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Abstract

We give an operational model of causally-ordered message-passing primitives. Based on this
model, we formulate a Hoare-style proof system for causally-ordered delivery. To illustrate the
use of this proof system and to demonstrate the feasibility of applying invariant-based verification
techniques to algorithms that depend on causally-ordered delivery, we verify an asynchronous
variant of the distributed termination detection algo~ithm of Dijkstra, Feijen, and van Gasteren.
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1 Introduction

Causally-ordered delivery can be understood as a generalization of FIFO ordering [vR93]. In both,

a message is delivered only after all messages on which it may depend. With FIFO ordering, this

guarantee applies only to messages having the same sender; with causal ordering, this guarantee

applies to messages sent by any process. Additional motivation for and examples of the use of

causally-ordered delivery can be found in (Bir93, vR93I.

This paper gives a proof system for causally-ordered delivery. Our proof system is similar

in style to the satisfaction-based logics for synchronous message-passing in [LG81], for ordinary

asynchronous message-passing in [SS84], and for flush channels in [CKA93]. We assume familiarity

with the terminology of that literature.

Reasoning about message-passing primitives for causally-ordered delivery involves a global prop-

erty: the system-wide causality relation, which defines what messages are deliverable. This dis-

tinguishes causally-ordered delivery from the types of message passing for which axiomatic se-

mantics have already been given (e.g., [LG81, SS84, CKA93]). And, our work demonstrates that

substantially new methods are not required when message-delivery semantics depends on global

information.

A program proof in a satisfaction-based logic involves discharging three obligations:

(1) a proof outline characterizes execution of each process in isolation,

(2) a "satisfaction proof" validates postconditions of receive statements, and

(3) an interference-freedom proof establishes that execution of no process invalidates an as-

sertion in another.

Our proof system for causally-ordered message-passing is similar, except step (2) is merged with

step (1). (Such a merging is also possible for other satisfaction-based proof systems that handle

asynchronous communication primitives, like the logics of [SS84] and [CKA93].)

The remainder of the paper is organized as follows. Section 2 defines causally-ordered message-

passing. Our proof system is the subject of Section 3. In Section 4, we use the proof system

to verify an asynchronous variant of the distributed termination detection algorithm of Dijkstra,

Feijen, and van Gasteren [DFvG83]. Section 5 contains some conclusions.
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2 A Model of Causally-ordered Message-passing

We give an operational semantics for causally-ordered message-passing primitives by translating

programs containing these primitives into a generic concurrent programming language that has

shared variables. The shared variables represent the state of the network.

Processes communicate by sending and receiving messages. To encode the restrictions implicit

in causally-ordered delivery, each message sent is modeled in our translation by a triple (d, i,ti,

where
1

d is the data being sent by the program,

i is the name of the process2 that sent the message, and

t is a timestamp that contains information used to determine whether the message is ready

for delivery.

The following functions are useful in connection with messages represented by triples.

data((d,i,t)) -A d

sender((d,i,t)) A_ i

ts((d,i,t)) -A_ t

Two shared variables ai and pi are associated with each process i. Variable oi contains the

(triples modeling) messages sent to process i; pi contains the (triples modeling) messages process i

has received.

There is an obvious and seemingly simpler alternative to using variables oi and pi. It is to use

a single variable Xi (say), where the value of xi is the set of messages sent to process i but not

yet received (i.e., Xi equals oi - pi). The model we use has two advantages over this one-variable

model. First, in our model, proving interference freedom (defined in Section 3) is easier. This is

because no process can falsify m E oi or m E pi; predicate m E Xi would be invalidated by the

receiver. Second, proofs of some programs (such as the example in Section 4) involve reasoning -r

about communications history. That history is available in ai and pi but is not available in Xi. 01
Causally-ordered delivery restricts when a message can be received. This is achieved in our

An actual implementation of causally-ordered delivery might not require a sender name i or timestamp t. That -

information is used here to abstract from the details of all real implementations. -..
2Processes are named 0,1,..., N - 1, and hereafter identifiers i,j, k, and p range over process names.
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translation by defining a well-founded partial order - on timestamps. Our definition of -4 is based

on the theory of [Lam78]. A system execution is represented as a tuple of sequences of events;

each sequence corresponds to the execution of a single process. An event is a send event, a receive

event, or an internal (i.e., non-communication) event. The happens-before (or "potential causality")

relation -- for a system execution is the smallest transitive binary relation on the events in that

execution such that:

"* If e and e' are performed by the same process and e occurs before e', then e -* e'.

"* If e is the send event for a message m and e' is the receive event for that message, then e --- e'.

Causally-ordered delivery is formalized in terms of -- as follows [BSS91]. Let send(m) and

receive(m) respectively denote the send event and receive event for a message m.

Causally-ordered Delivery: Ifm and m' are sent to the same process and send (m)i

send(mn'), then receive(m) --+ receive(m').3

To implement Causally-ordered Delivery using timestamped messages, the timestamps and -<

are chosen to satisfy

ts(m) -< ts(m') iff send(m) --+ send(r'). (1)

Causally-ordered Delivery is then equivalent to requiring that a message ry is received by a process

p only after p has received all messages m sent to p for which ts(m) -< ts(m') holds.

One way to achieve (1) is to use vector clocks [Fid88, Mat89l. Here, a vector vtj of type

array[O..N - 1] of Nat is associated with process i, where vti satisfies:

Vector Clock Property: vtij] is the number of send events that are performed by

process j and causally precede the next event to be performed by process i.

