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I
3' DNS, LES and Stochastic Modeling of Turbulent

Reacting Flows

Peyman Givi
Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo
Buffalo, New York 14260-4400

I Abstract

This is a Final Report providing a summary of accomplishments in our research
t sponsored by the Office of Naval Research (ONR), Grant N00014-90-J-4013 (Young In-

vestigator Program - FY 1990) under the management of Dr. Gabriel D. Roy, Mechanics
Division, Code 1132P. The contributions made in each part of this investigation are

described, followed by a highlight of our important findings. A few of the technical

papers written in conjunction with this work are attached as appendices for those

who are interested in reviewing our work in a greater detail.

1 Introduction

I The field of computational turbulent combustion has been an area of active research in

the US. and abroad within the past thirty years. A review of the contributions made

I within this period indicates that presently there are three primary methodologies by

which turbulent flows are treated by computational simulations [1]: (1) Direct Numerical

U Simulation (DNS), (2) Large Eddy Simulation (LES), and (3) Reynolds Averaged Navier-

Stokes Simulation (RANS). The procedures in following these approaches are different

3, and each methodology portrays some advantages and (needless to say) some drawbacks.

In the past decade, the first two approaches have been somewhat more visible. This is

9 1,
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to a large extent due to dazzling rate of progress made in the supercomputer technology 3
and the availability of these computers to a larger number of users. However, now it can

be stated that all of these approaches are equally competent (at least in the opinion of this

PI, and an objective research effort devoted to computational turbulence should consider

all of them. 3
In this research, we initiated a systematic study towards extending the capabilities of

each of the three methodologies indicated above. For this purpose we concentrated our 1
research on both deterministic and probabilistic description of turbulent reacting flows.

The first descriptor is for DNS, the second one is for RANS and the combination of the two I
is used for LES. Due to the nature of the program, several different modeling approaches

were followed and various flow configurations simulated by several different numerical

schemes were utilized. Because of the rather diverse scope of this research, it is somewhat

impossible to provide a review of all our accomplishments in a single report. Therefore,

we have selected to include some of the research papers resulting from this work as the

primary means of reporting our results (Appendix 1 - through Appendix 10). In the 1

sections to follow, a guideline is provided of the content of these papers. Each section

provides a summary of our important findings in each of the programs considered. 1

I
2 Mathematical Modeling of the Reactant Conversion in Ho-

mogeneous Turbulent Reacting Flows I
In this work, closed form analytical expressions are obtained for predicting the limiting

rate of mean reactant conversion in homogeneous turbulent flows under the influence j
of a binary reaction of the type F + rO --- (1 + r) Product. These relations are obtained

by means of a "single-point" Probability Density Function (PDF) method based on the 3
Amplitude Mapping Closure (AMC) [2-4]. It is demonstrated that with this model, the

maximum rate of the mean reactants' decay can be conveniently expressed in terms of 3
definite integrals of the Parabolic Cylinder Functions [5]. For the cases with complete

initial segregation, it is shown that the results agree very closely with those predicted by 13

employing a Beta density of the first kind for an appropriately defined Shvab-Zeldovich
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U scalar variable. With this assumption, the final results can also be expressed in terms

of dosed form analytical expressions which are based on the Incomplete Beta Functions.

I With both models, the dependence of the results on the stoichiometric coefficient and the

equivalence ratio can be expressed in an explicit manner. For a stoichiometric mixture,

U the analytical results simplify significantly. With the AMC, these results are expressed

in terms of simple trigonometric functions. For the Beta density model, they are in

the form of Gamma Functions. In all the cases considered, the results are shown to

agree well with data generated by DNS. Due to the simplicity of these expressions and

I because of nice mathematical features of the Parabolic Cylinder and the Incomplete Beta

Functions, these models are recommended for estimating the limiting rate of mean reactant

conversion in homogeneous reacting flows [6-91. These results also provide a valuable

tool in assessing the extent of validity of turbulence closures for modeling of nonpremixed

reacting flows. Some discussions are provided on the extension of the models for treating

more complicated reacting systems including realistic kinetics schemes and multi-scalar

I mixing with finite rate chemical reactions in more complex configurations.

I Key Findings

U For a complete review of our findings in this part of our work, we refer to Refs. [10-13]

I (please see Appendix I and Appendix 2). These findings are highlighted below:

* Based on the AMC a dosed form expression is obtained for the limiting rate of mean

3 reactant conversion in homogeneous reacting turbulent flows. Our results are better than

all the other alternatives available in the literature for the past thirty years.

I .• Our model is valid for both stoichiometric and non-stoichiometric mixtures. This is very

encouraging since most previous closures are valid only for stoichiometric mixtures. Even

for such mixtures our results compare with DNS data better than all the other closures.

1
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3 Johnson-Edgeworth Translation for Probability Modeling 3
of Scalar Mixing in Turbulent Flows m

In this work, a family of PDFs generated by Johnson-Edgeworth Translation JET) [14,

15] is proposed for statistical modeling of the mixing of an initially binary scalar in
homogeneous turbulence. The frequencies obtained by this translation are shown to

satisfy some of the characteristics of the PDF's generated by the AMC. In fact, the solution a
obtained by one of the members of this family is shown to be identical to that developed

by the AMC [4]. Due to this similarity and due to the demonstrated capabilities of the I
AMC, a justification is provided for the use of other members of JET frequencies for the

modeling of the binary mixing problem. This similarity also furnishes the reasoning

for the applicability of the Pearson Family (PF) [16] of frequencies for modeling of the I
same phenomena. The mathematical requirements associated with the applications of

JET in the modeling of the binary mixing problem are provided, and all the results are

compared with data generated by DNS. These comparisons indicate that the Logit-Normal
frequency [171 portrays some subtle features of the mixing problem better than the other

closures. However, none of the models considered (JET, AMC, and PF) are capable of I
predicting the evolution of the conditional expected dissipation and/or the conditional

expected diffusion of the scalar field in accordance with DNS. It is demonstrated that thism

is due to the incapability of the models to account for the variations of the scalar bounds

as the mixing proceeds. A remedy is suggested for overcoming this problem which can m
be useful in probability modeling of turbulent mixing, especially when accompanied by II
chemical reactions. While in the context of a single-point description the evolution of
the scalar bounds cannot be predicted, the qualitative analytical-computational results

portray a physically plausible behavior.

Key Findings

For a complete review of our findings in this part of our work, we refer to Refs. [18] (please

see Appendix 3). These findings are highlighted below: 13
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I . For the first time, It is proven mathematically that AMC can be viewed as a particular

case of the Johnson-Edgeworth Translation OET).

1 * For the first time, appropriate models are suggested for the conditional statistics of

scalars (the conditional expected dissipation and the conditional expected diffusion) in

5 homogeneous turbulent flows. These mathematical results have proven extremely useful

In assessing the physics of turbulent mixing znd also in aiding the modeling of non-

I premixed reacting flow systems.

I .• In view of the similarity of JET and AMC, other simple PDF families such as those

belonging to the PF can be used for modeling of practical reacting systems.

I .• For the first time it is shown that none of the new mixing models are capable of capturing

the phenomenon of boundary encroachment in the scalar composition domain as as

I mixing proceeds.

I
4 Description of Binary and Trinary Scalar Mixing by the

AMC 
IM

I
In this work, the AMC is used for statistical description of the mixing process by Fickian

I diffusion of a stochastically distributed scalar variable. This closure is invoked in the

context of an evolution equation for the single-point PDF of the scalar from initially

' symmetric binary and trinary states. In the binary case, a simple recipe is provided for

the time scaling relation which is very useful in model implementation. In the trinary

I case, it is shown that after a fixed elapsed time, the PDF relaxes to a distribution similar to

that of the binary mixing. The magnitude of this time is independent of the initial extent

I of departure from a binary state; however, the rate of evolution towards an asymptotic

Gaussian state depends on the level of the departure. In both cases, the closure predictions

for the scalar flatness factor and the correlation of the mean square scalar-scalar gradients

agree well with those obtained by DNS. However, some features of the results are different

I from those of earlier DNS of mixing in stationary turbulence. These differences are likely

attributed to inadequacy of the AMC at the single-point level in accounting for the effects

, 5



I
!

of turbulence stretching. 3

Key Findings

For a complete review of our findings in this part of our work, we refer to Ref. [191 (please I
see Appendix 4). These findings are highlighted below: I
e Many details of binary and trinary scalar mixing in the context of both univariate and

multivariate statistical analyses are studied by PDF methods. With this study some of the 3
shortcomings of AMC In predicting the asymptotic stages of mixing are captured.

* For the first time a dosed form mathematical expression is obtained for describing the l

decay of the scalar variance for the binary mixing problem as described by AMC. In a

previous work on this topic [41 only the asymptotic asymptotic rate of this decay could I
be predicted. Please note that for a closure at the "single-point" the description of the

variance is very important.

I
5 Modeling of Isotropic Reacting Turbulence by a Hybrid

Mapping-EDQNM Closure

In this work, a hybrid model is developed and implemented for predicting the limiting

bound of the reactant conversion rate in an isotropic turbulent flow under the influence

of a reaction of the type F + O - Product. This model is based on the AMC for the

molecular mixing of a stochastically distributed scalar, and the Eddy-Damped Quasi-

Normal Markovian (EDQNM) spectral closure [20,211 for the two-point scalar covariance.

The results predicted by this model compare well with available experimental data in I
both gaseous and aqueous plug flow reactors [7,22,231 but point to the need for more

detail measurements in future experimental studies. With the implementation of the 3
AMC a simple analytical expression is obtained for the decay rate of the unmixedness.

This expression is very convenient and is recommended for practical applications in then

modeling and design of plug flow reactors.



3I Key Findings

-I For a complete review of our findings in this part of our work, we refer to Ref. [24,13]

(please see Appendix 5). These findings are highlighted below:

* For the first time the Eddy Damped Quasi-Normal Markovian (EDQNM) closure is used

for modeling of turbulent reacting systems. Its combination with AMC provides the best

I agreement with laboratory data.

T m The complexity of this research convinced us that we are not yet capable of using
"two-point" statistical closures for modeling of :practical" flow systems.

3 6 Structure of a Turbulent Reacting Mixing Layer

In this work, a monotone Flux Corrected Transport [25,261 algorithm is employed for

DNS of a three-dimensional (3D) temporally developing forced mixing layer. A chemical
reaction of the type F + rO -+ (1 + r) Product is considered. The objective of this study

is to examine the following specific issues pertaining to the structure of turbulent mixing

"layers and flames: (1) the effects of transition on mixing characteristics of the layer,
(2) the existence and manifestation of eddy shocklets in 3D, (3) validity assessment of

the steady laminar diffusion flamelet model in depicting the compositional structure of
turbulent flames, end (4) evaluation of the basic assumptions of the approach based onIa the conditional moment method for statistical description of turbulent flames. Simulation

of high Reynolds number flow allows the capturing of the cause and effects of transition

- on the mixing process.

The results indicate that the pairing of large scale vortices causes the interaction of "cup"
structures which aid in the initialization of transition. Single point PDFs of the mixture

fraction, extracted from DNS data, reveal features in accord with laboratory data. In addi-

tion to reproducing many of the qualitative and quantitative results observed in previous

i experiments, new insights are made as to the nature of the transition process. It is shown
that during the transition, both pure unmixed fluids and fully mixed fluids are found

3 7
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with high probability throughout the entire layer. The effect of chemical heat release is to

delay the onset of pairing and the subsequent transition. In constant rate kinetics, reduced

mixing results in decreased product formation. However, in an Arrhenius reaction case,

chemical heat release causes higher local reaction rates which overcome mixing reduction

and results in a relative increase in product formation. 1
At sufficiently high convective Mach numbers, (larger than 1.25) eddy shocklets are found

in 3D mixing layers. Comparison of the shocklets observed in 3D simulations with those

in two-dimensional (2D) at the same Reynolds and Convective Mach numbers indicates

that the shocklets are stronger in the 2D case. 3
DNS results for different Damkohler numbers, stoichiometric coefficients, and heat release

parameters are compared with prediction results based on a 1D laminar opposed jet

system. For all the flames considered, it is concluded that the performance of the steady

laminar diffusion flamelet model (SLDFM) [27-31] improves as the magnitude of either

the local or global Damk6hler number is increased. This is understandable considering

the flamelet concept is deemed valid at high but finite reaction rates. Also, as the value

of r is increased the agreement between the DNS data and the model is improved. This is

promising in view of the fact that the flame surface in typical hydrocarbon flames is at low

stoichiometric mixture fraction values. The results for both constant and Arrhenius rate 3
reactions with heat release show an improved agreement with the model in comparison

to those of a non-heat releasing layer. This is attributed to the effect of thermal expansion

in reducing the instantaneous scalar dissipation rate and thus increasing the magnitudes

of the local Damk6hler number. 3
DNS generated results of reacting mixing layers are also used to examine the basic as-

sumption of the Conditional Moment Method CMM) [32-34]. It is shown that the neglect U

of the conditional unmixedness term is acceptable. Also, the cross-stream variations of

the first order conditional moments (conditional averages) of the reacting variables can be 3
assumed negligible. However, higher order conditional moments of these variables show

substantial y dependence. This may lead to problems in mathematical modeling of these 3
higher order conditional moments for predictive assessments.

8



I Key Findings

I For a complete review of our findings in this part of our work, we refer to Ref. [35-37]
(please see Appendix 6). These findings are highlighted below:

5 o The SLDFM does not perform well in predicting the rate of mean reactant conversion in

turbulent flows under the influence of finite-rate chemical reaction.

I o The CMM provides a better means (in comparison with SLDFM) of predicting the

compositional structure of non-equilibriumn turbulent flames, but is more complicated to

use.

I.o The CMM is effective in predicting the first order moments, but its use for capturing the

role of higher order moments is very complicated. Some progress has been recently madeI in this regard [38], but the suggested models awaits future DNS validation.

I.o Neither CMM nor SLDFM are effective in dealing with non-equilibrium phenomena

such as ignition and extinction. Both models can be further extended for this purpose,I but we feel that higher order methods such as single-point PDF schemes perform better.

9Exothermidity may actually enhance the rate of reactant conversion in turbulent flames,I even though the results of linear stability analysis indicates that mixing is reduced at

elevated exothermicity levels.

S 7 Compressibility and Exothermicity in a Reacting Mniing

* Layer

I -In this work, results are provided of DNS of a 2D temporally developing high speed

mixing layer under the influence of a second-order non-equilibrium chemical reaction of

I the type A + B - Products + Heat. Simulations are performed with different magnitudes

of the convective Mach number and with different chemical kinetics parameters for the

purpose of examining the isolated effects of the compressibility and the heat released by

the chemical reaction on the structure of the layer. A full compressible code is developed

1 9
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and utilized, so that the coupling between mixing and chemical reaction is captured in a

realistic manner. The results of numerical experiments indicate that at the initial stages

of the layer's growth, the heat release results in a slight enhanced mixing, whereas at the

intermediate and the final stages, it has a reverse influence. The effect of compressibility is

the same in all stages of the development; increased compressibility results in a suppressed

mixing and, thus, in a reduced reaction conversion rate. Mixing augmentation by heat

release is due to expansion of the layer caused by the exothermicity, and mixing abation is

caused by suppression of the growth of the instability modes due to increased heat release

and/or compressibility. Calculations are performed with a constant rate kinetics model i
and an Arrhenius prototype, and the results are shown to be sensitive to the choice of the

chemistry model. In the Arrhenius kinetics calculations, the increase of the temperature I
due to chemical reaction is substantially higher than that of the constant rate kinetics

simulations. This results in a more pronounced response of the layer in all stages of the

growth, i.e., an increased thickening of the layer at the initial phase of growth, followed

by subdued thickening at later stages. 3
For a complete review of our findings in this part of our work, we refer to Refs. [39,40]

(please see Appendix 7). 1
I

8 DNS of Non-Circular Jets

In this work, detailed numerical experiments are conducted to study mixing and entrain-

ment properties of the flowfield produced by non-circular turbulent jets. Simulations are

conducted of jet flows originating from elliptic, rectangular, and triangular nozzles with

aspect-ratios of 1:1 and 2:1. The results are compared with those of a circular jet of the

same equivalent diameter to determine the relative efficiency of non-circular nozzles in

mixing enhancement. Flow visualization results show that for both cornered and non- I
cornered jets, large scale coherent structures are formed. The shape and dynamics of these

structures depend on the azimuthal variation of the curvature of the profiles at the jet exit.

The triangular jets exhibit characteristics markedly different from the other jets. Coherent

large scale structures in these jets are quickly masked by the small scale structures formed

10



5 at the comers. In the elliptic and the rectangular jets, the orientations of the cross-sections

are modified by the axes-switching. The rectangular jet switches its axes at a stream-wise

I distance approximately twice that of the elliptic jet. This can be attributed to the effect

of the corners. Although the square jet does not show axes-switching, it is shown that a

l 450 rotation of its initial profile entrains considerable free-stream fluid. The triangular jets

switch their axes twice. In the isosceles triangular jet, the first axis cross-over occurs ap-

I proximately twice as far downstream as that in the equilateral triangle. This is attributed

to the larger aspect-ratio of the isosceles triangular jet.

3 The entrainment and mixing in the near field of these jets are characterized by the aspect

ratio of the nozzle, the initial shape and dynamics of large scale vortical structures, and the

t induced mean secondary flow field of the stream-wise vortices. The isosceles triangular

jet is shown to be the most efficient mixer. Analysis shows that this ;et contains large

scale structures, superimposed by small scale structures produced at the comers and

a complicated pattern of stream-wise vortices. Non-unity aspect-ratio, sharp comers,

3 and long flat surfaces combine to make an efficient mixing configuration. In the case of

the rectangular jet, although it contains many of these features, its axes switch too far

I downstream to cause significant near-field mixing. Although a non-unity aspect-ratio is

important for mixing enhancement, it is not sufficient for large entrainment in the near-

Sfield. The square jet ranks as the second most efficient mixer. This jet produces the most

intricate network of stream-wise vortices which results in enhanced mixing. A comparisonr of the flow fields produced by the two triangular jets reveals that the formation of small

scale structures at the corners does not have a significant influence in entraining free-

I stream fluid. The aspect-ratio is the primary difference between these two jets. The effect

of the larger aspect-ratio of the isosceles triangular jet is to alter the vorticity dynamics in

I ithis jet as compared to the equilateral triangular jet. This results in a different stream-wise

vorticity pattern which enhances the free-stream fluid entrainment in this jet.

I The limiting rate of the reactant conversion in reacting jets in which the fuel is dischargedIto ambient oxidizer is evaluated by considering the transport of a Shvab-Zeldovich scalar

variable. It is shown that the isosceles triangular jet yields the highest amount of chemical

5 products, whereas the circular jet yields the lowest. However, the magnitudes of the

cross-stream product density approaches a plateau in all the jets. The magnitudes at

1 11



this plateau are approximately the same in all the jets. With the transport of the Shvab-

Zeldovich variable, a scalar core is also defined. It is shown that the 2:1 aspect-ratio

triangular jet has the shortest and the rectangular jet has the longest core. 3

Key Findings I

For a complete review of our findings in this part of our work, we refer to Ref. [41](please !
see Appendix 8). These findings are highlighted below:

e DNS of elliptic, rectangular and triangular jets are conducted. The axis-switching

phenomenon is captured in all non-unity aspect-ratio jets and also in the equilateral

triangular jet. The square jet does not show axis-switching; however, the rotation of

its axes by 450 is shown to play a significant role in its entrainment characteristics. All

the non-circular configurations are shown to provide more efficient mixers than does the

circular jet; the isosceles triangular jet is the most efficient one. The trends observed in

DNS generated results are shown to be in accord with those in laboratory data [42,43].

I
9 LES of Turbulent Reacting Flows by Assumed PDF Meth-

ods p

In this work, a priori and a posteriori analyses are conducted for validity assessments of

assumed PDF methods as potential subgrid scale (SGS) closures for LES of turbulent

reacting flows. Simple non-premixed reacting systems involving an isothermal reaction

of the type F + 0 -, Product under both chemical equilibrium and non-equilibriumi

conditions are considered. A priori analyses are conducted of a homogeneous box flow, and

a spatially developing planar mixing layer to investigate the performance of the Pearson

Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer 3
using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure

augmented by the solution of the subgrid turbulent kinetic energy equation is employed

to account for hydrodynamic fluctuations, and the PDF is employed for modeling the
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I
I effects of scalar fluctuations. The implementation of the model requires the knowledge of

the local values of the first two SGS moments. These are provided by additional modeled

I transport equations. In both a priori and a posteriori analyses, the predicted results are

appraised by comparison with subgrid averaged results generated by DNS.

I
I Key Findings

For a complete review of our findings in this part of our work, we refer to Refs. [44,45,131

(please see Appendix 9). These findings are highlighted below:

U . Several different PDF methods are used for the purpose of providing subgrid closures

in LES of turbulent reacting flows. Our conclusion at this point is that conventional

I Smagorinsky-based closures are not suitable for LES of reacting flows and we need higher

closure levels for this purpose.

1 * Prediction of subgrid mean quantities in LES are "relatively" easy based on current

technology. However, the prediction of the second order moments is not at a satisfactory

I level.

U . The use of AMC and JET for multi-scalar mixing is difficult [4,18,46,471. Therefore, at

this point, PF [481 provides the only PDF scheme for LES of reacting turbulent flows.

I
10 The Inter-Layer Diffusion Model of Mixing

IA mechanistic model termed the Inter-Layer Diffusion Model (ILDM) is developed and is

implemented for the probabilistic description of scalar mixing in homogeneous turbulent

I flows. The essential element of the model is based on the lamellar theory of mixing in the

context developed by Kerstein [491, and proposes that there are two distinct but coupled

I mechanisms by which the mixing process is described. These mechanisms are due to: (1)

local events and (2) integrated global events. The mathematical formalities by which the

I closure is invoked are described and it iV shown that the conditional expected diffusion

of the scalar field depicted by the model depends more directly on local events. With
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the manipulation of each of these two mechanisms, several families of scalar probability 3
density functions (PDFs) are generated. These families include some of the distributions

generated by other mixing closures. The ILDM provides a physical format by which 3
these other closures can be viewed. The similarity of local events imply the similarity

of the conditional expected diffusion as generated via these models. The global events 3
manifest themselves by the evolution of the conditional expected dissipation, and also

the boundedness of the composition domain. While the PDF's generated in this way are 3
very different, their applications for modeling of mixing limited reactions do not

significantly different results. U

Key Findings U
For a complete review of our findings in this part of our work, we refer to Refs. [50,511 1
(please see Appendix 10). These findings are highlighted below: I
e A unique closure termed "The Inter-Layer Diffusion Model" (ILDM) is developed. This

model provides a unifying theorem of a// available turbulent mixing closures. The model I
also suggests that some of the conditions under which the comparisons made with DNS in

previous contributions are meaningless. The model suggests that several mixing scenarios 3
are possible. Thus, models such as AMC are not fully appropriate for general applications. I

11 Visibility 3
In order to demonstrate our visibility in our previous ONR-supported research, here we I
shall list the awards and the noticeable achievements of the personnel involved in this
program. 3

Research Personnel Involved 5
Students Graduated: I
Steven H. Frankel, Ph.D. Degree in Aerospace Engineering, SUNY-Buffalo, Dissertation:
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I
I Probabilistic and Deterministic Description of Turbulent Flows with Nonpremixed Reac-

tants, June 1993. Current position: Assistant Professor of School of Mechanical Engineer-
ing, Purdue University, West Lafayette, Indiana.

Richard S. Miller, M.S. Degree in Aerospace Engineering, SUNY-Buffalo, June 1993. Thesis:
Structure of a Reacting Turbulent Mixing Layer. Current position: Ph.D. candidate at

I SUNY-Buffalo.

Senior Personnel Contributed:

I Dr. Cyrus K. Madnia (Post Doctoral Fellow, October 1989 - August 1992). Ph.D. in
Aerospace Engineering from the University of Michigan in August 1989. Dr. MadniaU is currently a Research Assistant Professor at SUNY-Buffalo.

Dr. Tail-Lun Jiang (Post Doctoral Fellow, September 1990 - September 1991). Ph.D. in
i Mechanical Engineering from SUNY at Stony Brook in August 1990.

Current Students Involved in ONR Research

I (1) Mr. Virgil Adumitroaie, Ph.D. candidate, Teaching Assistant, (2) Mr. Farhad A. Jaberi,
Ph.D. candidate, Research Assistant, (3) Mr. Richard S. Miller, Ph.D. candidate, Research
Assistant, (4) Mr. George Sabini, M.S. candidate, Teaching Assistant, (5) Mr. Scott W.
Foster, Undergraduate.

I Awards and Honors

I Promotions of the PI:

Promoted to Professor, Department of Mechanical and Aerospace Engineering, State Uni-
I versity of New York at Buffalo, Buffalo, New York, September 1993.

Promoted to Associate Professor, Department of Mechanical and Aerospace Engineering,
I SUNY at Buffalo, September 1991.

Appointed to Director, Computational Fluid Dynamics Laboratory, School of Engineering
I and Applied Sciences, SUNY at Buffalo, September 1991.

b.2. Awards to the PI:

I Presidential Faculty Fellowship, Awarded by President George Bush, The White House
(1992-1995).

I Research profile, interests and achievements published in several newspapers and maga-
zines in U.S., Canada, Europe and Asia. Also interviewed in several radio broadcasts.

I Biographical data recorded in American Men and Women of Science, 18th edition (1992-1993).
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Awards to Students:

Mr. Richard S. Miller, First Prize winner at the Graduate Technical Paper Competition
of AIAA Northeast Regional Student Conference. Title of paper: "The Manifestation of
Eddy Shocklets and Laminar Diffusion Flamelets in a Shear Layer," April 1992.

Mr. Steven 11 Frankel, Second Prize winner at the Graduate Technical Paper Competition
of AIAA Northeast Regional Student Conference. Title of paper: "Probabilistic and I
Deterministic Description of Turbulent Flows with Nonpremixed Reactants;, April 1992.

Mr. Richard S. Miller, winner of Abe M. Zarem Award for Distinguished Achievement 3
in Aeronautics. This award is in relation to Mr. Miller's AIAA paper entitled: "The
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I Comparative Assessment of Closures for
* Turbulent Reacting Flows

S. H. Frmnkel, C. K. Madnia, and P. Givi3 Dept. of Mechanical and Aerospace Engineering, State University of New York, Buffalo, NY 14260

I
In a recent article, Dutta and Tarbell (1989) made a com- Formulations and Model Presentation

parative study of several turbulence closures for predicting the With the assumption of an infinitely fast chemistry, all the
mean rate of reactant conversion in a chemical reaction of the pertinent statistics of the reacting field are related to those of
type A + B--products in homogeneous turbulent flows. In this prietsaitc fteratn il r eae otoeo
wre u roc ts in the aprb ase d on an appropriate conserved scalar variable, hereby denoted by
work, we use recent developments in the approach based onthis assump-
problem density futtion Tarbell (1989). With this tion, in a stoichiometric mixture, the single-point PDF of theprob em onsder d b D u ta nd T rbel ( 989 . W th his reacting scalar is related to that of the conserved scalar by
method, we propose a simple algebraic relation for predicting (Bilger, 1980; Kosaly and Givi, 1987):
the limiting rate of mean reactant conversion. The PDF model
is based on the amplitude mapping closure (AMC) of Kraich-
nan (Kraichnan, 1989; Chen et al., 1989), whose superiority (A(Ot)= s , + , >,t>0. (G)

I has been demonstrated in a number of validation studies (Pope, 2
1991; Gao, 1991; Frankel et al., 1992, Chen et al., 1989; Mad-
nia et al., 1991b; Madnia et al., 1992). In accordance with the Here, 6 denotes the delta function. Therefore, based on Eq.
problem discussed by Dutta and Tarbell (1989), we consider 1, if the PDF of the conserved scalar is known, all the statistical
a stoichiometric mixture with initially segregated reactants. information regarding the reacting scalars A and B is available.
This is convenient for expressing the final results in a simple
algebraic form. However, it is understood that the AMC can CID Closures
be employed for modeling of nonequilibrium chemically re-
acting flows under arbitrary initial conditions (Pope, 1991). The C/D models consist of PDF transport equations, in

For comparison, in addition to the closure of Toor (1962) which the effects of molecular mixing are modeled in terms
and the three-environment (3E) model of Dutta and Tarbell of a particle-pair interaction process. The most general form
(1989), several other closures are also considered. These are of the model can be expressed by the evolution equation (Pope,
the PDF methods based on the generalized coalescence/dis- 1982; Kosaly and Givi, 1987; Dutta and Tarbell, 1989):
persion (C/D) models and those based on "assumed" fre-

quencies. For the C/D models, the closures of Curl (1963), 861(j,t) 2,,•f(o,t)+ 20w
and Janicka et al. (1979) are examined. The assumed distri- at
butions are based on the beta density of the first kind (Pearson,
1895) and the Logit-normal density (Johnson, 1949a). The ((a)6L-(l-a)&'-a(• +•V)l. (2)
applicability of these assumed densities for the problem under
consideration has been ascertained by Madnia et al. (1991a)
and Miller et al. (1993). Finally, to assess the performance of In this equation, the random variable ,xE[0,l and the kernel
the models, the results predicted by all the closures are com- 0(cf) controls the extent of mixing. The parameter 0 is the
pared with those generated by direct numerical simulations controlling factor which yields the same variance for all mem-
(DNS). These simulations have proven very effective in vali- bers of the C/D family and w is the mixing frequency (Pope,
dation studies of turbulent reacting flows (Eswaran and Pope, 1982). Different C/D closures are obtained by different choices
1988; Givi and McMurtry, 1988; Givi, 1989; Leonard and Hill, for the function 0c(a). This function is nonzero, nonnegative
1991) and provide a useful tool in model assessments of the and normalized to unity within atE[0,1]. Some of the more
type pursued here. widely utilized members of the C/D family are the models of

I AIChE Journal May 1993 Vol. 39, No. 5 899



I
Curl (19%3) and Janicka et al. (1979). and the LMSE closure Al & ~ 2
of O'Brien (1980). These closures imply, respectively, 6P(0)= exp 2 -log' , (7)
((a)= (- 1), 1(c)= 1, and d(a)= Lim,_ 06(a -E). For the
problem under consideration, the results obtained from the
LMSE model are identical to those based on Toor's hypothesis where A, analogous to -y in the AMC, is not known a priori.
(Kosaly and Givi, 1987). For this PDF, neither the variance nor the reactant decay can I

With a combination of Eqs. I and 2, the mean reactant be determined analytically, and their evaluation is possible

conversion rate is determined from the knowledge of 61A(0) solely by numerical means (Johnson, 1949a).

[or t)]. The numerical solution of the C/D transport equa- The similarity between the Logit-normal distribution and
tion (Eq. 2) can be obtained by Monte-Carlo methods (Pope, the family of Pearson (1895) frequencies suggests the use of
1981). the beta density of the first kind as a potential assumed PDFfor the modeling of the mixing phenomena. For a random

Mapping Closure scalar variable within 10,11, this density is parameterized by
The amplitude mapping closure (AMC) involves the map- its first two moments (Casella and Berger, 1990):

ping of the scalar field of interest to a Gaussian reference field.
The knowledge of this mapping allows determination of the 6'(P) = , - )'(I 4)-, rF(,) +132) (8)
scalar PDF (Chen et al., 1989; Pope, 1991). For the binary r03,)l(,3,)'

problem under consideration here, the solution for the map-
ping function has been obtained by Pope (1991) and the re- where r is the Gamma function (Abramowitz and Stegun,
suiting PDF is of the form: 1972), and 0, and 3, are determined from the first two moments

of the random variable. With a combination of this equation I
= I [ ] 1 and Eq. 1, the mean fractional conversion can be obtained

P(#)=- exp ~ - -1 [erf-2 (24-1)]2 , (3) analytically. Following the same procedure as that for the
AMC, the final result after some manipulations can be ex-

pressed as:
where the parameter -y depends on the missing two-point in-
formation and is not known a priori in the context of a single- -
point description. It is convenient to relate this parameter to rFIthe variance of the conserved scalar. This relation has been $= I- (9)established by Jiang et al. (1992): +1r +

c 9'(t) 2 1 2 \ \ s 2 /)
,= 27(=) arctan , (4)

Comparisons
where 4 is known as the "intensity of segregation" (Brodkey, The relations for the mean fractional conversion obtained
1975). The parameter -' can also be related to the ensemble- by the models described above are compared with those ob-
mean value of the reacting scalar. This relation is obtained by tained by employing the 3E model of Dutta and Tarbell (1989)
substituting Eq. 3 into Eq. 1. After significant algebraic op- and Tarbell (1992):
erations, the final results yield (Frankel, 1993):

I-(0

(A2 (t) 2 arctan (0) = +-'' (10) g
(A> (t) (5) and that based on Toor's hypothesis (Toor, 1962, 1975):

Now, with the establishment of Eqs. 4-5, the mean fractional = I - f. (! ) 3
conversion can be expressed in terms of I.:

To examine the performance of the models, the predicted re-
<= A) (t)1 2_• ./• •l]-- , sults via all the closures are compared against DNS data. The I

- arcsins_/ [ / (6) DNS procedure is similar to that of previous simulations of

(A(0) this type (Givi and McMurtry, 1988; Madnia and Givi, 1993).

Assumed Frequencies The subject of the present DNS is the three-dimensional pe-
riodic homogeneous box flow under the influence of a binary 3

Miller et al. (1993) have recently shown that for the binary reaction of the type described above. The initial species field U
mixing problem considered here, the AMC can be viewed as is assumed to be composed of out-of-phase square waves for
a member of the general family of distributions generated by the two reactants A and B. The computational package is based
the Johnson-Edgeworth transformation (JET) (Johnson, on the modification of a spectral-collocation procedure using I
1949a; Edgeworth, 1907). With this transformation, alterna- Fourier basis functions developed by Erlebacher et al. (1987,
tive frequencies can be developed for the modeling of turbulent 1990a, 1990b). The hydrodynamic field is assumed isotropic
mixing. One such frequency that has proven effective is the and is initialized in a similar manner to that of Erlebacher et
"Logit-normal" distribution (Miller et al., 1993): al. (1990a). The turbulent field is of a decaying nature in that I
900 May 1993 Vol. 39, No. 5 AlChE Journal



U
there is no artificial forcing mechanism to feed energy to low 1.0

wave numbers. The code is capable of simulating flows withdifferent levels of compressibility (Erlebacher et al., 1990b;
Hussaini et al., 1990). Here, only the results obtained for a 0.6
low compressible case are discussed, since most previous anal-
yses of plug-flow reactors have dealt primarily with incom-
pressible flows (Toor, 1975; Hill, 1976; Brodkey, 1981; Leonard 0.6R and Hill, 199 1). The resolution consists of 96 collocation points
in each direction. Therefore, at each time step 96W is the sample
size for statistical analyses. This resolution allows simulations 0.4 /-.-O ae
with a Reynolds number (based on the Taylor microscale) of
Rex,,41. The value of the molecular Schmidt number is set
equal to unity. 0.2

The PDFs generated by the AMC, JET, and the beta density
are somewhat similar. For the binary mixing problem, all these
models are capable of predicting the PDF evolution from an 0.000 2.0 4.0 to

initially double delta state (segregated reactants) to an asymp-
totic Gaussian-like distribution near the mean at small vari- Figure 1. Fractional conversion vs. normalized time.
ances. This behavior cannot be predicted by any of the other
closures considered here.

Figure 1 shows the temporal variation of the fractional con- mulas presented here are valid only for initially segregated
version for these three models along with the DNS data. All reactants in stoichio.etric proportion. This condition is com-
these closures yield almost identical results and exhibit good patible with the majority of previous works on nonpremixed
agreement with the DNS data during all stages of the mixing plug-flow reactors (Toor, 1975; Brodkey, 1981; Leonard and
process. In light of this, to compare with the other closures, Hill, 1988; Kosaly and Givi, 1987; Givi and McMurtry, 1988;
only the AMC is considered, as shown in Figure 2. At large Givi, 1989). The AMC and the beta density can be used for
times, the profiles are bounded above and below by the 3E modeling nonstoichiometric mixtures, but the final results can
model and the Toor closure, respectively. Initially, the results be evaluated only by numerical means. For more complicated
via the 3E closure are very close to those obtained by AMC. initial conditions, the use of beta and JET generated frequen-
At all times, the results generated by the numn-rical integration cies cannot be justified, while the AMC can be utilized in
of the C/D models of Curl (1963) and Janicka et al. (1979) conjunction with appropriate numerical algorithms (Pope,
overpredict the DNS data more than the simple expression 1991; Valifio et al., 1991). Finally, in the context of a single-
generated by the AMC. Finally, as indicated before, the results point PDF formulation, there is no information pertaining to
obtained by LMSE are identical to those based on Toor's the evolution of the relevant turbulent length scales. Therefore,
hypothesis. These comparisons indicate that the AMC, the beta the final expressions can be only presented in terms of I1 or
density, and the Logit-Normal distribution yield the best over- other related physical parameters (such as, a

2 , y, and A). In

all behavior in predicting the rate of reactant conversion in this context, these parameters must be provided by external
accordance with the DNS data. This agreement follows from means, including experimental data and turbulence modelsI the compatibility of the model PDFs with those of the DNS, (Frankel et al., 1992). Also, in nonequilibrium reacting sys-
at least for the case of binary mixing considered here. Fur- tems, the segregation parameter should be defined to include
thermore, a nice feature of these models is the explicit form
of the final equations expressing these statistical quantities. It
is noted that explicit analytical relations can be obtained only
for the AMC and the beta density. Therefore, in the absence 1.0 -.
of better alternatives Eqs. 6 and 9 are recommended for ef- •-

fective and practical modeling of unpremixed plug-flow re-
actors. 0.e

Despite the favorable features of our simple mathematical
expressions, the ramifications of the assumptions made in de-I riving these expressions must be emphasized. First, due to the 0.6

assumption of infinitely fast chemistry, only the limiting rate

of reactant conversion is obtained. The extensions to finite -- Ocud
rate chemistry, reversible reactions, and multistep kinetics sys- 0.4 A 9

terns require numerical integration of the PDF. For these cases, o ---- 0

the implementation of AMC for the binary case is straight-
forward, since it provides a closure for the joint PDFs of the 0.2
scalar quantities (Pope, 1991). However, the validity of a mul-
tivariate beta (usually known as the "Dirichlet" (Johnson and
Kotz, 1972; Wilks, 1962)) distribution and multivariate forms 0.0- 2b 4.0 6.0
of the JET generated frequencies (Johnson, 1949b) cannot be I"

guaranteed for general applications. Secondly, the simple for- Figure 2. Fractional conversion vs. normalized time.
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the information pertaining to the length-scale evolution of the Edgeworth, F. Y., "On the Representation of Statistical Frequency
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In spite of these assumptions, it is very encouraging to have Erlebacher, G., M. Y. Hussaini, C. G. Speziale, and T. A. Zang,
"Toward the Large Eddy Simulation of Compressible Turbulent

physically plausible algebraic relations for direct and accurate Flows," ICASE Report 87-20, NASA Langley Research Center.estimate of the reactant conversion rate in plug-flow reactors. Hampton, VA, also available as NASA CR 178273 (1987).
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Abstract. Closed form analytical expressions are obtained for predicting the limiting rate of mean
reactant conversion in homogeneous turbulent flows under the influence of a binary reaction
of the type F + rO --# ( + r) Product. These relations are obtained by means of a single-
point Probability Density Function (PDF) method based on the Amplitude Mapping Closure
(Kraichnan, 1989; Chen et al., 1989; Pope, 1991). It is demonstrated that with this model, the
maximum rate of the mean reactants' decay can be conveniently expressed in terms of definite
integrals of the parabolic cylinder functions. For the cases with complete initial segregation, it is
shown that the results agree very closely with those predicted by employing a beta density of the
first kind for an appropriately defined Shvab-Zeldovich scalar variable. With this assumption, the
final results can also be expressed in terms of closed form analytical expressions which are based
on the incomplete beta functions. With both models, the dependence of the results on the
stoichiometric coefficient and the equivalence ratio can be expressed in an explicit marner. For a
stoichiometric mixture the analytical results simplify significantly. In the mapping closure these
results are expressed in terms of simple trigonometric functions. For the beta density model they

are in the form of gamma functions. In all the cases considered, the results are shown to agree
well with data generated by Direct Numerical Simulations (DNS). Due to the simplicity of these
expressions and because of nice mathematical features of the parabolic cylinder and the
incomplete beta functions, these models are recommended for estimating the limiting rate of mean
reactant conversion in homogeneous reacting flows. These results also provide a valuable tool in
assessing the ext'!nt of validity of turbulence closures for the modeling of unpremixed reacting
flows. Some discussions are provided on the extension of the models for treating more complic-
ated reacting systems, including realistic kinetics schemes and multiscalar mixing with finite rate3 chemical reactions in more complex configurations.

Nomenclature

Sa, b, c: some constant. Da: the Damk6hler number.
B: the beta function. F: fuel.
9•: the parabolic cylinder function. 9: the parameter in the mapping closure.

tThis work was sponsored by the NASA Langley Research Center under Grant NAG-I-1 122, and by the Office of Naval
Research under Grant N00014-90-J-4013. Computational resources were provided by NCSA at the University of Illinois.
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q: half the inverse of the normalized variance .0: the PDF. 3
of the Shvab-Zeldovich variable. r: the stoichiometric coefficient.

H: the Heaviside function. t: the physical time.
19: the incomplete beta function. W: the area weight of the reactant.
f: the Shvab-Zeldovich variable. y: the dummy variable of integration. I
0: the oxidizer. T: the unmixedness ratio.

Greek Letters U
A, P2 _. : parameters of the beta density. vo: the composition space for a Gaussian 3

y: the equivalence ratio. reference field. W
r: the gamma function. T: the normalized time.
6: the delta function. X: the mapping function.
4: the composition space for the PDF.

Subscripts 3
0: time zero (inlet of plug flow reactor). st: stoichiometric.
G: Gaussian.

Other symbols

< >: the probability average. ': the fluctuation for the ensemble mean.

1. Introduction I
For the past 40 years, since the early work of Hawthorne et aL (1949), estimation of the mean
reactant conversion rate has been the subject of wide investigations in mathematical modeling of 3
turbulent reacting flows. In unpremixed reacting systems, including diffusion flames, there are two
factors by which this rate is influenced: (1) the speed at which the reactants are brought into the
reaction zone, and (2) the rate at which they are converted to products through chemical reactions. 5
The relative importance of the two mechanisms is characterized by magnitude of the Damkohler
number (Da), which is the ratio of the characteristic frequency of the chemical reaction to that of the
hydrodynamics. The role of the Damkohler number in the characterization of reacting flows is very i
important (Williams, 1985). In the limit of Da .-* oo, the rate of reactant consumption is governed by
the hydrodynamics, i.e., the reaction is "mixing controlled" and is determined by the speed at which
the reactants are brought into an infinitely thin reaction zone (Bilger, 1980). Obviously, with the *
assumption of an infinitely fast chemistry, it is not possible to account for many interesting issues 3
associated with nonequilibrium effects in unpremixed flames (Libby and Williams, 1980). However, as
indicated in 0he original pioneering work of Toor (1962), and later by O'Brien (1971) and Bilger
(1980), it is v1ery important to have a prior estimate of the "limiting" rate of mean reactant conversion I
in practical modeling of combustion systems. In this limit the problem reduces to the simpler problem m
of "mixing," in which its analysis is much simpler (Toor, 1962, 1975).

Development of an appropriate turbulence model which can predict the mean rate of reactant
conversion has been the subject of extensive investigations (for reviews see Toor, 1975; Brodkey, 1981; 5
Libby and Williams, 1980; Williams, 1985). Amongst the theoretical tools developed, it is now firmly
accepted that the approach based on the single-point Probability Density Function (PDF) of the
scalar quantities is particularly useful, and this approach has been very popular for modeling the 3
reactant conversion in a variety of turbulent reacting flow systems (Kollmann, 1990; Pope, 1985, 1990,
1991). The advantage of PDF methods is due to their inherent capability to include all the single- I

I



Reactant Conversion inl tiomogencous Turbulen•ce 91Spoint statistical information pertaining to the scalar field. Therefore, once the PDF (or the joint PDF)

of the scalar variables is determined, all the relevant one-point statistics of the field are available
without need for additional closures.

