
NAVAML: P6xý" LA"

Montey, Caifornia

AD-A280 068I rliii Ill~ l~II r11 l111111111 1111

IPA

mmQUALMT

THESIS
PRELIMARY FULGT SOFTWARE SPInCAT[ON

FOR THE Mi AMATElR NAVY SATELLrTE
(PANSAI)

by

Tera Owen Ford

March, 1994

___Thesis Advisor: Douglas J. Fouts
w Smeud Reader: Frederick W. Terman

a I Approved for public releams; distribution unlimited.

ELECTE:,

94 6 7 10-- -

Fo=' Aipproved
RrnORT DOMUHETATION PAGE ý OND No. 0704

"tic reportins burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
oeotrction of information, Including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302,
wd to the Office of Nanagemnt and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

. AENICY tK ONLY 2. REPORT DATE 3. REPOT TYPE AMW DATES COVEREDharch, 1994 Master's Thesis

TITLE AND SUBTITLE 5. FUiDING NUMBERS
PRELININARY FLIGHT SOFTWARE SPECIFICATION

FOR THE PETITE AMATEUR NAVY SATELLITE (PANSAT)

S. AUTNOR(S)

Ford, Teres Oman

7. PERFORMING ORGANIZATION NAMECS) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT iUMER

Navel Postgraduate School
Monterey CA 93943-5000

R. SPONSORING/NONITORING AGENCY IUDJE(S) AND ADORESS(ES) 10. SPONSORING/NONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are t..ose of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Goverrment.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

3. ABSTRACT (maxium 200 words)

PANSAT is a small, spread-spectrum, communications satellite under design at the Navat Postgraduate School. It
will sapport a store and forward bulletin board system for use by the emateur radio community. The flight software is
responsible for the autonomous telemetry collection and harduare control operations of the satellite, commnications
and fiIs transfer protocols allowing access to the bulletin board system, and command interpretation and response to
ground control commands. In this thesis, the complete flight software architecture and module interfaces are
specified using the Estelle Formal Description Technique. The module bodies dealing with communications and file
transfer protocols are specified in detsit in Estelle. The current design goat for the remainder of the flight
software modules are discussed. Appendices include the preliminary flight software specification itself, a data flow
diagrem interpretation of the specification, and a summary of the Estelle syntax used.

4. SUBJECT TENS 15. NUMBER OF PAGES
211

PANSAT, Software Specification, Estelle, Amateur Radio, Store and Forward 16. PRICE CODE

7. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

ISN n540-01-280-5500
Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Apprvwd for -uli retesas dstribution unlimited.

Preliminary Flight Softwar Specification For the Petite Amateur Navy Satellite

(PANSAT)

by

Teresa Owen Ford

Lieutenant, United States Navy

B.S., United States Naval Academy, 1985

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 1994

Author:
Teresa Owen Ford

Approved by: -x&wr4

& glas I. Fouts, Thesis Advisor

Frederick W. Terman, Second Reader

Michael A. Morgan, C man

Department of Electrical and Computer Engineering

ii

ABSTRACT

PANSAT is a small, spread-spectrum, communications satellite under design at the

Naval Postgraduate School. It will support a store and forward bulletin board system for

use by the amateur radio community. The flight software is responsible for the

autonomous telemetry collection and hardware control operations of the satellite,

communications and file transfer protocols allowing access to the bulletin board system,

and command interpretation and response to ground control commands.

In this thesis, the complete flight software architecture and module interfaces are

specified using the Estelle Formal Description Technique. The module bodies dealing

with communications and file transfer protocols are specified in detail in Estelle. The

current design goals for the remainder of the flight software modules are discussed.

Appendices include the preliminary flight software specification itself, a data flow

diagram interpretation of the specification, and a summary of the Estelle syntax used.

Acceossion Toy"

ITIS GFR&I-
DTIC TAX 0
Unaimomwaed
JustItcoatio

Availability WoesO
iii al• eand/or

at1 Speclal

S.... • yi

TABLE OF CONTENTS

1. INTRODUCTION 1

A. PANSAT 1

B. GOALS OF THE FLIGHT SOFTWARE 1

C. SCOPE OF THIS THESIS 2

IH. THIRD PARTY SOFTWARE 4

A. SPACE CRAFT OPERATING SYSTEM 4

B. BAX .. 4

1. AX.25 4

2. BAX Application Programs........................... 5

3. TAX Functions 6...............................6

C. FILE TRANSFER LEVEL 0 7

HI. THE PANSAT FILE HEADER 9

A. FUNCTION 9

B. STRUCTURE 9

C. FIELDS TO BE FILLED IN BY SOURCE 11

1. ag ... 11

iv

2. Mail Number 12

3. File I.engt.................................. 12

4. File Type 13

5. flomn esiornI Tye 14

6. Body Offset 15

7. Source 15

8. Priority 5

9. Number of Destinations and Destination 1 through Destination 7 15

10. Title Length and Title 16

11. Keyword Lngth and Keywords 17

12. Header Checksum and Body Checksum 17

D. FIELDS TO BE FILLED IN BY SATELLITE 18

1. Download Count 19

2. Upload Time and Expire Time 19

3. PANSAT File Name and PANSAT File Extension 20

IV. THE SPECIFICATION LANGUAGE - ESTELLE 22

A. FORMAL DESCRITIMON TECHNIQUE 22

B. CLARITY 23

C. STATE MACHINE MODEL 25

D. MODULE COMMUNICATIONS 26

E. DETAIL AND ABSTRACTION 27

V

IM P.,,,i• ,• •. •. ,,•
S..

V. DATA T1ANNER MODULJE 29

A. FUNCTION 29

B. TIMEB AXCNROLCKO..T..O......OCK.. 29

C. STATES OF THE DATA TRANSFER MODULE 32

VI. PACKET TRANSFER MODULE - PACKET TYPES 34

A. FILE TRANSFER LEVEL 0........................... 34

B. PACKET FORMAT 34

C. THE DATA AND DATA END PACKETS................. 36

D. THE LOGIN RESPONSE PACKET 38

E. THE UPLOAD COMMAND, UPLOAD GO RESPONSE, AND

UPLOAD ERROR RESPONSE PACKETS 39

F. THE UPLOAD ACKNOWLEDGED RESPONSE AND UPLOAD

NOT ACKNOWLEDGED RESPONSE PACKETS 43

G. THE DOWNLOAD COMMAND PACKET 45

H. THE DOWNLOAD ERROR RESPONSE PACKET 47

I. THE DOWNLOAD ACKNOWLEDGED COMMAND, DOWNLOAD

COMPLETED RESPONSE, DOWNLOAD NOT ACKNOWLEDGED

COMMAND, AND DOWNLOAD ABORTED RESPONSE

PACK1S...................................... 48

J. THE DIRECTORY COMMAND PACKETS 50

K. THE SELECT COMMAND AND SELECT RESPONSE PACKETS 52

vi

L TiE DRUErM COMMAND AND DELETE RESPONSE

PAC•KE S 60

VII. PACKET TRANSFER MODULE - STATE TRANSTONS 62

A. TRIGGERS 62

B. INSTANTIATIONS 62

C. TRA SIIONS 63

D. STATES 64

1. ULJDL UNIN T. 65

2. UI.....WIT 66

3. WArTrMAIBOX 67

4. UL DATA RX 69

5. UL ABORT 70

6. DL FILE DATA 71

Vie MAILOX CONTROL MODULE 73

A. FIUNCTION 73

B. SOURCE RECORDS 74

C. RESPONSE TO MESSAGES FROM THE PACKET TRANSFER

MODULE 76

1. The 'active si q' an 'tve _sl_riep' Messages 76

2. The 'mail num req' and 'mail.num_resp' Messages 76

vii

3. M1w 'mmml necv' md 'mkiljwý Mes up ksages 77

4. The 'mmml,_ik• andcloscresp' Messa 77

5. Tim 'ms•tqcreq' and 'Msdeq__,c' Messages 78

6. The 'mail f"' and 'Mail p' Messages 78

7. The 'dl ack' Message 79

8. 'dir and 'q' Meau a 8o

9. The 'mail deljreq' and 'mail del...res' Messages 80

D. RESPONSE TO MESSAGES FROM OTHER MODULES 81

1. The 'list mail' and 'mailUlist' Messages 81

2. The 'postbulletin' and 'delete-bulletin' Messages 82

3. The 'full mailbox' and 'purge mail' Messages 83

4. The 'store user telem' and 'delete-user telem' Messages 84

IX. REMAINIHG MODULES 85

A. TELEMETRY GATHERING MODULE 85

B. AUTOMATIC CONTROL MODULE 93

C. GROUND CONTROL MODULE 96

D. EVENT LOGGING MODULE 100

X. CONCLUSIONS AND RECOMMENDATIONS 101

A. THE USE OF ESTELLE.............................. 101

B. RECOMMENDATIONS FOR FURTHER WORK 102

viii

APPENDIX A - ESTELLE SOFTWARE SPECIFICATION 105

APPENDIX B - DATA FLOW DIAGRAMS . 174

APPENDIX C -ESTELLE SYNTAX 183

LIST OF REFERENCES 195

INITIAL DISTRIBUTION LIST 196

ix

LIST OF TABLES

TABLE 1.1 FUNCTIONAL AREAS OF THE FLIGHT SOFTWARE 2

TABLE 2.1 BAX FUNCTIONS 7

TABLE 3.1 PANSAT FILE HEADER FIELDS 10

TABLE 3.2 FILE TYPES 13

TABLE 3.3 COMPRESSION TYPES 14

TABLE 5.1 BAX CONTROL BLOCK FIELDS 30

TABLE 6.1 PACKET TYPES 35

TABLE 6.2A EXAMPLE OF A data PACKET...................... 37

TABLE 6.2B EXAMPLE OF A data-end PACKET 38

TABLE 6.2C EXAMPLE OF A login resp PACKET 39

TABLE 6.3A ERROR CODES 41

TABLE 6.2D EXAMPLES OF uploadicmd PACKETS 42

TABLE 6.2E EXAMPLE OF AN ulgo resp PACKET 42

TABLE 6.2F EXAMPLE OF AN ul error.resp PACKET 43

TABLE 6.3B ERROR CODES 44
TABLE 6.2G EXAMPLE OF AN ulackresp PACKET.............. 44

TABLE 6.2H EXAMPLE OF AN ulnak resp PACKET 45

TABLE 6.21 EXAMPLES OF download and PACKETS 46

TABLE 6.3C ERROR CODES 47

x

TABLE 6.23 EXAMPLE OF A dl error _ sp PACKET 48
TABLE 6.2K EXAMPLE OF A dack d PACKET. 49

TABLE 6.2L EXAMPLE OF A d/_rewsdp PACKET 49

TABLE 6.2M EXAMPLE OF A d/_nak and PACKET 49

TABLE 6.2N EXAMPLE OF A d/ aborted resp PACKET 50

TABLE 6.20 EXAMPLES OF dir cmd PACKETS 51

TABLE 6.4 BITS '654' OF THE RELATIONAL OPERATOR 54

TABLE 6.5 BITS '3210' OF THE RELATIONAL OPERATOR 54

TABLE 6.6 HEADER ITEMS 55

TABLE 6.7 LOGICAL OPERATORS 56

TABLE 6.2P EXAMPLES OF select cmd PACKETS 58

TABLE 6.2Q EXAMPLE OF A select resp PACKET 59

TABLE 6.3D ERROR CODES 60

TABLE 6.2R EXAMPLE OF A del cmd PACKET 61

TABLE 6.2S EXAMPLE OF A del resp PACKET 61

TABLE 7.1 PACKET TRANSFER STATES 65

TABLE 7.2 STATE TRANSITIONS FROM UIDL UNINIT 66

TABLE 7.3 STATE TRANSITIONS FROM UL/DL CMD WAIT 66

TABLE 7.4 STATE TRANSITIONS FROM WAITMAILBOX 68

TABLE 7.5 STATE TRANSITIONS FROM ULDATARX 70

TABLE 7.6 STATE TRANSITIONS FROM ULABORT 71

TABLE 7.7 STATE TRANSITIONS FROM DL FILEDATA 72

xi

TABE 8.1 FIOLDSOF SOURCE RI 74

TABLE 9.1 HARDWARE ETY POINTS 87

TABLE 9.2 SCOS TELEMETRY POINTS 89

TABLE 9.3 BAX TELEMETRY POINTS......................... 89

TABLE 9.4 GENERAL SYSTEM TELEMETRY POINTS 91

TABLE 9.5 AUTOMATIC CONTROL MODULE FUNCTIONS 95

TABLE 9.6 FUNCTIONS OF THE GROUND CONTROL MODULE 97

TABLE C. 1 PASCAL SYNTAX USED IN APPENDIX A 183

TABLE C.2 ESTELLE-SPECIFIC RESERVED WORDS 189

xii

SYMBOL TABLE

SYMBOL WERE USED MEANING

bold thesis and specification A Pascal or Estelle reserved word.

ira cs thesis and specification A specification constant, including a
member of an enumerated type.

ALL CAPS thesis and specification Module name or state name.

BeginningCaps thesis and specification Name of a user defined type.

'singlequotes' thesis Name of a variable or record field in
the specification, or the contents of a
variable or recoro field.

OxNN thesis and specification A hexadecimal number. -N" stands
for the digits 0 through F.

uchar thesis and specification "Unsigned character': 8 bits of
(primitive data type) binary data, a I byte unsigned

integer, or 1 ascii character.

uint thesis and specification "Unsigned integer": 16 bits of
(primitive data type) binary data, a 2 byte unsigned

integer, or 2 ascii characters.

ulong thesis and specification "Unsigned long integer": 32 bits of
(primitive data type) binary data, a 4 byte unsigned

integer, or 4 ascii characters.

int thesis and specification "Integer": a signed integer.
(primitive data type)

xiii

ACKNOWLEDGEMENT

I would like thank my advisor, Professor Fouts, for allowing me infinite flexibility

in my approach to this thesis, and my second reader, Professor Terman, for his diligent

proof reading and many helpful comments. Very many thanks go to the knowledgeable

Mr. Jim Homing of the Space Sytems Academic Group, without whose tireless

assistance this project would never have been begun, much less completed.

Also I would like to thank my husband, Bruce, my daughter, Robin, and my son,

Douglas, whose loving support enabled me to persevere.

xiv

i. INtRODUCTION

A. PANSAT

The Petite Amateur Navy Satellite (PANSAT) is a small, experimental,

omma s satellite currently being designed and constructed at the Naval

Postgraduate School (NPS) and scheduled to be launched from the space shuttle in 1996.

The stellite will use half-duplex, spread-spectrum communications and will support a

store and forward bulletin board system for use by the amateur "HAM" radio

community. PANSAT will operate autonomously in the performance of many of its

functions, while also carrying out commands issued by the ground control station located

in Monterey, CA at NPS.

B. GOALS OF THE FUGHT SOFTWARE

The flight software will control the autonomous operation of the satellite, allow

amateur radio operators access to the onboard bulletin board or "mailbox" system, and

provide the means for the satellite to respond to commands from the ground control

station. The major functional areas of the flight software are listed in Table 1.1. There

are other software functions which are equally important to the PANSAT project, but

outside the scope of the flight software. These include the "bootstrap" software which

will control initial configuration of the satellite systems upon launch or reboot, "client"

i1

ground station software for use by the amateur radio community, and "commanding"

software for the ground control station.

TABLE 1.1 FUNCTIONAL AREAS OF THE FLIGHT SOFTWARE

1. Communications Protocols for Amateur Radio User Access and File Transfer

2. Telemetry Gathering and Storage

3. Control of Satellite Hardware Systems

4. Command Interpretation and Response to NPS Ground Station Control

C. SCOPE OF THIS THESIS

This thesis is the result of the initial attempt at specification of the flight software

for PANSAT. The hardware systems are still evolving, which means that hardware

control, command interpretation, and telemetry gathering requirements are still being

defined. The only requirements which can be completely defined this early and remain

essentially unchanged, regardless of the final hardware configuration of the satellite, are

the communications protocol and mail handling functions. For this reason, the actual

preliminary software specification, which can be found in Appendix A, concentrates on

the mailbox system and the transfer protocols for uploading and downloading files. The

preliminary architecture for the remaining software modules is sketched out, and

interfaces have been defined between all modules.

2

Some existing third party software, designed specifically for communications

satellites, will be used aboard PANSAT to support the applications software being

devdoped at NPS. The commercial software used will be introduced in Chapter I1. A

PANSAT file header has been developed to assist in proper maintenance of the mail

storage system. The elements of this file header will be explained in Chapter TH.

Chapter IV will discuss the specification language, Estelle, in which Appendix A is

written. Chapters V through VIII will explain the functionality of the software modules

which have received the most attention in Appendix A, those dealing with file transfer

and mailbox control. Chapter IX will introduce the preliminary goals for the remainder

of the flight software, which has yet to be specified in detail. Chapter X will contain

conclusions and recommendations for further work. Appendix B contains a graphical

interpretation of the specification in Appendix A. This interpretation uses data flow

diagrams which provide a visual means of identifying the software architecture and

module interfaces. Appendix C will provide some details of the syntax of Estelle.

3

I r
".O 9 ,

EL THIRD PARTY SOFTWARE

A. SPACE CRAFT OPERATING SYSTEM

The role of DOS (Disc Operating System) on a personal computer is filled by

SCOS (Space Craft Operating System) on the computer aboard PANSAT. SCOS is a

real time, multi-tasking, operational environment designed specifically for the needs of

a small satellite.[gef. 1] It supports applicatiC written in the "C- programming

laguage, and many of the primitive functions familiar to 'C" programmers are

available through the Space Craft Operating System. These include file management

capabilities, dynamic memory allocation, bit and byte manipulations, and logical and

matemnatical operations. Within the SCOS operating environment, the various modules

which make up the flight software are running as concurrent processes, able to pass data

among themselves. They arm put to -sleep" when they are not needed, saving CPU time,

and are "woken up* again whenever their services are required.

B. SAX

1. AX.2M

AX.25 is a variant of the CCnTr X.25 link-layer protocol, and is designed

to provide reliable data transport between two signaling terminals.WRefs. 2, 3] This

asynchronou data transfer protocol is currently in wide use by the amateur radio

community for packe communications, and has thus been selected for use in

4

communications with PANSAT. To incorporate AX.25 functionality into the

communications software aboard PANSAT, a program called BAX is employed.

BAX is the BekTek corporation's implementation of the AX.25 protocol. It

is designed to work with the Space Craft Operating System. Because of the availability

of the BAX software, the actual functionality of the AX.25 protocol is transparent to the

al nprograms developed for the satellite. The software designer and programmer

need only consult the BAX manual [Ref. 4] to discover how to access the capabilities

required. For the amateur radio operator, the AX.25 protocol is normally implemented

by a piece of dedicated hardware known as a TNC (terminal node controller), or by

software contained in a PC (personal computer) based system.

2. BAX Application Nogramns

In order to utilize the capabilities of BAX, a "BAX application" program

must be written. In the PANSAT flight software specification, the primary BAX

application is known as the DATA-TRANSFER module (see Chapter V). Other

modules, such as GROUND-CONTROL, may also access the services of BAX.

BAX has the capability of receiving frames addressed to various applications

which are distinguished from each other by having different ssid's (subsystem

identification numbers). PANSAT will be addressed by a multi-character Amateur Radio

CalMsign, "PANSAT", for example. This callsign may be modified by use of ssid's to

access different functions aboard the satellite. For instance, the data transfer module will

have ssid '1', and the HAMs will send their mail to "PANSAT-l". The command

interprete, GROUND CONTROL, may have ssid '2', so that commands from the NPS

5

rwid Mion could be seat there directly by MX without Whaig to be in the same

fomat as that recognized by the bulletin board system.

BAX communicates directly with the hardware drivers which operate the

radio equipment on the satellite. As incoming frames are received, BAX handles all of

the AX.25 protocol requirements, and notifies the appropriate application module of the

receipt and the source of each transmission. In the case of the data transfer module, the

frames passed to it by BAX must be assembled into the packets required at the next

higher protocol level. This is the level of the PACKETJTRANSFER modules described

in Chapters VI and VII. When the data transfer module receives a packet from a packet

transfer module for transmission to a ground user, the data transfer module breaks the

data into frames which it passes "down" to BAX for transmission in accordance with the

AX.25 protocol.

3. BAX Fundtlons

The accessing of most BAX functions by PANSAT application modules is

represented in the software specification as messages being passed through an

AbstractBax Channel. In fact in the specification model, all communication between

modules is accomplished via "channels", each channel having certain types of messages

defined which can be passed through it. These channel and message definitions form the

interface specification between software modules (see Chapter III and Appendix A). The

BAX functions accessed are listed and briefly explained in Table 2.1.

6

TABLE 2.1 BAX FUNCTIONS

qaxjnput BAX informs PANSAT application of user connection request,
us disconnect, or incoming data frame.

qx claim PANSAT application tells BAX what callsign and ssid it will be
using.

qu data PANSAT application passes data to BAX for transmission.

qaWbusy PANSAT application informs BAX that it is "busy" and will not
be accepting incoming frames.

qaxW nbusy PANSAT application informs BAX that it is no longer 'busy"
and will once again accept incoming frames.

qaxconacpt PANSAT application accepts a user connection request

qaxcon rej PANSAT application rejects a user connection request

qax connect PANSAT application sends a connection request to ground station

qaxui PANSAT application sends an unnumbered information frame to
a ground station.

qax_ PANSAT application disconnects from a ground station.
disconnect

C. FILE TRANSFER LEVEL 0

File Transfer Level 0 (FI10) is an asynchronous connected mode file transfer

protocol developed by Jeff Ward and Harold E. Price for use with the PACSATs (packet

satellites). In a connected mode protocol, there is a virtual link between each user and

the satellite, with each transmission having a specific destination. This is in contrast to

a broadcast, or unconnected mode protocol, in which communications are intended to be

picked up by anyone listening.

7

,,- ý7, 14 , M-M _1

An -p ation of FrLO is currently available to amateur radio operators in the

form of the program "P(O along with several utility programs that work along with it,

such as "PHS" and "PFHADD". Although the specification for FTLO contains

provisions for both uploading and downloading files from a satellite, only the uploading

capabilities are implemented by the current version of "PG". For downloading from the

satellites which currently employ FTLO, the non-connected mode, "PACSAT Broadcast

Protocol" (Ref. 5], is used. This is implemented by the program "PB' and it's utilities.

The specification for FTLO [Ref. 6] is used as the motivation for the specification

of the PACKETTRANSFER module aboard PaANSAT (Chapters VI and VII). The

specification of the packet transfer module in Appendix A is much more detailed than

(Ref. 6], in an attempt to show how the protocol will actually be implemented by the

software aboard the satellite at the lowest possible level. The PANSAT implementation

will employ an FTLD-like connected-mode protocol for both upload and download.

An effort has been made to remain as compatible as possible with any other FTLO

implementation. Some of the specific requirements of PANSAT and certain design

decisions have led to some variation from [Ref. 6]. As source code for "PG" was not

available, it is unknown at this point whether that software will actually be able to

communicate with PANSAT. PANSAT-specific ground station software, capable of

communicating with the packet transfer module specified here, will be developed by NPS

and made available to the amateur radio community.

8

M. THE PANSAT FILE HEADER

A. FUNCTION

Each file maintained in the mail box memory of the satellite must begin with a

PANSAT file header. The header includes information such as the file number, file

name, file length, source callsign, destination callsigns, upload time, and expiration time.

The information in the header is necessary for the proper maintenance and administration

of the mail box. It can also be used by a client to determine which files onboard the

satellite may be of interest. The selectonmd makes use of the various fields of the

PANSAT file header in its selection criteria (see Chapter VI).

B. STRUCTURE

The PANSAT file header is inspired by, but is not the same as, the PACSAT File

Header developed by Jeff Ward and Harold Price [Ref. 7]. It is arranged as a variable

length array of unsigned characters (bytes). The fields nearest to the beginning of the

header have fixed positions and fixed lengths. The lengths of other fields are specified

within the header itself, causing the positions of the later fields to be variable, and

dependant on the fields ahead of them.

The byte positions, field names and formats are listed in Table 3.1. Note that

positions and field lengths through byte 41 are fixed. Each of the fields "Destination 1I

through "Destination 7" is either present, with a fixed length of 6 bytes, or absent

9

co ny, based upon the contents of the *Number of Destinations" field. The fields

MTtle" and "]yords" have variable length, based upon the contents of the fields 'Title

Lngth" ad "Keyword Legth', respectively. The column Coust refers to the constant

name given to the associated field in the specification of Appendix A.

TABLE 3.1 PANSAT FILE HEADER FIELDS

Byte(s) Const Name Format

[0..1] fixed fl Flag <OxBB> <0x55 >

[2..5] fixed mn Mail Number ulong

(6..9] fixed MI File Length ulong

[10] fixed ft File Type uchar

[11] fixed ct Compression Type uchar

[12.13] fixed bo Body Offset uint

[14] fixed dc Download Count uchar

115..20] fixed sc Source array[6] of uchar

[21] fixed pr Priority uchar

[22..25] fixed Ut Upload Time ulong

[26..29] fixed et Expire Time ulong

[30..37] fixed na PANSAT File Name array[8] of uchar

[38..40] fixed ex PANSAT File Extension array[3] of uchar

[41] fixed nd Number of Destinations uchar

[42..47] approx. ds Destination 1 array[6] of uchar

[48..531 approx. Destination 2 array[6] of uchar

[54..59] approx. Destination 3 array[6] of uchar

[60..65] approx. Destination 4 array[6] of uchar

[66.371] approx. Destination 5 array[6] of uchar

10

TABLE 3.1 PANSAT FILE HEADER FIELDS

Byte(s) Const Name Format

[72..77j approx. Destination 6 array[6] of uchar

[78..83] approx. Destination 7 array[6] of uchar

[84] approx. Title Length uchar

[85..114] approx. di Title array[30] of uchar

[115] approx. Keyword Length uchar

[116..195] approx. kw Keywords array[80] of uchar

[196.. 197] approx. Header Checksum uint

[198.. 199] approx. Body Checksum uint

C. FIELDS TO BE FILLE IN BY SOURCE

A PANSAT file header must be prepended to any file before it is uploaded to the

satellite. Certain fields within the header must be completed by the user station where

the file originates, while other fields are filled in by the satellite once the file has been

completely uploaded. The user must place all zeros in those fields which the satellite

will complete. These satellite responsible fields will all be of fixed length. The fields

for which the user is responsible are as follows:

1. Flag

The flag indicates that this is the beginning of a file with a PANSAT file

header. The flag must always consist of the same two bytes: '0xBB' followed by '0x55'.

Example of the flag field: 10111011 01010101.

11

2. Mail Number

A mail number, or file number, is assigned by PANSAT to each file. This

number is not known to the user until it is provided by the satellite in an upload.go resp

following an uplDoadmd from the ground station. (See Chapter VI, section E.). The

user software has two options here. The simplest is to leave 4 bytes of O's in this field,

and let the satellite update it after the upload. If the upload is interrupted, however, it

will be the responsibility of the user software to *remember" the number associated with

the partially uploaded file, and to provide it to the satellite in the next uploadcnd which

will continue the process. The obvious place to store the number is in the file header.

For this reason, it may make more sense to choose the second option, which is to place

the proper number in the header before transmission of the file begins. Of course, this

will also necessitate adjusting the header checksum before transmitting. (See subsection

12).

3. M~e Length

The file length is a four byte unsigned integer (ulong). The source software

must place in this field the number of bytes contained in the file, including the PANSAT

file header.

12

4. Rk Type

The file type is a one byte field which indicates the format of the file body.

The satellite does not care about the file format, as it treats all files simply as arrays of

bytes. The information in this field is for the use of anyone who downloads the file, so

that they will know how it must be read. The contents of this field will be interpreted as

in Table 3.2. The first eleven of these types are the same as those defined by Price and

Ward in [Ref. 7], and some of them might never be used aboard PANSAT. They are

included for completeness, and to provide as much parallelism as possible between this

specification and FrL.

TABLE 3.P FILE TYPES

00000000 ASC D .file
00000001 RLI/MBL message body. Single message.

00000010 RLI/MBL import/export file. Multiple message.

00000011 UoSAT Whole Orbit Data

00000100 Mficrosat Whole Orbit Data

00000101 UoSAT CPE Data

00000110 MS/PC-DOS .exe file

00000111 MS/PC-DOS .com file

00001000 Keplerian elements NASA 2-line format

00001001 Keplerian elements "AMSAT" format

00001010 Simple ASCII text file, but compressed

13

TABLE 3.2 FILE TYPES

Field Contents Fle Type

101000 PIANSAT short format telemetry file

10100001 PANSAT long format telemetry file

10100010 PANSAT bax telemetry file

1111110 User defined type.

5. Compression Type

If the body of the file is compressed, the source must indicate the type of

compression used in this one byte field. Again, the satellite does not care whether or not

a file is compressed, or if so, how. This information is for the use of the downloading

user only. Note that no matter what file format or compression type is used in the file

body, the PANSAT file header will aiw,- s be uncompressed ASCII text. Compression

types are indicated by Table 3.3. "Use defined type" in Table 3.2 and "Other" in

Table 3.3 indicate that a file format or compression type not listed is being used. The

user must know the type, perhaps based on the source or title.

W
d

TABLE 3.3 COMPRESSION TYPES

Field Contents Compression Type

00000000 No compression

00000001 PKARC

00000010 PKZIP

00000011 Other

14

6. Body Offset

The body offset is a two byte unsigned integer (uint). The source must enter

in this field the byte number at which the file body begins; that is, the number of the

byte following the last byte in the PANSAT file header. This is where the file format

and compression type will take effect, as far as the ground user is concerned. Note that

the first byte in the file header is number 0. If there are 200 bytes in the file header,

then the body offset will be '200' (OxOCS).

