/ "-sinr i < NM (14)

The basis functions (14) span a finite dimensional space R
t

N., C D in which the approximate
solution is sought for. Now it is easy to find the upper bound of the operator.

IIII= 02 02 (5JIL1I = lib(x) 5 (')211 < I1b,,,o5T2(')jj = 11L,,.,11(5

Where b,,a, is the maximal absolute value of b(z) over the interval < 0, 1 >. The eigenvalues
A, of operator Lm are given by

A = bmazl- 2  
(16)

and consequently the norm of L

IILII 5 NM 12 (17)bmaxi 2

This leads to the condition
Atf< - (18)

s'NU

If we chose an alternative way and represent the function and the operator in a finite
difference sense by specifying their values at discrete points the norm will be changed. If the
discretization points are equidistant and the spacing is Ad then [1]

4
IILII <(Ad)2 bmo, (19)

yielding the Courant - Friedrich - Levy condition:

At < (20)
Ad

APPLICATION TO ELECTROMAGNETICS

3



The stability analysis described above can be used in electromagnetic problems. Here the ope-
rator L can be specified as:

1 I
L= V x V x(.) (21)

Co0o0(z, Y, z) A(X, y, z)

(other definitions are also possible).
As an example let us consider a cube f0 with the dimensions 1 x I x i. In this region we seek

an approximate solution to the hyperbolic equation with an operator defined by (21) given a
finite number of expansion functions in the form of normalized products of sines and cosines

sin -L- or cos ,' ik < NM (22)

Let D denote the domain of operator L. The basis functions (22) span a finite dimensional space

7iN, C V. We calculate the upper bound of the norm of operator IlLI1. Note that I ILII !iLm5l.
Where

Lm = ((OoAominpmin)-'V x V x (.) (23)

and
cmi. = inf c,(z,y,z), p,,,in = infp,(z,y,z) z,y,: EQ (24)

Using the same procedure as for one dimensional case we find the norm of operator L in ltNM.+

2 3N 1 r2  (25)

where Vmax = (opofminmpmin)-112 is the maximum velocity for a plane wave in the structure.

Using the above estimation we get the following stability condition

21

vmaxNM7rV/3 (26)

If the region f0 is a rectangular prism with the dimensions a x b x I and the upper bound for
i, 1, m in the trigonometric expansion functions is KM, LM, NM then the condition (26) becomes

At <2 (27)- r(K:) + (LK2+ (NI)
Vmaz b

Discretizing the space f0 in the z direction with the step Ad and using KM x LM sine and
cosine basis functions to in the z and y directions, the stability condition derived using (19) is

2
at _< 2 (28)S,,,.. V M, ) + (r 2+ (-

For the discretization of all three coordinates with steps Ax, Ay, Ad we shall get the well
known Courant condition [5]

At < 1(29)
V- ,. )2 + +)2+()2

At this point it is interesting to observe that the derivation described above provides stability
criteria for a few recently published time domain algorithms. For instance conditions (27) and
(28) are the stability criteria for tLe Total Eigeufunction Expansion and Partial Eigenfunction
Equations schemes derived in [8] (for sine and cosine basis functions). In a compact 2-D/FDTD
algorithm described in [4] and investigated subsequently by Cangellaris [6], the functions are
represented by samples at uniformly discretized cartesian coordinates z, y and the variation in

4



the z direction given in the form exp(-j3:). For this case the functional analysis approach
gives

Atve_ 
t30)V-2 +.. (/L)2 + (1)2

This condition is identical as the one given in [4] and [6]. Also the stability of a hybrid spec-
tral/FDTD method introduced recently by Cangellaris et al. [7] follows from conditiik 7j.

CONCLUSIONS

The application of the functional analysis to the investigation of the stability of time domain
algorithms has been presented. It was shown that the method can easily be applied to the
investigation of the properties of novel time domain schemes for Maxwell's equations.
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