AD-A280 0
DT lllll I llll
DTIC QUALITY tNEBRCTED 3
THESIS
" FOR THE PETITE AMATEUR NAVY SATELLITE
(PANSAT)
‘ - by
Teresa Owen Ford
March, 1994
e o

[mag

Iiiig
8VELL-16

Approved for public release; distribution unlimmed

Fora Approved
REPORT DOCUMENTATION PAGE OMB No. 0704

lic reporting burden for this collection of information is estimated to average 1 hour per response, including the time
or reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing snd
eviewing the collection of informstion. Send comments regarding this burden estimete or any other aspect of this
Llection of informstion, including suggestions for reducing this burden, to Washington headquerters Services,
irectorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
to the Office of Management and Budget, Peperwork Reduction Project (0704-0188) Washington DC 20503.

. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March, 199 Master's Thesis

TITLE AND SUBTITLE S. FRADING NUMBERS
PRELIMINARY FLIGHT SOFTWARE SPECIFICATION
FOR THE PETITE AMATEUR NAVY SATELLITE (PANSAT)

AUTHOR(S)

Ford, Teresa Owen

PERFORMING ORGANIZATION NAME(S) AND ADODRESS(ES) 8. PERFORMING ORGANIZATION
REPORT MUMBER

Naval Postgraduate School
Monterey CA 93943-5000

. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

1. SUPPLEMENTARY NOTES

The views expressed in this thesis are tiose of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Goverrment.

2a. DISTRIBUTION/AVAILABILITY STATEMENY 12b. DISTRIBUTION CODE

Approved for public relesse; distribution unlimited

3. ABSTRACT (maximum 200 words)

PANSAT is a small, spread-spectrum, communications satellite under design at the Naval Postgraduate School. It
will support s store and forward bulletin board system for use by the amateur radio community. The flight software is
responsible for the autonomous telemetry collection and harduare control operations of the satellite, communications
and file transfer protocols atlowing access to the bulletin board system, and commend interpretation and response to
ground control commands. In this thesis, the complete flight software architecture and module interfaces are
specified using the Estelle Formal Description Technique. The module bodies dealing with communications and file
transfer protocols are specified in detail in Estelie. The current design goal for the remainder of the flight
softuare modules are discussed. Appendices include the preliminary flight software specification itself, a data fiow
disgram interpretation of the specification, and a summary of the Estelle syntax used.

4. SUBJECT TERMS 15. MNUMBER OF PAGES
211

16. PRICE CODE

PANSAT, Software Specification, Estelle, Amateur Radio, Store and Forward

7. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF ASSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED) UNCLASSIFIED UNCLASSIFIED uL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

e

Approved for public release; distribution unlimited.

Preliminary Flight Software Specification For the Petite Amateur Navy Satellite
(PANSAT)

by

Teresa Owen Ford
Lieutenant, United States Navy
B.S., United States Naval Academy, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Author: —3 Sy (_2_&4»5’361&

Teresa Owen Ford

Approved by: MM %
glas J. Fouts, Thesis Advisor
7 .
J/W . 7W
Frederick W. Terman, Second Reader

/ Wbl BV g

Michael A. Morgan, Chﬁn
Department of Electrical and Computer Engineering

ii

ABSTRACT
PANSAT is a small, spread-spectrum, communications satellite under design at the

Naval Postgraduate School. It will support a store and forward bulletin board system for
use by the amateur radio community. The flight software is responsible for the
autonomous telemetry collection and hardware control operations of the satellite,
communications and file transfer protocols allowing access to the bulletin board system,
and command interpretation and response to ground control commands.

In this thesis, the complete flight software architecture and module interfaces are
specified using the Estelle Formal Description Technique. The module bodies dealing
with communications and file transfer protocols are specified in detail in Estelle. The
current design goals for the remainder of the flight software modules are discussed.
Appendices include the preliminary flight software specification itself, a data flow

diagram interpretation of the specification, and a summary of the Estelle syntax used.

Accession For

JTIS OGRARI &
DTIC TAB a
Unanaowaced 0

Justifioation — ———

By :
piswributiond - o .

Availability Codes
Avail and/or
IDiat Special

ML

ii

TABLE OF CONTENTS

THIRD PARTY SOFTWARE

oooooooooooooooooooooooooooo

A. SPACECRAFTOPERATINGSYSTEM

B. BAX

oooooooooooooooooooooooooooo

2. BAX Application Programst e e o v vt v e e v e e s o

3. TI'AX Functions . ..

A. FUNCTION
B. STRUCTURE

oooooooooooooooooooooooooooo

............................

iv

» w N
n
F E
ot
~N

FileTypecc0iiiiiiiinnnnrnnennnnas 13

S. Compression Typeccoeivevnnanncnns 14

6. BodyOffset i iiiiiininnnannnnns 15

T. SOUMCE iiiiniiienetinennensonenssansas 15

8 Priority00t i i i i 15

9. Number of Destinations and Destination 1 through Destination 7 15

10. TitleLengthand Title 16

11. Keyword Lengthand Keywords 17

12, Header Checksum and Body Checksum 17

D. FIELDS TO BE FILLED INBY SATELLITE 18
1. Download Countcotiiivenvnennnns 19

2. UploadTimeandExpireTime00... 19

3. PANSAT File Name and PANSAT File Extension 20

IV. THE SPECIFICATION LANGUAGE -ESTELLE............... 22
A. FORMAL DESCRIPTIONTECHNIQUE................. 22
B, CLARITYttt iiitiinennnroronecnannnasas 23
C. STATEMACHINEMODEL00tiveueunns 25
D. MODULECOMMUNICATIONScovu.nn 26
E. DETAILANDABSTRACTIONc.... 27

A.

B.
C.
D.
E.

PACKETFORMAT iiiiiiennnn
THE DATA AND DATAEND PACKETS
THELOGINRESPONSEPACKETc...
THE UPLOAD COMMAND, UPLOAD GO RESPONSE, AND
UPLOAD ERROR RESPONSEPACKETS
THE UPLOAD ACKNOWLEDGED RESPONSE AND UPLOAD
NOT ACKNOWLEDGED RESPONSE PACKETS
THE DOWNLOAD COMMAND PACKET
THE DOWNLOAD ERROR RESPONSE PACKET
THE DOWNLOAD ACKNOWLEDGED COMMAND, DOWNLOAD
COMPLETED RESPONSE, DOWNLOAD NOT ACKNOWLEDGED
COMMAND, AND DOWNLOAD ABORTED RESPONSE

