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ABSTRACT

Direct numerical simulation data bases for compressible homogeneous shear flow are

used to evaluate the performance of recently proposed Reynolds stress closures for com-

pressible turbulence. Three independent pressure-strain models are considered along with

a variety of explicit compressible corrections that account for dilatational dissipation and

pressure-dilatation effects. The ability of the models to predict both time evolving fields and

equilibrium states is systematically tested. Consistent with earlier studies, it is found that

the addition of simple dilatational models allows for the prediction of the reduced growth

rate of turbulent kinetic energy in compressible homogeneous shear flow. However, a closer

examination of the equilibrium structural parameters uncovers a major problem. None of the

models are able to predict the dramatic increase in the normal Reynolds stress anisotropies

or the significant decrease in the Reynolds shear stress anisotropy that arise from compress-

ible effects. The physical origin of this deficiency is attributed to the neglect of compressible

terms in the modeling of the deviatoric part of the pressure-strain correlation.

"This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASI-19480 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
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1. INTRODUCTION

The need to predict supersonic and hypersonic turbulent flows of aerodynamic importance

has, in recent years, led to new research initiatives in compressible turbulence modeling. A

major stumbling block in the development of improved compressible turbulence models is the

lack of detailed experimental data for the compressible turbulence statistics in basic high-

speed compressible flows. Experimental limitations currently make it infeasible to obtain

detailed measurements of any turbulence statistics beyond the mean velocity and Reynolds

shear stress in supersonic turbulent flows. This makes it virtually impossible to pinpoint the

origin of deficient model predictions when they arise. In Reynolds averaged calculations of

complex supersonic turbulent flows, erroneous predictions for the mean velocity field may

arise from modeling errors in the Reynolds stresses that can be traced to a variety of possible

deficiencies in the treatment of compressibility effects.

During the past four years, direct numerical simulation (DNS) data bases of some basic

supersonic turbulent flows have become available [1, 2], wherein the full compressible Navier-

Stokes, continuity and energy equations are solved numerically with all turbulent scales

resolved. Most notable among these are the DNS data bases for compressible homogeneous

shear flow (see Blaisdell, Mansour and Reynolds [3] and Sarkar, Erlebacher and Hussaini

[4,5]). Homogeneous shear flow is an important building-block flow since it encapsulates

some of the important features of an equilibrium turbulent boundary layer in a simplified

setting that is unencumbered by the effects of turbulent diffusion or wall blocking. It has

been an extremely useful test case for the calibration and screening of turbulence models for

incompressible flows [6-8]. However, no comprehensive test of compressible Reynolds stress

models has been made using these new DNS data bases for compressible homogeneous shear

flow. This establishes the motivation for the present paper. Prior to this study, only very

limited comparisons of compressible turbulence models have been made using these DNS

results [9,10].

In this paper, the DNS data base of Blaisdell, Mansour and Reynolds [3] for compressible

homogeneous shear flow will be used to critically evaluate recently proposed compressible

Reynolds stress closures. Full second-order closures will be considered that explicitly ac-

count for high-speed compressible effects. Variable density extensions of three incompress-

ible pressure-strain models due to Launder and co-workers [11, 12] and Speziale, Sarkar and

Gatski [13] will be tested along with models for the compressible dissipation and pressure-

dilatation that were recently proposed by Sarkar et al [14,15] and Zeman [16,17]. The ability

of each model to predict time-evolving fields and equilibrium states such as the Reynolds

stress anisotropies will be assessed in detail. An attempt will also be made to understand

the physical origin of deficient model predictions. In this regard, some important results will



be uncovered that were overlooked in previous studies. These issues will be discussed fully in
the sections to follow and a recommendation will be made for the development of improved

models.

2. THEORETICAL BACKGROUND

We will consider the mean turbulent flow of an ideal gas governed by the compressible
Navier-Stokes equations. The mass density p is decomposed into standard ensemble mean
and fluctuating parts, respectively, as follows:

p = F + p'. (2.1)

The velocity field uj and temperature T are decomposed into standard ensemble mean and

fluctuating parts given by

ui=9j+u', T=T+T' (2.2)

or into mass-weighted mean and fluctuating parts given by

,:=iii+u,7, T=T+T". (2.3)

For any flow variable T, the quantity = p- denotes the Favre or mass-weighted average

given that an overbar represents a standard ensemble mean.