Partial order -• is defined in terms of vector clocks, as follows.

Vt1 #Vt2 .~(3i. Vt1iji 0 vt2Iij)

Vtl " Vt2 A (Vi : Vtd[i] _ 5t2[i]) A vtj 96 Vt 2

3FIFO delivery can also be formalised in terms of -.. FIFO delivery ensures that if m and m' are sent by the
same process, to the same process, and jeu(m) -- se•d(m'), then receive(m) -- receive(m'). The close analogy
between FIFO delivery and causally-ordered delivery should now be evident.
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Three rules define how the utj are updated in order to maintain the Vector Clock Property.

Since only send events and receive events are of interest, vector clocks are updated only when

send and receive statements are executed. Let inc(vt,i) denote vector vt with the ilk component

incremented by one. The rules are:

Initialization Rule: Initially, vtij] = 0 for all i and j.

Send Update Rule: When process i sends a message m, it updates vtj by executing

vt, := inc(vti,i)

and includes updated vector vt, as the timestamp attached to m.

Receive Update Rule: When a process i receives a message m, it updates vt, by

executing

Vt, := max(vti, tu(m)),

where max(vt, vt') is the component-wise maximum of the vectors vt and vte.

We now give our translation of send and receive statements into statements that read and write

shared variables a, and p,. The following notation is used to describe the multiple-assignment

[Gri76] of el to zX, e2 to M2, ... , and e. to zX:

X2 C2

A send statement send e to i in process j is translated into:

(:t : in(vZij?)l(l 3 j (2)vii (e, j, inc(t,)/

where s E z A U {W}.

The translation of a receive statement requires a conditional delay. Statement await B then S

delays until B holds and then executes S as a single indivisible operation starting from a state

that satisfies B. A receive statement receive z in process i delays until a message is available
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for ruceipt and then updates z, pi, and iti. In particular, to ensure causally-ordered delivery,

receive x delas until there exists some message m that has been sent to i but not received and

such that all messages mi' that have been or will be sent to i for which ts(m') -4 ts(m) have been

received.

For a set A of triples modeling messages, choose(A) and minset(A) are assumed to satisfy

choose(A) E A provided A # 0 (3)

min'et(A) A {m E A I (Vm' E A: -'(ts(mW) -.< ts(m)))} (4)

A receive statement receive x in process i is translated as follows, where mj is a fresh variable.

await ai - pi 7 0 then mni := choose(minset(ai - pi))

X := data(m,) (5)

Pit := max(vtv, tas(m))

To show that code fragments (2) and (5) correctly implement Causally-ordered Delivery, con-

sider some message m that is received by a process i. We must show that no message m' subse-

quently received by process i satisfies send(m') -- send(m). Suppose such a message m' exists.

By (1), ts(m') -4 ts(m). Message m' could not be in a' when m is received, since m is selected

from among the elements of ai with minimal timestamps. Thus, m' must be added to a. after m

is received. We show that this is impossible by proving: For all messages m_ and in', if m' is added

to 0i after m has been added, then -'(t.(m') -< ts(m)).

First, observe that the following holds throughout execution of a program.

(Vj,k: vti[kI _< vtklJ A (Vi E o: ts(m)[kJ - vtk[kl)) (6)

Initially, this holds because for all j and k, vtj [kJ = 0 and ai = 0. Only send and receive statements

change the values of these variables, so it suffices to show that our translations of these statements

preserve (6), which is easily done.

Finally, we show that -'(ts(m') -< ts(m)). This is implied by (3k : ts(m')[k] > ts(m)[k]), which,

in turn, follows from ts(m')[j] > ts(m)[j] where j is the sender of in. The latter holds because

ts(m')Ij] -t- ij] + 1 > vt1•[j Ž ts(m)jl, where the equality follows from the translation of send
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statements, the strict inequality follows from standard arithmetic, and the nonstrict inequality

follows from (6).

3 Axioms for Send and Receive

We can now present Hoare-style axioms [Hoa78] for the send and receive statements described

above.

Given the above translation of send e to i into a multiple-assignment statement, we use the

multiple-assignment axiom [Gri76] to obtain an axiom for the send statement. The notation e[zi :=

el, ... , z,: en] denotes the simultaneous substitution of each term ei for the corresponding

variable zi in a term e. Validity of the following triple follows immediately from the multiple-

assignment axiom:
IP[vt := inc(vj, j), ai := (D (e, j, inc(,tj,,j))] I

ti inc(vtij))

01 •a, E (e,j, inc(vt,,j))

{P}

Thus, we have

Send Axiom: For a send statement in process j:

{P[vt := inc(vt,,j), ai := a, E (e,j, inc(vti,j))]} send e to i {P} (7)

An inference rule for receive statements is obtained using translation (5) of receive z. Using

axiom (3) for choose, the usual rules for assignment and sequential composition, and this inference

rule for await statements [OG76]

Await Rule:
(PAB)}S{Q (8)

{P) await B then S{Q )

we can show that {P} receive z {Q} is valid iff the following Predicate Logic formula is valid:

P A 7n E minuet(a - p)

=* Q[z := da*a(mv), vtj := max(vtt, ts(mi)), Pi := Pi ( M].