THE SELECT COMMAND AND SELECT RESPONSE PACKETS

39

43

45

47

52

L. THE DELETE COMMAND AND DELETE RESPONSE

PACKETSoovvviiiiniinteineennennnnn.. 60

VII. PACKET TRANSFER MODULE - STATE TRANSITIONS 62
TRIGGERS . . oottt ttiiee e ine e eenne e 62

B. INSTANTIATIONS0oovvnniennnnnnnnnennnn. 62
C. TRANSITIONSoovvninenmnnnnnnnneennnenns 63

1 T3 VT v - P 64

1. UL/DLUNINIT ..o tteeneee e i, 65

2. UWUDLCMD WAITovniiiinnnnnnnnnns 66

3. WAIT MAILBOXcovvuuneneennnnnnnns 67

4, ULDATA RX .. iitintiiin i 69

5. UL ABORToovviniiimnineennnnnnnnnnns 70

6. DLFILEDATAoveieineeinnennnnnnns 71

VI MAILBOX CONTROLMODULEcccvuueuun... 73
A, FUNCTIONuvniintiriiinnennnnneennnns 7
SOURCERECORDSonviviunennnnnennnnn. 74

MODULE¢0iiitineeneneneennnnnens 76
1. The ’active_sl req’ and ’active_sl_resp’ Mesmées 76
2. The 'mail_num_req’ and *mail_num_resp® Messages 76

3. The "mail_recv’ and 'mail recv_resp’ Messages 'y

4. The 'mail close req’ and 'mail close_resp’ Messages 77
S. The 'mselect_req’ and "'mselect_resp’ Messages 78
6. The 'mail req’ and "mail resp’ Messages 78
7. The'dl ack’Messagecovvvvnnenen.. 7
8. The 'dir_req’ and 'directory’ Messages 80
9. The 'mail_del_req’ and 'mail_del resp’ Messages 80
RESPONSE TO MESSAGES FROM OTHER MODULES 81
1. The ’list mail’ and 'mail_list’ Messages 81
2. The ’post_bulletin’ and 'delete_bulletin’ Messages 82
3. The ’full_mailbox’ and ’purge_mail’ Messages 83

4. The ’store_user_telem’ and 'delete_user_telem’ Messages 84

IX. REMAININGMODULESc0tititininnnnnnnn 85
A. TELEMETRY GATHERINGMODULE 85
B. AUTOMATICCONTROLMODULE 93
C. GROUNDCONTROLMODULE0000nn.. 96
D. EVENTLOGGINGMODULE00uun. 100
X. CONCLUSIONS AND RECOMMENDATIONS 101
A. THEUSEOFESTELLE............. .. i, 101
B. RECOMMENDATIONS FOR FURTHER WORK 102
viii

APPENDIX A - ESTELLE SOFTWARE SPECIFICATION 105

APPENDIX B - DATAFLOWDIAGRAMS 174
APPENDIX C-ESTELLESYNTAXottt 183
LISTOFREFERENCES it titiitnnenacnnennnns 195
INITIAL DISTRIBUTIONLIST 196

TABLE 1.1
TABLE 2.1
TABLE 3.1
TABLE 3.2
TABLE 3.3
TABLE 5.1
TABLE 6.1
TABLE 6.2A
TABLE 6.2B
TABLE 6.2C
TABLE 6.3A
TABLE 6.2D
TABLE 6.2E
TABLE 6.2F
TABLE 6.3B
TABLE 6.2G
TABLE 6.2H
TABLE 6.21

TABLE 6.3C

LIST OF TABLES

FUNCTIONAL AREAS OF THE FLIGHT SOFTWARE 2

BAXFUNCTIONSc.ciititiinnnnnannn 7

PANSAT FILEHEADERFIELDS 10
FILETYPES ittt inrennnncansns 13
COMPRESSIONTYPES0civivuennnn 14
BAX CONTROLBLOCKFIELDS 30
PACKETTYPES ittt 35
EXAMPLEOF AdataPACKET 37
EXAMPLE OF A data end PACKET 38
EXAMPLE OF A login_resp PACKET 39
ERRORCODESciiiiiitnnnnnnenn. 41
EXAMPLES OF upload_cmd PACKETS 42
EXAMPLE OF AN ul_go respPACKET 42
EXAMPLE OF AN ul_error_resp PACKET 43
ERRORCODES00t 44
EXAMPLE OF AN ul_ack_resp PACKET 44
EXAMPLE OF AN ul_nak_resp PACKET 45
EXAMPLES OF download_cmd PACKETS 46
ERRORCODESc.tiiiiittrnennnnenss 47

X

TABLE 6.2J
TABLE 6.2K
TABLE 6.2L
TABLE 6.2M
TABLE 6.2N
TABLE 6.20
TABLE 6.4
TABLE 6.5
TABLE 6.6
TABLE 6.7
TABLE 6.2P
TABLE 6.2Q
TABLE 6.3D
TABLE 6.2R
TABLE 6.28
TABLE 7.1
TABLE 7.2
TABLE 7.3
TABLE 7.4
TABLE 7.5
TABLE 7.6

TABLE 7.7

EXAMPLE OF A d! error respPACKET 48
EXAMPLEOF Adl ack cmd PACKET 49
EXAMPLE OF A dl_completed_resp PACKET 49
EXAMPLE OF A dl_nak cmd PACKET 49
EXAMPLE OF A dl_aborted_resp PACKET 50
EXAMPLES OF dir cnd PACKETS 51
BITS 654’ OF THE RELATIONAL OPERATOR 54
BITS ’3210" OF THE RELATIONAL OPERATOR 54
HEADERITEMS 55
LOGICALOPERATORSc0iiiiinuaann. 56
EXAMPLES OF select cemd PACKETS 58
EXAMPLE OF A select respPACKET 59
ERRORCODES¢0citiuieinnnnnnnenns 60
EXAMPLEOF Adel emd PACKET 61
EXAMPLE OF A del resp PACKET 61
PACKET TRANSFERSTATES 65
STATE TRANSITIONS FROM UL/DL _ UNINIT 66
STATE TRANSITIONS FROM UL/DL_CMD_WAIT 66
STATE TRANSITIONS FROM WAIT MAILBOX 68
STATE TRANSITIONS FROM UL DATA RX 70
STATE TRANSITIONS FROM UL ABORT 71

STATE TRANSITIONS FROM DL _FILE DATA (7]

xi

TABLE 8.1

TABLE 9.1
TABLE 9.2
TABLE 9.3
TABLE 9.4
TABLE 9.5
TABLE 9.6
TABLE C.1
TABLE C.2

HARDWARE TELEMETRYPOINTS 87
SCOSTELEMETRYPOINTScovvn.. 89
BAX TELEMETRYPOINTS 89
GENERAL SYSTEM TELEMETRY POINTS 91
AUTOMATIC CONTROL MODULE FUNCTIONS 95

FUNCTIONS OF THE GROUND CONTROL MODULE 97

PASCAL SYNTAX USED IN APPENDIX A 183
ESTELLE-SPECIFIC RESERVED WORDS 189
xii

iRy o
R

.