The Favre-averaged continuity, Navier-Stokes and energy equations take the form [18,

191

+ ( 0),, = 0 (2.4)

+ ( = -, (2.5)

+,= - p'+, + T (2.6)

in homogeneous turbulent flows where the mean velocity gradients and all higher-order statis-

tics are spatially uniform. In Eqs. (2.5) and (2.6),

p = pRT (2.7)

0 = ofquid (2.8)

2
0i0 = - ij + p(uij + uji) (2.9)

are, respectively, the thermodynamic pressure, viscous dissipation and viscous stress tensor;

R is the ideal gas constant, C, is the specific heat at constant volume, p is the dynamic
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viscosity of the gas, and ( ),i = O( )/Oui denotes a spatial gradient. Since the turbulent mass

flux R vanishes in compressible homogeneous turbulence, it follows that [19]

I = aijij + A Ps e (2.10)

at high turbulence Reynolds numbers where e =- -- j/ is the turbulent dissipation rate.

Following the recent work of Sarkar et al [14] and Zeman [16], the turbulent dissipation

rate can be decomposed into solenoidal and dilatational parts as follows:

C=6,+4 (2.11)

where, for homogeneous turbulence,

4
= '' , j = /(u./ (2.12)

are, respectively, the solenoidal and compressible (or dilatational) parts of the turbulent

dissipation rate given that w• is the fluctuating vorticity. Here, e. represents the turbulent

dissipation arising from the traditional energy cascade which is solenoidal (i.e., vortical)

in character; e. represents the turbulent dissipation arising from purely compressible or

dilatational modes (ec = 0 for incompressible turbulent flows). For homogeneous turbulence,

this decomposition is unique.

Since the mean pressure

P = A g, (2.13)

it is clear from (2.4)-(2.10) that closure of the mean flow equations is achieved in compressible

homogeneous turbulence, at high Reynolds numbers, once models for the pressure-dilatation,

compressible dissipation and solenoidal dissipation are provided. The determination of these

correlations also requires information on the turbulence intensity level and, hence, on the

Reynolds stress tensor. The Favre-averaged Reynolds stress tensor T'j =- uJu' is a solution

of the transport equation [18, 19]

Phi3 = -Priktij~k - Priktiik + JJij - 6ij + 2-j (2.14)

which is exact for compressible homogeneous turbulence given that

2
Iij= P'i + U,,) - iV'''i

(2.15)

- (ofkU;., + O'r'U'i - j7dIki

is the difference between the deviatoric parts of the pressure-strain correlation and dissipation

rate tensor. Eq. (2.14) contains the pressure-dilatation correlation 7uk as well as the
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compressible and solenoidal parts of the dissipation rate tensor since e = e, + e,. Hence,
a full Reynolds stress closure is achieved in compressible turbulence if models are provided

for:

(i) The difference between the deviatoric parts of the pressure-strain correlation and dis-

sipation rate tensor, Iii.

(ii) The pressure-dilatation correlation Fu-7.

(iii) The solenoidal dissipation e..

(iv) The compressible dissipation e.

In compressible homogeneous shear flow, the mean velocity gradient tensor is given by

ij = S6,6i, 2  (2.16)

where S is the shear rate which is constant. The mean density is constant whereas the mean

temperature is a function of time alone, i.e.,

= constant (2.17)

S= f(t). (2.18)

Eqs. (2.16) and (2.17), which are the same as their incompressible counterparts, identically

satisfy the mean continuity and mean momentum equations (2.4) and (2.5). Assuming that
the mean specific heat is constant, the Reynolds-averaged energy equation (2.6) simplifies

to the form

= -V'u;,, + je (2.19)

for a compressible homogeneous shear flow at high Reynolds numbers.