The most logical and systematic means of determining the PDF involves the solution of an
appropriate transport equation governing its evolution. In this equation, due to the nature of the
formulation, the effects of chemical reaction appear in a closed form (Pope, 1976), regardless of its
degree of complexity. However, the influences of molecular action cannot be fully described, and can1 , be treated only by means of employing an appropriate closure. As noted by Pope (1991), in most
previous applications this problem has been circumvented through the use of the Coalescence/

Dispersion (C/D) models. Examples of such models are the early C/D prototype of Curl (1963), the
Linear Mean Square Estimation (LMSE) theory (O'Brien, 1980), the closure of Janicka et al. (1979),
among others (Pope, 1982, 1985; Kosaly and Givi, 1987; Givi, 1989; Dutta and Tarbell, 1989).
Despite their advantageous characteristics, the shortcomings associated with the C/D closures in the
probabilistic description of scalar transport are well recognized. Namely, none of the aforementioned
models predict an asymptotic Gaussian distribution for the PDF of a conserved scalar variable in
homogeneous turbulence (Pope, 1982, 1991; Kosaly and Givi, 1987); and those which are capable of
doing so (e.g., Pope. 1982), do not predict the initial stages of mixing correctly (Kosaly, 1986; Kosaly
and Givi, 1987).

Recent development of the Amplitude Mapping Closure by Kraichnan and coworkers (Kraichnan,
1989; Chen et al. 1989) (see also Pope, 1991) has provided a promising way of alleviating some of the
problems associated with the C/D closures. This closure, in essence, provides a means of accounting
for the transport of the PDF in composition space, and its validity and physical applicability
have been evidenced in a number of comparisons against data generated by means of both direct
numerical simulations (Pope, 1990, 1991; Gao, 1991a, b, Madnia et al., 1991b; Jiang et al., 1992) and
laboratory experiments (Frankel et al., 1992a). These results suggest that, at least in the setting of an
isotropic turbulent flow, this closure has some superior features over all the previous C/D-type
models.

Based on this demonstrated superiority, our objective here is to examine further the properties of
this closure and to assess its capabilities for applications in modeling of unpremixed turbulent
reacting flow systems. In particular, it is intended to provide a reasonably simple recipe that can be
used in conjunction with this closure for predicting the limiting rate of mean reactant conversion.
However, since this is the first study of this type, and due to mathematical complexities (that soon
become apparent), we have made some simplifying assumptions which are indicated here. Firstly, we
consider an idealized irreversible binary reaction of the type F + rO -* (1 + r) Product with initially
segregated reactants (F and 0). In accordance with the discussions above, only the maximum rate
of mean reactant conversion is considered. Secondly, the turbulence field is assumed statistically
homogeneous. Thirdly, all the chemical species are assumed to have identical and constant thermo-
dynamic properties. Finally, the flow field is assumed isothermal in which the dynamic role of the
chemical reaction on the hydrodynamic field is ignored.

With all these assumptions, the reacting system considered is obviously an idealized prototype of
conventional combustion systems. However, it does provide a good model for dilute reacting systems
in typical mixing controlled plug flow reactors (Toor, 1962, 1975; Bilger, 1980; Hill, 1976; Brodkey,
1981). Moreover, because of the mathematical complexities, even in this simple case, it is deemed
necessary to analyze this simplified system before considering more complex scenarios. Nevertheless,
the model is capable of accounting for arbitrary values of the stoichiometric coefficients and for any
equivalence ratio. This allows the capture of many interesting features, as will be demonstrated.

For the idealized case of initially segregated reactants, the initial marginal PDFs of their
concentrations are composed of "delta functions." Therefore, it is speculated that the approach based
on an assumed probability distribution may also provide a reasonably good closure. Therefore, in
addition to the mapping closure, a member of the family of Pearson frequencies is also considered.The results obtained by this frequency are compared with those of the mapping closureand are also

assessed against data generated by means of DNS.
In the next section the problem under consideration is outlined along with the mathematical basis

by which the single-point PDF methods are used. In Section 2.1 the salient features of the mapping
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closure at the single-point level are analyzed including a discussion on the formalities of the closure 3
for our purpose. With this closure, a closed form analytical expression is provided for the limiting
bound of the mean reactant conversion. This limiting rate is also predicted by means of the beta
density model in Section 2.2. In both these subsections the simplifications for the case of a stoichio-
metric mixture are made, motivating the use of our final "simple" analytical expressions in practical
modeling of stoichiometric plug flow reactors. In Section 3.1 the results predicted by both models are
compared against those generated by DNS of a three-dimensional homogeneous turbulent flow. In
Section 3.2 some discussions are presented highlighting the implications of these results in turbulence
modeling. This paper is drawn to a close in Section 4 with some discussions for possible future
extension of the two models for the statistical description of more complicated chemically reacting
turbulent flows. 3

2. Formulation

With the assumptions described in the introduction, the statistical behavior of the reacting field in the i
reaction F + rO - (I + r) Product can be related to the statistics of an appropriate conserved Shvab-
Zeldovich mixture fraction, f (Bilger, 1980). This mixture fraction can be normalized in such a way to
yield values of unity in the fuel F stream and zero in the oxidizer 0 stream. For the purpose of
statistical treatment, we define YF(ý, t), 3O(ý, t), and Y1 (ý, t), respectively, as the marginal PDFs of
the concentration of F, the concentration of 0, and the Shvab-Zeldovich variable f. For initially
segregated reactants with no fuel in the oxidizer stream (and vice versa), the initial conditions for the
marginal PDFs of the concentrations of the two reactants are given by

'4(#' , 0) = Wf b(ý - F,) + WRo (c ), (
0'(4, o) = WOW( - o0) + wF6(0), 0! < :5 1- 1

Here, F, and Oi denote the initial concentrations of the two species in the two feeds, and WF and Wo
represent the relative weights of the reactants at the initial time (i.e., the area ratios at the inlet of a 3
plug flow reactor). With the normalized value of the concentrations equal to unity at the feeds, i.e., U
Fj = O = 1, the stoichiometric value of the Shvab-Zeldovich variable, /,,, is determined from the
parameter r. With the assumption of an infinitely fast chemistry, the marginal PDFs of the reactants'
concentrations are related to the frequency of the Shvab-Zeldovich variable (Bilger, 1980; Kosaly and 3
Givi, 1987):

•'ýPA, 0) = U1 - A,,?'(A,, + W( - A0,,) 0 + ,&FOtWD, .
YO0(•, 0) = f,,,• (4,,0 -- 0), t) + 9o(t)N(O.(2

Here, • > 0 and

9AF() Y-• ( t) dý, I
(3)

, Jo(t) - -60,4 t) dý = I - 8 F().3

The initial condition for the PDF of the Shvab-Zeldovich variable is given by

Yf(ý, 0) = WF6(W - 1) + WoN(Y1. (4)
Equation (4) implies that (f>(t = 0) = WF. Since Y is a conserved variable, its mean value remains
constant, i.e., (j< (t) = <f)>(0) WF. The integration of (2) yields the temporal variation of the
statistics of the species field at all times, if the PDFs of f are known. As indicated above, in the 3
setting of a mixing controlled reaction this PDF provides all the desired statistical properties of the U
reacting field.

2.1. Amplitude Mapping Closure I
The implementation of the amplitude mapping closure involves a mapping of the random field of
interest 4 to a stationary Gaussian reference field qPo, via a transformation • = X(qPo, 1). Once this 3

U



Reactant Conversion in Homogeneous Turbulence K3Sreclation is established, the PDF of the random variable 4, ,?(4), is related to that of a Gaussian

distribution. In homogeneous turbulence, the transport equation for this function satisfies (Chen et al..
1989; Pope, 1991) OX e X (5)

OT =- 0°0 + 25

In this equation, r is a normalized time within which the scalar length scale information is embedded.
The relations between this time and the physical time, i.e., r(t), cannot be determined in the context of
single-point PDF description and must be provided by external means (Pope, 1990; Jiang et al., 1992).
For the case considered here, with the initial PDF of the variable f given by (4), the corresponding
form of the initial mapping is

where H is the Heaviside function and q* is a measure of the initial asymmetry of the initial PDF3 around the ensemble mean of the variable f:
V* = 2 erf-I(l - 2(.)), (7)

where "erf" denotes the error function. The mapping function is obtained by solving (5) subject to
initial condition (6). The general solution of this equation has the form (Gao, 1991a)

3(Xo, T) = -0 X(Y, 0) x(YOpexp - y )]dy, (8)

where I(T) = /exp(2r) - 1. Inserting (6) for X(qpo, 0) in (8), we have

IX((o, r) = J[1 + erf(ago + b)], (9)
where

a(r) = b(T) = (10)

Finally, the solution for the PDF of f is determined directly from the mapping relation between
I the physical field 4 and the Gaussian reference field qo:

9AX WO, 4 T) = 6(9 ). (11)

I Here, 9G denotes the PDF of a standardized Gaussian distribution, i.e., 9G(('o) = (l/V2) exp(- qo2/2).

A combination of (11) and (9) yields the final result for the PDF of the Shvab-Zeldovich variable:

3 4?,) = r) exp[ .] (12)

With a combination of (12) and (2), all the pertinent single-point statistics of the reacting field are
determined. The most important of these statistics are the ensemble mean values of the reactants'
concentrations. These mean values are obtained directly by integrating their respective PDFs. The
intermediate steps in deriving these relations are not presented but are provided by Frankel (1992).
Here, only the essential steps are presented. For the mean fuel concentration, (F>, the first part of (2)
reads

(F>(r) = I F(4)9.f(4, r) d4 = Y F(X((po, r), ?T)9(qo) d(po, (13)

where the lower limit of the last integral corresponds to the value of (o at which X is equal to the

stoichiometric value of the Shvab-Zeldovich variable. Evaluating this limit from (9), equation (13) can
* be analytically integrated. This is possible by representing the error function in the form of

its definition, and performing the resulting definite, double exponential integral. The results after
extensive algebraic manipulations yield

(I - 2,,) erf(b/a + c\] 1 e2p 0+. (14)
I4( - f,,) L/2- + ,12-a(I - f..) 2e
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Similar expressions can be obtained for the mean oxidizer concentration: 5
> ( ( 'I)[I - erf " ] ,I / ' - bc
2o>(= 2-f., \ /2- a-,1 .p 2a2  2 a)

In these equations, c is related to the stoichiometric coefficient,

c = - 2erf•(2/a - 1), (16)

and

2' /22 + ii I (t .v-'V

yZ = y2 (17)

y+. = T-2acy" 2 b a-

Here, !-2 and 9-, are, respectively, the parabolic cylinder functions of order -2 and - 1,
belonging to the family of degenerate hypergeometric functions (Abramowitz and Stegun, 1972).

Due to nice properties of the degenerate hypergeometric functions, many of the interesting features
of (14) and (15) can be depicted. First, simple manipulation of this equation shows that for a
stoichiometric mixture, (<. > /,, both reactants decay at the same rate, i.e.,

(F>() (O>(t)

<F>(O) = W ( <O>(O) = Wo3

and for a nonstoichiometric initial condition, the limits of the concentration values as T, 9 -+ 00,
asymptote to

Lim <F>(O) = 01 
>,

0, 1- A At:5 f X(18)

Lim <0>(,r = fJ>

These limits are obtained by employing the Taylor series expansion of the relevant functions as
S-- o, and indicate the limiting bound of the concentrations of the unconsum ed reactants in both

fuel-rich and fuel-lean mixtures. While these limiting behaviors are rather trivial from a physical 3
standpoint, in a computational procedure it must be made sure that they are satisfied. Because of the W
mathematical properties of the parabolic cylinder functions, these limiting cases can be realized in
our computational procedure in a relatively easy manner. It would be very difficult to obtain these 5
limiting behaviors numerically in an integration procedure within the original unbounded domain. U

At first glance, (14) and (15) may appear somewhat complicated. However, due to nice mathe-
matical properties of the parabolic cylinder functions (Abramowitz and Stegun, 1972), these
equations can be integrated rather easily within the finite domain (0 • y :: 1). For fuel-lean or 5
fuel-rich mixtures, the integration can only be done by means of employing numerical methods.
However, for a stoichiometric mixture, the results simplify further as demonstrated below.

Stoichiometric Mixture. For practical applications in stoichiometric plug flow reactors, the equations
simplify considerably. For a stoichiometric mixture, and an initially symmetric PDF around the mean
value (i.e., (<,) = f. = 1), both parameters b and c are zero. Under this condition, the first terms on £
the right-hand sides of (14) and (15) drop. Knowing .9-(0) = -9(0) - I, the remaining terms yield 5

<F>(r) <O>(r) I I dy 2 arctan 4(T)
<>(o) = <0>(0--- -=o 2y2+ l/a" -- 9 I
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3 The simplicity of this equation is noteworthy and very pleasing. Because of this simplicity, (19) is
strongly recommended for engineering predictions of the mean reactant conversion rate in stoichio-
metric homogeneous flows, such as the plug flow reactors considered in numerous previous investiga-
tions (Toor, 1962, 1975; Brodkey, 1981; Hill, 1976; O'Brien, 1971; Kosaly and Givi, 1987).

2.2. The Beta Density Model

For initially segregated reactants, the initial PDF of the Shvab-Zeldovich variable is composed of
two delta functions at the extreme limits of the variable. Therefore, it is proposed that the family of
Pearson (1895) frequencies may provide a reasonable means of estimating this distribution at all times
(Frankel et al., 1991; Girimaji, 1991a). The appropriate form of the Pearson distribution is in this case
the beta density of the first kind. This density has been employed in the statistical description of
turbulent reacting flows by Rhodes (1975), Jones and Priddin (1978), Lockwood and Moneib (1980),
Peters (1984), and Janicka and Peters (1982) amongst others (for recent reviews, see Givi, 1989;
Priddin, 1991). For an initially nonsymmetric PDF, the beta density corresponds to Pearson Type I
and for the symmetric case to Pearson Type II. The relevance of the latter in modeling of molecular
mixing from an initial symmetric binary state has been described by Madnia et al. (1991a) and
Girimaji (1991a). In both cases the PDF of the Shvab-Zeldovich variable is represented by
(Abramowitz and Stegun, 1972)

S 1 B(PI, -t( - 0"-" 0 1 _ 1, (20)

where B(fl1 , fi2) denotes the beta function, and the parameters P, and #12 are dependent on the mean
and the variance of the random variable f. In applications to the mixing controlled reaction
considered here, we assume that the PDF of the Shvab-Zeldovich variable always retains a beta
distribution. Thus all the statistics of the reacting scalar are subsequently determined. The ensemble
mean values are determined by a combination of (20) and (2). Following the same procedure as that
described in the section on the mapping closure, after some manipulations the final results can be
expressed as (Frankel, 1992)

(#I + fi2)B(P1, #i2) 1 - f., #fI + /#2 - -" 1(1

I = /D-1( - Al )1'P (2()
(O #(t) P 2) +1- ..91 (f,, 2), (22)

I where J denotes the incomplete beta function (Abramowitz and Stegun, 1972).

Due to nice mathematical properties of the beta function, the final results are cast in terms of its
integral. In this case, however, the integral can be expressed in terms of the incomplete beta function.
The mathematical properties of this special function are well known, and the expressions above
are conveniently amenable to numerical integration (Frankel, 1992). Again, the physical limiting
conditions discussed before are realized by (21) and (22). That is, in a stoichiometric mixture, both
reactants decay at "he same rate; and in lean or rich mixtures, the same limiting conditions as those in
(18) are realized.

Stoichiometric Mixture. Again, in the case of an initially symmetric PDF under stoichiometric
conditions, the final expressions become simpler. Under this condition, #I = #2, and knowing
J1,2(x, x) = ½, (21) and (22) reduce to

(F)(t) _ <O>(t) 1 r(g)5 (F>(0) <0>(O)(0) I- F(g + ½)' (23)

where g is half the inverse of the normalized variance of the Shvab-Zeldovich variable, and r denotes
the gamma function.3 3. Results
The final forms of (14), (15), (19), (21), (22), and (23) are gratifying since they provide a relatively5 simple and effective means of estimating the maximum rate of mean reactant conversion in homogen-
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cous reacting flows. As indicated before, the mi iýematical operations leading to these equations are 3
somewhat involved, but the final results can be conveniently expressed in terms of known special
functions. However, since both models are based on single-point PDF descriptions, these equations
are not in a complete closed form and are dependent on the parameters g and/or 4. In this context 3
this parameter cannot be determined by the model and must therefore be specified by external means
(Pope, 1991; Jiang et al., 1992; Frankel et al., 1992a). This deficiency is not particular to the two
models considered here, and exists in any single-point statistical description, including all of those
based on the C/D models. 3

The extent of validity of these simple relations can be demonstrated by a comparison between the
model predictions and the data obtained by means of DNS. The comparison is made here for several
values of <f> and A, for the purpose of demonstration. In this comparison the magnitudes of the nor- I
malized variance of the Shvab-Zeldovich variable are matched with those of DNS. This implies that, W
for given values of <.f)> and f,, the parameters g, -, #l, and P12 are provided externally from the DNS
data. With this provision, the model prediction results can be directly assessed against DNS data.

The DNS procedure is similar to that of previous simulations of this type. For a detailed
description we refer the reader to Madnia and Givi (1992). The subject of the present DNS is a
three-dimensional periodic homogeneous box flow under the influence of a binary reaction of the type
described above. The initial species field is composed of out-of-phase square waves for the two
reactants F and 0. The computational package is based on the modification of a spectral-collocation
procedure using Fourier basis functions developed by Erlebacher et al. (1990a) (see also Erlebacher et
al., 1987, 1990b). The hydrodynamic field is assumed isotropic, and is initialized in a similar manner U
to that of Erlebacher et al. (1990a) and Passot and Pouquet (1987). The turbulent field is of a
decaying nature in that there is no artificial forcing mechanism to feed energy to low wave numbers.
The code is capable of simulating flows with different levels of compressibility (Hussaini et al., 1990).
Here, only the results obtained for a low compressible case are discussed, since most previous analyses
of plug flow reactor, h-ve dealt primarily with incompressible flows (Toor, 1975; Hill, 1976; Brodkey,
1981; Leonard and Hill, 1988a, b, 1991). The resolution consists of 96 collocation points in each
direction. Thereffbre, at each time step 961 is the sample size for statistical analyses. With this 3
resolution, simulations with a Reynolds number (based on the Taylor microscale) of ReA - 41 are W
attainable. The value of the molecular Schmidt number is set equal to unity.

3.1. Validations i
The statistical behavior of the scalar field is depicted by examining the evolution of the PDFs of the
Shvab-Zeldovich variable /. These are shown in Figures 1 and 2 at times close to the initial (t 1) and 3

O NS D- NS
MAPPING --- MAPPING

10.0 BETA 10.0 BETA

S5.03

ifi

0.00
00 02 04 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0

Figure I. PDF of the Shvab-Zeldovich variable at two times Figure 2. PDF of the Shvab-Zeldovich variable at two times
(t2 > 11) for the symmetric case (</> = 1). (t2 > t1) for the nonsymmetric case (<(f9> = 0.625). 3
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3 Figure 3. Normalized mean concentration of fuel and the 00 . 6.0

oxidizer for the symmetric case, and f, = 0.5. 0.0 2 . 0

the final (t2) states. These figures correspond, respectively, to the cases of an initially symmetric
<f(( > = 1) and nonsymmetric (<f > = 0.625) PDFs. At the initial time, the PDF is approximately

composed of two delta functions at J = 0, 1 indicative of the two initially segregated reactants, F and
0. At later times, the PDF evolves through an inverse-like diffusion in composition space. The heights
of the delta functions decrease, and the PDF is redistributed at other f values in the range [0, 1],
and subsequently becomes centralized around the mean value. Proceeding further in time results in a
sharper peak at this mean value, and in both cases the PDF can be approximated by a Gaussian
distribution near the mean scalar value. The trend for the symmetric case is the same as that
presented in earlier DNS studies (Eswaran and Pope, 1988; Givi and McMurtry, 1988). For the
nonsymmetric case there are no DNS data in the literature, but the present results verify that the
asymptotic PDF can still be approximated by a Gaussian distribution near its mean value.

The PDFs obtained by the mapping closure and those by an assumed beta density are also
presented in Figures 1 and 2. In these figures the model PDFs are parametrized with the same first
two moments obtained from DNS. In this parametrization only the normalized magnitude of the
variance of the models are forced equal to that of the DNS and no attempt was made to account

for the departure from the "exact" initial double delta distribution in DNS. "With this matching,
nevertheless, the results clearly indicate that the model predictions compare very well with the DNS
results. Also, both models yield an asymptotic Gaussian-like PDF.

The temporal variation of the ensemble mean of the reactants' concentration by the two models
are compared against those of DNS in Figures 3 and 4. These figures correspond to the two cases of
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I FIlgre 4. Normalized mean concentration of fuel and the oxidizer for the nonsymmetric case. (a) f. = 0.4, (b) ,, = 0.2
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symmetric and nonsymmetric initial PDFs, respectively. In the symmetric case, under stoichiometric 3
conditions, the results are simply obtained from the analytical expressions in (19) and (23). In the
nonsymmetric case, numerical integration of (14) and (15) and evaluation of the incomplete beta
function in (21) and (22) are necessary. In both cases the agreement of the models with the DNS data
is noteworthy. Also, a comparison between parts (a) and (b) of Figure 4 shows that as the magnitude
of f,, decreases, the rate of consumption of the oxidizer increases.

The agreements noted above follow from the compatibility of the model PDFs and those of DNS,
at least for the case of binary mixing considered here. This finding is not new and has been well
documented in previous works, at least those considering an initially symmetric PDF (Pope, 1990,
1991; Madnia and Givi, 1992; Madnia et al., 1991a; Girimaji, 1991a). However, a nice feature of the
models is the explicit form of the final equations expressing these statistical quantities. Supported by l

this quantitative agreement, it is proposed that, in the absence of a better alternative, the relations W
obtained above be used as an explicit simple means for predicting the maximum rate of mean reactant
conversion in homogeneous reacting systems. a

Despite the simplicity of these equations and their ease of application, it must be mentioned that
these equations predict the rate of mean decay of the reactants' concentration far better than all
the previous turbulence closures based on the C/D models (see Givi, 1989). This is particularly
advantageous in that this evaluation can be made by a simple algebraic relation, whereas the C/D
implementations usually require more expensive numerical simulations (Kosaly and Givi, 1987;
McMurtry and Givi, 1989). Even for nonunity equivalence ratios, the numerical integration required
by the two models above is considerably less computationally demanding than those of the C/D 3
models. The only input in these models, similar to those in C/D closures, is the variance of the U
Shvab-Zeldovich variable. This is provided here by means of DNS. In an actual implementation, this
variance can be obtained from experimental data or by means of an appropriate turbulence model
(Frankel et al., 1992a). The provision of such data is not very difficult since they can be obtained in
the setting of a nonreacting flow.

3.2. Applications 3
The relations obtained here can be used in determining the extent of validity of other conventional
closures for predicting the limiting rate of mean reactant conversion in turbulent flows. As an
example, here we consider the model based on the famous hypothesis of Toor (1962, 1975), which has
received considerable attention in practical modeling of unpremixed homogeneous reacting systems
(Bilger, 1980; Brodkey, 1981; Leonard and Hill, 1987, 1988a,b; Kosaly and Givi, 1987; Kosaly, 1987;
Givi and McMurtry, 1988; McMurtry and Givi, 1989; Givi, 1989). According to this hypothesis, in 3
an isothermal homogeneous reacting turbulent flow, the decay of the unmixedness, denoted by
TI = <F'O')(t)/<F'O'>(O), where the prime quantities indicate fluctuation from the ensemble mean
value, is independent of the magnitude of the Damkohler number. This implies ,hat the normalized •
unmixedness parameter, defined by U

tOID.o (24)

is the same under both reacting and nonreacting conditions, i.e., .t(t) = constant = I for all values of
Da. In previous DNS assessments of this hypothesis, it has been shown that for the case of initially
segregated reactants this model cannot be employed, and the normalized unmixedness ratio depends 3
on the nature of mixing and the magnitude of the Damkoher number (Givi and McMurtry, 1988;
McMurtry and Givi, 1989). In particular, it has been demonstrated that even for Da--. +0, while the
normalized unmixedness is equal to unity at the initial time, its limiting lower bound depends on the l
asymptotic frequency of the Shvab-Zeldovich variable. That is, .T(t = 0) = I > -'(t) > J..(t -+ oo) = C,
where C is the lower limiting bound. For an asymptotic Gaussian distribution, it can be easily shown
that, for a mixture under stoichiometric conditions, the lower bound limits asymptotes to the constant
value C = 2/it (Kosaly, L',87; Givi and McMurtry, 1988). 3

This deviation from unity can be realized by the two models considered. With the mapping closure,
under symmetric stoichiometric conditions, from (2), (14), and (15), following the same integration

U
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Figure 5. The unmixedness ratio at several values of the 0 0 10 23 3 3 40 50

I procedure as before, it is shown that

-2M=<F'O'>(Da -+ oc) 2(arctan(1/13))' (5
< (F'O'>(Da = 0) n arctan(l///• + 2" (25)

For the beta density viodel, the corresponding form of the unmixedness ratio for Ph = P2 is given by

=2g r(g) (26)
I*r (ri(g+))

In (25) and (26), the subscripts m and P are added to denote the mapping and the beta density model.
It is easy to show that these equations satisfy the correct limiting conditions for a stoichiometric
mixture. This is for both the initial time, i.e., the inlet of the reactor,

Lim ff. = Lim ff = 1, (27)

and at large distances from it: 2
Lim Z. = Lim ff, = C =-. (28)

The latter limiting condition cannot be realized in any of the previously used C/D models, or by
means of Toor's models (McMurtry and Givi, 1989; Givi, 1989).

The results based on the applications of Toor's model become less accurate for nonstoichiometric
mixtures. For equivalence ratios other than unity, with the depletion of one of the reactants, the
unmixedness parameter approaches zero faster. This is demonstrated by the solution of the mapping
closure shown in Figure 5 for several values of the equivalence ratio (y). Note that as the magnitude
of this ratio increases above one, the unmixedness ratio goes to zero more rapidly. For an unity
equivalence ratio, the correct asymptotic value of 2/n is realized.

3 4. Extensions for Modeling of More Complex Reacting Turbulent Flows

Despite the pleasing features of our simple mathematical expressions, there are several restricting
assumptions which were necessarily imposed in deriving these equations. Here, we would like to
address the ramifications associated with these assumptions, and to provide the means of overcoming
them in future extensions of these models.

Firstly, due to the assumption of infinitely fast chemistry, only the maximum rate of the mean
reactant conversion is obtained. While this rate is very useful in describing unpremixed flames, from
both a theoretical standpoint and for practical applications (Givi, 1989; McMurtry and Givi, 1989;
Kosaly and Givi, 1987; Toor, 1962, 1975; O'Brien, 1971; Bilger, 1980, Williams, 1985; Dutta andI
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Tarbell, 1989), the model is not capable of describing some of the important features of the turbulent 3
flames, especially those associated with noncquilibrium effects. The extensions to finite ratc chemistry,
reversible reactions, noncquilibrium flames, and multistcp kinetics systems require numerical inte-
gration of the PDF transport equation. For these cases the problem cannot be mathematically U
reduced to that of keeping track of a single scalar variable (like f), and requires the use of
multivariate statistical descriptions. For this, the implementation of mapping closure is relatively
straightforward since it provides a transport equation for the joint PDFs of the scalar variable in a
multivariable sense (Pope, 1991; Gao and O'Brien, 1991). However, it is not presently clear how to
devise an efficient computational procedure, typically based on Monte Carlo methods (Pope, 1981),
for the numerical treatment of these equations. Some work in this regard is currently under way
(Valihio and Gao, 1991; Valifio et al., 1991).

The extension of assumed distributions based on the beta density for treating multiscalars is more
straightforward but less trivial to justify. The most obvious means is to implement the multivariate
form of the Pearson distributions. The direct analogue of the beta density is the Dirichlet frequency 3
(Johnson, 1987; Johnson and Kotz, 1972; Wilks, 1962; Narumi, 1923). For a mixture composed of
N + I species, the joint PDF of N concentrations ('', 4/2 ... n) is d-scribed in terms of an
N-variate density of the form 3

r(o, + #2 + "" #+,•N ) Opt_ m O 21..0 ,I 2( 9
0 .... )=.(f= l, -l.- r(f2 + .2 N29

subject to the physical constraint IN+N+1

Y . , = I ( 3 0 )
i=!

The application of this density in modeling of multispecies reactions has been nicely discussed by
Giriaaji (i991a). Due to the mathematical properties of the gamma function, this density is pleasing
from a mahematical viewpoint and most statistical cross correlations of the random variables
(,P1, 02,...) ca- b; conveniently obtained by means of simple analytical relations (Frankel, 1992).3
Some points in this regard have been made by Girimaji (1991b). However, the use of the Dirichlet -
frequency cannot be justified for modeling of unpremixed reacting flow in a general sense (Frankel,
1992). In fact, there is no way of implementing this density directly for modeling of nonequilibrium
flames, involving strong temperature variations. This is simply due to the additivity constraints of this
density requiring the unity sum of the normalized random variables (30).

Secondly, the mathematical derivations presented here are only valid for initially segregated
reactants. In both models the complete segregation facilitates significant simplifications of the final
equations. This assumption is compatible with that made in the majority of previous works on
unpremixed reacting flows (Toor, 1975; Brodkey, 1981; Bilger, 1980). For other initial conditions,
e.g., partial premixing of the reactants, or non-delta-like distributions, numerical integration of I
the PDF transport equation is required. Again, an appropriately devised numerical procedure can
accommodate such conditions. However, the use of a beta density (or any other assumed distribu-
tions) cannot be justified for other complex initial conditions.

Thirdly, the final mathematical expressions are only valid in the setting of a homogeneous flow.
Extension to inhomogeneous flow predictions is also straightforward, but requires numerical inte-
gration of the modeled equations. Both models can be directly implemented into appropriately
devised numerical procedures. The mapping closure can be invoked in the mixing step of a fractional 5
stepping procedure, similar to that of typical Monte Carlo procedures (Pope, 1981). The beta density
requires modeled transport equations for the low-order statistics of the reacting field. These equations
include the required information pertaining to the spatial inhomogeneity of the flow through the 3
parameters P31, /P2 .... With this information, all the higher-order statistics of the reacting field can be U
provided by simple analytical means (Girimaji, 1991b; Frankel et al., 1992b).

"Finally, in the context of the single-point PDF formulation presented, there, is no information
pertaining to the evolution of the relevant turbulent length scales. The final expressions can only be 3
presented in terms of other physical parameters (here, through the variance of the Shvab-Zeldovich
variable). In the context considered, this parameter has been provided by the DNS data. In a practical
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application, this must be provided by external means (turbulence models, experimental data, etc.).
Jiang et al. (1992) and Frankel et al. (1992a) provide further discussions related to this issue.

3 5. Concluding Remarks

It is demonstrated that the mapping closure of Kraichnan (Chen et al., 1989; Pope, 1991) yields3 closed-form analytical expressions for predicting the limiting bound of the mean reactant conversion
rate in simple chemistry of the type F + rO -, (I + r) Product in homogeneous, isothermal turbulent
flows. It is also shown that, for the case of complete initial segregation, the scalar PDFs generated by
this closure can be well approximated by a beta density. This density also provides closed-form
analytical expressions for the limiting rate of mean reactant conversion. A nice feature of the
mathematical results generated by the two models is their capability of revealing the influence of the

stoichiometric coefficient and the equivalence ratio. In both cases the mathematical expressions
simplify significantly for a stoichiometric mixture. The prediction results via both models compare
favorably with data generated by DNS. This agreement follows from the compatibility of the models'
PDFs with those of DNS. The simple final results generated here are superior to those of previous
closures based on typical C/D models, and those based on Toor's hypothesis.

These closed-form relations are furnished with the imposition of several restrictive assumptions.
The ramifications associated with these assumptions are discussed, and some suggestions for future
extensions are provided. Despite these assumptions, it is very encouraging to have physically plausible
algebraic relations for the direct estimate of the mean reactant conversion rate in homogeneous
turbulent flows, typical of those in plug flow reactors.
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* Johnson-Edgeworth Translation for Probability Modeling
of Binary Scalar Mixing in Turbulent Flows

I R. S. MILLER, S. H. FRANKEL, C. K. MADNIA, and P GIVI Department of
Mechanical and Aerospace Engineering, State University of New York, Buffalo,

* NY 14260

(Received August 14, 1992; in final form November Z 1992)

Abstract-A family of Probability Density Functions (PDFs) generated by Johnson-Edgeworth ilamslation
(JET) is used for statistical modeling of the mixing of an initially binary scalar in isotropic turbulence.
The frequencies obtained by this translation are shown to satisfy some of the characteristics of the PDF's
generated by the Ampitude Mapping Closure (AMC) (Kraichnan, 199;, Chen et aL, 1989). In fact, the
solution obtained by one of the members of this family is shown to be identical to that developed by the AMC
(Pope, 1991). Due to this similarity and due to the demonstrated capabilities of the AMC, a justification is

provided for the use of other members of JET frequencies for the modeling of the binary mixing problem.
This similarity also furnishes the reasoning for the applicability of the Pearson Family (PF) of frequencies
for modeling of the same phenomena. The mathematical requirements associated with the applications of
JET in the modeling of the binary mixng problem are provided, and all the results are compared with

data generated by Direct Numerical Simulations (DNS). These comparisons indicate that the Logit-Normal
frequency portrays some subtle features of the mixing problem better than the other closures. However, none
of the models considered (JET, AMC, and PF) are capable of predicting the evolution of the conditional
expected dissipation and/or the conditional expected diffusion of the scalar field in acoordance with DNS. It
is demonstrated that this is due to the incapability of the models to account for the variations of the scalar
bounds as the mixing proceeds. A remedy is suggested for overcoming this problem which can be useful in
probability modeling of turbulent mixng, especially when accompanied by chemical reactions. While in the
context of a single-point description the evolution of the scalar bounds cannot be predicted, the qualitative
analytical-computational results portray a physically plausible behavior.

1 INTRODUCTION

The problem of binary mixing in turbulent flows has been the subject of widespread
investigations over the past two decades (Dopazo, 1973; Pope, 1979; Pope, 1985; Pope,
1990; Givi, 1989; Kollmann, 1990). This problem has been particularly useful in assessing
the extent of validity of the closures developed within this period for modeling of turbulent
mixing by Probability Density Function (PDF) methods (Dopazo, 1973; Pope, 1976; Pope,
1979; Janicka et al, 1979; Pope, 1982; Kosaly and Givi, 1987; Norris and Pope, 1991).
Usually the problem is considered in the setting of a spatially homogeneous turbulent flow
in which the temporal evolution of the PDF is considered. In this setting, development
of a closure which can accurately predict the evolution of the PDF has been the main
objective of these investigations (for recent reviews see Pope (1990); Kollmann (1990);
Givi (1989)).

Computational experiments based on Direct Numerical Simulations (DNS) have proven
very useful in evaluating the performance of new closures (Givi, 1989; Pope, 1990). The
binary mixing problem is well-suited for DNS investigation, and current computational
capabilities allow consideration of flows at sufficiently large Reynolds numbers in which
the behavior of the models can be assessed (Eswaran and Pope, 1988; Givi and McMurtry,
1988; McMurtry and Givi, 1989; Madnia and Givi, 1992). The results of all the previous
work on DNS of the binary mixing problem portray a clear picture of the PDF evolution,
at least at the single-point level. A successful closure is one which can predict all the
stages of mixing, as depicted by DNS, from an initially binary state (total segregated) to
a final mixed condition.
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Amongst the models developed in the literature, the recent Amplitude Mapping Closurc
(AMC) (Kraichnan, 1989; Chen et al., 1989; Pope, 1991) has proven effective in producing
a physically correct PDF evolution. In the application of this model to the problem of I
binary mixing it has been demonstrated that the closure is capable of approximating a
reasonably correct evolution at all stages of mixing (Pope, 1991). Namely, the evolution
from an initial double delta PDF to an asymptotic Gaussian distribution. This is a trend
which has been observed in DNS (Eswaran and Pope, 1988; Givi and McMurtry, 1988;
investigations (Miyawaki et al., 1974). However, it is shown by Gao (1991); O'Brien and

Jiang (1991) that the PDF adopts an asymptotic Gaussian-like distribution only near the
mean scalar value, and the conditional expected dissipation does not correspond to that
of a Gaussian field everywhere within the composition domain.

Our first objective in this work is to present another means by which the AMC can I
be viewed. It is demonstrated that in the binary mixing problem, this closure can be
considered as a member of the family of frequencies generated by the method of Johnson-
Edgeworth Translation (JET). In fact, it is shown that the result produced by the AMC is I
identical to that generated by one of the members of this translation. With this observation,
a justification for employing other simpler "assumed" frequencies is provided. Our second
objective is to make a detailed examination of the conditional expected dissipation and
the conditional expected diffusion of the scalar variable as predicted by the closures.
This examination provides an effective means of demonstrating the deficiencies of these
models in reproducing the correct physical behavior as depicted by DNS results. With
the development of analytical relations for some of these closures, a remedy is suggested
for overcoming the model deficiencies.

1.1 Outline i
In the next section, the problem of binary mixing and its solution via the AMC is briefly
reviewed. In Section 3, the Johnson-Edgeworth Translation is introduced with a highlight
on the mathematical constraints associated with its application for the modeling of the
mixing problem. Due to the previously established similarity of the JET frequencies
with those based on the Pearson Family (PF), the Beta density of the first kind is
also presented in this section. The PDF's generated by these three models (AMC,
JET and PF) are compared against each other and also with data generated by Direct
Numerical Simulations (DNS) in Section 4. The results for the conditional expected
scalar dissipation, and the conditional expected scalar diffusion for all the closures are
discussed, respectively, in Section 5 and in Section 6. In Section 7, some theoretical
remarks pertaining to the evolution of the scalar in an isotropic field are presented. With
this presentation, the problems associated with all three closures become more clear. I
In Sections 2-7, the discussions are limited to those associated with the transport of a
passive scalar from an initially symmetric binary state in isotopic turbulence. Therefore,
in Section 8 some discussions are presented of the applications of the models for treating
more general problems. This paper is drawn to a conclusion in Section 9.

2 BINARY MIXING PROBLEM

We consider the mixing of a scalar variable O = 4(x, 1) (x is the position vector, and t
denotes time) from an initially symmetric binary state within the bounds !5 46 < • , In
this section, we assume that the lower and the upper bounds of the scalar range remain I
fixed (i.e. 4,, 01 are constant). Within this domain, the single-point PDF of the variable

Sat initial time is given by

P,(0,t =0)= NO(- 01) + 00 - •.)], (1) I
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FIGURE la The comparison of the PDFs as predicted by the models with DNS data. (a) fY2 = 0.173.

which obviously infers the following relations for the mean and the variance

<4 >= (0., + 01)/ 2 , < 0" >= 2 1 (0. _ 01- 4)2. (2)

2 
4

Here, <> indicates the probability mean, a 2 denotes the variance, and the prime
represents the instantaneous deviation from the mean. In isotropic incompressible
turbulence, the evolution of the PDF is governed by the transport equation

OP1 02 (•P1 )_
- + 90 -0, 'h•<'_<'. (3)

where e represents the expected value of the scalar dissipation with diffusion coefficient
1r, ý(= I'Vo . VO), conditioned on the value of the scalar 4i(x, t),

C = 4(0, t) =< ýl0(x, t) >. (4)

3 Equation (3) can alternatively be expressed by

OP + O(DPI) (
at+0, 4,<• _€4.. (5)

where D denotes the conditional expected value of the scalar diffusion

I D = D(O, t) =< rV24'l'(x, t) >. (6)

I
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FIGURE lb 'The comparison of the PDF's as predicted by the models with DNS data. (b) a'2 = 0.079. 1
The closure problem in determining the PDF, P1, is associated with the unknown
conditional expected dissipation, c, and/or the conditional expected diffusion, D. These I
two are related through Eqs. (1)-(6),

D(0, t) = 1 ( P, ) (7)

At the single-point level neither the conditional mean dissipation nor the conditional mean 5
diffusion are known (neither are their unconditional mean values). Their specifications
require external information.

With the application of the AMC, this external information is obtained in an implicit
manner. As explained in detail by Pope (1991), the AMC involves a mapping of the
random field of interest 4 to a stationary Gaussian reference field ,00, via a transformation
4 = X(oo, t). Once this relation is established, the PDF of the random variable 4,, Pt(4,),
is related to that of a Gaussian distribution. In a domain with fixed upper and lower
bounds, ie. fixed 4,t, 0,, the corresponding form of the mapping function is obtained by
Pope (1991). The solution for a symmetric field with zero mean, < 4 >= 0, 4b =
is represented in terms of an unknown time -r

X(Oor)=0u erf (7G),G(1r)=\/_eixp(2r,-. (8) L

With this transformation, the PDF is determined from the physical requirement 3
PeI(X(0, Tr), "r)d X = PG(0o)d 0o, (9) I
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where PG denotes the PDF of a standardized Gaussian distribution, Le. PG(Oo) =I exp(-_02/2). A combination of Eq. (8) and Eq. (9) yields

PI(Or) = G exp ((G2 _ 1) [erf-(±)] . (10)

In these equations, the relation between r and the physical time t is unknown in

the context of a single-point description. This relation can be obtained only through
knowledge of the higher order statistical properties of the scalar field. For example, it
is shown by Madnia et aL (1992); Frankel et aL (1992a) that the mapping closure yields
the algebraic relation for the normalized variance,

-< Cr2 > (r) 2 arctan GV1Wi? ) (11)< Or2 > (0) 7r 2r_• ,(1

in which the variance is related to the unknown mean dissipation c(t) by integrating Eq.
(3),

de

I * where,

e(t) = Pn(4, t)e(o, t)dO = - 4)Pi(0, t)D(o, t)d4. (13)

I
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3 JOHNSON-EDGEWORTH TRANSLATION

The AMC captures some of the basic features of the binary mixing problem as described 1
by Pope (1991). Namely, the inverse diffusion of the PDF in the composition domain
from a double delta distribution to an asymptotic Gaussian distribution centered around
< >, as or2 -. 0 (or G -. co). This asymptotic Gaussian distribution near the mean
scalar value cannot be realized in any of the previous mixing models based on the so
called Coalescence/Dispersion (CID) closures (Curl, 1963; Janicka et al., 1979, Pope,
1982; Kosaly and Givi, 1987). And those modified CID models which do yield such an
asymptotic state, e.g. Pope (1982), do not predict the initial stages of mixing correctly
(Kosaly, 1986). This deficiency of the C/D models in yielding asymptotic Gaussianity has
been a motivating factor for recent investigations resulting in the development of the
AMC (Pope, 1991). m

In the spirit of "mapping" to a specified reference field, it is speculated that there are
perhaps other means of "driving" the PDF toward Gaussianity in a physically acceptable
manner. In fact, this subject has been of major interest to statisticians and biometricians I
within the last century since the early work of Edgeworth (1907). The scheme was
referred to by Edgeworth as the Method of Translation, and was later detailed by
Johnson (1949a). In today's literature of statistics and biometrics, the scheme is known
as Johnson-Edgeworth frequency generation, and has many applications in statistical
analysis.

The essential element of Johnson-Edgeworth Translation (JET) is similar to that of
the AMC. Namely, it involves the transformation of the random physical field, here, o,
to a fixed standard Gaussian reference field by means of a translation (or mapping) of
the form 0

1__0 I

Y(t = 0) =0 0 -t(t) < -Y(t -- 00) - 00. (14) 1
In this equation, the function -y(t) plays a role similar to that of G in the AMC. With
an appropriate form for the function Z, the scalar PDF is determined from Eq. (9). I
For application in the problem of mixing from an initially symmetric binary state of zero
mean within a fixed domain 01 = -,, :<_ 4 _5 $,,,, the appropriate JET must satisfy the
following physical constraints: 3

(ii)Lim(.U-..oo)Z(°) , CqSo + O (03) + ... (o

(iii) ZL () is an odd function with respect to the scalar mean for any value of a

(iv) Z(±f) is bounded and is a non-decreasing function of 00, and - , < Z < 40 at I
all times.