SYMBOL TABLE

thesis and specification

A Pascal or Estelle reserved word.

thesis and specification

A specification constant, including a
member of an enumerated type.

thesis and specification

Module name or state name.

thesis and specification

Name of a user defined type.

thesis

Name of a variable or record field in
the specification, or the contents of a
variable or recorg field.

thesis and specification

A hexadecimal number. "N" stands
for the digits O through F.

thesis and specification
(primitive data type)

"Unsigned character”: 8 bits of
binary data, a 1 byte unsigned
integer, or 1 ascii character.

thesis and specification
(primitive data type)

"Unsigned integer": 16 bits of
binary data, a 2 byte unsigned
integer, or 2 ascii characters.

thesis and specification
(primitive data type)

"Unsigned long integer”: 32 bits of
binary data, a 4 byte unsigned
integer, or 4 ascii characters.

thesis and specification
(primitive data type)

xiii

"Integer”: a signed integer.

ACKNOWLEDGEMENT
I would like thank my advisor, Professor Fouts, for allowing me infinite flexibility

in my approach to this thesis, and my second reader, Professor Terman, for his diligent
proof reading and many helpful comments. Very many thanks go to the knowledgeable
Mr. Jim Homing of the Space Systems Academic Group, without whose tireless

assistance this project would never have been begun, much less completed.

Also I would like to thank my husband, Bruce, my daughter, Robin, and my son,

Douglas, whose loving support enabled me to persevere.

xiv

I. INTRODUCTION

A. PANSAT

The Petite Amateur Navy Satellite (PANSAT) is a small, experimental,
communications satellite currently being designed and constructed at the Naval
Postgraduate School (NPS) and scheduled to be launched from the space shuttle in 1996.
The satellite will use half-duplex, spread-spectrum communications and will support a
store and forward bulletin board system for use by the amateur "HAM" radio
community. PANSAT will operate autonomously in the performance of many of its
functions, while also carrying out commands issued by the ground control station located
in Monterey, CA at NPS.

B. GOALS OF THE FLIGHT SOFTWARE

The flight software will control the autonomous operation of the satellite, allow
amateur radio operators access to the onboard bulletin board or "mailbox" system, and
providédlemeansforﬂncsateniwtowspondtooommandsfromthcgroundcontrol
station. The major functional areas of the flight software are listed in Table 1.1. There
are other software functions which are equally important to the PANSAT project, but
outside the scope of the flight software. These include the "bootstrap® software which

will control initial configuration of the satellite systems upon launch or reboot, "client”

ground station software for use by the amateur radio community, and "commanding®

software for the ground control station.

. Communications Protocols for Amateur Radio User Access and File Transfer

. Telemetry Gathering and Storage

. Control of Satellite Hardware Systems

. Command Interpretation and Response to NPS Ground Station Control

C. SCOPE OF THIS THESIS

This thesis is the result of the initial attempt at specification of the flight software
for PANSAT. The hardware systems are still evolving, which means that hardware
control, command interpretation, and telemetry gathering requirements are still being
defined. The only requirements which can be completely defined this early and remain
essentially unchanged, regardless of the final hardware configuration of the satellite, are
the communications protocol and mail handling functions. For this reason, the actual
preliminary software specification, which can be found in Appendix A, concentrates on
the mailbox system and the transfer protocols for uploading and downloading files. The
preliminary architecture for the remaining software modules is sketched out, and

interfaces have been defined between all modules.

Some existing third party software, designed specifically for communications
satellites, will be used aboard PANSAT to support the applications software being
developed at NPS. The commercial software used will be introduced in Chapter I1. A
PANSAT file header has been developed to assist in proper maintenance of the mail
storage system. The elements of this file header will be explained in Chapter III.
Chapter IV will discuss the specification language, Estelle, in which Appendix A is
written. Chapters V through VIII will explain the functionality of the software modules
which have received the most attention in Appendix A, those dealing with file transfer
and mailbox control. Chapter IX will introduce the preliminary goals for the remainder
of the flight software, which has yet to be specified in detail. Chapter X will contain
conclusions and recommendations for further work. Appendix B contains a graphical
interpretation of the specification in Appendix A. This interpretation uses data flow
diagrams which provide a visual means of identifying the software architecture and

module interfaces. Appendix C will provide some details of the syntax of Estelle.

IL. THIRD PARTY SOFTWARE

A. SPACE CRAFT OPERATING SYSTEM

The role of DOS (Disc Operating System) on a personal computer is filled by
SCOS (Space Craft Operating System) on the computer aboard PANSAT. SCOS is a
real time, multi-tasking, operational environment designed specifically for the needs of
a small satellite.[Ref. 1] It supports applicatiors written in the "C" programming
language, and many of the primitive functions familiar to "C" programmers are
available through the Space Craft Operating System. These include file management
capabilities, dynamic memory allocation, bit and byte manipulations, and logical and
mathematical operations. Within the SCOS operating environment, the various modules
which make up the flight software are running as concurrent processes, able to pass data
among themselves. They are put to "sleep” when they are not needed, saving CPU time,

and are "woken up” again whenever their services are required.

B. BAX

1. AX.z2S
AX.25 is a variant of the CCITT X.25 link-layer protocol, and is designed
to provide reliable data transport between two signaling terminals.[Refs. 2, 3] This
asynchronous data transfer protocol is currently in wide use by the amateur radio

community for packet communications, and has thus been selected for use in

communications with PANSAT. To incorporate AX.25 functionality into the
communications software aboard PANSAT, a program called BAX is employed.

BAX is the BekTek corporation’s implementation of the AX.25 protocol. It
is designed to work with the Space Craft Operating System. Because of the availability
of the BAX software, the actual functionality of the AX.25 protocol is transparent to the
applications programs developed for the satellite. The software designer and programmer
need only consult the BAX manual [Ref. 4] to discover how to access the capabilities
required. For the amateur radio operator, the AX.25 protocol is normally implemented
by a piece of dedicated hardware known as a TNC (terminal node controller), or by
software contained in i PC (personal computer) based system.

2. BAX Application Programs

In order to utilize the capabilities of BAX, a "BAX application” program
must be written. In the PANSAT flight software specification, the primary BAX
application is known as the DATA_TRANSFER module (see Chapter V). Other
modules, such as GROUND_CONTROL, may also access the services of BAX.

BAX has the capability of receiving frames addressed to various applications
which are distinguished from each other by having different ssid’s (subsystem
identification numbers). PANSAT will be addressed by a multi-character Amateur Radio
Callsign, "PANSAT", for example. This callsign may be modified by use of ssid’s to
access different functions aboard the satellite. For instance, the data transfer module will
have ssid ’1’, and the HAMs will send their mail to "PANSAT-1". The command

interpreter, GROUND_CONTROL, may have ssid *2°, so that commands from the NPS

ground station could be sent there directly by BAX without having to be in the same

format as that recognized by the bulletin board system.