Thus, the inference rule for receive statements is

7



Rceive Rule: For a receive statement in process j:

P A mN E miset(, - pj)

=0 Q[z := data(mi), vti:- max(vti, ts(rni)), pi:= p, e 4ni]

{P} receive z {Q} (9)

Interference Freedom

The preceding rules for send and receive, together with rules for other statements and the usual

miscellaneous rules of Hoare logics (e.g., the Rule of Consequence), can be used to construct a proof

outline for each process in isolation. A proof outline is a program annotated with an assertion before

and after every statement. A proof outline characterizes the behavior of a process assuming that

no other process invalidates assertions in that proof outline. The proof outlines for processes that

execute concurrently are combined to obtain a proof outline for the entire system by showing

interference freedom [OG76]- that no process invalidates assertions in the proof outline of another

process.

In a proof outline PO, the assertion that precedes a statement S is called the precondition of

S and is denoted pre(S), the assertion that follows a statement S is called the postcondition of S

and is denoted post(S), and we write pre(PO) and post(PO) to denote the first and last assertions,

respectively, in PO. We write {P} PO {Q} to denote the triple obtained by changing pre(PO) to

P and post(PO) to Q.

An assertion P appearing in a proof outline PC1 is interference free with respect to proof

outlines POI,..., PON if for all assignments, sends, and receives S in a different proof outline than

P,

{PApre(S)}S{P} (10)

is valid. This is because (10) asserts that execution of S does not invalidate P. Assignment to

variables is the only way to invalidate an assertion.4 Since our translations for send and receive

contain assignments, the interference freedom obligations require checking (10) for each send and

receive statement, as well as for each assignment to an ordinary program variable.

Proof outlines PO 1 ,... , PON, are interference free if all assertions P in the proof outlines are

interference free in P0 1 , ... , PON. This leads to the following inference rule.

'This is actually an asumption about the aasertion language. For example, it rules out allowing control predicates
in assertions.
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Parallel Composition Rule:

P01, ... , PON P0 1 ,..., PON are interference free

{Ai pre(POO) [PO1 I1.. II PON] {Ai post(PO)} (11)

Note that, in contrast to the logics for asynchronous communication in [SS84] and [CKA93],

our parallel composition rule does not have a "satisfaction" obligation. This is not an artifact of

causally-ordered message-passing; the logics of [SS84] and [CKA93] could be similarly formulated.

4 Example: Distributed Termination Detection

To illustrate our proof rules, we give a proof outline for the termination detection algorithm of

[DFvG83]. Validity of this proof outline shows that the algorithm correctly detects quiescence in

systems of processes that communicate using causally-ordered message-passing. Our proof outline

is based on the correctness argument given in [DFvG83], modified for causally-ordered delivery

instead of the synchronous communication assumed there.5

The algorithm is intended for use in systems where processes behave as follows: At each instant,

a process is either active or quiescent, where the only action possible by a quiescent process is receipt

of a message. A quiescent process may become active upon receipt of a message; an active process

becomes quiescent spontaneously. Each process i has the form

Initm
do

0 9ij send eii toj (12)ji" Si 12

0 receive zi I- R
od

where the gij are boolean expressions, and Initj, Sil, and Ri are statements that do not contain

communication statements. Such a process i is quiescent iff each guard gii is false. This is formalized

by:

qj -- V -• j

In the algorithm of [DFvG83] a token circulates among the processes. This introduces a new

kind of message, which we call a token message. To distinguish it from the messages in the original

"In [AptS6], the partial-correctness argument of [DFvG83I is formalized and some additional properties of the
algorithm are proven.

9



',....... ..

computation, hereafter called basic messages, we use a predicate istok(data(m)) that holds exactly

when m is a token message. Note that a process of the form (12) cannot send basic messages to

itselffe Define:

aio {rm E orI istok(data(m)))

, {fm E p I istok(data(m)))

Xi A{fm E oi - pi I -'istok(data(m)) A sender(m) =i}

The system is quiescent if every process is quiescent and no messages are in transit. Thus, the

system is quiescent if" the following predicate Q holds.

Q A (Vi : qj A (Vj : Xij =•

A color, either black or white, is associated with each process. For each process i, we introduce

a boolean variable bi such that b, is true iff process i is black. The detection algorithm sets b,

to true when process i sends a basic message; its sets b, to false when i sends a token message.

Therefore, we can assert that bi holds if process i has a sent a basic message since it last sent a

token message. This is formalized as an assertion in terms of the following state function:7

lzi: The largest timestamp in {rm E 6j Uotok I sender(m) = i}, if such a timestamp exists;

otherwise 0.

The assertion is now formalized as:

J1 -A (Vi : (3j : (-3mr E Xjj : Lij -< ts (m))) =o- bj)

The algorithm proceeds as a sequence of rounds. One process serves as the initiator for all

rounds; it starts each round by sending a token message. Without loss of generality, assume

process 0 is the initiator. In each round, the token is received by every process exactly once, ending

with the initiator. We define the token to be at position i if it has been sent to process i and not

subsequently sent by process i; we say that the token visits a process when the token has been

received by but not sent from that process. For each process i, we introduce a new variable hi that

"This restriction is not needed for correctness of the algorithm; we adopt it here because simplifies the correctness
proof slightly.

7The name lzi is a mnemonic for "last transmission" of the token by process i.
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is true iff the token is visiting process i.

In each round, the token visits the processes in descending order by process name. Thus, the

token visits process N - 1, N - 2, ... , 0, and the current token position is given by the state

function:
t A i -1 if (Vj 0ii : /xi -</4j)

IN - 1 otherwise

Note that all arithmetic on process names is modulo N.