(15)

In these relations, H denotes the Heaviside function, and C is constant. Constraint (i) n
implies an initially symmetric and segregated binary state. The second constraint ensures
an asymptotic Gaussian distribution for P1 (4) near the mean scalar value. Condition (iii)
preserves the symmetry of the PDF around the mean value at all times, and constraint
(iv) implies the boundedness of the scalar field, i.e. -:u _ q < 0u. A function Z I
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which satisfies all the above constraints, is therefore expected to provide an acceptable
means of approximating the PDE An example is the Logit-Normal (or tanh-'-Normal)
distribution, as originally proposed by Johnson (1949a). For the symmetric problem
within a fixed domain, this distribution is produced by a mapping of the form'

I Z = 4bu tanh (-). (16)

3 With this mapping, together with Eq. (9), the PDF of the scalar adopts the form,

3( ((,))) exp - [tanh-(1-) . (17)

3 It is easily verified that this frequency satisfies the physical constraints of the symmetric
binary mixing problem (Eq. (15)). At t = 0, the PDF is approximately composed of two
delta functions at 0 = +4u, and as t -- oo the PDF adopts an approximate Gaussian-
like distribution centered around the zero mean. These features are similar to those
portrayed by the PDF generated by the AMC (Eq. (10)).

This example demonstrates that with the satisfaction of the above indicated constraints,
several other frequencies can be generated for effective modeling of the binary mixing
problem. In fact, it is easy to show that the solution generated by the AMC can also be
viewed as a member of the JET family. This is demonstrated by considering a translation

Sof the form

From Eq. (9), this translation yields the PDF

P1 (O,t) = 2 , exp { (2ý- 1) erf

This frequency can be termed the erft-I -Normal distribution and is identical to the form
presented by Eq. (10). The difference is due to the terms containing G and -Y. But this is
unimportant since in the context of single-point statistics neither of the two parameters

I can be determined by the PDF Therefore, with G = both expressions are equivalent.
With this equivalence, the closed form relation for the variance of the erf-l-Normal
distribution has the same algebraic form given by Eq. (11). It is easy to show that many
other distributions can be generated to display similar characteristics. In the discussions
to follow, we only consider the Logit-Normal and the erf-l-Normal distributions, the
latter being identical to the distribution generated by AMC.

Pearson Family

The similarity of the AMC and JET in generating equivalent PDF's is also useful inexplaining the applicability of the frequencies generated by the Pearson family (Pearson,
1895). For a "bimodal" distribution, a physically acceptable frequency is the Pearson

In recent literature, the Logit-Normal is usually expressed by the mapping Z = 0. {211 + exp(0o/-)-I' - I
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FIGURE 2 Temporal evolution of the Logit-Normal PDE I
Type I, known as the general form of the "Beta density of the first kind". This density
is typically expressed in a fixed domain within the range 0 < ___ 1,I

p =B( 0, 1o) 0'-,(1- ")i- 0,0_< 1. (20)

Here B denotes the Beta function, and the parameters /0 and 12 are determined from
the knowledge of the mean and the variance of the random variable. In a symmetric
field within [0,11, < 4, >= #,Ijt = =#2 , and thus the PDF is characterized by the 1
variance alone.

The similarity of the Pearson distributions and the JET frequencies is well recognized

in the statistics literature (see Johnson (1949a)). Therefore, with the equivalence of the
AMC and the JET as demonstrated above, it is not surprising that the Beta density .3
and the AMC are also similar. This similarity, without a mathematical proof, has been

recognized in previous works (Madnia et aL, 1991; Madnia and Givi, 1992). 3
4 COMPARATIVE ASSESSMENTS

The probability distributions obtained from the three frequency generation methods 3
described above are all capable of providing a reasonable stochastic approximation of

U
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5 the mixing problem from an initially binary state. Namely, an approximate double delta
distribution at t = 0, and an approximate Gaussian-like distribution as t --+ oo. The
former can be realized in the limit of unity normalized variance or2(t)/a2(0) = 1. In a
fixed composition domain, this corresponds to G = 0 for AMC (-f = 0 in JET), and
to P = 0 for the Beta density. The latter is realized in the limit G, -y,/ -+ oo. The
limiting Gaussian distribution for the AMC has been asserted by Pope (1991). For the
JET, the criterion (ii) in Eq. (15) guarantees this condition. For the Beta density, thea= assertion of an asymptotic Gaussian distribution in the limit of zero variance is established
in elementary texts on statistics (e.g. Casella and Berger (1990)). At the intermediate
stages, however, the PDFs are not identical. It is easily verified by Eqs. (10), (20) that
the AMC and the Beta distributions become constant (PI(q$) = constant = ½10.) for
G =/( = 1. However, the Logit-Normal PDF does not yield a uniform distribution at
any stage of its evolution. Also, as indicated by Johnson (1949a) it is not possible to
provide a closed form algebraic expression similar to Eq. (11) for the variance of the
Logit-Normal distribution.

In order to make comparative assessments of the models, the frequencies generated
by the three methods (AMC, JET, and PF) are compared with each other, and also with
PDF's generated by Direct Numerical Simulations (DNS). The DNS procedure is similar
to that of previous simulations of this type. Since these simulations are not the major
focus of this paper, only a brief outline of the procedure is described; for a detailed
discussion we refer the reader to Madnia and Givi (1992). The subject of the DNS is
a three-dimensional periodic homogeneous box flow carrying a passive scalar variable.3 The initial scalar field is composed of square waves with maximum and minimum values
of 1 and 0, respectively. These limiting values are arbitrary, and can be translated to

I
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appropriate 46,, Ot for comparison to each of the models. At time zero, in most regions S
of the flow, the scalar adopts these limiting values (with equal probability), and the
spatial regions between the initial maxima and minima are smoothed by a polynomial fit.
The degree of this smoothing is minimized, but limited by the computational resolution, I
to ensure an approximate initial double delta distribution. The computational scheme
is based on a spectral-collocation procedure using Fourier basis functions developed
by Erlebacher et at. (1990a); Erlebacher et a!. (1987); Erlebacher et al. (1990b). The a
hydrodynamic field is assumed isotropic and is initialized in a similar manner to that by
Erlebacher et al. (1990a); Passot and Pouquet (1987). The code is capable of simulating
flows with different levels of compressibility (Hussaini et al., 1990). Here, only the I
results obtained for a low compressible case are discussed. The resolution consists of
96 collocation points in each direction. Therefore, at each time step 963 is the sample
size for statistical analysis. With this resolution, simulations with a Reynolds number I
(based on the Taylor microscale) of Rex _ 41 are attainable. The value of the molecular
Schmidt number is set equal to unity.

As indicated in Section 1, in order to compare the model predictions with DNS results I
a matching is required of the higher order statistics of the field as generated by each
method. Here, this matching is done through the variance of the conserved scalar. These

results are presented in Fig. 1. This figure indicates that at initial times, t- z z 1, all
the PDF's are approximately composed of two delta functions at q = 0,1 indicating the
initial binary state. At longer times, the PDF's evolve through an inverse-like diffusion
in the composition space. The heights of the delta functions decrease and the PDF's
are redistributed at other qS values within the range [0,1]. At very long times, the PDF's I
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5 become asymptotically concentrated around the mean value in a manner that can be
approximated by a Gaussian distribution.

An interesting feature captured in Fig. 1(b), is the capability of the Logit-Normal
distribution in depicting a subtle behavior in the frequency distribution. This feature is
the double "hump" characteristic of the DNS data at intermediate times and cannot be
realized by the AMC or the PF generated frequencies. All the previous DNS results
including those of Eswaran and Pope (1988); Givi and McMurtry (1988); Pope (1991)
portray this feature. The PDF's generated by the AMC, and the Beta distributions
adopt a constant value (of 1/2) when o.2 = • (for 0 < 4, < 1). This corresponds to

G = 1, - , 1. This uniform distribution is not exactly realized in any previous
or present DNS results. Therefore, it can be speculated that in the absence of a better
alternative, the Logit-Normal distribution may provide the simplest means of providing an
assumed distribution for the statistical modeling of the symmetric binary mixing problem.
The complete evolution of the Logit-Normal PDF is shown in Fig. 2.

Further quantification of the agreements noted above are made by comparing the higher
moments of the scalar field. This comparison is made in Fig. 3. In this figure, results are
presented for the temporal variations of the kurtosis (A4) and the superskewness (A6)
of the scalar variable 0. For the Beta density, the higher order moments are obtained

analytically based on the knowledge of the variance. For the AMC, the analytical-
numerical results by Jiang et al (1992) are used, while for the Logit-Normal PDF the
moments are calculated strictly by numerical means. This figure shows that initially, all
these moments are close to unity, and monotonically increase as mixing proceeds. For all
the models, the magnitude of the moments asymptotically approach the limiting values
of 3 and 15, respectively, corresponding to those of a Gaussian distribution. The DNSI
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= 0.013.

results are in good agreement with the model predictions at all times. However, due to 1
obvious numerical difficulties, the simulations could not be continued until the variance
approaches zero identically. ,

5 SCALAR DISSIPATION i
The results presented above indicate a good agreement between the model predicted
single-point statistics (PDF's and high-order moments) and the DNS data at all the
stages of mixing. These results also suggest an approximate asymptotic Gaussian state
for all the closure PDF's and those of the DNS. Here, it will be demonstrated that the
agreement between the DNS and the model predictions is very good at the initial and
the intermediate stages of mixing. However, the agreement worsens at the final stages.
Also it will be shown that none of the closures yield "exact" Gaussian distributions at the I
final stages of mixing. In doing so, it is useful to note that a Gaussian PDF is defined,
and is only valid, for an unbounded domain. The frequencies generated here, are all
defined within a fied and finite domain. For AMC, it has been established (Gao, 1991;
O'Brien and Jiang, 1991) that the finite boundary size at the initial time "maintains"
its influence at all the subsequent stages of mixing. In other words, the PDF adopts a
Gaussian distribution in the limit of zero variance only near the mean value of the scalar. S
In order to show the departure from Gaussianity at scalar values away from the mean,
the conditional expected dissipation of the scalar field is considered.

Given the PDF, as is the case here, Eq. (3) can be used to determine the expected a
conditional dissipation. It has been shown by Girimaji (1992) (and will be discussed in I
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I detail in Section 7) that for a valid PDF within a defined range, -, < # _ •, the
expected conditional scalar dissipation is given by

C(0,t) = Pn- 1)a F (o, t)d• (21)

i where F denotes the cumulative distribution function (CDF)

F(0, t) = PI(, t)dtk. (22)

With Eq. (21), the expected conditional dissipation can be evaluated for a given PDE For

example, for a Gaussian distribution of zero mean, PG(0, o2) = 1 2 exp(---),-00 =

S-•; _< • < = oo, with a non-stationary variance, a2 = O2(t), it is easily shown that,

C.(,,t) = [PG(,G) a t + ter(- )+ or exp ),-oo <2, < 0oo
I (23)

Noting that 0 is an independent variable (of t), and evaluating the derivatives on the
RHS of Eq. (23) yields, after some simple manipulations,

l- do
-(o, t) = constant = -a t (24)I
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with the implications (derived from Eqs. (12)-(13)),n
t)

€(t--- = constant = ,(25)

at all times for all 0 values in the range -oo to +oo. Equations (24-25) indicate the l
independence of the conditional scalar dissipation and the composition domain for a I
Gaussian field. These results have also been obtained by Gao (1991); O'Brien and Jiang
(1991) by following a different mathematical procedure.

The conditional expected dissipation predicted by the models can be obtained byon

following a similar course. For the AMC and the PF distribution, the conditional
dissipation fields have been obtained by Gao (1991); O'Brien and Jiang (1991) and by

Girimaji (1992), respectively. For the purpose of the discussions to follow, these resultsl
are presented here in a different form for all three closures. For the erf-l-Normaldistribution, the instantaneous CDF is given by

F(, t) = Il+erf -Lerr()) (26)

Therefore, with Eq. (21), the conditional dissipation can be expressed in terms of the

corresponding PDF,

1( = 1 (1 +erf [.erf'()d+ I(o+)]) (27)

o ,w (2), 0Fth in t
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Again, with an independence of 0 and t this equation reduces to,

S1 OH(28)

P,(,/t) Ot

5 where,

H = !eLu e'rf(` 2(z)exp(-z2)dz. (29)

For a PDF within a fixed domain, the integration procedure becomes simplified by
evaluating the time derivatives inside the integral. In this way, the results can be expressed
analytically. After some manipulations,

5t dHp _ erfd (30)d"• t i(2 + .,f2) ep -1 2 o- ft' ,(0

5and, therefore

i -(0, t) = o d',( t2 exp -2 .r -± (31)
= ____'" r-y(2+ -y2) I IL ou J

From this equation, the total dissipation is obtained by direct integration of the conditional
mean dissipation field. The results, after significant algebraic manipulations yield

4, 02 d_2
",_u dt (32)

7() r(2 + -y2) V4- _y

I__ +sin [ir2)]2

6(0,t) 1s 127_. ] exp-2 eft-(±)]. (33)

E(t) 2a2(0)

5 In the form presented above, Eqs. (31)-(33) portray several insightful features of the
solution. First, Eq. (33) indicates that the conditional dissipation is always dependent
on the magnitude of the scalar, and it maintains the same self-similar functional form of

dependenceexp -2 rf (•) . This has been previously indicated by Gao (1991);
i O'Brien and Jiang (1991). Here, the amplitude c(O = 0, t) can be conveniently expressed

in terms of the variance decay, which is very useful for further manipulations. Second,it is interesting to note the similarity of Eqs. (31) and (33) with the results obtained for

mthe instantaneous dissipation of Fickian mixing of a conserved scalar in laminar non-
homogeneous flo ' ; (such as the typical shear flows (Spalding, 1961; Lifian, 1974; Peters,
1984)). This similarity further asserts the "permanent" influence of the boundaries
since in non-homogeneous mixing, the scalar bounds are "fixed" due to the physical
constraints. Finally, Eq. (32) suggests an infinitely large dissipation at time zero, i.e.
when o2t '2t)/ 2 (0) - 1, and the asymptotic behavior

Lim(,2-.0) C0 = 1 .=0 (34)

I.
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This limiting behavior near zero indicates the Gaussianity of the PDF only at the mean I
value of the scalar.

Following a similar procedure, the conditional expected dissipation can be obtained
for the other cosures. For the Beta density in the range 0 5 0:5 1, the final results can I
be expressed as

) (d ), (35)Ie(4, t = P,(, )O

where, I denotes the Incomplete Beta Function (Abramowitz and Stegun, 1972). For
the Loit-Normal distribution, the corresponding form is I

erf -I- In 4) d4}. (36)1

Neither of the equations (35-36) can be simplified further. Therefore, in order to evaluate I
the conditional expected dissipation (and the total dissipation), these equations must be
evaluated numerically.

In Fig. 4, the evolution of the conditional expected dissipation (normalized by the
total dissipation) is presented for the models and the DNS data. This figure shows the
similarity of the conditional expected dissipation for all of the models. The bell shape
distribution is evident in all the figures with a maximum amplitude near the mean value. I
Also, as the variance decreases and the PDF becomes concentrated near the mean, the a
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the LMSE closure, with the DNS data. (b) a2 = 0.013.

amplitude tends to unity. This shape is typical of that observed in previous DNS results
of Eswaran and Pope (1988); Nomura and Elgobashi (1992).

The results in Fig. 4 show the 0 dependency of the results at a/l the stages of mixing.
That is, the PDF asymptotically adopts an apparent Gaussian-like distribution only near
the mean value of the scalar, and the conditional dissipation does not become independent
of the scalar everywhere. For the AMC, this has been discussed by Gao (1991); O'Brien
and Jiang (1991). Considering the similarity of the three models, it is therefore concluded
that all three models yield the same characteristics. These results also suggest a poor
agreement between the model predicted conditional expected dissipations and the DNS
data. Note that at the initial stages of mixing, the predicted results compare well with
DNS data. However, with mixing progression, at smaller variance values, the agreement
is only good near the mean scalar value and worsens near the bounds of the composition
domain. This, as described above, is due to the permanent influence of the scalar
boundaries at all the stages of mixing.

6 SCALAR DIFFUSION3Albeit directly related to the conditional expected dissipation (Eq. 7), it is useful to

examine the behavior of the conditional expected diffusion in light of the discussions
above. Given the PDF, again within the fixed range -4). < 4 < 4),, the conditional
expected diffusion can be determined from

D1 OF (37)
(,= P,(),t) at

I
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This equation is very useful in illustrating the p;,,' erties of the PDE For example, for a
Gaussian distribution within an infinite domain

OF k do 2 22 I
and consequently 7 / (38)

D(0, t) -, (39)
e(t-"-) =o ("-'"(9

It is noted that Eq. (39) is in accord with the Linear Mean Square Estimation (LMSE)

closure (O'Brien, 1980). 3
The mean conditional diffusion can be determined for the three models considered.

For the erf- -Normal PDF with zero mean

49F _ I d-y {- [2 f~~] (40OF :- 1 exp - et-( (40) !

7- = t •) erF'(-Ž

Again with explicit equations for the total dissipation and the variance, it is possible to
obtain an algebraic expression for the conditional expected diffusion. The results after
substantial algebraic manipulations yield

D qSi1 
+s in 

21i

DO t) •-: [•F(0 exp [erf-tO erf -•(±). (1

40 sin Xf2) 1 -sin [ 2u(O) O1 IO~-fUI

In this form Eq. (41) is very pleasing since it does reveal the (t,O) separability, and thus i
the self-similarity, of the diffusion field. The terms inside the parenthesis on the RHS are
time dependent, whereas the remaining terms depend explicitly on 0 only. As indicated
by O'Brien and Jiang (1991), this separability cannot be easily deduced from Eq. (5),
but is possible with the analytical procedure followed above. The temporal evolution of
the conditional expected diffusion for the erf--Normal distribution, and its comparison
with that of the LMSE closure is presented in Fig. 5. I

By following the procedure above, analogous expressions are obtained for the other
two closures. Namely,

D(4O,,t) - 2 -y ( - tanh-l(-), (42)

for the Logit-Normal distribution of zero mean, and

IP(0, 0 2 0,00,,C) (43

for the symmetric Beta density within [0,1]. Equations (42)-(43) cannot be simplified
further due to the lack of an explicit analytical relation for the variance of the Logit-
Normal distribution (Johnson, 1949a), and the unknown analytical form of the derivatives I
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In Fig. 6, results are presented of the conditional expected diffusion as predicted by the
three models, and also that of the LMSE closure. In these figures, the DNS data are also
provided at several variance values. The similarity of the modelled results are once again
revealed in these figures, which is expected in view of the PDF similarities. At all times,
the conditional diffusion field has an odd distribution near the mean scalar value. On
the right half of the composition domain, all three closures yield a monotonic decrease
of D to an instantaneous minimum, and then a monotonic increase to zero at the upper
bound of the scalar. The location and the magnitude of the instantaneous maxima and
minima is not the same for the three closures. Also, as Eqs. (41)-(43) indicate, the
zeroes of D can only be realized at 0 = 0, ±0.. At the initial times, i.e. large variances,
all three closures agree reasonably well with the DNS data. This agreement is better
for the three models than for the LMSE closure. However, as the variance becomes
smaller, the agreement between the model predictions and the DNS data worsens. It
is noted that as the variance becomes small, all the closures yield a Gaussian-like PDF
near the mean value of the scalar. This is shown in the figures near 0 =< 0 > (= I
for DNS), where the predicted results are in accord with the LMSE closure, i.e. linear
profiles of similar slopes. In this region, the results are also in accord with DNS dat & for
all the closures including the LMSE. However, again, the predicted results devia,.. 1rom
the DNS data away from the mean value. It is clearly noted that the DNS generated D
values do not go to zero at the scalar bounds.

7 EVOLUTION OF THE SCALAR FIELD

The problems described at the conclusion of the previous two sections stem from a
lack of capability of all of the models in accounting for the variations of the scalar

1
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bounds as the mixing proceeds. For all three models, the PDF is always defined within a
fixed range through its course of evolution. It is easy to show that both the conditionalI
expected dissipation and the conditional expected diffusion are correctly predicted by all
the models near the mean scalar value. For the erf- -Normal distribution, this is evident
from Eqs. (33) and (41) and can be also shown by analyzing the behavior of Eq. (31)I
near the region 0 ;z 0, as the variance becomes small. Noting that

om('O) erf(±) '- ____ (44)

and, from Eq. (11) 
1u2O

"d"y -2,. d"71 = - - 45)

it is easily concluded that

Lim(-,.0) r(0)t ,vt)= O -7. (46)
di

Lim,-.o)e(••.0, ) =-o -. 46
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Following the same procedure, it is derived

Li l,-.•) D(O, : 0,t) = - 2-,0. (47)

Due to the similarity of the three closures, it is reasonable to expect similar behaviors
for the other models as well. Equations (46)-(47) indicate a Gaussian-like distribution
near the mean 0 .,z 0 (Eqs. (24,39)). This is in accord with the DNS data. However, at
distances away from the mean value the predicted results do not correspond to that of
a Gaussian field. Neither do these results agree well with DNS data. The deficiency of
the models in predicting the DNS results is made clear by considering the bounds of the
scalar field as the mixing proceeds. This is demonstrated in Fig. 7, showing the temporal
decay/growth of the scalar maxima/minima obtained by DNS. This trend is consistent
with physical intuition, but is not incorporated into any of the three models. In the
SAMC and the JET generated frequencies, due to the nature of the translation Z( 0o, t)
and the constraints imposed by Eq. (15), the scalar is always bounded within the same
range. This problem is also encountered in the PF, in that Type I and II distribution
families are always defined within the same fixed domain regardless of the magnitude of
the variance.

With the examination of the PDF transport equation, it is shown that the physics
of the problem requires the migration of the scalar bounds toward the mean value
as the mixing proceeds. That is, the instantaneous values of the scalar minima and
maxima change with mixing progression. To demonstrate this, again consider a symmetric
field with a PDF, P1 (4, t), defined within the time-dependent domain of zero mean,
Of [Oimn(t) = - ,Qmax(t), Omax(t)]. At all the stages of the evolution, the PDF must satisfy
the physical requirements

f,( Pj(0, t)d.0 = 1,

I < 4 >= IPI(0, t)d = 0,

4A'maxQ)I O2(,)(t) 9 02p1 (0',t)d ,

I The first of Eq. (48) requires 
(48)

WTax.) P 1(0, t)d b = 0 (49;

Evaluating this integral via Leibnitzs rule, and making use of Eqs. (3)-(7), it is shown
that

l P(Omax(t)), ,)drmax- dt P,(Omin(t),t) = {t [401( t)PIt 01=
Ed tm d0min=0

I PI(Om),(t),t) D(oma(t),t)] = [•(Omt1 D(Oin(t), 0] =
dt t0
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0.m(O) = 40,, 0.in(O) = Of = -0.. (50)

Following the same procedure for the second of Eq. (48), yields the obvious requirement I

)D(, It)PI (0, t)dq 0= 0. (51)
*m,n() i

The third part of Eq. (48) yields Eq. (12), and

PI(4majc(t), t)e(max(t ), t) = PI (0mjn(t), t)C(0,mjn(t), t) = 0,

P1 (ImaI(t),t) Oa D mai(t),t) =I3

-) - D(0,mjn(t), ) 0. (52)

-Pa(4min(t), t )IL 1  )]5)

The remaining parts of Eq. (48) yield higher order statistical information pertaining
to the inner integrated evolution of the conditional expected dissipation and diffusion,
and their relation with the higher central moments. With an additional assumption of a I
nonzero PDF within the region of its definition, that is by defining .max(t) and Omin(t)
as the extreme locations with nonzero PDF, a combination of Eqs. (50) and (52) yields 5

(4,max(t), t) = E(kmin(t), t) = 0,

d o, a, = c- 1ma. = D(4,max(t),t),
dt 'g

dd Omin 06•
-t- = _ i = D(4,min(t), ),

Omax(0) " Ou, Omin(O) = Ot. (53)

Equation (53) indicates that with fixed boundaries, the conditional dissipation would
adopt a zero slope at the boundaries and the conditional diffusion would also be zero
there. However, Fig. 7 indicates that in a physical situation the boundaries are not fixed
and move inwards as the mixing proceeds. It is interesting to note that this problem
is not observed in the numerical results obtained by the C/D type closures. That is,
while the C/D closures are not capable of predicting the PDF evolution in accord with
DNS data, they do have the mechanism for shrinking the bounds of the composition I
space. Obviously, in the context of single-point description without the knowledge of
the dissipation field, it is not possible to determine a priori the temporal bounds of the
scalar field. Therefore, the closures can be modified only by making further assumptions I
in describing this transport. For a general case, the JET frequencies can be generated
by the original form proposed by Johnson (1949a)

46(0o, t) = A(t)z (±'-) +0(t), (54)

where the additional parameters A(t) and o(t) provide the extra degrees of freedom in
order to account for the variations of the instantaneous boundaries of the composition
domain. For the PF, the problem can be overcome, for example, by considering a
"four-parameter Beta distribution"

I



PkOBABIHITY MOI)FLING IN TURBtiI.IUNT i-OWS 4.

2.0

'DNS
- Mapping

1.5 F

S1.4

£ 0.5

0.0I 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 9a The comparison of the conditional expected scalar +sipation normalized with the total
dissipation with DNS data as predicted by the AMC with the scalar bounds determined from the DNS results.
(a) o,2 = 0.079.

3 P1(, t) = [4[max(t) - Olmin(t)]B(/31,/32) (.Omax(t) -- rin(t))

1- 4ma-(t) 4-in(t) , 4)min(I) < 0 0 4mac(t), (55)

with the extra two parameters being Omin(t) and omax(t). For a symmetric PDF in the
range [0, 1] =- [0min(t = 0) = 4t, 4 max(t = 0) = 0u]; therefore, the variance decayU- can be influenced by increasing /l, and/or by decreasing the scalar range A4)(t) =
Omax(t) -- Omin(t). The former recovers the well-known two-parameter Beta distribution
(Pearson Type II), while the latter is approximately equivalent to the LMSE closure
(O'Brien, 1980). This latter case is presented in Fig. 8 showing a symmetric Beta density
with #(t) = fixed = 0.1. Note that as the mixing proceeds, the variance decays but the
PDF preserves its initial approximate double delta shape. In a physical problem, the

-- situation is somewhere between these two limiting cases. The exact situation depends
on the characteristics of a particular mixing problem.

The discussions above suggest that in order to predict the final stage of mixing correctly,
the effects of mixing on the shrinkage of the domain must be taken into account. To
demonstrate this point, the results shown in Fig. 7 can be incorporated into the mixing
models to determine the evolution of the conditional expected dissipation and diffusion.
This is done here only for the erft--Normal, and the results of the conditional expected
dissipation are shown in Fig. 9. In the calculations resulting in this figure, analytical
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solutions are not possible for the moving boundary case. This is demonstrated by the
equivalent form of Eq. (29)

H(t)-= -max(t) oI exp I - [e( ( 2 dz+I( 46+qmax(t)). (56) 3
2

With this equation, therefore, the effect of the temporal variation of the PDF on the
conditional dissipation is through the OH/8t term in Eq. (28). This term has the form =

dH -/%2max (t) {-,•' 21) +. 1 d_. l max

d-t= 7r(2 + -y2 ) exp 2 ma(t) I+2 dt

( O max(t)e) [e O4 maZ(t)]}

2W er(--Z) exp(-z 2)dz (57)

The first term on RHS of Eq. (57) is the same as that in Eq. (30), and the effects of moving i
boundaries manifest themselves through the second term. This term cannot be evaluated

I
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analytically. However, Eqs. (56)-(57) show that due to the direct dependence on di

the conditional dissipation does not retain its original functional dependence, suggested
by Eq. (33). Also, Fig. 9 shows that the effect of the moving boundaries is to force the
conditional expected dissipation to zero at the current scalar maxima/minima. Therefore,
the predicted results compare much better with DNS data than those presented in Fig.
4. Due to the similarity of the PDF's, it is expected that the other two closures would
also behave in the similar fashion.

The influence of boundar7 encroachment is also sensed in the conditional expected3 diffusion field. For the erf- -Normal scalar PDF, the equivalent form of Eq. (41) is

2D(m. (t ) d ,exp [erf'( ))] 2 }

erf (+ (I ) d'max (58)
- \rmna(t) O+am(t) dt

with an average dissipation of

4o2 = .~a(t) d-y _20.a.(t) (2' d Oimaz 59

40ma~ ) d)'2•a~t)arctan (59)

( r("y2 + 2)V'yT4 dt 7r .y Vryi2 dt

Equations (58)-(59) show the influence of the boundary movement through the last term
on the RHS of both these equations. With these additional terms, the normalized form
similar to Eq. (41) is not very useful, and Eqs. (58)-(59) are evaluated numerically.

The equivalent of Eq. (58) for the Logit-Normal and the Beta density are, respectively,

D t=-_) dttanh- 1 + (tI d a (60)
ijmaxy d( (=a) (ma(t) d '

I 1 (I{t) = - I a.} (3 8#)) (61)PIO t) at #mx0M

An interesting characteristic displayed by Eqs. (58) and (60) is the influence of the
terms containing the temporal derivative of Omai(t). Note that at the boundaries, ie.

S= Omax(t), the first term on the RHS of these equations vanishes, but the last term
prohibits the conditional expected diffusion from going to zero. This is in accordance
with the DNS data as shown in Fig. 6. In order to demonstrate this more clearly, results
are presented in Fig. 10 of the conditional expected diffusion predicted by the erf--
Normal, with the input of the variance and the scalar bounds from DNS. A comparison
between this figure and Fig. 6 show the influence of the boundary movement, and a
better agreement between the model predictions and the DNS data. This agreement
is more pronounced at scalar values away from the mean. Near the mean value, the
influence of the boundary migration is slight, as also indicated by Eqs. (58) and (59).

3 8 DISCUSSIONS AND APPLICATIONS

In previous sections, a rather detailed discussion was presented of the problem of scalar
mixing from an initially symmetric binary state. These discussions were primarily intended
to provide a means of assessing the differences between the currently available tools in
probability modeling of the scalar mixing problem. This problem is of significant interest,

I
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considering the extent of previous works focused on its analysis (Pope, 1976; Pope, 1979;
Pope, 1982; O'Brien, 1980; Dopazo, 1973; Kosaly and Givi, 1987; Pope, 1991; Gao,
1991; O'Brien and Jiang, 1991; Nomura and Elgobashi, 1992). The results obtained here
are particularly useful in highlighting some of the deficiencies of these closures, and in
suggesting future research towards overcoming these drawbacks. There are, however,
many other physical problems that are not subject to the restricting conditions imposed
in these analyses. In this section, therefore, some discussions are presented as to the
practical implications of these models, together with some speculations on their extensions
for future applications.

Perhaps one of the most important practical applications of the closures considered here U
is the treatment of reactive flow phenomena. In fact, the most important advantage of
scalar PDF methods is due to their applicability in the modeling of turbulent combustion
(Pope, 1979; Pope, 1985; Pope, 1990; Kollmann, 1990; O'Brien, 1980). The results I
generated here can be used directly in the modeling of mixing controlled homogeneous
chemically reacting systems. Namely, in examining the compositional structure of a
reacting system under chemical equilibrium, or in determining the limiting rate of I
reactant conversion in a simple chemistry of the prototype Fuel + Air - Products.
The determination of this rate has been the subject of extensive investigations over
the past forty years (see Hawthorne et al. (1949); Toor (1962); Williams (1985)). It is 1
now well-established that in a mixing controlled binary irreversible reaction of this type,
the statistics of the reacting fields can be related to those of an appropriately defined
conserved scalar (such ; 0) (Bilger, 1980; Toor, 1975; Williams, 1985). Therefore, the
frequencies generated hrein can be utilized for estimating the statistics of the reacting

I
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field with an infinitely fast chemistry model in a homogeneous flow with initially segregated
reactants under stoichiometric conditions. Albeit very restricting, this problem is of great

* practical importance for modeling and design of batch mixers and plug flow reactors
in which these conditions prevail (Toor, 1975; Brodkey, 1981; Dutta and 11rbell, 1989).
Madnia et al. (1991); Madnia et al. (1992) have shown that with the erf-1 -Normal
(AMC) and the Beta density models, this rate can be predicted by simple analytical
means. For the Logit-Normal density, a complete analytical solution cannot be obtained
and determination of the statistics requires numerical integration of the PDF The results
generated by these closures agree with DNS data better than those obtained by means
of the C/D closures (McMurtry and Givi, 1989), or other models previously available
in the chemical engineering literature (Dutta and Tarbell, 1989) (see Givi (1989) for a
review). Also, the results provided by the AMC (Frankel et aL, 1992a) are shown to
compare well with experimental data on plug flow reactors if the additional information
pertaining to the evolution of the scalar length scale is accurately provided.

The most obvious issues in regard to the applications of these models are associated
with their extension for the treatment of (1) non-symmetric binary scalar mixing, (2) non-
binary scalar mixing, (3) multiple scalar mixing, and (4) non-homogeneous mixing. The
first problem constitutes a more general form of the binary mixing problem and is also
important for the analysis of non-stoichiometric reacting systems. The second problem is
appropriate for the analysis of other mixing systems in which the initial conditions are not
of a two-feed configuration. The third problem is of interest in reacting systems in which
the transport of a passive scalar (like 0) is not sufficient for a complete analysis. For
example, any reacting system under non-equilibrium conditions. Finally, the importance
of the fourth problem is obvious in view of the fact that the flow within most practical
mixing devices cannot be assumed homogeneous.

In regard to the first issue, all of the three closures considered here can be used for the
probability modeling of scalar mixing within a fixed scalar domain. The use of the AMC

is straightforward, but the mathematical procedure is somewhat complex (Madnia et al.,
1992). The Pearson frequencies can be generated easily for non-symmetric problems.
In this case, the Pearson Type I provides a reasonably accurate representation of the
scalar field regardless of the degree of asymmetry of the PDF (Frankel et aL, 1992b;
Madnia et al., 1992). The use of the JET in this regard is most difficult, since closed
form analytical expressions are not available for the variance of the scalar by which the
PDF can be characterized (Johnson, 1949a). In treating these problems, therefore, the
first two models can be more readily employed and subsequently used for the treatment
of mixing controlled reacting systems under non-stoichiometric conditions. In fact, as
demonstrated by Madnia et aL (1992) the solution of the non-symmetric form of the
AMC and the Beta density provide a very good means of predicting the limiting rate
of reactant conversion in homogeneous reacting flows. However, it should be indicated
that with both models the problem associated with the scalar bounds still exists and must
be dealt with as discussed in Section 7.

In addressing the second issue, it is obvious that the AMC is more appropriate than
the other closures for simulating the mixing problem from an initially "arbitrary" state.
The extension of JET and PF for treating multi- (higher than bi-) modal distributions
have been reported in statistics literature. However, as the degree of modality of the
PDF increases the procedure becomes more complex and not suitable for practical
applications. Fortunately, in most mixing problems in simple flows, i.e. homogeneous
turbulence and turbulent shear flows, the PDF exhibits strong bimodal features (Madnia
et al., 1992; Frankel et aL, 1992b). In those cases, the use of the Beta density can be
justified. In fact, in non-homogeneous flows it is easier to use this density, at least until
further development of the AMC for practical applications (see Frankel et aL (1992b);
Gaffney et al. (1992)).

I
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The extension of all of the three models in describing multi-scalar mixing is possible. U
The problem naturally falls within the realm of the mudtivariate statistical analyses. In these
analyses, the implementation of the AMC is relatively straightforward since it provides
a transport equation for the joint PDF's of the scalar variable in a multivariable sense
(Pope, 1991). However, it is not presently clear how to devise an efficient computational
procedure, typically based on Monte Carlo methods (Pope, 1981), for the numerical
treatment of these equations. Some work in this regard is currently under way (Valifio I
and Gao, 1991). The extension of assumed distributions based on the Beta density for
treating multi-scalars is more straightforward but less trivial to justify. The most obvious
means is to implement the multivariate form of the PE The direct analog of the Beta U
density is the Dibichlet frequency (Johnson, 1987; Narumi, 1923; Johnson and Kotz,
1972). The application of this density in modeling of multiple species reactions has been
discussed by Girimaji (1991a); Girimaji (1991b); Gaffney et aL (1992). However, the I
use of the Dirichlet frequency cannot be justified for modeling of reacting flows in a
general sense (Frankel, 1992). Finally the extension of the JET in generating multivariate
frequencies has been reported in statistics literature since the subsequent work of Johnson I
(1949b). As one may suspect, the procedure is more complex, and the same reservations
as those associated with the Dirichlet distributions apply.

All of the models considered here can be extended for the analysis of non-homogeneous
mixing (and reacting) systems. Obviously, in most cases, the problem requires numerical
integration of the appropriate conservation equations. For instance, the AMC can be
invoked in the mixing step of a fractional stepping procedure, similar to that of typical
Monte Carlo procedures (Pope, 1981). The PF densities (e.g. Beta or Dirichlet) and JET

I
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generated frequencies require modelled transport equations for the first two moments
and cross moments of the scalar field. These equations, "hopefully", include the essential
information pertaining to the spatial inhomogcneity of the flow. Naturally, the PDF is
not generally symmetric, and must be determined from the knowledge of the parameters
il,$2, -y, A, Q, and the local Omax(1), Omimn() values. With this information, all the higher
order statistics of the scalar field can be determined. In regard to this last issue, it must
be indicated that the Beta density has been extensively used for the modeling of non-
homogeneous reacting systems (e.g. Rhodes (1975); Jones and Priddin (1978); Lockwood
and Moneib (1980); Janicka and Peters (1982); Peters (1984); Frankel et al. (1992b);
Gaffney et al. (1992); for recent reviews, see Givi (1989); Priddin (1991)). Due to their
special mathematical properties, the Beta and/or the Dirichlet frequencies yield relatively
simple analytical solutions for the higher order statistics of the reacting fields. From
this point of view, the use of the PF is more practical than the AMC since the solution
procedure does not require the numerical treatment of the PDF transport equation. This
point has been discussed in detail by Girimaji (1991b). However, as indicated above, the
use of the Dirichlet frequency cannot be justified for modeling of unpremixed reacting
flow in a general sense. Also, there is no way of implementing this density directly for
modeling of non-equilibrium flames, involving strong correlation of the temperature and
the species mass fractions. Even with the assumption of statistical independence of the
reacting species and the temperature, the question of the local scalar range imposes a
severe restriction on the validity of this approximation. For example, it is demonstrated
by Gaffney et al. (1992) that in the modeling of a reacting turbulent shear flow, depending
on the a priori choice of the magnitudes of the local scalar bounds the predicted results
can be altered significantly. Obviously, this problem is! not eliminated with the usage of
JET frequencies in either a univariate or multivariate sense.

1 9 CONCLUDING REMARKS

It is shown that the family of frequencies generated by the Johnson-Edgeworth Translation
(JET) orovides a reasonable means for statistical modeling of binary symmetric scalar
mixing; in homogeneous turbulence. It is also shown that the results predicted by one
of the members of this family is identical to the solution generated by the Amplitude
Mapping Closure (AMC) of Kraichcdn. This similarity is useful in two regards: (1)
establishing a mathematical reasoning for the similarity of the probability frequency of
the Pearson Family (PF) and that of the AMC for the description of the problem, and (2)
suggesting the possible use of other members of the JET frequencies in approaches in
which the Probability Density Function (PDF) is assumed a priori The PDFs generated
by all these models are shown to compare well with each other and also with the results
obtained by Direct Numerical Simulations (DNS). However, none of the models are
capable of accurately predicting the conditional expected dissipation and the conditional
expected diffusion of the scalar field. This problem is associated with the incapability of3 the models to account for the migration of the scalar bounds as mixing proceeds.
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The amplitude mapping closure of Kraichnan I Bull. Am. Phys. Soc. 34, 2298 (1989); Phys. I
Rev. Lett. 63, 2657 (1989) ] is used for statistical description of the mixing process by Fickian
"diffusion of a stochastically distributed scalar variable. This closure is invoked in the context of

an evolution equation for the single-point probability density function (pdf) of the scalar from I
initially symmetric binary and trinary states. In the binary case, a simple recipe is provided for
the time scaling relation which is very useful in model implementation. In the trinary case, it is
shown that after a fixed elapsed time, the pdf relaxes to a distribution similar to that of the

binary mixing. The magnitude of this time is independent of the initial extent of departure
from a binary state; however, the rate of evolution toward an asymptotic Gaussian state
depends on the level of the departure. In both cases, the closure predictions for the scalar

flatness factor and the correlation of the mean square scalar-scalar gradients agree well with u
those obtained by direct numerical simulations (DNS). However, some features of the results
are different from those of earlier DNS of mixing in stationary turbulence. These differences

are likely attributed to inadequacy of the amplitude mapping closure at the single-point level in I
accounting for the effects of turbulence stretching.

U
I. INTRODUCTION nal" information for predicting the evolution of these scales. 3

With availability of such information (by whatever means), 1
Development of the amplitude mapping closure by the problem reduces to that of establishing a time scaling

Kraichnan and co-workers" 2 has had a significant impact relation by which the mapping closure can be enacted. The a
on statistical modeling of turbulent reacting flows. This clo- mechanism of utilizing this relation is demonstrated here byI3

",ure has proven its capability in probability density function two simple examples. The examples chosen are those for

(pdf) modeling of scalar variables in turbulent flows, and which the desired information can be furnished by simple
has demonstrated its physical plausibility in a number of analytical procedures. However, an outline is provided of
validation studies by means of comparative assessments the implementation of this mechanism for more complextm

against direct numerical simulation (DNS) data. 2 ' Because conditions.
of its demonstrated relative strength and its sound math- The second problem is the provision of some analytical 1

ematical-physical basis, it is anticipated that this closure will results for higher-order statistics generated by the mappingI5
be extensively utilized in statistical treatment of turbulence, closure. This problem is suitable for addressing the relaxa-

and will gradually replace the closures currently in use in tion property of the predicted pdf, including the temporal

probability modeling of turbulent combustion phenome- evolution of the scalar variance, the scalar flatness, and the

ha.6-8 correlation of the mean square of the scalar and its gradient.

In this work, our objective is to further examine the The purpose of this study is twofold: ( l) to present an alge-

properties of this closure and to gain a better understanding braic expression for quantitative evolution of the model-gen-
of the statistical results generated by means of its implemen- erated pdf and its instantaneous deviation from Gaussianity,U
tation. It is also intended to provide a reasonably simple and (2) to motivate the investigation of the effects of turbu-

recipe that can be used in conjunction with this closure for lence straining, which is believed to play an important role in ,
practical implementations. For these purposes, three dis- physical characteristics of the mapping closure.-"'

tinct but related problems are considered. In both these problems our attention is focused on a

The first problem is associated with the time scaling of basic test problem which has been considered in a number of
the mapping closure. The consideration of this problem has previous contributions." ' Namely. the probability evolution

been motivated due to the "single-point" statistical nature of of a stochastically distributed scalar from an initially binaryW
the closure. Because of this nature, there is no information stale in a homogeneous setting. The analytical results pre-
pertaining to the evolution of the appropriate length and/or sented here are mostly emanated from the general solution 3
time scale associated with the underlying physical processes. already available in a previous work. "' Also, an eitensiveU
This problem manifests itself by a need for further "exter- DNS data bank is available by which the extent ot'salidity of

1028 PhyS Fluids A 4 (5). May 1992 0899-8213/921051028-08$04 00 , 1992 American Institue of Physics 1028



I the analytical results can be assessed. In a third problem, X (5)
nevertheless, an extension is made for the modeling of homo-
geneous mixing from an initially trinary state. This problem In deriving Eq. (5) use has been made of the fact that •)
is considered since it portrays some salient features of the isndependent of its gradient 1:. Equations (3)-(5) provide
mapping closure and is believed to provide a more rigorous the basic framework by which our analytical results are es-
means of evaluating its performance. In this problem, the tablished. The scalar pdf evolution derived from Eq. (1)
results predicted by the mapping closure are discussed in satisfies'"
view of their relevance for implementing other simpler prob- dP 8 2 (E 4 2 140p)
ability frequencies. These results are also compared with - + D { 0, (6)
DNS data for a quantitative assessment. at

In comparison against DNS data, only the Fickian dif- where E{f" 214} is the expected value of the scalar mean
fusion process is the subject of main consideration. This is to square gradient conditioned on the given value of 46(xt). As
remove the complications associated with the effects of tur- indicated before, only the Fickian diffusion of the scalar field
bulent stretching. After establishing a better understanding is considered, even though at the single-point level the scalar
of the nature ofthe closure, its extension to problems involv- pdf obeys the same evolution equation [ Eq. (6) ] regardless
ing turbulent transport can be more adequately addressed, of the structure of the velocity field.
Also, while the mapping closure (and the general pdfmeth-
od) is promoted for statistical description of reacting turbu- Ill. BINARY MIXING OF SCALAR
lent flows, this study is concentrated only on nonreacting In studying the binary mixing of the scalar 4, the initial
transport, i.e., mixing only. However, all the cases consid- single-point pdf of 0 is chosen to be symmetrical about
ered are relevant for modeling of turbulent reacting phenom- $ = 0 with unit variance,
ena. The binary mixing problem is pertinent to the study of
unpremixed turbulent reacting flows,' and the trinary mix- P(4O,t = 0) = lIW(OS - 1) + 6(0$ + 1)]. (7)

ing problem is appropriate in modeling of parallel-consecu- The initial mapping function, therefore, can be determined
tive chemical reactions in plug flow reactors. by io

1I. MAPPING CLOSURE X(O,,O) = 2H(O,,) - 1, (8)
Wwhere H is the Heaviside function. The analytical solutionWe consider the following advection--diffusion equation for the mapping function X subject to initial condition, Eq.

for a statistically homogeneous scalar field, O(x,t) in three- (8), is given byfi

dimensional homogeneous turbulence,

3_6 X(,Oo,r) = erf(A40,), (9)

IT + u-Vq = DV2d6, (I) where "erf" denotes the error function,

where x is the position vector, t is time, u is the incompress- A 2(-r) = e - 272(1 - e - 2"), (10)
ible turbulent velocity, and D is the scalar diffusivity and is and the dimensionless time Tr is defined by the differential
assumed constant. To invoke the mapping closure for cS sat- relation

I isfying Eq. (1), let dr= D ())dt. (11)

6b(x,1) = X(,j(x),t), (2) This equation indicates that r is a monotonically increasing

where X(b(,,,t) is the mapping function. This function is function of time t. Having Eq. (9), the pdf of 0 is directly
shown to evolve according to 2-'' 0  determined by Eq. (4).