BAX communicates directly with the hardware drivers which operate the
radio equipment on the satellite. As incoming frames are received, BAX handles all of
the AX.25 protocol requirements, and notifies the appropriate application module of the
receipt and the source of each transmission. In the case of the data transfer module, the
frames passed to it by BAX must be assembled into the packets required at the next
higher protocol level. This is the level of the PACKET_TRANSFER modules described
in Chapters VI and VII. When the data transfer module receives a packet from a packet
transfer module for transmission to a ground user, the data transfer module breaks the
data into frames ;vhich i* passes "down" to BAX for transmission in accordance with the
AX.25 protocol.

3. BAX Functions

The accessing of most BAX functions by PANSAT application modules is
represented in the software specification as messages being passed through an
Abstract_Bax_Channel. In fact. in the specification model, all communication between
modules is accomplished via "channels”, each channel having certain types of messages
defined which can be passed through it. These channel and message definitions form the
interface specification between software modules (see Chapter III and Appendix A). The
BAX functions accessed are listed and briefly explained in Table 2.1.

TABLE 2.1 BAX FUNCTIONS

BAX informs PANSAT application of user connection request,
user disconnect, or incoming data frame.

PANSAT application tells BAX what callsign and ssid it will be
using.

PANSAT application passes data to BAX for transmission.
PANSAT application informs BAX that it is "busy” and will not
be accepting incoming frames.

PANSAT application informs BAX that it is no longer "busy"”
and will once again accept incoming frames.

PANSAT application accepts a user connection request

PANSAT application rejects a user connection request

PANSAT application sends a connection request to ground station

PANSAT application sends an unnumbered information frame to
a ground station.

PANSAT application disconnects from a ground station.

C. FILE TRANSFER LEVEL 0

File Transfer Level 0 (FTLO) is an asynchronous connected mode file transfer
protocol developed by Jeff Ward and Harold E. Price for use with the PACSATSs (packet
satellites). In a connected mode protocol, there is a virtual link between each user and
the satellite, with each transmission having a specific destination. This is in contrast to
a broadcast, or unconnected mode protocol, in which communications are intended to be

picked up by anyone listening.

Ar implementation of FTLO is currently available to amateur radio operators in the
form of the program "PG" along with several utility programs that work along with it,
such as "PHS" and "PFHADD". Although the specification for FTLO contains
provisions for both uploading and downloading files from a satellite, only the uploading
capabilities are implemented by the current version of "PG". For downloading from the
satellites which currently employ FTLO, the non-connected mode, "PACSAT Broadcast
Protocol” [Ref. 5], is used. This is implemented by the program "PB" and it’s utilities.

The specification for FTLO [Ref. 6] is used as the motivation for the specification
of the PACKET_TRANSFER module aboard PAANSAT (Chapters VI and VII). The
specification of the packet transfer module in Appendix A is much more detailed than
[Ref. 6], in an attempt to show how the protocol will actually be implemented by the
software aboard the satellite at the lowest possible level. The PANSAT implementation
will employ an FTLO-like connected-moJe protocol for both upload and download.

An effort has been made to remain as compatible as possible with any other FTLO
implementation. éome of the specific requirements of PANSAT and certain design
decisions have led to some variation from [Ref. 6]. As source code for "PG" was not
available, it is unknown at this point whether that software will actually be able to
communicate with PANSAT. PANSAT-specific ground station software, capable of
communicating with the packet transfer module specified here, will be developed by NPS

and made available to the amateur radio community.

HI. THE PANSAT FILE HEADER

A. FUNCTION

Each file maintained in the mail box memory of the satellite must begin with a
PANSAT file header. The header includes information such as the file number, file
name, file length, source callsign, destination callsigns, upload time, and expiration time.
The information in the header is necessary for the proper maintenance and administration
of the mail box. It can also be used by a client to determine which files onboard the
satellite may be of interest. The select_cmd makes use of the various fields of the

PANSAT file header in its selection criteria (see Chapter VI).

B. STRUCTURE

The PANSAT file header is inspired by, but is not the same as, the PACSAT File
Header developed by Jeff Ward and Harold Price [Ref. 7). It is arranged as a variable
length array of unsigned characters (bytes). The fields nearest to the beginning of the
header have fixed positions and fixed lengths. The lengths of other fields are specified
within the header itself, causing the positions of the later fields to be variable, and
dependant on the -fields ahead of them.

The byte positions, field names and formats are listed in Table 3.1. Note that
positions and field lengths through byte 41 are fixed. Each of the fields "Destination 1*
through "Destination 7" is either present, with a fixed length of 6 bytes, or absent

completely, based upon the contents of the “Number of Destinations” field. The fields

*Title" and "Keywords" have variable length, based upon the contents of the fields “Title

Length” and "Keyword Length", respectively. The column Const refers to the constant

name given to the associated field in the specification of Appendix A.

TABLE 3.1 PANSAT FILE HEADER FIELDS
m——

[0..1] fixed <0xBB> <0x55>
[2..5] fixed mn Mail Number ulong

[6..9] fixed ml File Length ulong

[10] fixed S File Type uchar

[11] fixed ct Compression Type uchar

[12.13) fixed | bo Body Offset uint |
[14] fixed dc Download Count uchar

[15..20] fixed sC Source array([6] of uchar

[21] fixed pr Priority uchar

[22..25] fixed ut Upload Time ulong

[26..29] fixed et Expire Time ulong ‘tl
[30..37] fixed na PANSAT File Name array(8] of uchar
[38..40] fixed ex PANSAT File Extension | array[3] of uchar

[41] fixed nd Number of Destinations uchar

[42..47] approx. ds Destination 1 array[6] of uchar
[48..53] approx. Destination 2 array[6) of uchar
[54..59] approx. Destination 3 array[6] of uchar
[60..65] approx. Destination 4 array[6] of uchar
[66..71] approx. Destination 5 array[6] of uchar

10

TABLE 3.1 PANSAT FILE HEADER FIELDS |
v

[72..77) approx. Destination 6 array[6] of uchar
[78..83] approx. . Destination 7 array[6] of uchar
[84] approx. Title Length uchar

[85..114) approx. | 4 Title array[30] of uchar
[115] approx. Keyword Length uchar

[116..195] approx. | kw Keywords array[80] of uchar
(196..197] approx. Header Checksum uint

[198..199] approx. Body Checksum

uint

C. FIELDS TO BE FILLED IN BY SOURCE

A PANSAT file header must be prepended to any file before it is uploaded to the
satellite. Certain fields within the header must be completed by the user station where
the file originates, while uther fields are filled in by the satellite once the file has been
completely uploaded. The user must place all zeros in those fields which the satellite
will complete. These satellite responsible fields will all be of fixed length. The fields

for which the user is responsible are as follows:
1. Flag
The flag indicates that this is the beginning of a file with a PANSAT file

header. The flag must always consist of the same two bytes: ’0xBB’ followed by *0x55°.

Example of the flag field: 10111011 01010101.