An assertion Jt0 j says that the N most recent sends of token messages are totally ordered by

causality. This is equivalent to stipulating that the timestamps on these token messages form an

ascending sequence; for example, if tp # N - 1, then L/tit.it- , ... _ 0 & N-1 _ LN-2 _

•. -< lXtp+1. Formally,

Jtok A_ (Vi 96 tp : LT,+ I _LT,)

An assertion relating the timestamps of token messages to the timestamps of basic messages is

also needed. For this, we use an assertion Jbjs, whose informal interpretation is as follows.

Let m be a basic message sent from i to k that was sent before the a'h transmission of the

token by the sender. If m was sent in the same direction that the token travels (i.e., if k < i),

then m must be delivered before the ach transmission of the token by the receiver. If m was sent

in the other direction (i.e., if i <_ k), then m must be delivered before the (a + 1)'t transmission

of the token by the receiver. Jb, holds throughout execution of the algorithm because causally-

ordered message-passing is used for all messages-the values of timestamps are consistent with this

ordering. We formalize the assertion using an additional state function.

n~ix: The second largest timestamp in {m E Uj ct k I sender(m) = i}, if such a timestamp

exists; otherwise 6.

Jb.. _4 (Vi, k : Vm E Xi,k: (13)

(k _< tp < i n/x• -. ts(m))

A (k<iA-,(k<_tp<i) ix-.< ts(m))
A (i <_tp <k =o-z -.< ts(m))

A (i< kA-i(i <tp< k) = nix, -< ta(m)))

Assertions A1, JA., and Jtk contain all of the information about message-delivery order needed
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for correct operation of the algorithm. We encapsulate this information as a single assertion J:

J --i J A Jb.. A Jtk

As with processes, a color, either black or white, is associated with the token. The color of the

token is represented as before-black is encoded as true, and white is encoded as false. While in

transit, this boolean value is included in each token message; while the token is visiting a process

i, a new variable ti is used to store the color of the last token message received by process i.

Given a boolean value c, mktok(c) denotes a token value whose color is c. The color of the

token is extracted using a selector tokval. Thus, istok(mmktok(c)) = true and tokval(mktok(c)) = c.

In each round, the token is initially white. It becomes black (if it isn't already) when it visits a

process i (i.e. hi equals true) that is black (i.e. bi equals true). Thus, the token becomes black

when it visits a process that has sent a basic message since last sending a token message, and the

current token color is given by:

ttp V btp if htp

tc A tokval(data(m)) if -,hp A m E ci;k A ts(m) =

true otherwise

We also add to each process i a new variable yi, which is used for temporary storage of received

values.

When the token returns to the initiator, if either the initiator or the token is black, then the

initiator starts another round. If both are white, then the system is quiescent (i.e., Q holds)s. This

fact is implied in the proof outlines of Figure 1 by the Q in the precondition for the second branch

of the alternation statement RELAYO.

The operation of the algorithm is succinctly characterized by K, where K -__ KI V K2 V K3 and:

K 1 4 (Vi > tp: q^ A (V: Xik =0))

A (htp =* (Vk > tp Xtp,k=))

K2 A (3i < tp : bi)

K3 A tc

$Here, the initiator does not take any special action when quiescence is detected. A round of communication could
easily be added to notify each process that quiescence has been detected.

12



Informally, K1 says that every process visited by the token in the current round is quiescent and no

basic message sent by one of these processes is in transit. Moreover, if the token is visiting process

tp, then no basic messages sent by process tp are in transit to processes the token has visited in

this round. K2 says that some process not already visited by the token during the current round

is black. Finally, K 3 says that the token is black.

Assertions J and K are not quite strong enough to prove correctness of the algorithm. An

assertion I that expresses several simple properties of the algorithm (e.g., that there is always at

most one token message in the system) is also needed. Thus, we define I a I A J A K, where

I A- (Vi: (Il~iI a,,°k -0 gk)l 1_< 1)

A(Vm E ai : tsWm • Vts•end(m,))

^(Vm E ai : ts(m) -<vti m E pi)

A(Vm E pi : ts(m) 5 vt,)

A(laiok - pok I < 1)

A((hi V !Ok 96piok) =* tp i)
A((hi V

A(aio = {m E Uiajok I sender(m) = i + i})

A(total({m e Uo• I sender(m) = i}))

A(total(Uiaj,-k))

A(Ltz " vti)

A(Xi,= 0))

and total(S) holds iff {t I (3m E S: ts(m) = t)} is totally ordered by -<.

Proof outlines for processes augmented to detect termination appear in Figure 1. The Appendix

contains a detailed justification of the proof outlines.

Angle brackets indicate that the enclosed statement is executed atomically [Lam80].9 Also,

communication statements may appear in guards, so we use the following proof rule for iteration

statements:

'Angle brackets are not actually necessary for correctness. They do simplify the proof slightly, so we have elected
to use them.
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Proof Outline for Process i

IT A -,h. A tp 2: i A (i -- 0 fIo (Vj : ;Ok Of ))

INIT, {I}
do

joi bi :-- true {1 A g, A bj}
sende,.toj {TXA g}
s,, {I}

0J receive y, - {IA(-'istok(yh) *: K(q, := false])
A(istok(V,) *4 tp- i A -h, A tc = toktal(yi))}

if istok(yi) IT {A tp = i A -'h, A tc = tokval(yi)}
(hi := true
tj :tokval(yi)) {I}