7. Source

The source field identifies the origin of the file, or the ground station from

which it was uploaded. The uploading user's HAM callsign, consisting of six ASCII

characters, must be entered in this field by the client software.

a. Priority

No particular use for the one byte priority field is currently specified for the

satellite software. The user is free to use this field for his own purposes, such as to

indicate the relative urgency of messages to addressees who share the same interpretation

for this field. Any one byte bit pattern may be entered in the field, as long as the header

checksum takes the contents into account.

9. Number of Destinations and Destination I through Destination 7

If the message to be uploaded is intended for receipt by between 1 and 7

individual destination stations, then this is the number which is placed in the one byte

unsigned integer .of the "Number of Destinations" field. The appropriate number of

15

7it

'Do• "e ds are then used to indicate the HAM calhign of the addrems. Any

unusd destination fields am left out of the header. If the soure wishes to indicaf that

a message is intended for all users, then the number 'OxOW' is placed in the 'Number of

Destinations" field, and no destination fields are used.

To modify the "all users' destination, the uploading station may chooe to

include a "source path* or a "destination path' to further define the intended audience

for the file. If a source path is to be included, then the number 'OxOS' is placed in the

"Number of Destinations" field, and all 7 of the destination fields awe included as a single

42-byte path field. Any ASCII string may be placed in this field to indicate a source

path or other source identification. Similarly, if a destination path is to be included, the

number '0x09' is placed in the 'Number of Destinations" field, and the 42-byte path field

is used to indicate a destination path or to identify the intended audience.

The satellite will not attempt to interpret destination paths or identifications.

It is up to the potential downloaders to use this information, either by reading it after

downloading file directories, or by providing strings to compare with the path field in

selct cnds (see Chapter VI).

10. Title Length and Title

The "Title" field is a variable length array of from 0 to 30 bytes. The "Title

Length' field must be entered by the source to indicate the actual length of the title. The

title should be an ASCII string which will indicate to potential downloaders the contents

of the file body. If there is an original file name, which it is important to keep with the

file, it may be entered here. PANSAT does not otherwise retain original file names,

16

SI I n I l.

as4ning its own after upload. The title informaion is for the use of potential

dowaloa,&dn only, and the sateli does not attempt to interpret this firld.

11. Keyword Lrwth. and Keywords

Like the *Tide" field, the "Keywords field is a variable length array of

ASCII characters. The -Keyword Length- field must be used to specify the actual

length, of between 0 and 80 bytes. Keywords should be separated f•rm each other by

one or more spaces. The satellite does interpret keyword information, but will attempt

to find keywords of interest within this field if so directed by a select d.

12. Header Checksum and Body Checksum

The header and body checksums are used to verify the integrity of a file after

uploading or downloading is complete. The body checksum must be calculated first,

since it is included in the header and is thus a factor in the header checksum. All bytes

in the body of the file are added together as unsigned 8-bit integers. The least significant

two bytes of the resulting sum are placed in the body checksum field. The header

checksum is the result of adding all bytes in the header together, except for the header

checksum itself, and taking the least significant two bytes of the sum. The source must

take care to update the checksums if any part of the file or header is changed before the

actual upload begins. When the file number to be used has been identified by the

satellite, for instance, if the source then replaces the zeroes in the "File Number* field

with the proper number, those four bytes must also be added to the header checksum.

17

If Oins mince is not able or does not desire to calculate these checksums,

either orboh ofthem nay beleftout. In this case, the fields must be filled with all

wemoes. The satellite will not fill in or update 'all zero* checksum fields. When the

satellite perform file integrity checks, any all zero checksum will be ignored and that

check will be skipped. Because of this, corrupted files may remain aboard the satellite

undetected. It is up to the file's source to determine whether checksums are required.

Currently, there is no way to distinquish between 'no checksum' and a checksum which

is actually '0'. Consequently, any checksum which is calculated to be exactly zero will

be ignored. This can be remedied by adding a character to the Keywords or Title field,

adjusting the appropriate length field and recalculating the checksum.

D. FIELDS TO BE FILJED IN BY SATELLITE

As previously stated, the uploading source of a file may choose to leave the "File

Number' field of the PANSAT file header filled with zeroes. If the satellite finds that

this has been done, it will fill in this field and update the header checksum appropriately.

When the satellite 'updates" a checksum, it does so simply by adding to it any bytes with

which it has replaced zeroes. When nonzero field contents must be changed, the existing

bytes are subtracted from the checksum, and the new bytes added to it. This happens,

for instance, when the 'Download Count" is updated (see below). The least significant

two bytes of the sum are placed into the checksum field. The checksum is not

completely recalculated, as this would invalidate the purpose of checking the integrity of

the bytes uploaded.

18

There ar several additional fields within the PANSAT file header which must be

filled in by the satellite. The satellite software updates the header checksum whenever

it places information in any of these fields. The satellite will never change a body

chwcmkm. The satellite responsible fields are described in the following subsections.

1. Download Count

In this one byte field, the satellite software keeps track of how many times

a particular file has been successfully downloaded. For a file addressed to wall", the

download count is incremented each time a download is completed. For a file addressed

to between one and seven individual callsigns, the count is incremented only when a

download is completed to one of the intended addressees. The information in this field

is used to determine whether a file has been previously downloaded when the default

selection list is being formed (see. Chapter VI, section K). The satellite software looks

at the header of each file to see if the current client is one of the addressees. If there are

five addressees listed, for instance, and the client is one of them, but the download count

is already at '5', it is assumed that the client has already downloaded this file.

2. Upload Time and Expie Tlie

The "Upload Time" field is filled in after a complete file has been

successfully uploaded. When the final bytes of a file have been received, and the file

has passed the integrity checks (such as checksums), the satellite "stamps" it with its

current onboard time. This time is in the form of a four byte unsigned integer which is

a count of the number of seconds since January 1, 1970 (the UTC, or Universal Time

19

Comutb). Then the cu:rt amount of time allotted to each file to stay aboard the

saltelio is added to the upload time to form the expiration time. This number is placed

in the Expire Time field. The amount of time allowed for each file may change based

upon satellite loading. When the expiration time for a file is exceeded by the clock

onboard the satellite, that file is discarded.

3. PANSAT File Name and PANSAT File Extension

As each file is uploaded to the satellite, the satellite software assigns a DOS

file name and extension to it. This is the file name which will be used by the onboard

file management system to access the file. It is also used to easily associate each file

with it's source without having to read any header fields. The 8-byte file name assigned

consists of the 6 character source callsign preceded by two ASCII spaces. The file

extension consists of 3 ASCII numerals (0 through 9), which indicate the sequence of

files uploaded from this particular source. For instance, the first file uploaded by

callsign ABCDEF would be named " ABCDEF.001", the second would be

"* ABCDEF.002", etc. Extensions are repeated after number "999". It is unlikely that

any file would remain with an extension that is up for re-use. But if that happens, the

next unused extension will be assigned instead.

Certain file names are used by the satellite to indicate particular kinds of files

generated aboard the satellite, rather than uploaded by users. These include

"OBULETIN.xxx" and "USRTELEM.xxx". Files with the name "BULLETIN" contain

information of general interest posted by the satellite or ground control operators and

addressed to all users. Files with the name "USRTELEM" contain satellite telemetry

20

%+Ad may beof harnmu to umes. USRTELEM films will be in the format PANSAT

AMwittlmmry fle3. Tlhis format has not bern comnpletely specfied as yet, and will be

pubfidied at a laow date.

21

IV. THE SECIFICATIO' T LANGUAGE - ESTELLE

A. FORMAL DESCRIPTION TECHNIQUE

A formal description technique (FDT) is a method of precisely defining the

behavior of a system. It is generally advantageous to employ an FDT in the design and

specificatn of software because descriptions produced in this way tend to be more

complete, consistent, pre•se, concise, and unambiguous than descriptions produced in

a natural language, such as English. For the specification of the PANSAT flight

software, the language Eselle has been chosen. Estelle is a formal description technique

which is based on an extended state transition model and uses much of the familiar

syntax of the programming language Pascal.[Ref. 8]

As stated in Chapter H, the operating system chosen for the computer aboard

PANSAT supports software written in the "C' programming language. For this as well

as other reasons, such as development and debugging tools currently available to the

Space Systems Academic Group at NPS, the implementation languages for the flight

software will be 'C', 'C + +', and assembly code as required. In spite of this, there

are many reasons for developing the software specification in a description language like

Estelle, prior to implementing it in a compilable language such as "C". Some of these

reasons are addressed in the following sections.

22

B. CLARMgY

One of the most important aspects of a software specification is clarity. The

purpose of the specifcation is to clearly communicate the intended behavior of the

program to those who must acually write the software (both the original version and

later revisions) as well as to those who must use it. The behavior described by the

speification must be verifiable to be the correct behavior by the systems designers who

define the requirements of the system. A programming language like "C" is certainly

very precise, but is often lacidng in the required clarity, at least as far as humans other

than the original programmer are concerned.

A particular "C" statement is written in a particular way and will cause a particular

event to occur. What is not obvious is whether the particular event that occurs is exactly

the event intended. When some software requirement is translated directly from an

English description into a programming language implementation, there are several

dangers. First of all, it is difficult to guarantee that the English description is sufficiently

unambiguous that it will be understood and translated in exactly the same way by

everyone. Second, if the translation is off somewhat and the software written implements

a slightly different requirement than that intended, it can be difficult to catch the error

by examining the code. Third, since the code is more precise than the original English

description, it may be tempting to use it as the description of required behavior as the

program is debugged and modified. Some programming languages, "C* in particular,

are sufficiently terse that it can be difficult to extract a complete understanding of the

intended behavior directly from the code without intense examination. Comments are

23

god awVb tis prblem - mad we ar back to the ambiguities of the English

laguage. Of course, eve if a prein description of behavior is extracted from the code

and comments, it may no longer be the intended one.

The Pascal syntax used in Estelle, though more precise and unambiguous than

English, is more obvious and easily readable than "CU. Simple, well-understood, and

extremely precise programming language constructs are used. These include whlke

statements, If/ten-ebe constructs, and for loops, as well as function and procedure calls

[Ref. 8%. The specific Pascal syntax used in Appendix A is summarized in Appendix C,

Table C. 1. Pascal was developed as an educational language and is designed specifically

to be clear and easily understood; the syntax is very straight forward. The intricate and

often inscrutable statement construction of a high-powered language such as *C" is

avoided.

Using Estelle, an English description of required behavior can be translated into

a precise series of program-like statements. These statements are sufficiently readable

that the resulting behavior can be easily analyzed and compared with the intended

requirements. An ambiguous requirement statement is made crystal clear, once it has

been set down in the proper series of precise Estelle statements. Once the formal

specification is in place, there should be only one way to translate it, the correct way.

Any software implementation must then be checked against the required behavior

imparted by the Estelle description. When the program does not act in a useful way, it

can be easily determined whether the original requirements statement was at fault, or

whether the program code is flawed. When the software must be modified throughout

24

the life cycle of the host system, the originally intended behavior of the existing code will

be more easily understood from the specification than from the code itself.

Of course, the specification must be maintained up-to-date along with the code.

If the system requirements change, this must be reflected in the specification. The

specificaon should always be the most accurate description of the currently intended

behavior of the software system.

C. STATE MACHINE MODEL

Many software systems, including communications protocols, can be modeled as

state machines. A major function of the PANSAT flight software is to implement

communications and file transfer protocols between the ground users and the satellite.

State machines provide a convenient way of modeling the software and describing its

required behavior. Estelle extends the syntax of Pascal to include constructs specifically

designed to clearly convey a state machine architecture. The behavior of each module

is defined by its reactions to each legal stimulus it may receive while in each specific

state. Even where several different states are not required for the proper functioning of

a module, the state machine architecture still provides a convenient way to show the

module's reactions to different inputs, and provides a means of identifying what inputs

are anticipated and legal and what inputs are illegal or unexpected.

While individual statements primarily use common Pascal syntax, the hierarchy of

the program modules and the module interfaces are defined by the Estelle state machine

model. There are Estelle-specific reserved words which are used to establish the state

25

ma•hine archilchire and to define odhr aspects of the specification which are beyond

the scoape of the Pascal syntax. These reserved words, the specification segments with

which they are associated, and their functions are listed in Appendix C, Table C.2.

D. MODULE COMMUNICATIONS

Communications between various program modules are very clearly defined in

Estelle. What types of information are passed between precisely which program modules

is thoroughly spelled out. The set of channel definitions, whch controls the flow of

information between modules, is also the module interface definition.

In the software specification, several channels are defined. Each channel definition

includes a list of the message types which can be *passed* through that channel. Each

end oi the channel is named and the message types are direction-specific. For instance,

module 'A', attached to the 'User' end of a particular channel, may request information

from module 'B', at the 'Provider' end, using one of several different 'request'

messages. Module 'B' will reply using one of a completely different set of 'response'

messages.

The name of a message type and the channel it is passed through may in itself

provide all the information that is needed. In other situations, specific parameters must

be passed. The parameters to be passed with each message are listed in parenthesis next

to the message name in the channel definition. Estelle is a strongly typed language, and

this requirement extends to the parameters passed between modules. The type of each

parameter is indicated in the message definition.

26

Each program module has a module header definition and a module body

definition. The module header definition includes a list of all the "interaction points"

available to the module. These interaction points are channels, and the end of the

channel to which the module is attached is indicated for each. The interaction points are

the only means by which information can be passed from one module to another. The

nature of each information exchange is thus precisely defined. In the modvar section

at the end of the software specification, channels are attached explicitly between the

various modules. The channel definitions, module header definitions, and the modvar

section, taken together, completely define the architecture of the software system.

E. DETAIL AND ABSTRACTION

One final advantage of using a formal description technique such as Estelle, is that

various levels of abstraction can be used to clarify the specification. Abstraction can be

used to ignore details irrelevant to the context at any point, so that the local complexity

of the description can be decreased and the overall understanding increased. Abstraction

can also be used to continue with a description even though some essential details are not

yet known. Commonly used functions, such as those assumed to be readily available

from the operating system, can be defined as "primitives", the actual details of their

internal implementations unimportant. Hardware specific details which are not known

when the specification is being developed can be defined abstractly, with the specifics

to be filled in later.

27

In contat, any level of detail desired can be included. Thus, if minute details of

the specific hardware implemetation to be used are known, they can be indicated in the

specificatin to avoid mistakes. Detailed algorithms which demonstrate a method for

obtaining the specific results desired can be drawn out. In the specification of Appendix

A, the communications protocols and mailbox control are described in somewhat minute

detail, at a level where specific hardware requirements are unimportant. The portions

of the specification dependant upon hardware configurations are merely indicated in a

high-level architecture, with all details to be worked out as more information becomes

available.

28

V. DATA TRANSFU MODULE

A. FUNCTIN

The DATA-TRANSFER module provdes the interface between the high level file

trnfrprotocol used by PANSAT and the BAX link-level AX.25 protocol software.

It is the primary "BAX application program." The PACKET-TRANSFER module,

described in Chapters VI and VII, relies on the data transfer module to reassemble the

AX.25 level frames passed from BAX into the complete packets uplinked from the

ground station. The data transfer module also receives packets from the packet transfer

module, breaks them down into frames, and passes them on to BAX to be transmitted

to the intended user.

B. THE BAX CONTROL BLOCK

Communication with the BAX program is accomplished via the BAX functions

listed in Chapter 1. These are represented in the Estelle specification of Appendix A by

the message types within the AbstractBaxChannel. Many of these messages have a

punraet of the type Control-Block. The control block is a data structure defined in

[Ief. 4] which carries much of the actual information passed between BAX and the

application program. QAXCLEANCB is a BAX function which provides a control

block structure with all fields initialized to zero. This is the only BAX function

referenced in the specification by a procedure call rather than by a message type.

29

TIe defntion of the ControlBlock type appears somewhat diffrently in

Appenix A than in [Ref. 4]. It has been altered to match the syntax and avoid the

reserved words of the remainder of the specification and includes only those fields which

are actually used by the data transer module. The control block fields used are listed

in Table 5. I along with the information each conveys.

TABLE 5.1 BAX CONTROL BLOCK FIELDS

App. A (ReO . 4] Type Information
Name Name

link channel uint Indicates which of the 30
possible BAX links a frame
has come in on, or which it
should be sent out over. In
effect, designates the ground
user at the other end.

kind type enumerated Indicates the type of
Frame_Type information carried by the

control block. If qatdota,
then the data from a data
frame has been placed in an
Fdata buffer, included as
another message parameter. If
qatstate, then the state of the
link has changed, and the new
state is indicated by the
'I-state' field. If qatai, then
an unnumbered information
frame has been received.

30

TABLE S.1 BAX CONTROL BLOCK FIE

App. A [Re. 4] Type Information
Name Name

1staft state enumerated Indicates the new link state in
Link State a qatjtate kind of

Control Block. Only two of
these states concern the data
transfer module:
qasconnectjpend indicates
that a user has requested to be
connected with the satellite.
qasfisconnected indicates that
a user link has been
terminated.. The reason for
termination can be determined
from the 'why' field.

why cause enumerated Indicates the reason for a link
Cause state change. Causes include

qaclocal (action of the
satellite), qacremote (action
of the ground station),
qacremotefimr (AX.25
protocol error) and
qactimeout (maximum
number of frame retries
exceeded).

my.call struct CallsignType Indicates the application
AX25_ADDR array[6] of uchar program's call sign, which is
my-call always the satellite's call sign.

myssid uchar Indicates the application's
subsystem identification
number (to distinguish the data
transfer module from the
ground control module, for
instance).

31

TABLE 5.1 SAX CONTROL BLOCK EZLD)S

; p. A iMd. 41 Typem
tt

N :e;Npame

hiscal suct CasignType Indicates the ground station's
AX25 ADDR call sign.

his-ssid his-c uchar Indicates the ground station's
subsystem identification
number

ti ti uchar The number of seconds to use
for the link-level frame
timeout-timer. If a frame
acknowledgement is not
received within tl seconds of
transmission, the frame must
be retransmitted.

maxframe maxframe uchar The maximum number of
frames 'in flight* at one time -
the link-level sliding window
size. Must be 1 -7.

retry retry uchar The maximum number of
times to retry a frame
transmission before terminating
the link.

paclen paclen uint The maximum size of the data
field on an outgoing frame.
Must be < = 256 bytes.

C. STATES OF THE DATA TRANSFER MODULE

The data transfer module has only two states, NORMAL and BUSY. The module

is initialized in the NORMAL state, and is expected to remain in that state for the

majority of the time. A transition to the BUSY state occurs only as the result of a

32

a i kn the ather the GROUND-CONTROL module or the AUTOCONTROL

module.

If the performance of the satellite, as judged by the onboard decision-making

softwae or by the ground control station, deteriorates to the point where it seems

beneficial to allow fewer users to access the satellite for a period of time, a lockout

nmesa- can be sent to the data transfer module. The type of lockout, ('lkind') may be

new-usr or oil-user. When a new-user lockout message is received, the data transfer

module remains in the NORMAL state, but rejects all new user connection requests. The

satellite will continue communications with all users already logged on when the message

is received. When the data transfer module receives an all-user lockout message, the

state will change to BUSY and incoming communications from everyone except the NPS

ground control station will be rejected. The data transfer module will send a 'busy'

message to every BAX link, and BAX will respond to any frame (except those from

NPS) with a "receive-not-ready" frame.

The control software may also find it necessary to turn the transmitter off for an

extended period of time, such as during a battery recharge. When this occurs, and the

transmitter will not be ready at a moment's notice, a 'transmitter.off' message will be

sent to the data transfer module. This message will not change the state of the module,

which will still be able to receive any incoming frames, but it will change the state

variable 'transmit ok' to fake. When this occurs, the data transfer module will not

attempt to transmit any frames, and any logged-in users will most likely disconnect due

to frame time-outs.

33

VL PACKZT TRANSFE MODUIE - PACKET TYPES

A. llA TRANSFE LEVEL S

The lm tam sr module specified in Appendix A has its origins in the File

Tnser Lvel 0 (FTIO) Pacut Protocol developed by Jeff Ward and Harold E. Price

Mdef. 73. The basic data structures and state transitions are functionally equivalent to

FrLO, with some modification. In order to make use of the satellite software specified

in Appendix A, the corresponding ground station software must be developed which will

produce peckets in the proper format to be interpreted by PANSAT. Therefore, the bit-

level structure of the ground station packets is described below, as well as the proper

ground interpretai-on of the packets originating on the satellite.

B. PACKET FORMAT

Each packet to be transmitted consists of an information field of 0 to 2047 bytes,

preceded by a two byte header. The header identifies the type of packet and indicates

the number of bytes in the information field. The packet structure is defined as follows

in the software specification:

PacketTp = record

lengthjsb: uchar;

hi: uchar;

info: Pdata;

end;

34

This stouca indicates that the header porito of the packet consists of the two unsigned

characters (octets) 'lengthlb' and 'hI'. The information field is given the type 'Pdata',

which is defined in the specification as an array of 0 to 2047 unsigned characters. Since

this is a variable length army, its length must be indicated in the header.

The octet 'length_;lb' contains the least significant 8 bits of the data length. The

octet 'hi' contain the 3 most significant bits of the data length, as well as an indication

of the type of packet. The bits of 'hi' are labeled '76543210'. Bits 7-5 are the 3 most

significant bits of the data length, and must be prepended to the 'length lsb' to give the

full length of the information field. Bits 4-0 of 'hi' provide a number from 0 to 31.

This number is decoded into packet type as indicated in Table 6.1.

TABLE 6.1 PACKET TYPES

Packet Number Spe-flcation Constant Packet Name

0 data Data

1 data end Data End

2 loginyesp Login Response

3 upload _nd Upload Command

4 u/_go.resp Upload Go Response

5 ul errorresp Upload Error Response

6 uL/ackjresp Upload Acknowledged Response

7 dunak nesp Upload Not Acknowledged Response

8 download and Download Command

9 dl err.rresp Download Error Response

10 dlabortedresp Download Aborted Response

11 dlcompleted resp Download Completed Response

35

TABLE 6.1 PACKET TYPES

Packet Number Sp Constant Pack Name

12 dIack cmd Download Acknowledged Command

13 dli ak ond Download Not Acknowledged
Command

14 dir slowrt mid Directory Short Command

15 dirtongcmd , Directory Long Command

16 select and Select Command

17 select resp Select Response

18-29 reserved

30 del cmd Delete Command

31 delresp Delete Response

The ground software and satellite software are peer entities at this level, rather than

master and slave. However, since the ground must initiate all data exchanges, with the

satellite acting as a server responding to requests made from the ground, the identifier

'cmd' is used to indicate packets originating from the ground, while 'resp' indicates

packets sent from the satellite. The data and data-end packets can originate from either

the ground station or the satellite. Explanations of each of the packet types and the

contents of their information fields are given in the following sections.

C. THE DATA AND DATA END PACKETS

Any file to be transmitted, either from the ground or from the satellite, will be

broken up into an appropriate number of data packets, depending on its length. The

36

infonatio field of each data packet will be the bytes from the file to be transmitted.

Bits 4-0 of the 'hi" field of the packet header will be '00000', identifying the packet as

containing file daa in its information field. Bits 7-5 of 'hi' and the octet 'lengthjsb'

will tgether indicate the number of bytes of file data being transmitted in this packet.

The transmission of the end of the file will be indicated by sending a dataend packet

immediately after the transmission of the last data packet. The dataend packet has no

'info' field.

Bit-level examples of the various packet types will be given in Tables 6.2A through

6.2S. In these examples, O's and l's will be shown where particular bit patterns must

be used. Where arbitrary bit patterns may be present, other symbols will be used. The

intended meanings of these symbols will be made clear in the "interpretation" section of

each table.

TABLE 6.2A EXAMPLE OF A data PACKET

engthkb hi_ info

LLLLLLL LTT 00000 dddddddd
dddddddd ...

Interpretation

low order bits of HHH high order bits of the data length. file data in
the data length '00000' - data packet. bytes

37

TABLE 6.23 EXAMPLE OF A d•ad PACKET

I I-I00000000 000 00001

no info field '00001' = data-end packet.

D. THE LOGIN RESPONSE PACKET

Neither the FTLO protocol of Ward and Price, nor the packet transfer protocol

specified here, has an explicit Login Command packet. A login request from the user

is made implicitly whenever a data link is established between the ground station and the

satellite on the lower, AX.25, data transfer level. When the AX.25 protocol software,

BAX, recognizes a "connection request" frame from a new user, it informs the satellite

data transfer module. The data transfer module tells BAX whether to accept the

connection or not. If the connection is accepted, BAX sends the "accept connection"

frame to the ground user, and the data transfer module informs the packet transfer

module that a data link has been established. At this point, the satellite packet transfer

protocol calls for the transmission of a Login Response packet.

The purpose of the loginresp packet is to inform the user of the time onboard the

satellite when the data link is established. The login resp packet also has a one byte

login flag. This flag indicates whether the user currently has an active selection list

(explained below) and whether the satellite requires Pacsat file headers. The Pacsat file

header was developed by Jeff Ward and Harold Price for use with their Pacsat Protocol

38

Suite, which includes FTLO (Ref. 8]. A PANSA'.' file header has been developed which

does not match the Pacsat file header of Ward and Price, and so the login flag in the

loginkresp packet will always indicate that Pacsat file headers are not required.

PANSAT file headers will always be required for files uploaded to PANSAT. T h e

information field of the loginyresp packet includes a 4-byte unsigned integer indicating

the login time (the number of seconds since January 1, 1970), followed by a 1-byte login

flag. Thus, the information length indicated by the header must be 5. Bits 7-4 of the

login flag will be '0000'. Bit 3, the 's' bit, will be '1' if the client already has an active

selection list, and will be '0' if not. Bit 2 will be '0', indicating that Pacsat file headers

are not usedL. Bits 1 and 0 indicate the protocol version number. They will be '00' in

the case of the protocol specified in Appendix A.

TABLE 6.2C EXAMPLE OF A login resp PACKET

1engthbb I_____ h_________info_________

00000101 1000 00010 ttttt ttttttttt ttttttt t tttt

0000sO00

Interpretation

5 bytes in login resp 4 byte login time
info field packet login flag: 's' = '1' indicates active selection list

E. THE UPLOAD COMMAND, UPLOAD GO RESPONSE, AND UPLOAD

ERROR RESPONSE PACKETS

Before uploading a file to the satellite, the client software must first determine

whether there is room in the mail box and if the satellite will accept the upload. To

39

MAIM thi dsvia iote ground station transmits the tra~qlodad. The satellite willrepn wihdeiupre e

respond with the id..joj~rp if the upload will be allowed and with the ulaerroesp if

not.

Th information field of the upload cmd contains a 4-byte file number followed by

a 4-byte file length. If this is the first request to upload a particular file, the file number

must be 'OxOOOOOOOO'. The file length must be the actual length of the file which is

intended for upload, including the PANSAT file header, which must be prepended to

each file. When the satellite receives the up/oadcmd, it will determine if there is room

for a file of the indicated length. If there is, the uldgo resp will include a file number

to be assigned to the file in the mail box aboard the satellite. When the client receives

this file number, it may be placed in the PANSAT file header before upload. If the

client does not place the proper file number in the PANSAT file header before upload,

then that field must contain all O's and the satellite will make the correction once the file

has been successfully uploaded.

If the upload request is for the continuation of a previously interrupted upload, the

upload cmd must contain the actual file number previously assigned by the satellite. The

file length must still indicate the full length of the file, regardless of how much of the

file was previously uploaded. If the satellite can accept this continued upload, the

ul/go resp will include the offset at which the client should begin the transmission of

the file. To determine this offset, the satellite simply inspects its partial copy of the file

to see how many bytes it has previously received. The complete information field of the

ul.jooresp includes the 4-byte file number either newly or previously assigned to the

40

file, followed by the 4-byte file offset. If no part of the file has been previously

uploaded, then the indicated offset will be '0'.

If there is no room for the file, if the qpoad._md includes a non-zero file number

which does not correspond to any file onboard the satellite, or if the satellite determines

that upload of the indicated file has already been completed, then an ul.errorrsp is

transmitted rather than an ul..ojresp. The ulderrojresp has a 1-byte information field

which simply indicates one of several possible error conditions. The possible errors

associated with an upload command and their corresponding bit patterns are indicated in

Table 6.3A.

TABLE 6.3A ERROR CODES

Bit Pattern Error Code

00000001 er.illjformedcand

00000010 er badconinue

00000100 er.no-such~filenumber

00001100 er flle complete

00001101 er no-room

The meanings of most of these error codes are obvious from their names. The

code er bad continue is issued when the file number in the uploadand is non-zero but

the file length in the uploadcmd does not agree with the file length stored in the

PANSAT header of the partially uploaded file.