11

2. Mail Number

A mail number, or file number, is assigned by PANSAT to each file. This
number is not known to the user until it is provided by the satellite in an upload_go_resp
following an upload_cmd from the ground station. (See Chapter VI, section E.). The
user software has two options here. The simplest is to leave 4 bytes of 0’s in this field,
and let the satellite update it after the upload. If the upload is interrupted, however, it
will be the responsibility of the user software to "remember” the number associated with
the partially uploaded file, and to provide it to the satellite in the next upload_cmd which
will continue the process. The obvious place to store the number is in the file header.
For this reason, it may make more sense to choose the second option, which is to place
the proper number in the header before transmission of the file begins. Of course, this
will also necessitate adjusting the header checksum before transmitting. (See subsection

12).

3. File Length
The file length is a four byte unsigned integer (ulong). The source software
must place in this field the number of bytes contained in the file, including the PANSAT
file header.

12

W

4. Flle Type
The file type is a one byte field which indicates the format of the file body.

The satellite does not care about the file format, as it treats all files simply as arrays of
bytes. The information in this field is for the use of anyone who downloads the file, so
that they will know how it must be read. The contents of this field will be interpreted as
in Table 3.2. The first eleven of these types are the same as those defined by Price and
Ward in [Ref. 7], and some of them might never be used aboard PANSAT. They are
included for completeness, and to provide as much parallelism as possible between this

specification and FTLO.

ASCII ﬁle

RLI/MBL message body. Single message.

RLI/MBL import/export file. Multiple message.
UoSAT Whole Orbit Data

Microsat Whole Orbit Data

UoSAT CPE Data

MS/PC-DOS .exe file

MS/PC-DOS .com file

00001000 Keplerian elements NASA 2-line format
00001001 Keplerian elements "AMSAT" format
00001010 Simple ASCII text file, but compressed

13

PANSAT short format telemetry file
10100001 PANSAT long format telemetry file
10100010 PANSAT bax telemetry file

11111110 User defined type.

S. Compression Type
If the body of the file is compressed, the source must indicate the type of

compression used in this one byte field. Again, the satellite does not care whether or not
a file is compressed, or if so, how. This information is for the use of the downloading
user only. Note that no matter what file format or compression type is used in the file
body, the PANSAT file header will alw. s be uncompressed ASCII text. Compression
types are indicated by Table 3.3. "Ust- defined type" in Table 3.2 and "Other” in
Table 3.3 indicate that a file format or compression type not listed is being used. The

user must know the type, perhaps based on the source or title.

TABLE 3.3 COMPRESSION TYPES

No compression
PKARC
PKZIP
Other

14

6. Body Offset
The body offset is a two byte unsigned integer (uint). The source must enter
in this field the byte number at which the file body begins; that is, the number of the
byte following the last byte in the PANSAT file header. This is where the file format
and compression type will take effect, as far as the ground user is concerned. Note that
the first byte in the file header is number 0. If there are 200 bytes in the file header,
then the body offset will be *200° (0x00C8).

7. Source
The source field identifies the origin of the file, or the ground station from
which it was uploaded. The uploading user’s HAM callsign, consisting of six ASCII

characters, must be entered in this field by the client software.

8. Priority
No particular use for the one byte priority field is currently specified for the
satellite software. The user is free to use this field for his own purposes, such as to
indicate the relative urgency of messages to addressees who share the same interpretation
for this field. Any one byte bit pattern may be entered in the field, as long as the header

checksum takes the contents into account.

9. Number of Destinations and Destination 1 through Destination 7
If the message to be uploaded is intended for receipt by between 1 and 7
individual destination stations, then this is the number which is placed in the one byte

unsigned integer of the "Number of Destinations" field. The appropriate number of

15

“Deastination” fields are then used to indicate the HAM calisigns of the addressees. Any
unused destination fields are left out of the header. If the source wishes to indicate that
a message is intended for all users, then the number '0x00’ is placed in the *Number of
Destinations” field, and no destination fields are used.

To modify the "all users” destination, the uploading station may choose to
include a "source path* or a "destination path* to further define the intended andience
for the file. If a source path is to be included, then the number '0x08’ is placed in the
"Number of Destinations" field, and all 7 of the destination fields are included as a single
42-byte path field. Any ASCII string may be placed in this field to indicate a source
path or other source identification. Similarly, if a destination path is to be included, the
number *0x09’ is placed in the "Number of Destinations” field, and the 42-byte path field
is used to indicate a dwtmatlon path or to identify the intended audience.

The satellite will not attempt to interpret destination paths or identifications.
It is up to the potential downloaders to use this information, either by reading it after
downloading file directories, or by providing strings to compare with the path field in
select_cmds (see Chapter VI).

10. Title Length and Title
The "Title" field is a variable length array of from 0 to 30 bytes. The "Title
Length” field must be entered by the source to indicate the actual length of the title. The
title should be an ASCII string which will indicate to potential downloaders the contents
of the file body. If there is an original file name, which it is important to keep with the

file, it may be entered here. PANSAT does not otherwise retain original file names,

16

assigning its own after upload. The title information is for the use of potential
downloaders only, and the satellite does not attempt to interpret this field.
11. Keyword Length and Keywords

Like the "Title" field, the "Keywords® field is a variable length array of
ASCII characters. The "Keyword Length® field must be used to specify the actual
length, of between 0 and 80 bytes. Keywords should be separated from each other by
one or more spaces. The satellite does interpret keyword information, but will attempt
to find keywords of interest within this field if so directed by a selecr_cmd.

12. Header Checksum and Body Checksum

The header and body checksums are used to verify the integrity of a file after

" uploading or downloading is complete. The body checksum must be calculated first,
since it is included in the header and is thus a factor in the header checksum. All bytes
in the body of the file are added together as unsigned 8-bit integers. The least significant
two bytes of the resulting sum are placed in the body checksum field. The header
checksum is the result of adding all bytes in the header together, except for the header
checksum itself, and taking the least significant two bytes of the sum. The source must
take care to update the checksums if any part of the file or header is changed before the
actual upload begins. When the file number to be used has been identified by the
satellite, for instance, if the source then replaces the zeroes in the "File Number" field

with the proper number, those four bytes must also be added to the header checksum.

17

Ifﬂwmisnotableordoupotdedmtoalmwedmedwchum,
either or both of them may be left out. In this case, the fields must be filled with all
zeroes. The satellite will not fill in or update "all zero” checksum fields. When the
satellite performs file integrity checks, any all zero checksum will be ignored and that
check will be skipped. Because of this, corrupted files may remain aboard the satellite
undetected. It is up to the file's source to determine whether checksums are required.
Currently, there is no way to distinquish between "no checksum® and a checksum which
is actually '0’. Consequently, any checksum which is calculated to be exactly zero will
be ignored. This can be remedied by adding a character to the Keywords or Title field,

adjusting the appropriate length field and recalculating the checksum.