The substitution of (2.16) into the contraction of (2.14) yields the turbulent kinetic energy

equation

jyk p + (2.20)
where K = 19-ýul is the Favre-averaged turbulent kinetic energy and P -T1"2 S is the

2'

turbulence production. Equation (2.20) can be combined with (2.19) to yield a transport

equation for the turbulence Mach number. This transport equation takes the form

2K(_ + 7(7 2 (U7i1,- (L' ,,- +e) (2.21)

where - - /pI. is the ratio of specific heats and MA Vf2KI/fRf is the turbulent Mach

number. Recently proposed models for the four turbulence correlations that are needed for

closure - namely, e., ec.,Vij/ and Uji - will be discussed in the next section.
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3. THE TURBULENCE MODELS TO BE TESTED

In almost all existing compressible second-order closures, the deviatoric part of the

pressure-strain correlation is modeled as a variable density extension of its incompressible

counterpart. Furthermore, as in the majority of incompressible turbulence models, the devi-

atoric part of the dissipation rate tensor is neglected by invoking the Kolmogorov assumption

of local isotropy [18, 19]. This leads to a hierarchy of models that are of the general form:

I
n,• = 6..Aij(b) + 5KMq,,(b)(fi&k - jfm,=6M) (3.1)

where
= -t (3.2)

is the Reynolds stress anisotropy tensor. In (3.1), .Aj and Miji are identical to their in-

compressible forms; compressibility effects are only accounted for through changes in the

mean density. Since the mean density p is constant in homogeneous shear flow - and the

mean dilatation i,i is zero - it follows that the hierarchy of pressure-strain models (3.1)

is completely identical to its incompressible counterpart. The consequences of this will be

discussed later.

In this paper, variable density extensions of three incompressible pressure-strain models

will be considered: the Launder, Reece and Rodi [11] model, the Fu, Launder and Tselepi-

dakis [121] model and the Speziale, Sarkar and Gatski [13] model. The first model is chosen
since it is the most widely used pressure-strain model; the last two models are chosen since

they have recently been shown to perform the best among a variety of existing models for in-

compressible homogeneous shear flow [7, 8]. The detailed form of these models are provided

below.

Launder, Reece & Rodi Model

IIIj = -C1 pehb,, + 4 ;FK (Lle, - gki)+ C2;FK (bkgjk

(3.3)

+bi - + + bjk )

where
90• = (•, + f,,), (D,• = P(s,• - f,,)(.)

C, = 3.0, C2 = 1.75, C3 = 1.31 (3.5)
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1Js, Lamsder Tsqaelpdbi Model

U4, = -CipeA,b+ C2PCe. bj - 'uvij

4~ (gi, _-gkFj + 1.21K (b~

+bjh.& 2- / +,!W~bkj
3

+bjkai) + -pK(bk u#j + bjkblawa(3.6

5

+b1 &Co.&)] + 12(k6 bkA''jb,, + bjkbjCm'a.b~id1

where
C, = 2 - 10F 1 2

-2",C= 4IJI2 (3.7)

ii li-,III = ibjb (3.8)

F = 1+ 911 +27111 (3.9)

Spexiale, Sarkar Gataki Model

Hi, = -(Clft. + Cl*,?)bij + C27pe (bib&, - 'bubM6i,)

-( C;11,~2)P-K(i.
3_C36 (ij -l~kki)(3.10)

+C 4pK (.g + bij - b§gj

+CspK(bai&Zj + bjrdk

where

C1 =3.4, C*= 1.80, C2 = 4.2 (3.11)

C3 = iC = 1.30, C4 =1.25 (3.12)

Cs = 0.40, II. bib,,, 'P =-rij,,, (3.13)

These models will hereafter be referred to as the LRR, FLT and SSG models, respectively.
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Since the mean dilatation ii. is zero in homogeneous fhear low, virtually all existing

model transport equations for the solenoidal dissipation are of the form [19 - 21]

ep- c.!2 (3.14)

K K

in compressible homogeneous shear flow. This equation is identical to its incompressible

counterpart. In (3.14), P = -r1 2S is the turbulence production and C., and C. 2 are con-

stants (in the SSG model, C.1 = 1.44 and C,2 = 1.83 whereas in the LRR and FLT models,

C, = 1.44 and C,2 = 1.90). Two recent models for the compressible dissipation will be con-

sidered that were proposed by Sarkar et al [14] and Zeman [16]. These models are algebraic

and of the general form

S= f M de. (3.15)

where Mt is the turbulence Mach number defined earlier. In the Sarkar et al [14] model