0 -'istok(yi) 1 {A A K[qi := false]}
Xi := yj {Z A K[qi false]}

0 qiAhi IT{AAqiAh }
RELAY, {I}

od

IT}

INITo A send mktok(false) to N - {T A -"ho A tp > O}

lnito

RELAYo A if (to V bo) -- { A ho}
(send mktok(false) to N- 1

ho := false
bo :=false) {I}

0 -(to v bo) - {T A Q}
(* quiescent )
skip {I)

ft

For O<j <N:

INITj A Init,

RELAY3 A (send mktok(ti V bj) to j - 1
hi false

bj :false)

Figure 1: Proof Outlines
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Iteration Rule:

For i E [1..NJ, {I A 9,} C {P,} PC, {I}
{I}
do0] 9,;, {ei} 14
E(1..-N] PO(

{I}
od
J1 A -M(VLEI..Nj -9)}

Here, g, is a boolean expression and C, is a receive or skip statement.10 One might expect there to be

an assertion between g9 and Ci in the rule's conclusion. Expression gi contains program variables

of only process i, so g, cannot be invalidated by execution of another process. In particular,

interference cannot occur even if evaluation of g, and execution of Ci are not performed as a single

indivisible action. Thus, there is no need to make the assertion explicit.

To illustrate reasoning about receive statements, we give a detailed proof for the triple

{I) receive yi {1 A (-'istok(yj) =; K[q, := false]) A (istok(yi) =* tp = i A -1h, A tc = tokval(yjl))}

(15)

This triple arises as a hypothesis in the application of the Iteration Rule to the main loop of each

process. The triple expresses a crucial fact about the algorithm-that activation of a process (i.e.,

the changing of q, to false) by reception of a basic message does not falsify K. By Receive Rule

(9), we can deduce (15) from

XAmj E oi-pi =* (.1A (-istok(yi) =* K[qi := false])A (istok(yj) =o tp= i A- -h. Atc = tokval(syi)))'

(16)

where for any term t,

t, A_ tqyj :-- data(n4), vtj := max(vti, ts(n4)) pi := Pi 9 rai

We show in the Appendix that I =* I is valid. Here, we first show that

I A fN E a, - pi A -,istok(Vi') =: K[qi := falsel' (17)

"1°The guard "gskip" Is abbreviated "g"; the guard "ime; receive z" is abbreviated "receive z".
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4 V -.... .. - -y

Is vsAd. We hsume the antecedent and prove the consequent. Note that

K[q := fake]' = (K'q := fle] V K2 V K3)

Thus, if K2 or K3 holds, then so does (17). Suppose neither K2 nor K3 holds. Since I holds

by assumption, K must also hold, so K1 must hold as well. We now show that in this case,

K'[gi :=i false] holds. First, note that K'1 holds; this follows easily from the fact that KI holds.

The proof proceeds by case analysis on the relative values of i and ip.

case i < tp: KI does not depend on the qi's for j _ tp. Therefore, since K• holds, so does

K [q, :-=false].

case i > tp: We show that this case is impossible. Let k A sender(mr). From the antecedent of

(17) and the definition of Xk,t, we conclude mN E Xk,i.

case k <tp: Instantiating the universally quantified variables i and k in Jb., with k and i,

respectively, we conclude (using the third conjunct of J,) that 4k -< ts(in1 ). Using J1 ,

this implies that bk holds, which implies that K2 holds. This contradicts the assumption

above that neither K2 nor K3 hold.

case k > tp: By assumption, K1 holds, so (Vj : Xkj = 0), so Xk,i - 0. From the antecedent

of (17), we have -'istok(yi') (i.e., -'istok(data(mi))) and mNE 6 - pi, so by definition of

Xki, we have m4 E Xi,•, a contradiction.

Finally, consider showing that (istok(y,) =o tp = i A -h•' A tc = tokval(y,))' holds whenever the

antecedent of (16) holds. This is equivalent to showing

.A YNi E ai - pi A istok(data(nm)) 4, tp = i A -'h, A tc = tokval(data(mY)) (18)

We assume the antecedent and prove the consequent. From the antecedent, we conclude mn E

au - pt•. Thus, a,# A ei, so by conjunct (Vi: (h, V :k 6 pw)*p = i)) in I, tp =i

holds. We next show, by contradiction, that -'hi holds. Suppose not; then h, holds, so (using I),

o,:4 p•ok, which contradicts mj E ao• - p!. Finally, we show that tc = tokval(data(mi)). From

I, ju"! - il4I ! 1; thus, mn is the only unreceived message in aok, so mi must have the largest

timestamp in 010, so ts(mY) =-/z•+,. This, together with -,h,, implies tc = tokval(data(in,)).

16



Comparison to Related Work

The first correctness argument applicable to this distributed termination detection algorithm in

an asynchronous setting is (to the best of our knowledge) an operational argument due to Raynal

and Helary [RHg0]. Proposition 3.8.1 in [RH90] establishes partial correctness assuming that the

message-delivery order satisfies a property P. Our proof assumes causally-ordered delivery, which

implies our predicate J&; Jb,. is similar to but slightly stronger than property P of [RH90].

Another operational (albeit more formal) proof, by Charron-Bost et al., appears in [CBMT92].

It shows correctness of this termination detection algorithm for systems that communicate using

causally-ordered message-passing. The proofs there differ considerably from the invariant-based

analysis of the synchronous case in [DFvG83]. In fact, Charron-Bost et aL claim that correctness

proofs for all algorithms that use causally-ordered delivery "must consider the execution as a whole,

rather than concentrate on assertions that remain invariant in each global state" ([CBMT92], p.

34). The existence of our proof, which is an invariant-based analysis, refutes this claim.