__= (bo2 0 ax +a 2X (3)a d6,, d62 )
o A. Time scaling

The reference scalar field 0(, in Eq. (2) is a time-independent
standardized Gaussian variable with mean square gradient To overcome the remaining closure problem at the sin-I (• 8 which, in general, is time-dependent. Here the proba- gle-point level, a scaling between the dimensionless time r
bility mean is denoted by angle brackets. The scalar pdf and the physical time t, i.e., r = r(t), is required. This rela-
biiymaIsdntdb ngebakt.Tesaa d tion can be determined from Eqs. (5) and (9) asP(6,0) is determined from the one-to-one mapping function
X(6,,,,[) as)2) 2 . -S~r). (12)

P( b.t) An analytical result can be derived for the decay ofthe scalar
S03X/1,36,) variance from Eq. (9).

where P(, (6,,) is the pdfofthe Gaussian reference variable (2) = (2/-) sin '( ) (13)
6,,. Equations (3) and (4) demonstrate that the incompress-
ible velocity field has no direct influence on the single-point q
scalar pdf evolution, its only role is through the external ing relation. From Eqs. (5) and (II -(13) this relation.S time-dependent parameter (!,- ). This parameter is related a1ter some algebraic manipulations, becomes
to the scalar mean square gradient (. 2) by' I D /2 (t) tit = IS( r)/lV( 71 1dr, (14)
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where the scalar microlength scale A, is defined by DNS data, the variance can be determined by means of an 3
I/IA =(.)/(#2 ) (15) appropriate turbulence closure. An example of this is a re-

cent attempt"* in which the single-point amplitude mapping
From Eq. (1), thedecal ofthe scalar variance is determined closure is employed in conjunction with a two-point spectral 3
by closure. 4 The results of this combined procedure has shown

d( 2 )d -- 2D(• 2 )" (16) to yield a reasonable agreement with experimental data in

dt homogeneous reacting flows.
Therefore, from Eq. (15) the time scaling relation becomes B. Some results

V(r) = exp -2D , ( (17) A quantitative measure of the statistical properties of
the mapping closure is the magnitude of the higher-order

as would have been obtained from Eq. (14). moments and other statistical correlations generated by the
In determining this scaling relation for the mapping clo- model. It has been shown that although the scalar pdf evolv-

sure at the single-point level, the effects of turbulent stretch- ing from an initial binary state has an asymptotic leading 5
ing on the scalar field as well as other physical processes such term of a Gaussian form, the boundedness constraints on the
as chemical reactions, molecular diffusion, etc., have to be scalar range prevent it from being exactly so at any finite
included through the scalar microlength scale. For the pres- time.45 A partial measure of the instantaneous deviation
ent problem of pure diffusion, the required length scale is from Gaussianity is provided by the flatness factor F4, ,
determined by the scalar energy spectrum E, (k,t) accord- F4  (14)/(•2)2 (22)
ing to

6 f, k 2E, (k,t)dk The temporal evolution of F4 is governed by

A2 f(-,Eb(kt)dk (18) dF4=D ( 4 F, awd ) 4 (23) 0
where the scalar energy spectrum E,, (k.t0 at wave number k which corresponds to n = 2 of the following general form of U
evolves, from Eq. (1), as the evolution of even-order standardized moments:"

E, (kt) = E (kO) exp( - 2Dk 2t) (19)

and d (x21) D_-D

(6-)=f E, (k,t)dk. (20) x [2n(x2") - 2n(2n - 1)(x 2" -y-)]. (24)

The solution, Eq. (19), follows from the linearity of Eq. (1) Here x and y are the standardized scalar fluctuation I
with u = 0 and is obtained for a three-dimensional isotropic 6/(- 2)'"2 and the standardized scalar square gradient
scalar field. -" 2/(4 2), respectively. The functionp2 in Eq. (23) is the car-

The following two examples make the procedure for de- relation function (x2y) which differs from that in PRef. 16 by
termining this time scaling relation clear. The first is con- unity. An interesting property of Eq (24) is that all mo-
cerned with the self-similar decay of the scalar energy spec- ments of the variable x are entirely determined by the corre-
trum E, (k,t) from its initial shape, lations of x2" with the variable y. Another feature of this 3

V 72 \ k equation is its validity regardless of the presence or absence
E,, (k,0) exp( 2k 2 of a homogeneous, incompressible turbulent velocity field.k()) Using the time scaling relation, Eq. (14), the evolution

With this spectrum, Eqs. (14), (18), and (19) provide the equation for F4() becomes
desired relation, dF4 = S("r)

exp( -2-2) = sin[(rr/2)(l +4Dk2t) 3/2" (21) (r) 12p) (25)

In the second example it is assumed that the scalar variance where the correlation function p, is givei by I
decays according to a power-law description, sin '{ exp( - 2r)/[l + 2 exp( - 2-) 1}
(62) = (I + B) - ". Equation (16) then yields P2 = (x Y) =sin ' exp( - 2-])
,1 (t) = A 2 (0) (I + B,1t). With this relation, the corre- (26) w
sponding time scaling relation is easily determined by equat-ingEq.(13 tothepowr-lw rlaton or he calr vri- In deriving Eq. (26) the fo~llowing expression is employed
Ing Eq. ( 13) to the power-law relation for the scalar vari-
ance. Note that the first example also yields a power-law forthenormalizedconditionalscalarmcansquaregradient:
decay for the scalar variance with a decay exponent n = 1.5. E{. 2-Id,} = E{_!-20} exp{ -21 erf '(6)]1}. (27)

These examples demonstrate the procedures of estab- Equation (25) indicates that the correlation fminctionp: acts
lishing the time scaling relations under simplified condi- like a sink term in the transport equation for IF. Thits equa- 3
tions. For more complex scenarios, the scalar variance can tion has the solution
be used, when justitied. to provide the appropriate relations. .

For example. in a quantitative assessment of the closure f r) =V- expI 3I. - s') I QIV')dv,, (28)3
against DNS data. the DNS-generatcd variance and Eq.
(13) would directly provide [he scaling. In the absence of with
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Q(s) = exp( - s)sin - sin[ exp(s) ] . (29) condition is presented in Fig. 2. This evolution displays a

( 1 + 2 sin [ exp(s) j qualitatively similar behavior to that of previous stationary

Unlike that of variance, the analytical expression for F 4 does turbulence simulations-"' and is therefore consistent with

not portray a simple algebraic form and its evaluation re- the mapping closure predictions.' A noted feature for the

quires numerical integration. Here this integration is per- scalar evolution is that it adopts a transient uniform state- in

formed with respect to the primitive Gaussian reference [ - 1,1] at r = In 2/2 at which (0') = 1/3 and F4 = 9/5.

variable, 0, The results depicting the evolutions ofF 4 and p, Such an approximately uniform state has also been realized
are presented in Fig. 1. In this figure, the abscissa is the in DNS as evidenced in Fig. 2 for the scalar pdf at t = t2.

scalar variance conversion, I-- /(4io), which is a The comparison between the mapping closure results
monotonically increasing function oftime. From this figure, and those generated by DNS is reasonably good for the flat-both Fo and p, predicted by the mapping closure are shown ness factor as demonstrated in Fig. I. Despite this agree-to exhibit a monotonic increase in timecand approach their ment, there is a difference between the model predictionsrespective asymptotic Gaussian values, 3 and 1. The leading and the DNS data for the parameter P2 at early times. 'rheterm in the asymptotic expansion of F3 is of the form reason for this discrepancy is due to the deviation in match-

F,- 3 - 4e 2̀ + e'(e-4,) as r-, o, and indeed Eq. (25) ing the initial state of the scalar field in DNS. This deviation,

yields a stationary solution for a Gaussian state, i.e., F4 = 3 however, does not seem to have a substantial impact at later

and p = 1. This realization of an asymptotic Gaussian state times.
ihas been discussed in Refs. 3, 4, and 9 and is also corroborat-

ed in previous DNS studies. IM.17

The statistical results predicted by the closure are also IV. TRINARY MIXING OF SCALAR
compared with those of DNS of scalar Fickian diffusion. For trinary mixing, the initial single-point scalar pdf is

The DNS data are generated by means of spectral-colloca- described by

tion simulation of an isotropic three-dimen- :tnal diffusion. P(O,t = 0) = c5 •6, + 1)
The resolution in DNS consists of 64 Fourier nodes in each
of the three directions, which is 3ufficient for this simulation. + c,5(00o) + C,6(,A(, - 1), (30)
The scalar energy spectrum used to generate the initial scalar3 field has the form E,, (k) = (k 2 /k o ) exp( -k 2 /k ) with and the initial mapping is expressed by

k, = 1.5. With this spectrum, the scalar field is generated r, 4Sf > a,
randomly in the spectral domain. This field is then trans- Z(-6,0) =1 a>I,>#,3 formed into the physical domain ior statistical analysis. The

1 temporal evolution of DNS-generated pdf's from this initial wh-r, eo,
where

I

I i -p,,. DNS / I

0 0*.

I|
I < C,2 > " - 0 4 •* o00 ............. t o - ~ .

3 FIG. I Th. .txill vf flai ncs% failor. 1<, ald lht" t*rt 'lrrAiliinol lihc Ilitcansqll•i ti
wt',lair-scalar gradlClil. /I.. tci'u, lilth scalir l llillaltnc' cIi\ tl' ii.ll. 2. l)NS rt'.iill. li lt t ohllo li i it li pill'rom IliI l,

I (t')m •4)l, hairv slate anid at o r I' f k tli giit' ciii tl Il . 1t, r, v i, • •
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2_• f• ( e _x) ered, i.e., a = -,6. For this, the corresponding mapping!

_if= 2 takes the form7

c,= f exp( -a 0' the wh on32)

Co = I - C I - Cl. whereB = a/]2aand a = 2 -- exp(-- 2r). From Eq. (4), e
For simplicity, only symmetrical distributions are consid- the pdf of when expressed in terms of0,, becomes)

I

SP(O, r) = /exp(2,r) -1exp(a2/2a2-) exp(( - Oý'/2){I- exp( -- 2-r)/la2]1) (33) Ia

=2 cosh Iao,, exp( -r)/la-]

For a = 0 the solution for the double-delta case is recovered. The pdfs extracted from the DNS data are shown in Fig. 5.

For a #0 the pdf adopts two distinct distributions depend- This figure suggests that at large times the pdf asymptotes to

ing on r being greater or smaller than r. = In 2/2. This cor- a bell-shaped distribution. However, a transient uniform 3
responds to the instant at which the pdf is uniform in the state similar to that in the binary mixing case is not attained

binary mixing case. The behavior of the pdf at 0 = 0 and with Eq. (33). Asymptotically, the pdf can be reasonably

6 = I is of our immediate concern with regard to its relaxa- approximated by simple known frequencies such as the Beta 3
tion. The corresponding mapping to these two points is from density. X To verify the asymptotic Gaussianity of this distri- U
6,, = 0 and 0, = cc, respectively. Equation (33) shows that bution, the Taylor series expansion of Eq. (32) for Z(to,r)

at r > 0, is considered. The following asymptotic expression is ob- n
P(6 =0r) = exp(a2/2a 2 )\'exp(2r) - 1. (34) tained in the limit A-.0 as r- oo:

($,)= (2/4w•) exp( - a2 /2a 2 ).4$,

Therefore. it can be shown that P(O,r) portrays a de- 5

creasing-increasing behavior in r, and reaches its minimum +/- [ (I - a2)A 31 1]. (35) 3
value at r- = In( 1 + a 2)/2. The scalar pdf at d = I is infin- This expression indicates that the mapping function has an
ity when 7"< 7. and is zero otherwise. The exponential nature asymptotic linear form in the Gaussian reference variable 6,,
of the pdf as 6 - I is different, however, between -" = -", anca and thus is itself a Gaussian variable. However, the 'eading 3
r<7,, as can be deduced from Eq. (33). Tzie probability exponential term indicates that the rate ofevolution depends

distribution for a = \2 erf(1/3) (i.e., c I = c,, = c, on magnitudeofthe parametera, i.e., the extent of the initial
= 1/3) is shown in Fig. 3 for r< rand in Fig. 4 for r> j. departure from the binary case. 3

,0 5
_----- -- " 1=0 0- 0

--- S•O .---.- .- • 5•

U
I °

' ~j

Sf -- : f
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(Z 2 exp( - 24 2) cosh(2A,,S,,)) agreement has been demonstrated here only for the two
(Z 2) ( exp( - 2A 2) cosh(2ADO,)) (37) cases of binary and trinary initial states. Therefore, further

validation assessments including a wider variety of initial
Numerical results of the normalized scalar mean square gra- conditions are recommended. Also, as indicated earlier, the

dient for several values of a are shown in Fig. 7 at different effectsof turbulence stretching are not included in our analy-

times. This figure suggests that the results are independent of sis. The influence of this stretching and the effects of random

r when a is small, i.e., the binary case.5 This clearly reveals advection in homogeneous turbulence are the subject of cur-

the profound influence of this parameter on the evolution of rent investigation. 9
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I Modeling of Isotropic Reacting Turbulence by a
* Hybrid Mapping-EDQNM Closure

Steven H. Frankel, Tal-Lun Jiang, and Peymamn Givi3 Dept. of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY 14260

A hybrid model is developed and implemented for predicting the limiting bound
of the reactant conversion rate in an isotropic turbulent flow under the influence
of a reaction of the type A + B -Products. This model is based on the amplitude
mapping closure of Kraichnan for the molecular mixing of a stochastically distributed
scalar, and the eddy-damped quasi-normal Markovian (EDQNM) spectral closure
for the two-point scalar covariance. The results predicted by this model compare
well with available experimental data in both gaseous and aqueous plug-flow reactors,
but point to the need for more detailed measurements in future experimental studies.
With the implementation of the mapping closure, a simple analytical expression is
obtained for the decay rate of the unmixedness. This expression is very convenient
and is recommended for direct practical applications in the modeling and design of3 plug-flow reactors.

E Introduction

Statistical modeling of the reactant conversion rate in ho- such models are the early C/D prototype of Curl (1962) (which
mogeneous reacting turbulence has been the subject of wide was not constructed for turbulence applications, but has been
investigations since the early pioneering work of Toor (1962). widely utilized for PDF modeling of reacting turbulence), the
Among the class of statistical methods in use, it is now accepted linear mean square estimation (LMSE) theory of O'Brien
that the approach based on the probability density function (1980), and the closure of Janicka et al. (1979), among others.
(PDF) of the scalar quantities is most appropriate (Hawthorne While not all of these closures were originally presented in a
et al., 1949; Toor, 1975; Pope, 1979, 1985; Kollmann, 1990). C/D form, it is now established that the majority of those in
The principal advantage of this method is based on the fun- current use (including the three aforementioned) can be cast
damental property of the PDF, which includes all the statistical in a generalized C/D mold (Pope, 1982; Kosaly and Givi, 1987).
information regarding the reacting field. For this reason, PDF Despite their wide utilization in modeling the transport of
methods have been very attractive and popular as evidenced scalar variables in turbulence, none of the C/D closures cur-
by their wide use in various forms for the statistical treatment rently in use are physically plausible (Pope, 1982; Kosaly and
of reacting turbulence phenomena (for recent reviews, see Givi, Givi, 1987; McMurtry and Givi, 1989). In all of these models,
1989; Kollmann, 1990; Pope, 1990). the C/D-generated PDFs are not entirely consistent with those

The most systematic means of determining the PDF involves either measured experimentally or generated by means of direct

the solution of an appropriate transport equation governing numerical simulations (DNS). Specifically, none of these clo-
the PDF's evolution. In this equation, due to the nature of sures are capable of producing an asymptotic Gaussian dis-
the formulation, the effects of chemical reaction appear in a tribution for the PDF of a conserved scalar from an initially
closed form. However, the influences of molecular action can- non-Gaussian state in homogeneous turbulence. This trend has
not be fully described and can be treated only by means of been observed in DNS (Eswaran and Pope, 1988; Givi and
employing an appropriate turbulence closure. In many pre- McMurtry, 1988) and has been corroborated by experimental
vious applications, this problem has been addressed through measurements (Miyawaki et al., 1974; Tavoularis and Corrsin,
the use of coalescence/dispersion (C/D) models. Examples of 1981). This deficiency associated with the C/D closure has
_ _ _been long recognized, and within the past decade significant

( rempondrnce concerning ihu article should be addressed io S. H. Fraanke. efforts have been devoted toward developing closures that can
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I
overcome this nonphysical behavior (for example, Pope, 1982; type A + B-Products in an isotropic, isothermal turbulent
Norris and Pope, 1991). flow (Toor, 1975; Brodkey, 1975, 1981). The two species A

For the past few years, Kraichnan and coworkers (Chen et and B are initially segregated and are supplied under stoichi-
al., 1989) have made rather significant progress in devising a ometric conditions. The flow field is assumed constant density,
"mapping closure" that can effectively deal with the afore- and the influences of the chemical reaction on the dynamics
mentioned problem. This model, in essence, provides a means of the turbulence are ignored. The turbulent velocity field is
of accounting for the transport of the PDF in composition assumed stationary to avoid the complications associated with 1
space, and its validity and physical applicability have been a varying (decaying) turbulence. This field is parameterized by
convincingly evidenced in a number of comparisons against means of a temporally invariant energy spectrum for the ye-
DNS data (Pope, 1991; Gao, 1991a; Madniaet al., 1991; Jiang locity. In this setting, the maximum rate of the reactant con- U
et al., 1992). The results of these investigations indicate that, version is obtained from our hybrid model by implementing
at least for isotropic turbulent transport, this closure is superior the assumption of an infinitely fast chemistry. All the species
to all the previous C/D-type models in depicting a physically involved in the reaction are assumed to have identical diffusion
plausible PDF evolution, coefficients and the same thermodynamical properties. Under I

Based on this demonstrated superiority, we have chosen to these conditions, the statistical behavior of the reacting scalars

uti!ize the mapping closure for the statistical description of A, B is related to that of a conserved Shvab-Zeldovich variable,
reacting turbulence. For this purpose, we have selected a re- ,J. This variable is arbitrarily normalized in such a way as to
acting system under idealized conditions compatible with those yield - I : Jq I. In the framework of the single-point descrip-
considered in many previous works in the chemical engineering tion, the PDFs of the reactants A and B, denoted by TPA ($,
community. Namely, the reaction A + B-Products in a con- t) and P,(•', t), respectively, are the same for an equivalence
stant density, isotropic turbulent flow. In this flow, the limiting ratio of unity. These PDFs are related to that of the Shvab- I
bound of the reactant conversion rate is predicted by assuming Zeldovich variable (Pf(k, t) by the relation (Toor, 1962; Bilger,
an infinitely fast reaction and ignoring all the nonequilibrium 1980):
effects associated with the chemical kinetics. In this setting,
the only unclosed term requiring a model is the evolution of I
the appropriate turbulent length scale. This particular closure '?A (0 6,t= (J(0,t)= TJ,t)+ j ROL (1)
is not exclusive to the mapping model per se and is required
in any approach based on a "single-point" statistical descrip-
tion. For this, we have chosen the eddy-damped quasi-normal where 6 is the delta function. Equation I demonstrates that
Markovian (EDQNM) spectral closure. This closure is superior all the information pertaining to the statistical behavior of the
to the commonly used k-e models (Launder and Spalding, reacting field is available at all times if the PDF evolutioi for
1972), since it includes information regarding the transport of the conserved scalar field is known. For this, we have employed
"two-point" statistical quantities. However, its feasibility is the mapping closure.
currently limited to predictions of flows without spatial in-
homogeneities. This does not produce a severe limitation here,
since most of the available data on plug-flow reactors display Mapping closure Ihomogeneous characteristics.

In the next section, the problem under consideration is out- The implementation of this closure involves a mapping of
lined along with the specific assumptions made in developing the random field of interest •, to a stationary Gaussian reference
the hybrid mapping-EDQNM closuti,. Salient features of the field v, via a transformation '= X(q, t). Once this relation is I
r•iapping closure at the single-point level are discussed. With established, the PDF of the random variable 0, f(l(), is related
tlis closure, a simple algebraic form is obtained for predicting to that of a Gaussian distribution PG(,i) via (Chen et al., 1989;
the limiting bound of reactant conversion. While this algebraic Pope, 1991):
relation is very convenient for practical applications, it is not
in a closed form and requires knowledge of the turbulent length , )x -
scale evolution. The EDQNM closure is capable of providing -=< +Go. (2)

the required length scale information. In the subsequent sec-
tion, the formalities of the hybrid closure are discussed, high-
fighting its relative ease of implementation for practical In light of this transformation, it is clear that since the
modeling of plug-flow reactors. And then we compare the random field changes with time, so must the mapping function.

results predicted by this combined model with laboratory data Therefore, the probability distribution of the scalar is deter- I
for two purposes: (I) to validate the model and (2) to identify mined from the knowledge of this mapping function. The
some of the relevant parameters in future experiments for such transport equation for this function has been developed by
validations. These comparisons are validated by results from Chen et al. (1989). Here, we present only the final results:

a study showing the influence of some factors affecting the U
rate of reactant conversion. In Section 4, our findings are ax ax 3'X
summarized and some suggestions are made for future work. a-'= T ( 3

In this equation, itis a normalized time within which the scalarDescription and Formulation of the Problem length scale information is imbedded. The general solution of

The subject under investigation is a binary reaction of the this equation has the form (Gao, 1991a; Pope, 1991):
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I
-ýE) ___)__II_ the reactor, x, for comparison against actual measurements.5 X Et) j-..( In the context of single-point analysis, the relation between

this time and the normalized time icannot be described. This

( [exp ( - i) - Wi) I + E(tiY() demonstrates the need for some external means by which the
exp 2,-)3 d1, (4) knowledge of two-point statistics can be brought into the anal-

ysis. To provide this information, we have used the EDQNM

where E is related to the normalized time by: spectral closure.

E(Y-exp(2F- 1). (5 EDQNM closure

The formulation presented in the previous section would be

For the case of initially segregated reactants, the corre- in a closed form with the knowledge of the parameter E. Mak-

sponding forms of the initial PDF and the mapping function ing the assumption that the evolution of the length scales is

e the same under reacting and nonreacting conditions, the
are: knowledge of the variance of the Shvab-Zeldovich variable,

J, would be sufficient to cast Eq. 11 in a closed form. To
NO( - 1) + -0 + 1), (6) account for this length scale, the model employed in this work

2 is based on a'two-point closure, namely the EDQNM model.
This model is a "single-time" (but still two-point) closure, and

X(q,O) = 2H(it) - 1, (7) compared with other satisfactory stationary spectral closures,
its computational treatment is relatively less demanding (see

where H is the Heaviside function. Thus, the solution is ob- Herring et al., 1982, for a review of all spectral closures cur-
tained by substituting Eq. 7 in Eq. 4 to yield: rently in use). Because of this property, the EDQNM has proven

very powerful in turbulence modeling and has been widely
1_ (8) utilized in many investigations (see Orszag, 1977; Herring et

f(8) al., 1982; Lesieur, 1990, for review).
The form of the EDQNM closure in use here is similar to

and consequently, from Eq. 2: those of Larcheveque and Lesieur (1981) and Eswaran and
O'Brien (1989). This is in the form of a physical-space diffusion

E i) equation for the two-point scalar covariance in spherical co-

(P[x,~i)iJ=- exp 1- - EVY)2 J (9) ordinates with an effective diffusivity, that is, laminar plus
2 1-2 turbulent. This form is relatively simple in appearance, but

still contains most of the essential physics of the Navier-Stokes
With a combination of Eqs. I and 9, all the single-point equations. For the readers who are not familiar with the model,

statistical information regarding the reacting scalar field is we describe the derivation of the final physical space transport
determined. A parameter that provides a good measure of the equation for the single-time, two-point scalar covariance. The
reactant conversion and has been the subject of numerous mathematical derivation for this equation is detailed by
experimental measurements is the "unmixedness," V2. This Larcheveque and Lesieur (1981) and Lesieur (1991). The de-
parameter is defined as the normalized fluctuation correlation rivation of the model begins with the equation for the two-
of the two species (Toor, 1975): point covariance in the spectral domain as well as the evolution

equation for the third-order correlation. The quasi-normal
*2 = (ab) (10) (QN) approximation is based on Millionshtchikov's (1941) hy-

(ab)o pothesis and is invoked to facilitate solution of the third-order
correlation in terms of the two-point covariance, thereby clos-

where ( > denote the ensemble average, and a,b are the con- ing the hierarchy of moment equations. The eddy-damping
centration fluctuations of the two reactants. The subscript 0 feature provides a model for the effects of the discarded fourth-
indicates the initial time, that is, at the inlet of the reactor. order cumulants, and the Markovianization allows for a re-
The temporal evolution of the unmixedness is provided by a laxation toward quasi-equilibrium by nonlinear transfers. The
combination of Eqs. 1, 9 and 10. After some algebraic ma- resulting integrodifferential equation is in the spectral (wave
nipulations, the final result is in the form (Madhia et al., 1991): number) domain and is computationally intensive due to the

triadic interactions that arise from the nonlinearities in the
__ _ 2arcta[E~transport equations. By making assumptions on the form of

(1981) were able to transform the covariance equation back

Having such a simple algebraic form for the unmixedness pa- into physical space and obtain a version more suitable for
rameter is certainly very pleasing. In the manner presented, computation. This physical space equation in the form utilized

however, this equation cannot be compared directly with ex- is:

perimental data. This is due to the form of the final result. a I~~) [C~,)21 ' p~) (2
The decay of the unmixedness is presented in terms of the 5-t P a-r [ +plr,t)j, (12)
normalized time i(which as indicated before contains the length

scale information), not the physical time t. Note that it is the where the scalar covar'ance p(r, t) is spherically symmetric,3 physical time t that can be translated to the physical axis of p(r, t)=p(lrl,t)=p(r,t), and is defined as:
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I
P(r-(• (,t)l(x+r,t)). (13) titative comparisons with experimental data, simply because

of an apparent lack of extensive measurements in reacting
In Eq. 12, the molecular diffusivity is 1), and the turbulent turbulent flows. Therefore, it is necessary in our comparisons

eddy diffusivity, denoted by 3C, is defined by: with the available data to make some assumptions with regard
to some of these unknown parameters.

3 At the level of the formulation considered here, specific
3C~rt) i~Ot -

3212~grIdg 14) parameters that characterize the turbulence structure are: the
3 o,) - 242 kinetic energy spectrum of the turbulence, E(x); the initial

shape of the scalar covariance, p(r,O); the jet Reynolds number,

where J3,2 is the Bessel function of order 3/2, and K denotes Reo; the molecular Schmidt number, Sc; the relative turbulence
the wave number in the spectral domain, intensity, I; the integral length scales of both the velocity field,

The eddy diffusivity is determined by the turbulent kinetic L; the scalar field, LS; and the ratio of the Taylor microscale
energy spectrum function E(x, t). An appropriate EDQNM of the scalar field, X3, to that of the hydrodynamic field, X. 3
transport equation can also be constructed for this spectrum The magnitude of the hydrodynamic integral scale is coupled
by a similar procedure as outlined above. In this work,.how- with the energy spectrum, and the initial size of the scalar

ever, it is assumed that the turbulence field is stationary; there- integral scale is determined through the specification of the
fore, this spectrum is temporally invariant, E= E(x). Finally, irtitial distribution of the scalar covariance. The value of the I
the quantity O((t), which provides a measure of the charac- molecular Schmidt number depends on the reacting system

teristic time for triad interactions, is modeled as: under study, and magnitudes of the Taylor microscales are
determined by means of isotropic turbulence scaling relations

e I(t) = 1 -exp( - lgs(,c) + vo]lt) (Tennekes and Lumlev, 1972; Brodkey, 1975). Along with these
. (it) + P1 (15) relations, all the other parameters must be specified a priori.

The assumption of stationary flow precludes any time evo-
lution of the energy spectrum of turbulence, but its spectralHere, a' is the kinematic viscosity, and the ternm p'(x) is the distribution must be prescribed. Here, the spectrum is assumed

eddy relaxation frequency which is a measure of the straining to have the form: H t

effect of scales larger than K- t on mode x. This term is modeled

as (Larcheveque and Lesieur, 1981): I\[ 2--•/'1 I
C -21\xp - ) 2 for 0O<x < 1

(K)=X' 2 E(p)dp1. (16) E(x)= •-• for K11 !-Ks2  (17)
L otherwise. 5

where ?* is a constant taken as 1.3 (Herring et al., 1982).
The unknowns C3 , C2, y, k, .c axe determined from the con-

sistency conditions as described by Jiang (1990). The initial
Model Implementation and Comparison with Lab- profile of the scalar covariance is assumed to have the distri- I
oratory Data bution:

With a combination of these two models, the closure for
the statistical variations of the scalar field is completed. The r,) = exp- (18)
mapping ciosure provides an analytic expression for the decay
rate of the unmixedness, and the EDQNM complements this
relation with an estimate of the real-time evolution for the where X 10 is the initial scalar microscale and C, is a constant
variance of the Shvab-Zeldovich variable. It is assumed that chosen to be 1.6.
the evolution of the length scales of the Shvab-Zeldovich vari- The remaining parameters are specified with the aid of data
able is not affected by the presence of the chemical reaction. provided by laboratory measurements. The data considered
This is a reasonable assumption in view of the recent findings here are those of Ajmera et al. (1976) and reviewed by Toor I
of Jiang (1990) and Gao (1990). With this model, the evaluation (1975). These data are selected since they include information
of the statistical quantities, at least up to second-order statistics for both gaseous and aqueous reacting systems. Moreover, the
(including the unmixedness), is straightforward. However, the reacting fields considered in these experiments are compatible
implementation of the EDQNM requires numerical integra- with the assumptions made in our model: very fast reaction
tion. Here, the solution of Eq. 12 is obtained by the Crank- involving initially unpremixed, dilute stoichiometric reactants
Nicolson finite difference scheme, and the numerical integra- in a constant density, isothermal homogeneous turbulent flow.
tion for the relaxation time and the eddy damping rate (the The plug reactor used in these experiments consisted of a mix-
righthand side of Eqs. 14 and 16) is accomplished using the ing device followed by a reaction tube. The mixing device is -
Clenshaw-Curtis numerical quadrature (Engels, 1980). a concentric tube in which the reactants are introduced sep-

In comparing the results generated by this hybrid model to arately in the inner and outer streams. The reacting fields
those of laboratory measurements, the information regarding considered are the gaseous nitric oxide and ozone (Sc= 0.73),
the parameters describing the turbulent field is necessary, The and the aqueous hydrochloric acid and sodium hydroxide
values of these parameters depend on the particular turbulent (Sc = 700). In both of these systems, reactant conversion data
flow under consideration and must be specified a priori. This are available for cases with jet Reynolds numbers of 3,500,
requirement presents a difficulty when making detailed quan- 6,700 and 12,000. There is no information provided on any
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Figure 1. Reactant conversion distance in gaseous sys- Figure 3. Reactant conversion distance in gaseous sys-3 tern for Re= 3,500. tern for Re= 12,000.

turbulent length scales or the turbulent intensities in these as 1= 5%, since this value provided the best overall match with
experiments. For comparison, we assume that the reactor tube the data. This intensity level is perhaps somewhat lower than
diameter, D, is representative of the integral scale of turbu- that of typical fully-developed, homogeneous turbulent flows.
lence, L, considering a value for the turbulence intensity, L. In most laboratory flows, however, the turbulence field is
(The ramifications of these assumptions will be examined later.) usually of decaying nature. Therefore, while at the initial stages

The final results of our predictions are compared with ex- of development the laboratory flow may have a higher tur-
perimental data in Figures 1-6. In these figures, the reactant bulence intensity, the magnitude of this intensity decreases
conversion (* 2)-distance curves for both gaseous and aqueous further downstream. In our stationary turbulence simulations,
reactions are presented for all three Reynolds numbers. The a constant turbulence level is a compromise and, in essence,
relative turbulence intensity in these comparisons was selected represents an average of the corresponding data in laboratory
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Figure 2. Reactant conversion distance in gaseous sys- Figure 4. Reactant conversion distance in aqueous sys-
i3er for Re = 6,700. tern for Re = 3,500.
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experiments. The conditions in these figures are identified by measurements by Toor (1975). In making these comparisons,

the symbols GI, G2, G3, LI, L2, and L3, where the letters however, two points should be made. First, the discrepancies i
indicate the type of experiment (gas or liquid), and the numbers at high Reynolds number may be attributed to experimental
1, 2 and 3 denote the corresponding Reynolds number (3,500, error as mentioned by Ajmera et al. (1976). Second, in all the
6,700, and 12,000, respectively). experiments it is implied that the decay of the unmixedness is

The trends observed in these figures generally exhibit good independent of the chemistry and thus is the same under both
agreement between the model predictions and the experimental nonreacting and reacting conditions. Our results do not show
data for all the cases. In particular, our results indicate that this feature. To demonstrate this point, the unmixedness pro-

as the magnitude of the Reynolds number and the Schmidt file normalized by its value in the limit of no chemistry (mixingnumber increases, the decay of reactant conversion rate is only), ss2(Da-.-)]/[*(Da=0)), is presented for the case G2
seightly faster. These trends are consistent with the results of in Figure 7. Note that the asymptotic value of this normalized

variable approaches the constant value of 2/dr. Thisrealues I
Ia te due to an asymptotic Gaussian distribution for the PDF of the
6,70�0 ad10 random variable i and is consistent with that obtained in

T s n previous DNS results of c ivi and McMurtry (1988) and dis-bo
aw�g n b eod cussed by Kosaly (1987). This c imiting value is valid only ifso

daa fthe reactants are completely segregated at the inlet of the re-

actor.ah-a. u Despite the good overall agreement between the model pre- (

o ~dictions and the experimental data, our simulations point to i

number icreases the dcyorecatonrsnrtei only), f*aor ore 2deailed , isbpratr easuented t f or theaeG

sh3 turbulence parameters. Since the initial turbulent integral length
0• scale and the intensity were chosen to best reproduce the ex-
1 _ perimental data, it was deemed necessary to investigate the I

ao-Zo effects of these parameters. Therefore, a study was undertaken
to determine the influences of the turbulent scale and the rel-ative turbulent intensity on the conversion rate. For this studyr

Experimental Data the gaseous experiment with the jet Reynolds number of 6,700
dModel Prediction (Case Wto) was chosen.

The results of our model predictions indicate that both the

i o-.0. integral length scale of turbulence and the turbulence intensity

to-14 10'o, 10-02 100., 101.0 have a significant influence on the extent of reactant conver-
sion. Figuree param effect of varying the turbulent integral

x(cm)/2.54 scale (L). Three cases are considered: Le = D, L =rD/2, and

Figure 6. Reactant conversion distance In aqueous sys- L = Dw4. These cases are identified by symbols i2, G4, and
tern for Re= 12,000. G, respectively. The results show that generally, as the mag-
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"". r_ -for 
turbulence levels of 1 = 5%, 1044, 15%, and 120%, identified

t°°° '-• ' 'respectively by symbols G2, G6, G7, and G8. This figure

02 indicates that in general, the higher the level of turbulent fluc-""0 0tuations, the faster the decay of the unmixedness. This is also
" ao •justified physically. Turbulence fluctuations serve to transport

0 fluid blobs of one species into contact with fluid blobs of
31 0 -t.0 another species through eddy motion. Hence, by increasing

\ ', the intensity of these fluctuations, the stirring mechanism gen-
erated by turbulence becomes more pronounced. This higher

0 \mixing results in a higher reaction, at least in an equilibrium
flow, thereby resulting in a more rapid conversion rate."'\ , -The quantitative behavior presented in hese figures indicates

0 1°0 0 the dependence of the results on the turbulence parameters.
In future experiments, it is recommended to provide a more

a Experimental Data quantitative measure of these or other relevant parameters that
-Model Prediction (Case G2) can be used in model validations.

-..... Model Prediction (Case G4
.... Model Prediction (Case M5)

SConcluding Remarks
10"= 'Development of the mapping closure for molecular mixing

100"0 1010 has had a significant impact on the statistical description of
x(cm)/2.54 scalar quantities by PDF methods. In this work, we have em-Figure Et Reactant conversion distance in gaseous sys- ployed this closure for predicting the limiting bound of the

ter for Re=a6,700. reactant conversion rate in a stationary isotropic turbulent

t r ,flow. This has been realized for a simple chemistry of the type

A + B-Products in an isothermal and constant density tur-

of the integral scale decreases, the reactant conversion bulent field. With the use of the mapping closure, the limiting

occurs at a faster pace. The integral scale represents the char- bound of the conversion rate can be predicted by a simple

acteristic length of the large-scale turbulent motion. For smaller analytic expression. This expression is very convenient due to

L we expect smaller eddies on average and thus a faster eddy its simplicity of utilization for modeling of plug-flow reactors
motion which in turn leads to enhanced diffusion and reaction. (for excellent reviews on this issue, see Brodkey, 1975, 1981;A somewhat analogous physical scenario is observed in the Toor, 1975; and Hill, 1976). However, in the context of a

results generated by varying the magnitude of the relative tur- single-point statistical description, the information pertaining

bulence intensity. This is shown in Figure 9, in which the model to the evolution of the turbulent scaks cannot be recovered
by this expression and must be furnished by external means.predictions are presented, along with the experimental data, To provide this information, we have implemented the EDQNM

spectral closure for the physical evolution of the cý -ýance
of the relevant Shvab-Zeldovich variable characte the

1000 -compositional structure of the reacting field.

0- The results predicted by the hybridized Mapping-EDQNM
000 " 0 closure portray qualitative features similar to those of labo-20 ratory experiments and show trends in agreement with the

3
0| " results of previous DNS. However, in the absence of detailed

0 ' "experimental data, quantitative features can be matched only
10\l0 0 with laboratory data by making certain assumptions with re-

\0 ',, 0 spect to the initialization of the turbulence scales. The results
of a parametric study reveal the importance of these scales for

\ \ S o practical and realistic applications of the model.
\ý 'The good overall agreement with experimental data is en-

\ ' couraging. This agreement is particularly noteworthy since the

10 0 model employed to generate the data is rather simple and is
\ 0 very easy to implement computationally. Most of the com-

SExperimenta Data putational efforts are those associated with the numerical so--- Model Prediction (case G

Model Prediction Case G6 lution of the EDQNM closure. In a laboratory experiment,
Model Prediction ICase G7 these calculations can simply be replaced with the measure-ments of the decay of the covariance of a conserved scalar.

-0-30 With such measurements, our closed form algebraic relation
m1-14 10-0a 10.02 lo04 1010 can then be used for an efficient and reasonably effective

x(cm)/2.54 estimate of the limiting bound of the conversion rate.
There are many ways by which the model can be improved.

Figure 9. Reactant conversion distance In gaseous sys- It would be desired to extend the hybrid methodology for less
tem for Re= 6,700. restrictive and more physically complex reacting flow systems;
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for example, nonequilibrium, exothermic chemistry in variable H = Heaviside function

density, decaying turbulent fields. In such circumstances, the I = relative turbulence intensity
J = Shvab-Zeldovich conserved scalar variable

extension of the mapping closure is straightforward since this J),z = Bessel function of 3/2 order
closure is based on the PDF of the scalar quantities and can 3c = turbulent eddy diffusivity
account for the effects of complex chemistry. However, the L = hydrodynamic integral scale
results may not be presentable by simple analytical relations La = scalar integral scale

T = PDFas derived here and would require numerical solution of the Re = Reynolds number
mapping function (Valiflo and Gao, 1991). Also, the devel- r = physical radial coordinate
opment of EDQNM for compressible turbulence is somewhat Sc = molecular Schmidt number U
more involved, but has been recently initiated (Marion et al., I = physical time
1989). These new developments can be utilized in capturing x = spatial coordinate (downstream distance from the reactor

the effects of compressibility in reacting turbulence phenom- inlet)

enon.
In future application, the assumption of spatial isotropy may Greek letters

be relaxed. The EDQNM model can be used in homogeneous -y = constant in EDQNM closure
(but nonisotropic) flows. Also it is possible to implement the 5 = delta function

model for a decaying turbulence field. In fact, this model was il = composition space for a Gaussian reference field
0 = triad interaction time

originally developed for the hydrodynamic closure before its K = wave number in spectral domain
application for transport of scalar quantities (Lesieur, 1991). X = Taylor microscale for the hydrodynamic field
Therefore, the assumption of stationary turbulence imposed Xj = Taylor microscale for the Shvab-Zeldovich variable
in these simulations can be relaxed. In the present work, this X' = constant in EDQNM closure
was not deemed necessary due to the accracy range of the; = eddy relaxation frequencywa = kinematic viscosity
experimental data. Finally, the extension of the mapping clo- p = scalar covariance
sure to account directly for the length scale information can E = parameter in mapping closure U
be accomplished by an appropriate mapping procedure for the x = mapping function
joint PDF of the scalar(s) and its (their) gradient(s). However, *2 = unmixedness parameter

such a mapping is very complicated and still requires certain i = ompson domain

external information for a complete closure (Chen et al., 1989;
Pope, 1991). Some issues regarding the shortcomings of the Subscripts
single-point mapping closure in predicting the statistics of the 0 = time zero (inlet of plug-flow reactor)
gradient field are discussed by Gao (1991b) and Jiang et al. G = Gaussian
(1992). I

In comparison with currently available alternatives, our Other symbols
model seems very attractive, even with the imposition of several ( ) = ensemble average
restricting assumptions. This is primarily due to a firm math- - = normalized value I
ematical-physical basis of the model and the simplicity of the
final results. As such, the procedure is plausible in both basic
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Structure of a Turbulent Reacting Mixing Layer

R.S. Miller, C.K. Madnia, and P. Givi I
Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo
Buffalo, NY 14260-4400

Abstract

Results are presented of direct numerical simulations (DNS) of an unsteady, three-
dimensional, temporally developing, compressible mixing layer under both non-reacting i
and reacting non-premixed conditions. In the reacting case, a simple chemistry model
of the type A + rB --. (1 + r)Products is considered. Based on simulated results, it
is shown that at sufficiently large Reynolds numbers the global and statistical features
of mixing transition are similar to those observed experimentally. At sufficiently large
Mach numbers, it is shown that eddy shocklets do indeed exist in three-dimensional
(3D) flow. However, the strength of these shocks is less than that in two-dimensional
(2D) layers of the same compressibility level. Aided by the analysis of the DNS data,
the extent of validity of the "Steady Laminar Diffusion Flamelet Model" (SLDFM)
and the "Conditional Moment Method" (CMM) are assessed. In the evaluation of the
SLDFM, DNS results for different stoichiometric coefficients and reaction types are
analyzed. It is shown that DNS results compare well with model predictions as the
magnitude of the Damk6hler number is increased. The agreement is improved as the
value of r is increased and also as the effects of exothermicity become more pronounced.
In the assessment of the CMM, it is shown that the conditional reaction rate can be
reasonably approximated in terms of the conditional averages of the scalar variables.
Also, the cross-stream variation of the conditional scalar mean values is negligible.
However, this is not the case for the variation of higher order moments of the scalar
variables.