D. FIELDS TO BE FILLED IN BY SATELLITE

As previously stated, the uploading source of a file may choose to leave the "File
Number” field of the PANSAT file header filled with zeroes. If the satellite finds that
this has been done, it will fill in this field and update the header checksum appropriately.
When the satellite "updates” a checksum, it does so simply by adding to it any bytes with
which it has replaced zeroes. When nonzero field contents must be changed, the existing
bytes are subtracted from the checksum, and the new bytes added to it. This happens,
for instance, when the "Download Count” is updated (see below). The least significant
two bytes of the sum are placed into the checksum field. The checksum is not
completely recalculated, as this would invalidate the purpose of checking the integrity of
the bytes uploaded.

18

There are several additional fields within the PANSAT file header which must be
filled in by the satellite. The satellite software updates the header checksum whenever
it places information in any of these fields. The satellite will never change a body
checksum. The satellite responsible fields are described in the following subsections.

1. Download Count

In this one byte field, the satellite software keeps track of how many times
a particular file has been successfully downloaded. For a file addressed to "all®, the
download count is incremented each time a download is completed. For a file addressed
to between one and seven individual callsigns, the count is incremented only when a
download is completed to one of the intended addressees. The information in this field
is used to determine whether a file has been previously downloaded when the default
selection list is being formed (see Chapter VI, section K). The satellite software looks
at the header of each file to see if the current client is one of the addressees. If there are
five addressees listed, for instance, and the client is one of them, but the download count
is already at °S’, it is assumed that the client has already downloaded this file.

2. Upload Time and Expire Time

The "Upload Time" field is filled in after a complete file has been
successfully uploaded. When the final bytes of a file have been received, and the file
has passed the integrity checks (such as checksums), the satellite "stamps” it with its
current onboard time. This time is in the form of a four byte unsigned integer which is
a count of the number of seconds since January 1, 1970 (the UTC, or Universal Time

19

Coastant). Then the current amount of time allotted to each file to stay aboard the
satellite is added to the upload time to form the expiration time. This number is placed
in the Expire Time field. The amount of time allowed for each file may change based
upon satellite loading. When the expiration time for a file is exceeded by the clock
onboard the satellite, that file is discarded.

3. PANSAT Flle Name and PANSAT File Extension

As each file is uploaded to the satellite, the satellite software assigns a DOS
file name and extension to it. This is the file name which will be used by the onboard
file management system to access the file. It is also used to easily associate each file
with it’s source without having to read any header fields. The 8-byte file name assigned
consists of the 6 character source callsign preceded by two ASCII spaces. The file
extension consists of 3 ASCII numerals (0 through 9), which indicate the sequence of
files uploaded from this particular source. For instance, the first file uploaded by
callsign ABCDEF would be named * ABCDEF.001", the second would be
* ABCDEF.002", etc. Extensions are repeated after number “999". It is unlikely that
any file would remain with an extension that is up for re-use. But if that happens, the
next unused extension will be assigned instead. |

Certain file names are used by the satellite to indicate particular kinds of files
generated aboard the satellite, rather than uploaded by users. These include
"BULLETIN.xxx" and "USRTELEM.xxx". Files with the name "BULLETIN" contain
information of general interest posted by the satellite or ground control operators and

addressed to all users. Files with the name "USRTELEM" contain satellite telemetry

20

which may be of interest to users. USRTELEM files will be in the format "PANSAT
short telemetry file®. This format has not been completely specified as yet, and will be
published at a later date.

21

IV. THE SPECIFICATIO" LANGUAGE - ESTELLE

A. FORMAL DESCRIPTION TECHNIQUE

A formal description technique (FDT) is a method of precisely defining the
behavior of a system. It is generally advantageous to employ an FDT in the design and
specification of software because descriptions produced in this way tend to be more
complete, consistent, precise, concise, and unambiguous than descriptions produced in
a natural language, such as English. For the specification of the PANSAT flight
software, the language Estelle has been chosen. Estelle is a formal description technique
which is based on an extended state transition model and uses much of the familiar
syntax of the programming language Pascal.[Ref. 8]

As stated in Chapter II, the operating system chosen for the computer aboard
PANSAT supports software written in the "C" programming language. For this as well
as other reasons, such as development and debugging tools currently available to the
Space Systems Academic Group at NPS, the implementation languages for the flight
software will be "C", "C++", and assembly code as required. In spite of this, there
are many reasons for developing the software specification in a description language like
Estelle, prior to implementing it in a compilable language such as "C". Some of these

reasons are addressed in the following sections.

22

B. CLARITY

One of the most important aspects of a software specification is clarity. The
purpose of the specification is to clearly communicate the intended behavior of the
program to those who must actually write the software (both the original version and
later revisions) as well as to those who must use it. The behavior described by the
specification must be verifiable to be the correct behavior by the systems designers who
define the requirements of the system. A programming language like "C" is certainly
very precise, but is often lacking in the required clarity, at least as far as humans other
than the original programmer are concerned.

A particular "C" statement is written in a particular way and will cause a particular
event to occur. What is not obvious is whether the particular event that occurs is exactly
the event intended. When some software requirement is translated directly from an
English description into a programming language implementation, there are several
dangers. First of all, it is difficult to guarantee that the English description is sufficiently
unambiguous that it will be understood and translated in exactly the same way by
everyone. Second, if the translation is off somewhat and the software written implements
a slightly different requirement than that intended, it can be difficult to catch the error
by examining the code. Third, since the code is more precise than the original English
description, it may be tempting to use it as the description of required behavior as the
program is debugged and modified. Some programming languages, "C" in particular,
are sufficiently terse that it can be difficult to extract a complete understanding of the

intended behavior directly from the code without intense examination. Comments are

23

wsed 0 alleviate this problem - and we are back to the ambiguities of the English
language. Of course, even if a precise description of behavior is extracted from the code
and comments, it may no longer be the intended one.

The Pascal syntax used in Estelle, though more precise and unambiguous than
English, is more obvious and easily readable than "C". Simple, well-understood, and
extremely precise programming language constructs are used. These include while
statements, if-then-else constructs, and for loops, as well as function and procedure calls
[Ref. 8]. The specific Pascal syntax used in Appendix A is summarized in Appendix C,
Table C.1. Pascal was developed as an educational language and is designed specifically
to be clear and easily understood; the syntax is very straight forward. The intricate and
often inscrutable statement construction of a high-powered language such as "C" is
avoided.

Using Estelle, an English description of required behavior can be translated into
a precise series of program-like statements. These statements are sufficiently readable
that the resulting behavior can be easily analyzed and compared with the intended
requirements. An ambiguous requirement statement is made crystal clear, once it has
been set down in the proper series of precise Estelle statements. Once the formal
specification is in place, there should be only one way to translate it, the correct way.
Any software implementation must then be checked against the required behavior
imparted by the Estelle description. When the program does not act in a useful way, it
can be easily determined whether the original requirements statement was at fault, or

whether the program code is flawed. When the software must be modified throughout

24

the life cycle of the host system, the originally intended behavior of the existing code will
be more easily understood from the specification than from the code itself.