41

TABLE 6.21) EXAMPLES OF uploa ar d PACKETS

ngt _hb hi Into

00001000 000 00011 00000000 00000000 00000000 00000000
_ _ _ _ _ LLLLLLLL .11 LLLLLLLL ILILL1LL1LL1L LLLLLLJLL

00001000 000 00011 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn
LLLLLLL.L tLLLLLLLLLLLLLLL LLLLLLLL

________ l terpretatlo ns

8 bytes in upload_ New upload - unknown file number
info field cmd packet 4 byte file length

8 bytes in upload_ 4 byte file number
info field cmd packet 4 byte file length

I I

TABLE 6.2E EXAMPLE OF AN ul/o resp PACKET

lengthk4b Jhl Info

00001000 j000 00100 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn• 1• • • • • n n0nnnn n nn,•nm, mnnnn

F 7100______ 00000000 00000000 00000000 00000000

Interpretation

8 bytes in uloresp 4 byte file number
info field packet 4 byte file offset at which to begin upload

42

TA
TABLE 6.F EXAMPLE OF AN alrtrt rp PACKET

00000001 000 0101 ee0eem

Ia o

1byte in info field I aderrrMW I byte eror code

F. THE UPLOAD ACKNOWLEDGED RESPONSE AND UPLOAD NOT

ACKNOWLEDGED RESPONSE PACKETS

When the client software on the ground receives an u..ojsp from the satellite,

it will commence to upload the file in a series of data packets, starting with the byte of

the file indicated by the offset in the u/.gdoresp. Once the data packet containing the

last byte of the file has been transmitted, the data-end packet must be sent. After

receiving the data-end packet, the satellite will check the integrity of the file, as will be

explained in Chapter VIII. If the file passes all checks and is successfully stored aboard

thesatellite,an/ackresp will be transmitted to the user. If the file is found to be

defective, an u/ nakresp is transmitted instead and the file is discarded. The satellite

will remember the file number, however, so that the user can later attempt another

upload of the same file.
The ud/ackresp has no information field. The ul.nak resp has a 1-byte

information field which consists of one of the error codes of Table 6.3B.

43

TABLE CS3 UXOR CODES

000M psalm Error Code-
00001101 erno..,c,,

001110 er bad header
= o o~ 0O_1 1

_ o- oo

00001111 er header cdick
00010000 ebd hc

The er bad header code is sent when the PANSAT file header is missing, incomplete,

or incurrec. The code for erheader check is sent when the checksum on the header

fails and er body check is sent when the checksum on the file body fails.

An udlnakres may also be sent by the satellite before a data-end packet is

received if the satellite needs to terminate the upload for any reason. If the ground

station receives an u/nsak esp, it should immediately stop sending data packets, and

transmit a data-end packet if it has not already done so.

TABLE 6.2G EXAMPLE OF AN at ack..rsp PACKET

lengthb hlF

0000000J0001

nterpretation
no info field u/wk resp

TABL. 6.2H EXAMPLE OF AN ula,•_rep PACKET

00000001 000 00111

1byte in info fielkd W uljakjwsP I1b error codeI byteamcd

G. TIE DOWNLOAD COMMAND PACKET

Prior to using download and packets to request files to be downloaded from

PANSAT, the client must establish an active selection list onboard the satellite. This is

achieved by using the select and which is explained below. Once the client has used

the selection list to begin downloading a file or to obtain file directories (see Directory

Commands below), the selection list need not remain active to continue downloading, as

long as the client knows the file number for each file requested.

Each download cmd packet is used to request a single file. The information field

of this packet contains the 4-byte file number for the file requested followed by the 4-

byte file offset from which transmission of the file should begin. In FTLO, a file number

of 'O4OOOX)OO' is used to indicate the next file in the active selection list, proceeding

from newer files toward older files, while 'OxFFFFFFFF' requests the next file in the

list proceeding from older files toward newer files. In the current packet transfer

specification for PANSAT, both 'x400000000' and '0xFFFFFFFF' will result in

requesting the next file in the active selection list proceeding from older files toward

newer files. I le actual file number of the file requested is known, then this number

45

Is -aned tiew dowlwaf aud PackaL TIe file offset should be '0' if this is a new

dwakad request, and should indicat the byte numbae from which to proceed if this is

a download continuation.

TABLE 6.2M EXAMPLES OF down,•od cmd PACKETS

knth.pmb hi Info

00001000 000 01000 00000000 000000()0 00000000 00000000
00000000 00000000 00000000 00000000

00001000 00001000 11111111 11111111 11111111 11111111
00000000 00000000 00000000 00000000

00001000 00001000 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn

____________ Interprefttions

8 bytes in download requesting next file in select list
info field -ad begin download at beginning of file

8 bytes in download requesting next file in select list
info field md begin download at beginning of file

8 bytes in download file number of requested file
info field and file offset at which to begin download

When requesting the "next" file in the selection list, the offset should always be

'0', since this should only be used to request a new file. Once a download has been

interrupted and subsequently continued, the file number should already be known, and

this information as well as the offset should be used in the download cmd. If the file

offset indicated by the ground station is equal to or greater than the length of the file

stored on the satellite, no error is generated. Instead, the satellite transmits a dataend

packet immediately, with no preceding data packets.

46

H. THE DOWNLOAD ERROR kJSIPONSE PACKET

When th satellite receives a pwpery formatted download and which it is able to

r•pod t, it imbediately begins downloading the file in a series of data packtms. Once

the Ias byte of the file has been tnsmitted, the satellite sends a dta-end packet. If,

however, the satellite cannot service the download md for any reason, it will transmit

a d_ error.csp pmmcet.

The dievr.resr p information field consists of a 1-byte error code. The possible

errors are shown in Table 6.3C.

TABLE 6.3C ERROR CODES

Bit Pattern Error Code
00000100 er no.suchfienwmber

00000101 erseection empiy

The code er no such.file nwmber is used if a specific file has been requested, the file

number of which is not found hi the mail box. The code er.selection empty is used

when the "next* file is requested, but the user currently has no active selection list. The

specification for FrT also includes error codes dealing with file forwarding capabilities

which are not implemented on PANSAT. These codes are included in the specification

of Appendix A for the sake of completion, to ensure they will not be used for any

PANSAT specific definitions. They will not be included in any dlerror..resp packets

from PANSAT, however. These FTLO error codes, unused by PANSAT, include

er already locked and er..no-suchdesinadon.

47

TABLE 6X2 EXANMPL OF A Alararwu PACKET

- I Ire. . . .

byte info field a rrorresp 1 byte

L THE DOWNLOAD ACKNOWLEDGED COMMAND, DOWNLOAD

COMPLETED RESPONSE, DOWNLOAD NOT ACKNOWLEDGED

COMMAND, AND DOWNLOAD ABORTED RESPONSE PACKETS

When the client software receives a data-end packet from the satellite, it knows

the downloaded file is complete. It performs any desired integrity checks on the file

(such as checking header and body check sums) to determine whether the download was

completed successfully. If the file has been received satisfactorily, the ground station

must transmit a dl/ackacmd. The satellite responds to a dl-ack-cmd with a

di comp/eed resp to end the download process. If the ground software does not find

the downloaded file to be satisfactory, it transmits a dl nak-cmd, to which the satellite

responds with a dl.abortedresp.

In the FTLO specification, the information field of the dl ack cmd consists of a one

byte 'register destination'. This information is used by a Pacsat to complete some of the

file forwarding operations which are not implemented by the current PANSAT software

specification. Therefore, the information field is not necessary in a dlackcmd sent to

PANSAT, and it will be ignored if it is included. This single byte of information may

48

be opted for uo by PANSAT at a later date. The diconpeted_re3p transmitted by

the utell has so infrmation field. The dJ mek and and the d aboned j likews

have no informatio fildS.

TABLE 6.2K EXAMPLE OF A d_ wkcucd PACKET

1-byt iel Inda

TABLE 6.2L EXAMPLE Of A !_ p _p PACKET
00000000 I00 11

TABLE 6.2M EXAMPLE OF A d/_mWnk d PACKET

00000000 01101

terprta4on

no info fidd d(on

49 mkcdrs

TABLE G EXAMPLE OF A dl abad•u vp PACKET

no info field I o r

J. THE DIECTORY COMMAND PACKETS

FTLO specifies two directory commands, the dir short cmd and the dir.longcnd.

For PANSAT, there is only one directory command, and either of these two packet types

will invoke it. The results of each command will be exactly the same. Theinfrdin

field of a dir cmd is a 4-byte file number. This number indicates the file for which a

directory entry is requested. A directory entry consists of the PANSAT file header from

the file of interest. From this file header, the ground station software can determine any

necessary information about the file. The user can decide from this information whether

to request the file for download.

In FrLO, a file number of '0x0OOOOOO' is used to request the directory entries for

the next 10 files in the active selection list, proceeding from newer files toward older

files, while 'OxFFFFFFFF' requests the next 10 file directories proceeding from older

files toward newer files. In the current packet transfer specification for PANSAT, both

'0xOOOOOOO' and 'OxFFFFFFFF' will result in requesting entries for the next 10 files

in the active selection list proceeding from older files toward newer files. If the client

50

has no currtly active s6lection list, then a directory entry can only be requested for a

file for which the file number is already kiown.

When the satellite receives a correctly formatted dir and which it can respond to,

it sends the requested information down in a data packet. Since PANSAT file headers

are at most 200 bytes long, 10 of them will fit in a single packet. Thus, after one data

packe is transmitted, a data end packet will immediately be sent. If the satellite is

unable to respond to the dir md, it will send a dl error resp indicating the reason. The

error character contained in this packet will be either er selection empty or

er no suchf.leknwnber.

TABLE 6.20 EXAMPL]S OF dir 'nd PACKETS

" _-jb hi

00000100 000 01110 00000000 00000000 00000000 00000000

00000100 00001111 11111111 11111111 11111111 11111111

00000100 00001111 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn

Interpretations

4 bytes in dir short- requesting directory entries for next 10 files in
info field ad select list

4 bytes in dirJong_ requesting directory entries for next 10 files in
info field cmd select list

4 bytes in dirlong_ file number of file for which directory entry is
info field cnd requested

51

.L T= sinzCT COMMAND AND SELECT RUSPONSE PACKETS

Tie s _ea-ad is the means by which the user designats files to be placed in an

active selection list onboard the satellite. Once this list has been established, it can be

used to request file directories or film for download. The selectond specified by FTLO

assumes use of Pacsat file headers in its structure. A different select cmd structure is

specified here, which is based upon the PANSAT file header. This structure is related

to, but not exactly the same as, the select md specified by Price and Ward [Ref 1.].

Once a selectncmd is recognized, if it is not in the PANSAT structure specified

here, then a default selection list will be compiled. This list will be comprised of all

mail addressed to the requesting user which has not been previously downloaded, all

bulletins and user-accessible telemetry and messages addressed to "all". The satellite will

send a select resp packet to the user. The information field of this packet consists of a

two byte integer which indicates the number of files in the selection list.

If the PANSAT select structure is used, the selection list will be assembled

according to the selection criteria contained in the selectcmd. If the satellite can

interpret the select-cmd and compile the corresponding selection list it will transmit the

selectresp packet. In this case, the two byte integer in the information field indicates

the number of files matching the selection criteria. An active list consisting of those file

numbers will be maintained aboard the satellite. If the select cmd appears to be in the

PANSAT format but cannot be successfully parsed by the satellite software, then a

dierror resp is transmitted with the error code: 00001000 er poorlyjonned-sel.

52

The select ord has a variable length information field. The information contained

in the field consists of a PANSAT specific flag, the number of selection criteria present,

and the criteria themselves. The selection criteria are combined with each other using

the operators and and or, forming a restricted type of postfix logical equation. In this

postfix equation, each logical operator is preceded by its two operands. The first two

selection criteria are combined logically, according to the first operator, to form the

single operand true or false. This operand is then followed by another selection and

another operator. The second operator combines the two operands preceding it to form

a single operand. The process is continued until the last logical operator present, which

will be the last component of the equation, has been used to combine its two operands.

The result will be a single value of true or false. Each file for which the selection

equation yields a value of true will have its file number added to the active selection list

aboard the satellite.

The first byte of the select cmd information field should be 'OxFF', a flag

indicating that the select cmd is in the PANSAT format. ,pon recognizing this flag, the

satellite will attempt to translate the selectcmd into the appropriate logical equation. If

this flag is not present, the default selection list described above will be compiled and the

remainder of the select structure will be discarded.

The second byte in the information field is an unsigned integer indicating the

number of selection criteria contained in the remainder of the structure. The selection

criteria can be defined as follows:

53

ukdctiw - necrd
relop: uchar;

aderiJtem: uchar;

itemlen: ucar;

compareitem: army~itenijen] of uchar;

end;

Bit '7' of the one byte 'relop' (relational operator) must always V '0'. Bits '654'

have the interpretations shown in Table 6.4, and bits '3210' are translated as indicated

in Table 6.5. T1- 'header item' identifies which item in the PANSAT file header to

compare the 'compare item' with. The one byte 'header-item' is decoded as Table 6.6

indicates.

TABLE 6.4 BITS '654' OF THE RELATIONAL OPERATOR

Bits 654 Relation

000 equal to

001 greater than

010 less than

01 !not equal to

100 greater than or equal to

101 less than or equal to

TABLE 6.5 BITS '3210' OF THE RELATIONAL OPERATOR

Bits 3210 Interpretation of 'compare-item' JNotes

0000 Multi-byte unsigned integer 'item len' must equal 1,
___ 2 or 4.

0011 Array of characters, convert to lower Valid only with Bits
case before comparison '654' = '000' or '011'

54

TABLE 6.6 HEADER ITEM

'header itan' Bit Pattern Cont Name of Header Field

000000M f Flag

00000010 mn Mail Number (File Number)

o0oo0110 MI Mail Length

00001010 fl File Type

00001011 ct Compression Type

00001100 bo Body Offset

00001110 dc Download Count

00001111 sc Source Call Sign

00010101 pr Priority

00010110 ut Upload Time

00011010 et Expire Time

00011110 na PANSAT File Name

00100110 ex PANSAT File Extension

00101001 nd Number of Destinations

00101010 ds Destination Call Signs or Path

01010100 ti Title

01110100 kw Keywords

The short integers formed by the 'header-item' bit patterns correspond to the

normal byte offsets within the PANSAT file header of the beginning of each of the listed

header fields. This is useful in other areas of the software specification.

The one byte integer 'itemlen' gives the byte length of the last item in the

'selection', the 'compare item.' The compare item is interpreted, as indicated by the

55

'WloI, a elUur an mdped one, two or four byte integer, or an array of chanacr.

The relational peration specified by the 'relop' is perfmW between the designated

hede item and the compare item. If the relation 'headeritem' 'relop' 'compa•retem'

is satisfied, then this selection equation is evaluated as true.

If the user has only one criteria for selection, the Select.Structure can end after just

one 'selection'. The user may, however, specify multiple selection criteria. For this

purpose, the bit patterns for logical opertors are defined as in Table 6.7.

TABLE 6.7 LOGICAL OPERATORS

'logop' Bit Pattern Logical Operation

10000000 and

11100000 or

A completed SelectStructure may appear as follows:

Or.FF nMumkelctons selecion selecion IQ=o selection loao selectio Ioeovetc.

When 'equal to' string comparisons are made between 'compare items' and certain

header fields, the comparison is defined as successful if the 'compare item' string is

found anywhere within the header item string. In these same fields, a 'not equal to'

comparison is successful if the 'compareitem' string is not found anywhere within the

header item string. Header fields for which this applies are the "Title" and "Keywords"

fields. This can also apply to the destination fields under certain circumstances, which

will be elaborated on below.

56

To indicate that a file is addressed to *all', the source places the number 'OxOO'

in the 'Number of Destinations' field, and the following 7 'Destination' fields are left

out of the header completely. A one-byte integer comparison between the "Number of

Destinations" field and the number 'TxWO' can determine that a file is addressed to all

users. When there are between I and 7 individual destination call signs, this number is

placed in the 'Number of Destinations' field, and the appropriate number of

"Destination' fields are included. To find files which are addressed to a specific user,

a string comparison can be made between a 6-byte call sign as the 'compare_item' and

the header item "Destination Call Signs or Path". This header item refers to all

"Destination' fields present. The satellite will compare the designated call sign to each

destination listed, and the comparison will be successful if a match is found with any of

them.

It may be that the user wishes to designate an audience for the file which is broader

than 7 individual call signs but narrower than "all" users in the world. In order to

achieve this, the user places the number '0x08' or the number '0x09' in the "Number of

Destinations" field, and all 7 'Destination" fields are then included as a single 42-byte

array. In this combined field can be placed information to further define the audience

for which the file is intended. If the "Number of Destinations" is '0x08', then the file

is addressed to "all', and the source has included path, location or other information

about himselfin the following "Path" field. If the "Number of Destinations" is '0x09',

then the source has included further information about the intended audience in the

following "Path" field. Users may use this information in selectcmds, in which case

57

any 'compmwjteam' will be marched for anywhere within the Path" field. The header

item to use within the 'selection' will again be "Destination Call Signs or Path, but this

time the satellite will look for any matching string, not simply matching 6-byte call signs.

Source or destination path information can probably better be used by ground software

as the result of dir cmds, in which case the software can present the user with any

information which may help the user in choosing individual files to download.

TABLE 6.2P EXAMPLES OF dkct and PACKETS

lengthsb hI Info

00001001 OO00 10000 11111-111 00000001

00010110
I00000100 ttttttt tttttttt ttttttt mtttt

00011001 000 10000 11111111 00000011
0 000 0011
01110100
00000100
01000001 0101001001001101 01011001
00000011
01110100
00000100
01001110 01000001 01010110 01011001
11100000
0001 0000
00010110
00000100 tttttttt tttttttttttttt tttttttt
10000000

Interpretations

58

TABLE 6.2P EXAMPILS OF Sedcacd PACKETS

9 bytes in selecta d PANSAT seect pud flag, 1 'selection'
info field packet 'relop' - greater than a multibyte unsigned integer

'header item' - Upload Time
4 byte 'comparemitem' - last login time

(This command requests all files which were
uploaded after the user's last login time.)

25 bytes in seect cnd PANSAT se/ectcnd flag, 3 'selections'
info field packe 'relop' - equal to an array of characters

'header-item' - Keyword
4 characters in the 'compare item'
'comparemitem' - "ARMY"
'relop' - equal to an array of characters
'header item' - Keyword
4 characters in the 'compare item'
'comparej item' - "NAVY"
'logop' - or
'relop' - greater than a multibyte unsigned integer
'header-item' - Upload Time
4 byte 'compare.tem' - last login time
'logop' - and

(This command requests all files which were
uploaded after the user's last login time and
which also have either "ARMY" or "NAVY" as
a keyword.)

TABLE 6.2Q EXAMPLE OF A select resp PACKET

I r
length_4b hi Jinfo

00000010 000 10001 nnnnnnnn nnnnnnnn

Interpretation

2 byte info field select resp Number of files placed in select list

59

{.P" 7 7W

L. THZ DBILE'T COMMAND AND DELETE RE9O4NSE PACKEN

The specification for FTLO does not allow for a user-requested file deletion. It

assumes that files will simply remain abowd the satellite until their expiration dates are

exceeded, or until the satelie itself or the ground controer cause the files to be

deleted. This del cnd, therefore, has no equivalent in FTLO.

The information field of the del and contains only the 4-byte file number of the

file to be deleted. The satellite responds to a del md with a del resp packet. The

information field of this packet merely contains one of the one-byte error codes of Table

6.3D.

TABLE 6.3D ERROR CODES

Bit Pattern Error Code

00000000 no.error

00000100 ernosuch~filenumber

10010000 er..pennission denied

If the satellite indicates no-error in the deL/resp, then the file has been successfully

deleted. A user may only delete files uploaded by him or addressed to him as the sole

destination. The sat- ý' ensures these criteria are met by inspecting the appropriate

fields in the file's heas ý- before any deletion is carried out. An attempt to delete any

other file will result in erpermissiondenied.

60

TABLE 6.2R EXAMPE OF A dI end PACKET

00000100 000 11110 mmmmnn nnnnnnnn nnnnnnnn nnnnnnnn
10A Ppretai

4-byte info field [el aNW file number of file to be deleted

TABLE 6.2S EXAMPLE OF A deluwp PACKET

!e~Jhsb hi Info

0 0 0 0 0 0 01 0 0 0) 1 1 1 1 1 1 e fe feee e

l-byte info field de/resp I -byte error code

61

VII PACIM TRANSJU MODULE - STATE TRANSITIONS

A. TRIGGURS

The opetio of the packet transfer module is based upon state transitions triggered

by the receipt of packet from the user and messages from other flight software modules.

When the user on the ground sends a oW packet to the satellite, the response will

depend, in part, on what state the packet transfer module is in.

The architecture of the packet transfer state machine can easily be seen in the

Estelle specification of Appendix A. The trams section of the module definition clearly

shows all possible transitions from one state to another, along with what packet or

message triggers each transition, and what action is taken as a result. This textual

description can be translated into a more visual format by means of state transition

graphs, such as those included with the data flow diagrams of Appendix B.

B. INSTANTIATIONS

It is intended that multiple users should have access to the mail box onboard the

satellite "simultaneously". This is achievable because all user transmissions to the

satellite are packetized. BAX, the AX.25 data transfer level software, can administer up

to 30 user links at once. As each AX.25 frame is received, BAX determines which user

it is from, and deals with it according to the AX.25 protocol and the state of the link

with that particular user.

62

In order for the packet transfer level to also be administered for many

"simultaneous" users, there must be a copy of the packet transfer module associated with

each virtual link. The fact that multiple copies of the packet transfer module are

initialized can be seen in the modvar section at the end of the Estele software

specification. This says that one packet transfer module is created for each link. The

definition of *Link_Type, near the beginning of the specification, indicates that there

are between 0 and 30 links. When a packet transfer module receives messages from, or

sends messages to, another software module, the specific instantiation involved is

indicated by the initialization parameter 'link'. The packet transfer modules, as well as

the channels associated with them, are referenced as array elements; the 'link' each is

associated with acts as the array index. For instance, in the module header definition of

the MARIBOXCONTROLTYPE, it is stated that this module has an array of 30

(man nks) MailboxAccessChannels. In the modvar section, each of these channels

is connected to a different copy of the packet transfer module.

C. TRANSMONS

The state transitions for a particular instantiation of the packet transfer module are

affected only by packets from the user associated with the link being administered by that

module. The data transfer module, as explained in Chapter V, must assemble complete

packets from the frame data sent to it by BAX. Each packet is sent to the appropriate

packet transfer module, depending upon which BAX link it was received on. Likewise,

as the packet transfer modules send resp packets to the data transfer module for

63

tvia BAX, the data tanster module must bask each packet up into frames

and mnod them via the appropriate BAX link to reach the intended recipient.

While a packet transfer module is in any particular state, only certain packets from

the user will have meaning. An unexpected packet will cause any actions in progress

(such as uploading or downloading a file) to be aborted. FTLO defines unexpected or

incorrect packets as sufficient cause to terminate the link with a user. The specification

in Appendix A, however, only calls for the packet transfer module to return to a waiting

state after abandoning any action in progress. At this point, the module is ready to

accept any valid command from the user. The user will be informed of the problem via

an appropriate errrvresp packet. After receipt of any error message, the user should

assume that the satellite is waiting for the ground station to initiate a new action.

D. STATES

FTLO was designed primarily for use with satellites with full duplex capabilities.

For this reason, it maintains two separate state machines, one for the uplink process and

the second for the downlink process. PANSAT is a half-duplex communications satellite.

The two state machines of FTLO have been combined into a single machine in the

specification of the PANSAT packet transfer module. The states are listed in Table 7.1.

Explanations are included in the following subsections.

64

TABLE 7.1 PACKET TRANSFER STATES

State Idutlfer Ep Onf State

UJL-LUNEWrT Upload/Download Uninitiated

ULDL CMDWAZIT Wating for an Upload or Download Command

WAIT MAILBOX Waiting for a Message from the Mailbox Control Module

ULDATA RX Ready to Uplink Data

UL ABORT Upload Aborted

DLJFILEDATA Downloading a File

1. ULIDLUNINIT

UIJDLUNINIT is the state into which the packet transfer module is first

initialized, before a user link has been established with it. In this state, the module does

nothing but wait to be assigned a user. Upon receipt of the 'connection' message from

the data transfer module, the packet transfer module asks the mailbox control module

whether or not the new user has an active selection list, and moves into the

WAITMAILBOX state to await a reply. When the reply message is received, the

module will enter the UL/DLCMDWAIT state. The packet transfer module returns

to the UIJDLUNINIT state when it is sent a 'disconnect' message by the data transfer

module, regardless of what state it is in when this message is received.

65

TABLE 7.2 STATE TRANSITIONS FROM UIJDLUNINrr

Raeelved Action Next State

connection active.slreq message WAIT MAILBOX
(Asks the mailbox control module if there is
an active selection list for this user.)

2. UL/DLCMD WAIT

In the UIJDLCMDWAIT state, the packet transfer module is waiting for

a packet from the user which will initiate either an upload process or a download

process. Packets which can be legally received while in this state are listed in Table 7.3,

along with the resultant actions and transitions. Any other, unexpected, packets will

result in an ul error .resp packet with the error code er.illformedcmd, and the module

will remain in the state UL/DLCMDWAIT.

TABLE 7.3 STATE TRANSITIONS FROM UL/DL CMD WAIT

Received Packet Action Next State
or Message _

uplokad md mail numreq message WAITMAILBOX
(Request a new file number or a
current file offset from the mailbox
control module.)

delond mail del req message WAITMAILBOX
(Request that the mailbox control
module delete a file.)

selec cmd mselect req message WAITMAILBOX
(Request the mailbox control module
form a selection list.)

66

TABLE 7.3 STATE TRANSITIONS FROM UL/DL CMD WAIT

Rdceived Packet Action Next State
or Menmge

dirshort-nd dirjreq message 4IT MAILBOX
dir long and (Request directory information from

the mailbox control module.)

downloadcnd mail req message DL FILE)DATA
(Request file data from mailbox
control module.)

dinakcmnd none ULJDL CMD WAIT

disconnect none UIJDL UNINIT

other packets ulerrorresp packet UL/DL CMDWAIT

3. WAlT MAILBOX

As can be seen in Table 7.3, most packets received while in the

UL/DL CMD WAlT state result in a transition to the WAITMAILBOX state, with no

immediate response packet to the user. This is because the packet transfer module

requires information from the mailbox control module before it can make a proper reply

to the user. The mailbox control module analyzes each information request message and

replies with an appropriate response message. The response of the mailbox control

module will determine which state the packet transfer module will enter when it leaves

the WAIT-MAILBOX state, as well as what packet it sends to the user. The

WAlTMAILBOX state may also be entered from the UL/DLUNINIT state as shown

above, or the UL DATARX state, as will be explained below. Table 7.4 summarizes

the mailbox access channel messages just prior to a transition to the WAITMAILBOX

67

.
0 ~i,- 7

state, the possible reply messages from the mailbox control module, and the resulting

further actions and state transitions of the packet transfer module. No user command

packets are expected while in the WAIT MAILBOX state, as the user should still be

waiting for a reply from the last packet sent to the satellite.

TABLE 7.4 STATE TRANSITONS FROM WAIT-MAILBOX

Memage Rteply Message jActlon Next State

activesLjeq active-sljresp, loginresp UIJDL-CMD_
_______ _______packet WAIT

mail num ireq mail-num-rep, ulgo0resp UL-DATARX
no errors packet _______

mail num resp, uderror resp UIJDL-CMD-
______error packet WAIT

mnail recv mail-recv-resp, Change current ULDATARX
no errors upload offset
mail rev ep, uL~naký resp UBR

error packet _______

mail-closik~eq mail-close-rep, ul~ack resp ULIDLCMD
no errors packet WAIT

mail closejep uLnakjresp UL ABORT
error packet _______

mail del req mail-del resp deLresp packet UL/DLCMD-
WAIT

mselect_req mnselect resp, no select resp UL/DL CMD
errors packet WAIT

mnselect resp, dl error. resp UL/DLCMI)
error _____packet WAIT

68

TABLE 7.4 STATE TRANSITIONS FROM WAIT MAILBOX

Message Reply Message Action Next State

dirjreq directory, no data pa~ket, UIJDLCMDerrors data)end packet WAIT

directory, error dl_error resp UJDL CMD

packet WAIT

disconnect UL/DL

4. ULDATARX

The packet transfer module enters the ULDATARX state after the user has

sent an upload__nd and the mailbox control module has replied to the resulting inquiry

with the appropriate file number or offset. That is, this state is first entered from the

WAITMAILBOX state. When the module is in the UL DATARX state, it is ready

to receive data packets from the user. As each packet it received, the packet transfer

module passes the file data on to the mailbox control module for storage, entering the

WAITMAILBOX state each time to await acknowledgement. When the data-end

packet is received, the packet transfer module requests that the mailbox control module

close the file and conduct integrity checks on it. The result of these checks will

determine whether the packet transfer module returns directly to the

UL/DLCMDWAIT state, or goes into the ULABORT state, as indicated in Table 7.4.

The state transitions out of ULDATARX are summarized in Table 7.5. The only legal

user packets which can be received while in this state are data and data_end. If the

packet transfer module receives an unexpected packet while in this state, it will send a

69

'ma•llclose _q' to the mailbox control module, an a _errr remp packet to the ur, and

then return to the ULUDL CMDWAIT state. If the user becomes dsnnt while

the module is in the UL DATARX state, it will send a 'mailclosereq' message to the

mailbox control module and then return to the UL/DLUNINIT state.

TABLE 7.5 STATE TRANSITIONS FROM ULDATARX

Received Packet or Message Sent Next State

data mai rc WAITMAI X

___..___ maila losereq WAITMAILBOX

other packets mail close req, UL/DL CMD WAIT
u/ .. rror..resp Packet I

disconnect mail close req UIJDLUNINIT

S. UL ABORT

The UL ABORT state is entered whenever a problem is found with an

ongoing upload prior to receipt of the data end packet. While the packet transfer

module is in the UL ABORT state, all data packets are discarded. It will remain in this

state until a data end packet is received, an unexpected packet is received, or the user

is disconnected. The state transitions out of UL ABORT are summarized by Table 7.6.

70

TABLE 7.6 STATE TRANSmONS FROM UL ABORT

Recuivd Packet or Pcket Set Next State

data none UL ABORT

data end none UL/DL CMD WAIT

Other packets id/eor-resp UUDLCMDWAIT

disconnect UL/DL UNINIT

6. DL FILE DATA

The state DL FILE DATA is entered from the UL/DL CMD WAIT state

whenever a properly formatted download cmd is received from the user. If a badly

formatted download cmd is received, the user will be sent a dl error resp and the packet

transfer module will remain in the ULJDL CMD WAIT state.