I
1 Introduction

In a recent article Givi et al. (1991) reported the results of Direct Numerical Simulations

(DNS) of a two-dimensional (2D) temporally developing, compressible reacting mixing layer.

The main purpose of these simulations was to assess the effects of compressibility and chem-

ical heat release on the extent of mixing and chemical reaction and to understand their in-i
fluence on statistical characteristics of the reacting layer. The main conclusions drawn from
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this work are: (1) both compressibility and exothermicity result in reduced mixing within the

layer, and (2) at sufficiently large Mach numbers, the layer is dominated with "eddy shock-

lets". The results of this work and those of previous investigations (see Givi and Riley (1992);

Drummond and Givi (1993) for reviews) are useful in view of current needs for understand-

ing the fundamentals of compressible turbulent reacting flows (Libby and Williams, 1993).

In fact, within the past decade, DNS have proven very valuable in providing a means of

investigating the intricate physics of such flows. Some recent examples are the contribu-

tions by McMurtry et al. (1986); McMurtry et al. (1989); Sekar and Mukunda (1990);

Grinstein and Kailasanath (1991); Grinstein and Kailasanath (1992); Steinberger (1992).

I Most of these efforts have been primarily focused on the analysis of 2D and/or weakly 3D

flows. This is understandably due to severe computational requirements associated with3 complex 3D simulations (Givi, 1989; Reynolds, 1990). However, with larger availability of

supercomputer resources it is now possible to consider more realistic flows with the hope of

gaining new insights into the fundamentals of turbulent combustion.

Our intention in this work is to make further prugress in extracting physical information

I from DNS results to portray the structure of turbulent reacting mixing layers. These sim-

ulations are primarily intended for the purpose of understanding the complex nature of 3D

turbulent combustion. Our particular interest is to focus on the following specific issues: (1)

mixing characteristics in pre- and post- transitional regions of the layer, (2) manifestation of

eddy shocklets, and (3) flame structure under non-equilibrium conditions in a turbulent en-

vironment. In regard to the first issue, DNS of transitional mixing layers have been recently

reported by Moser and Rogers (1991); Moser and Rogers (1992). Therefore, it is proposed

to make use of the findings in this work for investigating the phenomena of mixing in 3D

layers. Pertaining to the second issue, previous DNS results of 2D compressible shear flows

have indicated the formation of eddy shocklets (Givi et al., 1991; Menon and Fernando, 1990;

Sekar and Mukunda, 1990; Lele, 1989). However, such shocklets have not been captured in

any previous 3D simulations of parallel mixing layers. Finally, in regard to the third issue,

assessments of closures based on both the steady laminar diffusion flamelet model (SLDFM)

I (Peters, 1984; Peters, 1986) and the conditional moment methods (CMM) (Bilger, 1993),

have not been made in the setting of 3D reacting mixing layers.

I Due to the nature of the problems considered, most of the simulations presented here are

necessarily of 3D flows. However, some 2D simulations are also performed for the purpose of

comparison. External forcing is imposed to expedite the formation of large scale structures.
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However, due to obvious limitations of DNS (Givi, 1989; Reynolds, 1990; Oran and Boris,

1991), several simplifying assumptions are imposed. The nature of these assumptions is

indicated in the discussions which follow.

2 Description of the Problem I

The flow configuration considered is that of a 3D, temporally developing mixing layer similar I
to that of previous temporal simulations (Riley et aL., 1986; McMurtry et al., 1989) (Fig. 1).

The geometry is defined by the cartesian coordinates z (streamwise), y (cross-stream), and z I
(spanwise). The flow field is initialized with a mean hyperbolic tangent velocity distribution

with a specified initial vorticity thickness (68,0o)1. The free stream velocity of the top stream I
is denoted by Uo, and of the bottom stream by -Us,. For simulations involving chemical

reaction, an irreversible second-order reaction of the type A + rB -f (1 + r)Products is

considered. Reactant A is introduced in the top stream and reactant B in the bottom

stream. Both finite rate (non-equilibrium) and infinitely fast (equilibrium) chemical reactions

are considered. In the former, the mass fractions of the species denoted by Y,, i = A, B, P

are the primary chemical parameters. In the latter, the normalized mixture fraction J is of

fundamental importance (Williams, 1985). This mixture fraction is defined in such a way as

to yield the limiting values of 0 and 1 in the streams carrying species B and A, respectively.

The compressible form of the Navier-Stokes equations, the energy conservation and the

species conservation equations are considered with Fourier heat conduction and Fickian

diffusion assumptions. No turbulence or subgrid models are employed. All of the species

are assumed to have identical thermodynamic properties and are assumed to be calorically

perfect. The fluid viscosity, the thermal conductivity, and the mass diffusion coefficients

are assumed constant along with the assumption of unity Prandtl and Schmidt numbers.

The ramifications of these assumptions are not considered - being postponed for future

investigations. The assumption of a temporally developing flow does not modify any of the

conclusions to be drawn in regard to the issues considered.

The DNS procedure is based on an explicit time marching procedure by means of a monotone

Flux Corrected Transport (FCT) algorithm (Boris and Book, 1976; Oran and Boris, 1987).

This scheme is second order accurate in time, fourth order phase accurate in space and has

'All variables are listed in the nomenclature
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been shown to be reliable for capturing steep gradients (Oran and Boris, 1987). The size

of the computational domain and the magnitudes of the physical parameters that can be

simulated reliably are dictated by computational resources. In order to accommodate the

full growth and development of the Kelvin Helmholtz instability, the size of the domain is

prescribed as L. = Lv s 7n&lo , where n is the number of large scale vortices to be formed

in the initial rollup. The length of the domain in the spanwise direction is L. - 0.6L,. The

original version of the computer code use here was developed by Miller (1993).

The mass fractions of the two reactants are set equal to unity in their respective origins. This

implies an initially non-premixed, two-feed configuration. The initial temperature, density,

and pressure fields are uniform across the layer. The initial temperature is set at 300K and

the density is set equal to lkg/mr3 . The chemical reaction between the two species is taken

to be second order, irreversible with the kinetics mechanisms modeled either as (1) constant

rate or (2) Arrhenius. In the former, the reaction rate parameter KF is constant. In the

latter, KF is a temperature dependent function of the form: KF = AF exp(- Ze--O). In this
case, the free stream temperature is used for evaluating the magnitude of the Damk~hler

number (Da). With this convention, the reaction rate for the concentration is expressed

by ,i = KFMWiCACB. Combustion exothermicity is measured by the energy liberated

per unit mass by the chemical reaction, -AH 0 . The magnitude of this energy release is

parameterized by a non-dimensional heat release parameter Ce.

I External forcing is imposed at the most unstable mode and the first sub-harmonic of the

hyperbolic tangent velocity profile. These modes are calculated from the linear temporal

inviscid stability analysis of a non-reacting incompressible flow (Michalke, 1964). These per-

turbations are imposed to expedite the formation of vortical structures and the subsequent

interactions amongst the vortices. This is acceptable in view of the fact that stability charac-

teristics of the reacting layer (Jackson, 1992) are not the subject of this investigation. Rather,

it is the subsequent development of the flow which is of interest. The disturbance amplitude

is -, 10% of the mean flow. In order to simulate three dimensionality, the 2D disturbances

are multiplied by a function of the form f(z)cos(7rz/A,). A choice of f(z) = 1 - 2 is found
to provide sufficient 3D effects within a normalized spanwise coordinate -ir/2 < z < ir/2.

The forcing wavelength of the spanwise disturbance is A, ;, 0.6A. (Moser and Rogers, 1992;I- Pierrehumbert and Widnall, 1982).
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3 Presentation of Results

The resolution in each simulation depends on the magnitudes of the physical parameters and

on the size of the computational domain. In 3D simulations, as many as 150 x 150 x 90 grid

points are employed. All 2D simulations are performed in a domain with 256 x 256 grids.

In all cases, the grids are compressed by a factor approximately equal to 3 in the vicinity of

the x - z centerplane. This produces a finer resolution at the center of the layer where the

majority of mixing and chemical reaction occur.

3.1 Flow Structure and Mixing T5ransition H
An important feature of laboratory mixing layers is the phenomenon of mixing transi- I
tion. In previous experimental investigations it has been observed that at sufficiently large

Reynolds numbers the onset of transition results in a marked influence on mixing character-

istics (Koochesfahani and Dimotakis, 1986; Masutani and Bowman, 1986; Dimotakis, 1991).

Namely, mixing and chemical reactions are significantly enhanced in the post-transitional

region. In most previous DNS studies of spatially developing flows, this feature could not

be captured due to resolution constraints (Givi, 1989). That is, while many features of I
3D transport are elucidated, the effects of mixing transition similar to those of laboratory

layers could not be reproduced. In order to capture the transition process, the procedure

suggested by Moser and Rogers (1992) is followed. The Reynolds number is set to Re = 250,

and the streamwise size of the box (L4) is selected in such a way that both single- and

double-pairings of large scale vortical structures are accommodated. These simulations are

of a reacting layer, both with and without the influence of chemical heat release. Consistent

with laboratory experiments, only low compressibility mixing layers are considered. The

convective Mach number in these simulations is kept fixed at M, = 0.2.

For the purpose of flow visualization, in Fig. 2 results are presented of surfaces of constant

vorticity magnitude in a single pairing simulation. The foreground cross section cut shows

contours of vorticity magnitude. This figure shows the pairing of two neighboring large

scale vortical structures and provides a qualitative description of the internal activity of

the pairing vortices. The observance of new small scale structures within the layer is one

indication that the mixing transition process has been initiated. These small scales have

vorticity of both the same and opposite signs as their parent structures. In a reacting layer,
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the effect of small scales is to stretch and distort the flame surface within the roller. Figure 3
shows a plot of the mixture fraction contours during the pairing process in both a spanwise

and a streamwise plane. In the limit of infinitely fast chemistry, the surface of the flame is

identified by the contour (J = 0.5). This line is cross hatched for clarity. The warping of the

flame surface by the small scales provides a graphical indication of the initiation of mixing

transition. However, in this flow with just one single pairing the layer becomes saturated

with the completion of the pairing and the transition process is not completed.

Simulations with a larger effective box size accommodate multiple pairing of vortical struc-

tures. Multiple pairing allows for the continued growth of the layer and for the culmination

of the mixing transition process. Figure 4 shows contours of the vorticity magnitude along

a spanwise plane of the layer during the second pairing. The layer is now in a state that

I can be justifiably labeled as "turbulent". The small scale eddies cover an almost uniformly

thick layer across the domain, and large scale structures lie embedded within the turbulence

and are increasingly difficult to distinguish. The qualitative features shown in this figure are

similar to those observed experimentally in the post-transitional region of laboratory mix-5 ing layers (Koochesfahani and Dimotakis, 1986). The spanwise distribution of the mixture

"fraction located in the braid planes (Fig. 5) is also in accord with experimental observations

(Bernal and Roshko, 1986) and previous DNS results (Metcalfe et al., 1987). It is noted that

turbulence and background fluctuations destroy the initial symmetry of the layer.

In order to provide a quantitative means of illustrating mixing transition, the statistical be-

havior of the mixture fraction is considered. Similar to the procedure followed by Koochesfa-

hani and Dimotakis (1986); Masutani and Bowman (1986), the Probability Density Function

(PDF) of the mixture fraction at several stages of the layer's development is considered.

These PDF's are shown in Fig. 6 illustrating the cross stream variations of the PDF in the

pre-, mid-, and post-transitional regions. The pre-transitional PDF (Fig. 6(a)) is character-

ized by two prominent approximate delta functions located at J = 0,1, i.e. unmixed fluids.

On the other end of the spectrum in Figure 6(c), the PDF's indicate significantly enhanced

mixing. This is manifested by a large peak of the PDF at the mixed fluid concentration (i.e.

J = 0.5). The probability of finding pure reactants in the center of the layer is approximately

zero. In accord with experimental measurements (e.g. Koochesfahani and Dimotakis (1986);

Masutani and Bowman (1986)), the shape of the PDF is approxamately similar across the
layer. The PDF's during the mixing transition (Fig. 6(b)) show somewhat different char-

acteristics than those in either the pre- or post-transitional regions. In this case, there is a
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relatively large probability of finding both unmixed and mixed fluids throughout the layer.

This is due to rapid engulfment of the free stream fluids by the pairing of vortical structures.

However, the highest probability at the center of the layer corresponds to that of pure mixed

fluid. In Fig. 7 the three regions of transition are portrayed in terms of the cross-stream vari-

ation of the probability of finding either pure unmixed fluids (J = 0,1), or completely mixed

fluid (J = 0.5). In the pre-transition regime (Fig. 7(a)) the flow field is characterized by a

very low probability of finding fully mixed fluid. Once the transition has commenced (Fig.

7(b)) a greater amount of mixed fluid is formed and unmixed fluids are found throughout 3
the entire layer. Finally, in the post transition region (Fig. 7(c)) the mixed fluid is dominant

and fairly evenly dispersed throughout the shear zone. Pure unmixed reactants can only

be found on their respective sides of the layer and the probability curves adopt a concave

upward shape. 3
Another perspective by which the effects of mixing transition can be viewed is through

the evolution of pertinent statistical properties. Presented in Fig. 8 is the time evolution

of the product thickness, the vorticity thickness, and the ratio of the two. The product

thickness is calculated from the normalized total mass of product in the limit of infinitely

fast chemistry, and the ratio is referred to as the cross-stream product density (CSPD). The

vorticity thickness shows a sharp increase at the onset of the first pairing (t" ;, 0.5), and

also at the onset of the second pairing (t* - 1.5). As transition proceeds, the effects of large

vortical structures become increasingly masked by those of the small scales. This manifests

itself in both the vorticity thickness and the product thickness becoming increasingly linear

in time. The slope of the CSPD is initially non-zero due to the external forcing. A relatively

sharp rise during the first pairing (t* • 0.8) indicates the onset of mixing transition. By the

time the second pairing occurs the CSPD has reached a plateau and does not change as the

growth of both product and vorticity thicknesses remain linear. This plateau indicates the

culmination of mixing transition. This feature is further quantified by examining the time

development of the amount of pure mixed fluid within the central shear zone of the layer.

This is depicted in Fig. 9, presenting the probability of finding pure mixed fluid, conditioned

on -1 < y" _( 1. This figure exhibits the same type of plateau as that in Fig. 8. Based on 3
these two figures, it can then be concluded that mixing transition is initiated at t* -. 0.8 and

is completed by t" -, 1.4.

In Fig. 10 turbulence intensities are compared for pre- and post-transitional flow fields.

Figure 10(a) presents the root mean square (rms) values for the streamwise velocity. The
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post-transitional field displays larger rms values than does the pre-transitional region. An

opposite trend is observed for the mixture fraction rms values (Fig. 10(b)). Increased mixing

due to turbulence results in a reduction in the magnitude of the scalar fluctuations. Note that
the post-transition profile is characterized by two maxima, in agreement with incompressible

flow studies (Fiedler, 1974). This is in contrast to the pre-transition profile which has its

maxima located at the center of the layer.

I Chemical exothermicity typically delays the transition process. This feature has been well

recognized from linear stability analysis of heat releasing parallel mixing layers (e.g. Jackson

and Grosch (1989); Jackson and Grosch (1990); Shin and Ferziger (1992); Colucci (1993), see

Jackson (1992) for an excellent recent review), and is also verified in the present simulations.

Presented in Fig. 11 is the temporal variation of the vorticity thickness of a single pairing

layer for two different heat release rates, Ce = 0 and Ce = 0.2. This figure shows that

the major influence of exothermicity is to decrease the growth of the layer and to delay the

I pairing process. There is an exception for early times at which thermal expansion caused

by heat release results in a slight thickening of the layer. This feature is also corroborated

by the results of Fig. 12 indicating a reduction in kinetic energy of turbulence at elevated

heat release. It has become generally accepted that the effect of heat release is to decrease

the amount of product formation in reacting shear flows (Hermanson and Dimotakis, 1989;

McMurtry et al., 1989; Givi et al., 1991; Givi and Riley, 1992; Riley and McMurtry, 1989;

Steinberger, 1992). However, this has been established for constant rate kinetics chemistry

and is not necessarily the case for temperature dependent kinetics. To illustrate this point,

Fig. 13 is presented showing the temporal evolution of the product thickness. In Fig. 13(a),

the temporal evolution of 8p is shown for the case of constant rate kinetics. Clearly, the

effect of heat release is to reduce the mass of product formed. This is consistent with

previous findings of McMurtry el al. (1989); Givi et al. (1991). Figure 13(b) presents

results for an Arrhenius kinetics model. The trends observed in this figure are opposite to

those in constant rate simulations. This comparison suggests that the effect of reduced layer

growth is overcome by the increase in reaction rate due to temperature increase in Arrhenius

simulations.
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3.2 Eddy Shocklets

Previous simulations of 2D shear flows have demonstrated the influence of compressibility

on mixing characteristics of shear flows (e.g. Givi et al. (1991); Menon and Fernando

(1990); Sekar and Mukunda (1990); Lele (1989); Sandham and Reynolds (1989); Mukunda

et al. (1992)). These simulations indicate that increased compressibility results in a reduced

growth of the layer and also results in the formation of "eddy shocklets." However, in no

previous simulations of 3D mixing layers have these eddy shocklets been observed (Menon and

Fernando, 1990; Sandhan and Reynolds, 1989). Our present results suggest that the lack of

shocklet formation in previous simulations is perhaps due to the range of low compressibility 3
levels considered. This may possibly be attributed to the numerical difficulties involved with

high convective Mach number 3D simulations. To demonstrate this, 2D and 3D simulations

are conducted with Re = 350 and with the convective Mach number in the range 0.7 < M, <

2.5. In order to meet the resolution requirements, only simulations with an initialization

appropriate for a single rollup are conducted. In 2D simulations, eddy shocklets are formed

for M0 > 0.8 consistent with previous simulations (Givi et al., 1991). In 3D, simulation

results indicate, for the first time, that eddy shocklets do indeed form. However, they are

formed at a higher convective Mach number as compared to those in a 2D flow. Here,

shocklets are observed for Mc - 1.25 and larger. As is the case for 2D, shocklets form

in the regions above and below the central region of the layer and penetrate into the free

streams on each side. To demonstrate this, shown in Fig. 14 are plots of the Mach number 3
contour obtained by 3D simulation at M. = 2.5. The contour plots correspond to the center

plane in the spanwise direction. The shocklets are marked by the regions of sharp gradients.

Examination of the contours of the streamwise component of vorticity shows strong vorticity

braids, indicating the 3D nature of the flow. Figure 15 helps to assess the compressive 3
nature of the shocklets through examination of the divergence of the velocity field. The

strong compression regions of the shocklets do not penetrate very far into the actual mixing

layer. The strongest compression occurs outside of the layer. For a detailed discussion on

the reasoning for the formation of shocklets at this region, we refer to Givi et al. (1991).

To establish whether the regions of steep gradient in these simulations do indeed constitute

a shock, the pressure, density, and temperature ratios across the region are compared with 3
the values in gas dynamics tables. These values correspond to a perfect gas with y = 1.4.

The maximum normal component of the Mach number corresponding to the flow upstream

of the region of high gradient was determined to be Ml,, s 1.33 at the location with the most

I



negative value of the velocity divergence at the center spanwise plane. From gas dynamics

tables for this Mach number, f = 1.897, a = 1.568, and A = 1.21. The pressure jump

ratio across the sharp gradient zones of Fig. 14 in the positive U,, region is 1.902. Also, the

density and temperature ratios across this region are ft = 1.582 and XT = 1.201.

It should be mentioned here that 3D simulation results show weaker shocks than those found

in 2D. A plausible explanation for this is that in 3D, the flow has another dimension along

which it can change direction in order to avoid the high pressure regions created by the

presence of vortical structures. In other words, the three dimensionality of the flow allows

a relaxation of the high compressibility regions and thus results in the formation of a less

severe shock.

3.3 Structure of the Reacting Mixing Layer

With the aid of the DNS generated data, the extent of applicability of two recently proposed

models for portraying the structure of non-premixed diffusion flames are examined. These

models are based on the "Steady Laminar Diffusion Flamelet Model (SLDFM) (Williams,

1975; Peters, 1984; Peters, 1986), and a statistical closure based on the "Conditional Moment

Method" (CMM) (Bilger, 1993). Both of these closures provide a means of predicting the

compositional structure of non-equilibrium turbulent flames in such a way as to decouple

the effects of turbulence from those of chemistry.

In the flamelet concept, a turbulent flame is assumed to be an ensemble of laminar diffusion

flamelets (Williams, 1975). At sufficiently large but finite Damk6hler numbers, the flamelets

are assumed 1D and quasi-steady (Peters, 1984; Peters, 1986). In this way, it is speculated
that the flame portrays the same structure as that of an equivalent flame in a laminar

flow configuration. Peters (1986) proposes the flame produced by a steady laminar opposed

jet (Tsuji, 1982) as a simple and effective model for the 1D laminar flow. In this way,

it is straightforward (Lifan, 1974; Spalding, 1961) to show that the evolution of a scalar

variable, say 0, is uniquely determined from the local values of the mixture fraction, J and

its dissipation, X. This implies that 0 = O,(J, x). A comparison of this relation with that

of equilibrium flames, i.e. 0' = O1(J) indicates that under non-equilibrium conditions the

dissipation rate provides the additional parameter by which the structure of the flame is to

be described. Furthermore, with the flamelet concept the effects of chemistry with (J, X)

dependence is determined from the flamelet library generated by the solution of the transport

10



equation for the iD laminar system.

A more direct means of accounting for the J dependence of the reacting variables has been

proposed by the CMM of Bilger (1993) (also see Klimenko (1990); Smith et al. (1992)). 3
This approach is based on conventional moment methods; however, the statistics are defined
"conditionally" on a given value of the mixture fraction. That is, the dependence on the 3
mixture fraction is through the ensemble average of the data but the averages are made

only at given (conditional) values of the mixture fraction (Klimenko, 1990). This implies I
< 01J >=< 0b1J > (x, t, J), where < IJ > denotes averaging conditioned on mixture frac-

tion. This procedure, in comparison with traditional moment methods, has the obvious

disadvantage of introducing the extra dimensionality of the conditioning parameter. How-

ever, Bilger (1993) suggests that in typical flames such as those in shear layers, this problem

is offset by cross-stream "independence" of statistical quantities. Also, it is proposed that in

the transport equations governing the evolution of conditional averages, the effects of con-

ditional fluctuations are negligible in contrast to those in typical Reynolds averaging. This I
means that in the evaluation of the conditionally averaged reaction rate, the approximation

< w(Ob)IJ >; w(< ObJ >) is assumed valid. i
In order to study the validity of the two models considered here, DNS results of 3D react-

ing layers are analyzed for both constant and temperature dependent chemistry models for

several values of the Damk~hler number and the heat release parameter. Table 1 provides

a listing of the chemistry parameters for the simulations conducted in this study. Due to I
computational expenses, only single rollup simulations are conducted. The Reynolds num-

ber is set at Re = 70 for all cases. Also, in order to minimize the compressibility effects all 3
simulations are performed with M. = 0.2. In order to assess the performance of the models,

it is desired to have the flow as three dimensional as possible. Therefore, simulations are 3
continued until a time at which the effects of secondary instabilities are most significant. I
3.4 Steady Laminar Diffusion Flamelet Model

The configuration of a quasi-iD opposed jet system (Spalding, 1961; Lifian, 1974) is consid-

ered in order to construct a flamelet library. This counterflow configuration has been studied I
in many previous investigations (e.g. Pandya and Weinberg (1964); Hahn et al. (1981);

Kim and Williams (1990) amongst others). With the assumption of quasi-steady, incom-

pressible ID planar flow, the mass fraction of a reacting scalar, 0 is related to the mixture

11
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5 fraction through the diffusion equation obtained by Crocco transformation (Lifian, 1974;

Williams, 1989):

IJ 2 (1)

In this configuration the dissipation is expressed as:U
x = x& exp [-2 (erfc-1(2j)) 2] (2)

where the parameter X. denotes the magnitude of the dissipation at the stagnation plane3 of the opposed jet. In order to compare the DNS to model predictions, at each grid point

a corresponding value of X. is calculated from Eq. (2). The chemistry parameters (KF andU Ce) have the same values as those employed in DNS. Therefore, at fixed Ce the flamelet

library yields k(J) curves which are functions of the non-dimensional parameter KF/X8.

This parameter is termed the local Damk6hler number. The solution of the system equation

is obtained numerically. For constant rate kinetics at large local Damk6hler numbers, this

solution was found to be in agreement with the analytical results derived by Fendell (1965)

via the method of matched asymptotic expansions. A typical DNS scatter plot of the product

mass fraction (Yp) vs. the mixture fraction is given in Fig. 16. In this figure, 1D opposed

jet predictions are represented by solid curves. The DNS results in the figure correspond to

simulation Run 1 (Table 1). This figure indicates that both DNS scatter and the flamelet3 model predictions are strong functions of the local Damk5hler number At a constant value

of the mixture fraction, an increase in KF/X. corresponds to an increase in product mass3 fraction. The agreement between the model and the DNS improves as the local Damk6hler

number is increased. Also, as the mixture fraction approaches its limiting values of 0 and2 1, the scatter tends to group together and its deviation from the model becomes minimal.

Therefore, the most restrictive testing of the model should be made at the region near the

stoichiometric surface J., where the scatter is most severe.

Figure 17 shows product mass fraction scatter plots for the data of Run 1 and Run 2. A

I comparison between the two parts of this figure indicates that the effect of increasing the

Damk6hler number is to have the scatter closer to the equilibrium curve. Figure 18 presents3 product mass fraction at the stoichiometric surface Yp(J = J.) vs. KF/X, for the data of

Fig. 17. In addition to clarity, this representation has the advantage that the model curves
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of parts (a) and (b) are identical. This figure illustrates the strong dissipation (or KF)

dependence of the flame. As expected, the deviation from the DNS data is less for the

higher Damk6hler number flame (Run 2).

The results pertaining to stoichiometric coefficient of r = 3 (Run 3) are presented in Fig.

19. This figure indicates that the effect of increasing r is to skew the scatter towards the

stoichiometric surface J. = 1/4. This kinetics mechanism represents a better approximation

to bydrocarbon flames which are typically characterized by low values of J.. The migration of

the scatter near the stoichiometric surface suggests that the performance of SLDFM improves

as the magnitude of r is increased.

The stoichiometric product mass fraction scatter plot is compared with SLDFM predictions

in Fig. 20 for Run 4 corresponding to a heat releasing flame. A comparison of this figure

with Fig. 18(b) indicates that the model's performance is improved over all ranges of the

local Damk6hler number. This improvement is due to the influence of thermal expansion,

even though a constant density flamelet library model is used for comparison. The effect

of expansion is to smooth the steep gradients of the scalar field. This smoothing effect is

illustrated in Fig. 21 by means of the PDF's of the scalar dissipation for Run 2 and Run 4. Of

particular note in this figure is the "double hump" feature of the PDF's. Flow visualization

shows that these two humps at low and high dissipation rates correspond roughly to the

data sampled at the roller core and braids, respectively. The PDF's for Run 4 are shifted

towards lower values of the dissipation rate, consistent with earlier findings of McMurtry et 3
al. (1989). This shifting results in larger values of the local Damk6hler number and, as noted

earlier, improves the validity of the SLDFM. The results for simulations with an Arrhenius i

kinetics model (Run 5) portray a similar behavior. I
3.5 Conditional Moment Method

Simulation results with the chemistry parameters listed in Table I are also used to examine

the modeling assumptions imposed for implementing the CMM for statistical description of U
the compositional flame structure. The first assessment of the model is associated with the

influence of the conditional correlation of a scalar on the conditionally averaged reaction 1
rate. In order to examine this effect, in Fig. 22(a) results are presented for both < W()IJ >
and w(< O&J >) in the composition domain. The data correspond to the simulations in 3
Run 1. The figure suggests that the approximation is reasonably justified. This comparison
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3 should be compared with that corresponding to the case in which the averages are defined

unconditionally. For this simulation, the comparison between traditional averages < w(k) >

and w(< i >) is presented in Fig. 22(b). This figure indicates that the two averages differ

substantially. Therefore, the approximation < w(O) >= w(< tk >) cannot be justified. For

temperature dependent kinetics, the reaction rate is also dependent on the conditionally

averaged temperature, i.e. < TIJ,>. The assessment of the CMM approximation for the

data of Run 5 is made in Fig. 23. Similar to that of Fig. 22(a), the agreement is good.

Independence of the conditionally averaged values from the cross-stream direction is impor-

tant from the viewpoint of practicality of CMM (Bilger, 1993). This is tested in Fig. 24

for Run 1, and in Fig. 25 for Run 5. In both cases, the conditionally averaged mass frac-

tions of species A and product are presented vs. the mixture fraction. For the temperature

dependent kinetics, the conditionally averaged temperature is also presented in Fig. 25(c).

The results for the conditionally averaged species mass fractions show small deviations near

I the stoichiometric surface. The y independence appears to be approximately valid for these

average quantities. The extent of independence is less for the higher order mot. nts. In3 Fig. 26, the conditional variances of the mass fraction of species A vs. y are presented for

Run 1 and Run 5. It is clear from this figure that higher order moments have a strong y

I dependence.

In regard to applicability of CMM, two final points are addressed: (1) Its implementation

for describing flames far from equilibrium conditions, and (2) its practical applications for

making actual predictions. In regard to (1), an important consideration is for describing3 the compositional structure of flames near ignition or extinction. In these cases, in addi-

tion to mixture fraction another progress variable must be used in defining the conditional

Saverages. None of the flames considered in the simulations here display extinction. There-

fore, conditioning on the mixture fraction alone is sufficient for constructing averages. For

ft flames with severe departure from equilibrium, the use of the model may not be practical

since the analysis requires the modeling of higher order conditional moments. Since these

moments do not seem to be independent of cross-stream direction, the extra dimensionality

in the problem formulation makes the analysis somewhat difficult from a practical stand-

point. In regard to (2), the actual implementation of the CMM for cases which temperature

dependence is not significant, the most important extra closure is the expected value of the

dissipation of the mixture fraction conditioned on the value of the mixture fraction (Bilger,

1993). In a recent article, Miller et al. (1993) provide several suggestions for modeling of

14
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this conditional dissipation. The use of this closure in a transport equation which governs 3
the conditional mean value of the reacting species mass fractions is very effective in assessing

the mean compositional structure. 3

4 Conclusions

A monotone Flux Corrected Transport algorithm is employed for direct numerical simula-

tions of a 3D temporally developing forced mixing layer. The objective of this study is to

examine the following specific issues pertaining to the structure of turbulent mixing layers

and flames: (1) the effects of transition on mixing characteristics of the layer, (2) the exis-

tence and manifestation of eddy shocklets in 3D, (3) validity assessment of the steady laminar 3
diffusion flamelet model in depicting the compositional structure of turbulent flames, and

(4) evaluation of the basic assumptions of the approach based on the conditional moment I
method for statistical description of turbulent flames.

Simulation of moderately high Reynolds number flow allows capturing of the cause and effects I
of transition on the mixing process. Single point PDF's of the mixture fraction, extracted

from DNS data, reveal features in accord with laboratory data. In addition to reproducing 3
many of the qualitative and quantitative results observed in previous experiments, new

insights are gained as to the nature of the transition process. It is shown that during the 3
transition, both pure unmixed fluids and fully mixed fluids are found with high probability

throughout the entire layer. The effect of chemical heat release is to delay the onset of 3
pairing and the subsequent transition. In constant rate kinetics, reduced mixing results in

decreased product formation. However, in an Arrhenius reaction case, chemical heat release

causes higher local reaction rates which overcome mixing reduction and results in a relative

increase in product formation. I
At sufficiently high convective Mach numbers, (larger than ;, 1.25) eddy shocklets are found

in 3D mixing layers. Comparison of the shocklets observed in 3D simulations with those 3
in 2D at the same Reynolds and convective Mach numbers indicates that the shocklets are

stronger in the 2D case. 3
DNS results for different Damk6hler numbers, stoichiometric coefficients, and heat release

parameters are compared with predictions based on a 1D steady laminar opposed jet flame. 3
For all the flames considered, it is concluded that the performance of the flamelet model

A I
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improves as the magnitude of either the local or the global Damk~hler number is increased.

This is understandable considering the flamelet concept is deemed valid at high but finite

reaction rates. Also, as the value of r is increased the agreement between the DNS data and

the model is improved. This is promising in view of the fact that the flame surface in typical

hydrocarbon flames is at low values of the stoichiometric mixture fraction. The results for

both constant and Arrhenius rate reactions with heat release show an improved agreement

with the model in comparison to those of a non-heat releasing layer. This is attributed to

thermal expansion, reducing the instantaneous scalar dissipation rate and thus increasing

the magnitudes of the local Damk6hler numbers.

DNS generated results for reacting mixing layers are also used to examine the basic assump-

tions of the conditional moment method. It is shown that the neglect of the conditional

unmixedness term is acceptable. Also, the cross-stream variations of the first conditional

moments (that is, the conditional averages) of the reacting variables can be assumed negligi-

ble. However, higher conditional moments of these variables show cross-stream dependence.

This may be problematic in mathematical modeling of these higher moments.I

I Nomenclature

I A. Chemical species A.

I B. Chemical species B.

Ci. Concentration of species i

£ Cp. Specific heat of the mixture at constant pressure.

Cv. Specific heat of the mixture at constant volume.

5 E. Activation energy for the Arrhenius chemical reaction.

J. The mixture fraction.

J. = _ ,. Stoichiometric value of mixture fraction.

3 KF. Pre-exponential factor of the reaction rate.

(L., L1, L,). The size of the computational domain.

*M = . The convective Mach number.

BMWi. Molecular weight of species i.
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P. Chemical product.

P. Probability.

PDF. Single-Point Probability Density Function. 3
Pr. The Prandtl number.

q2/2. Turbulence kinetic energy. I
R. Universal gas constant. II
r. Stoichiometric coefficient.

Sc. The Schmidt number. 3
T. Temperature.

U. Streamwise velocity.

X, y, z Streamwise, cross-stream and spanwise directions. I
Yi. Mass fraction of species i.

< >. Ensemble average.

< IJ >. Ensemble average conditioned on the mixture fraction.

-AH*. Enthalpy of combustion. I

Greek Symbols and Subscripts I
p. Molecular viscosity. I
-y. The ratio of the specific heats. = Cp/Cv.

r. Species diffusivity.

p. Density. 3
a2. Conditional variance.

w. Reaction rate. 3
w#. Appropriate reaction rate for the scalar variable 1k.

X. The scalar dissipation. N
X.- Magnitude of the scalar dissipation at the stagnation plane of the counterflow diffusion
flame.
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3 eo. Free stream.

I Normalized parameters

3 Ce = Heat release parameter.

Da = . The Damk6hler number. With this definition, p. Da/MW is a non-dimensionalized
parameter.

Re = p'ut0o The Reynolds Number.
I~ t t. u..

Ls°

I Ze = - . The Zeldovich number.

m 6pit. = f+: pYp dz dy dz. Total instantaneous product.

-bp = 6pjt./ 6 pjt.fo - 1. Normalized total product.

--- ,It = . Vorticity thickness.

_ '& = &Is,/&1o. Normalized vorticity thickness.

6.1o = 6.1.---o.
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Figure Captions

Figure 1. Schematic diagram of temporally developing mixing layer. 3
Figure 2. Pairing vortical structures as depicted by the plots of vorticity magnitude contours

at t" = 1.2. 3
Figure 3. Plot of the mixture fraction contours. The isolevel of J = 0.5, corresponding to

flame sheet is cross hatched. (a) a spanwise plane, (b) a streamwise plane. I
Figure 4. Post-transitional flow field as depicted by the plot of vorticity contours at V = 2.0.

Figure 5. Plot of streamwise mixture fraction contours in the braid plane at t" = 1.2.

Figure 6. Probability density functions of mixture fraction vs. y*. (a) t" = 0.5, (b) t" = 0.95,

(c) t* = 1.85.

Figure 7. Probability of finding pure species within the mixing layer. (a) t* = 0.5, (b)

t" = 0.95, (c) t" = 1.85. 3
Figure 8. Temporal evolution of the product thickness, the vorticity thickness and their

ratio.

Figure 9. Probability of finding pure mixed fluid within the mixing layer.

Figure 10. Cross-stream variation of turbulence intensities: (a) streamwise velocity rms, (b)

mixture fraction rms. 3
Figure 11. Temporal variation of the vorticity thickness.

Figure 12. Cross-stream variation of turbulence kinetic energy.

Figure 13. Temporal variation of product thickness for several values of the heat release

parameter. (a) constant rate kinetics, (b) Arrhenius rate kinetics.

Figure 14. Plot of Mach number contours, M,- = 2.5. U
Figure 15. Plot of velocity divergence contours, M, = 2.5. 3
Figure 16. Local Damk~hler (KFIX.) dependence of both DNS (Run 1) and SLDFM data.

Figure 17. Scatter plot of product mass fraction obtained from DNS. (a) Run 1, (b) Run 2.
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t Figure 18. Stoichiometric product mass fraction vs. the local Damk6hler number. (a) Run

1, (b) Run 2. The solid line indicates SLDFM prediction.

I Figure 19. Scatter plot of product mass fraction obtained from DNS for Run 3.

Figure 20. Stoichiometric product mass fraction vs. the local Damk~hler number for Run 4.
The solid line indicates SLDFM prediction.

I Figure 21. Probability density functions for scalar dissipation.

Figure 22. (a) Conditionally averaged reaction rates for data of Run 1. (b) Reynolds-

I averaged reaction rates for data of Run 1.

Figure 23. Conditionally averaged reaction rates for data of Run 5.

Figure 24. Cross-stream variation of conditional averages for data of Run 1. (a) reactant

I mass fraction, (b) product mass fraction.

Figure 25. Cross-stream variation of conditional averages for data of Run 5. (a) reactant

I mass fraction, (b) product mass fraction, (c) temperature.

Figure 26. Cross-stream variation of reactant mass fraction variance. (a) Run 1, (b) Run 5.

II
I
I
I
I

I
24



I

I
I

I
I
I

S~I

Run r Da Ce Kinetic model
1 1 1 0 constant rate
2 1 5 0 constant rate I
3 3 1 0 constant rate
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SUPPRESSION AND ENHANCEMENT OF MIXING IN I
HIGH-SPEED REACTING FLOW FIELDS

J. Philip Drummond I
NASA Langley Research Center

Hampton, Virginia 23681

Peyman Givi.

State University of New York I
Buffalo, New York 14260

ABSTRACT I

Work is underway at the NASA Langley Research Center to de- 3
velop a hydrogen-fueled supersonic combustion ramjet, or scramjet,
that is capable of propelling a vehicle at hypersonic speeds in the
atmosphere. Recent research has been directed toward the optimiza- I
tion of the scramjet combustor and, in particular, the efficiency of
fuel-air mixing and reaction taking place in the engine. With in-
creasing Mach number, the degree of fuel-air mixing through natu- 3
ral convective and diffusive processes is significantly reduced leading
to an overall decrease in combustion efficiency and thrust. Even
though the combustor flow field is quite complex, it can be viewed I
as a collection of spatially developing and reacting supersonic mix-
ing layers or jets from fuel injectors mixing with air, one of which
serves as an excellent physical model for the overall flow field. This I
work is focused on understanding the mechanisms of mixing (or lack
thereof) and on the development of techniques for its enhancement
in compressible turbulent reacting flows. Results generated by direct 3
numerical simulations (DNS) are first used to demonstrate the mech-
anisms for reduced mixing in shear layers. To counter the effects of
suppressed mixing, several mixing enhancement techniques are then I
discussed. The most successful approaches involve longitudinal vor-
ticity induced into the flow field. Several means for inducing vorticity
are studied and assessed. 5

'The work at SUNY-Buffalo is sponsored by NASA Langley Research Cen-
ter under Grant NAG-11122, and by the Office of Naval Research under Grant
N00014-90-J-4013. 5
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£ 1. Introduction

Research has been underway for a number of years, both in the
United States and abroad, to develop advanced aerospace propul-I sion systems for use late in this century and beyond. One program
is now underway at the NASA Langley Research Center to develop a
hydrogen-fueled supersonic combustion ramjet (scramjet) that is ca-
pable of propelling a vehicle at hypersonic speeds in the atmosphere.
A part of that research has been directed toward the optimization of
the scramjet combustor and, in particular, the efficiency of fuel-air
mixing and reaction taking place in the engine. In the very high-
speed vehicle configurations currently being considered, achieving a
high combustor efficiency becomes particularly difficult. With in-
creasing combustor Mach number, the degree of fuel-air mixing that
can be achieved through natural convective and diffusive processes is
reduced leading to an overall decrease in combustion efficiency and
thrust.

Because of these difficulties, attention has now turned to the de-
velopment of techniques for enhancing the rate of fuel-air mixing in
the combustor. In an early study of high-speed mixing, Brown and
Roshko (1974) show that the spreading rate of a supersonic mixing
layer decreases with increasing Mach number, exhibiting a factor of
three decrease in spread rate as compared with an incompressible
mixing layer with the same density ratio. They conclude that the re-
duced spread rate is primarily due to compressibility. Papamoschou
and Roshko (1986) and Papamoschou and Roshko (1988) also ob-
serve that the spreading rate of compressible mixing layers is signifi-
cantiy reduced over that of incompressible layers. To characterize the
structure of the flow quantitatively, they define a convective Mach
number (Bogdanoff, 1983). The reduction in mixing layer spreading
rate (by approximately a factor of three or four) is shown in these
experiments to correlate well with increasing convective Mach num-
ber. The results of linear stability analyses (Ragab and Wu, 1988;
Ragab and Wu, 1989; Jackson and Grosch, 1989) also show that the
decreased spreading rate of the mixing layer correlates well with the
convective Mach number.

Faced with this challenge, several techniques have been developed
for enhancing the mixing rates in supersonic mixing layers and jets.
Guirguis et al. (1987) show that the spreading rate of a confined

* mixing layer can be improved if the pressure of the two streams
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is different. Encouraged by this result, Guirguis (1988) employed I
a bluff body at the base of the splitter plate separating the two
streams. It is shown that the body produces an instability further
upstream in the layer and results in a more rapid rate of spread. I
Kumar et al. (1989) discuss a number of mixing problems that may
exist in scramjet combustors. Several techniques for enhancing tur-
bulence and mixing in combustor flow fields are suggested, and one I
enhancement technique that employs an oscillating shock is studied
numerically. Drummond and Mukunda (1988) have studied fuel-air
mixing and reaction in a supersonic mixing layer and have applied I
several techniques for enhancing mixing and combustion in the layer.
They show that when the mixing layer, with its large gradients in
velocity and species, is processed through a shock with strong cur- U
vature, vorticity is produced. The vorticity then interacts with the
layer and results in a significant increase of the degree of mixing and
reaction. Drummond et al. (1989) and Drummond et al. (1991)
continued this investigation further by studying fuel-air mixing in a
supersonic combustor. They describe a technique using swept-wedge
fuel injectors (Northam et al., 1989) to enhance the mixing processes I
and overall combustion efficiency in the flow. The swept-wedge in-
jectors introduce streamwise vorticity in the inlet air passing over
them, and that air then entrains fuel being injected from the base I
of the strut. Fuel-air mixing efficiency is shown to be significantly
improved by the fuel-jet-air interaction. Marble et al. (1987) and
Marble et al. (1990) employ a planar oblique shock to enhance the I
mixing between a co-flowing circular helium or hydrogen jet and air.
They show that when the jet is processed by the oblique shock, a
strong vorticity component is induced at the interface between the I
low density jet and the relatively high density airstream by the pres-
sure gradient of the shock. Vorticity is generated when the density
and pressure gradients are not aligned. The induced vorticity in the 3
fuel jet provides a significant degree of mixing enhancement.