5 Conclusions

We have presented a Hoare-style proof system for causally-ordered delivery. Through an example,

we have demonstrated the feasibility of our approach to reasoning about causally-ordered deliv-

ery. The example, a distributed termination detection algorithm, has been treated using other

approaches, so there is now an opportunity to compare those approaches with the one in this

paper.

The fact that a correctness proof for causally-ordered delivery can be based closely on the

analysis of a synchronous version is a significant benefit of the approach discussed in this paper.

We support a two-step approach to verifying algorithms that use asynchronous message-passing

[Gri9O]:

1. Verify a synchronous version of the algorithm (presumably a simpler task).

2. Modify the algorithm and the proof to obtain a correctness proof for the asynchronous version

of the algorithm.

One benefit of this two-step approach is that it leads naturally to a focus on and accurate determi-

nation of the ordering requirements needed by the algorithm. An interesting question is the extent

to which this approach can be made formal and systematic.
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A Proof of Correctness

We show that the proof outlines in Figure I are valid. We discuss only the triples for non-composite

statements. It is easy to prove validity of the proof outlines in Figure 1 using these results and the

inference rules for sequential composition, iteration, and alternation. The triples for non-composite

statements that arise in the proofs for each process in isolation are listed in Figure 2. Proving

invariance of I is straightforward, so we omit those details. For brevity, we sometimes content

ourselves with giving an informal explanation for why a triple is valid; based on this, the reader

should have little difficulty constructing a formal proof.
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j i• i: k!• ¾ • • *:•, 4••-

flr0<i< N:

TI: (I A -h.aAtp Q}Jaiti {X)
T2: { A^ b.:= tA e A _ A} 1 N,-1
T3: {Z A q A k) send eq to j {Z A.9}
T4: {I A gj) Sjj {X}
TS: {(} receive y, {I^A(-'tok(y,) =o Kf[q falsel)

A(istok(yj) =0 ip - i A 4-'a A ic =toktval(yj))}

T6: {2 A p = i•A -h, A t= tokfoa(y,)) (14 := tme t, := tokval(y,)) 1}
T7: {IZ A K[6::fakue]) z, := {Z A K16 :=:fake]}
TS: f27A K[6 :fakse])}Rs {X
T9: {Z A % A h,} (send mtdok(t V bi) to i - 1 h := .fake bN := fale) {(}
TIO: {I A -ho A tp _> 0 A (Yj : aoi = 0)) send mktok(fale) to N - 1{ A -,h A tp> 0}
Ti1l: { A -,hoA tp ŽO0)Inito{(1)
T12: {I A ho} (send nktok(faec) to N - I ho := false o: false) {I)

Figure 2: Triples for non-composite statements.

A.1 Proof for Process i > 0 in Isolation

T 1: Z A -k A , > i} INIT, {Z)

Since i > 0, INIT, is Jnit,. J is unaffected by execution of Init, because Initi neither sends nor

receives messages. To see that K is also unaffected, note that the only variables that appear in K

and can be assigned by Init, are those appearing in q., and that K is independent of q, for i < tp.

The precondition of T1 implies i < tp, so K is not invalidated by INIT,.

"T2: (T A g"} b := true (IZ A gl A/ Ab

J is unaffected by execution of this statement. Variable b, occurs only positively in K, so setting

bi to true never falsifies K. Finally, bi does not appear in g9q, so the assignment to b, does not

falsify Diij .

T3 : {Z AgiiA b,)send eq to j{Z1A gi I

We prove invariance of J as follows. J. is preserved because b, holds. Jt.& is unaffected because

the message being sent is not a token message. Let m denote the element added to a. by executing
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this statement. To show that Jb. is preserved, it suffices to show that L/= -< ts(m) and niz, -< ts(m)

hold, since J., is then satisfied regardless of which conjunct applies to this message. By definition

of the send statement, ts(m) = inc(vt,,i), so (by definition of -<) vt, -< ts(m). From I, we have

Izi -< vti, so by transitivity of -<,Izi -< ts(m). It follows from the definitions of Lzi and nL/i that

n/zi _zLi, so by transitivity of -<, nLxi -< ts(m). Thus, J• is preserved.

The proof that K is preserved is by case analysis on the disjunct of K that holds initially.

case K1 : In this case, tp Ž i must also hold, since i > tp and KI imply qi, contradicting g., in the

precondition of T3. Since i :5 tp and bi hold, K 2 also holds, so see that case.

case K 2: K 2 is unaffected by execution of this statement, so K2 still holds after execution of this

statement.

case K 3: K3 is unaffected by execution of this statement, so K 3 still holds after execution of this

statement.

T4: {2" A gi} IS {1}

J is unaffected by execution of $,, because Sii neither sends nor receives messages. The only

variables that appear in K and can be assigned by S0 are those appearing in qi. Since 9,, holds,

qi is false, so execution of 5,, either truthifies qi or leaves it unchanged. Variable qi occurs only

positively in K, so truthifying qi never falsifies K.

T5: {I} receive y, {I A (-,istok(y,) =: K[qi := false]) A (istok(yi) =• tp = i A -h1- A tc = toktal(y,))}

Adding elements to p. never falsifies J or K, and J and K do not depend on y, or vti, so J and

K are preserved by execution of this statement. We argued in Section 4 that the other conjuncts

in the postcondition hold after execution of this statement.

T6: {I A tp = i A -,h. A tc = tokval(yi)} (h, := true ti := tokval(yi)) {Z}

J is unaffected by execution of this statement because messages are neither sent nor received.