Just prior to entering the DLFILEDATA state, the packet transfer module

sends a 'mailreq' message to the mailbox control module. While in the

DLFILEDATA state, the packet transfer module simply waits for 'mailresp' messages

from the mailbox module containing file data to be transmitted to the user. As each

piece of the file arrives, it is sent on to the user in a data packet. When the mailbox

control module indicates that the last byte of the file has been provided, a data-end

packet is sent to the user. The packet transfer module remains in the DLFILEJDATA

state until either a dl ack cmd or a dl nak-cmd is received from the ground. Then it

returns to the UIJDLCMDWAIT state. The satellite takes no particular action upon

receipt of a dlnakcond. It will be the responsibility of the ground station to request a

71

asw dwm fllaoftheamfilueata inuieimeftte u servo desires. Ufthe file number

zeq d for download does not exist, a dlerror..w~_p packet will be tmnsmitted and the

module will return immediately to the UL/DLCMDWAIT state. The state transitions

from DLFILEDATA are shown in Table 7.7.

TABLE 7.7 STATE TIRANSmONS FROM DL FILEDATA

Racelved Menage or Packet Sent Next State

Pac"

mailersp, error dl error resp UIJDL CMD WAIT

mail resp, no eror data DL FILE DATA

mail resp, end of file data-end DLFILE DATA

di ack md dlcompleedresp UUDLLCMD_WAIT
dl-ack message

dljuak mid dilaortedes UIJDL CMD WAIT

other Packets dl.error resp UIJDL CMD WAIT

disconnect ULJDL UNINIT

72

VIIL MAnLOX CONTROL MODULE

A. FUNCTON

The pfrary role of the MAUL XCONTROL module is to keep track of the

mad files which have been uploaded to PANSAT from users on the ground. It also

keeps track of user-accessible telemetry files which have been prepared by the

TELEMETRY GATHER module for downloading to interested users, and *bulletins"

which have been posted by the ground control station for the information of all PANSAT

clients. The users' active selection lists are also maintained by the mailbox control

module.

The mailbox control module has only one state, WAIT. This state name

exemplifies the method employed by the module to carry out its duties. It *waits" until

it receives a request for information or a packet of file data from the packet transfer

module, or is notified of a file posted by the telemetry module or by the ground control

module. Most housekeeping functions within the "mailbox" are triggered by receipt of

these messages. The mailbox control module responds to the received message, carries

out any necessary activity, and then continues waiting until the next message arrives.

A few administrative functions, such as purging all mail, must be directed by special

commnd messages from the ground control or auto control modules.

73

I • SOURCE RE•CORD

Mw edo e mployed by di mailbox control module to keep track of all uploaded

files and all usem' active selection lits is a linked list of Source-Records. The

Source Record type is a data structure which contains information which links every

stored file with the source from which it was originally uploaded, as well as an active

selection list for any source (user) that has requested one. The fields of the

SourceRecord are listed in Table 8.1, along with the function of each field.

TABLE 8.1 FIELDS OF THE SOURCE RECORD

Field Type Function

sourcehnum uint Contains a unique integer assigned to eachground user who has uploaded any files
currently stored onboard the satellite or has an
active selection list. Used as the first 2 bytes in
the file numbers assigned to each file uploaded
by this user.

call CallsignType The call sign belonging to the client assigned
the above 'source num'. The call sign will be
used as the DOS file name for all files uploaded
by this client. Each file will be assigned an
extension from "001" to "999".

swlected SelectList The Select-List structure includes the fields
'num-sel', a uint indicating the number of files
in the client's selection list, and 'sel', a
variable length array of the mail numbers of
those files. 'numsel' must be < = maxmail,
the maximum number of files allowed in one
selection list. A 'num sel' equal to '0' indicates
"no active selection list".

74

TABLE 8.1 FIELDS OF THE SOURCE RECORD

Field Type Function

next-mail uint The index into the 'sel' array which marks the
"next" mail file in the selection list not yet
downloaded by the client. When 'next mail'
becomes > = 'num sel', the selection list is
"empty" if another request to download the
"next" file arrives.

next dir uint The index into the 'sel' array which marks the
"next" mail file in the selection list for which a
directory entry has not yet been downloaded by
the client. When 'next dir' becomes > =
'num sel', the selection list is "empty" if
another request to download directories for the
"next" 10 files arrives. When both 'next mail'
and 'next dir' are > = 'num sel', 'num-sel'
reverts to '0' and the client no longer has an
active selection list.

next ext File Ext - The next file extension to be used on a file
000M.999 uploaded by this client. In binary form, thetext' is used as the last 2 bytes in the file

number assigned to the file. In ascii form, it
forms the 3 character DOS file extension.

num-act uchar The number of files uploaded by this client
which are still being stored aboard the satellite.

next num ^SourceRecord Pointer to the next SourceRecord, numerically
(pointer to by 'source num'.
Source Record)

next call ASource Record Pointer to the next SourceRecord,
alphabetically by 'call'.

75

C. RWONSE TO MSSAGES FROM THE PACKIE TRANSFER MODULE

By far the grestt number of messages received by the mailbox control module

originate from the packet transfer module, via the MailboxAccess Channel. Chapter

VII lists many transitions of the packet transfer module to the WAITMAILBOX state.

These ansitions indicate that the packet transfer module has requested information from

rte mailbox control module and is awaiting a reply. The packet transfer module also

sends messages to the mailbox control module while remaining in the ULDATARX

state. The activities of the mailbox control module triggered by each message type from

the packet transfer module, and the required reply messages, are addressed in the

following subsections.

1. The 'activeslreq' and 'active slresp' Messages

When the packet transfer module sends an 'activesl-req' message, it is

inquiring whether there is an active selection list for a particular user. The mailbox

control module must check the source records to see if the user has an active selection

list or not. An 'active.sl_resp' message is returned to the packet module, indicating true

if the user does have an active list, and false otherwise.

2. The 'mail.numreq' and 'mail_numjresp' Messages

A 'mail num req' message indicates that a user wants to upload a file. If

this is a new file, a file number is required for it. If it is an upload continuation, the

76

curet file offset is needed. The mailbox module must ensure that there is enough room

in memory to sore a file of the length indicated in the message. If the indicated file

number is 'O0X)OOOO09', the mailbox will get the user's source number and next

extuio. from the source records (or assign a new source number if necessary) and form

a new file number. If the file number in the 'mail.numreq' message is not

'00OO0O000=', the mailbox module will find the current length of it's partial copy of the

file. In the 'mail-numresp' message, the mailbox module will supply the packet module

with the required file number or offset for the upload, or indicate that an error has

occurred (such as insufficient space or incorrect file number).

3. The 'mail recv' and 'mairecv resp' Messages

The 'mail recv' message passes file data which has been received from a user

to the mailbox module. The data must be appended to the appropriate file. The mailbox

module attempts to find and open the file to which the data belongs and append it. The

'mail recvresp' will indicate whether the data has been stored successfully or whether

an error has occurred.

4. Tlhe 'mail.closereq' and 'mail..closejresp' Messages

The 'mail closereq' message can indicate one of two situations. Either a

data end packet has arrived, indicating that an upload has been completed, or an upload

has been interrupted due to user disconnect or an unexpected packet. If an upload has

77

bee compleled, the packet module will indicae this by setting the 'reqresp' parameter

of the message to true, requesting a response. In this case, the mailbox module will

check the integrity of the uploaded file and report the results in the 'mail close resp'

message. If 'reLresp' is set to false, the upload has been interrupted and the mailbox

module will simply close the file and wait for the upload to be continued at a later time.

5. The 'nselect req' an 'mnselectresp' Messages

An 'mselectreq' message forwards to the mailbox module the

Select-Structure of a client requesting to form a new active selection list. The mailbox

module must parse the Select-Structure and either prepare the default selection list or

evaluate the selection equation with respect to each file in the mail box. The file number

of each matching (or default) file will be placed in the client's selection list. There is

a maximum number of file numbers which can be placed in any selection list. When this

number is reached, further selection will be discontinued. The 'mselectresp' message

indicates how many files have been placed in the selection list, or if an error has

occurred. Any prior existing list will be discarded.

6. The 'mallreq' and 'mailresp' Messages

The packet transfer module sends a 'mail req' message in order to obtain file

data for download to a client. A file number and offset will be included in the message.

If the *next* file in the selection list is requested, the indicated file number will be

78

'OxO900000O', and the mailbox module must consult the client's source record to

de nthe actual file number of the next file in the list. The offset for the "next" file

will always be zero. When the next data set from that file is requested, the file number

and appropriate non-zero offset will be known, and included in the 'mail_req' message.

The mailbox module will begin at the appropriate file offset and begin copying bytes into

the data buffer. It will copy either the number of bytes which will fit into one packet,

or the remaining bytes in the file, whichever is less. Either the data buffer or an error

indication will be sent back to the packet module in the 'mail resp' message. When the

end of a file has been sent to the packet module, the mailbox module responds to the next

'mail_req' with an empty data buffer and no error code. This indicates to the packet

buffer that it is time to send the data-end packet.

7. The 'dl.ack' Message

The packet transfer module will send a 'dl ack' message to the mailbox

control module after receiving a dl ack-cmd packet from the user. Only if a 'diack'

message is received will the mailbox module change the 'nexi mail' field in the user's

source record. The 'next-mail' pointer is only advanced after the file , ndicates has

been successfully downloaded to the client. The number of the file acknowledged will

be included in the 'dl ack' message along with the client's call sign. The file number

must match that indicated by the 'nextmail' field of the client's source record for the

field to be updated.

79

so. The 'dirreq' awd 'directory' Mesages

The 'dirjreq' message requests directory information for either the file

number indicated, or the "next" ten files in the client's active selection list. Directory

information for a file is simply a copy of the PANSAT file header. If a file number is

indicated, the mailbox module places a copy of the appropriate header in the data buffer

which is send back with the 'directory' message. If the "next" 10 entries are requested,

the mailbox module consults the source record to determine whether there is an active

list, and if so, which is the "next* file for which a directory entry has not yet been sent.

The headers are copied for the next 10 files on the list, beginning with the one marked

by 'next dir'. If there are less than 10 remaining on the list, they are all sent. There

is no downlad acknowledge associated with directories, and the 'next dir' counter is

automatically advanced when the 'directory' message is sent back to the packet transfer

module.

9. The 'mail_del_req' and 'maildelresp' Messages

The packet transfer module sends a 'mail del req' when a user wishes to

delete a file from the satellite's mailbox. The mailbox module must first ensure that the

user in question is authorized to delete the indicated file. A user may only delete a file

which they have uploaded, or one which is addressed to them as the sole recipient. The

mailbox module knows who uploaded the file, since the file name is the same as the

source call sign. It can consult the destination fields of the file header to determine

80

whether the requesting user is the sole recipient. If the deletion is authorized, it will be

carried out, and a no-error indication returned to the packet module in the

'mafl_oe, _•' message. Otherwise, the er permssaiondenied code will be returned.

D. RESPONSE TO MESSAGES FROM OTHER MODULES

The mailbox control module may also be tasked to respond to messages from

modules other than the packet transfer module. These messages may come via one of

the MailboxAdminChannels or via the TelemetryStorageChannel. The latter channel

is connected to the TELEMETRYGATHER module, while one copy of the former is

connected to the AUTO-CONTROL module and another is connected to the

GROUND-CONTROL module. None of these three modules has been completely

specified, and the requirements for them are still evolving. Some possible functions for

them have been suggested, and those which impact upon the mailbox control module will

be discussed in the following subsections.

1. The 'listmail' and 'mail list' Messages

The NPS ground control station personnel retain the right to inspect all

messages in the mailbox, regardless of the upload sources or the addressees. The ground

control station, when it is so desired, can request a list of all files currently maintained

in the memory, or a partial list of only those files "from" or "to" a particular call sign.

This command is received by the GROUND CONTROL module, which responds,

81

requesting the appropriate file list from the mailbox control module using a 'list-mail'

message. The mailbox module responds with a 'mail-list' message which indicates the

number of files matching the criteria of the 'list mail' message and provides a list of all

of the appropriate file numbers. From this list, the ground control module or the ground

control station personnel can then choose files to download.

2. The 'postbul•etin' and 'delete-bulletin' Messages

The ground control module has the same access to the file handling facilities

of the Space Craft Operating System as does the mailbox control module. For this

reason, it does not need to go through the mailbox module in order to "post" a bulletin,

which really consists only of storing a file with the name "BULLETIN.xxx" in the mail

storage area. (File lists such as those discussed in the previous subsection are requested

from the mailbox module merely to take advantage of its enhanced association

capabilities using the source records it maintains.) The mailbox module should,

however, maintain a complete set of source records, including one for the ground control

station. When a bulletin is posted, the ground control module informs the mailbox

module using a 'postbulletin' message, so that an appropriate file number can be

assigned and the source record can be updated. Similarly, when a bulletin is deleted, the

mailbox module is informed by a 'delete-bulletin' message.

82

3. 7W '%Aim •aUx and 'prgem!ai' Manag

Whmeever a user requests to upload a file, the mailbox module must first

detemine whether there is room for it in the memory. If it finds that there is-not enough

room, it does some "houslemaningn, deleting all files which have passed their expiration

dates. This is the only time the mailbox module deletes files on its own, so that many

files may actually remain onboard the satellite for longer than the nominal time allowed.

After the mailbox module has deleted all files which have expired, it once again checks

to see if there is enough room to upload the new file as requested by the user. If there

is still not enough room, the mailbox module must deny the request to upload. At the

same time, it informs the AUTO-CONTROL module of the problem with a

'full mailbox' message.

Perhaps in response to a 'f.l mailbox' message, or perhaps in obedience to

a ground station command, or for some other pressinr reason, the ground control or auto

control module can direct the mailbox module to "purge" the mail box. The

'purgemail' message will indicate whether all mail files should be deleted, or all files

posted prior to some designated upload time, or all files "from" or "to" a particular call

sign. This purge is done via the mailbox module, so that it will have the chance to

update all affected source records.

83

4. The 'store user telern' and 'delete user telem' Messages

Like the ground control and auto control modules, the

TELE.•MrYGATHER module also has complete access to the SCOS file management

capabilities. When user-accessible telemetry data is to be posted, it merely saves a file

called "USRTELEM.xxx" in the mail storage area. These telemetry files can also be

deleted by the telemetry module when they become outdated. In the interest of

maintaining a complete set of source records, the mailbox control module is informed of

these actions via the 'store.user telem' and 'delete.user telem' messages.

84

IX. REMAINING MODULES

A. TCI- MWTY GATHERING MODULE

In the cunent PANSAT flight software specification, 14 Separate Software modules

have been defined at the module header definition level. Of these, detailed module body

definitions have been developed for 4. The DATA-TRANSFER,

PACKETTRANSFER, and MAILBOXCONTROL modules are described in Chapters

V through VIII of this thesis. A preliminary module body definition for the

PASSWORD-CONTROL module has been written, but will not be released to the

general public. Two modules, PRIffnVE AX25 and PRIMITIVESWLOADER, are

actually commercial software products, BAX and PHTX. The capabilities of these

pograms will be accessed by various PANSAT modules, but no body definitions will be

written for them, because there is no need to specify existing software, only the

interfaces to it. The body definitions of the remaining 8 modules will be highly

dependant upon the actual hardware configuration of the satellite, which is still

undergoing daily design changes. Central to the operation of these remaining modules

will be the operation of the TELENMYGATHER module.

The function of the telemetry gathering module is to collect data on the operation

of the satellite from which control decisions can be made, both by the automatic control

module (AUTO CONTROL) and the ground control station personnel at NPS. In order

to obtain much of this data, the telemetry gathering module has direct control over the

85

A/DDRIVER module which operates the analog-to-digital converters and associated

multiplexors in order to obtain relevant sensor data, such as battery voltages or solar

array temp . Other telemetry information will come from the BAX and SCOS

software, which maintain various statistics about the communications and operating

environments.

The hardware telemetry points which have been defined thus far are listed in Table

9.1. The best situation is for each point to stay within the expected or "nominal" range.

When a reading goes outside the nominal range, there is still no serious system

degradation unless it also goes outside the "operating range". At this point, there may

be no immediate danger to the system, but a trend may have started which will soon lead

to operational difficulties. When a reading goes outside the "red alert' range, immediate

correctional actions must be initiated, if they have not been already. System failure

could be imminent. Many of the exact values for these ranges have not yet been

determined. The proper preventive and/or correctional steps to be taken in each situation

are also still under study. The values contained in Table 9.1 are the best estimates

available at this time, but are subject to change. Those readings for which no estimated

values have yet been determined are marked with "tbd'. The "totals" listed are for the

sensors controlled by one Digital Control System (DCS) board, on which will be running

one copy of the flight software. The current design calls for the entire DCS to be

duplicated, and for each board to be attached to its own complete and separate set of

sensors.

86

TABLE 9.1 HARDWARE TELEMETRY POINTS

Poit Nomial Opertin Red Alert

Ffn. Max. Min. M*ax. Mn. Max.

Solar Array 0 C 500 C -200 C 1200 C -30C 14 C
Temperatures (17 total) _r II

Battery Voltages 12 V 13 V 11.5 V 13.5 V 10 V 15 V
(2 total)

Battery Temperatures -1.1° C 100 C -6.70 C 26.7* C -150 C 500 C
(4 total)

Battery Discharge tbd tbd tbd tbd tbd tbd
Currents (2 total)

Electrical Power tbd tbd tbd tbd tbd tbd
System (EPS) Bus
Voltage (1 total)

EPS Board 00 C 400 C -100 C 500 C tbd tbd
Temperature (2 total)

Transmitter Current tbd tbd tbd tbd tbd tbd
(I total)

Transmitter RF Power tbd tbd tbd tbd tbd tbd
(2 total)

Transmitter 00 C 40r C -100 C 500 C tbd tbd
Temperature (2 total)

Received Signal tbd tbd tbd tbd tbd tbd
Strength (2 total)

Receiver Temperature 00 C 400 C -100 C 500 C tbd tbd
(2 total)

Sense Relays for State tbd tbd tbd tbd tbd tbd
of Communications
Hardware (total tbd)

DCS Board 00 C 400 C -100 C 50r C tbd tbd
Temperature (2 total)

87

The telemetry gathering module maintains a list of sensor points with timing

intervals and expected operating ranges for each. This list can be updated by commands

from the ground control station, which can cause points to be added or deleted, or can

change the timing intervals for obtaining readings from various points. Some timing

intervals may be changed dynamically by the automatic control module or the telemetry

gathering module itself, based upon trends in the readings or upon reading which are out

of the expected ranges.

Table 9.2 lists some "operating environment telemetry points" which can be

gathered by SCOS, and passed to the telemetry gathering module for inclusion in the

telemetry files. Table 9.3 lists some "communications environment telemetry points"

which can be gathered by BAX, and may be of interest to the ground station controllers.

BAX has the capability to maintain a file of this data itself and to download it directly

to the ground control station. Whether the information will be passed to the telemetry

gathering module to be included with the rest of the telemetry, or whether this separate

"BAX telemetry" file will be maintained and passed to the ground control station as the

result of a separate ground station command, has not yet been determined. Table 9.4

contains a list of other general system data which may be collected by the telemetry

gathering module directly from the satellite hardware or from the other software

modules. In some cases, such as the data points listed under "LOGIN" and

"MAILBOX", existing module specifications will have to be modified in order to require

the software to gather the data required by the telemetry module. Such modifications

88

will be postponed until it has been decided which of these data points will be of most

interest to the ground station controllers, and what sampling intervals will be required.

TABLE 9.2 SCOS TELEMETRY POINTS

Data Point Data Type Description

Scheduler Events list of numbers Operating System multi-
tasking events (tasks
running & scheduled).

Timer Events List of numbers Operating System tasksin queue.

SCOS Service Calls List of numbers General Operating
System information.

TABLE 9.3 BAX TELEMETRY POINTS

BAX Data Data Description

Point Type

smallct uint Count of received frames containing < 32 bits.

nonint uint Count of received frames with a bit length not evenly
divisible by 8

bigcnt uint Count of received frames that exceed maximum size.

abortcnt uint Count of received frames that are aborted.

overcnt uint Count of receiver overruns.

crc uint Count of receiver crc errors.

tx aborted uint Count of transmitted frames aborted or flushed.

tx under uint Count of transmitted frame underruns.

tx-abort call uint Count of calls to qio abort/flush.

qiocurrx uint Current number of frames in receiver queue.

qiomaxrx uint Maximum number of frames in receiver queue.

89

TABLE 93 BAX IEJ.LEME Y POINTS

BAX Data Data Description
Me Type

"qiocurtx uint Current number of frames in transmitter queue.

qiomaxtx uint Maximum number of frames in transmitter queue.

poolfail uint Number of "pool gets" that failed.

retryexceeded uint Count of times the maximum number of frame retires
has been exceeded.

quitottx ulong Total number of transmitted frames.

quitotrx ulong Total number of frames received with no errors.

tdatain ulong Total number of data bytes received.

tdataout ulong Total number of data bytes transmitted.

tdigi ulong Total number of digipeated frames.

daytime ulong Total number of 50msec intervals that have expired
since system startup.

start-time ulong Startup time in seconds. (UTC)

Following are counts of frames types defined in the AX.2I protocol [Ref. 2].

<I> in ulong Number of "information" frames received.

<RR> in ulong Number of "receive ready" frames received.

<RNR> in ulong Number of "receive not ready" frames received.

<REJ> in ulong Number of "reject" frames received.

<DM> in ulong Number of "disconnect mode" frames received.

<SABM> in ulong Number of "set asynchronous balanced mode" (connect
request) frames received.

<DISC > in ulong Number of "disconnect request" frames received.

<UA> in ulong Number of "unnumbered acknowledge" frames
received.

<FRMR> in ulong Number of "frame reject" frames received.

90

TABLE 9.3 BAX TELEMIY POINTS

SAX Daft Daft Desripto
___t Type __ _ _ _ _

<INV> in ulong Number of -invalid" frames received.

<UI> in ulong Number of "unnumbered information' frames received.

<I> out ulong Number of -information' frames transmitted.

<RR> out ulong Number of "receive ready* frames transmitted.

<RNR> out ulong Number of *receive not ready" frames transmitted.

<REJ > out ulong Number of "reject" frames transmitted.

<DM> out ulong Number of "disconnect mode' frames transmitted.

<SABM>out ulong Number of "set asynchronous balanced mode' frames
transmitted.

<DISC > out ulong Number of 'disconnect request' frames transmitted.

<UA> out ulong Number of "unnumbered acknowledge" frames
transmitted.

<FRMR>out ulong Number of "frame reject" frames transmitted.

<INV> out ulong Number of 'invalid" frames transmitted.

<UI> out ulong Number of "unnumbered information" frames

transmitted.

TABLE 9.4 GENERAL SYSTEM TELEMETRY POINTS

Data Point 1 Data Type I Description

LOGIN Data

Logins uint Number of user logins.

Logouts uint Number of user logouts (requested
_ disconnects).

ALAogins uint Number of authorized logins.

91

TABLE 9.4 GENERAL SYSTEM TELEMETRY POINTS

Data Point Data Type Descripton

UA gIn uint Number of unauthorized login attempts.

UALtime UTC Unauthorized login attempt time stamp.

Uuser array of List of Undesirable Users.
Calisign_
Type

MAILBOX Data

RMai uint Count of received mail.

SMail uint Count of sent mail.

StMail uint Count of stored mail.

Stor ulong Amount of storage used.

Communication System Data

Receiver boolean Receiver A or B selected.

Transmitter boolean Transmitter A or B selected.

Mode boolean Spread Spectrum turned On or Off.

Atten uint Attenuation Level 1 through 8 selected.

Digitai Control System Data

DCS boolean DCS A or B selected.

SWver uint Software version in use.

date UTC Current satellite date and time.

SEUc uint EDAC (error detection and correction) SEU
(single event upset) count.

SEUt UTC Start time for EDAC SEU time.

SEUlt UTC Time of latest EDAC SEU.

RAMw ulong Address of next RAM cell to be "washed".

92

As th telemetry gatheuing module completes each round of readings, it updates a

file of the 'current telemetry" which is accessible to the automatic control module. The

automatic control module makes use of this data in its autonomous control of the satellite

hardware systems. The telemetry gathering module also stores telemetry data in a

telemetry history file, which will continue to grow and store past data until it is purged

by a command from the ground control station, or it reaches a pre-determined maximum

size. If the maximum file size is exceeded before the file can be downloaded and then

purged by the ground control station, the most recent entries for each data point will be

maintained, and older entries deleted, in order to control the size of the file. The ground

control station will use this larger telemetry file to analyze trends in satellite

performance, and to make control decisions beyond the scope of those made by the

automatic control module. The telemetry gathering module will also maintain shorter

telemetry files containing data which may be of interest to the amateur radio users who

access the satellite mail box system. These files are stored in the mail area with the file

name "USRTELEM.xxx".

B. AUTOMATIC CONTROL MODULE

The AUTOCONTROL module carries out periodic functions, such as battery

conditioning, on a time scheduled basis. It also carries out aperiodic functions. As

indicated in the previous section, the AUTO-CONTROL module makes use of the data

93

collected by the telemetry gathering module to make decisions about the control of the

satellite hardware. It also maintains a "timetagged" command buffer which lists

activities which should take place at a particular time in the future. This command

buffer is updated by the GROUND-CONTROL module as a result of ground control

station commands. The Digital Control System design includes hardware timers which

can be programmed by the automatic control module to interrupt the microprocessor at

designated time intervals to initiate periodic events or to produce a set of one-time-only

interrupts to initiate events controlled by the command buffer. Software timers may also

be used for some of the automatic control module functions.

Most of the control functions carried out by the automatic control module will

likely be based on a "table look-up" system. When a timer interrupt occurs, an interrupt

vector table will contain the address of the appropriate subroutine needed to carry out the

scheduled activity. Another table of subroutine addresses will be indexed based on

combinations of telemetry readings which call for some action to be taken. These

subroutines and tables will be developed as more is learned about the specific

requirements of the hardware as it is designed.

Table 9.5 lists some possible functions of the automatic control module which have

been identified thus far. The EPS DRIVER, COMM-DRIVER and DCS DRIVER

modules contain the software drivers required for direct digital control of the electric

power system, communications, and digital control system hardware. The services of

94

these modules will be accessed as necessary by the automatic control module in order to

carry out functions listed in Table 9.5.

TABLE 9.5 AUTOMATIC CONTROL MODULE FUNCTIONS

Function Description

Electric Power Supply Turn hardware components off and on as
Control necessary to conserve power, allow battery

conditioning, etc.

Condition Batteries Periodically discharge and recharge batteries in
order to prevent battery "memory".

Systems Test Management Carry out periodic systems checks in addition to
normal telemetry gathering. Save test data for
download to ground control station.

Communications Control Transmitter/Receiver component select.

Transmitter Output Power Set level of transmitter power.
Control

Automatic Subsystem Select Select alternate subsystem upon time-out waiting
for response of a primary subsystem.

Real Time Clock Control Set and remove times for periodic interrupts.

Send Messages Send periodic messages to the ground control
station via BAX.

Copy Vital Statistics Transfer vital operating system information to
0 alternate processor.

RAM Wash Periodic reading/writing of system RAM to enable
Error Detection and Correction functions.

Digital Control System Periodic signal to EPS to ensure proper operation
Health Check of active DCS. EPS will disable a malfunctioning

DCS board and "boot" the alternate when the
proper signal is not received on time.

95

TABLE 9.5 AUTOMATIC CONTROL MODULE FUNCTIONS

Function Description

User Lockout. Message to data transfer module locking out all or
new users.

C. GROUND CONTROL MODULE

The GROUND-CONTROL module contains the command interpreter and the

functionality required to carry out commands transmitted by the ground control station

at NPS. Ground control packets will be passed directly to the ground control module by

BAX, since they will be addressed specifically to the ssid (subsystem identification

number) for this module. All ground station commands will be subject to verification

by including a time varying password. The PASSWORD-CONTROL module will keep

track of the current password aboard the satellite, and will provide this information as

necessary to the ground control module. Similar software will track the current password

for the ground control station. There will be facilities for determining the current

password aboard the satellite, in case the two systems lose synchronization for any

reason. The specification of the password control module contains proprietary

information, and will not be published for general release.

Once a command has been received from the ground control station, the password

has been verified, and the command has been interpreted, the ground control module

either carries out the command directly, or communicates with other software modules

as necessary to utilize their capabilities. A ground command may involve updating the

96

Urns-tagged command list of the automatic control module, or varying the time intervals

for periodic events carried out by the automatic control or telemetry gatheing modules.

It may initiate a one-time-only corrective action, or change a basic system parameter.

Some ground station commands simply involve the acquisition of information for use by

the ground control station software or personnel.

Some possible functions of the ground control module which have been identified

thus far are listed in Table 9.6. The PRIMITIVESWLOADER module, which is

actually the commercial program "PHTXU, is designed to work directly with BAX to

upload software. This module will be utilized by the ground control module when a

command is received to upload new software. In this way, the flight software can be

updated as necessary to correct errors or increase functionality.

TABLE 9.6 FUNCTIONS OF THE GROUND CONTkC- . MODULE

Function Description

Command Process a received ground station command.
Interpretation/Validation. I

Update Time-Tagged Schedule events to be carried out at a future time
Command Buffer. by the automatic control module, or delete events

from the command buffer.

Set Control Rates. Update time intervals or list of periodic functions
of the automatic control module.

Set Telemetry Polling Rates. Update time intervals used by the telemetry
gathering module for particular telemetry points.
Add or delete telemetry points.