Cc = al M1C' (3.16)

which is obtained from an asymptotic analysis that is formally valid for small turbulent Mach

numbers. The constant a, in (3.16) was determined to be approximately 0.5 based on direct

numerical simulations of homogeneous turbulence [15]. On the other hand, the compressible

dissipation rate model of Zeman [16] is based on an analysis that incorporates the effects of

eddy shocklets. For homogeneous shear flow, this model takes the form [20]

CC = {1 - exp(-[(Mt - 0.25)/0.812)} 1. (3.17)

for Mt _> 0.25; c = 0 for Mt < 0.25.

The pressure-dilatation model that we will primarily consider is that due to Sarkar [15].

This model is algebraic and takes the following simple form in homogeneous shear flow:

S= -aj= -%PM, + a3i5c.Mt (3.18)

where a2 and a 3 are constants that take on the values of 0.15 and 0.2, respectively. Some

limited comparisons will also be made with the pressure-dilatation model of Zeman [17]

which is given by

S+ (5 -3y) - ld -(3.19)

where

S= 0.4-Me (3.20)
c
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and
p. ~K7R 1  M3 + M4'

1++ + M4(3.21)

Of course, in (3.19), 1 -- R- and iii = 0 for homogeneous shear flow. In the next section,
a comparison of computed results obtained from these models for compressible homogeneous

shear flow will be made.

4. DISCUSSION OF RESULTS

The transport equations (2.6), (2.14) and (3.14) - incorporating the models discussed in

Section 3 - were solved numerically for compressible homogeneous shear flow using a fourth-

order accurate Runge-Kutta numerical integration scheme. Comparisons will be made with
the direct numerical simulations (DNS) of compressible homogeneous shear flow by Blaisdell
et at[3]. Both time-evolving fields and equilibrium states will be compared with DNS results.

Comparisons will be made with run SHA 192 of Blalsdell et al[3] since it is the best resolved
run that is of long duration (until St se 24). It will be shown that, consistent with the DNS,

the models predict that the turbulent kinetic energy, turbulent dissipation rate and mean

temperature grow exponentially with time. All structural parameters such as the anisotropy
tensor bii and turbulent Mach number Mi achieve equilibrium values that are independent

of the initial conditions.

First, we will consider model predictions for the case where there are no explicit dilata-
tional terms. This is done for one major reason: until very recently, the vast majority of

Reynolds stress calculations of compressible turbulent shear flows were conducted with vari-
able density extensions of incompressible models where explicit turbulent dilatational terms

were not included. Consequently, a benchmark is established for assessing the performance

of the recently proposed dilatational models. In Figure 1, the time evolution of the turbulent

kinetic energy predicted by variable density extensions of the LRR, FLT and SSG models -

with compressible dissipation and pressure-dilatation effects neglected - are compared with
DNS results of Blaisdell et al [3] (run SHA 192). Here, K = K/Ko and tV = St are the
dimensionless turbulent kinetic energy and the dimensionless time, respectively, where a
subscript 0 denotes the initial value. From these results, it is clear that all of the models

drastically overpredict the growth rate of the turbulent kinetic energy - a deficiency that

arises from the complete neglect of turbulent dilatational effects as discussed by previous

authors [14, 15, 19]. In Figures 2-3, the model predictions for the time evolution of the
turbulent dissipation rate (e* = ef/o) and turbulent Mach number (Mg) are displayed. Here,

as with the results shown in Figure I for the turbulent kinetic energy, the calculations are

made for St > 2 in order to avoid the unphysical early transient of the DNS which lasts for
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approximately one eddy turnover time due to the fact that the flow is initially seeded with
an artificial random Gaussian field. It is obvious from these results that the models substan-

tially overpredict the turbulent dissipation rate and turbulent Mach number. In regard to
the latter, highly unphysical equilibrium turbulence Mach numbers greater than 1.5 are pre-

dicted. This is true for both the FLT and SSG models which yield excellent predictions for
incompressible homogeneous shear flow. Consequently, it is clear that variable density ezten-
sions of incompressible Reynolds stress models, with turbulem dilatational effects neglected,

cannot properly describe compressible homogeneous shear flow - a conclusion consistent with
previous findings. The compressible dissipation and pressure-dilatation correlation give rise
to a significant reduction in the growth rate of the turbulent kinetic energy for compressible

homogeneous shear flow.