The proof that K is preserved is by case analysis on the disjunct of K that holds initially. Note

that the only variables or state functions appearing in K that are affected by execution of this
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statement are tc and ht,.

case K1 : The first conjunct of K, is unaffected by execution of this statement. We now consider

the second conjunct. If (Vk > i : Xi,k = 0), then, since tp = i appears in the precondition,

we can conclude that K, holds after hi is set to true by this statement. If (Vk > i : X,,k = 0)

does not hold, then there exist k and m such that k >- i and m E X,.k. I implies Xii = 0, so it

must be that k > i and m E Xt,k. From the precondition of this triple, i = tp, so i < tp < k.

Thus, by the third conjunct of J&,, Lri -< ts(m), so by J1, b, holds. Since tp = i and b, hold,

K2 must hold, so see that case.

case K2: K2 is unaffected by execution of this statement, so K 2 still holds after execution of this

statement.

case K3 : In this case, tc holds. Let m be the element of aoll such that ts(m) = l-Z+l. Execution

of this statement changes tc from tokval(y1 ) to tokval(y,,) V b,, so K3 is not falsified.

T7: {I A K[q, := false]) z :=y, {" A K[q, :=false]I

J is unaffected by execution of this statement because messages are neither sent nor received.

Note that zi can appear in K only in qi. Since K[qi := false] hklds before execution, and since qi

occurs only positively in K, changing qi can't falsify K. Finally, K[q, := false] is unaffected by

execution of this statement.

T8: {1 A K[q, := false]}R, {1}

3 is unaffected by execution of this statement because messages are neither sent nor received.

The only variables that appear in K and can be assigned by A. are those appearing in q%. Since qi

occurs only positively in K, and since K holds even if qi doesn't (because K[q1 := false] appears in

the precondition), execution of this statement cannot falsify K.

T9: {I A qi A hk} (send mktok(i V b,) to i - I hi :=false b, := false) {I}

First, we show that execution of this statement changes tp from i to i - 1. Since h, holds, we

conclude (using I) that tp = i. It follows from the definition of tp that (Vj # i + 1 : L?, -< •i•+1).
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Since h, holds, I implies aic # 0 and a!Q* -= p4 . Let m be the element of agok with the

largest timestamp; thus, /z,+l = ts(m). Since a-tOk = Pitok, m E pi, so (using I) ts(m) -< vt,, i.e.,

/zi+I • ii. Thus, by transitivity of -<, (Vj 6 i + 1 : Lxi -< Wt,). Since this statement does not

affect &xj for j 9 i, after execution of this statement, (Vj 0 {i, i + 1} : Lxi -< vt,) holds. After

execution of this statement, --- inc(vtt, i). By definition of -<, vt, -< inc(vti, i), so by transitivity,

(Vj !0 {i,i + 1} : Lzi -< •t•) holds after execution. Since lxj+j _ i•t -< inc(vtt,,i), after execution,

lzx+j -< L/, holds. Thus, after execution, (Vj 0 i : Lx, -< Li,) holds, so by definition of tp, tp = i - 1.

.Jx is preserved because after execution of this statement, L/, is larger than the timestamps

of all messages previously sent by process i. To show that Jt., is preserved, it suffices to show

&j+j ::_ inc(vti,i), since 4x, = inc(vt,,i) after execution. Let m be the member of alok with the

largest timestamp (this is well-defined since hi and I imply that a # 0 and that the timestamps

of messages in art"k are totally-ordered by -<); thus, L/j+i = ts(m). Since hi holds, we conclude

using I that ok - p= , so m E pi, which implies (using I) that ts(m) -< Wt,. By definition of -<,

vti -< inc(vti, i). Thus, lxz+ 1_ vt, -< inc(vtj, i).

Next we show that Jh is preserved. Fix j, k, and m E Xj,, (we have renamed the bound

variable i in (13) to j). We do a case analysis on the relative values of j, k, and tp.

case k _< tp < j: Since J& holds, nL/j -< ts(m). If tp 9 k, then k 5 tp < j is preserved by

execution of this statement, so we must show n/x3 -< ts(m), which we already know to be

true. Suppose tp = k. After execution of this statement, -'(k <_ tp < j), so we must

show Ix, -< to(m). We give a proof by contradiction: we suppose -'(Lx, -< ts(m)) and

show m E ph, which contradicts the assumption m E Xj,,. I implies that the timestamps

generated by each process are totally ordered by -<, so ta(m) :_ &i. Since tp = i, Jgt implies

L/, -< z-l-- ... _• fzj+r, so ts(m) _• /z•+j. Let m' be the member of aito" with the largest

timestamp (this is well-defined since hi and I imply that oc"• # 0 and that the timestamps

of messages in ajO,# are totally-ordered by -<); thus, L/z+l = ts(m'), so ts(m) -_ ts(rm'). Since

h, holds, we conclude (using I) a!' = p:.•, so (using I) m' E pi, hence (again using I)

ts(mr') _ Wt,. Thus, ts(m) • ts(m') _ it,, so (using I) m E pi. Since by assumption i = k,

m E ph.

case k < j and -'(k S tp < j): Since Ju holds, Lxz -< ts(m). As in the previous case, preservation

of Jb, is trivial if tp # j. Suppose tp = j. After execution of this statement, k <_ tp < j, so

we must show that nizx -< t8(m) then holds; this follows immediately from 1x3 -< ts(m) and
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F,. 717r . h.w" .,

the fact that the value of nix1 after execution of this statement equals the value of lT, before

execution of this statement.

case j _< tp < k: This case is analogous to the previous case.

case j < k and -' :_ tp < k): This case is analogous to the first case.