97

TABLE 9.6 FUNCTIONS OF THE GROUND CONTROL MODULE

FuN tiou Decipdon

Software Upload. Upload, and store new or updated software
modules.

Run Software. Begin using newly uploaded or alternate software
module.

Delete Software. Delete specified software module.

Copy Software. Copy verified software to alternate processor.

Boot ROM. Reboot PANSAT from ROM (read only memory).

Boot OS. Load a new operating system and transfer cor

Read OS Information. Download the current operating system pointers
and parameters.

List Mail. Download a list of all mail messages and bulletins
currently stored.

Dump Mail. Download system bulletins and mail in bulk.

Post Bulletin. Post a system bulletin in the mailbox area for all
users.

Remove Bulletin. Remove a system bulletin.

Purge Mail. Purge all or selected mail from the mailbox
storage.

Read Current Telemetry. Download the current telemetry file maintained by
the telemetry gathering module.

Read Stored Telemetry. Download the telemetry history file maintained by
the telemetry gathering module.

Purge Stored Telemetry. Delete all or portions of the telemetry history file.

Read Data. Download an arbitrary block of data, specified by
address pointer, from the file storage area or
system RAM.

Set Real Time Clock. Set satellite's real time clock to a specified time.

Read Real Time Clock. Download current time on satellite's real time
clock.

98

"TABLU 9.6 PUNCTIONS OF THE GROUND CONTROL MODULE

Subsystem Power Control. Turn power on/off to a particular subsystem.

Condition Battery. DischmageA/ehwSe pcified battery.

Trickle Charge Battery. Trickle charge specified battery.

Charge Battery. Quick charge of specified battery.

Select Battery. Select specified redundant battery.

Select Receiver. Select specified redundant receiver.

Select Transmitter. Select specified redundant transmitter.

Select Processor. Select specified redundant digital control system
board.

Set Mode. Select communications mode: spread spectrum or
BPSK.

Set Maximum Transmitter Set maximum allowable amplitude of transmitter
Power. power.

Set Attenuation. Set attenuation level of the active transmitter.

Switch to Super User Mode Functions requiring super user mode are tbd.

Exit Super User Mode.

Read Event Log. Download Event Log maintained by the event
logging module.

Purge Event Log. Delete all or portions of the event log,.

Read Time-Tagged Download the time-tagged command buffer.
Command Buffer.

Purge Time-Tagged Delete the entire time-tagged command buffer.
Command Buffer.

User Lockout. Message to data transfer module locking out all or
new users.

99

D. EVENT LOGGING MODULE.

The purpose of the EVENT-LOGGING module is to maintain a history of all the

significant events which happen and commands which are carried out aboard the satellite.

It is hoped that this event log will be helpful in trouble shooting problems aboard the

satellite, or merely in studying its operation. The event logging module differs from the

teemetry gathering module in one major respect. The telemetry gathering module

periodically polls the hardware and other software modules, gathering a predetermined

list of specified data. The event logging module waits to receive event messages from

other modules, informing it of aperiodic events which are deemed significant in some

way.

A list of "significant* events will need to be determined, so that the exact nature

of the event messages can be defined in the software specification. Some possible events

include the occasion of a full mailbox, a telemetry reading beyond the "operating range"

(this will also be listed in the telemetry files, of course, but may stand out more here,

or be associated with some other event which will make trouble shooting and correction

easier), user connections lost because the transmitter has been shut down for power

reasons, etc. An event log entry will also be made each time an automatic command

function or a ground control command is carried out. The exact format of the event log

entries will be developed as the list of significant events and useful information is further

defined.

100

X. CONCLUSIONS AND RECOMMENDATIONS

A. THE USE OF ESTELLE

The formal description tchnique, Estelle, has proven to be a valuable tool in

ceating a software spedftaion. Its methods of defining state machine behavior and its

channel and message definitios have provided a unique way of visualizing a system, and

seeing how all of the pieces fit together. The various levels of abstraction greatly

facilitate the advancement of a project, even when all details are not yet known. When

details aM known, Estelle provides ample means of specification at the lowest possible

levels, and the flexibility to define algorithms both simple and complex.

In order to make Estelle even more useful in this project, a few modifications have

been made to it. For instance, since "C" has already been chosen as the implementation

language, a few data types have been defined to more closely match familiar structures

in "C'. Array indices start at 0 in this specification, as they do in "C". Multiple

dimension arrays are indexed by multiple sets of brackets, "var[iJ[j], rather than by

multiple indices within one set of brackets, "var[i, j]". The names of the primitive data

types ae borrowed from *C": "uchar", "uint "and "ulong". Many of the primitive

functions and procedures are functions familiar to 'C" programmers. In addition,

various font modifications have been used to make elements of the Estelle and Pascal

syntax stand out, so that their meanings are more obvious in the context. Bold is used

101

to indicate reserved words, user-defined data types begin with CapitalLetters, constants

ae written in imlcs, etc.

Many of the more complex capabilities of Estelle are not utilized, since they are

somewhat confusing and are not needed to make clear the intended behavior of the

software being defined. The greatest drawback of Estelle is the specification of Estelle

itself, [Ref. 8]. [Ref. 8] is very difficult to read and sometimes impossible to

understand. For those interested in using Estelle in future software specification projects,

it is recommended thot only the Annexes be read. These contain all the information

needed, as well as adequate examples to provide understanding of how this language can

actually be used.

B. RECOMMENDATIONS FOR FURTHER WORK

This thesis provides a preliminary specification for the flight software of the Petite

Amateur Navy Satellite. As much information as is currently available concerning the

high-level operationa? requirements of the satellite has been included. A software

architecture has been provided which defines the individual software modules and their

interfaces. Detailed definitions for the bodies of the communications and file transfer

protocol modules have been developed.

There is obviously much work remaining to be done. The module body definitions

for the telemetry gathering, analog to digital conversion, automatic control, ground

control, electronic power system driver, communication driver, digital control system

driver, and event logging modules must be developed. The channel types and message

102

:•,'~71 ITL!#T 7Ai +•A'," l

i~eaossbetween die remaining modules and between them and the existing modules

moat be deined in grMat detail. Once the complete, detailed specification is available

for the entire flight software system, the actual code must be written and tested. TIe

ground software and the bootstrap software must be specified and coded, and the

interfaces between these programs and the flight software must be tested. Hardware

designs must be completed and tested before any software specifications can actually be

finalized. A start has been made, and the beginnings of a road map have been drawn.

Much more effort will be required before this project is completed.

103

(This Page Intentionally Left Blank)

104

g. 0 . .

APPENDIX A - ESTELLE SOFTWARE SPECIFICATION

V ed1lcad Flight-Software;

type (Potanfve Types
{Note: the notation 'Oxhh' is used to refer to }

hexadecimal numbers, with the h's }
(reptem ting the hex digits 0..F. The number }

{ of bytes in each hex number is the number of }
digits divided by 2. }

uchar - OxO..OxFF; 8 bits of binary data or I byte unsigned integer or }
I ASCII character. }

uint - OxOOOO..OxFFFF; 2 byte unsigned integer }
ulong - OxOOOOOOOO..OxFFFFFFFF; { 4 byte unsigned integer }
int -.. ; {Positive and Negative integers as defined on }

implementation hardware.

coust { 'Global' Constant Declarations }
mhax J/ehngth = any ulong; {Maximum length of a file onboard the satellite }
maxo l --- any uint; {Maximum pieces of mail in Select list }
password_/ength = any uchar; I Number of characters in the password. }
ma=jdat = 2047; {Max number of bytes in the data field of a packet. }
max Ox = 256; {Maximum length of data field in a BAX frame. }
ma/inks - 30; { Max channels allowed by BAX. }
pans ..call = any CansignType; { Pansat's call sign }
nps..cal/ = any CallsignType; { NPS' call sign. }

no-error = OxOO; {Error Codes
eriljbrmedcmd = OxOl; (Incorrect or unexpected command }
er bad condnue = Ox02;
er.server. ys = 0x03;
er no suchjfilenumber = 0x04;
er.elect•"on. = OxO5;
er.nmandawory~fieldnhssng = Ox06;
erro..pjh = Ox07;
eip rlyjjr" med sel = Ox08;
er.alreadyJocked = 0x09;
er no such desfination = OxOA;
er.,.e.coeplete = OxOC; {Ox0B was arepeat of Oxo5
er no-room = OxOD;

105

erbtv heaer -OxOE;

ejýhea&ýderce = OxOF;
er badycheck - GXI 1;
erjwMsUlnde-nie - 0x90; (PANSAT specific; not in FTLO.

type (Globa Type Declarations)
Tpint Acord -. ; {. 'To be determined')
Tcin.Da~kType -
EPS Cmd..Type -

EPSResp Type
CommmCmdyType, M
C~onmResp Type =
DCS..Cmd..Type = *
DCSReVpType =-
Sat.CmdjType =-
SatRespType =-
Event ReportType =
CailsigType = array[61 of uchar;
Byte tring = array[] of uchar ; (Any even number of hex digits surrounded

f ~by double quotes. Refers to raw binary
(~data matching the pattern of the hex digits)I
{ and of the same length.

Pdat Len = 0. .maj~dat; {Number of bytes of info in a packet.
Fdat Len =0..maxfda: (Number of bytes of info in a fr-ame.
Lockout Type = (all, new); (Each member of an enumerated type is assumec*

I obe associated with adistinct uchar.
Frameý Type =(qat data, qat state, qat a)
Link State = (qasconnectyend, qasconnected,

qas~connecting, qas disconnected,
qas disconnectng, qasfrmrject);

Cause = (qac local, qac remoe, qacreotfmr,
qac_#meout);

PaswordType - wrry~passwvnl length] of uchar;
FilejType = array[maxýfilejIengthj of uchar;
Pdata = rray[Max~pdatJ of uchar; (Info field of a packet
Fdata = array[maxjdat] of uchar; (Info field of a frame
Num Mail =0..max mail
Direction = (kft, right);
PacokeTjype = record

length lsb: uchar;
hi: uchar;
info: Pdata;

end;
Link Type 0 0.. maxllnks - 1;

106

NMlLeyP = array[12] of uchar, (DOS file name. Character in 9th
position must be'.'

File List - array[] of NameType; (Variable len array of file names.)
BitJType = o..1;
Control Block = record (Includes only BAX fields which are used }

link: uint; ('channel' in BAX manual }
kind: Frame_Type; ('type' in BAX manual }
I state: Link State; ('state' in BAX manual }
why: Cause; ('cause' in BAX manual)
my call: CallsignType; (AX25_ADDR or AX25 CALL }
my_ssid: uchar; { in BAX manual }
his call: Callsign Type; Client's Call sign I
his~ssid: uchar; {Client's SSID - may not be needed }
tl: uchar; {tl frame ACK/NAK timeout timer value }
maxframe: uchar; (frame sliding window size }
retry: uchar; (maximum number of retries for an out frame }
paclen: uint; (maximum size of info field in outgoing packet }

end;

107

ChftWe Defleldom
channe Absitract - laxSCbannl(flaxEnd, Danta Transfer-End);

by Box-End:
qax~jnput(in-cb: Control-Block; idata: Fdata; datal: Fdat-Len);

by DamTaransferndW:
qax~clam(out-cb: Corktrol,.flock; grab: uchar);
qax daWa link: Linkj..ype; out cb: Control-Block; odata: Fdata; datal: FdatLen);
qax~busy(link LinkType);
qaxqornacpt;

qaxu.nbusy(link: LinkType);
qaxconmnect(out cb: Control.BAlock);
qaxui(link: Linkjype; outcb: Control -Block; odata: Fdata; datal: Fdat Len);
qaxdicnct linic Linkjype; wait: boolean);

channel Abstract-Packet Channcl(Data-Transfer End, Packet TransferEnd);
by DatajTransfer-End:

connection(callsign: Callsignjype);
disconnect;
commandpacket(command: PacketType; datal: Pdat Len);

by PacketjTransfer End:
responsej~acket(response: PacwketType);

channel Mailbox Access Cbannel(Packet Transfer-End, Mailbox-End);
by Packet.Transfer End:

active al req(client call: CallsignType); (Does client have an active select list?}
mail num rq client-call: Callsign Type; mail-number, length: ulong);
mailr.ecv(mail-number, offset, length: ulong; mail: Pdata);
mail close rq mail number, offset: ulong; reqjesp: boolean);
mselectreq(client call: Callsign Type; select struct: Pdata);
maiLycq(client call: CallsignType; mail numnber, offset: ulong);
dLack(client call: Callsign Type; mail-number: ulong);
dir rcq(client-cal: Callsign Type; mail-number: ulong);
mail del req(client-call: CallsignType; mail-number, length: ulong);

by Mailbox-End:
active si resp(sl: boolea); {true if client has an active select list.
mail-numjresp(mail-number, offset: ulong; error-code: uchar);
mailjrecvrep errocode: uchar);
mail close ep(error-code: uchar);
mail uend(mail number, length: ulong; mail: Pdata);
mselectresp(num sel: Num -Mail; error code: uchar);
mailresp(mail: PNato; mailnpumber, length: ulong; no-al: boolean);
directory(len: Pdat Len; dir: Pdata; no-al: boolean);
mail del resp(errorcode: uchar);

108

cbauin MAilbaac.AdmIn..Cbmnnel(Control nd, Mailbox Find);
by Contro End:

list mawil(bulletins, messages, from, to: biolean; callsign: CallsignType);
pos~bulctn(bulletin: NamneType);
delte ullti(bulletin name: Name Type);

purge~nail(all, from, to: boolemn; callsign: CallsignType; postjtie: ulong);
by MAilbox-End:

mnail ls(num -files: uint; mail: Filels;
full mailbox;

channel TelemetryStorageChannel(TelemetryEnd, Mailboxnd);
by TelemetryEnd:

store userj-elem(telem: Name kType);
deleti user telemn(telemnffle: Name Type);

channel Password Control-Channel(Control-End, Password-End);
by ControlE;d-:

passw~ord...hangejequest;
request current~password;

by Password End:
password(pswd:PasswordType);

channel Data-Transfer -Control-Channel(Control-End, DataTransfer End);
by Control-End:

changejsarams(outcb: Control Block);
lockout(1-kind: Lockout Type);
unlock(1-kind: Lockout Type);
transmitter(off: boolean);

by ControiledEnd:
acknowledge;

channel TelemetryControlChannel(Control-End, Telemetry_2Gather End);
by Control-End:

add~point(point: Tpoint Record)
delete~point(point: Tpoint Record)
changeý timing(point: Tpoint Record);
read-current telem;
read stored-telem;
purge~storedtelem;

by TelemetryGatherEnd:
ackJ iLchange(error: uchar);
current telem(telemn: Cur Telem Type);
stred telm(telem: Full TelemType);

109

duande A/D -ControlCbannel(Command-End, AID ConvaerterEnd);
by CominandEnd:

waMuMp(dgviceý num: Uchar);
s~tartconvarsOW tlMJiomnt: ucha);
zwp Ltawa tcemnpoint. uchar);

by A/D-Converter-End:
device- ready(device num: uchar);
datajeady telenpont: udwa);
Ieleadata t data: Telem Data :Typ);

channel SW Load Control-Canl Control-End, Loader End);
by Control-nd:

upioad(new-software: Name Type; sw-address: ulong);
by Loader. End:

upload begin(new-software: Name Type);
upload complete(new-software: Namejype);

channel BPS Control Channel(Control-End, EPS-DriverEnd);
by Control-End:

cpscnd(cmd: BPSCmndType);
by EPS-Driver-End:

epsre*p reap: EPSResp Type);

channel Comm Control-bnnl Control Ad, Comm DriverEnd);
by Control-End:

comm cmd(cmd: CommCmd, Typi.
by Comm-Driver End:

oommrjesp(reap: CommLResp Type);

channel DCS Control Channel(Control-End, DCS Driver End);
by ControlEnd:

dcs ctnd(cmd: DCS -CmdType);
by DSC-Priver End;

dcsresp(reap: DCS_RespjType);

channel SAtelte Control-Channel(Ground Control End, Auto-Control-End);
by Ground Control-End:

satýcmd(cmd: Sat CmdType);
by Auto-Control End:

sat resp reap: Sat.Respjype);

chanwel EventLoLpChanneI(Event End, LogjEnd);
by Event-End:

event reort(report: EvenLReportType);

110

Global function dwcbntions
bmtlom GEr MAR ulong; (Returns a 32-bit unsigned integer indicating the }

'l trem { number of seconds since January 1, 1970. }

fldtion CBIT.S-IFr(d: Direction; num: uchar; b: uchar): uchar;
prhnltlve (Bit-wise shift of the byte specified by 'b' in the }

S direction specified by 'd'. 'num' specifies the }
number of bit positions to shift. Returns a I }

(byte answer. }

function IBIT.SHIFT(d: Direction; num: uint; b: uint): uint;
prWhltlve; (Bit-wise shift of the uint specified by 'b' in the }

(direction specified by 'd'. 'num' specifies the }
{ number of bit positions to shift. Returns a 2 }
(byte answer. }

function CBITAND(a, b: uchar): uchar;
primitive; { Returns Bit-wise AND of the bytes 'a' and 'b'. }

function IBITAND(a, b: uint): uint;
primitive; { Returns the bit-wise AND of the uints 'a' and 'b'. }

function GET LSB(number: uint): uchar; { Receives a 16 bit number and returns the }
primitive; { least significant 8 bits. }

function GETMSB(number: uint): uchar; { Rceives a 16 bit number and returns the }
primitive; I most significant 8 bits }

function INT(short: uchar): uint; { Receives an 8 bit unsigned number and extends it t4
primitive; { 16 bit unsigned number by prepending 8 O's. }

procedure QAXCLEAN CB(cb: Control Block);
primitive; (Initializes all fields of the control block structure }

{ to 0. This is a procedure provided by BAX. K

function FORMAT EVENTREPORT(event: uint; time: ulong): EventReportType;
external; (This function prepares an EventReport to be sent)

{ to the EVENT-LOG module. This function is }
{ external since the structure of the)
{ EventReportType has not yet been determined.)
{ The parameter list may have to be modified when)
{ this function is further defined. }

111

(Module Header Definitions

module PRIBiTIVE AX25-TYPE uemrc;(BAX.
'p

bax: array(4J of AbstractBax-Chmnnel(Bax,.End) kudlvihdua queue;
end;

module DATA TRANSFER TYPE syunrCeWs; (Between BAX and FTA
'p

pc: arroy[marlibJ of Abstract-Packet Cbannel(DatAjransfer End)
Individual queue;

bux: Abstract flax channel(Data Transfer End) Individual queue;
cc: arrayf2J of Daita Transfer Control Channel(Data Transfer-End)

common queue;
ei: Event ~LagChannel(EveqEnd) common queue;

end;

module PACKET TRANSFER TYPE systemprocess(link: Link Type); I FTL
'p

pc: AbstractyPacket..Channel(Packet Transfer -End) Individual queue;
mic: Mailbox Access.Channel(PacketjTransfer~fnd) individual queue;
el: EventLog.Channel(EventEnd) common queue;

end;

module MAILBOX CONTROL TYPE systemprocess;
Ip

mc: array~maxlinks of Mailbox Access Channel(Mailbox-End)
Individual queue;

cc: array(21 Of Mailbox-Admin-Channel(Mailbox-End) common queu-e;
ts: Telemnetry ýStroge -Cbannel(Mailboxjnd) Individual queue;
el: Event LogChannel(EventEnd) common queue;

end;

module PASSWORD CONTROL TYPE(firstjpassword: PasswordType;

IP shuffle:Shuffle .Type); systemprocess;

cc: arrY[2] Of PasswordControl-Channel(Password-End) common queue;
el: EventLog~hannel(EventLEnd) common queue;

end;

112

lid" AUIQ COWIVOL TYPE 33 -11 WIEm (Awbound~c Honkeig Functions)

box: AbefmtVA Uxaaane(D Nra,.TdwrEnd) WHivIdua1 queue;~
ncd: Dalk ansftu.Cotrol.Chnne(ConftroL Ind) ivdidual queue;

a= TelemetryControl Channul(ControlFnd) WdIvIdua queue;
ucp: Pamowrd .Controlhne(control-Ed bhdhkbma quaeue
ams: Adoo dmin-abande(Control End hlvlAIS queum,
nce: IPS Control Chne(ConftrolEnd) Individuual quem;
ncom: ConumCoatrOi3NbAnn Controlynd) bidividual qumeu
acic: DCS-onroW hsut(Control_ En) dvk'hWa queue;
ac:* SacliContx&Cbannef(AutoControEnd) individual queue;
el: EventJpgCbmne1(Event.End) emunon queue;

module GROUND CONTROL TYPE systesnprocess; {Command Functions
ip

bax: Absw&_Btax~hannel(DataTransfer End) Individual queue;
cod: Data Trnsfer-ControLphannel(ControlEnd) individual queue;
ct: TelemetryControL Channel(ControLEnd) Individual queue;
cop: Password..Control-Cbannel(Control End) Individual queue;
ccl: SW Load Control Channel(ControlEnd) Individual queue;
coin: Mailbox Admin Channel(Control End) Individ~ual queue;
coo: EPS-Control-bnnl ControLEnd) individual queue;
ocom: Comm.control.Cbannel(ControlEnd) Individual queue;
ccdc: DCS.Control Channel(ControlEnd) Individual queue;
ac: S telliteControl-Cannel(Ground..ControlEnd) individual queue;
ei: EventLog~hannel(EvenLEnd) common queue;

and;

module PRdMiTVE SW LOADER TYEssepoes PHTX
'p

cc: SW Load Control Channel(LoaderEnd) Individual queue;
bax: Abstract-Bax Channel(Dataj ransfer End) Individual queue;

end;

umxdul TELEMETRY GATHERTYPE stepocs w Automatic Telemetry Gathering)
'p

cc: arry[23 of TdelmeftryControL Channel(Telemetry Gather _End)
- queue;

ad: A/D Control -Channel(Command End) individual queue;
el: Event Log. Channel(EvenLEnd) commo queue;
ts: TelemetryStorage _Channel(Telemetry Md) Individual queue;

and;

113

module A/D DRIVER TYPE syepoes Driver for Analog-Digital Cony HW
'P

ad: A/D-Control.Shmnnel(A/DCoavcrtexrEnd) bndvidua queue;

inkEVENTLOOGGR TYE~my r

ci: wmyfnuaxbib + 61 of Event LogChannel(LogEnd) common queue;

E~l PS -DRIVER- YP yim
'p

cc: arry[2J of BPS Control.Channel(BPS-Driver-End) common queue;
end;

module COMM-DRIVER, TYPE systemprocsw;
'P

cc: arry[21 of Comm Control-Channel(Comm Driver End) common queue;

moduale DCS-DRIVER TYPE ytepoce.s;
'p

cc: amy[21 of DCS.Control..Channel(DCS-Driver Eýnd) common queue;
end;

{Module Body Definitions

body PRIMITVE-AX25-BODY for PRBIMITVEAX25 TYPE; external;

114

71"
bedy DATATIMANSFBODY for DATATRANS:ER_ TYPE;

{ AX.25 handla - uses resources of BAX

mlSSWd - OxOl; (SSID of this module
RmISdlm - any uchar; { the max number of 'active users at any time)
tbueoma - any uchar; { number of seconds for frame time-out timer. }
mar.fi~wie - 0x07; {frame sliding-window size.
Mate - any uchar, { max f of retries for outgoing frame)
packtength - maxdat +2; { max size of TLO evel packet

type
ClientNum - 0..mazcllenu;
Client - record

callsign: CaisigType;
lastcomm.time: ulong;
data in.progress: boolean;

end;
Pac-Data - arraypacke: length] of uchar;
Client_Array - array[maxdinks] of Client;
Data-Record = record

runninglength: uint;
final length: uint;
data: PacData;

end;
DataArray = array[maxlinks] of Data-Record;

var
data: Pac Data;
length: uint;
in dat: DataArray; { Array of incoming data on each link
clients: ClientArray;
cb: Control-Block;
num clients: Client Num;
new user lockout: boolean;
alluser lockout: boolean;
packet: PacketType;
transmit ok: boolean;
i: uchar; { general purpose loop counter/index
b: BitType;
1: Link Type;

state NORMAL, BUSY; { States of DATA-TRANSFERBODY
stdatese EITHER = [NORMAL,BUSY];

115

fmnction CONCAT(a, b: Pac Data): Pacp-ata
prbmkve;(ocaeae the array Wb to the end of array

('a', and retturn the combined array of uchars.

fuctlion PACKET LEN(d: Pdata): gint;

PACKET LEN : - I XTSHIFT(A*I, 3, INT(C-BITAND(d[1J, OxEO)));
PACKET LEN : -PACKET-LEN + INT(d[OJ) + 2;

end;

prilceehu FILL PACKET(data: Pic-Data; var packet: Packeýtjype);
peheltve; {Takes the uchars from arry 'data' and places

them, in order, into the record structure of
('packet'.

inktlallue DATA TRANSFER-BODY
to NORMAL

for i 0- tonsawliiksdo clients[i).calisign :='none';
QAXCLEANLCB(cb);
cb.mycall :=pansarcall;
cb. myjssid :-maiLjsid;
cb.t I : - tdmeout;
cb.maxframe := mar fivzmes;
cb.retry : - max jil C;
cb.paclen : - mfia #r,
num clients : = 0;
new user lockout :-false;
ail user lockout : - false;
transmit ok : - true;
output bax.qax~clam(cb);

end;

tram
from EITHE to saue
when bax.qax input
providled inkcp.kind = qat state and in cb.lstate =qasýdiconnected

been
Vf in cb.callsign < > npsc.ail then num-clients :=num-clients - 1;
clients~incb0link].callsign : = 'none';
output pc.[in~cb.link].disconnwc;

and;

116

-ooff

krm HITHR. to-
uhem ccibJ.amiUff
powlsd adoff
be&*

tranmit k_: trm;
tad;

bonm EIHER to sm
when ceffJ.changpeprams

cb :-out cb;
mod;

froim ErrTHER to sm
when bsx.qax input
provded ingatn_* wj
be&i No action required - discard frame)
sod;

from NORMAL to saint
when cc~b]1Wout
provded ljdind - noew
be&i

new us"r lockut :=true;

from NORMAL to same
when co]b.unlok
provde 1k'Indw - new
be&i

newý user lockout :=fakse;

117

pewis 11101nait ok

15 91th: PA(CKTLIEN(response) + 2;

whbai < length dobegin
whM i < out cb.psclea ami i < length do beein

datafi :- repna
i: i +l

end;
output bax.qax daWa 1. out cb, data, i);
length:= length -i;
i: -0;

eud;
end;

from NORMAL to same
whes bax.qax input
provked in-cb. ktind = qx swie and in cb. I sutat qasconnect pend
begn

If in cb.his call - ipscrall then begin
dientsrin~cb-linkj-callsgn : nps cAll

c ients cb.linkl~last-comm time : GET IM4)3;
output bix.qc...con..ac-t;
output pclim cb.Hnkl connection(nps call);

aend

Vf num clients < maxcijents and not new user lockout then begin
nunm clients : - num clients +1;
clients~incb.inUkI.callsign:=in b .his call;
clicnts[in-cb.linkJ.last-comm time:= GET 1ME);
output bax.qaxconmacpt;
output pcjin cb.linkJ.connection(in cb.his _call);

end;
e&e output bax.qaixconRrej;

end;t

118

im NMAL to BSMY

pawvlid L~klnd = adl
bqh

afl..netrkwokxt true;
mew -um -lockout :- true;
for jwi to smm~mb do

Nf cientsfi].causig < > 'none' and clientsri].callsign < > iqs !c~al them
output qax~busy(i);

and;

from BUSY to NORMAL
whea cc(bJ.unlock
prokided 1 kind = all

aliu em lockout :=false;
fori-- lto max Bobsdo

Vf clicntsfiJ.callsign < > 'non' and clients[i].callsign < > nps _call then
output qaxjunbusy(i);

end;

firui BUSY to same
when bax.qax input

uroide d in cb.kind =qawae n
in cb.1 Wtae = qasconnect jwnd and
mýcb.his-call = npscail

clients[incb.linkJ.callsign nps.ýcal;,
clients[in~cb.linkj.last-comm time := GETTIME0;
output bax.qax-qcon acPt;
output pc[incb.link].cwnnecion(,qps .call);

end;

119

hrim ERHlER to wme

winwwd in-cbkidnd = an at_4a
begin

i:- in eb.lin
clhefuWT.lasm commjfime: - GEIýT IEO;
9 cllents.damkjjnpogiess tbon begin

data:m iqdattiJ.dala;
length: h idatQi.nanningjcIngth;
indatiJ.dfta: - CONCAT(da*a[. .knlcnt dt)
Iangt :- length + datal;
It lengt < *_dat in. fina~ljagth then

hndat4Q.runrn&Ingjngth -length;

eke begin
clients~iJ.datikinixpograss =false;

FILL PACKET(indat[iJ-data, packet);
outpu~t pc[iJ.coinmandpWake(packet, in~dat[i].finajl~ength-2);

end;t
eme begla

length :-PACKErtLEN(idata);
Vf data! < length tbesm begin

clientsfiJ.datkAinjrogress -true;

.nati.data:= idata;
in datfiJ.rninmgjcength :-datal;
ir dat[i].finaL~ength:= length;

ew beinl
FELL PACKEr(idata, packet);
outpu~t pc[in cb-.link].commandpaket(packet, length - 2);

end;
end;

end;

end; (of Data-Transfer...Body)

120

bal PACKET TRANPE ODY for PACKET TRANSFE TYPE;

e { Comtauf for PACKE TRANSFER BODY)
data = OxO0; (Packet Types
data Wd Ox0l;
lew-_esp - Ox02;
W MqadOsd M 0x03;
ad/o,_resp = 0x04;
ul er ro resp = Ox05;

dakjresp = Ox06;udja•rsp - o,,o7;
dowload amd = ox08;
dlferrorresp = OX09;
dlaboned, sp = OxOA;
dlcompleteresp = OxOB;

lack cmd = OxOC;
dlm d od = OxOD;
dr shortg Od = OxOE; (There is no difference between the short and long }
dirlong cmd = OxOF; { dir formats- both send complete headers. }
select cmd = 0110;
select resp =Oxl1;
del cmd = OxIE; (Delete a file.., not provided for in FTLO. I

{ For del.cmd, the following packet fields apply: }
{ length.Isb :0x04; hl := xlE;
{ info[0..3] := mail number: ulong. }

del/resp = OxIF; (Not provided for in FTL. }
(Thefollowing packet fields apply: I

I lenght.lsb := 0x01; hi := OxiF;
info(0] := error code: uchar. }

no actw list = 0x00; { These are the FTLO login flags, assuming I
acive_./ist = 008; (PACSET File Headers are Not used I

var p: Packet Type;
client callsign: CallsignType;
selection-active: uchar;
err code: uchar;
currentul mail: ulong; { mail number of file currently being uploaded. }
curentul..offset: ulong; (Number of next byte to be uploaded in current file.)
current.dl mail: ulong; (mail-number of file currently being downloaded.)
current-dlloffset: udong; I Num of next byte to be downloaded in current file.)
datajength: PdatLen;
select: Pdata; (Raw select instruction.