With the brief literature survey presented above, our hope in this
article is to describe several numerical experiments on fuel-air mixing 3
and reaction in mixing layers and jets. The initial studies involve sim-
ulations of mixing layers conducted to improve the understanding of
mechanisms contributing to reduced mixing at high Mach numbers.
The latter simulations involve studies of configurations designed to
improve the degree of mixing and reaction in such flows. I
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1 2. Theory

The flow field considered in this study is described by the two-
dimensional (2D) or three-dimensional (3D) Navier-Stokes, energy,
and species continuity equations governing multiple species fluid un-
dergoing chemical reaction (Drummond, 1988; Carpenter, 1989; Drum-
mond, 1991). The finite-rate chemical reaction of gaseous hydrogen
and air is modeled with either a three-species, one-reaction model or
a seven-species, seven-reaction model. The coefficients governing the
diffusion of momentum, energy, and mass are determined from mod-
els based on kinetic theory (Drummond, 1988). Sutherland's law
is employed to compute the individual species viscosity; the mix-3ture viscosity is evaluated by the Wilke's law. An alternate form
of Sutherland's law is also used to compute the individual species
thermal conductivity. The mixture thermal conductivity is then de-
termined by the Wassilewa's formula. The Chapman and Cowling
law is used to determine the binary diffusion coefficients which de-
scribe the diffusion of each species into the remaining species. Know-5ing the diffusion coefficients, the diffusion velocities of each species
are determined by solving the multicomponent diffusion equation
(Drummond, 1988). Alternately, in some simulations the calculation3 of diffusion velocities is simplified by assuming only binary diffusion
and applying Fick's law.

Once the thermodynamic properties, chemical production rates,
and diffusion coefficients have been computed, the governing equa-
tions are solved with the 2D or 3D SPARK computer code using Car-
penter's convective fourth-order symmetric predictor-corrector com-
pact algorithm (Carpenter, 1989). The algorithm is constructed on
a compact three by three stencil which provides high-order accuracy
while allowing boundary conditions to be specified to fourth-order
accuracy in a straightforward manner. Details of the algorithm are
given by Carpenter (1989).

* 3. Results

With the development of the theory and the solution procedure
described above, several temporally developing mixing layer flows
are studied to explore the phenomenon of reduced mixing with in-
creasing Mach number. These results are summarized in the next
subsection. Following these studies, two strategies for enhancing the
mixing in high Mach number flow fields are examined to determine
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their effectiveness for enhancing fuel-air mixing. These strategies are I
discussed in sections 3.2 and 3.3.

3.1. Temporally developing mixing layers

The results obtained by direct numerical simulations (DNS) have
been very useful in portraying the problem of mixing in high-speed
turbulent combustion. A reasonably updated review of the state of
progress on DNS of shear flows is provided in the proceedings of the
first ICASE Combustion Workshop (Givi and Riley, 1992). Since
then, DNS have been widely utilized for the analysis of high-speed
flows in both temporally developing and spatially developing mixing
layers (Soetrisno et al., 1988; Lele, 1989; Sandham and Reynolds, I
1989; Sekar and Mukunda, 1990; Givi et al., 1991; Grinstein and
Kailasanath, 1991; Steinberger, 1992; Mukunda et al., 1992; Planche
and Reynolds, 1992; Steinberger et al., 1993). To demonstrate the I
problems discussed above, it is useful to consider some of the results
of these simulations. Here we discuss the results by Givi et al. (1991)
and Steinberger (1992) of a temporally developing reacting mixing I
layer since these results contain all the information pertinent to this
article.

The configuration of a temporally developing mixing layer is
shown in Fig. 1. In this configuration the flow on the top stream
is toward the right. The stream on the bottom side of the layer flows
to the left with the same speed as that on the top stream. The justifi- I
cations for temporal simulations are provided in several previous con-
tributions (see Oran and Boris (1987) and Givi (1989) for reviews).
The reacting species are introduced into the layer at the free streams. I
The chemical reaction occurring within the flow is idealized to a sim-
ple irreversible second-order form of A + B - Products + Heat.
Reactant A is introduced on the top stream and reactant B on the I
bottom stream. Calculations are performed with different values of
the convective Mach number (M,) and the heat release parameter
(Ce) to assess the influence of these parameters on the structure of I
the layer (see Givi et al. (1991) for a definition of the non-dimensional
parameters). In this assessment all of the other non-dimensional pa-
rameters are kept constant to isolate the effects of compressibility I
and exothermicity.

The influences of compressibility are captured by examining the
effects of the convective Mach number on the rate of chemical product I

I
I
1
I



U

I formation. Figure 2 presents the plot of the product mass fraction
contours for different values of the convective Mach numbers (keep-
ing heat release rate at Ce = 0). This figure shows a reverse relation
between the magnitude of the convective Mach number and the ex-
tent of large scale mixing and chemical product formation. As M,
increases it takes longer for background perturbations to grow, and
the layer becomes more sluggish in responding to such perturbations.
The trend is enhanced as the Mach number is increased; and at the
largest Mach number considered, the rate of the layer's growth and
the amount of products formed are the smallest.

The response of the shear layer to increased compressibility is
further appraised by examining the statistical and the integral prop-
erties of the flow. In Figs. 3 and 4, the cross stream variations of
the mean and the mean square of the streamwise velocity are shown.
The most significant feature displayed in Fig. 3 is the steepness of
the mean velocity profiles at high Mach numbers. In view of the con-
tour plots of the product mass fraction, this is to be expected, and
the increase in the velocity steepness (caused by the reduced growth
rate) implies a reduced rate of mixing and, thus, decreased product
formations. This trend can also be described by examining Fig. 4.
Note the double hump characteristics of the mean square velocity
profile at low Mach numbers. Also note that as the magnitude of the
convective Mach number is increased, the amplitude of the fluctua-
tions decreases, and this amplitude becomes very small at M, = 0 S
and M, = 1.2.

Another interesting characteristic of the increased compressibil-
ity is captured by examining the plots of pressure contours at high
convective Mach numbers as shown in Fig. 5. The pressure response
in Fig. 5 shows the regions of pressure maxima and minima at the
braids and the cores of the vortices. At higher convective Mach
numbers it is obsb..ved that the increased compressibility results in
steepness of the gradients of instantaneous pressure and the forma-

tion of "eddy shocklets." These shocklets are init;ated at the shear
zone of the layer and extend to the outer region of the flow near
the boundaries. A rationale for the formation of these shocklets is
provided by noting the increased compressibility within the domain
at high convective Mach numbers. In these cases, the layer is dom-
inated by regions of supersonic and subsonic flows; and in order for
the flow to adapt to high pressures at the braids, it must go through
a shocklet to make the proper adjustment. Also, it is noted that the
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currents do not necessarily have to be supersonic at the free streams, I
and compression occurs within the flow as a result of the formation
of large scale structures. This point is demonstrated by examining
the contour plots of the instantaneous Mach numbers in Fig. 6. It
is shown in this figure that for the case of M, = 0.8 the flow at the
interior is characterized by localized regions of supersonic (Ma > 1)
and subsonic (Ma < 1) flows. The adjustment from supersonic to
subsonic conditions is provided by the formation of eddy shocklets.
The strength of these shocklets becomes stronger as the convective
Mach number is increased (i.e., as the effects of compressibility be-
come more pronounced).

The results of the simulations presented here are consistent with
those of experimental measurements of Elliott and Samimy (1990)
in that as the compressibility increases, the magnitudes of turbu-
lence fluctuations decrease. The results are also in agreement with
laboratory data of Hall (1991) in that mixing is reduced at higher
compressibility. However, the conclusions drawn here are not in ac-
cord with those of Dutton et al. (1990), Clemens et al. (1991),
and Clemens (1991) who suggest higher mixing at elevated com- I
pressibility levels. This issue is the subject of current investiga-
tions. Also, it has been suggested (Menon and Fernando, 1990;
Sandham and Reynolds, 1989) that eddy shocklets form only in 2D I
simulations. However, the results of recent simulations by Lee et al.
(1991) and Miller et al. (1993) indicate that such shocklets do indeed
occur in 3D, both in isotropic and in shear flows. I

The influence of the heat release on the structure of the react-
ing layer is assessed by examining the amount of normalized total
product mass fraction shown in Fig. 7. In these simulations two I
chemistry models are considered; a constant rate kinetics model and
an Arrhenius prototype. Figure 7 shows that at the initial stages of
the layer development, the effect of heat release is a somewhat en-
hanced product formation, whereas at intermediate and final stages a
reverse scenario holds. At early stages. "rect of heat release is to
expand the fluid at the cores of the layf -efore, a mixing zone is U
expected and, thus, a higher amount of p, tuuct is formed. However,
as the extent of heat release increases and the layer thickens, the rate
of growth of the instability modes becomes subdued, postponing the I
rate of formation of large scale vortices. After the initial stages, the
non-hat releasing simulations predict a sharp increase in the prod-
uct formation; and as the magnitude of the heat release is increased, I
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3 the time at which such structures are formed is delayed. Tho lowest
rate of product formation is for Ce = 6 simulations in which the
only mechanism of mixing is through diffusion. This reduction in
product formation is also evidenced by a comparison between the
contour plots of the product mass fraction with heat release (Fig. 8)
and those without heat release (Fig. 2(a)). Further influences of heat
release become evident by examining its effect on statistical quanti-
ties. In Fig. 9 the normalized profiles of mean streamwise velocity
component are presented. This figure shows that heat liberation re-
sults in a steeper gradient of the velocity and, therefore, less mixing.
This has a substantial influence on the two-dimensional turbulence
transport, as indicated by the cross stream variations of the mean
square velocity presented in Fig. 10. It is shown in this figure that as
exothermicity becomes dominant, the amplitude of the fluctuation
decreases. For the most significant heat release cases (Ce = 6 and
the Arrhenius model), the amplitude of the mean square velocity is
very close to zero, indicating virtually no turbulence fluctuations.

The conclusion drawn here in regard to mixing reduction caused
by exothermicity is consistent with those of laboratory experiments
(Hermanson and Dimotakis, 1989), inviscid linear stability analyses
(Jackson and Grosch, 1990; Jackson, 1992) and previous DNS results
based on low Mach number approximations (McMurtry et al., 1989).
However, it has recently been suggested by Steinberger et al. (1993)
and Miller et al. (1993) that in flames where chemistry is described
by an Arrhenius kinetics model, the effect of heat release is to in-
crease the rate of product formation. This is due to the increase in
the magnitude of the temperature due to heat release which is not
considered in the experiments. Based on this observation, it is rec-
ommended to further assess the effects of exothermicity by means
of laboratory measurements. These measurements must involve a
reacting system whereby the rate of reaction conversion is tempera-
ture dependent and in which the large scale mixing intensity is not3 significantly affected by the heat release.

3.2. Mixing enhancement using swept wedges

3 A number of approaches have been suggested for enhancing the
mixing of high-speed fuel-air flows. Several of these approaches are
discussed in the Introduction. A particularly attractive option has
been suggested by Northam et al. (1989) in their experimental study
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of wall-mounted parallel injector ramps used to enhance the relatively
slow mixing of fuel and air normally associated with parallel fuel in-
jection. Parallel injection may be useful at high speeds to extract I
energy from hydrogen that has been used to cool the engine and the
airframe of a hypersonic cruise vehicle. The ramp injector configu-
rations are intended to induce vortical flow and local recirculation 5
regions similar to the rearward-facing step that has been used for
flame holding in reacting supersonic flow.

It is instructive to study some aspects of these experiments here. 3
Two ramp configurations are considered in the experiment of Northam
et al. (1989) as shown in Fig. 11. In both configurations, hydrogen
gas is injected at Mach 1.7 from conical nozzles in the base of the
two ramps which are inclined at 10.3 degrees to the combustor wall.
The injector diameters are 0.762 cm. The sidewalls of the unswept
ramps are aligned with Mach 2 streamwise airflow from a combus-
tion facility, whereas the swept ramps are swept at an angle of 80
degrees. Each ramp is 7 cm long and ends in a nearly square base,
1.52 cm on a side. Both ramp designs are chosen to induce vortic-
ity to enhance mixing and base flow recirculation to provide flame
holding. The swept ramp injector, because of its delta shape, is
intended to induce higher levels of vorticity and, therefore, higher
levels of mixing. Hydrogen injection occurs at a streamwise velocity U
of 1, 747 m/s, a transverse velocity of 308 m/s, and a static tempera-
ture and pressure of 187 K and 325,200 Pa, respectively. The facility
air crosses the leading edge of the wedges at a streamwise velocity
of 1,300 m/s, a static temperature of 1,023 K, and a static pres-
sure of 102,000 Pa. The air is vitiated following heating by a burner
with oxygen, nitrogen, and water mass fractions of 0.2551, 0.5533,
and 0.1818, respectively. The overall fuel-air equivalence ratio is
0.6. Both the unswept and swept parallel injector ramps are studied
computationally. Only fuel-air mixing is considered. The facility test I
section surrounding the ramps and considered in the computation is
13.97 cm long and 3.86 cm high. Symmetry planes are chosen to
pass transversely through each fuel injector to define the spanwise
computational boundaries.

Results from the computational study for both the unswept and
swept injector ramps are shown in Figs. 12-17. Figures 12 and 13
show the cross-stream velocity vectors for the unswept and swept
cases at two downstream planes (x = 6.6 and 13.2 cm) oriented per-
pendicular to the test section walls. Part (a) of the figures displays
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I the unswept ramp results and part (b) shows the swept ramp results.
The planar cut extends from the lower to the upper wall of the test
section, and it slices through the center of the right fuel jet. The left
boundary is located halfway between the two ramps. At the x = 6.6
cm station, which lies just ahead of the end of the ramps, a stream-
wise vortex has formed at the edge of each ramp. The vortex formed
by the swept ramp is considerably larger, however, and it persists
well into the flow above the ramp and to the ramp centerline. At the
x = 13.2 cm station, located 6.2 cm beyond the end of the ramps,
the swept ramp vortex has significantly grown and has moved well
toward the jet centerline. The swept ramp vortex has now inter-
acted with the hydrogen fuel jet, enhancing its penetration into the
airstream. There is pronounced fuel-air mixing enhancement as the
vortex spreads across the test section, convecting hydrogen fuel into
the airstream. Some enhancement is also provided by the unswept
ramp, but it is not nearly as pronounced as that provided by the
swept ramp.

The transport of hydrogen fuel into the airstream can be observed
Io more clearly by studying the location of hydrogen mass fraction con-

tours in several test section cross planes, plotted with increasing
streamwise distance. Figures 14-17 show the hydrogen mass fractionU contours at four successive downstream planes (x = 7.3, 9.6, 11.3,
and 13.2 cm), again oriented perpendicular to the test section walls.
As before, part (a) of the figures displays the unswept ramp results,

m and part (b) displays the swept ramp results. The results in Fig. 14
occur 0.3 cm downstream of the end of the ramp. With the swept
ramp, the larger streamwise vortex has already begun to sweep the

-- hydrogen fuel across into the airstream and away from the lower wall.
The smaller streamwise vortex of the unswept ramp also begins to
transport hydrogen away from the jet, but not nearly as much asU does the swept ramp. As a result, more hydrogen is transported to-
ward the lower wall boundary layer in the unswept case. The same
trends continue at the x = 9.6 cm station as shown in Fig. 15. At
x = 11.3 cm, as shown in Fig. 16, the swept ramp enhancer has
lifted the fuel jet almost completely off the lower wall. Significant
amounts of hydrogen have also been carried across the test section.5 On the other hand, the unswept ramp enhancer still allows a large
amount of hydrogen to be transported along the lower wall, and the
spanwise transport is not nearly as great. At x = 13.2 cm, the fi-
nal streamwise station shown in Fig. 17, the spanwise spread of the
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fuel jet enhanced by the swept ramp is 46 percent greater than the 3
spanwise spread due to the unswept ramp. In addition, the swept
enhancer has resulted in the fuel jet being transported completely
off the lower wall. Finally, an eddy of hydrogen has broken com- I
pletely away from the primary hydrogen jet, increasing the fuel-air
interfacial area even further. Clearly then, the swept ramp enhancer
significantly increases the overall spread and mixing of the hydrogen I
fuel jets.

3.3. Mixing enhancement using shocks I
Following the analysis of swept wedge injectors, a study of the

parallel fuel jet configuration described in the introduction is con-
ducted. As noted before, fuel injected parallel to inlet air entering
a combustor is normally assumed to mix relatively slowly with that
air. Therefore, to employ parallel injection, it is quite important to 1
enhance mixing of parallel fuel jets and air to the greatest extent
possible.

The configuration used for the study of enhanced mixing of paral-
lel fuel jets and air is shown in Fig. 18. It consists of a parallelepiped
6 cm long with a square cross-section 2 cm on a side. A circular
hydrogen jet with a 2 mm diameter is injected into the domain from
the left face. The hydrogen gas is introduced with a streamwise ex-
ponential velocity profile with a peak centerline value of 2,883 m/s,
a temperature of 1,000 K, and a pressure of 101,325 Pa (I atm.),
resulting in a peak hydrogen Mach number of 1.2. Air, co-flowing
with the hydrogen, is also introduced from the left face at a velocity
of 1, 270 m/s, a temperature of 1, 000 K, and a pressure of 101,325
Pa, resulting in an air Mach number of 2. An oblique shock is in-
troduced across the flow from the lower wall, by a 10 degree wedge
also shown in Fig. 18. In the computations, the shock is produced by
specifying the appropriate jump conditions for a 10 degree turning
angle along the lower boundary where the shock enters the domain.

To establish a baseline for mixing and chemical reaction, calcula-
tions are first carried out without the shock. These calculations are I
conducted for 4 ms in time until a pseudo-steady state is reached
following 85 computational sweeps of the flow field. Results for
this computation are presented in Figs. 19-22. Figure 19 shows the I
streamwise development of the hydrogen jet along its centerline in the
x - z plane. Values of the hydrogen mass fraction, shown as contours 3
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in the figure, are defined in the legend. The hydrogen jet develops
very slowly with only a small degree of mixing. The cross- stream
hydrogen mass fraction distribution at the 6 cm station is shown in
Fig. 20. It is also clear from this figure that very little mixing of the
hydrogen and air has occurred at the end of the domain, with peak
values of hydrogen mass fraction as high as 0.56 still persisting in
the flow. Figures 21 and 22 show the water mass fraction resulting
from chemical reaction in the x - z and y - z planes, respectively.
Due to poor fuel-air mixing, reaction occurs only on the edge of the
hydrogen jet, and peak values of water mass fraction of only 0.008
are achieved in the outflow cross-plane at x = 6 cm. Combustion
efficiency for this case rises to only 0.4 percent at the 6 cm station.
Combustion efficiency is defined as the ratio of hydrogen in water
to the total hydrogen, integrated over each cross-plane. Therefore,
credit in efficiency is taken only for exothermically produced final
product water, and not for the remaining product species.

To enhance the degree of mixing and combustion of the hydrogen
jet and air, the flow is then processed through the 10 degree shock. It
was earlier noted that the shock causes the hydrogen jet to split into
a vortex pair and spread quickly downstream. The vortices convect
hydrogen away from the jet centerline in a spanwise and transverse
direction, entraining and mixing the hydrogen with the surrounding
airstream. Reacting results for the shocked jet are given in Figs.
23-29. Figure 23 shows the streamwise development of the hydrogen
jet along its centerline in the x - z plane. The jet passes through the
shock at x = 1.1 cm and flows downstream at an angle of 10 degrees
to the original horizontal path. Due to jet mixing and initial chem-
ical reaction, no hydrogen mass fraction contour greater than 0.09
exists beyond the 2 cm station. The water mass fraction distribution
resulting from reaction is shown in Fig. 24. Water production begins
a short distance downstream of the shock. Peak water production at
each station occurs downstream along the stoichiometric line roughly
located 75 percent across the water profile. This location is coinci-
dent with the lower hydrogen concentration lying between and above
the stable hydrogen vortex pair. However, water production is still
significant above and below this line as indicated in Fig. 24. The
streamwise temperature distribution in the x - z plane is given in
Fig. 25. Consistent with the previous results, maximum tempera-
tures occur along the stoichiometric line, with a peak temperature
of 2,105 K at and beyond 4.8 cm.



I

The vorticity field with chemical reaction in the y - z cross-plane
at the z = 6 cm station is shown in Fig. 26. Two streamwise vor-
tices have formed in the hydrogen jet, with the left vortex containing
positive and the right vortex containing negative components of vor-
ticity when viewed from the outflow of the domain. This vortex
structure distorts the initial circular cross-section of the hydrogen
jet, entraining fuel and air and enhancing mixing. The jet distortion
can be seen in Fig. 27 which shows the hydrogen species mass frac-
tions at the same station displayed in the previous figure. Hydrogen
is concentrated toward the interior of each vortex with peak values I
of around 0.012. Hydrogen is stretched away from the upper portion
of the jet, however, and the mass fraction is most greatly reduced in
that region. This region of reduced concentration favors the high-
est initial degree of combustion since the fuel-air ratio is nearest to
stoichiometric conditions.

Figure 28 shows the resulting water mass fraction distribution
in the y - z plane at the x = 6 cm station. Combustion begins in
the stoichiometric region at the top of the vortices and along the
outer edge of the remainder of the vortices. At x = 6 cm, the flame
has propagated into the interior of the vortex structure such that
significant reaction is occurring near the center of each vortex. The
peak water mass fraction of 0.2 occurs at this location. As shown in I
Fig. 29, there is also a significant temperature rise near the top and
near the center of the vortices due to reaction. A peak temperature
of 2, 158 K occurs at this location. It is quite interesting to compare I
the resulting combustion efficiency for the shocked reacting case with
the unshocked reacting jet case. Recall that in the unshocked case,
the combustion efficiency at x = 6 cm is only 0.4 percent whereas in I
the shocked case, a combustion efficiency of 72 percent is achieved.

4. Concluding Remarks I
In high-speed airbreathing propulsion systems, the extent of fuel-

air mixing is significantly reduced with increasing Mach number. Di-
rect numerical simulations of reacting mixing layer flows indicate that
there is a reduction in turbulence levels with both increased com-
pressibility due to an increase in either Mach number or heat release. 3
To counter the effects of suppressed mixing and reaction, two mixing
enhancement techniques have been developed. The first one involves
the use of swept wedges placed in the airstream to introduce lon-
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gitudinal vorticity leading to large scale mixing enhancement. The

second technique utilizes the interaction of a shock with the large
density gradient existing between a hydrogen fuel jet i ! the sur-
rounding airstream to introduce streamwise vorticity and mixing.
Both of these approaches have proven effective in providing mixing
enhancement mechanisms in nonpremixed high-speed reacting flows.
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Figure 1. Schematic diagram of a temporally evolving I
mixing layer.
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Figure 2. Plots of product mass fraction contours at three
convective Mach numbers (Me). (a) Mc = 0.2, (b) MC = 0.8,
(c) Mc = 1.2.I
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Figure 3. Profiles of normalized mean velocity P versus the
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Figure 19. Hydrogen mass fraction of reacting, unshocked jet in
x - z plane aty = I cm.
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Figure 20. Hydrogen mass fraction of reacting, unshocked jet in3 y - z plane at x =6 cm.

I
I



I

I

Level H2O
A 0.0046
9 0.0041

0.025 8 0.0037 ,
7 0.0032
6 0.0027
50.0023

- 4 0.0018
3 0.0014
2 0.0009

0.000 0.025_ 0.0501__.0005

Figure 21. Water mass fraction of reacting, unshocked jet in
x - z plane aty = 1 cm. 5
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Figure 22. Water mass fraction of reacting, unshocked jet in
y - z plane at x =6 cm. I
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I' Figure 23. Hydrogen mass fraction of reacting, shocked jet in
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Figure 24. Water mass fraction of reacting, shocked jet in3 x-zplaneaty= 1cm.
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Figure 25. Temperature of reacting, shocked jet in x - z I
plane aty= 1 cm. 5
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Figure 26. Strearnwise vorticity of reacting, shocked jet in
y - z plane at x = 6 cm. ft
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Figure 27. Hydrogen mass fraction of reacting, shocked jet in

y - z plane at x =6 cm.I
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Figure 28. Water mass fraction of reacting, shocked jet in
i y - z plane at x = 6 cm.
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Numerical Simulation of Non-Circular Jets

R.S. Miller, C.K. Madnia and P. Givi*
Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo
Buffalo, NY 14260-4400

!
* Abstract

Results are presented of numerical simulations of spatially developing, three di-
mensional jets issued from circular and non-circular nozzles of identical equivalent
diameters. Elliptic, rectangular and triangular jets are considered with aspect-ratios
of 1:1 and 2:1. Flow visualization results show that large scale coherent structures
are formed in both cornered and non-cornered jets. The axis-switching phenomenonI is captured in all non-unity aspect-ratio jets and also in the equilateral triangular jet.
The square jet does not show axis-switching; however, the rotation of its axes by 45* is
shown to play a significant role in its entrainment characteristics. All the non-circular
configurations are shown to provide more efficient mixers than does the circular jet; the
isosceles triangular jet is the most efficient one. It is demonstrated that the near field
entrainment and mixing is characterized by the mean secondary flow induced by the
stream-wise vortices. The transport of a passive Shvab-Zeldovich scalar variable is used
to determine the limiting rate of mean reactant conversion in a chemical reaction of
the type Fuel + Air -- Products. The results show that the largest product formation
occurs in the isosceles triangular jet and the lowest occurs in the circular jet. It is also
shown that the 2:1 triangular jet has the shortest scalar core whereas the rectangular
jet has the longest core.

1i IntroductionI
The phenomenon of mixing (or lack thereof) is a subject of crucial importance in devices

I involving chemically reacting turbulent flows [1]. In these devices, the flow field produced by

*To whom all the correspondence should be addressed. Tel: 716-645-2433, Fax: 716-645-3875, E-mail:
givi@eng.buffalo.edu.1



p
a "jet" discharging into a stagnant or moving (either in the parallel- or the cross-direction)

fluid is the most common configuration in current use. In the majority of previous inves-

tigations on turbulent jets, circular and planar configurations have been considered [2-7];

with relatively little effort on the analyses of jets with other cross-sectional shapes [81. Re-

sults of early investigations of three-dimensional (3D) rectangular jets have been reported

in Refs. [9-11], and of elliptic jets in Refs. [12-15]. In studies pertaining to elliptic jets, it

is now well recognized that the deformation of large scale vortical structures is somewhat

similar to that of an isolated elliptic ring [16, 17]. This ring is inherently unstable due to

the azimuthal variation of the "nozzle" curvature which causes a non-uniform self-induction

mechanism. As a result, the ring deforms in such a way that its two axes are interchanged.

This axis-switching mechanism plays an important role in promoting mixing by causing an

increase of the entrainment as compared to that in circular and planar jets. While the extent

of recent literature on elliptic jets is growing, relatively few experimental investigations of 5
3D jets with "corners" have been conducted. Gutmark et aL [8] use a one-component hot-

wire anemometry system to measure the mean and turbulent characteristics and the effect I
of upstream forcing on the flow evolution of several non-circular jets. Their main conclusion I
is that the spatial growth rates and the amplification of velocity fluctuations vary around

the circumference of the jet and are dependent on the initial local curvature. More recently,

Gutmark et al. [18] have studied reactive non-circular jets by means of the Planar Laser

Induced Fluorescence (PLIF) technique. They studied the effects of sharp comers on the

dynamics of vortical structures as applied to enhancement of mixing and combustion. These

results suggest that a combination of small- and large-scale mixing in a flow is advantageous

in enhancing the product formation in combustion systems.

Most efforts in analytical treatment of non-circular jets have been based on linear stability I
analyses [19-23]. The extent of literature on detailed numerical simulations of 3D jet flows

is very limited. This is understandable in view of the severe computational resources re-

quired for such simulations. With recent advances in supercomputer technology, however,

this situation is gradually changing [24]. Owing to this technology, it is now possible to

perform "model-free" simulations [25] of jet flows without resorting to "turbulence model- U
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U ing". Givi [25] subdivides model-free simulations into Direct Numerical Simulation (DNS)

and Large Eddy Simulation (LES). Currently the range of physical parameters, such as the

Reynolds number, that can be treated by model free methods is significantly less than that

in laboratory experiments. Such simulations, nevertheless, have proven very effective in elu-

cidating many important features of turbulent flows; in some cases not easily amenable by

other means.

3 In this work, we make use of model-free simulations to broaden our understanding of some of

the underlying mechanisms involved in the near field of jet flows originating from non-circular

nozzles. Our primary objective is to assess the influence of the nozzle on the subsequentI evolution of the jet flows and their mixing characteristics. This is facilitated by analyzing

the processes involved in entrainment. Six nozzle geometries are considered: circular, elliptic,

square, rectangular, and triangular (equilateral and isosceles). Simulations are of a duration

sufficient to determine statistics up to second moments. The flow fields produced by these3 jets are analyzed to determine the advantages and/or th,. drawbacks of non-circular nozzles

for mixing enhancement, as compared with a circular nozzle. Consideration of these nozzles

L is motivated, at least partly, by recent experimental findings alluding to their capabilities in

facilitating efficient turbulent combustion systems (e.g. Ref. [18]). The emphasis here is on£ extracting detailed information from the numerical simulations to complement the results

obtained in laboratory experiments. Details of the geometrical configurations considered areU given in Section 2. Results pertaining to hydrodynamic transport and those for the analysis

of mixing-controlled reacting flows are presented in Section 3. A summary and conclusions

I are furnished in Section 4.

I
I 2 Description of the Problem

The flow configurations are produced by unsteady, 3D, spatially-developing jets in the pres-

ence of a co-flowing free-stream. The evolution of the flow is considered for several different

inflow conditions. These conditions are produced via six different nozzle configurations:
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circular, elliptic, square, rectangular, triangular (equilateral and isosceles); see table 1 and

figure 1. The aspect-ratio for the elliptical, rectangular, and isosceles triangular jets is 2:1 3
(for the isosceles triangle the ratio refers to that of the height to the base). The dimensions

in each jet are set in such a way as to yield the same equivalent diameter, D.. This diameter

corresponds to that of a circle with an equivalent area. The flow field is considered within

the domain identified by Cartesian coordinates z (stream-wise), and y, z (cross-stream); see

figure 1 for the orientation of the coordinates with respect to the cross sections of the jets.

The analysis is based on the numerical simulations of the compressible --Stokes equa-

tions, the energy conservation, and a passive scalar conservation equation, ith Fourier heat n

conduction and Fickian diffusion assumptions. These equations are solved numerically with-

out resorting to any turbulence or imposed subgrid models. The fluid is assumed calorically I
perfect and the magnitudes of the kinematic viscosity, thermal conductivity, and scalar dif-

fusion coefficients are assumed constant. The values of the Prandtl number and the Schmidt

number are set to unity and the ratio of the specific heats is set equal to 1.4. The fluid I
density and the temperature at the inflow are uniform and are set to p = 1.Okg/M 3 and

T = 300K, respectively. The jet exit velocity is Ue = 86.8m/s, and the co-flowing free-

stream is U,: = 17.4m/s. In all the cases, the flows are initialized with identical Reynolds

number, Re = AUD,/ v, where AU = Ul - Uo and v denotes the kinematic viscosity. This

implies Re = 800 for the jets with D. = 0.02rm. The Mach numbers at the two streams

are M = 0.25 and M = 0.05, respectively. This yields a convective Mach number [26] of 3
M, = 0.15 which is sufficiently low to not cause significant compressibility effects.

In order to provide a measure of the extent of mixing, the transport of a conserved scalar I
variable J is considered. This scalar is initialized in such a way as to yield the limiting m

values of 0 and 1 in the jet and in the free stream, respectively. The transport of this

scalar determines the limiting rate of reactant conversion in a binary chemical reaction of 3
the type "Fuel + Oxidizer -- Products." With the usual definition of the Shvab-Zeldovich

variable [27], the limiting values J = 0, 1 correspond to pure fuel and to pure oxidizer, I
respectively. In this way, effectively, the maximum rate of product formation of a fuel jet

issuing into a co-flowing oxidizer is being simulated. With the assumption of unity mass
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fractions at the feeds of each of the two respective reactants, J. = 1/2 corresponds to the

I stoichiometric surface where, by definition, the rate of chemical reaction is infinitely fast and

the product mass fraction is unity.

Several other parameters are calibrated in order to facilitate a direct comparison of the flow

R field produced by the jets. The flow is initialized by a "smooth" top-hat stream-wise velocity

profile at the jet exit. The normalized cross-stream gradient of the Shvab-Zeldovich scalar is

I the same as that of the stream-wise mean velocity distribution. The velocity and the scalar

gradients at the inlet are adjusted such that all inflows have identical momentum inflow and

I product thickness (6p(z) = f fj, < pYp > dydz; where < > indicates the time average).

The ratio of the maximum to minimum value of momentum thickness (denoted by 09) at

the exit of the jets is listed in table 1. These values are in good agreement with those in the

experiments [13,12]. In addition to the base flow, low frequency perturbations are added

at the inflow. The forcing is with the same Strouhal number, StD. = O = 0.4 in all the

I jets. The integrated perturbed momentum is held constant for all jets. The amplitude of

the velocity perturbation is set at approximately 15% of the jet exit velocity to expedite the

5 formation of large scale structures within the domain considered.

The computational scheme is based on an explicit time marching procedure by means of a

i monotone Flux Corrected Transport (FCT) finite difference algorithm [28]. The algorithm

used here is second order accurate in time, fourth order phase accurate in space and has

been successfully employed in transitional shear layer studies [24,29]. At the outflow, the

first derivatives of the variables are assumed zero. Free slip conditions are employed at the

boundaries in the cross-stream directions. The grid configuration consists of 120 x 95 x 95

nodes for the unity aspect-ratio jets and varies slightly for the remaining cases. In all

cases, the grid is compressed at the location of maximum mean gradients to provide a finer

I resolution. The computational requirements associated with each simulation vary slightly

from one simulation to the other. In total, approximately 500 hours of CPU time on a Cray-

3 YMP supercomputer were required to complete this study. The resolution employed here is

to a large extent dictated by the available computational resources. With the magnitudes

E of the physical parameters considered, this resolution is less than that required to resolve
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the Kolmogorov length scale. No explicit models are employed for the closure of subgrid

fluctuations; the numerical dissipation inherent in the FCT algorithm provides the only

means of modeling such fluctuations [30]. For "debates" on the usage of an appropriate

label (DNS or LES) for these simulations we refer to Boris [31] and Givi [32]. S
3 Results 3
Simulations are performed within a domain laige enough to accommodate for the growth 3
of the jets and to minimize the effects of boundaries in the cross-stream direction. With

available computational resources, it is possible to consider a domain with L. = 9D,, and !

L; L, •. 4De, where Li denotes the length in the i-th direction. The simulated results

are analyzed both instantaneously and statistically. The instantaneous results provide an 3
effective means of flow visualization whereas the statistical data are useful for comparative

assessments with laboratory data. Of course with the low value of the Reynolds number

considered, it is not possible to make quantitative comparisons with such data. Qualitative I
comparisons, nevertheless, are possible and are made.

I
3.1 Flow Visualization g
A qualitative assessment of the formation and dynamics of large scale flow vortical structures

formed at the near field of the jets is possible by examining the instantaneous surfaces of I
constant vorticity magnitude. Figure 2 represents an iso-surface of vorticity magnitude for

the non-cornered jets of Run 1 and Run 2. Part (a) of this figure shows that for the circular

jet the growth of perturbations introduced at the inflow results in circular vortex-ring-like I
structures [33]. The shape and the dynamics of the structures formed in the elliptic jet are

markedly different as shown in figure 2(b). The structures observed in this figure show the 3
azimuthal variation of the vorticity magnitude. This variation is due to the initial shape of

the ellipse which causes a non-uniform self-induction velocity leading to a three-dimensional I
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deformation. The iso-surfaces of vorticity magnitude for Runs 3 and 4 are shown in figure

I 3. This figure suggests that as the aspect ratio is increased, the initial structure of the jet

is less preserved. The triangular jets (Run 5 and Run 6) exhibit different characteristics as

observed in figure 4. In these jets, larger scale structures are produced near the flat surfaces

and are masked by small scale structures produced near the corners. As a result, the flows

appear to be characterized by a much more "turbulent" vorticity distribution than those

I produced by the other jets.

I 3.2 Statistical Consideration

I The statistical analysis of the generated data is based on an ensemble of 1200 realizations.

I This is conducted within a time period equal to 2.5 times the residence time of the flow

within the domain considered. The downstream evolution of the mean stream-wise velocity

I profiles in both cross-stream directions is shown in figure 5. All distances are normalized by

the equivalent diameter (e.g. z" = x/D.). In the circular jet (figure 5(a)), it is apparent that

the velocity profiles in the vertical and the horizontal center-planes are very similar. This

suggests the radial symmetry of the flow and indicates adequacy of the numerical resolution.

N This is not the case for the elliptic jet (figure 5(b)). In this case, the width of the profile

in the major plane is observed to contract for the first four equivalent diameters, and then

to expand slowly. In contrast, the width in the minor plane spreads rapidly throughout the

evolution. This trend is in good agreement with that observed in previous investigations

(e.g. Ref. [12]). An interesting feature observed in this figure is the formation of shoulders

on the minor plane velocity profiles downstream of x' = 6. This is associated with the cross-

I stream mean secondary flow, as will be discussed in section 3.3. The results for the square

jet (figure 5(c)) show that the profiles in both planes are very similar and grow uniformly in

the stream-wise direction. Downstream of x" = 5, two additional peaks appear on the mean

I velocity profiles. They are formed as a result of the induced flow field of the stream-wise

vortices (section 3.3). No contraction of the width of the profiles is observed in either axes of

I the rectangular jet (figure 5(d)). For z" > 5 the width along the minor axis becomes larger
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than that along the major axis. This behavior is different from that observed in the elliptic

jet. The peaks in the velocity profiles are also observed in the rectangular jet and are more 3
pronounced in the major axis plane. The spread of the two triangular jets, shown in figures

5(e) and 5(f) is the most complex. The contraction and the subsequent expansion of the U
profiles in the transverse direction y is observed in both jets. The initial non-symmetry with

respect to the minor axis prevails throughout the entire stream-wise evolution in both jets. I
The downstreanm evolution of the normalized mean centerline velocity (UCL/Ue) is shown in 3
figure 6. This figure shows that the magnitude of this velocity initially rises slightly above

unity due to forcing and then decays. The rate of decay is highest for the isosceles triangular

jet. The variation of the longitudinal fluctuating velocity along the jet centerline is presented

in figure 7. Except for the two triangular jets, a peak intensity occurs at z" ; 4.5 for all 3
cases. As discussed in Ref. [13] the amplitude and location of this peak are dependent on

the value of the Strouhal Pumber.

The stream-wise evolution of the mean jet half velocity < Uh >-< (UCL,+U6) > contours is

presented in figure 8 for Runs 2 through Run 6. Each contour represents conditions within

the range 0 _5 x* _x 5, with an increment of x* = 1. Figure 8(a) indicates that at the first

two stream-wise locations, the jet maintains its initial elliptic shape with the major axis in

the y direction. Further kAownstream, there is a continuous reduction of the local aspect-

ratio due to a larger spreading of the jet in the minor-axis plane. By z" = 5, the mean

profile is rotated by 90* and the axes are switched. In contrast, the results in figure 8(b)

indicate that the flow field of the square jet does not experience an axis-switching; however,

a 450 rotation is observed. Figure 8(c) portrays the axis-switching of the rectangular jet. A

90* rotation of the major axis is observed. The evolved shape is nearly elliptical except for

small stretching along the y-axis. In triangular configurations, a very different behavior is

experienced (figures 8(d) and 8(e)). In both jets, a 180 "flip-flop" of the original profile is

observed, climaxed with a triangular shaped profile which is nearly equilateral.

The location of axis-switching is determined by monitoring the stream-wise variations of the I
major and the minor axis half velocity widths for all the jet configurations. These widths u
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are non-dimensionalized by D. and are denoted by B; and B, for the major- and the minor-

axis, respectively. The stream-wise variations of these widths are shown in figure 9 and thern axis-switching location for each run is listed in table 2. Figure 9(a) indicates that the elliptic

jet switches its axes at x° • 3. The experimental data of the switch-over location for a 2:1

I elliptic jet is z° • 2.4 as reported in Ref. [13], and z° • 2.8 as suggested in Ref. [12]. In

the experiments of Ref. [13], the jet is forced at StD. = 0.4 and the momentum thickness at

I the jet exit is uniform. In the experiments of Ref. [12], an unforced jet is considered with a

non-uniform momentum thickness. The square jet does not switch its axes and both widths

I grow monotonically in z* as shown in figure 9(b). The switching location for the rectangular

jet is further downstream than that for the elliptic jet (figure 9(c)). This can be attributed

3 to the influence of corners. As indicated in figure 8(c), the rectangular jet evolves into a

rotated elliptic configuration. It must, therefore, smooth its corners while simultaneously

I switching axes. Thus, its spreading rate in the minor plane is slower than that in the elliptic

jet. Figures 9(d) and 9(e) show two axis-switchings for the two triangular jets. In both

jets, B, initially decreases to a minimum corresponding to the maximum of B, and then

increases. The first axis-switching in the isosceles triangular jet occurs approximately twice

as far downstream as that in the equilateral triangular jet (table 2). This can be attributed

I to the larger aspect-ratio of the isosceles triangular nozzle which results in an initial gap

between the major and the minor axis half widths.

I
I 3.3 Entrainment of Free-Stream Fluid

A measure of entrainment of the free-stream fluid provides an effective means of estimating

the mixing efficiency of the jets. Here, the entrainment is quantified by measuring the

I difference between the average mass flow rate (conditioned on < J >< 0.99) at a downstream

location Q(z°) and that at the nozzle exit, Q. = Q(x* = 0). Figure 10 shows the normalized

value of this parameter as a function of the stream-wise coordinate. This figure shows that

the isosceles triangular jet entrains nearly 125% of its initial mass flow rate as compared

Ito 50% obtained for the circular jet. The mass entrained by the other jets fall somewhere
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in between these two extremes. Conceptual understanding of the entrainment process is I
aided by examining the time-averaged cross-stream velocity vectors. Figures 11-15 show

these vectors for Runs 2 through 6, at stream-wise locations z" = 2, 4, and 6 (except for

Run 3 in which vectors at x* = 1, 4, and 6 are shown). The solid line in these figures

denote the < Ul, > iso-line. Stream-wise vortical structures are observed for all the non- 5
circular jets. The elliptic jet (figure 11) is shown to entrain fluid into the mixing zone along

the y-axis and to eject it along the z-axis. The effect is to contract the major axis of 3
the jet while simultaneously stretching the minor axis, resulting in axis-switching. Notice

the recirculation pattern caused by the four vortices. The flow field associated with this

recirculation pattern is responsible for the formation of the shoulders observed on the minor

plane velocity profiles presented in figure 5(b). A more complex flow pattern is observed for 3
the square jet (figure 12). The velocity field induced by the four counter-rotating pairs of

vortices (figure 12(a)) causes an outflow of the fluid on the flat sides and an inflow at the 5
corners. By x* = 4 the original configuration is rotated by 450 about the y-axis (figure

12(b)). At this location, four additional pairs of vortices are formed inside the original ones. I
Farther downstream, the flow pattern induced by these vortices results in further stretching

of the new corners (figure 12(c)). Also, the inner set of vortex pairs are no longer distinct and

tend to lose their identity. As the flow evolves downstream, the induced velocity field due

to the outer set of stream-wise vortex pairs results in the formation of two additional peaks

on the velocity profiles in both the major plane and the minor plane as shown in figure 5(c).

The rectangular jet displays characteristics similar to those of the square and the elliptic jets

(figure 13). Initially, two vortex pairs are formed with their axes coincident with the z-axis. 3
This enables the jet to adopt an elliptic configuration and to display a recirculation pattern

similar to that in figure 11(a). However, the influence of the jet origin (nozzle geometry) is

not completely lost and the subsequent evolution is considerably different from that of the

elliptic jet. At x* = 4, the cross-section becomes diamond shaped, similar to that in the

square jet at the same location. By z* = 6, four vortex pairs are formed and the shape of

the jet is elliptic with major axis on the z-axis and with a slightly stretched minor axis.

Due to the delay in its axis-switching, the rectangular jet is a relatively inefficient mixer in

the near field. The evolution of the cross-section of the equilateral triangular jet is depicted
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in figure 14. At z" = 2 the profile for this jet adopts an approximate square shape. However,

the flow pattern and the subsequent evolittion are clearly different from that in the square

jet. By z* = 4 (figure 14(b)) the profile is heart-shaped with a strong outflow induced by

two vortex pairs located at the corners. The interaction of these vortices continues to distort

the profile downstream (figure 14(c)). For the isosceles triangular jet, figure 15(a) shows the

entrainment from the top comer and the base, and ejection of the fluid from the two long3 flat sides. Further downstream, this causes a "flip-flop" of the profile. The fluid is entrained

from the bottom comer and is ejected through the top corners.