In Figure 4, computed results for the turbulent kinetic energy obtained from the LRR,
FLT and SSG models - with the compressible dissipation and pressure-dilatation models

of Sarkar et at [14, 15] - are compared with DNS results. With the addition of these
turbulent dilatational terms, the FLT and SSG models are now able to properly predict

the reduced growth rate of the turbulent kinetic energy that arises from compressibility
effects in homogeneous shear flow. The LRR model overpredicts the growth rate of the

turbulent kinetic energy by an amount comparable to that which has been documented for
incompressible homogeneous shear flow (Speziale, Gatski and Mac Giolla Mhuiris [7] showed

that the LRR model overpredicts the growth rate by about 25% for the incompressible
case). The computed time evolutions of the turbulent dissipation rate are compared with

DNS results in Figure 5. Although the dissipation rate is overpredicted, the inclusion of the
dilatational models of Sarkar leads to a substantial improvement over the results shown in

Figure 2. The computed model predictions for the time evolution of the turbulence Mach

number are compared with DNS results in Figure 6. With the addition of the dilatational

models of Sarkar, the FLT and SSG models now yield remarkably good predictions for the

turbulence Mach number as illustrated by these results.

Computed results for the LRR, FLT and SSG models with the addition of the compress-
ible dissipation and pressure-dilatation models of Zeman [16, 17] will now be considered.

Model predictions for the time evolution of the turbulent kinetic energy, turbulent dissipa-

tion rate and turbulent Mach number are compared with DNS results in Figures 7-9. Most
notably, the predictions of the FLT and SSG models for the turbulent kinetic energy and

turbulent Mach number are comparably good to those obtained using the dilatational mod-
els of Sarkar. Alternative tests of the Zeman models were recently reported for compressible

homogeneous shear flow that are comparably favorable [22].

In Figures 10(a)-10(c), computed results for the independent non-vanishing components
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of the Reynolds stress anisotropy tensor obtained from the LRR, FLT and SSG models -

using the dilatational models of Sarkar - are compared with DNS results. It is clear from
these results that all of the models drastically underpredict the magnitude of the normal

Reynolds stress anisotropies in compressible homogeneous shear flow; on the other hand, the
models overpredict the magnitude of the Reynolds shear stress anisotropy. The DNS results

of Blaisdell et al [3] indicate that the normal Reynolds stress anisotropies in compressible
homogeneous shear flow are nearly twice as large as their incompressible counterparts [23];
the magnitude of the Reynolds shear stress anisotropy is approximately 25% lower for com-

pressible homogeneous shear flow. Even with the addition of what appear to be reasonably

sound models for the compressible dissipation and pressure dilatation, variable density ex-
tensions of the LRR, FLT and SSG models are unable to predict the dramatic changes in
the Reynolds stress anisotropies that arise from compressible effects. This can be seen more

clearly from Tables 1-3 where the model predictions for the equilibrium Reynolds stress
anisotropies are compared with DNS results for incompressible homogeneous shear flow and
for compressible homogeneous shear flow, wherein both the dilatational models of Sarkar and
Zeman are implemented. It is obvious from these results that the individual model predic-

tions are in reasonably close range for both compressible and incompressible homogeneous
shear flow whereas the DNS results are drastically different.