121

{States of PACKET-TRANSFER-BODY
state ULIDL-UNINIT, WAIT-MAILBOX, UJJDL _CMD _WAIT, UL-DATA-RX,

UL-ABORT, DL FILE DATA;

statemet ANY - ULIDL-UNINJ, WAIT-MAILBOX, UIJDL CMD WArT,
ULJABORT, DL FILE DATA];

{Function Delrtosfor)
(PACKET TRANSFER BODY

fuinction CURRBNT-COMMAND(packet: Packet Type): uint;
been

CURRENT-COMMAND := C-BIT-AND(packet.hl, Ox if)
end;

{Procedure declarations for
{PACKET -TRANSFER-BODY)

procedure FORMAT-LOGIN..RESP(login flag: uchar; var packet: Packet Type);
vat login time: ulong;

packet.lengthjlsb : x05; {5 byte information field
packet. hl :=login resp; (login jesp aktTp
packet. nfo[O. .3]: = GET _TIMED;
packet.infi)(4] :=login tiag;

end;

procedure FORMAT UPLOAD GO RESP(file-no, offset: ulong; var packet:
PacketType);

packet.length~lsb : x08; {8 byte information field}
packet.hl : = UPLOAD GO RESP;
packet.info[O. .4] : = file-no;
packet. info[5. .7j : = offset;

end;

procedure FORMATNIRESP(tag: uchar; var packet: PacketType);

packet.lengthlIsb :=OxOO; {No information}
packet.hl :=tag;

end;

122

~~bu~ ~ vi~tL....RRO R w.REP wiw uchar; vr packet: Pachlnye);
bok

jmc" eISDajb -) Ox0l;
paced b M- ul envru
packmt.Idnfo :1 -eror;

en;,

preeihre ORMATUILNAKREP(error: ucha; var packet: Packlwýype);

wimckmt*esghb : - x010;
packethl : m ul makMWsp
pmckaenf(0 WWI eror;

procedure FORMAT-SELECT-RBSP(num: uint; var packet: PackeLType);

packet.lengthlsb : -012;
packet.hl : selectjwsp
packet.info[0.. 1] num;

end;

procedur FORMAT DL ERROR RESP(error: uchar; var packet: PacketType);
be&h

packet.lepgthilsb :x -11;
packet.hl dl =derror .resp;
packet. info(0J: error;

end;

procedure FORMAT)EL-RFSP(error: uchar; var packet: PackeLtype);
bee

packet.lengthlsb : =010;

packet.hl : = deLresp;
packet.infbo(0 error;

end

123

prarocs~e FORMAT DATA(len: PdatLen; dat: pdata; var packet: Packetjype);
var high byte: uchar,

nih: uint;

pIcket.Iengthjzb :- GETLISB(len);
hisbhbyte : = GETMsB(6ln);
nub : = I BiT SHIF(1*, 5, INT(Wgighbyte));
pmcket.bl : GET LSB(tuab);.
packet.info[O..len-lJ := dat[O..len-1J;

end;t

Initialize PACKETTRANSFER-BODY
to UUDL UNINT
begin
end;

trans (Transition Part of PACKET TRANSFIER BODY)
from ANY to ULIDL-UNINIT
when pc.disconnect
beghin Link has been terminated by client or satellite. }
end; (No action required.

from UUJDL UNWIiT to WAI-.- MAI]LBOX
when pc.connection
begin

clienticallsign :-callsign;
output mc.active~sl~req(callsign);

end;

from WAlT-MAILBOX to UL/DL CMD WAIT
when mic.active-sl-resp
beghn

It sA thien selection active :=active list,
ebe selection active : = no active li-st;
FORMAT LODGIN RESP(selection active, p);
output pc.responsejiackei(p);

end;

from UIJDL CMD WAIT to samne (Default condition for unexpected packet or}
when others format.
begn

FORMAT-UL ERROR -RESP(er illjrmted' and, p);
output pc.response..packet(p);

end;

124

CUE ''OIA omn)- -7aaq

friim WAIT MAILBOX to UIJDL CMD-WAIT
wham mc.mail numresp

pOw ided eamo code < > no error

FORMAT UL ERROR-RESP(error ode, p);
output pc-response packet(p);

endoe

from WAITMAILBOX to UL-DATA-RX
when mmalnum-reap
provided errorcode -no-error

current ul mail =mail number;
current ul offset := offset;
FORMAT UPLOAD GO RESP(mailnumber, offset, p)
outpu pc.responseWaket(p);

end;

from UL-DATA-RX to UL/DL-UNI1T
when pc.disconnect (data link terminated by client or satellite.

otput inc.mail close _req(current ul mail, current ul offset, false);
end;

from UL DATA-RX to UIJDL CMD WAIT
when others (Default condition for unexpected packet or
begin (format.

output mc.mail close req(current ul mail, current ul offset, false);
FORMAT-UL-ERROR-RESP(erj~ jilomed _cmd, p);
outpu pc.response~packet(p);

end;

125

from Ul. DATARX -to WAIT-MAIBOX
when fc.commandjscket

prvledCURRENT.CM AD command) - data-end

output mc. mailIouej,_eq(current ul mail, current u! offset, true);

from WAIT MAILBOX to UIJDL-PMD WAIT
when mc.mail dlose jean
begin

Nf eriurt code - no error then FORMAT NIRESP(ad ack resp, p);
eke FORMAT UL NAK, RESP(error code, p);
output pc-respoase.packet p);

from UL DATA RX to WAIT-MAILBX
when pc.commandpacket

prviedCURRENT COMMAND(command) = data
datan lengt : = data!;
output mc mail recv(current ul mail, current ul offset, lata lIength, command Anfo);

end;

fromn WAIT-MAILBOX to UL-)ATA-RX
when mc.mail raccves
provided eror code =no-error

begin
currnisul..offset :=current-ulyoffsct + data length;

end;

from WAIT-MAILBOX to UL-ABORT
when mc.mailrecvresp
provided error-code < > no-error
begin

FORMAT-UL -NAK -RESP(error _code, p);
output pc~esponsej~acket(p);

end;

from UL ABORT to UL/DL CMD-WAIT
when others {Default condition for unexpected packet or
begin {format.

FORMAT UL ERROR RESP(er illJo nned cmd, p);
output pc.esponsepacket(p);

end;

126

&M UUDLAD=Wto

pewlis CURREWWACMMAD(command) -dwata

bq& (No action mquired

from ULDL CMD WAlT to WAIT MAILBOX
whim pc.commandjacket
prowIded --ACURRENT COMMAND(command) = delcand
begh

output :nc.maiIdel req(client callsign, command.info[O. .3]);
end;

from WAIT MAILBX to UIJDL CMD WArT
whom mc.mnaidel-resp
Weg

FORMAT DEL RESP(error code, p);
output pcwasponsepacket(p);

end;

from ULIDL CMD WArT to WArT MAIL.BOX
when pc.commandpacket
pro~ovided CURRENT COMMAND(commiand) = select cmd
been

selct:- command.info[O..datal-1J;
output mc.mselect req(client callsign, select);

end;

127

bmi WArlFMAILOX to ULJDL CMD-WArr
wben mc.miueq =We

V iffwr code m n enwjP thmw beein
selectioq actve : -c*v list
FORMATsEILEIýREIsP(um ad, p);

sn e&eto cie:-u cl it
FRAT _DL JERROkRESP(error code, p);

owput PC.,resPosjckwt p);

from UL/DL CMD WArr to WAIT-MAILBX
when pc-coinmand~packe
prowie (CURRENT COM ADcommand) = Oir short OWd

or CURRENT COMMAND(command) = dfir long and)
and(
(command.info(O..3J < > OxOOOOOO and command-info[O. .31 < >

OXFFFFFFFF)
r selecton active = actlw fist)

be&i
If comnmand.info[O..31 =Ox4OOOOOOO or command.info[O..31 = OxFFFFFFFF then

output mc.dir req(client calisign, Ox4OOOOOOO);

output mc.dirjeq(callý_sign, command-info[O. .3]);

from UL/DL CMD WAIT to same
when c.commandpacket
proided (CURRENT COMMAND(command) = dir short cmd

or CURRENTSOMAD command) =dfir long..Fmd)
aMW so (
(command.info(O..31 < > OxOOOOOOO and command.info[O. .3] < >

OxFFFFFFFF)
or selectionactive - acive list)

be&i
FORMAT DL ERROR RESP(er selection anMpr, p);
output PC.-epae~kt)

end;

128

VUm 1CW ANr to

whom -cbcr

"rso al thi selection active: meachW FledN yts

K Jai'< > 0Othenbis -.7-

FORMATýDATA(len, dir, p) (Assumes 10 file hesadeVDatafacket
sowu pc.reqponaewjact p);
FORMAT _NIRESP(dataend, p);
SOWu pc-IrIesPonejCkWt P);

094
eoe begi

FORMAT DL ERROR RESP(dirtO], p)
SOWpa pc-responsejake p);

sad;
em*

from UL/DL CMD WAIT to same
when pcxowmmand
proylded CURRENTCOMAD command) = download and and

(command-info[0. .3] -010000000 or cominand.info[0. .3] =OxFFFFFFFF)

and selection active -no -active lIist)
begin

FORMAT DL ERROR-RESP(er selection-aempy, p)

endo

fran UIDL CMD WAIT to DL FILE DATA
whenl pc~onimand
pvr.~ed CURRENT COMN(comimand) = download and and(

(cosmand.Mfo(0.A3 < > WoooOOO and command.infqo0..31 < >
0xFFFFFFFM

or selection active = actiive hit)
begi

current dl offset : command.info(4. .71;
urrnvt.l email :w comnmand.info(O..3J;

If current di mail : - OxFFFFFFFF then current dl mail - 010000000;
outu Inc.ma~iLjeq(client calsign, current dLmai, current-dl offset);

end;

129

bunm DL FIL DATA to UJDL CMD WAIT
TAeM mc.uilfare
pegbIsngho w 0 md m(O< >O0(Error fthfromnmuilbox

9 soad them slecdoik eive : w no acdwl a;
FORMAT DLUERORRBS=P(minal, p);

from DL ILE DATA to ome
whom mc.imail reap
peg i100 t< > 0or (uail[0 -O 0 and lengthumO)

begin
if noe &Ihem udehCtioqaCtie: - noocutw w,
If length =0 onhebegin

FORMAT NI RESP(data end, p);
Gowtu pc.respome.packt p);

else begi
FORMAT -DATA(length, mail, p);
Goutu pc-resonse-packcet(p);
current dl offset : current dl offset + length;
It current dl mail = OxOOOOOOOO then current dl mail :=mail-number;
output m~c. aiL req(clientcailsign, current dl mai, cuffrent-dl of fSet);

end;
endo

from DL FILE DATA to UL1DL-CMD-WArr
when pc.cominandpacket
provided CURRENTCM AN) command) = dl-ackcand
begfi

FORMAT N1.PACKET(d(compleedespp)
outpu pc.res2wpoaewket(p);
outpu mc.dl ack(chieqtcallsign, current-di mail);

from DL FELE DATA to ULIDL-CMD WAIT
when pc.comandjacke
provided CURRENT COM1MAND(command) = DL NAK-DMD
beghi

FORMATNI PACKET(di aborted Aep)
oWWu p~espane~pscket(p);

130

M, MUJLDTA to UIJDL-P.UD.WAJT
um~~ww (~DAbu Maudmta far unexpected packe or

I'ORmATDkmER RORRB err UlJbmued...ad p);

(of PACKET TRANSFER-BODY

131

body MAILBOXCONTROL BODY for MAILBOXCONTROLTYPE;

codt
eof -.. ; {End Of File marker used by operating system. }
null .. ; The null pointer. A pointer which is nul/ points}

(to nothing, and marks the end of a linked list. I
empostting :..; (An empty string as defined by operating system.
mailbox • =u any uint; (Parameter for FORMATEVENT REPORT }
grab - 0x01; (A parameter needed by 'qax..laim'. }
mailbox_ssid = Ox01;
mail flag = Oxbb55;
mminjfllejlength = 0x00000029; (Min of 41 bytes in the initialized mail file. }
maxext - 0xO3E7; I-igest mail name extension = 999 dec. }
dqfaultkstay time = any ulong; (Default mail life, in seconds from upload. }
numrypes = any uchar; { Number of different file types allowed. }
numcomps = any uchar; { Number of different file compression }

methods allowed. }
{ Item numbers for fields in the PANSAT file
{header, for use in 'select' statements. }

fi =oxoo; (fag
mn - 0x02; (mail number }
ml -0x06; {length }
ft - OxOA; (file.type }
ct - OxOB; { compression.type }
bo = OxOC; (bodyoffset }
dc = OxOE; { download count }
sc = OxOF; { source }
pr = 0x15; (priority }
Ut = 0116; (uploadtime }
et = 0xlA; (expiretime }
na = 0xlE; (mail name }
ex = 0x26; (mail extension }
nd = 0x29; (num destinations }
ds = 0x2A; (destination callsigns or paths }
i = 0x54; (title }
kw = 0x74; (keywords }

pan.sel = 0xFF; (Relational operators in 'select struct' }
equal.jnt = OxOO; (equal to an unsigned 1,2 or 4 byte integer }
equalstr = 0103; I equal to a string }
great int = 01x0; (greater than an unsigned 1, 2 or 4 byte integer }
less Jnt - 0x20; (less than an unsigned 1, 2 or 4 byte integer }
notequjnt = 0x30; {not equal to an unsigned 1, 2 or 4 byte integer }
notequqtr = 0x33; (not equal to a string }

132

-0040; (pester then or equal to an unsigned inftegr
hjpjuv - OxS0; I=o tha or equal to an unsigned inftegr

LIa -w01O80; (logi;a 'and'
I..or = OxEO; (logical 'or'

type {types for MAELBOX-CONTROLDBODY.
Mie Ext = -0. .aae*~
EXCTYPe - srry[3J of ucha;
MaLArray = anray[marjualljj of ulong; (Array of mail-numbers
Select-Ust = record

num gel6: Num Mail;
Wel: MaiCArray;

end;
Source Record -record

source num: nint;
call: Callsign Type;
selected: Select List;
next mail: Num Mail;
next dir: Num -Mail;
next ext: File 'Ext;
num -act: uchar';
next num: ^Source-Record; (Pointer to a source record.)
next call: oueRcrd

end;
Letter Array - arry[26] of ASouce-Rcrd;
FileDesig_ Array = array[nwntypesJ of uchar;
CompressionkArray - anay[nnwnompsJ of ucha;
S Name = arraylg] of uchar;
File Order = (dare, name);

a done: boolean;
filetype: Fileý_ei.Ary
comptyp: CompressionAmry;
next source-num: uint;

mel: Num Mail;
file-name: Name Type,
rflle, t lie: Afleý Type;
firstijet: Letter Array;

malhead: "soreRecordI;
tempi, temnp2: ^Sorc -Recod;
mail num: ulong;
ext: Ext-Type;

133

time:oes

linkUnk-Type;
NCIe enth: Wiong;
Mite offeet: uloog;
body o~fftt: uint;I Me a'gog udar;,

silecti: Select-Ust;
nuusdest odoar,
CC Causign Type;
i: Vint; {loop counter)
jk: uchar;
dir dat: pdaw
reprt EventReportType;
oder:. FleOrder;
Sahne: SName;
d-fle: FieType;

state WAIT;

function STRINGCOMPARE(strl, str2: AByteArray): boolean;
~rimitive; {Compares 'strl' to 'str2' and returns true if they }

{ are the same, otherwise returns false. }

function STRING FIN_(strl, str2: ^ByteArmy): boolean;
prbmitive; (Looks to see if 'str1' is contained anywhere within)

{ 'str2'. Returns true if it is, and false if its not. }

function GErLIENGTH(fileýname: Namejype): ulong;
~rmitive; { Returns the length of the stored file 'file-name' }

function GETrLSI(number: ulong): uint;
primitive; (Takes a 4 byte number and returns the least }

(significant 2 bytes. }

function GETMSI(number: ulong): uint;
primitive; { Takes a 4 byte number and returns the most }

{ significant 2 bytes. }

function MEMSPACEO: ulong;
primitive; {Returns the number of bytes of available }

space in mail box memory. }

134

-~~ - 4V -

mRUm SIZE OF(typeJnldor): uWut;
pr{Ie Takes as an argument any type and returns the }

number of bytes needed to store a variable of I
that type.

ftualoa ALLOCATE(size: uint): peintert•ype;
prhuullye; (Allocates a block of dynamic memory. The }

{ number of bytes in the block is indicated by }
'size'. The function returns a pointer to the }

{ newly allocated block. }

function EXISTS(file-name: NameType): boolean;
pim i*ive; (Takes a complete DOS file name as an argument }

{and returns
{ true if an active file by that name currently exists
{ in the mass storage memory, otherwise returns }
Sfalse. }

function G T FIRSTFILE(ordei: File Order; fn: SName): Name Type;
prhnlffve; (Returns the name of the first active (not deleted) }

{ mail file in the mass storage memory. "First" is}
{ defined as the oldest file (the one with the }
{ earliest creation date) if 'order' is date. If 'order)
{ is name then 'fn' is a DOS file name minus the }
{ extension, and the file name returned is the one }
{ with the *first" alpha-numeric extension }
{ associated with the 'fn' given. If no file matches)
{ the critria given, then emptystring is returned. }

function GETNEXTFILE(order: File-Order; preyfile: NameType): NameType;
primitive; { Starting at 'preyfile', searches the mail area of)

{ mass storage memory for the next active file. If)
{ 'order' is date, the next file is the one with the }
{ next later creation date. If 'order' is name then)
{ the next file is the one with the same leading8 }
{ characters and the next higher alpha-numeric }
{ extension. This function returns the complete file)
{ name, if found and returns empt..string if no file)
{ matching the criteria exists. }

135

function OPENFILE(filename: NameType): AFileType;
primitive; { Opens the file designated by 'file name' for }

(reading or writing. Returns a pointer to the }
beginning of the file. If the file does not already }

{ exist, it will be created, and will be empty except)
for an eof mark. }

function READFILE(qty, size: uint; var file ptr: AFileype): ByteArray;
primitive; { Reads blocks of bytes from memory, starting at the)

{ location indicated by 'fileptr'. The number of }
{ blocks is determined by 'qty' and the number of)
I bytes in each block is determined by 'size'. The)

bytes are placed in the (pre allocated) variable or)
(buffer space designated on the left side of an
{ assignment statement of which this function call }
{ is the right side. After the read, 'file.ptr' will }
{ point to the byte following the last byte read. }

procedure WRITE_FILE(v: ByteArray; num-bytes: uint; var filejptr: AFileType);
primitive; { Writes the number of bytes indicated by }

{ 'num_bytes' to memory starting at the location }
{ indicated by 'file.ptr'. The bytes are copied }
I beginning from the first byte of 'v'. 'v' can be a)
{ variable, buffer name or file pointer. After the }
{ write, 'file ptr' will point to the byte following }
{ the last byte written. If there is already data in
{ the file at the position indicated by 'fileptr', that)
{ data will be overwritten: If writing to the end of)
{ a file, the eof marker will be moved to indicate }
{ the new end of the file. }

procedure FILESEEK(num bytes: int; var file.ptr: AFileType);
primitive; { Moves the file pointer 'file.ptr' the number of }

{ bytes designated by 'num-bytes', without reading)

procedure FILESEEKSET(num bytes: int; var file~ptr: AFile _Type);
primitive; { Same as 'FILESEEK', except that 'fileptr' is firs)

{ moved to the beginning of the file, and then }
{ advanced the number of bytes indicated by }
I 'num-bytes'. }

procedure DELETEFILE(filename: Name_Type);
primitive; { Deletes the file designated by 'file-name'

136

-7. .
7 1111'

•,

W.e• CLOS• U fle(f uam : NTae jype);
S { .Closes the file designated by 'file-name'

p~edur ME(Ym node ptr p~olerjyp);
S{ eDeallocates a dynamic memory node, and makes

the pointer nul.

137

pmemba Du CEMEN'I MSG(tcaU: Callsignjype; vat m-iead: A"'SourceRe d;
letter: Letter Array);

vwartmpl, temp2, head, deLnod.: ASource-Record;
index: uchr;

be :in
delindee : - -x41;
index :=- tcaM] - 0x41;
head :=- le<teruindeuj;
N head < > ncl adi tebeein

head -> call mtWallthen begin
head -> num act : head head->ct - 1;
Vf head -> numact < -0 and head-h>edlected.numsel <= 0then begin

del-node : - head;
lettenfindexj head -> next call;

end;
el*
e ne be&in

temp2 := head;
temptl head nextdcall;
whi templ < > cal do begin

if templ -> call = tcall then begin
templ -> numnact : = temp l --> numsact - 1;
V tempn -> numact <=0 and templ->nselected.numsel < 0
then begin

del node:= templt;
ten p2 -> next can := temp. -> nex-call;

end;
enbd;
else begin

temp2 :- temp-;
tempd; tempt -> nextcall;

end;
end;

end;
V del node < > null then begin

head := m head;
If head = del hnode then bein

mhead := head -> next num;
Fe E(deLnode);

end;
else begin

temp2 := head;
tempt : - head -> next num;
while templ < > mndl do begin

138

wr "ept M nxb mds h bsqm
amp -> mxtamm :v -~ep > next-nuin;
FRBE dolnode);

OVA*
eke be&i

temp2 : = tempi;
WWmp : M tempi - > next aum;

end;
end;

end;
end;

end;
end;

fauction GET EX(num -ext: uint): Ext _Type;
var digit: uint;

be&i
digit := num-ext/ 100;
GET-EXT[OJ : =digit + 0x0030;-
num ext : - nwn ext - (digit * 100);
digit :- num extllo;
(3ETEX[1J : digit + 0x0030;
nwn ext : - nwn ext - (digit * 10);
GE71 EXT[2J num-ext + 0x0030;

end;

139

proesihar DNCREAMENTýG(tcall: CailsignType; var next-sn: uint;
mimad: ASource..1Pr nord; letter. LstterArjray; mail num: ulong; ext: Ext Type);

var trnipi. tmp2, nwwnode: ASource Record;
index: ucinr,

-mgi
index := tualo) - 0041;
temnpi := letterruadexl;
while WWI < > nullandtempi- >call < > tcai do begin,

temp2 : = temnpi;
Iempi :M teanpl->next call;

endo
If tempi - null them begin

new node : - ALLOCATE(1, SIZE _OF(Source Record));
niew node- > source num : =next an;
oeT NEXT'NUM(m ~head, next an);
new node-> call :=tcall;
nww node- > selected.num sl W =OWOO

new node- >next ext : = MOW00;
new node- > num-act : -Ox0l;
new node- > next num nu mll,
new node- > next call : dnll;
temp2- > next -call: = new -node;
mail -num :- new -node-> source num * OXOO0lOOOO + OxOOOl;
ext:- "0010 ;
tempi :=m- mhead;
if temp 1- > source num > new node- > source num then begin

new node->next num := m-head;
mh-lead := new ;ode;

end;g
else begin

while tempi 1> source num < new node- > source num and
temp- 1> next num < > wdl do begin

temp2 :=tempi;
tempi :=temp1-> next-num;

end;
Kf tempi-> next num = nul then

templ->next num := new-node;
else begin

new-node->next-num :- tempi;
temp2- > next num :=new-node;

end;
end;

end;

140

owv->tu.t :- %mnp1->am..act + 1;
mil ama :- anmp1-> Source-num OxOO=lOOOO + templ- > nextext;
ad :- O Err EXT(teanpl- >nsezt.ext);
if WWmI- > nexttead < ma ext them

Sopl- >anetext : m templ- >next-ext + 1;
doe "Imp- >next ext :-OxCOOI;

end;

~irmdreCOMPACTMAIL(var mlist: A zuccAmry; Ilist: LetterArray);
begin { Tins function deletes mail files which are past their)-xiai dates.

Tar this file: NameType;
rfille: ~ ieTye
now: ulong;

exir: ulong;
canl: CailsignType,

now :0 TB)~JIE;
this file : - GET FIRST FILE date, empiystnng);
whil this-file <-> einpryring do begin

dile : - OPENFILE(this file);
FHLE SEEK(26, rhile);
expire : - READ, ILE(1, 4, rflle);
Vf expire < - now then begin

FILE, SEEK(2, rflle);
call :=- READ FILE(1, 6, rflle);
DELETE FILE(this file);
,DECREMENT MSG(call, mlist, luist)

eke CLO)SE FELE(this file);
this file := GET-NEXT FLE(date, this file);

end;
end;

141

w'u . OINEt 'NUM(mu-i~oreRerd vwaf etu a);
var {Finds fte nex unused moumc number.

WW ^SowiLRbcotd;

doo bamh

doume:= hbe;
"Nhi ad done do high

N am ma < OxFFFF thm
amitm N:m net an + 1

th el as:= OJlOOO;

uhmb tMM < > null amd timp-> source num < next-sn do
tamp:= - tmp>n nejuin;

awim > sourcenun < > net un them
done: - true;

fhuedi MAKE FILE NAME(source: CaUsign Type.; ext: Ext Type): Name Type;

MAKE FILE NAME[..1] : =
MAKE FLE, NAMM[. .7] : -sore
MAKE FILE. NAME[8J : - .
MAKE ILE -NAMIE[9. .111: ext;

142

sof ^o aRecord;

sauce: Caflignjype;

s : w GET' IMS maum); { surc
e : m GIET LI(munaw); (extension
adt:= GET EXT(e);
node:= Mhst
whbnode < > wilaed node-> source num < > sdo

node : m node- > nuxt jm;
Rnode := =Udlth

GET NAME:= - ei-yjtng;
she be&h

woe: node- >catl
GETr NAME : - MAKE FiLE NAME(source, ext);

~,mudG ~TIALiZE MAEL ILE(source: CallsipnType; mnum: ulong);
ext: ExLType; length: ulong);

var amew file: Name..Type;

be&h
new file := MAKE FILE _NAME(source, act);
f :- m;OEN' FILE(new _file);
WMiE FILE nwljflag, 2, f);
WRiTE .FILE mnum, 4, f);
WRrr FYILkongth, 4, f);
CLO)SE _FME nw file);

end; {Of Procedure INITILIZE MAIL FILE.