I The results presented here indicate the influence of large scale structures on the global mixing

process in both circular and non-circular jets. These results also show that near-field mixing

and entrainment is characterized by the induced secondary flow field of the stream-wise

vortices.

1 3.4 Influence on Reactant Conversion

I The consequences of the flow evolution on the rate of reactant conversion in reacting jets are

portrayed by considering the transport of the Shvab-Zeldovich scalar variable, J. Figure 16

depicts the instantaneous stoichiometric surface J = J., corresponding to the flame sheet,

for each jet. This figure shows a severe distortion of the flame surface in the non-circular

jets. In particular, the two triangular jets show a highly stretched and convoluted topologyI with the formation of small scale structures. The extent of distortion of the stoichiometric

surface provides a measure of the combustion efficiency as measured by the magnitude of

3 the product formation. The downstream evolution of the mean product mass fraction in the

y - x and z - x planes is shown in figure 17. Examination of figure 17(a) indicates that for

I the circular jet, the initial reaction occurs along the jet boundaries and proceeds to spread

both outward and inward. The two spikes at x* = 0 are due to finite gradients of the Shvab-

SZeldovich profile at the inflow. For the circular jet it is about eight diameters downstream

before the product reaches the centerline. The profile for the elliptic jet is initially similar to

I that of the circular jet. The difference is in the widths of the profiles in the major and the
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minor planes. As the jet evolves downstream, the profiles in the two planes start to differ

and some of the profiles in the minor axis plane develop blunt topped humps (figure 17 (b)). I
Similar flat-topped peaks are observed in the profiles in the square and the rectangular jets

(figures 17(c) and 17(d)). The stream-wise vortex pairs (shown in figures 12(c) and 13(c)) are U
responsible for increasing mixing in these regions and the reaction takes place over a larger

volume. The square jet profiles portray approximately the same shape in the y - z and z - z

planes. The rectangular jet for which the initial axis-switching occurs at the stream-wise 3
location of x* = 6.3 maintains its maximum value of the mean product mass fraction at its

outer edges. Both the equilateral and the isosceles triangular jets (figures 17(e) and 17(f)) 3
are characterized by a large increase in the product formation in the center of the jet as

compared to those in the other jets. 3
The stream-wise variations of the integrated product thickness are shown in figure 18. This

figure shows that for x* < 3 the extent of products formed in the circular jet is lower than

those in the square and the triangular jets, but is higher than those in the elliptic and the

rectangular jets. In the region 3 < x* < 5 the products formed in all the jets are lower than

that in the circular jet with the exception of the isosceles triangular jet. Further downstream

(zW > 6) all the non-circular jets yield higher values of product thickness as compared to the

circular jet. The results presented in this figure are consistent with those in figure 10 which I
indicate that the product formation is directly related to the entrainment. Therefore, the

ratio of the integrated product thickness to the physical area of the jet is considered. This 3
area refers to regions in the stream-wise planes where < J > ( 0.99. This ratio is denoted as

y and is referred to as the cross-stream product density [34,29]. The stream-wise variation 1
of this ratio is shown in figure 19 for all jets. This figure suggests that after a period of

rapid growth, a plateau at the value of - - 0.55 is reached in all cases. This provides an 3
explanation for the correlation between the growth rate of the area and that of the product

thickness. Experimental confirmation of the existence of a plateau value of 'y for higher

Reynolds number turbulent jets is desirable.

The traditional definition of the jet potential core is not very applicable to the quasi-

transitional jets studied here. Pertaining to mixing, a scalar core is defined as the stream-wise 3
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length of the jet containing pure, unmixed fuel within the non-reacting jets. This corresponds

to J = C Figure 20 presents the normalized integrated mass of fuel as a function of stream-

wise location. A near linear decrease of fuel mass fraction is observed in all the cases. The

lengths of the scalar cores in all the jets are listed in table 3. The square and the rectangular

jets, with no axis-switching and axis-switching far downstream respectively, have the longest

cores. The shortest core occurs for the isosceles triangular jet.

4 Summary and Concluding Remarks

Detailed numerical experiments are conducted to study the entrainment and mixing charac-

teristics of the flow fields generated by non-circular turbulent jets. Simulations are conducted

of jet flows originating from elliptic, rectangular, and triangular nozzles with aspect-ratios

of 1:1 and 2:1. The results are compared with those of a circular jet of the same equivalent

3 diameter to determine the relative efficiency of non-circular nozzles in mixing enhancement.

Flow visualization results show that for both cornered and non-cornered jets, large scale

I coherent structures are formed. The shape and dynamics of these structures depend onrn the azimuthal variation of the curvature of the profiles at the jet exit. The triangular jets

exhibit characteristics markedly different from the other jets. Coherent large scale struc-

tures in these jets are quickly masked by the small scale structures formed at the comers.

In the elliptic and the rectangular jets, the orientations of the cross-sections are modified

3 by axis-switching. The rectangular jet switches its axes at a stream-wise distance approx-

imately twice that of the elliptic jet. This can be attributed to the effects of the comers.

S Although the square jet does not show axis-switching, it is shown that a 450 rotation of

its initial profile results in entrainment of the free-stream fluid. The triangular jets switch

5 their axes twice. In the isosceles triangular jet, the first axis cross-over occurs approximately

twice as far downstream as that in the equilateral triangle. This is attributed to the larger

5aspect-ratio of the isosceles triangular jet.

I The entrainment and mixing in the near field of these jets are shown to be characterized by
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the induced mean secondary flow field of the stream-wise vortices. Non-unity aspect-ratios,

sharp corners, and long flat surfaces are important factors in facilitating an efficient mixing

configuration. In the case of the rectangular jet, although it contains many of these fea-

tures, its axes switch too far downstream to cause significant near-field mixing. Although

a non-unity aspect-ratio is important for mixing enhancement, it is not sufficient for large

entrainment in the near-field. The isosceles triangular jet is shown to be the most efficient

mixer. This jet produces the most intricate network of stream-wise vortices which are re- 3
sponsible for enhanced mixing. The square jet ranks as the second most efficient mixer,

and the circular jet is the least efficient one. A comparison of the flow fields produced by 3
the two triangular jets reveals that the formation of small scale structures at the comers

does not have a significant influence in entraining the free-stream fluid. The aspect-ratio is

the primary difference between these two jets. The eITect of the larger aspect-ratio of the

isosceles triangular jet is to alter the vorticity dynamics in this jet as compared to the equi- 5
lateral triangular jet. This results in a different stream-wise vorticity pattern which enhances

entrainment. I

The limiting rate of the mean reactant conversion in reacting jets in which the fuel is dis-

charged to ambient oxidizer is evaluated by considering the transport of a Shvab-Zeldovich

scalar variable. It is shown that the isosceles triangular jet yields the highest amount of 3
chemical products, whereas the circular jet yields the lowest. However, the magnitudes

of the cross-stream product density approaches a plateau in all the jets. The magnitudes I
at this plateau are approximately the same for all the cases. With the transport of the

Shvab-Zeldovich variable, a scalar core is also defined. It is shown that the 2:1 aspect-ratio

triangular jet has the shortest, and the rectangular jet has the longest core.

The examination of the effects of harmonic forcing and the role of the initial momentum

thickness on the subsequent development of jet flows under the influence of non-equilibrium 5
chemical reactions are the subject of our current investigations.
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Figure Captions

Figure 1. Jet profiles as represented by U1, contours.

Figure 2. Surfaces of constant vorticity magnitude (=wI/IwI,, - 0.55). (a) Run 1, (b) Run
2.

Figure 3. Surfaces of constant vorticity magnitude (IwI/•Iw,- = 0.55). (a) Run 3, (b) Run
4.

Figure 4. Surfaces of constant vorticity magnitude (IwI/IwI. = 0.60). (a) Run 5, (b) Run I
6.

Figure 5. Stream-wise evolution of < U > in both y - x and z - z planes. Scale: One
stream-wise equivalent diameter corresponds to 100 mr/s. (a) Circular jet, (b) Elliptic jet,
(c) Square jet, (d) Rectangular jet, (e) Equilateral triangular jet, (f) Isosceles triangular jet.

Figure 6. Downstream evolution of the normalized mean centerline velocity for Runs 1-6.

Figure 7. Downstream evolution of fluctuating centerline velocity for Runs 1-6. Legends are I
the same as those in figure 6.

Figure 8. Axis switching as depicted by < UA > contours. Contours are in increments of I
X- = 1. (a) Run 2, (b) Run 3, (c) Run 4, (d) Run 5, (e) Run 6.

Figure 9. Evolution of the jet half width vs. stream-wise direction. (a) Run 2, (b) Run 3, 1
(c) Run 4, (d) Run 5, (e) Run 6.

Figure 10. Downstream variation of the entrainment ratio. Legends are the same as those 3
in figure 6.

Figure 11. Time averaged cross-stream velocity vectors for Run 2. (a) z" = 2, (b) z = 4,
(c) x- = 6.

Figure 12. Time averaged cross-stream velocity vectors for Run 3. (a) z* = 1, (b) z" = 4, 3
(c) X" = %

Figure 13. Time averaged cross-stream velocity vectors for Run 4. (a) z° = 2, (b) z° = 4,
(c) x" = 6.

Figure 14. Time averaged cross-stream velocity vectors for Run 5. (a) z* = 2, (b) z* = 4, 3
(c) x* = 6.

Figure 15. Time averaged cross-stream velocity vectors for Run 6. (a) z" = 2, (b) x" = 4, 3
(c) x = 6.

Figure 16. Instantaneous surface of the flame sheet. (a) Run 1, (b) Run 2, (c) Run 3, (d) 3
Run 4, (e) Run 5, (f) Run 6.
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I
i Figure 17. Profiles of the mean product mass fraction in the y - z and z - z planes. (a) Run

1, (b) Run 2, (c) Run 3, (d) Run 4, (e) Run 5, (f) Run 6. Scale: 0.9 stream-wise equivalent
diameter corresponds to unity mass fraction.

I Figure 18. Equilibrium product thickness vs. stream-wise direction. Legends are the same
as those in figure 6.

5 Figure 19. Cross-stream product density vs. stream-wise direction. Legends are the same
as those in figure 6.

I Figure 20. Normalized mass of unmixed fuel vs. stream-wise direction. Legends are the
same as those in figure 6.

Tables

Table 1. Flow configurations.

I Table 2. Streamwise location(s) of axis switching.

3 Table 3. Streamwise location of the scalar core.

I
U
I
I
I
i
I
I
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TABL-e- 4

Run Configuration Aspect ratio (e)m.,,/(Oe)nda 1
I Circle 1: 1 1.00
2 Ellipse 2: 1 1.51
3 Square 1: 1 1.23
4 Rectangle 2: 1 1.59
5 Triangle 1: 1 1.28
6 Triangle 2: 1 2.00

3
I

Run Axis Switch (x')
1 no switch
2 3.1
3 no switch
4 6.3
5 1.5,4.6
6 2.9,6.5 I

I

Run Scal Core (z')
1 7.5
2 7.0
3 8.0
4 8.5
5 6.5
a 6.0 1

I
3
I
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LARGE EDDY SIMULATION OF TURBULENT REACTING FLOWS 3
BY ASSUMED PDF METHODS

S.H. Frankel, V. Adumitrosie, C.K. Madnia. and P. Givi 5
Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

I
Buffalo, New York

I

ABSTRACT 1991; Galperin and Orszag, 1993). Over the past thirty
years, since the early work of Smagorinsky (1963) there has 3
been relatively little effort, compared to that in RANS cal-

A priori and a posteriori analyses are conducted for validity culations, to make full use of LES for engineering applica-
assessments of assumed Probability Density Function (PDF) tions. The most prominent model has been the Smagorin-
methods as potential subgrid scale (SGS) closures for Large sky based eddy viscosity closure which relates the unknown 3
Eddy Simulation (LES) of turbulent reacting flows. Simple subgrid scale (SGS) Reynolds stresses to the local large
non-premixed reacting systems involving an isothermal re- scale rate of strain. This viscosity is aimed to provide the
action of the type A + B -* Products under both chemical role of mimicking the dissipative behavior of the unresolved
epuilibrium and non-eduilibrinm conditions are considered. small scales. The extensions to one-equation models, typi-
A priori analyses are conducted of a homogeneous box flow, cally based on the SGS turbulent kinetic energy (Lilly, 1967;
and a spatially developing planar mixing layer to investigate Schumman, 1975), have shown some improvements (Horuiti,
the performance of the Pearson Family of PDF's as SGS 1985; Claus et aL, 1989). This is particularly the case in sim-
models. A posteriori analyses are conducted of the mixing ulating transitional flows where the assumption of a balance 1
closure. The Smagorinsky closure a.. Pted by the solu- between production and dissipation of turbulent kinetic en-tuosue.Th rb t kuec TE t e qy tison- ergy may not always be valid. Thus, the higher degree of
tion of f he subgrid turbulent kinetic TKE) equation freedom provided by one-equation closures allow more flex-
is employed to account for hydrodyr. ictuations, and
the PDF is employed for modeling the efltas of scalar fluctu- ibility for the subgrid scale eddies to adjust to local flow
ations. The implementation of the model requires the knowl-
edge of i he local values of the first two SGS moments. These A survey of combustion literature reveals relatively little
are provided by additional modeled transport equations. In work in LES of chemically reacting turbulent flows (Givi,
both a priori and a posteriori analyses, the predicted results 1989; Pope, 1990). It appears that Schumann (1989) was
are appraised by comparison with subgrid averaged results one of the first to conduct LES of a reacting flow. However,
generated by Direct Numerical Simulations (DNS). the assumption made in this work to simply neglect the con-

tribution of SGS scalar fluctuations to the filtered reaction

rate is debatable. The importance of such fluctuations is
INTRODUCTION well recognized in RANS of reacting flows in both combus- 3

tion (Libby and Williams, 1980; Kollmann, 1980; Jones and
Large Eddy Simulation (LES) is considered somewhere be- Whitelaw, 1982) and chemical engineering (Brodkey, 1975;
tween Direct Numerical Simulation (DNS) and Reynolds Av- Toor, 1975; Hill, 1976; Brodkey, 1981) problems. Therefore,
eraged Navier-Stokes (RANS) computation (Ferziger, 1981; it is natural to expect that these fluctuations will also have I
Ferziger, 1983; Rogallo and Moin, 1984; Ferziger, 1987; a significant influence in LES.
Love, 1979; Ferziger and Leslie, 1979; Voke and Collins, 1983; Modeling of scalar fluctuations in RANS has been the
Schumann and Friedrich, 1986; Schumman and Friedrich, subject of intense investigations since the pioneering work U
1987; Givi, 1989; Jou and Riley, 1989; Reynolds, 1990; Moin,

S.H. Frankel. et al.
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of Toor (1962). One approach which has proven particularly ficiencies associated with the AMC which require further
useful is based on the Probability Density Function (PDF) investigations. These are discussed in detail by Miller et al.
or joint PDF of scalar quantities (Dopazo, 1973; Pope, 1979; (1993a); the most serious of these are: (1) the "single-point"
O'Brien, 1980; Pope, 1985; Givi, 1989; Kollmann, 1990; nature of the closure, (2) the difficulties associated with itsI Pope, 1990). This approach offers the advantage that all the numerical implementation, and (3) its inability to account
statistical information pertaining to the scalar field is embed- for the migration of scalar bounds as mixing proceeds. The
ded within the PDF. Therefore, once the PDF is known, the first problem is shared with C/D models and indicates the
effects of scalar fluctuations are easily determined. Because deficiency of the approach in accounting for the variation ofI of their capabilities, PDF methods have been widely used turbulent length (or time) scales. The other problems are
in RANS for a variety of reacting systems (see Pope (1990); exclusive to AMC and can cause difficulties in its applica-
Libby and Williams (1993) for recent reviews). A systematic tions.
approach for determining the PDF is by means of solving the
transport equation governing its evolution (Lundgren, 1967; Considering the current state of affairs in PDF modeling,
Lundgren, 1969). In this equation the effects of chemical it can be cautiously concluded that assumed PDF methods

reactions appear in a closed form. However, modeling is are somewhat more "feasible" than the transport equation

needed to account for transport of the PDF in the domain approach for simulating practical problems. This is not to

of the random variables. This transport describes the role of advocate the superiority of assumed methods. Rather, it

molecular action on the evolution of PDF. In addition, there is to encourage further research on the first approach be-

is an extra dimensionality associated with the composition fore it can be implemented routinely. In this regard, in

domain which must be treated. These two problems have several recent studies Miller et al. (1993a) and Frankel et
constituted a stumbling block in utilizing PDF methods in al. (1993) have conducted detailed investigations pertaining
practical applications, and developments of turbulence do- to both these approaches. The general conclusion drawn

sures and numerical schemes which can effectively deal with from these studies is that in cases where the AMC has

these predicaments have been the subject of numerous in- proven useful, other approaches based on assumed proba-
vestigations within the past two decades. bility distributions are also effective. In the cases considered

by Miller et al. (1993a), it is shown that in simple flows

An alternative approach in PDF modeling is based on where the AMC can be employed, the class of PDF's based
assumed methods. In these methods the PDF is not deter- on Johnson Edgeworth Translation (JET) (Johnson, 1949a;
mined by solving a transport equation. Rather, its shape Edgeworth, 1907) can also be used. In fact, for the simple
is assumed a priori, usually in terms of the low order mo- problem of binary mixing in isotropic turbulence - a stan-
iments or the random variable(s). Obviously, this method is dard test case - the solution generated by AMC (Pope, 1991;
ad hoc but it offers more flexibility than the first approach. Gao, 1991) can be viewed as a member of the JET family.
Presently, the use of assumed methods in RANS is justi- Furthermore, due to established similarities of JET with the
flied in cases where there is strong evidence that the PDF simpler distributions belonging to the Pearson Family (PF)
assumes a particular distribution, of PDF's (Pearson, 1895), it can be argued that the PF can

Among these two approaches, obviously the first one also be considered as a viable alternative.

is preferable if an appropriate closure is available to ac- In turbulent combustion there has been widespread useI count for the effects of molecular action. In its applica- of PF assumed PDF's (e.g. Rhodes (1975); Jones and Prid-
tion in RANS, traditionally, the family of models based din (1978); Lockwood and Moneib (1980); Peters (1984);
on the coalescence/dispersion (C/D) closures (Curl, 1963; Janicka and Peters (1982); Frankel et al. (1990); for recent
Janicka et al., 1979; Norris and Pope, 1991), or least mean reviews see Williams (1985); Givi (1989); Priddin (1991)).
square methods (Dopazo and O'Brien, 1976) have been em- In most applications to date, this family has been used
ployed. These closures are plausible from a computational in the form of the Beta density of the first kind (Pear-
standpoint and can be effectively simulated via Monte Carlo son Type I and Type II distributions). This is due to

numerical methods (Pope, 1981). However, there are sev- the flexibility of this density in portraying bimodal dis-
eral drawbacks associated with these closures that restrict tributions. The capabilities of this density for the pur-
their use for accurate and reliable predictions (Pope, 1982; pose of RANS have been studied by Madnia et al. (1992);
Kosaly and Givi, 1987). Some of these drawbacks are over- Miller et al. (1993a); Frankel et al. (1993). According toS come in the newly developed Amplitude Mapping Closure these studies there are some similarities between the PF
(AMC) (Kraichnan, 1989; Chen et al., 1989). This has and the AMC, as well as some distinct differences. As
been established in a number of recent validation assess- indicated before, both these methods are utilized in the
ments of the AMC by means of comparison of its predicted context of a single-point closure. Therefore, in both casesI results with those of DNS (Pope, 1991; Madnia et al., 1992; the magnitudes of the moments up to second order must
Jiang et al., 1992; Frankel et al., 1993), and experimental be provided externally. Also, both methods stiffer from
(Frankel et al., 1992a) data. an inability to account for the shrinking bounds of the

scalar domain as mixing proceeds. This is manifested by
Despite its demonstrated properties, there are some de- the failure of both closures in producing a correct evo-
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lution for the conditional statistics of the scalar; namely, compressibility (Hussaini et al., 1990). Here, only the results
the conditional expected dissipation and the conditional obtained for a low compressible case are analyzed. In 2D, the I
expected diffusion. This behavior could be troublesome resolution consists of 256 collocation points in each direction.
and may produce significant errors especially in predicting In 3D simulations 96' collocation points are utilized. With
the rate of reactant conversion in non-equilibrium flames. this resolution, reliable calculations with a Reynolds number
In their application for modeling of reacting homogeneous (based on the Taylor microscale) of Rex .t 41 are attainable. I
flows, both closures are satisfactory for equilibrium glames, Only the 3D results are used for a priori analyses.

regardless of the equivalence ratio (Madnia et al., 1992;
Frankel et al., 1993). However, the use of AMC is very dif- The mixing layer configuration consists of two co-flowing
ficult, if not impossible, for modeling of non-homogeneous streams traveling at different velocities and merging at the
flows regardless of the chemistry model. In such systems trailing edge of a partition plate. Two reactants, A and B,

the mapping transfer function must be evaluated numeri- are introduced into the high- and the low-speed streams, re-
cally and in the non-equilibrium case the multivariate form spectively. To expedite the formation of large scale vortices, 3
of the PDF must be considered. These require further inves- low amplitude perturbations are imposed at the inflow plane
tigations before they can be implemented routinely (Pope, of the layer. The flow field which develops in this setting is

1991). In these cases the application of the PF is much more dominated by large scale coherent structures. The numerical

straightforward but obviously cannot be justified rigorously procedure employed for simulating this flow is based on a hy- I
for all applications. The corresponding multivariate form of brid finite-difference/pseudospectral scheme. A third order

the Beta density is the Dirichletdistribution (Johnson, 1987; upwinding method is used in the streamwise direction and
Johnson and Kotz, 1972; Wilks, 1962; Narumi, 1923) and its a spectral collocation method employing Fourier expansions
mathematical implementation is straightforward. is used for cross stream discretization. Time discretization 3

is done by the Adams-Bashforth technique. The computa-

In this work, we report the results of our investigations tional domain is bounded by 0 < x < 326,-86 < y < 86,
pertaining the use of the Pearson family of PDF's in LES where b is the vorticity thickness at the inflow. The high-
of turbulent reacting flows. This investigation is based on est resolution consists of 512 finite difference nodes and 256 (
a priori and a posteriori analyses of simple homogeneous collocation nodes. With this resolution, reliable DNS with

and shear flows under reacting, non-premixed conditions. a Reynolds number Re = 1000 and a Damk~hler number
Both equilibrium and non-equilibrium chemical reactions are Da = 10 (based on the velocity difference and the vorticity
considered. A priori analyses are performed of equilibrium thickness at the inlet) are possible. I
flames in both flow configurations. A posteriori analyses In both flows, all the species (A, B, P) are assumed ther-
are performed only for the shear flow with non-equilibrium m nabicaloy al a the flidis assumed to er-
chemistry. In all cases, the LES generated results are ap- modynamically identical and the fluid is assumed to be calor-
praised by comparison with data provided via DNS. ically perfect. The value of the molecular Schmidt number

is set equal to unity in all simulations. It is also assumed

that there is no trace of one of these species at the feed of m
the other one, i.e. complete initial segregation. With unity

FLOW CONFIGURATIONS normalized mass fractions of the two species at their respec-

tive streams, a mixture fraction denoted by J7 can be defined

Two flow configurations are considered: (1) two- and (Williams, 1985):

three-dimensional homogeneous box flows, and (2) a two- - YB(Xi, t) + 1dimensional spatially developing planar mixing layer. In J(zi, t) = , J E [0, 1
both configurations, a constant rate, non heat releasing 2 , .9 E [0,1]. (1)

chemical reaction of the type A + B - P is consid- where Y1 denotes the mass fraction of species i. With total N
ered. The procedure in homogeneous DNS is similar to initial segregation the magnitude of the mixture fraction is -
that of previous simulations of this type. For a detailed unity in the stream containing A, and zero in the stream
description we refer to Madnia and Givi (1993). The containing B. In non-reacting flows, the transport of this
computational package is based on a modification of the mixture fraction portrays the mixing process. In reacting
computer code developed by Erlebacher et al. (1987); flows, the variable J1 denotes a conserved "Shvab-Zeldovich"
Erlebacher et al. (1990); Erlebacher et al. (1992). This scalar variable (Williams, 1985). In the limit of an infinitely
code is based on a spectral-collocation procedure for the spa- fast chemical reaction all the statistics of the two reactants 5
tial discretization of the transport variables and a third or- are directly related to those of the Shvab-Zeldovich variable
der Ruinge-Kutta method for temporal discretization. The (Toor, 1962; O'Brien, 1971; Bilger, 1980; Williams, 1985;
hydrodynamic field is assumed isotropic and is initialized Kosaly and Givi, 1987):
in a manner similar to that of Erlebacher et al. (1990);
Passot and Poiiquet (1987). The turbulent field is of decay- The assessment of the models is facilitated by direct com-
ing nature and the initial species field is composed of out parison with DNS data. The resolution in DNS is dictated
of phase square waves for the two reactants A and B. The by the magnitudes of the physical parameters, with sufficient
code is capable of simulating flows with different levels of testing on the independency of the results to the number of I

3 S.H. Frankel, et al.



I

grid points. All the subgrid statistics are constructed di- 8: 8(+7i) _ 1 87 a 8V(
rectly from the filtered DNS data bank. In a priori analyses at 1 " + - - -- +()
the statistical properties of subgrid data are considered. In The nonlinear term, u-,7-, can be written as:
a posteriori analyses, the results predicted by LES on coarse
grids are compared with those of filtered DNS. These anal- 171"" = (u: + W7)(u + V7) = Uuu +-- +iu' ' +' (8)
yses, correspond effectively to simulations with a homoge-
neous box filter in which the values of the filtered means The last term depends on large scale components and is
are constant within the box. The ratio between the coarse computable in LES. The SGS Reynolds' stresses are defined
grid and the fine grid is, therefore, a measure of the filter as
width. That is, it determines the scale at which the subgrid Rij = uu' Ujt + uV" + u(9)
fluctuations are not accounted for deterministically. Conse-

quently, the statistical behavior of the variable within the In the context of the grid averaged approach pursued here,I subgrid is dependent on the magnitude of the sample size the cross terms are zero and the only term requiring mod-
there. If this size is too small, statistical analyses are mean- eling is u'u'. This forms the focus of hydrodynamic SGS
ingless. If it is too large, the essential features of large scale modeling. Typically one decomposes the SGS stress into
transport are masked. In a priori analysis of the box flow, a the sum of a trace-free tensor and a diagonal tensor,
corse grid consisting of 123 grid points are considered. In the

" " shear flow, LES is performed on the domain with 64 finite Ri = (Rii - 16iRkk) + = n, + 36,,Rkk (10)
difference grid points and 32 Fourier collocation points.

Substituting this into the averaged equations yields;

PROBLEM FORMULATION AND LES METHOD- aw O(I ) 1(ý 0 a O (48.jRk,) 3a
2 -

OLOGY + Ox = px, az, Ox, + axa•xo
(11)I Fluid Dynamics or defining,

= •R/€/€(12)

With the assumptions made above, transport of the aero- and employing the SMagonnsky eddy viscosity model for
thermochemical variables is described by a decoupled sys- closure of the Reynolds' stress, we have:
tem of conservation equations, together with the continuity
equation. Denoting the velocity field by a Cartesian vector = a1i-- = --2TS,, (13)
ui, the pressure by p, the kinematic viscosity by v, the space ri, + - 5_ - 2V, (
vector by xi and time by t, we have:

u__, 0 (2) In the Smagorinsky model the eddy viscosity, VT, is re-
a x, lated to the large scale strain rate, Si,. A suggestion made by

aui O(uuj) I ap a2n, Kwak et al. (1975) and discussed by Mansour et al. (1978)
"rsleo;e� ; a p + V---ax, of (3) is to model the eddy viscosity in terms of the trace of the+ Presolved vorticity field. Here, since the SGS moments up to

In LES, these equations are filtered to distinguish the second order are required for the species field, an extension
resolved or large scale field from the subgrid scale field. This is made to utilize a one-equation hydrodynamics closure.
is facilitated by employing a convolution integral of the type Specifically, the transport equation for the SGS turbulent
(Aldama, 1990): kinetic energy, k = ly(uiui), is considered. With this, the- eddy viscosity is of the form:

'9(x) = G(x - x')u(x') dx' (4) VT = Ch A /"k (14)

S where the overbar indicates the filtered variable and G is a where CA is a model constant and A is the filter width. With
filter function with characteristic length A. There are two this, the momentum equation becomes:
ways of performing this filtering process. These are the pre-

1 filtering approach and the grid averaging approach. Here we a'1 O(X T) aP a a , T-7' OVTOU,
employ the latter for its ease of implementation. With this, + = + + (V+VT + ax, Ox,

the SGS fluctuations are given by: ax, ax, (1 ax,

= - i- W (5) and the modeled TKE equation is:

Applying the filtering process to the governing equations Dk ( T k k A
yields: DtaxX

-u= (6) with CD,ofk as empirical constants. In Eq. (16), P, is the
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production term given by, where B($8, 62) denotes the Beta function and the parame-
tern fI and P2 depend on the mean and the variance of the

( - tA UB+ g aj", (17) random variable 3J. In applications to equilibrium chemistry
P5 = VT a + aO x Bi all the statistics of the reacting scalar are easily determined

from this PDF. For example, the filtered values of the species
mass fractions are given by (Madnia et al., 1992):

Following the same procedure, the filtered conservation - (01 + #2 )B(#1 ,T2)
equation for the mass fraction of species A, denoted by YA, 1 - fl,-
is given by: + 0-., 6,+ ,62 11-.,t,,2))

2a
a- x•, = , V +•-DT) -RA +_ (18)_(22)-57t'( 0- 1,) /1 #

where V is the molecular diffusion coefficient and cý indicates YB = # 2)B(Oi -) + (2) + /3,)J. , (#3,/#2)

the chemical source term. The unresolved SGS velocity- (23) 3
scalar fluctuations are modeled by Smagorinsky type model Here I denotes the Incomplete Beta Function (Abramowitz
with DT = VT/ffT where UrT is the turbulent Schmidt num- and Stegun, 1972), and the subscript "st" denotes the stoi-
ber. Similar equations hold for YB and Yp. For the reaction chiometric value of the Shvab-Zeldovich variable; here obvi-
considered here, the chemical source term is of the form: ously J~t = 0.5. It is noted that these relations are signifi- I

cantly simplified when the mixture within the subgrid is in
CWA = -DaYAYB (19) stoichiometric proportion, i.e. when #I = P2.

where Da denotes the Damk6hler number and represents a For the non-equilibrium case, the Dirichlet or joint Beta U
non-dimensional measure of the speed of reaction. With this, distribution for the two species A and B is given by (Wilks,
the filtered non-dimensionalized source term can be defined 1962):
in terms of the probability average, •

= J ~ i~b")1'O., V,") d,'dL" (20) r(pi +P2 + P3) (/,,l -- ( 4 ,.Ip2
1 (1 _ -

where (&', sb") denotes the probability sample space for the (24)
random variables (YA, YB), and "PAB denotes their SGS joint
PDF. where,

Pearson Family of PDF's Ž0 , '2'0 0 + 0" S 1, PIP2,P3 >0 (25)

The parameters p1, P2, p3 are determined from the knowl-
The formulation presented above is in a closed form with edge of any three of the following five quantities: the av-
the specification of the PDF within the subgrid. In general, erage (filtered) values TA, YB, the SGS variances Y2,l B I
the knowledge of the joint PDF of the reactants, i.e. PAB, and/or the SGS covariance YAYB. The chemical source term
is required. However, in flows under chemical equilibrium should depend on all of the above turbochemical quantities.
the procedure is simplified. In this case, the PDF of the However, the degree of freedom of the Dirichiet distribution
Shvab-Zeldovich variable, 7P_7, provides all the necessary in- allows only three of these variables to be used. If the two
formation. As discussed above, the Pearson family of PDF's mean values and the covariance are used, the parameters of
are assumed to represent the statistical behavior within the the density are related by:
subgrid. Therefore, for equilibrium chemistry, the Beta den- U
sity of the first kind is employed. In non-equilibrium simu- p1 = -- YAS (26)
lations the multivariate form of this PDF, in the form of the
Dirichlet density, is assumed. P2 = -YBS (27) 3

For a non-symmetric distribution the Beta density corre- P3 = (YA + YB - 1)S (28)

sponds to the Pearson Type I, and for the symmetric case where,
to Pearson Type II. In both cases, the PDF of the Shvab- S = I + ' YB/YAYB (29)
Zeldovich variable is represented by (Abramowitz and Ste- The normalized chemical source term can be analytically U
gun, 1972): integrated to yield:

"p"7(W = B(- _ )P-, 0 < < 1. (21) WA = -Daj(P ) (30)

5 S.H. Frankel. et al.



(a)(b)

Figure 1: Contour plots of filtered product mass fraction in homogeneous simulations: (a) DNS. (b) PDF.

-here a =p i p2 +-p3. sity. It is noted that other inomnents (or joint moments)
of the species ficld cato be oised for parameteri2ifng this

With thar formulation, the filtered mean valies a.d 5hs PDF (Jolhamson. and Katz. 1972). fi fact, Girimaji (1991a);
covariaone are determied by trahjsport eqatiodes. tminethes Giriammaji (1991b); Narayau and Girimaji (1992) Suggest the
eqfeatios are Coepmisc wiThe the joit PlDF to deform ti.e thia ,,( of the .calar energy (m•smnatini of the "calar variances)elf ~ct .• or c hmemistry. Th'l e giomhehcl cingeatiu .• (fi~ the, iiu .a.i is•t •.. •id the t:ovariance fur thima l~araimeuzfri.a~ioiu (also see

values are sim ilar to & 1. (18). Tlhe mu ~eilh Si S specicts li a rl : , ai Va.l (199o f)). tl'hci i .er e is adl r essi ed uia rther in the

covariance equation is of the forot. (lPope, 1979): .aext etioa.(

DY'Y ( ___. _ The formulation above is in a closed form with the sped-
D1 -- O GZ, / fication of the model constants appearing in the LES trans.

(f' i-•'A \ _ port equatious. A nominmal parametric study was done to
+CI DT C17 ) C A •! estimate the values of these constants. From this study, the

+ wi + z (31) magnitudes of some of these constants were found different
+ PA Y' + YA (31) from those typically u.ed in RANS (Launder and Spalding,

where C, and C2 are adjustable coustants. The cluemuical 1972). The re.•ilmts Isrt.-'M'n in the next sectiom are based

source/sink terms in this equation are give. by: onl C1 = 2.97,C 2 = 0.15 ,oT = Ok = 1.0,C& = 0.01, and
CD = 0.5. No attempt was made to determine the opti-
muized values of these constants.

ZF-iV= -Da ((tG+ Oxrz+ 1 7- P1~ P2 (32)
-(a + 2)(a + 1)a -- (a+ ) () RESULTS

(P2 + Opt (33)
-Da ((a + 2)(a + ) (a +1)0 3 The validity a.m.asmicmts of tLi Beta desity in Reynolds

averaging of reacting flows under chemical equilibrium have
Equations (26)-(33) provide all the essential informatiomi teei reported by Maitna el al. (1991) for a homoge-

pertaining to the effects of chemistry for tLie Diriclhlet den- ieomus box flow amd by Frankel el al. (1992b) for a non-
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homogeneous sheaw flow. According to these studie, the 0.40

Beta density provides a reasonable approximation of the
probabilistic behavior of the Shvab-Zeldovich variable in T,
these lows. The agreement is somewhat better for the
box low since the model cannot predict the trimodal be- 00

havior of the PDF (Koochesfadani and Dimotaids, 1986;
Muutani and Bowman, 1986; Givi and McMurtry, 1988;
Lowery et a., 1987) in shear Ilows. Since, the flow within the
subgrid can be asumed homogeneous (and also isotropic), 0.20

it is therefore speculated that the model may also perform
well in the context of LES. In order to examine this, some
analyses are made of the a priori performance of the do-
sure with the 3D DNS data. In Fig. l plos are preseted 0.10 '.

of the contours of averaged product man fraction in one
subgrid plane for the box flow with equilibrium chemistry.
Part (a) of this figure corresponds to data obtained by di-
rectly filtering the DNS data, and part (b) represents the -0o200 200 0. a0.0
solution predicted by the Beta density model. lim Lite immple- Pdimdai
mentation of this model, the first two SGS moments of tieShvab-Zeldovich variable are inputs t(roan DNS. Thme cotuam;ar- Figure 2: Streamwise variation of instantaneous product mass
ison showin theseariable aree inputsofom ag ,reemen oeitween fraction thickness for the mixing layer under chemical equilib-
isons show. in thesn figures reveal good agreemenmt betweem
the model predictions and the DNS data. fium

A similar agreement is observed in the analysis of the
non-homogeneous flow. This is shown in Fig. 2 by means of
the instantaneous product thickness of the layer. Here also with DNS data cannot be established. Also, the diferences
the first two SGS moments of the Shvab.Zeldovich variable in the statistical predictions between the two closures do not
are extracted from DNS. From an engineering standpoint, clearly favor one approach over the other. However, since
the agreements noted in these figures advocate the use of the SGS covariance appears directly in the source term in
the Beta density, at least in absence of better alternatives, the filtered species equation, this version is employed in a
for describing the probabilistic behavior of the conserved posterori analyses.
scalar variables within the subgrid. However, since the first
two moments of the Shvab-Zeldovich variable are taken from In employing assumed PDF methods in an actual LESS,
DNS, the procedure followed here is not useful for a predic- the filtered mean values and SGS moments of the scalar
tive analysis, i.e. it is not an actual LES. Furtlhermore, tie variable must be provided without resorting to DNS. Here,
agreement can be guaranteed only at this statistical level. LES results obtained by the full Smagorinsky/PDF closure
This is due to lack of sufficient data for the assessment of are presented to examine the overall performance of the hy-
higher order moments. brid model. This examination is conducted for the mix-

ing layer flow since it provides a more stringent test for
For the non-equilibrium chemistry case, the joint PDF of model assesments. In Fig. 6, cross-stream profiles of the

the two species must be considered. First, the performance instantaneous streamwise velocity component are shown at
of the Dirichlet density for the purpose of RANS should be several downstream locations. This figure shows that tme
examined. For the case of zero Damk6hler number, this large scale velocity field is predicted well in LES an the re-
implies that the marginal density of each reactant is a Beta suits compare reasonably well with those of filtered DNS.
PDF. Therefore, the higher order statistics predicted by this The comparison of the subgrid scale TKE as predicted by
density should match with those generated by DNS. This the model, with the TKE obtained from the filtered DNS
comparison is made in Fig. 3, and as expected the agreement are shown in Figs. 7-8. These figures also indicate a rel-
is very good up to the sixth order moment. For finite values atively good agreement between the LES predictions and
of the Damk6hler number, the agreement is lea satisfactory. the DNS filtered results. The exception is at far distances
This is shown in Figs. 4-5, where the temporal evolutions of from the inlet, where it is shown that the TKE equation
the third order cross moments are considered. The difference severely underpredicts the subgrid turbulence level. This
between these two figures is due to the procedure by which trend has also been observed in the simulations of Claus et
the Dirichlet density is parameterized. In the calculation al. (1989) and may be due to deficiencies in modeling of
resulting in Fig. 4, the PDF is based on the means of the two the Reynolds stresses imm terms of the strain tensor alone.
species and the covariance. In those of Fig. 5, the two means lmclmmsio, or other termis such as the rotatio, tensor and/or
and the scalar energy are used to comstrmct time I)F. The products of the aitraiu rate and rotation tensors may be nec-
results portrayed in these figures indicate that in both cases, ensary to imnprovp the predictinns of TKE (TaMlIhee, 1992;
the general trends are captured well but an exact a•4w•enenst l.mnd and Novikov, 1991).
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Figure 3: Temporal variations of Reynolds moments of the mass fraction of species A in homogeneous simulations (Da = 0), (a)

fourth and (b) sixth moments.
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Figure 4: Temporal variations of third order cross moments of the mass fraction of species A in homogeneous simulations (Da = 5).