5. CONCLUSION

A systematic evaluation of recently proposed Reynolds stress turbulence closures for
high-speed compressible flows has been conducted with the use of the DNS data base of
Blaisdell et al [3] for compressible homogeneous shear flow. The recently developed dilata-

tional models of Sarkar et al [14, 15) and Zeman [16, 17] were tested in conjunction with
variable density extensions of two of the newest models for the pressure-strain correlation:
the Fu, Launder and Tselepidakis (FLT) model and the Speziale, Sarkar and Gatski (SSG)

model. Consistent with the findings of earlier studies, it was found that when dilatational

effects arising from the compressible dissipation and the pressure-dilatation correlation are

neglected, variable density extensions of existing Reynolds stress turbulence closures yield
poor predictions for compressible homogeneous shear flow. DNS results indicate that com-

pressibility effects lead to a substantial reduction in the growth rate of the turbulent kinetic
energy - a feature that cannot be predicted by Reynolds stress turbulence closures wherein
turbulent dilatational terms are neglected. With the addition of the compressible dissipation

and pressure-dilatation models of Sarkar and Zeman, the newest Reynolds stress turbulence

closures are able to accurately predict the reduction in the growth rate of the turbulent
kinetic energy. Accurate results are also obtained for the turbulent Mach number which is
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overpredicted by 100% when turbulent dilatational terms are neglected. There appears to

be little doubt these dilatational models represent significant progress in the modeling of

compressible homogeneous turbulence.

Although the inclusion of the newest compressible dissipation and pressure-dilatation

models in Reynolds stress turbulence closures leads to substantially improved predictions for

the turbulent kinetic energy and Mach number, some substantial deficiencies still remain for

the proper description of compressible homogeneous shear flow. DNS results indicate that

compressibility effects in homogeneous shear flow lead to a substantial modification of the

equilibrium Reynolds stress anisotropies wherein the magnitude of the normal components

are nearly doubled and the magnitude of the shear component is reduced by approximately

25%. Even when compressible dissipation and pressure-dilatation models are added, the

Reynolds stress turbulence closures considered in this study are still unable to predict this

effect. This is due to deficiencies in the modeling of the deviatoric part of the pressure-

strain correlation which controls the level of Reynolds stress anisotropy. The pressure-

strain models considered herein - as well as those used in virtually all previous studies

of compressible turbulence - do not account for explicit compressible effects. This is a

reasonable approximation for compressible flows where the turbulent Mach number MA <

0.3: a restriction that allows for the Morkovin [24] hypothesis to be invoked. However, in

compressible homogeneous shear flow the turbulence Mach number achieves an equilibrium

value of approximately 0.6 - a value that is too large to neglect explicit compressible effects

in the modeling of the pressure-strain correlation. The standard hierarchy of pressure-strain

models is based on an analysis of the incompressible Poisson equation for the pressure that

does not apply to high-speed compressible flows. For these flows, the pressure is determined

from a thermodynamic equation of state unlike the pressure in incompressible flows which

is a Lagrange multiplier determined by the solenoidal constraint on the velocity field. If

high-speed turbulent shear flows are to be better described, entirely new models are needed

for the deviatoric part of the pressure-strain correlation that incorporate some compressible

turbulence physics.
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Equilibrium LRR Model FLT Model SSG Model DNS Data

Values

bi 0.155 0.208 0.219 0.215

b12 -0.187 -0.146 -0.164 -0.158

b22  -0.121 -0.144 -0.146 -0.153

b- -0.034 -0.064 -0.073 -0.062

Table 1. Comparison of the model predictions for the equilibrium Reynolds stress anisotropies
with the DNS results of Rogers et al [23] for incompressible homogeneous shear flow.

Equilibrium LRR Model FLT Model SSG Model DNS Data
Values

bhl 0.166 0.189 0.230 0.424

b1 2  -0.187 -0.148 -0.165 -0.118

bn -0.130 -0.138 -0.148 -0.236

bS -0.036 -0.051 -0.082 -0.188

Table 2. Comparison of the comprssible model predictions (using the dilatational terms of
Sarlar et at (14, 15]) for the equilibrium Reynolds stress aisotropies with the DNS results
of Blaisdell et al [3] for the compressible homogeneous shear flow.
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Equilibrium LRR Model FLT Model SSG Model DNS Data
Values

bul 0.167 0.187 0.231 0.424

b12 -0.191 -0.148 -0.167 -0.118

b22 -0.131 -0.137 -0.148 -0.236

63 -0.036 -0.050 -0.083 -0.188

Table 3. Comparison of the compressible model predictions (using the dilatational terms

of Zeman [16, 17]) for the equilibrium Reynolds stress anisotropies with the DNS results of