143

wesbreRE N1T.FILE fllsjame: NameLType; mailjum: ulong);

mw rfie APile,.Type;
I lengt: ulong;

rfle -OFUJIE(file MMn);
PU IEft 8Q1 ile);
0=0gt : = READ-ILE(1, SIELON(ulong), Out);
DELEM'P LR(filename);
V~rrAUZEyMAIL yILH(file-, nae(2..71, maiL num, filenamec(9.. il, flength);

fumcton CRC-CHECKSOPUT(file-name: Nainejype; start: nint; stop: ulong;
crc: uint): boolean;

ITh1is algoithm assumes the crc is a simple check)
I sum.

uar num vbytsm: uog
-- Im: i ulont;

next char: uchar;

begin
Vf crc - OxOO thes CRC CHECKS OUT :=true;
ehe begin

sum : - OXOO;
r fle:= OPEN-FIE(filename);
fILE SEEK(W Start, rflle);
for i: lIto (stop -start) do begin

anet char :-READ _FHLE(1, 1, r-file);
sum : = sum + next char;

CLOSE, FILE(filenme);
CRC CHECKSOUT :=(sum =crc);

end;
end;*

fmnction CHANGE CASE(str: ByteArray; len: uchar): Byte_.Array;
var i: uchar; Changes any ASCII upper case letters found within)

begin.{ 'str' to lower case. Returns the modified String.
fowl:-0Oto len-i do

Vf str[iI > 0040 and str[i] <O0x5B then str[iJ] str~iJ + Wx2;
CHANGE CASE := str;

end;

144

S:- true;

- o L-= MO.M O.•o s, g, rm);; { meld numb;

/W DIAoy; comPtYai: CompmuiooArmy) :fesmm

vk VWa, aks
or Me Ait-d ype;

c~d: uchar,1
i, body.ofuety t into
10-. Wong;
ca:•: Cail)pgnpype;
zt. EXLTYPe;

goad:- tare;
r fie :=- OPEN -LE(filenIa e);