Finally, we show that K is preserved by execution of this statement. Recall that execution of

this statement changes tp from i to i- 1. Note that execution of this statement leaves tc unchanged.

The proof that K is preserved is by case analysis on the disjunct of K that holds initially.

case K1 : We distinguish two subcases.

case (Vk : Xi,• = 0): From the precondition of this triple, q1 holds. Since execution of this

statement does not affect q, or Xi,k for all k, K, continues to hold after execution of this

statement.

case (3k : XI,k: 0): Since K1 and ht, hold, (Vk > i : Xi,k = 0) does too. This, together

with the assumption (3k : Xi,k # 0), implies there exists k such that k < i and Xs,k # 0.

Let m be an element of Xi,k. Since k < i and tp = i, Jb, * implies Lz -< ts(m), from

which we conclude using J1 that b. holds. After execution of this statement, tc equals

t, V bi, so K3 then holds.

case K2: Since i = tp, K 2 = (3k < i : bk) V bi. If the left disjunct holds, then K2 still holds

after execution of this statement. If the right disjunct holds before execution, then so does

K 3 (because h, holds and tp = i), so see that case.

case K3 : tc is unchanged by execution of this statement, so K3 still holds after execution of this

statement.

A.2 Proof for Process 0 in Isolation

The verification of process i when i = 0 in isolation involves the following triples, in addition to

those discussed above.

T10 : 11 A -he A tp o_ 0 A (Vj : ao• = 0)I send mktok(false) to N - 1 {- A -ho A tp 2! O)

First, we show that after execution of this statement, tp = N - 1. The precondition implies

(Vj : (m E UA, aft I sender(m) = j} = 0); it follows from the definition of Lx, that 4i = 6 for all
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j. After execution of this statement, Lzo = inc(vto,O). From the definition of -<, 0 - inc(vt, O) for

all vector times vt. From the definition of tp, we conclude that after execution of this statement,

(Vj : 0 : /zi -< /zo) holds, hence tp = N - 1.

J1 is preserved because after execution of this statement, l/o is larger than the timestamps of

all messages previously sent by process 0. To show that J10k holds after execution of this statement,

we need to show that 6 -_< 6 and 6 -< inc(vto, 0); both of these facts follow from the definition of

-.<. To see that Ju. holds after execution of this statement, note that izi = 6 and (by the same

reasoning) nLzi = 0 for j 6 0. Thus, Jb., holds trivially for j 6 0. For j = 0, note that there is no

process k such that k < 0, and recall that after execution of this statement, tp = N - 1. Thus, the

only non-vacuous conjunct in Jb., is the bottom one. This conjunct holds because nlzo = 0.

The conjunct tp > 0 in the postcondition holds after execution because tp then equals N - 1,

as shown above. Finally, note that -,ho is unaffected by execution of this statement.

TIl1: {I A -ho A tp > 0} Inito {f}

Validity of this triple follows by the same reasoning as for triple T1.

T12 : {I A ho} (send mktok(false) to N - 1 ho := false bo := false) {I}

J is preserved by the same reasoning as for triple T9. We now show that execution of this

statement truthifies K1 . Since h0 holds, we conclude (using I) that tp = 0 holds before execution

of this statement, so -hNv-1, because ctherwise, I implies tp = N - 1, which contradicts tp = 0.

By the same reasoning as for triple T9, after execution of this statement, tp = N - 1. Thus, K1

holds vacuously after execution of this statement.

Finally, we discuss one proof obligation that arises when using the foregoing results to verify

the proof outlines given in Figure 1. When proving the second branch of RELAYO, the following

subgoal arises:

I A qo A ho A -,(to V bo) =* Q

We assume the antecedent and prove the consequent. First, we show that KI must hold, by showing

that K2 and K3 do not. Since ho holds, we conclude (using I) that tp = 0. From tp = 0 and -'bo,

we conclude that K2 does not hold. From ho and -,(to V bo), we conclude that K3 does not hold.

Thus, assuming the antecedent holds, K1 also holds. It is easy to show that KI and the antecedent
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together Imply Q.

A.3 Interference Freedom

Most of the interference freedom obligations can be discharged easily, using derived rules such as

Interference Freedom for Synchronously Altered Assertions [LG81]. One non-trivial triple that

arises in the proof of interference freedom is

{K[qj := false] A K A K[q, := falsel R, f {K[q3 := false]}

where j # i. By the Assignment Axiom, validity of this triple follows from

K[q, := false] A K A K[qi := false] =o K[qi := false, qj := false]

We assume the antecedent and prove the consequent. If K2 holds, then K2[qi := false, qj := false]

holds, since q, and qj do not appear in K2. The same reasoning applies to K 3. If neither K2 nor

K3 hold, then K1 [qj := false] A K 1 A Kf[q, := false] must hold. We show by contradiction that this

implies i _ tp. Suppose i > tp; then

K1 = q, A (Vk: 0)~

A(Vi' > tp : i' 0 i * q• A (Vk : X,= 0))

A (ht =: (Vk > tp : Xtp,k=O))

so KI[qi : false] = false A..., so K1 [q, := false] does not hold, which contradicts the assumption

above. Thus, i < tp. Analogous reasoning shows that j !5 tp. Since i < tp and j <_ tp, K1 is

independent of q1 and qj. By assumption, K1 holds, so K1 [q1 := false, qj := false] also holds.

26