Of course, the specification must be maintained up-to-date along with the code.
If the system requirements change, this must be reflected in the specification. The
specification should always be the most accurate description of the currently intended

behavior of the software system.

C. STATE MACHINE MODEL

Many software systems, including communications protocols, can be modeled as
state machines. A major function of the PANSAT flight software is to implement
communications and file transfer protocols between the ground users and the satellite.
State machines provide a convenient way of modeling the software and describing its
required behavior. Estelle extends the syntax of Pascal to include constructs specifically
designed to clearly convey a state machine architecture. The behavior of each module
is defined by its reactions to each legal stimulus it may receive while in each specific
state. Even where several different states are not required for the proper functioning of
a module, the state machine architecture still provides a convenient way to show the
module’s reactions to different inputs, and provides a means of idehtifying what inputs
are anticipated and legal and what inputs are illegal or unexpected.

While individual statements primarily use common Pascal syntax, the hierarchy of
the program modules ana the module interfaces are defined by the Estelle state machine

model. There are Estelle-specific reserved words which are used to establish the state

25

machine architecture and to define other aspects of the specification which are beyond
the scope of the Pascal syntax. These reserved words, the specification segments with
which they are associated, and their functions are listed in Appendix C, Table C.2.

D. MODULE COMMUNICATIONS

Communications between various program modules are very clearly defined in
Estelle. What types of information are passed between precisely which program modules
is thoroughly spelled out. The set of channel definitions, which controls the flow of
information between modules, is also the module interface definition.

In the software specification, several channels are defined. Each channel definition
includes a list of the message types which can be "passed” through that channel. Each
end or the channel is named and the message types are direction-specific. For instance,
module 'A’, attached to the 'User’ end of a particular channel, may request information
from module 'B’, at the 'Provider’ end, using one of several different 'request’
messages. Module "B’ will reply using one of a completely different set of ’response’
messages.

The name of a message type and the channel it is passed through may in itself
provide all the information that is needed. In other situations, specific parameters must
be passed. The parameters to be passed with each message are listed in parenthesis next
to the message name in the channel definition. Estelle is a strongly typed language, and
this requirement extends to the parameters passed between modules. The type of each

parameter is indicated in the message definition.

26

ﬁ

Each program module has a module header definition and a module body
definition. The module header definition includes a list of all the “interaction points"
available to the module. These interaction points are channels, and the end of the
channel to which the module is attached is indicated for each. The interaction points are

the only means by which information can be passed from one module to another. The

nature of each information exchange is thus precisely defined. In the modvar section
at the end of the software specification, channels are attached explicitly between the
various modules. The channel definitions, module header definitions, and the modvar

section, taken together, completely define the architecture of the software system.

E. DETAIL AND ABSTRACTION

One final advantage of using a formal description technique such as Estelle, is that
various levels of abstraction can be used to clarify the specification. Abstraction can be
used to ignore details irrelevant to the context at any point, so that the local complexity
of the description can be decreased and the overall understanding increased. Abstraction
can also be used to continue with a description even though some essential details are not
yet known. Commonly used functions, such as those assumed to be readily available
from the operating system, can be defined as "primitives”, the actual details of their
internal implementations unimportant. Hardware specific details which are not known
when the specification is being developed can be defined abstractly, with the specifics
to be filled in later.

27

In contrast, any level of detail desired can be included. Thus, if minute details of
the specific hardware implementation to be used are known, they can be indicated in the
specification to avoid mistakes. Detailed algorithms which demonstrate a method for
ébninimthespeciﬁctuultsduiredcanhedmwnout. In the specification of Appendix
A, the communications protocols and mailbox control are described in somewhat minute
detail, at a level where specific hardware requirements are unimportant. The portions
of the specification dependant upon hardware configurations are merely indicated in a
high-level architecture, with all details to be worked out as more information becomes

available.

28

V. DATA TRANSFER MODULE

A. FUNCTION

The DATA_TRANSFER module provides the interface between the high level file
transfer protocol used by PANSAT and the BAX link-level AX.25 protocol software.
It is the primary "BAX application program.* The PACKET_TRANSFER module,
described in Chapters VI and VII, relies on the data transfer module to reassemble the
AX.25 level frames passed from BAX into the complete packets uplinked from the
ground station. The data transfer module also receives packets from the packet transfer
module, breaks them down into frames, and passes them on to BAX to be transmitted
to the intended user.

B. THE BAX CONTROL BLOCK

Communication with the BAX program is accomplished via the BAX functions
listed in Chapter II. These are represented in the Estelle specification of Appendix A by
the message types within the Abstract Bax_Channel. Many of these messages have a
parameter of the type Control_Block. The control block is a data structure defined in
[Ref. 4] which carries much of the actual information passed between BAX and the
application program. QAX_CLEAN_CB is a BAX function which provides a control
block structure with all fields initialized to zero. This is thev only BAX function
referenced in the specification by a procedure call rather than by a message type.

29

The definition of the Control_Block type appears somewhat differeatly in
Appendix A than in [Ref. 4]. It has been altered to match the syntax and avoid the
reserved words of the remainder of the specification and includes only those fields which
are actually used by the data transfer module. The control block fields used are listed
in Table 5.1 along with the information each conveys.

- TABLE 8.1 BAX CONTROL BLOCK FIELDS

App A [Ref. 4] Information
Name

uint Indlcates which of the 30
possible BAX links a frame
has come in on, or which it
should be sent out over. In
effect, designates the ground
user at the other end.

Indicates the type of
Frame_Type information carried by the
control block. If gat_data,
then the data from a data
frame has been placed in an
Fdata buffer, included as
another message parameter. If |
qat_state, then the state of the
link has changed, and the new
state is indicated by the
'I_state’ field. If gar_ui, then
an unnumbered information
frame has been received.

TABLE 5.1 BAX CONTROL BLOCK FIELDS

[Ref. 4]
Name

enumerated
Link_State

Indicates the new link state in
a gqat_state kind of
Control_Block. Only two of
these states concem the data
transfer module:
qas_connect_pend indicates
that a user has requested to be
connected with the satellite.
qas_disconnected indicates that
a user link has been
terminated.. The reason for
termination can be determined
from the 'why’ field.

why cause

enumerated
Cause

Indicates the reason for a link
state change. Causes include
qac_local (action of the
satellite), gac_remote (action
of the ground station),
qac_remotefrmr (AX.25
protocol error) and
qac_timeout (maximum
number of frame retries
exceeded).

my_call

struct
AX25 ADDR
my_call

Callsign_Type =
array[6] of uchar

Indicates the application
program’s call sign, which is
always the satellite’s call sign.

uchar

. transfer module from the

Indicates the application’s
subsystem identification
number (to distinguish the data

ground control module, for
instance).