V i < > aftg tee good:- tase;
lo:, READ Ffs E(1,:4, rAeFI); (Read mail numberd s
Vtlo < > mail -num. then good: tabe;
lo :- READ FILE(1, 4, rfile); (Read length o

~~~- filvF ,6,r.e); (Ra length

V lo < > G ALENGTH( CA Lename) then good tAke;

c := READFLE( 1, 1,rfi);{RaproiyWhttdowhitsudene.

:- READIL.( 1, 1, r-file); (Read fpleoadtype 3
ok:-fabe;
tori- Oto mampes -1I do (Check fllej _ype against all valid ffilejypes

t c -> fletype_ Mthen ok :tre;
VIot < ok then good : - take; f HEADER-CHECK, continued.
c :- READ FIag 1, 1, r_file); (Read compress ion tpe
ok:-Use;
fw i 0 to nwuwvms- Ido Check compresuion~type against all valid

IN c - comptypeiJ then ok :-true; (com1pression typoes
I so< ok then good o : abs;
body-offset :-READ FELE( 1, 2, rfile); (Read body offset
c :- READ FILE 1, 1, r.-- file); (Read download-count)
call : - READyJL1 ( 1, 6, rfile); (Read source n
call : = CHANGE CASE( call, 6);
If call < > CHANGE ,ASE(this file[2._.E1, 6) then

good : as Check source vs file name
c :-REAJIL 1 1, rfile); (Read priority. What to do with it is undefined.)

10: READ FILE 1, 4, irflle); ( Read upload time
V lo,> - ETT1ME )then good -tab;
lo:- READ FniLE 1, 4, rfile); (Read expration time
Nt 10 < GET' TME() them good : fake;
i : - READ-- FItE ,2, ný_ile); (Read leading pesin file name.)
V i < > tbisjitle[O.. 1] them good: take;
call : = READ FILE 1, 6, rfile); ( Read file name
Kt CHANGE, CASE( call, 6) < > CHANGE CASE( this _flle(2. 73, 6) ýbt,

145



good : -hbe; (Check vs known file-name
ed : READJILE( 1, 3, rflle); ( Read file extension
Vf CHANGE CASE( ext, 6) < > CHANGE-CASE( fllenPameR9.1lJ, 6) then

good:= ftbe ICheck vs knwn file ext
c : READ.FILE 1, 1, rffie); ( Read nwn destin.z dons

Sc > OzO9thm good:-fabe;
N Bood dhenheghn

N c> OxOr7lhdmc:-OxO;
for i:- Ito c, doIRead pastll destinafions

call :-READJILE( 1, 6, rfl)
body ofilet: bodyopffuet - tlnftkejengh - c*6;
c : = READ,_ILE( 1, 1, rj.ile); ( Read titejength
for i:It c do (Read tidle

d -READ FLE( 1, 1, rflle)
body-pfifut body-offset - 1- c;
c : - READ _FILE( 1, 1, irfile); ( Read keyword length
for i:- Ito cdo ( Read keywords

d :- READ FILEE( 1, 1, rflle);
bodyopffsat : = body-pffset - I - c;
bodyoffue : = body~offset -4; (Accoun for 2 checksum uints
Vfbodyopffset < >O0then good: false;

end;t
HEADER-CHECK: good;

end; ( of HEADER. CHECK()

function MSGJTO( file-name: Namiejype; call: CallsignjType): boolean;

var f: AVileType;
num dest, i: uchar;
dest:. Callsign Type,

begi
MSG TO := false;
f : = OPENJFIE( filemname);
F1LE SEEK( nl, f0;
num-dest : = READ_ ILE( 1, 1,f)
Vf num dest > 0Oand num dest < 0x08 then do

fori~:- =Ito num dest-do begin
dest : = READJFILE( 1, SIZE OF(CallsignType), f);
Vf dest -call then MSG TO : true;

end;
CLOSE _FILE( filejipame);

end;

146



~siI. WAULT8ULDCT( MMI Cauug.Type mW to-hee&d: w izRc d;
qauTra: LS~A11 My; nextuo: ulnt; ma: Num Mai);

ffisasMs NamType;
t ^M .TYPS
tep, %.mp2: Afturce-Recod;
mew node: ^ASowMc Record;
Oum dea, i: uchar,
dl~count, j: ucbar, download count
Index: ir
aum found: Num Mail-
sligL, Mai Army;
minum, udjime ulong; (mailanumber, uiplosd time

mam found : 0;

fil~ename : - GEr -FIRST.YE( date, empty tring);
wiefilename < > empty trng do begin,
f : - OPENFELE( fie~name)
FILE SEMK win, 0;
m-nui : = READJILE 1, 4, I);
FILE _SEEK( dc - ml, f);
dl count :-READ FHLE( 1, 1, 0);
PILE SEEK( at - xc, f);
ul time : = READJILE( 1, 4, f);
FELE..SEEK( uad - er, f);
num dest : - READ FILE( I1I, 1, P;
CLOSE _FLE( filename);
vf Ultime > 0 then { Only consider completely uploaded files.

Ii num, degt = OxOO or num dest > 0x07 then begin Ito 'ALL'
num found : - num found + 1;
kfistfindex..index, +3] manum;
index := index + 4;

end;
eke If dl count < num dest then

If MSgTO( file namne, call) then begin
num found : = num found + 1;
shstwindex. index + 3]: -mnum;
index: index + 4;

end;
file name'. -=E NEXM ILE date, filename);

j : =call[0J -0x4l;
tempi :-cs..arrayo;

147



vhM "emI < > ntdlamd L-mpl->caJI < > call do begin
amp2 l-empl;

V WWnI m nail thm begi
amw node : ALLOCATE( 1, SIZE OF(Source -Record))
mvw nods : - Wmouc mum : m out M;
GETNEXT'NUM( M heAd, naxtmS);
mewnode- > caml: call;

nvv node- > uawlce.num aol : m num found;
new mode-> ulc~dsed:ael -s list;

ew pode- > WAnex il m - xOOCO;
nvvw node- > next dir : -oxOOOO

saw-node- > next ext : mo OxOI;
ewW node- > num-act : =OxOO;

nwwnode-.> next num :-ma,;
nww node- > next call : = md
tenil : m anjicad
If templ 1> source-num > new node- > surce num then begin

new node-> next num :- mn head;
mha : Qd new node;

end;
else begin

while tempi -> source-num < newjiode- > source-num and
tempi- >next num < > null do begin

temp2 : - tempi;
temp I : - temnp I-> next num;

end;
If tempi -> next-num null then

templ- >nextjium :-new-node;
ehe begin

new-node- >next-num := temp 1;
temp2- > next-num :=new-node;

end;
end;

end;
doe begin

templ->selected.numsel := numjfound;
templ->selectcd.sel := l-ist;
templ- >next mail : OxOOOO;
templ- >next dir :=OxOOOO;

end;
nsel :=num found;

end;

148



p~m~PM AT..SNZCFIO a aWat Pdmca n m: Cauligdnjype;
_bae#&-d:w os'os.bd; ckaamy: J*teFAmy; nextuis: Wigt sad: Nujm Mil;

wzc um);
vW iMe uam.: Namejpe

S list. Seimctlst;
IMMI, Iemp2: ^SOutce rcold;
now-node: ASomue Record;
dest-Can: CalisigoType,
Hast -i: uint;
m num: iilong;
abot, ok. bmoleam;
numj,' i: uchar;

header item: uchar;
first, second: boolean;
relop, logop, j: uchar;
item len, hien: uchar,
kant, hs-nt: uachar;
m~nt, hm nt: nint;
Lint, hljiti: ulong;
compparejtcm: ByteArmy;
hatruing: ByteArry;
sum dest, tics: ucha;
ul ti~me: ulong;

begin
abort :=fakse;
sum-s : =SstUctVl;

s Hstnsum se:= 0;
list i:= 0;
filename :- GET FMIRS FILE( date, empty-tring);

whil fiejime > mjxgrrng and not abort do begin
f : 6PENFULE( filename);
FILE, SIEEK( inn, N)
m sum :-READ FILE( 1, 4, f);
FILE SEEK( ut - ml, f);
ul- time:-= READ .FILE( 1, 4, f);
if ul time > 0 then begin.

ak:'- fakse;,
FILE _SEEK( iad - et, f);
num -dest : = READFILE( 1, 1, 0);
N num -dest =OxOO or num-dest > Ox07 then ok:true;
else

for j I= to num-dest do begin

149



dest call :-READ FILE 1, 6, N)
If CHANGE CASE( dest call, 6) = CHANGE-CASE( call, 6) then

ok:-true;

shtruci:m 2;
first:= true;
second :-fake;
i := 0
while i< nums - I andnot abort do begin

relop : =sstwctstrucijJ;

struct :=struct i + 1;
h item: =ý struct[strucijj;

s'rct :-struct i+l1;
item Yen s= sstruttructi];
structi :=struct i+i1;
if relop =equalsýtr or relop = noý_equjtr then begin

compareitemý: s,_structfstruct i..(struct i + item-len - 1)3;
compare item : = CHANGE -CASE( comparejitem, item len);
struct i := struct i + item len;
If h i~te m <ds then begin-

FILE -SEEK-SET( h item, f);
hstring : = READFILE( itemlen, 1, f);
h-string:= CHANGECASE( hy.sring, item len);
second =STRING- COMPARE( h string, compare item);
Vf relop =no~equstr then second :=not second;

end;
else begin

FILESEEK-SET( nd, f);
num -dest :=READFILE( 1, 1, N)
If h item &dsthen begin

Ifnum dest > 0 and num dest < OxO8 then
If i~tem len = 6 then begin

forji : = Ito num Idest do begin
hysring : =READFILE(1, 6, f);
hastring : = CHANGE-CASE( h string, 6);
if not second then

second := STRING COMPARE( h~string,
compare item);

end;
end;
ekse second :=false;

else Vf num-dest > 0x07 then begin
h~string : = READ-FILE( 42, 1, f);

150



huLIng : CHANGE- C E( h sting, 42);
second : STRINQFIND( comparejic, hysring);

ekse second - fae;
it relop - xoý-equw Mnten second ad=no second;

ekle
Nfh itemn - gi thes begin

FILE SEEK( ds + num dest*6, f);
lt en:- READ _FILE( 1, 1, f0;
hymring : = READJIE( t len, 1, N)
hstring : - CHANGE -CASE( h _string, tien);
second : - STRING FIND( compare item, h~string);
Nf relop - noý_equjtr then second =ntsecond;

end;
else

Vfh item = kw then begin
FILE -SEEK( dy + num dest*6, f);
tilen READ FILE( 1, 1, f);
FILESEEK( tien, 1, f);
t len : = FILE READ( 1, 1, f);
hýstring : = READ_FILE( tjen, 1,0f;
hýstring := CHANGE-CASE( h~string, Lien);
second =STRINGFIND( compare item, h~string);
Vf relop =notequjtlr then second =not second;

end;
else abort =true;

end;
end;
else

Vfh item < na then begin
FILE SEEK SET( h item, f);
If item -len =- 1 then begin

s-int : = s -struct[structiJ;
struct i :=struct i + 1;
hs int: READ-FILE( 1, 1, f);
hli mt :=OxOOOOOOOO + hs int;
lI nt =OxOOOOOOOO + s-int;

end;
else If item -len = 2then begin

m int := s struct~struct i.. struct i + 1];
struct i := struct i + 2;,
hmin t :=READý FELE( 1, 2, 0);
hlint:=OxOOOOOOOO + hm-n

151



lint :-OXO O0O + OOmjnt;

ekelVfitem len - 4 ten begin
Iint:- a struct[structi..stuctji + 3];
atjuct :-. tr j + 4;
Id-ut := READJI.( 1, 4, f);

eke abort :- true;
Vf not abort then

f relop = equal m then
second :- ( hLi t = Lint);

ele if relop - ge, _int then
second := ( nt > lint);

ek if relop kssIntm then
second : (hint < lint);

eke If relop no.equjnt then
second - ( hi"t < > lint);

else if relop = gr.equjnt then
second : ( hint > = Lint);

else If relop = letequ_int then
second :=(hLint<= lint);

ese abort := true;
end;
else abort : true;

ff not abort then begin
i:=i+1;
logop := sstruct[structi];
if logop = Iand then begin

struct-i := structi + 1;
first := (first and second);

end;
else if logop I -or then begin

struct i := struct-i + 1;
first : (first or second);

end;
else first :- (first and second);

end;
end;
If first then begin

slist.numsel := slist.numsl + 1;
Slist. sellisLi-f..ist i + 3] m-num;

list i := list i + 4;
end;

end;

152



CUM5 FILE fikema.);
AIBSU - Er NEXCr FLE( dare, filejame);

error l erPodry-fol74Cdjel
doh beein

error :ý nenor
j :cali[OJ -001;
tcmpl : = csymyfjJyu;
whil tempi < > nul and tempi- >call < > call do begin

temp2 :-= tempi;
tempi : - tempi- >next-canl;

end;
if tempi - null then begin

new node: = ALLOCATE( 1, SIZE O0F(Source._Record));
new -node : = source num : = next sn;
G~f NEXT' NUM( m head, next sn);
new node-> call: -call;
nw inode-> selected.num..sel := s list.num..sel;
nww node-> selected.sel : = s list.s21;
nww node-> next mail := oxOOOO0;
nww node- > next dir := OxOOOO;

ew%;node->next ext := wxool;
new node- > num nact. : = OXOO;
nw vnode- > next num : =nul;

nwm;node- > next call: null;
temil : = mjiead;l
if temp 1- >source -numn > new node- > sourcejium, then begin

new node- > next num := mnhead;
mhiead :=new node;

end;
ebe begin

while tempi- > source num < new node- > source num and
tempil- >next-nwn < > null do begin

temp2 :=tempi;
tempi :=tempi-> next-num;

end;
Vf tempi -> next num =null then

temnpi-> nex-nurn :=new-node;
ebe begin

new-node- > next num :=tempi1;
temp2- > next num :=new-node;

end;

153



eke begn uml
tompl->uelectod.num el :- s list.u
Iemnp->uelectod.ue :- ist-ae1;

WWIp- > Buxtndiai OxOOOO;*

nawl: s list.num gel;O
md6A

cod;

procedure COPY HAER( file~name: Name..Type; var buffer: Byterry;

var r file: AFileType;ine:u'g)
b~ody~pffset: uint;

be&i
r ie : - OPEN FILE( Miejname);
FILE SE(bo, rflle);
bodyopffset :-READ FLE( 1, 2,rfe)
FILE SEEK SET( 0, nifle);
buffer~index. .index + bodyopffset - 11: READ_)RLE( body..pffset, 1, rflle);
CLOSE _FILE( filenamen);
index :-index + body..offset;

end;

154



b{ PACSAT File Types from H. Price }

fletype :- o ; cii
filetype(] :: o0ol; ( RUMDL mesg body. Single mesge.
flletype(21 :o= 002; ( RU/M3L import/export file. Multiple message. }
filetype[31 : 0x03; ( UoSAT Whole Orbit Data. I
filtylX4] : - 0x04; ( Microsat Whole Orbit Data. }
filetype[S] := 00x5; (UoSAT CPE Data. }
fictype[61 := 0x06; {MS/PC-DOS .exe file. }
f:letype7: = 0x07; { MS/PC-DOS .com file. }
filetype[8] : - 0x08; (Keplerian elements NASA 2-line format. }
fletype[9] :- 0x09; (Keplerian elements -AMSAT" format. }
filetype[1O] := Mx0A; (Simple ASCII text file, but compressed. }

(PANSAT Fle Types. }
filetypel 11: = OxAO; {PANSAT short telemetry file. }
filetype(121 := OxAl; (PANSAT long telemetry file. }
filetype[13] := OxA2; (PANSAT bax telemetry file. I
filetype[14] = OxFE; (User defined type. User must know. OxFF }

{ 'ESCAPE ' not implemented in PANSAT file }
{ headers. }

fori:= 15 to numtypes- 1 do
filetype[i] :f 0x00; {Extra space for types defined later. }

(PACSAT file compression types - H. Price. }
comptype[O] : Ox00; {No compression }
comptype[l] 0x0l; (Body compressed using PKARC. }
comptype[2] = 0x02; (Body compressed using PKZIP. }
comptype[3] = OxFE; (Other, user-known compression type. }
for i :f= 4 to nwmcomps - 1 do

comptype[i] := OxO0; (Extra space for compression types defined later. }
next source num :-= MxOM;
for i := 0 to 25 do

first leti] : = null,
mail-head :n= dl;

end;

155



frm WArT to sow
whim mcII~kJ.msiI..numjseq

9 mailusMbewifnkJ m ftOOOOOO(X dhm be&i
9 lenghPiakj > NEMSPACE() theM

COWMPACMAIL wnAilhad, first let);
It kqg&ihlnk) < = NMMSPACE( &=he beg&

INCRMMMNTJ&SG(dcient cali~ink], nxtbsource-nwn, maiL head, first let,
Mai num, ext);

IN~~ILIZEMAIL, FILE(dcient call, mailnwn, cit, lengtholink]p;
output mcjlinkj.inail num rs(mail num, OXOOOOOOOO, no error)

ond;

output mcwlink]. mail num resp( OxOOOOOOO, OxOOOOOOO, erno _room);
time:- GErTJMEO;
report := FORMAT-EVENTREPORT( malbox~fidl, time);
ou011tput elevenIt ---ort( rpot);
output oC.full mailbox;

end;
else be&i

file name := GET NAME( mail head, mail number~alk);
if & lname = empty snig then

output inc[inkj.mail num reSp( mail numberolnk], OxOOOOOOOO.,
er no ;uchjlkenwnber)

ebe begin
rfie : - OPENFILE( filenamf e);
FILE SEEK( 6, readfile);
filejengt : = READFILE( 1, SIZEOF(ulong), rflle);
VIf ength~linkJ < > fllejengtb then

output mcglinkjlmail num resp( mail-number, OxOOOOOOOO,
er bad -continue);

elsebei
file of, GETLENGTH( filename) + 1;

i fileoftset > = lengthplinkJ then
outpu mdllink].mail num,_rcsp( mail numbertlink], OxOOOOOO,

erl cplete);
else be&i

If file offset < 42 then file offset : 0;
output mc~ink].mwil-numjresp mail nwnberglink], file offset,
no error),

end;
end;

156



&M WAIT to -ovi
'whms mcjlinkj.inail.clme,.eq
book

fib %arcr:= M, uemn
bseodez.crc :-OzOOO;
file Smani: -GETNAME( mail ead, MailnumberglinkJ);
V Miename = empty-string them fileerror t er nojroon;
.hd elu

rifle: OPENFILE( filename);
FIL.E SEEK( ma, nile);
mail-Punum READFILE( 1, 4, rfile);
filleength :-READJJL-E( 1, 4, rfile);
If GET..LEGTH( filiejiam) > = file lIength then begin

Nf mail num = OxOOOOOOOO then begin
FILE SEEK, SET( ma, rflle);
WRITE. FLEM mail numberflinkJ, 4, rflle);
for i :- 0Oto 3 do

header crc =header crc + mail number[linkj[ij;
end;
time :- GET TJMEO;
FILE SEEK SET( ut, rfile);
WRITE IL-E( time, 4, rflle); ( Write upload -time.
for i:-O0to 3do

header-crc = header crc + time[iJ;
time : = time + dvfaukiay time;
WRITEFILE( time, 4, rflle); I Write expirejime.)
for i : = 0 to 3 do

header crc : = header crc + timnejil;
WRITE, ILE( flleawme[O. .7], 8, rflle);
for i : = 0 to 7 do

header crc := header crc + file namef il,
WRITE FILE( file,_name[9..111, 3, rfile);
formi: -' 9to 11 do

headercrc := header crc + file namefi];
num -dest := READ _FILE( 1, 1, rflle);
Vf num dest > 0 and num dest < 8 then

FILE, SEEK( num dest*'6, rflle);
elms N num dest > 7 then

FILE-SEEK( 42, rfile);
j :=READ FILE( 1, 1, rflle); { Read title length.

157



J RADFTM1,1, irle); Roed keywordleaght.
FKLE'SEEKj, n'%e);

:- READ FJLE( 1, 2, fi~le); (Read header check aum
Vi > Othmbegh

hewder ecr: M Ceierr + i;
FILE SEEK -2, ri~le);
WRryIT E ( hedeEcc 2, rflle);

CLOSEJFILE( fleiazne=);
W reIesp"]nk them begin

if not HEADER CHECK( file~name, mail numbcrlink), filetype, comptyp)
them file error :;- er bad' header,
dele begin

ri~le : - OPEN FIE( filename);
FILE _SEEK( bo, rflle);
bodyopffset : - READFILE( 1, 2, ifile);
FILE SEEKSET( bodyopffset - 4, ifile);
heae~r arc =- READ FILE 1, 2, rflle);
bodycPrc :=READ FILE( 1, 2, rflle);
CLOSE FILE( filenlame);
if nat CRC -CHECKS-OUT( filename, 0, body offset, header crc) then

file-error : = er headercheck-
else If ad CRC-CHECKS.O0UT( file-name, body oqffset, file _engt,
body~prc)
then file error =er body check:

end;
output mcjlinkJ. mail...cosejresp( file error);
Vf file error < > nao-error then

RE-INITFILE file-name, mail-numberflink]);
end;

end;

158



!,. , .7 -r" .

fi ý MT AW UMW i --tmbrM D

COIJPACrM J mail heed, first let);
It IeNgShOli Z C- AMB PACE() and file-name < > mnpgy wwsu then begin

ifil : - CIE.F=L filenm)
FILE SE(offsetWnk], dfe);
WRITE, LP.( mail[inkj, lengfthlink), rfll);
CLOSE IE( Miename);
output mc~hnkjlmailjecvjesp no error) ;

endonnu)

Output mcolinkJlmWaclyecvesno
time :-GETý TIM4E ýrw-ro)

report :-FORMAT-EVENTREOR(maiboxfid, time);
sowtu el-eventjeport( report);
Output cc. full mailbox;

end;
end;

from WAIT to same
when mc"linmselect eq
begin

file e rarr= no -error;-
V If seectstrctink~j]O - pansel then

PANSATSELCTON( select strutelikJ, caill"nk, mail head, firstl~et,
next source num, ninel, fileerror);

ele DEFAULT SELECT( client call"ink, mailhead, first-let, next source-num,
nsel);
Output mcaink] -mselect resp( nsel, file _error);

end;

159



from WArT tou
whou mc~htkJ.maiLdi4raq
begin

file error t erpe'miusioojdenied;
file snam GISTNAME( mail hed, mail nwnberplink]);
iftfl name -empty aftl them

flleyror t er nosuch.fienaeuber;
dee Vf client call~linkj - npp, al them

file error no, error,
eke begin

Vf file =04e2..31 < > clien Cail[IlinkJ then begin { A client may only delete4
rile : = OPEN' LE( fllejiname,); ( file which he has uploaded or which is)
FILE SEEK( ,sd, rile); I kaddesed to him.)
numdiest : = READ _FILE( 1, 1, rfile);
If num-dest - Ox0l then begin

cs : - READ FMLE 1, SIZELOF(CallsignType), rflle);
It cs - client callhlink] then file ewrr: no error;

end;
CLOSE FURE file name);

endo
ebe file error t no,-error;*

If fileeram - nso error then begin
D&ELEEF1E this _file);

DECREMEI~-MSG( file _name[2..?], mail head, first let);
end;
output mcglinkJ.mail del-yesp( file erro);

end;

160



It mailjiumbwrgin < > &OzOOOOO tdm be&i
Mie name : M GETr NAME( mafl bead, mail numbeirIinkD);
it f16 Mme, w gnq7vy sitS1 them

output mclnhnkj]drecocy( 0, er no such~filejmbekr, f~ak);
eke been

body offast : 0;
COPY~EDR filename, dir-dat, bodyoffet);

ouptmc~lik&.di~rcty( bodyopffact, dir dat, fake);

dekebeen.
j : - clientLcal~linkJ[0J - 00 1;
tempi : = flrStjefj;
while tempi1 < > null and temp- > call < > client calloink] do begin

temp2 :-tmpt; tempi - tempi-> nextcall;,

Vf tempt : null or tempi- > elected.num-sel. = OxOOOO then
output mcnlinkj.diremtry( 0, er selecton, emprty, true);

else begin
j : =0; fllelength:-0;
while tempi- >next dir < - tempi- >selected.num sel.and j < 10 do begin

mail -num := ternpl->seleced.sel[templ->next dir];
file name : GET NAME( mail head, mail num);
If &-nejame, < > enmpty stng then begin

COPYJHEAER( file~name, dir dat, file length);
j :=j + I;

end;*
teznpl->next dir := templ->next dir + 1;

end;
It templ->next dir > tempi-> selected~num-sel then begin

done : =true;
If temp- > next-mail > tempi- > selected.num sel then

templ->selected.numjsel := OxOOOO;
end;
ekse done =fakse;
Vf file, length -0 then

output mcnlinkJ.directory( 0, er selecton, en~ty, true);
else output mc[linkj.directry( file length, dir dat, done);

end;
end;

end;

161



frows WArT to wum
when mc(Jinkj.maiLreq
begin

it mail numberplink] < > Ox0OOOOOOO them begin { Particular file requested.
fiename : - (3ET NAME( mail head, mail numberplinkfl;
if f~e name = en _peysng then

outpu mnc[inkj.makz esp( erjuoq suhilejawnber, mail numberdlinkJ, 0,
fake);

end;
else begin 'Next- file in selection list requested.

j : - client call[Iinkj[O] - 0041;
tempi : - firstletfj];
while tempi < > null and temp- > call < > client-callplink] do

tempi : templ->next-cali;
if ( tempi =null or templ- >selected. num sel = OxOOOO or
templ->next mail > templ->selected.numjsel) then begin

if tempi =null or tempi- > selected-num-sel = OxOO then
done :=true;

else done - fakse;
output mcplinkJ.maiL resp( er selecton empty, 0, 0, done);

end;
ekse begin {Active selection list found

mail -num :=templ- >selected-sel~templ- >next mail]
file name:= GET _NAME( mail-head, mail num);
if &-lname := emptyjsuing then begin

templ->next mail := templ->next-mail + 1;
if templ- >next-mail > templ- >selected. num-sel then

if temnpl- >next dir > templ- >selected.num sel then begin
tempi-> selected.num sel := OxOOOO,
output mc[Iink].nmil resp( er selection epty, 0, 0, true);

end;
ekse output mcplinkj.maiL resp( er selection empty, 0, 0, fakse);

ekse
output mc[link].maiL resp( er no such fl~e number, mail-num, 0,
fakse);

end;
ekse begin (Good file number found in select list.}

rflle : = OPENFILE( file~name);
FILE SEEK( ml, rflle);
file length : = READ FILE( 1, 4, rflle);
if file length < = offset~tink] then begin

output mc(linkj.maiL resp( 0, mail num, 0, false);
CLOSE _FILE( file~name);

end;

162



d~wbegin
FEXSEEKSEr(offaet~inkj, rfile);
If file lngt - offieC&*nk > xa~pdat them begin

dir dat(O. .nmaxdwt - 1J : - READJILE(4 mwapdat, 1, rfile);
output mc[IinkJlxairesp( dir dat, miaji num, mmrpdW, fae);

end;
else begin

file offsez filleength - offset[IinkJ;
dir at[.. Mie offset - 1] : -READFILE( file offset, 1, rflle);
output mc(Iinkj.miL resp dir da, mailnum, ffileoffset, false);

end;
CLOSEyILE( filejiname);

end;
end;

end;
end;

end;

163



fremi WArT to sun
when mc[Iinkj.dlack
begin

j : -clietcallplink][O] - 0041;
tempi :- flrstjetlj;
while tempi, < > null and temp- > call < > client call~linkJ do

tempi :- templ->next-call;
Nf( tempi < > nulland templ- > elected.numse1 < > OxOOOO and
templ- >next-mail < = templ- >selected.nuM~sel) then

Cf temp l- >selected.selftempl- >next mail] = mail-numberlink] then begin
tempi- > next-mail := tempi- > nx-al+ 1;
V ep1- > nxt-mail > templ- >selected.num sel then

Mf templ->next dir > templ->selected.num sel then
templ->selected.nunisel := MOWOO;

end;
file name :=GET NAME( mail head, mail numberflink]);
If filename < > empty string then begin

rffle := OPENFILE( filename);
FILE -SEEK SET( dc, rflle);
k :=READ FILE( 1, 1, rflle);
done : = false:
FILE SEEK SET( nd, rfile);
num.dest :=- READ FILE( 1, 1, rflle);
CLOTSE FILE( filename);
Vf num dest = OxOO or num dest > 0x07 then done :=true;
else Vf MSGTO( filename, client caIIllinkJ) then done :=true;
Vf done and k < 255 then begin

rfile : = OPEN -FILE( fileý.name);
k := k + 1;
FILE SEEK( dc, rflle);
WRriTE ILE( k, 1, rflle);
FILE-SEEK( ds - sc, rfile);
Vf num-dest < 0x08 then FILE-SEEK( num dest*6, rfile);
else FILE SEEK( 42, rflle);
j : = READ FILE( 1, 1, rfile); {Read title length.
FIOLE SEEK( j, rflle);
j : = READFILE( I-1, rflle); (Read keyword length.
FILE-SEEK( j, rfilL
header crc : = READFILE( 1, 2, rflle); { Read header check sum.
Vf header crc > 0 then begin

header- crc : = header crc + OxOO0l;
FILE SEEK( -2, rflle);
WRrTE _FILE( header-crc, 2, rflle);

end;

164



WELyliFE( fikunms);

mi;

165



fain WAIT to San
when oc.list mail

num files:- 0;
If•betinte begin list allebul"tins

filae n n GEr <F > name, NBULLETW);
while file]nam < => e"y ofg do begin

maillnumIlLs) :-M fil name;
num-files :- num files + 1;
filenamed:= G;NEXTILE( ne, filename);

end;
end;

If messages then
f to then beg Lst all messages 'to' a certain callsign.

flle name <= GET.FURSTJILE( date, empystding)
whie file name <s> emptyhsteng do begin

i MSG TO( callsign) then begin
mailinum files] = file name;
numd; file = num-files + 1;

end;
filename ;GETNEXT ILE( date, filename);

end;
end;

e O .from then begin I List all messages 'from' a certain callsign.
mname[O..1 := * % _ sTneF2.. :a= callsign;
file name:= GE. FIRSTFILE( name, sname);
while file name < ;> emptyAtrng do begin

mail[eum fies] : = file name;
num files := num files + 1;
file name ;GET NEXTFILE( name, filename);

end;
end;
else begin _ List all messages

file name GET _FIR e _ILE( date, egtystring
whie file name < > emptBy teing do begin

Ifflename[O.. < > 'BULLETINthenbegin
mail~num files] : = file name;
num files ;numfiles + 1;

end;
fllejdame : GETJ4EXTILE( date, flleyame);

eid;
end;

output cc.mail Jist(num files - 1, mail);
end;

166



&M WAIT ftoS
is. cc.post bulletin

INMCRMMTMSG( -BULLETIN', next source num, mail-head, first_let,mailjsum, ext);
rfile : OPEN_FILE( bulletin); (File has already been created and written by thel
FILESEEK( inn, rfMle); ( command module. Here, we just keep track I
WRITE FILE( mail num, 4, rfile); I of how many bulletins are active, and }
FILESEEK( nd - ml, rfile); I write appropriate mailnumber into the file }
num-dest : - READFILE( 1, 1, rfile); { header. In this case, the mail number }
if num dest > 0x07 then { will not accurately reflect the extension of the)

FILE SEEK( 42, rfile); { file name, since this will be assigned by the I
j :- READ I-LE( 1, 1, rfile); { writing module. }
FILESEEK(j, rfile);
j :-= READFILE( 1, 1, rfile);
FILESEEK( j, rfile);
header-crc : = READ FILE( 1, 2, rfile);
if header crc > 0 then begin

for i := 0 to 3 do
header crc : header crc + mail num[i];

FILE SEEK( -2, rfile);
WRITEFILE( header crc, 2, rfile);

end;
CLOSE FILE( filename);

end;

from WAIT to same
when cc.delete bulletin
begin

DECREMENTMSG( "BULLETIN", mail head, first let);
end;

167



frmn WAIT to sam
wlhen cc.purge malu
be&i

Uf ntAll tben begin
If to tben begin (Purge all messages 'to' a certain callsign.

Mie name : = GET FIRST _FILE date, empty strng) ;
whil file name <-> emryptysing do begin

Vf MSGTO( callsign) then begin
Kf post jime > 0 then begin

rfile : - OPENFILE( file.name);
FILESEEK( wt, rfile);
ul time: : READ, FILE 1, 4, rflle);
CLOSE FILE filenamte);
If ii tine < postfline then begin

D5ELETEFILE( fileýname);
DECREMENTMSG( file _name[2. .7], mail-head, first let);

end;
end;
else begin

DELETEFILE( file~name);
DECREMENTý MSG( file name(2.317, mail-head, first-let);

end;
end;
file-name :=GET -NEXT FILE( date, filename);

end;,
end;
else Vf from then begin ( Purge all messages 'from' a certain callsign.

snaxne[O..l11 : =" ";
sname[2..7] : = callsign;
file name : =GET FIRST FILE( name, sname);
while file-name <-> empry stfing do begin

Vf post time > 0 then begin
rflle : =OPEN FILE( filename);
FILE -SEEK( ua, rflle);
ul time : = READFILE( 1, 4, rfile);
CFLOSEILE( file~name);
Vf ul time < post time then begin

D5ELETE,_FILE filename);
DECREMENT-MSG( callsign, mail head, first let);

end;
end;
ekse begin

DELETE FILE( file-name);
DECREMENT _MSG( callsign, mail-head, first let);

168



fl~q~ -GETNEXTýILE mwe, fliejimm);

-fit name OETJr STJILE( da.e epy-vuing);
whil flejame > nqpy sriqdo begin

V ll naeLmeO. .7] < > "BULLEINO
and filenmn[O. .7] < > OUSRTELEM* ahe begin

Nf pottme* > 0 then begin
if ile :- OPENFELE( filename);
FILE _SEEK( uu, rfile);
ul time := READ .FILE( 1, 4, rfile);
CLOSE FILE( filename);
Vf ul time < posttime then begin

D5ELETE FILE( file~name);
DECREMENT _MSG( file name[2.3.], mail head, first let);

end;
end;
eshe begin

DELETEFILE( filename);
DECREMENTMSG( filenamc[2.3.], mail head, first let);

end;
end;
file -name := GET NEXT FILE( date, flcýname);

end;
end;

end;
endo

169



frem WANT to sam
when ts.storeusrtelem
be&i

INCREMIENT _MSG( 'USRTELEM*, netarce-num mail bead, first let,
mailnum, ext);
rfile : = OPEN FILE( telem); { File has already been created and written by the }
FILESE( MR, rflie); I telemetry module. Here, we just keep track }
WRITE_FILE( mail..num, 4, rfile); J of how many usr telem files are active, and}
FILE SEEK( nd - ml, rfle); { write appropriate mail number into the file }
num dest := READFILE( 1, 1, rfile); { header. In this case, the mail.number }
Nf num dest > 0x07 then { will not accurately reflect the extension of the)

FILCESEEK( 42, rfile); ( file name, since this will be assigned by the }
j - READFILE( 1, 1, rfile); ( writing module. }
FILE SEEK( j, rfile);
j := READFILE( 1, 1, rfile);
FILE SEEK( j, rfile);
heade crc : = READFILE( 1, 2, rfile);
If header crc > 0 then begin

fori := 0to 3 do
headercrc := header.crc + mail num[i];

FILE SEEK(-2, rfile);
WRITEFILE( header crc, 2, rfile);

end;
CLOSE FILE( telem);

end;

from WAIT to same
when ts.delete user telem (Telemetry module has already deleted the file and }
begin { is only notifying the mail box module. }

DECREMENTMSG( *USRTELEM", mail-head, firstlet);
en#;

end; { of MAILBOXCONTROLBODY

170



body PA8SSWRDPONTROEL)ODY for PASSWORD CONTROL, TYPE eztar.1

bedy AUFO CONTROL BODY for AUTQ-CONTROLJTYPE; ezt"Uml

body OROUND-CONTROLDBODY for OROUND-CONTOLJYPE; extdaum;

body PRIMArIVE SW LOADER for PRBM~nVESW LO:ADER TYPE; oextral;

body TELEMBRY-GATHERBODY for TELEMIErRY-ATHER. YPE; external;

body A/D DRriVER BODY for A/D DRIVER TYPE; extera;

body EVNT-LOGGER-BODY for EVENT LOGGER TYPE; external;

body BPS DRIVERBODY for BPS DRIVER TYPE; external;

body COMM-DRIVER BODY for COMMpDRIVERJTYPE; external;

body DCS DRIVER BODY for DCS DRIVERTYPE; external;

171



(Modikue lutiltomand doanel connection
EmedIal ( usd1.. for Rl&h Software Se~ia~n

Primitive-AX25: PRIMITIlVE AX25 TYPE;
Primitive SW Ladr PRIMiTI yE SW LOADER TYPE;
DaftaTransfer: DATA TRANSFER TYPE;
Packuet Transfer. arrayfinarksl of PACKET TRANSFER TYPE;
Mailbox-Control: MAILBOX CONTROL TYPE;
Ground control: GROUND-CONTROL TYPE;
Auto Control: AUTO-CONTROL -TYPE;
EventLogger-: EVENT-LOGGER TYPE;
Password-Control: PASS WORD CONTROL- TYPE;
Telemetry Gather. TELENMrY-GA7HE-TYPE;
A/D Driver:- AID DRIVER TYPE;
EPS Driver-. EPS DI VFER TYPE;
Comm Driver: Comm DRIVFER TYPE;
DCS Drver: DCS DRVER-TY-PE;

Inktlalze (ntalzto Par of the Speciflication

halt Primitive-AX25 with PRIMITIVE AX25 BODY;
halt Primitive SW Loader with PRInaTVE SW LOADER BODY;
hal Data Transfer with DATA TRANSFER BODY;
halt Mailbox Control with MAILBOX CONTROL BODY;

intGround "Control with GROUND CONTROL BODY;
bait Auto Control. with AUTO-CONTROL BODY;
halt Event Logger with EVENT LOGGER BODY:
hal Password-Control with PA§SSWORD-CONTROL BODY;
halt Telemetry Gather with TELEMETRY-GATHER-BODY;
halt A/D -Driver with AID -DRIVER -BODY;
halt BPS Driver with EPS DRIVER BODY;-
halt Cotrmm Driver with COMM DRIVER BODY;
halt DCS-fDriver with DCS DRIVER-BOD-Y;
all link: Link-Type do begin

halt, Packet Transferflinkj with PACKET TRANSFER BODY;
omtData Transfer.pc~link] to Packet Transfer[Iink] .pc;

connect Mailbox Control. mcglinkj to Packet Transfergink]. mc;
connect EventLogger.elplinkJ to PacketTrin'sfer"lnk.el;

end;
connect Primitive AX25.bax[O] to Data Transfer.bax;
connec t Pimitive AX2S.bax~lI to Ground Control.bax;
connect Primitive AX25.bax[2J to Auto Control.bax;
connect Primitive AX25.bax[3J to Primitive SW Loader bax;
connect Ground Control.ccd to Data Transfer.cc[O];
connect Ground Control.cct to TelemetryGathe.cc[O];

172



Ch R 1ACotOO to Pailds.WOJClotr c(O;
0 g i arnd-Psuarcm to Mailbox - irol-cc(O);

coetOmumLCoutro~ccs to EPS-Driwer.oc(OJ;
Cketorund Costro.ocom to Cm-Pie MR(O;

eiet Oround-Catoi~ccdc to DcOSDriver-CcOJ1;
cned m me ruadCoAtrel to Event _LogUw.eljm=Ulbvb;
eummet Ormsoad Comudo.ac to Auto.CamtroLsc;
conned Aut Control-ad to Daft Tiunsfer.cc(1j;
comet AVIDCoItrol~ad to Tweleetry Gather.cc[1J;

comtAao Controlamcp to Pausword-Control-cc[1J;
cimtAulo Contul~acat to Mailbox Contrml.c[1J;

jkmmot A oControi.ae to BPS .rvrCC[1];
cmtAusRCostzd2iacom to Comm Driver-CC[1J;
cnctAuto Control-acdc to DCS-Duiver-cc[1J;

comnet Auto Contrci.el to Event _Logger. ellmadrinkb + 1];
cownnc Telemetry Gather.ad to A/D Drivr.ad;
coniect TelemetryGathe.el to Even~Log.el[rnaxlinks + 2];
Pco nnct Telemetry-Gather.ts to Mailbox -Control.ts;
commet Mailbox Control.el, to Event,_Logger.e1[mmrdinks + 3];
connedc Data..Trnsfer.e1 to Event, Logger.e1[maxlinks + 4];
conned Passord Control.el to Event Logge.el[maxlinks + 51;

end;

end. fof Flight Software Specification

173



APPENDIX B - DATA FLOW DIAGRAMS

DFD: CONTEXT DIAGRAM
I Ground

Amateur NPS Gon
adio Ground GROUND ondrog

Station SW STATION ommandingSoftware

FLIGHT

SOFTWARE

Amateur AMATEUR BOOTSTRAP
adio Ground RADIO
Station SW USERS

174



DFD 0 FLIGHT SOFTWARE

Amateur NPS G
L Control

Radio Ground GROUND Control

Stat ion SW STATION SommandingSoftware

Interpretation &
Commuiain Response to

& File Transfer Sround Contr

S 2. 3.atllt

TelemetrySaelt
Gathering and Hrwr

[ Storage Control

Amateur AMATEUR BOOTSTRAP
Radio Ground RADIO SFWR
Station SW USERS

175



DFD 1 -Communications &
File Transfer Software

Ground
Amateur NPS Cont

adio Ground GROUND onding

Station SW STATION Commanding
A I Softwarej

(BAx) a c

bax me

1.2 ,el e1.3

Data-Transfer PC •acketTransfei

Amateur AMATEUR
Radio Ground RADIO
Station SW USERS

176



DFD 2 - Telemetry Gathering &
Storage

2.1 cc 4.1
cel

Telemetry-
Gather cc 3.1

ts el

ad el 1.ele 
13

2.2 2.3

A/DDriver EvenLbogger

177



DFD 3 Satellite Hardware Control

3.2
3.3

EPS...Driver
Comm-Dfriver

2.3 bax eac .

O. BOOTSTRAP

SOFTWARE

178



DFD 4 - Command Interpretation &
Response to Ground Control

IGround
Amateur NPS Gon

adio Ground GROUND onding

Station SW STATION ommandingSoftware

B 12. 2.1 1.4
CC c cc 3.2

C
ccdc

2. el Gr wd ccom 3.

sc Control ccdc

4 29 ccl

179



DFD 1.2 Data Transfer Module
State Transitions

mIV

eb :=cc.oLb

C.hag-,ao

cc.Iockout(new)

bax ~ ~ alauserlckot tORue L [alusr k ut aserokut:fas

busd~o fbe iter~ffec~nlc180w



DFD 1.3 PackeLTransfer Module
State Transitions INIT

others

L/DL-CM pc.dwmed (from any date) UL/DL-UNINIT Aisc nect

00, wk-w

Me. pe.connection

mc.ma* 
acti

no
mc.m&iLn
mc.maiLde
mcmwlecLxm
mc dir-M WAIT-MAILBOX

me-directorv

d, maiLdeLxesp
mcinselect-resp

v error- T mc.maiLnum-resp.error m maiLxecv-resp.
mc.maiLnunLresp. no error error

m maiLclose-resp.
mc.maiLrecy-resp. n error

ZL 1. Lilat'-w
mc.maiL

error mc.mafl-recv r-

DLFILE-DATA UL-DATA-RX imemaiLel ULABORT
d AiLewl

others

&AP thers

mc.maiLresp.
No error

181



DFD 1.4 -Mailbox-Control Module
Response to Messages

me.active-..sreq

mc~mai~n182



APEDIX C - ESTELLE SYNTAX

Table C. I contains the subset of Pascal syntax which was utilized in Appendix A.

Note that cells with double lines on top and bottom contain definitions somewhat

modifd from thos foud in [1e. 8]. A more complete lexicon and construction rles

can be found in Annex C of [Ref. 8].

Key:

1) Each definition ends with a period,'.'.

2) The or symbol, "1, denotes a choice among options.

3) Components enclosed by square brackets, "[ I", are optional.

4) Paremtheses, "( )', are used for grouping components in order to clarify definitions.

5) Components enclosed by curly brackets, "{ )', may be included zero or more times.

6) Symbols shown within quotes, W ", must be typed exactly as they appear. (They will

be found in bold-face type within the specification.)

TABLE C.A PASCAL SYNTAX USED IN APPENDIX A

letter- "a' b" V ... I'z'A" I "B" OI Z'.

digit = w0' I I '2' I 031 I 4' 1 ' '5" '6" I "7" I "8" I "9B I'A " I "B"
[C" C "D" I "E" I 'F'.

special-symbol=- + I -" I '*' I UU < lU>Ul[ I UU UJ ('ln)"In
"U;" 6A " 6 < >" I "<-" I ">-" I ":-" I.." I
word-symbol.

183



TABUE CA1 PASCAL SYNTAX USED IN APPENDIX A

word-symbol M aNNW I "arayu I Obein" I Ocaw* Jont I~~l~ " do* I 'downto"
I news I maws I *&Iwo' I *forU afunction" I air w ing

am nun* I "or I worn I sprocedure s I record s I

"while".

identifier -lboar(letter I digit.

unsigned-infteer - digit (digit) I "x" digit (digit).

cbracter-sftrn ME 6 1U string-character ( string-character) U

comment = ay-sequenc-of-charates-and-separaios-of-lines-not-
containing-right-brace )W

block =constant-definition-part
type-definition-part
variable-declaration-part
procedure-and-fuinction-declartion-part
statement-parn.

constant-definition-part = Cconst3 constant-definition ; constant-definition

type-definition-part * type* type-definition '(type-definition ~ ]

variable-declaration-part = var" variable-declaration ~ variable-declaration

procedure-and-function-declaration-part =(procedure-declaration 11 function-
declaration ) *;a).

statement-part = compound-statement.

constant-definition = identifier "=" constant.

constant =[sign) (unsigned-integer I constant-identifier) character-string.

constant-identifier =identifier.

type-definition = identifier a= "type-denoter.

type-dnoter = ordinal-type I new-type.

new-type - new-ordinal-type I new-structured-type I new-pointer-type.

184



TABLE CA1 PASCAL SYNTAX USED IN APPENDIX A

pokinte-type-identifier = type-identifier.

-type-identifier = identifier.

ordinal-type - new-ordinal-type I ordinal-type-identifier.

new-ordinal-type - enumerated-type a sbrnge-typ.

ordnaltyp-ientfie - chr I uint W uong I int I boolean.

wicar -8bt-ia--y-nditgro--sncaatr

uint -a 2-byte-unsigned-integer.

WMon - 4-bye-unsine-integer.

int - [sign] unsigned-integer.

signpI~

boolean w strueo "false'.

enumerated-type =(3identifier-list 3U

identifier-list =identifier ( ~identifier).

subrange-type =constant .. constant.

structured-type = new-structured-type I structured-type-identifier.

new-structured-type =array-typ I record-type.

arry-type -arry 3 number-componentsu ( number-components 1
"of" component-type.

number-components -- unsigned-integer.

component-type = type-enoer.

record-yp M wrewcd* field-list Nend.

field-list = record-sectaion{ record-section.

185



TABLE C.A PASCAL SYNTAX USED IN APPENDIX A

reowd-section - identifier-list ':' type-denoter.

pointer-type - new-poinWr-tpe pointer-type-identifier.

new-pointer-type - ty;e-identifier.

variable-declaration - identifier-list ':' type-denoter.

variable-access - entire-variable I component-variable I identified-variable.

entirevariable - variable-identifier.

variable-identifier = identifier.

component-variable = indexed-variable I field-designator.

indexed-variable = array-variable "[" index-expression "]" { "[" index-expression"1' }.

array-variable = variable-access.

index-expression = expression.

field-designator = record-variable -". field-specifier I field-identifier.
record-variable =variable-access.

field-3pecifier =field identifier.

field-identifier fiidentifier.

identified-variable = "' pointer-variable.

pointer-variable = variable-access.

procedure-declaration = procedure-heading "; directive
I procedure-identification ";* procedure-block
I procedure-heading ";" procedure-block.

procedure-heading = *procedure" identifier [ formal-parameter-list].

procedure-identification = "procedure* procedure-identifier.

procedure-identifier - identifier.

procedure-block = block.

186



TABLE C.A PASCAL SYNTAX USED IN APPENDIX A

funtion-declaration - fumction-heading T directive
I function-identification T" function-block
Sfuicon-heading T functon-block.

function4-eding - function" identifier [ formal-parameter-iist ] ":" result-type.

function-identification - "functim" function-identifier.

function-identifier - identifier.

fncon-block - block.

result-type - type-denoter.

formal-parameter-list = "(" formal-parameter-section { ";" formal-parameter-
section) ")".

formal-parameter-section = value-parameter-specification
variable-paameter-specification.

value-parameter-specification = identifier-list ":' type-identifier.

variable-parameter-specification = "var" identifier-list ":" type-identifier.

expession - simple-expession [relational-operator simple-expression ].

simple-expression = [sign] term { adding-operator term).

term = factor { multiplying-operator factor).

factor = variable-access I unsigned-constant I function-designator I
set-constructor I "(" expression w)" I "not" factor.

unsigned-constant = unsigned-number I character-string I constant-identifier [
"*ull".

set-constructor = "[" [member-designator ( ",' member-designator)] "'.

member-designator = expression [ ".." expression J.
multiplying-operator = "*" I "and".

adding-operator = "+" I "-' 'Or%.
relational-operator = "a" I "< >' I'<" I ">' I <=" I ">=" I "in".

boolean-expression = expression.

187



TABLE C.A PASCAL SYNTAX USED IN APPENDIX A

function-designator - function-identifier [ actual-parameter-list ].

actual-paameter-list - '(' actual-parameter { ',' actual-parameter) })".

actua-parameter - expression I variable-access I pmcedure-identifier I
function-identifier.

statement = (simple-statement I structured-statement).

simple-stament = empty-statement I assignment-statement I
procedure-statement.

empty-statement =

assignment-statement = (variable-access I function identifier) ":=" expression.

procedure-statement = procedure-identifier ([actual-parameter-list]).

structured-statement = compound-statement 1 conditional-statement I
repetitive-statement.

statement-sequence = statement { ";" statement).

compound-statement = "begin' statement-sequence 'end'.

conditional-statement - if-statement I case-statement.

if-statement '- if" boolean-expression *then" statement [ else-part 1.

else-part = "else" statement.

case-statement = "case' case-index "of' case-list-element { ";' case-list-element }
[ ';" ] *end'.

case-list-element - case-constant-list ":" statement.

case-constant-list - case-constant { "," case-constant}.

case-constant = constant.

case-index = expression.

repetitive-statement = repeat-statement I while-statement I for-statement.

repeat-statement ' 'repeat" statement-sequence 'until" boolean-expression.

while-statement = 'while' boolean-expression "do" statement.

188



TABLE C.A PASCAL SYNTAX USED IN APPENDIX A

for-satement = "for" control-variable : initial-value ( to i downto)
final-value ado, statement.

control-variable entire-variable.

initial-value - expression.

final-value = expression.

The following table lists Estelle-specific reserved words which have been used in

Appendix A. The expected location and function associated with each is also indicated.

TABLE C.2 ESTELLE-SPECIFIC RESERVED WORDS

Reserved Location Furnction

Word

specification Beginning of entire Identifies the name of the
specification block, specification.

any In a constant declaration. Declares that a value of the indicated
type must be chosen during
implementation.

By itself, on the right- Indicates that the actual internal
hand side of a type details of the type have not yet been
definition, determined. The final definition may

be implementation-dependant.

channel In the channel definition Indicates the beginning of a channel
section, which definition. Followed by the channel
immediately follows the name, and then, within parentheses,
global constant, type and the end-point names.
and variable declaration
sections.

189



TA C ESTELLSPECIC RS VED WORDS

Refered Location Function
Word

by Within a channel 'by' is followed by one of the
definition, channel end point names and then by

a list of the messages which can be
sent from that end point. Following
each message name, in parentheses,
is a list of the parameters for that
Smessage type.

module In the module header Indicates the beginning of a module
definition section, which header definition. "module" is
follows the global followed by the name of the module
function and procedure type. The module header definition
declarations which follow defines the interfaces with the module.
the channel definition
section.

system In the module header Indicates that the module is an
process definition following the autonomous process, not a subprocess

name of the module type. enclosed within another.

Ip In the module header Indicates the beginning of the list of
definition, interface points for the module. It is

followed by the channel names, each
of which is given a channel type from
among those defined in the channel
definition section. In parentheses is
indicated which end point this module
plays the role of. That in turn,
defines the type of messages which
can be sent by this module.

individual In an interface point Indicates that all messages to or from
queue declaration within a this module via the indicated channel

module header definition, will be maintained in an individual
queue for that module alone.

190



TABLE C.2 ESTELLE-SPECMIC RESERVED WORDS

Reserved Location Function
Word

Coimo In an interface point Indicates that the module will share
queue declaration within a the queue for this channel with all

module header definition. other *common queue" modules
playing the role of the same kind of
end point for the same kind of
channel. Or, if a module has an
array of channels of the same type,
all of the channels may use a
common queue.

body In the module body Indicates the beginning of a module
definition section, which body definition. This is where the
follows the module actual behavior of the module is
header definition section. defined.

external In the module body Indicates that the body definition for
definition section, this module is external to the current
following the body name specification. It may not yet have
and the module type. been developed, may be under

development by another team, or it
may be completely external to the
system at hand, with only the
interface defined by the module
header definition being of any
importance.

state Within a module body Marks the beginning of the list of
definition, following the state names for this module.
local const, type and var
declaration sections.

191



TABLE C. EMIieSPECHIC RESERVED WORDS

rdResered Location Function
Word

stateset Within a module body Defines a common name to be used
definition, following the for several states, when they have
list of state names, similar transitions. If the module

state machine reacts the same way to
a particular stimulus when in any one
of several different states, these states
may be grouped together by a stateset
so that the behavior need only be
written out once for all the affected
states.

primitive In a function or procedure Indicates that the algorithmic details
declaration, of the function or procedure are not

included in the present specification.
The function or procedure may be
deemed to be commonly understood
or readily available from the operating
system, or the details may simply not
be relevant to the aspect of the system
currently under consideration.

initialize Following the last local Indicates the initial state of the
function or procedure module state machine when it is
declaration within a instantiated. Statements between the
module body definition. "begin" and "end" keywords may be

used to set up initial variable values,
and to take any other automatic "start-
up" actions.

trans Following the Indicates the beginning of the state
initialization section in transition section of the module body.
the module body All possible state transitions will be
definition, listed within this section.

from In the transition section of Indicates the state from which the
the module body transition takes place.
definition.

192



TABLE C.2 ESTELE-SPECWIC RESERVED WORDS

Reserved Locatio Function
Word

to In the transition section of Indicates the state in which the
the module body module will be, following the
definition. transition.

when Following the "from - Identifies the stimulus which may
to" clause of the trigger the transition. "when" is
transition statement. usually followed by the name of an

interface point, with a period, ". ,
and the kind of message from that
channel which could trigger the
transition. Any parameters associated
with the incoming message may be
referenced directly by their value-
parameter names within the "begin -
end" block of the transition statement.

provided Following the "when" Indicates any further conditions for
clause of the transition the transition to occur. 'pr,-eAed' is
statement. usually followed by an exprem on in

which one of the parameters of the
"when message" is compared with a
necessary condition. The transition
only occurs when the module is in the
"from state", the "when message"
arrives, and the message parameter
meets the necessary condition. When
the transition occurs, all of the
statements between "begin" and
"end" are executed before the module
enters the "to state" and waits for the
next stimulus.

193



TABLE C.2 ESTELLE-SPEcinC RESERVED WORDS

Re d Latim Funtion
Word

output Within the "begin - end" Indicates that a message is to be sent
block of a transition out at the interface point indicated.
statement. The interface point name is shown on

the left side of a period, with the type
of message on the right side. If there
are any message parameters, variables
of the appropriate types must be
prepared with the proper values, and
must be included in parentheses
following the message name.

niodvar Following all module Indicates the beginning of the module
body definitions, instantiation and channel connection

section of the specification.

initialize In the modvar section. Indicates the beginning of the module
instantiation section, which will define
exactly how many copies of each
module type will be created, using
which module bodies.

mit In the module "int" indicates initialize, but really
instantiation section. means instantiate. Use the module

body indicated by the "with" clause.
(there could be more than one module
body for a particular module type).

connect In the modvar section, Indicates that the interface points of
following the module two modules will be connected
instantiations. together. Further defines which

specific channels go between which
specific module instantiations.

194



LST OF REFERENCES

1. Price, H. B., BekTek 4Spcev* Operuing System SCOS Rtfrence Manual, Bethel
Park, PA, March, 1992.

2. Fox, T., "AX.25 Level 2 Protocol," Proceedings of the First ARRL Amateur
Radio Computer Netwoking Conference, pp. 2.4-2.14, ARRL, Newington, CT,
October, 1981.

3. Stallings, W., Data and Computer Communications, pp.326-335, Macmillan
Publishing Company, 1994.

4. Price, H. E., BekTek AX.25 Protocol System BAX Rtfernce Manual, Bethel Park,
PA, March, 1992.

5. Price, H. E., Ward, J., "PACSAT Broadcast Protocol," Proceedings of the ARRL
Amateur Radio 9th Computer Networking Conference, pp. 232-244, ARRL,
Newington, CT, September, 1990.

6. Price, H. E., Ward, J., "Pacsat Protocol: File Transfer Level 0," Proceedings of
the ARRL Amateur Radio 9th Computer Networking Conference, pp. 209-231,
ARRL, Newingtion, CT, September, 1990.

7. Price, H. E., Ward, J., "Pacsat File Header Definition," Proceedings of the ARRL
Amateur Radio 9th Computer Networking Conference, pp. 245-252, ARRL,
Newingtion, CT, September, 1990.

8. ISO/TC 97, InJormatlon Processing Systems - Open Systems Interconnection -
Estefle: A Formal Description Technique Based on an Euended State Transition
Model, ISO 9074:1989(E), Genbve, Switzerland, July, 1989.

195



aTILAL D I WUrTN U

No. QCies
1. Defens Technical Information Center 2

Cameron Stton
Aleandr VA 22304-6145

2. L-brary, Code 52 2
Naval PotrdaeSchool

* Monterey CA 93943-5101
3. Department Chairman, CodeEC

Dqe tment of Electrical and Computer Engineering
Naval ZPo1-gr1uate School
Monterey, California 93943-5121

4. Prfiessor Dougla J. Pouts, Code EC/Fs 2
Department of Electrical and Computer Enginering
Naval Postaduate School
Monter", California 93943-5121

5. Prfessor Frederick W. Tieran, Code EC/Tz
Dertmet of ]Eectrical and Computer Engineering
Naval uate School
Monterey, California 93943-5121

6. Professor Michael Ross, Code AA/Ro 4
PANSAT Project Lead
Naval Ptgraduate School
Monterey, Califmonia 93943-5121

7. Mr. Jim Horning, Code SP/Jh 2
Space System Academic Group
Na st r School
Monterey, Califona 93943-5121

8. Teresa 0. Ford, LT, USN
2101 Crystal Plaza Arcade 1258
Arlington, VA 22202

196