Blaisdell et al [3] for compressible homogeneous shear flow.
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Figure 1. Time evolution of. the turbulent kinetic energy: Comparison of the model pre-

dictions (without explicit dilatational terms) and the DNS results of Blaisdell et al [3] for

compressible homogeneous shear flow. (--)LRR Model; ( .. )FLT Model; (-) SSG

Model; (0) DNS results.
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Fiue 2. Time evolution of the turbulent disspation rate: Comparisn of the model pre-

dictions (without explicit dilatational terms) and the DNS results of Blaisdell et at [3] for

compressible homogeneous shear flow. (--)LRR Model; ( .. )FLT Model; (-- ) SSG

Model; (0) DNS results.
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IF'igre 3. Tirae evolution of the turbulent Mac~h number: Comparison of the model Pre-

dictions (without explicit dilatational terms) a,,d the DNS results of Blaisdell et al [3] for

compressble homogenous shea flow. (--)LR Model; ( .. )FLT Model; ( )SSG
Model; (0) DNS results.
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Figure 4. Time evolution of the turbulent kinetic energy: Comparison of the model predic-

tions (with the dilatational terms of Sarkar et al [14, 15]) and the DNS results of Blaisdell

et at [3] for compressible homogeneous shear flow. (u_}LRR Model; ( .. )FLT Model;

---)SSG Model; (0) DNS results.
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Figure 5. Time evolution of the turbulent dissipation rate: Comparison of the model predic-

tions (with the dilatational terms of Sarkar et al [14, 151) and the DNS results of Blaisdell

et al [3] for compressible homogeneous shear flow. (- -) LRR Model; ( . .) FLT Model;

(---) SSG Model; (0) DNS results.
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Figure 6. Time evolution of the turbulent Mach number: Comparison of the model predic-

tions (with the dilatational terms of Sarkar et at [14, 15]) and the DNS results of Blaisdell

d al,3] for comp bl homogeneous shear flow. (- -) LRR Model; (-....) FLT Model;

(---) SSG Model; (C) DNS results.
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Figure 7. Time evolution of the turbulent kinetic energy: Comparison of the model predic-

tions (with the dilatational terms of Zeman [16, 17]) and the DNS results of Blaisdell et at [3]

for compressible homogeneous shear flow. (--)LRR Model; ( .. )FLT Model;(--)

SSG Model; (0) DNS results.
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Figure 8. Time evolution of the turbulent dissipation rate: Comparison of the model pre-

dictions (with the dilatational terms of Zeman [ 16, 17]) and the DNS results of Blaisdell et

at [31 for compressible homogeneous shear flow. (-)LBR Model; (--)FLT Model;

-)SSG Model; (*~) DNS zesults.
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Figure 9. Time evolution of the turbulent Mach number: Comparison of the model predic-
tions (with the dilatational terms of Zeman [16, 17]) and the DNS results of Blaisdell et al [3]
for compressible homogeneous shear flow. (- -) LRR Model; (-....) FLT Model; (-)
SSG Model; (0) DNS results.
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Niu"e I0. Time evolution of the Reynolds stress allisotropies: ComParison Of the modelpredictions wt h dltto. terms Of Sarkar et at [14, 151) and the DNS results ofBlaisdell et at [3J for compresajbje homogeneous shear How. (_ _) LRR Model;(- )FLT Model; (-.) SSG Model; (0) DNS results. (a) bu, (b) 622 and (c) k2:.
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Figure 10. Time evolution of the Reynolds stress anisotropies: Comparison of the model

predictions (with the dilatational terms of Sarkar et al [14, 15]) and the DNS results of

Blaisdell et at [3] for compressible homogeneous shear flow. (- -) LRR Model; ( . )

FLT Model; (-) SSG Model; (0>) DNS results. (a) bul, (b) b22 and (c) 5b12.
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Figure 10. Time evolution of the Reynolds stress anisotropies: Comparison of the model
predicti'uns (with the dilatational terms of Sarkar et al[14, 15]) and the DNS results of
Blaisdell et al[3] for compressible homogeneous shear flow. (- -) LRR Model; ( . )
FLT Model; (-S) SSG Model; (0) DNS results. (a) bil, (b) b22 and (c) b12.
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