The PDF is parameterized by the values of the Reynolds mean values of the reactants mass fraction and the scalar covariance.
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Figure 5: Temporal variations of third order cross moments of the mass fraction of species A in homogeneous simulations (Da = 5).
The PDF is parameterized by the values of the Reynolds mean values of the reactants mass fraction and the scalar energy. 3

Figure 9 portrays the LES and DNS contours of the fil- been met with some success in RANS, its use here does not
tered mass fraction of species A in the non-reacting case. provide acceptable predictions. The same is true for the
The agreement is generally good and the two results are rel- SGS kinetic energy as shown in Figs. 7-8. In this regard, it
atively close. The difference is due to the effects of the gradi- must be noted that these problems do not vanish in PDF
ent diffusion closure in Eq. (18) which results in smearing of approaches based on a transport equation for the single-
the small scale features within the large scale coherent struc- point PDF (AMC, C/D, LMSE, etc). That is, the first two
tures. The lack of agreement Lecomes more pronounced for SGS moments must be determined by a reliable subgrid clo-
the covariance. This is shown in Fig. 10 where contour plots sure. The problem may be somewhat alleviated by consid-
of the SGS species covariance are presented. Despite this ering the transport equations for SGS correlations (Taulbee,
difference, it is useful to examine the model's performance 1989). This is very challenging and computationally de-
in the reacting shear flow LES. In Fig. 11, contour plots manding. Some savings in computati,.ns can be made by
of the filtered product species mass !raction obtained from approximating the transport terms in the scalar flux cjmma-
LES and DNS are presented. Figure 12 shows an instan- tion in a way analogous to what is done in algebraic Reynolds I
taneous product thickness distribution obtained from the stress closures (see Gibson and Launder (1976); Rodi (1980);

filtered DNS and LES data, including also some LES re- Schmidt and Schumann (1989); Taulbee (1992)). The per-
suits without the PDF model. These figures suggest that formance of these more elaborate models are presently being
LES captures the large scale feature in accord with DNS. assessed for the modeling of SGS covariance and TKE.
The figures also suggest that the inclusion of SGS fluctua-

tions gives results which are closer to DNS data titan those
predicted by the mean chemistry model. However, the PDF SOME FINAL REMARKS
method still needs to be improved further in order to exhibit
a better predictive capability. During the past century, dating back to the early pio-

The primary reasons for the discrepancies above are at- neering contributions of Pearson (1895); Edgeworth (1907); 3
tributed to errors associated with: (1) the estimation the Johnson (1949a), and Johnson (1949b), the construction 3
covariance, and (2) the shape of the PDF. We feel that with of "appropriate" PDF shapes has been a subject of broad

the simplified reaction mechanism considered in this flow, interest within the statistics and (old) biometrics research

the first factor is more important. This is indicated in Fig. communities. The outgrowth of these contributions has 5
13, where contour plots of SGS covariance are presented. been useful to investigators in other branches of physical

Again, while the LES and filtered DNS results show similar science. In fact, in classical turbulence research, statis-

trends, the agreement is not very good (see Fig. 14 for a tical methods (Taylor, 1935) of one form or another had

quantitative comparison of the covariance thickness). These been the primary means of dealing with turbnlence and its

two figures, along with Fig. 10, highlight the miodeling de- random" causes andl elFcets ( Ianchev, 1970; LItmiley, 1970;

ficiencies associated with the covariance transport equation Lesicur, 1990). In statistical modeling of turbulent react-

for LES applications. Thmerefore, while this e(qujtin mi, ha hig flows, the is(: of l'lll' mietlhods has lpr-vem partimi hrlyai
,,s<,fil. This is espec(:ially tri. if the PI)I" (or .joint I'I) F) of

9 S.H. Frankel, et al.
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equilibrium

saine problem exists in LES of non-equilibrium flows and 5
scalar quantities is considered. Tile preferred method is to mantifests itself in the inability to accurately predict SGS

obtain the PDF by means of its transport equation. This scalar covariance (and/or SGS scalar energy). Moreover, it

method is a subject of ongoing research (Pope, 1990) and is not clear which of the sets of low order moments are to be

there are still a numbehr of q itston• re tgard to its Aillt- usedl to paraonct.erize. t he mtniltivarial.e PD1. This drawback

ability for practical applications. LES catl be viewed as an is, however, decited less troublesome in that the Dirichlet

example of such an application, since it is viewed as more density can be replaced with other members of the joint

of a potential engineering tool than a robust scientific tool. Beta family which arc constructed with a higher degree of

With this view, assumed PDF methods are advocated as freedoill. Again, tile statistics and biometrics literature can
the present method of choice, at least in the context of the be helpfil for this purpose, and this issue is currently under
simple flows considered here. imivesLtigation.

lit this work, an attempt has been made to borrow k,,owl- At this point, it is ,icfil to make some remarks in re-
edge from the statistics literature in order to "pre.stmic" all gard to somne situations where assumlled PD" methods are
appropriate PDF' which performs reasonably well in LLS. Its not very successf.l. 'l'hese correspond to cases where an ob-

simple flows of research interest smich ;Ls a holmnogemmcous box ViollS choicU for the I')l" Call not be made. For example,
flow or a parallel shear flow this is a viable approach in light int highly non-equilibrium flames with complex multi-step
of the richness of literature ott their behavior (see Givi and mtlti-scalar chemistry with strong temperature dependent
Riley (1992) for a recent review). Consistent with the cur- reactions rates. I ,i LES of such flows, the application of

rent state of affairs inI RANS, these PD"'s arc all considered the IDl)F transport et~latioim may also be difficult. However,
in the context of a single point. This implies that all the ,,io- other less commputational intensive closures may prove use-

ments up to the second order (either Reytolds moments or frii. For examnple, tme -laminar dilfusion flaitelet model"
SGS moments) have to be provided externally. Based ont our (Willi;ums, 1975; Peters, 1984; Peters, 1986), or the "con-

earlier investigatiois along these lines (Maditia ce al., 1992; ditional mtoimment mimethod" (Bilger, 1993; Smiith el al., 1992;
Frankel et al., 1993; Miller ce al., 1993a), the use of tLie Klimeniko, 1990) mmay provide some alternatives. Amn ap-
Pearson family of PDF's appears to be most practical. This praisal study of the performiance of these models iii RANS
suggests a Beta density of tme first kind for eqnilibritiimi of tu.rbulent mixing layers has been reported by Miller et

(and frozen) chemistry, and the Dirichlet density for noJn- al. (1993b). The first model is applicable to cases where
equilibrium chemistry. In the specific cases considered, the cheinical reactionts occur in a narrow region near the flame
use of the Beta density provides a reasonable model for SGS surface. For sufficiently fast chemistry, but with finite values
probability description of a conserved scalar variable. How- of the Damk6hler number, Lite flame is located somewhere
ever, its actual use in LES requires the knowledge of time witlsii time (unresolved) smbgrid. The actual LE;S with this

filtered mean and the SGS variauice. This is currently troll- model rcquires tile co•str.rction of a flamelet library within
blesome in that contventional turbitlence closures do not seem the subgrid by which tie reacting scalar values can be ap-

to work well for predicting second order SGS meomeats. The proxintated. The applroximation* re(Iitires tile knowledge of

17 S.H. Frankel, et al. 3
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the filtered mean values of the mixture fraction (e.g. the Claus, R. W., Huang, P. G., and Maclnnes, J. M. (1989).
Shvab-Zeldovich variable), and its SGS rate of dissipation. Mesh refinement in a two-dimensional large eddy simula-
Therefore, modeled transport equations are needed to ap- tion of a forced shear layer. NASA TM 102129.
proximate these quantities. How effectively the dissipationI field can be modeled and how accurate the whole procedure Curt, R. L. (1963). Dispersed phase mixing: I. Theory
would be, needs to be determined. The second approach and effects in simple reactors. AIChE J. 9, 175-181.
can be considered somewhere between the PDF approach
and traditional moment methods. In its implementation for Dopazo, D. and O'Brien, E. E. (1976). Statistical treat-
LES, the averages of the reacting scalar field are defined ment of non-isothermal chemical reactions in turbulence.
"conditionally" on the values of the mixture fraction. The Combust. Sci. and Tech. 13, 99-112.
argument in support of this closure is that such conditional Dopazo, C. (1973), Non-Isothermal Turbulent Reactive

statistics portray less scatter than their unconditional coun- Flows: Stochastic Approaches. Ph.D. Thesis, Department
terparts. Therefore, their treatment may be easier. How- of Mechanical Engineering, State University of New York
ever, an extra dimcnsionality (associated with the domain at Stony Brook, Stony Brook, NY.
of the mixture fraction) is involved. Also, the actual appli-I cation of the model requires the input of the SGS conditional Edgeworth, F. Y. (1907). On the representation of statis-
expected dissipation. This could be very difficult since the tical frequency by a series. Journal of the Royal Statistical
behavior of this dissipation is less understood (Jiang et al., Society, Series A. 70, 102-106.
1992). Furthermore, as discussed by Miller et al. (1993b),
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Abstract I

A mechanistic model termed the Inter-Layer Diffusion Model (ILDM) is developed
and is implemented for the probabilistic description of scalar mixing in homogeneous
turbulent flows. The essential element of the model is based on the lamellar theory of
mixing in the context developed by Kerstein, 1 and proposes that there are two distinct
but coupled mechanisms by which the mixing process is described. These mechanisms n
are due to: (1) local events and (2) integrated global events. The mathematical formal-
ities by which the closure is invoked are described and it is shown that the conditional
expected diffusion of the scalar field depicted by the model depends more directly on I
local events. With the manipulation of each of these two mechanisms, several families
of scalar probability density functions (PDF's) are generated. These families include
some of the distributions generated by other mixing closures. The ILDM provides a I
physical format by which these other closures can be viewed. The similarity of local
events imply the similarity of the conditional expected diffusion as generated via these
models. The global events manifest themselves by the evolution of the conditional I
expected dissipation, and also the boundedness of the composition domain. While
the PDF's generated in this way are very different, their applications for modeling of
mixing limited reactions do not yield significantly different results. I
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I IntroductionI
Description of scalar mixing continues to be a challenging task in mathematical model-

ing of turbulent flows. 2-4 Within this past decade alone, several strategies have been de-

3 vised and implemented for a variety of applications. Examples are the approaches based

on scalar probability density function (PDF) via modeled transport equations,5 -11 assumed

3 PDF methods, 10 ' 12' 13 and other procedures such as the Linear Eddy Model (LEM),' 14,",

the Fokker-Plank equation, 16 spectral closures 17'1 8 and lamellar structures, 4' 1 amongst oth-

I ers. Due to the complexity of the subject, the extent of success of these closures has beein

3 appraised only in a limited context. In some cases, the performance of the models has been

assessed by comparison with data generated by direct numerical simulations (DNS)." 9 ,"

However, because of the limitations of DNS the generality of the conclusions drawn by such

comparisons cannot be guaranteed without caution. Also, the extent of data obtained by

3 laboratory experiments is not significant; it has been only recently that substantiated data,

3 useful for modeling purposes, have been generated.2 1' 22 Howe--er, the challenges associated

with the problem are well-recognized, warranting continued work on the subject.

A standard test case that has proven very useful in the contributions cited above, is the

3 problem of passive scalar mixing from an initial binary state in homogeneous-isotropic

turbulence.8-12'1 8 ' 23-28 In this setting, the problem of mixing is isolated from other corn-

I peting physical mechanisms. It also provides a relatively simple condition to configure if)

1 both laboratory and numerical experiments. In this context, turbulent mixing involves two

physical mechanisms: turbulent convection and molecular diffusion. The first is a mechanical

S"stirring" process which results in the stretching of intermaterial area of the scalar. Mix-

ing induced by such stirring is completed at small scales by the molecular action through

I diffusion of substances across intermaterial surface areas. The results of recent laboratory

3 experiments 29 and numerical simulations30 suggest that a major part of scalar diffusion oc-

*2
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curs in a system of layer-like striation, or lamellae. Each of these lamellae have a thickness 3
(2w) which in general is a function of space and time, i.e. w = w(t-, t). The rate of stretch-

ing and folding of the lamellar structures is governed by turbulent eddies. Development of a

physical model which can accurately portray the mechanisms of lamellar stretching as well

as the distribution of these lamellae are the subject of current research.4 '31,"- I

The lamellar description has proven useful in depicting the kinematics of turbulent mixing I
and also to reproduce the results obtained by other closures. For example, Kerstein1 shows

that with particular specifications of the scalar profile within each lamellae and the PDF

of lamellae thickness, the family of PDl)Fs generated by the Amplitude Mapping Closure

(AMC)",'6's are obtained. Fox16 employs the lamellar theory and provides an evolution

equation for the joint PDF of the scalar and its gradient based on the stochastic Fokker- I
Planck equation. The unknown coefficients of this equation are pre-specified to provide the

evolution of the PDF. With this method, the statistical behavior- at the asymptotic stage

must be known a priori, since the parameters of the model are adjusted to yield this behavior.

Our purpose in this work is to further examine the lamellar theory and to investigate some I

of its salient features for statistical modeling of mixing in turbulent flows. The formalities on

which the model is based are discussed in a mathematical context with an explicit descrip-

tion of the assumptions made in its simplifications for general applications. In the format

presented, the model is capable of characterizing the effects of various competing events on

the mixing process. An attractive feat tire of the model is its capability in explaining the 3
reasoning for the success (or lack thereof) of other closures in describing turbulent mixing

phenomena. However, as will be shwn.it a wide variety of solutions emerge. In the context, I
considered, a specific selection cainit te made. Neither is such a selection recommended 3
without further knowledge of the i IIr!,•,t:11 field, as many of these solutions are justifiable

on physical grounds. In fact, in a ,,iiplicated turbulent mixing problem, a combination of'

3 1
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these cases may exist.I

II Probability Modeling and the Lamellar Descrip-

I tion

With the assumption of Fickian diffusion, the transport equation for a passive scalar variable,

O(Z, t) E [41, .], in a homogeneous incompressible turbulent flow is expressed by:

I€ 0+ .v¢=DMV2v•, (1)

where U(Jt) and PM denote the velocity vector and the molecular diffusion coefficient,

respectively. Using standard methods5 the evolution equation for the single-point PDF,.

3 P(qS(i, t)) of the scalar is expressed by:

a| + a(DP) 0  (2)

or alternatively by:I
3 OP 02 (EP) 0 (3)Ot + 504,2 =0()

In these equations, 401, 0,, denote the scalar bounds, D represents the expected value of the

3 scalar diffusion conditioned on the scalar value, 40, and E denotes the expected value of scalar

dissipation conditioned on 4. E and D are related to the total scalar dissipation e by:

*4
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IOU = E(q$, t)P(Ok, t)dO = j OD(O, t)P(4, t)dqO.(4

At the single-point level, D, E and e are unknown and must be provided externally. This 1

describes the closure problem inherent in a statistical description at the single-point PDF 3
level.

Equation (1) indicates that mixing evolution is governed by two mechanisms: molecular

diffusion and turbulent advection. The former occurs primarily at small scales, whereas the 3
latter is a multi-scale phenomenon. For thin diffusion zones and sufficiently steep scalar

gradients across the scalar interfaces, the diffusion process takes place in a direction ap-i

proximately normal to the interface and can be treated as unidirectional. We represent this

direction by y which is bounded by striation thickness, w, that is -w < y < w. This thick-

ness is defined as a positive random variable which has a frequency defined by the Striation I
Thickness Distribution (STD)3 1' 4 h(w). The PDF of the scalar, conditioned on the lamellae

thickness is denoted by g(4lw) and is given by its definition: I
_ 1

g(Olw) 2w [dO[i- (5)

t0 elsewhere

The unconditional PDF of the scalar is determined by the Bayes' theorem:3

P(qS, t) = j f(w)g(Ojw)dw" (6)

I
where f(w)dw is the probability of the event that the scalar falls within the domain [w, w +

dw]. The corresponding PDF of this event is: 1

I
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f(W) = wh(w)
fo' wh(w)dw'

I Therefore, with the use of Eq. (5), we have:'

I
P(4(y,t), t) I Id IG(IIl), (8)

dO6

5 where I I indicates the absolute value, and

G(y) c(Y) (9)2<w>'

with C(w) denoting the cumulative distribution function (CDF) of w. Embedded in Eq.

I (5) is the assumption that - is.independent of the lamellae thickness. This relation which

3 was first obtained by Kerstein' yields a variety of PDF families depending on the STD

and the scalar profile within the lamellae. In general, both of these are time and space

dependent. The first term on RHS of Eq. (8) is governed primarily by molecular diffusion

which is dispersed by turbulent eddies. The second term on the RHS represents the role of

I the STD and manifest the influences of stirring. It is useful to think of the first term as a

3 representation of local events, and consider the second term as the influence of global events.

Of course these two are not independent and each of them is influenced by the other.

I

I III Conditional Statistics

Given the scalar PDF, Eqs. (2)-(3) can be used to determine the conditional expected dif-

I fusion and the conditional expected dissipation of the scalar field. With the PDF specified,
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the conditional expected diffusion is given by; U
D( _,t) 1 OF (10)P(4,t) at'

where F denotes the CDF of the scalar. From Eq. (8), we have: U
I

F(O(y)) = P(y)I Id3, = JG(Ill)dy, (11)

where y = y(o,t), and y, denotes the value of y corresponding to 01. Using Eqs. (8), (10)

and (11), D can be expressed as: I
D(O(y,t), t) = a(fll, G(Iy)dy) ay (12) U

Now with the assumption that the scalar distribution is monotonic within the lamella and

also assuming that y, is fixed, the conditional expected diffusion simplifies to the form:

D(Op(y, t), t) a= -,- O•-, (13)

This relation exhibits an important feature. It indicates that D is not "directly" dependent

on the STD and is chiefly governed by the transient scalar evolution within the lamellae.

Therefore, if the scalar distribution within the lamellar structures is the same - even approx-

imately - the conditional expected diffusion portrays the same behavior. With this view, it is I
not surprising that the majority of PDF closures and data obtained by DNS and laboratory 1

experiments yield similar conditional diffusion fields. 1 0 '36' 37 This issue will become clear by

a comparative assessment of the closures.
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The conditional expected dissipation is determined by using Eqs. (3), (8) and (11):I

IE((y, t), t) G - I)!(I L)Ldy. (14)

If y = y(4,t) and G = G(Iyl) are known, Eqs. (8), (11), (13) and (14) determine the PDF,

I the CDF, D, and E.

I
IV ILDMI
The specification of a self-similar scalar distribution within the inter-material domain allevi-

ates the formulation of the mixing problem in that the "exact" spatial variation of the scalar

field is not considered. Instead, this variation is governed by the STD. Thus, two closure

problems are involved: (1) specification of the time-variant domains and accounting for their

i stretching, and (2) determination of the scalar transport in each of these domains. Clearly,

the first closure is to determine h(w), and the second one deals with the specification of

scalar distribution within the lamellae.

i In the absence of a velocity field, one expects that the STD retains its initial form and the

I scalar profile evolves according to a pure diffusion equation. In a turbulent flow, however,

the STD is influenced by turbulent stirring, and the scalar distribution is governed by a

convection-diffusion transport equation expressed in a frame of reference attached to the

moving material element. This transport is governed by Eq. (1) with the velocity vector

replaced by a relative velocity vector (11 = , In the context of the lamellar theory,

as indicated before, it is assumed that I li, transport occurs in one principal direction. By

expressing Eq. (1) along the direct ion. aligned with the locai gradient of scalar, we have:I
I 8
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V'12 DM a2,

+;- Vreiy2 (15)

Here, V,,, is a time and space dependent function and denotes the effects of the relative I
velocity field 0,e in the direction of principal scalar transport. Ottino4 argues that in a

small size material region, the relative velocity can be approximated by a linear profile and

for an incompressible flow, Eq. (15) can be expressed as: 3

-o+a(Y'tOY = Vm 020 (16)

where -a(Y, t) is the surface area stretch function and is governed by hydrodynamics.

Ottino4 also suggests that in chaotic flows, a on average is approximately constant. There- I
fore, by a change of variable, PM can be set equal to unity. Equation (15), together with

a striation thickness PDF constitutes the basis of what we term the Inter-Layer Diffusion

Model (ILDM). With this model, turbulent mixing is modeled in terms of two distinct but 3
coupled mechanisms: (1) those associated with local events, and (2) those of the summation

of these events. The local events are described by the modeled form of the transport equation I
within the inter-layer material (Eq. (15)), and the global influences are exhibited through 3
the specification of h(w). In the ILDM, the effect of large eddies is implicitly subtracted

from that of all the other eddies. That is, in a frame of reference moving with large eddies 3
(those much larger than the scalar size), the remaining eddies determine the evolution of the

STD and the dispersion. of the scalar within the lamellae. The (indirect) dependency of the I
conditional expected diffusion on the striation thickness is governed by transport within the 3
normalized fixed region. This transport is described by the normalizing Eq. (15) with the

use of x = 6(y/w + 1), where 6 is an arbitrary constant; 3

9I
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0a 6Vi 0 62V 0240t + = (17)at W = T _W2 aX2.

This equation indicates that the striation thickness affects both the convection and the

diffusion of the scalar within the lamellae. For a linear velocity distribution, the influence

of hydrodynamic is exhibited only through the diffusion term. Therefore, in this case the

effects of the STD can be effectively manipulated by adjusting its parameters. This is well

understood since the molecular diffusion is a fluid property with a fixed length scale, and

turbulent diffusion is a flow phenomenon involving a spectrum of length scales. Therefore,

by normalizing the length with its thickness, each lamellae can be effectively treated with a

fixed size and a modified diffusion coefficient. In the form presented, a "specific" striation

thickness distribution cannot be suggested. However, it is argued that different physical

scenarios observed in either DNS, or laboratory measurements, or obtained by means of

other mixing closures can be expressed in terms of the model.

V Other Closures

For clarity of the discussions below, a brief summary of some of the other recently proposed

closures of turbulent mixing phenomena are presented. In these discussions, only the Am-

plitude Mapping Closure (AMC) and the Linear Eddy Model (LEM) are considered, since

these two models are the subject of broad current investigations.

The AMC provides an implicit manner by which the conditional expected dissipation and/or

the conditional expected diffusion are modeled. The basic element of the AMC involves the

mapping of the scalar field (4,) into a stationary Gaussian field 4o, -oo < 4,o < oo by the

mapping 4 = X(Oo, t). The transport equation for this mapping is of the form:6'8

10
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Ox + X 0 2X (18)-t a00 .-o ()

In this equation, t denotes a "normalized time" whose relation with the physical time cannot I
be determined in the context of a single-point description." For an initial binary state, 0 E

[-1, 1], composed of two delta functions at ± = -1, the solution of Eq. (18) is of the form:8

I
S= X(00o,0) = erf(doo + c), (19)

where d = C and r(t) = exp(2t)- 1, and 4)r = - >) is a

measure of the initial asymmetry of the PDF. This mapping results in an explicit equation

for the PDF.

P(Ot) = exp ([erf-1(O)]2 -2[erf-4(41)- v/T ] (20)

By a combination of Eqs. (20), (2) and (3), all the important statistical features of the closure

are determined. The final results for the conditional statistics, after significant manipula-

tions, yield: I
& I
D(O,t) = -/ - ( erf-'(< q>)- erf-'()) exp [-(erf-'(q))2] (21)

and 3

E(O=, t) 2 (1 rexp (-2[erf-( (22)

11 r



In the LEM, the primary feature of the closure is its treatment of the mixing phenomenon

in one direction. This one-dimensional description allows the resolution of all length scales

even for flows with relatively large Reynolds and Peclet numbers. This is facilitated by

differentiating between turbulent stirring (convection) and molecular diffusion (and chemi-

cal reaction). The physical interpretation of the one-dimensional domain is dependent on

the particular case under consideration 3 '15'- 4 ' (see Ref.42 for a recent review). Along the

one-dimensional domain, the diffusion (and the chemical reaction) process is implemented

deterministically by the solution of the appropriate molecular transport equation(s). The

manner by which turbulent convection is treated constitutes the primary feature of the LEM.

This is modeled by random rearrangement (stirring) events of the scalar field along the do-

main. The rules by which these rearrangement processes occur are established in such a way

that the random displacements of fluid elements mimic the effects of a turbulent diffusivity.

The application of this model in interpreting the results obtained by DNS data and those

based on the lamellar theory has been useful.43'44 This warrants further investigation of the

model and its capabilities.

Both of these models can be described in the context of the ILDM. In the AMC, the evolution

equation for mapping, Eq. (18) is analogous to Eq. (16) with 0 = X(Oo, t), and 00 = y. Also,

for an initial binary state, the initial condition for Eq. (16) is similar to that of the AMC.

Therefore the solutions of these two equations are similar (of error-function type as given

by Eq. (19)). For a linear velocity field, the effect of the STD can be absorbed into the

diffusion coefficient. In the AMC this coefficient is embedded within the normalized time

scale. Therefore, with the utilization of the error function distribution within the lamella, the

results based on the ILDM are expected to be similar to that of the AMC. Kerstein1 shows

that with the further assumption of a Rayleigh density for h(w), the two models becomc

identical. This assumption implies a Gaussian PDF for G(IyI) which yields an asymptotic

Gaussian-like density for the scalar PDF. Note that this asymptotic behavior is independent

12
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of the distributions within the lamellae and can be obtained for other members of the family

of the PDF's generated by the Johnson Edgeworth Translation (JET).10

The ILDM also portrays some similarities with the LEM. It can be argued that the LEM

provides a means of solving Eq. (17) with a random stirring mechanism to simulate the

influence -f turbulence. Kerstein 3 argues that this simulation is to be conducted by means

of a random triplet stirring. In this way, the effects of all eddies are taken into account by I
equating the implied "effective diffusivity" to the "turbulent diffusivity". This is enacted in a

one-dimensional representation of the system, regardless of the configuration. In the ILDM,

the linear effects of the largest eddies are implicitly subtracted from those of the remaining

ones. These remaining effects are modeled into two parts: (1) the dispersion effects are

captured by solving the scalar transport equation (Eq. (17)) between two interfaces, and I
(2) the distribution of these interfaces due to stirring are modeled. In other words, the

LEM considers the whole scalar field in a fixed size domain and simulates its evolution in a

probabilistic manner. In a homogeneous flow, the whole domain is considered for statistical

analysis. It is obvious that this sampling is not the same as that in the ILDM, since the

integration over all lamellae is dependent on the configuration of intermaterial structures I
(Eq. (7)).

I
VI PDF Generation

In the context of the ILDM, several families of scalar PDF's are generated. In the format

presented here, it is not possible to prescribe h(w) a priori; its exact specification depends on

the evolution of the length scales of he hiydrodynamic and the scalar fields. Therefore, the

contribution of this term is modeled. I hle other modeling assumption, in the form presented,

involves the behavior of the advect Win trin in Eq. (15). In this section, the family of PDF's

13
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generated by the manipulations of these two terms is presented, together with a discussion of

their relations with other closures. Both symmetric and non-symmetric PDF's are considered

and all the results are compared with data obtained by DNS. These data are taken from

homogeneous turbulence simulations in Refs.9"10' 12 With this comparison, it is not implied

that these DNS data provide an absolute standard for model validation, as various other

mixing conditions have been generated by DNS (e.g. see Refs. 27 '28 ). Rather, the results

3 here are intended to promote more future DNS (or laboratory experiments) with the aim of

capturing some of the trends predicted here.

I VI.1 Error-Function Distribution within the Lamella

For an initial binary state, one solution of Eq. (15) is of the form:I
!=erf -- + c' (23)

I where similar to those in AMC (Eq. (19)), 7 and c' are functions of time. Substituting this

equation into Eqs. (8), (9), (13) and (14) yields the scalar PDF,

* P(O(y)) = rexp [(j + e, G(IyI), (24)

I
the conditional expected diffusion,

I
2d( [ fy \2]

*D((y)) = [- -- c exp Y- +c')J (25)

I and the conditional expected dissipation,

* 14
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E(Ob(y)) 21~~eP-~+') yGjj U ,

. G(Iyl)exp / C)2] dy) (26)

In these equations, the variable c' is determined implicitly by knowing the average value of

the scalar < 4 > which is time invariant and is given by I
< 0 >= j (y)G(Iyj)dy = constant. (27)

An important feature of Eq. (25) is that regardless of the choice of a STD, the conditional I
expected diffusion obtained here is similar to that generated by the AMC (Eq. (21)). 3
Exponential STD:

The exponential STD represent the general case of a Rayleigh distribution and has been

proposed by Kerstein.' It has the form: i
I

h(w) = 8(n + 1)w' exp(-/3w'+1 ), (28)

where/3 = [Vr(;n,+2) 1 and F denotes the gamma function. Using this STD, the scalar

PDF adopts the form: I
)= exp ( + c') - #lyln+1]. (29)

15 f
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It is noted that for the special case of the Rayleigh distribution (n = 1), the generated PDF

3 is the same as that obtained by the AMC (Eq. 20), and the conditional expected diffusion is

expressed by Eq. (25). In general, the conditional expected dissipation cannot be presented

by an analytical expression. The exception is the Rayleigh distribution by which Eq. (26)

3 which can be analytically integrated:

E(O(y)) = exp(- [(A+ D + 2By + +

I/" B + dc] 1erf (2Ay+B ] [x B DY2 + By + c2) (30)

I TA BA

Here, A = + 1), B = ,% and D = 1). As expected, Eq. (30) is exactly the

S same as Eq. (22).

SThe fam ily of PD F's generated (Eq. 29) is characterized by the counter-b '" e of the two

terms in the exponential term. The positive term exhibits the influence of scalar gradient

I and is minimum around 0 = 0. The negative term denotes the STD effect and is maxi-

3 mum near the mean scalar value. In both terms, y is determined through Eq. (23). With

fixed scalar bounds, the positive term does not change but depending on the magnitudes

of n and r, the negative term varies. The influence of the STD on scalar PDF becomes

more dominant as n decreases and/or r increases. The statistical results generated for

n = 0, 1,3 are presented in Figs. 1-2. These results are for a symmetric PDF within [-1, 1],

g i.e. < 4' >= 0. As anticipated, the parameter n has a strong influence of PDF and on

the conditional expected dissipation, as Fig. l(b) is markedly different from the self-similar

bell shape observed for n = 1.26 The influence of the parameter on the conditional expected

diffusion is not significant and all the results resemble that shown in Fig. 1(c). For a system

composed of randomly distributed lamellae thickness, Sokolov and Blumen33,' suggest that

3 in the absence of stretching the STD is close to a gamma function. This corresponds to

* 16
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n = 0. In this case, the PDF's have non-negligible values at the scalar bounds and exhibit 3
the characteristics of an exponential-tail PDF (Fig. 1(a)). This figure indicates that even

for an error-function scalar distribution within the lamellae, it is possible to have long-tail 3
PDF's. From a physical standpoint this scenario corresponds to a case where there are no-

ticeable slabs of materials with long intermaterial distances. In these slabs, the molecular i
diffusion process with large characteristic time scales is unable to mix the scalar sufficiently, 3
thus unmixed regions prevail. This results in a concave up, basin-shaped profile for the

conditional expected dissipation near the mean scalar value. The existence of two maximum 3
and one minimum in these curves is a logical consequence of tendency of the conditional

expected dissipation to be zero at its bounds.1 0 Also, it is noted that the scalar is always

bounded within the same domain. That is the conditional expected dissipation is anchored 9
at 0 = ±1. This is due to the unboundedness of the STD. With the exponential distribution,

there are always slabs with infinite thickness which do not mix completely; therefore, the i

limits of the scalar field remain unchanged. The results for n = 3 suggest that the PDF is

somewhat uniform near the mean scalar value, but has sharp gradients in the composition i
domain. This is understandable since as the magnitude of n increases, the STD approaches

a delta function and the PDF portrays a double-delta like distribution. This behavior is

similar to the PDF evolution corresponding to a uniform STD which is presented below. In 3
this presentation, the results for different STD are compared with those corresponding to a II
Rayleigh STD (n = 1) and also with DNS data extracted form the simulations in Ref.9 This

comparison is made at the same magnitude of the normalized scalar variance. 3
Uniform Striation Thickness: i

Here, w is assumed constant (= w*) for all lamellae. This implies that a uniform field of

equal inter-material distances is considered. In this case, the PDF of the striation thickness

is composed of a delta function, i.e. h(w) = 6(w - w*). With this STD,

17
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r if -W*<Y:5W;I G(yjy) = 2w*
10 elsewhere

I which yields the PDF:

P(( if-w y w; (31)
0 elsewhere,

5 and the conditional expected dissipation:

1 2 3 2 fldTrd c

E(O(y)) = -exp(--3 ) 2 -1-D.-2(V2's) - ( -1 d- y -f-d)O_,(vl2) (32)

Here, D5, denote the parabolic cylinder function of order v,45 and a = ()2 + c') =err-(0).

For IjI < w*, the conditional expected diffusion is determined by Eq. (25). With this bounded

5 STD, the bounds of the composition domain are not fixed as shown in Figs. 3-4. The PDF's

g generated by the model are composed of two marching peaks and asymptotically form a

single peak at the mean scalar value. This evolution is similar to that of the Linear Mean

I Square Estimation 46 and is similar to that obtained from the solution of for the case of pure

diffusion with an initial double delta distribution. 6 This type of PDF evolution characterizes

mixing problems with small velocity effects and corresponds to the scalar evolution in a flow

3 dominated by small scales. The phiysical reasoning for this behavior is that small velocity

length scales do not produce a substanial large scale mixing and their influence is exhibited

only through enhanced diffusion. "I'liese results are also consistent with those generated by

the LEM in Ref.44

Constant STD:
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For a constant STD, h(w) is given by: I
h (w ) = "- -

l0 otherwise.

where, w. is a constant. With this distribution, Eq. (9) indicates that G(1yD) is a linear I
function of y, 5

G(IYI= if I51-< w.
10 elsewhere.

This results in the scalar PDF,

P(O(Y)) Vf: {jrexp [(2 + c)2] -1 if IvI • w. (33) 1
0 elsewhere.

In the range Iyl -< w., D is given by Eq. (25), and E is given by Eq. (26) in which Eq. 5
(27) determines the magnitude of e. After significant mathematical manipulations, the final I
results yield the form:

2 zi exp- 2S)1dr de~
2exp(-ys 2  Y(F y Wu)72jT + v,/w.~ D....(V2-s)

+ dT r dr3

Here again, DA denotes a parabolic cylinder function of order v, and ± signs correspond

to those of y. The results for the PDF and the conditional statistics (Figs. 3-5) indicate i
that with mixing progression, the PDF migrates towards the mean value of the scalar. The I
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I
boundedness of the striation thickness also yields the migration of the scalar bounds as

evident by the profiles of the conditional expected dissipation and the conditional expected

diffusion. The trimodal nature of the PDF at early times has not been observed in available

DNS but has been captured by LEM.4"

ILinear STD:

I The linear STD is defined by:

h(w)if 0<w w;
10 otherwise.

U With this STD, we have:

IG(tyl) = i IYI _ W.;
10 elsewhere

D and,

32- P(4(Y))_ = Trexp [(• + C)2] ]•jy if IyI ; (35)

l0 elsewhere

For Iyl 5 w, D is determined by Eq. (25) and E is expressed in terms of parabolic cylinder

* functions through the relation:

2 exp(-2s2 ) Y(r!(2  1 + -32 _(~)=I W2)__ + V2 -(W2 _ 2) dc] D-..i(V~s)r w2-y y2  
w 2 dt dr

S[(W 2 - 32ld + 2 ,••-rde] D_ -(v'2s)
+dt + Y1 -2(
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+ [6ty- 2v'r• 1c D-3 (VIS) - f6Trdr1 D...(iV2_s)) . (36)
StdtJt

The results for PDF, E and D in this case also show the influence of migration of scalar 5
bounds as mixing proceeds.

The comparative assessment in Figs. 3-5 shows the properties of each of the closures. It is

noted that the profiles of the PDF and the conditional expected dissipation are different, i
each case indicating a possible mixing condition. None of the PDF's generated in this way

yield an asymptotic Gaussian state as exhibited by the profiles of the conditional expected

dissipation. Despite these differences, the profiles of the conditional expected diffusion are 3
very similar in all the models. The primary difference is near the bounds. For the cases with

finite striation thickness, the models alloik for the migration of scalar bounds. For the case 3
with infinite bounds, the conditional statistics are anchored at scalar bounds. For the cases a
with linear and constant STD's the PDF's resemble those produced by the JET. 10 However,

the conditional statistics as depicted b;" the models here are closer to DNS results.

The difference between the closures is better exhibited by the results for the non-symmetric

case. A comparison of all the closures is made in Figs. 6-8 for < 4) >= 0.25. The procedure for

producing these results is identical to that for the symmetric PDF. However, the numerical

means of evaluating the constant c' is somewhat more involved. For non-symmetric PDF's, I
this evaluation is made by an iterative procedure based on Eq. (27). In this case, the PDF's

as produced by all the closure are very close and asymptotically tend to be concentrated 3
near the mean scalar value. However, the difference between the closures is most obvious in

the profiles of the conditional statistics. It is noted that the conditional expected dissipation

for n = 1 (AMC) always yields a symmetric profile regardless of the extent of asymmetry

in the PDF. The rigorous mathematical reasoning for this behavior is given in Ref.4 ' The

distributions produced by other models (Fig. 7) and also with other values of n (not shown)
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do not portray this behavior. As indicated in Fig. 7, the results for all cases with a finite STD

I bounds are close to DNS data. The conditional diffusion for n = 1 does portray the non-

symmetric nature of mixing, but is still always anchored at the bounds of the composition

domain. The same trend is observed for all the cases with unbounded STD's.

VI.2 Effects of Scalar Distribution within the Lamellae

There are other scalar profiles which satisfy Eq. (17). The solution of this equation depends

primarily on the velocity field. Here, several simple velocity fields are considered along with

a Rayleigh and a linear STD. These two distributions are selected to show the influence

of the striation boundedness. The scalar profiles are obtained by the spectral-collocation

solution of Eq. (17) within a fixed physical domain (0 < x < 27r).

Rayleigh STD:

With the specification of this STD, the results are dependent on the velocity distribution. For

a pure diffusion transport within the lamellae, i.e. V,,, = 0 in Eq. (17), the generated PDF

is Gaussian-like as expected. This is shown in Fig. 9(a) and indicates that the integrated

influence of local diffusion effects results in a global diffusion behavior. For a linear velocity

profile (V.,e = ay), the results exhibit similar trends as those governed by the AMC; for

a = 1 the results are identical to those of the AMC. By varying the magnitude of a, the

counter-balance between the convection term and the diffusion term in Eq. (17) changes but

the general behavior of the scalar PDF remains the same. Therefore, the primary difference

is displayed through the time scale of the PDF evolution. For a constant velocity profile,

the results in Fig. 9(b) show a significant departure from those of AMC and those shown

in Fig. 9(a). Figure 9(b) indicates a significant magnitude of the PDF at the bounds of

the composition domain, yielding an exponential type PDF. The results for this case arc

22



also compared with those based on AMC and LEM in Fig. 10. The exponential nature of

the PDF, which cannot be generated by AMC, is captured by LEM. This is shown both I
in PDF plots and in the profiles of the conditional expected dissipation. Note the basin

shape structure of the conditional dissipation profile. This structure, similar to that in

Fig. 1(b) imply tails close to a Laplace (double exponential) distribution for the PDF. As 3
before, there are no significant changes in the conditional diffusion profiles. An increase

in the amplitude of the velocity results in a faster evolution of the PDF towards the mean 3
value. An asymptotic exponential scalar distribution has not been observed in most previous I
numerical simulations, 24' 37 ,'23',2 5' 10 the exceptions are those in LES results of Ref. 27 and in

DNS results of Ref. 28  I

Linear STD:

For this bounded STD, the results with different velocity profiles are presented in Figs.

11-13. For the pure diffusion case, the scalar PDF adopts an .approximate rectangular

form. This implies the same probability at all the scalar ranges with an accommodation of 3
the boundary encroachment. Again, the results are very similar to those produced by the

LMSE characterized by linear profiles of the conditional expected diffusion (Fig. 11(c)). Fora

a linear velocity profile, the migration of scalar bounds (Fig. 12) results in an approximate

Gaussian-like asymptotic PDF. However, the conditional expected dissipation is not uniform. I
A constant velocity profile results, as before, in the formation of exponential-like PDF's (Fig.

13). Therefore, the conditional expected dissipation portrays a basin like profile at the mean

scalar value. This profile becomes steeper as time increases. The profiles for the conditional 5
diffusion are similar to those presented in Fig. 11(c) and are not shown.

The results presented in Figs. 9- 13 reveal the dominant influence of the velocity field on

the evolution of the PDF. These -simple" profiles are selected here only for the purpose of

demonstration. Obviously, in a turblent flow field with a wide spectrum of eddy sizes, the
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influence of the velocity field is more complex. Motivated by the results here, the assessment

I' of the role of velocity field by DNS is strongly recommended. However, due to the small

range of the Reynolds numbers that can be considered by DNS, such an assessment could

be very difficult- but is currently under way. In the meantime, other approaches by which

the effects of convection in Eq. (17) can be examined, should be followed. For example, the

LEM provides one means of doing exactly so.

VII Applications for Modeling of Reacting Flows

Perhaps one of the most important applications of mixing closures is due their use for mod-

eling of turbulent combustion. 5', 19,2 The results generated here can be used directly for mod-

eling of mixing controlled homogeneous chemically reacting systems. Namely, in determining

the limiting rate of reactant conversion in a simple chemistry of the type YF+ 0 -- Products.

It is now well-established that in a binary irreversible reaction of this type, the statistics of

the reacting field can be related to those of an appropriately defined mixture fraction.4" This

mixture fraction is a conserved scalar variable, similar to the variable 0 considered above.

Therefore, all the PDF's produced by the ILDM can be utilized for estimating the statis-

tics of the reacting field in a homogeneous flow with an initially segregated (nonpremixed)

reactants.

The ensemble-mean values of the mass fractions of the reacting species are the most impor-

tant physical variables from a practical standpoint. Therefore, it is useful to examine the

differences between the PDF's in predicting the rate of mean reactants' decay. For unity

mass fractions for the free stream fuel and oxidizer, the conserved scalar variable 4 can be

defined as 4 = F - 0, where F and 0 denote the mass fractions of the fuel and the oxidizer,

respectively. Nonpremixed reactants imply an initial binary state for the variable 4'. There-
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fore, the initial PDF of 4, is composed of two delta functions at 4, = ±1. If the reactants are

introduced in stoichiometric proportions, < 4 >= 0 and non unity equivalence ratios imply J
non-zero values for the mean mixture fraction. In fuel-rich mixtures, < 4, > > 0. With

the AMC, Madnia et al.9 have analytically integrated the PDF for the evaluation of the I
mean reactants mass fractions. In non-stoichiometric mixture, i.e., the final results are in

the form of definite integrals of the parabolic cylinder functions. In stoichiometric mixtures,

the results simplify considerably and are directly related to the mixture fraction through: I

<F>(t) _ <O>(t) 2 arcsin( sin" (37)
<F>(0) <O>(0) -r ( [ ) (3) I

I, denotes the "intensity of segregation" and represents the normalized variance of the mix-

ture fraction: !

I
< ,12 > (t)
<12)> (0)(8

For non-stoichiometric mixtures and for other probability distributions generated here, an-

alytical solutions are not possible and the results can be obtained only by integrating the

PDF numerically. The final results for all cases are presented in Figs. 14-16. These figures 1
represent the rate of mean mass fraction decay in terms of I, for both stoichiometric and 5
non-stoichiometric mixtures. For the stoichiometric case, obviously both reactants decay at

the same rate (Fig. 14-15). For the fuel-rich mixture, the oxidizer is depleted faster and

there is a surplus of fuel left at the final stages of mixing (I. z 0). In all the cases con-

sidered, the results indicate that there is not a substantial difference between the closure I
predictions. Based on these observations, the analytical relations of Madnia et al.9 are rec-

ommended for predicting the limiting rate of mean reactant conversion in both homogeneous

and non-homogeneous mixtures, at least until the development of more accurate closures.
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VIII Summary

It is shown that the lamella' theory provides a simple means of "mimicking" several scalar

mixing scenarios in homogeneous turbulent flows. The model described here is an extension

of that first proposed by Kerstein1 and suggests that there are two mechanisms by which

the mixing process is described. These mechanisms are due to: (1) local events and (2)

k global events. The local effects are described by the distribution of the scalar within the

lamellae, and the global effects are exhibited by the statistical distribution of the striation

thickness. The properties of the model are described with a detailed examinations of the

statistical features of the scalar field. It is shown that the difference between all the closures

are exhibited in the profiles of the Probability Density Function (PDF) of the scalar and

the conditional expected value of the scalar dissipation. However, all the cases yield similar

profiles for the conditional expected diffusion of the scalar. This behavior is mathematically

described in the framework of the model and explains the similarity of the conditional diffu-

sion as observed in previous contributions.10 ,36 3 7 In all the cases, the primary influence of the

conditional diffusion is shown to be through its behavior at the bounds in the composition

domain. It is also shown that with the manipulations of each of the two primary mecha-

nisms, many different PDF's can be generated. Some of these PDF's have been observed

in previous DNS studies and some have been captured by other mixing closures. However,

some of the cases considered here are yet to be observed (in DNS, experiments, other clo-

sures etc.). It is claimed that this does not necessarily imply the non-physical character of

the mixing scenario in these cases. Rather, it indicates the need for further test cases to

be considered in future simulations and experiments. In these efforts, one must be careful

in identifying the roles of the velocity and scalar length scales as these scales may lead to

different asymptotic behaviors. In this regard an assessment of the model by means of DNS

in the form recently reported in Ref.2" and by LEM in the context proposed in Ref." is
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useful. Also, the flexibility of the model may offer an assistance to other closures which are

based on a priori knowledge of the statistical evolution (such as Ref. 6 ). Some work in these

regards is currently underway. Finally, it is shown that while the PDF's generated by the

model are very different, their application for determining the limiting rate of mean reactant

conversion in mixing limited nonpremixed turbulent flows do not yield significantly different 3
results. Thus, the closed form expression obtained for one of the models is approximately

valid and is recommended for all the other cases. I
I
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Figure Captions

Figure 1. Statistical results based on an exponential STD. n = 0, < 4 >= 0. (a) PDF, (b)
Normalized conditional expected dissipation. (c) Normalized conditional expected diffusion. I
Figure 2. PDF results based on an exponential STD. < 4 >= 0. (a) n = 1, (b) n = 3.

Figure 3. Comparison amongst the PDF's generated via various closures and with DNS. I
< 4 >= 0. (a) a2 = 0.3175, (b) a 2 = 0.0526, (c) a = 0.01346.

Figure 4. Comparison amongst the conditional expected dissipation generated via various I
closures and with DNS. < 4 >= 0. (a) a2 = 0.3175, (b) a2 = 0.0526, (c) c,2 = 0.01346.

Figure 5. Comparison amongst the conditional expected diffusion generated via various
closures and with DNS. < 4 >= 0. (a) a"2 = 0.3175, (b) ,2 = 0.0526, (c) a2 = 0.01346.

Figure 6. Comparison amongst the PDF's generated via various closures and with DNS. S
< 4 >= 0.25. (a) a 2 = 0.39, (b) a 2 = 0.13.

Figure 7. Comparison amongst the conditional expected dissipation generated via various
closures and with DNS. < 4 >= 0.25. (a) a2 = 0.39, (b) Or2 = 0.13.

Figure 8. Comparison amongst the conditional expected diffusion generated via various
closures and with DNS. < 4 >= 0.25. (a) a2 = 0.39, (b) o = 0.13.

Figure 9. ILDM prediction of the scalar PDF with a Rayleigh STD, < 4) >= 0, and (a) a
V,.e = 0, (b) a constant inter-layer velocity profile.

Figure 10. Comparison of ILDM prediction based on a Rayleigh STD and a constant inter- 1
layer velocity profile with the results based on the AMC and the LEM. < 4) >= 0. (a)
PDF, (b) Normalized conditional expected dissipation. (c) Normalized conditional expected
diffusion.

Figure 11. ILDM prediction with a linear STD and V,,e = 0, < 4) >= 0. (a) PDF, (b)
Normalized conditional expected dissipation. (c) Normalized conditional expected diffusion.

Figure 12. ILDM predicticon with a linear STD and a linear inter-layer velocity profile.
< 4 >= 0. (a) PDF, (b) Ncrmalized conditional expected dissipation.

Figure 13. ILDM prediction with a lintear STD and a constant inter-layer velocity. < 4 >= 0.
(a) PDF, (b) Normalized conditional expected dissipation.

Figure 14. Decay of mean reactants* ctncentration in a stoichiometric mixture as predicted I
by the ILDM with an exponential S'I).

Figure 15. Decay of mean reactant %" c,,,rentration in a stoichiometric mixture as predicted
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by the ILDM with several diff'erent STD's.

I Figure 16. Decay of mean reactants' concentration in a fuel-rich mixture as predicted by the

ILDM with an exponential STD.
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