31

TABLE S.1 BAX CONTROL BLOCK FIELDS

-_—

Indicates the ground station’s

AX25_ADDR call sign.
- uchar Indicates the ground station’s
subsystem identification

number

The number of seconds to use
for the link-level frame
timeout-timer. If a frame
acknowledgement is not

r received within t1 seconds of
transmission, the frame must
be retransmitted.

The maximum number of
frames "in flight” at one time -
the link-level sliding window

size. Mustbe 1 - 7.

The maximum number of
times to retry a frame

transmission before terminating
the link.
The maximum size of the data

field on an outgoing frame.
Must be < = 256 bytes.

C. STATES OF THE DATA TRANSFER MODULE
The data transfer module has only two states, NORMAL and BUSY. The module
is initialized in the NORMAL state, and is expected to remain in that state for the

majority of the time. A transition to the BUSY state occurs only as the result of a

32

message from the either the GROUND_CONTROL module or the AUTO_CONTROL
module.

If the performance of the satellite, as judged by the onboard decision-making
software or by the ground control station, deteriorates to the point where it seems
beneficial to allow fewer users to access the satellite for a period of time, a lockout
message can be sent to the data transfer module. The type of lockout, ('1_kind’) may be
new-user or all-user. When a new-user lockout message is received, the data transfer
module remains in the NORMAL state, but rejects all new user connection requests. The
satellite will continue communications with all users already logged on when the message
is received. When the data transfer module receives an all-user lockout message, the
state will change to BUSY and incoming communications from everyone except the NPS
ground control station will be rejected. The data transfer module will send a ’busy’
message to every BAX link, and BAX will respond to any frame (except those from
NPS) with a "receive-not-ready” frame.

The control software may also find it necessary to turn the transmitter off for an
extended period of time, such as during a battery recharge. When this occurs, and the
transmitter will not be ready at a moment’s notice, a 'transmitter.off” message will be
sent to the data transfer module. This message will not change the state of the module,
which will still be able to receive any incoming frames, but it will change the state
variable 'transmit ok’ to false. When this occurs, the data transfer module will not
attempt to transmit any frames, and any logged-in users will most likely disconnect due

to frame time-outs.

33

VL. PACKET TRANSFER MODULE - PACKET TYPES

A. FILE TRANSFER LEVEL 0

The packet transfer module specified in Appendix A has its origins in the File
Transfer Level 0 (FTLO) Pacsat Protocol developed by Jeff Ward and Harold E. Price
[Ref. 7]. The basic data structures and state transitions are functionally equivalent to
FTLO, with some modifications. In order to make use of the satellite software specified
in Appendix A, the corresponding ground station software must be developed which will
produce packets in the proper format to be interpreted by PANSAT. Therefore, the bit-
level structure of the ground station packets is described below, as well as the proper

ground interpretation of the packets originating on the satellite.

B. PACKET FORMAT
Each packet to be transmitted consists of an information field of 0 to 2047 bytes,
preceded by a two byte header. The header identifies the type of packet and indicates
the number of bytes in the information field. The packet structure is defined as follows
in the software specification:
Packet ' = record
length_Isb: uchar;
hi: uchar;
info: Pdata;

This structure indicates that the header portion of the packet consists of the two unsigned
characters (octets) "length_Isb’ and ’hl’. The information field is given the type "Pdata’,
which is defined in the specification as an array of 0 to 2047 unsigned characters. Since
this is a variable length array, its length must be indicated in the header.

The octet "length_Isb’ contains the least significant 8 bits of the data length. The
octet 'hl’ contains the 3 most significant bits of the data length, as well as an indication
of the type of packet. The bits of "hl’ are labeled '76543210°. Bits 7-5 are the 3 most
significant bits of the data length, and must be prepended to the "length_Isb’ to give the
full length of the information field. Bits 4-0 of ’hl’ provide a number from 0 to 31.
This number is decoded into packet type as indicated in Table 6.1.

TABLE 6.1 PACKET TYPES
Specification Constant | Packet Name |
data Data

0

1 data_end Data End

2 login_resp Login Response

3 upload_cmd Upload Command

4 ul_go_resp Upload Go Response

5 ul_error_resp Upload Error Response

6 ul_ack_resp Upload Acknowledged Response
7 ul_nak_resp Upload Not Acknowledged Response
8 download_cmd Downioad Command

9 dl__ermw Download Error Response

10 di_aborted_resp Download Aborted Response

11 dl_completed_resp Download Completed Response

35

TABLE 6.1 PACKET TYPES
Packet Number | Specification Constant | Packet Name |

Download Acknowledged Command

Download Not Acknowledged
Command

Directory Short Command
15 dilllong}and Directory Long Command
16 seka=mld Select Command

17 selectimp Select Response

18 -29 reserved

30 del_cmd Delete Command J
Delete Response

The ground software and satellite software are peer entities at this level, rather than
master and slave. However, since the ground must initiate all data exchanges, with the
satellite acting as a server responding to requests made from the ground, the identifier
’emd’ is used to indicate packets originating from the ground, while resp’ indicates
packets sent from the satellite. The dara and data_end packets can originate from either
the ground station or the satellite. Explanations of each of the packet types and the

contents of their information fields are given in the following sections.

C. THE DATA AND DATA END PACKETS
Any file to be transmitted, either from the ground or from the satellite, will be

broken up into an appropriate number of data packets, depending on its length. The

36

information field of each dasa packet will be the bytes from the file to be transmitted.
Bits 4-0 of the "hl’ field of the packet header will be "00000°, identifying the packet as
containing file data in its information field. Bits 7-5 of 'hl’ and the octet ’length_lsb’
will together indicate the number of bytes of file data being transmitted in this packet.
The transmission of the end of the file will be indicated by sending a dara_end packet
immediately after the transmission of the last data packet. The data_end packet has no
Yinfo’ field.

Bit-level examples of the various packet types will be given in Tables 6.2A through
6.2S. In these examples, 0’s and 1’s will be shown where particular bit patterns must
be used. Where arbitrary bit patterns may be present, other symbols will be used. The
intended meanings of these symbols will be made clear in the "interpretation” section of

cach table.

TABLE 6.2A EXAMPLE OF A data PACKET

HHH 00000 dddddddd
dddddddd ...

Interpretation

low order bits of | HHH = high order bits of the data length. | file data in
the data length 00000’ = data packet. bytes

37

o m BRI G ST T T
o0 Y Q\f: T “1', .

>
ooooooo0__ Joooooor]
'00001’ = data_end packet.

D. THE LOGIN RESPONSE PACKET

Neither the FTLO protocol of Ward and Price, nor the packet transfer protocol
specified here, has an explicit Login Command packet. A login request from the user
is made implicitly whenever a data link is established between the ground station and the
satellite on thé lower, AX.25, data transfer level. When the AX.25 protocol software,
BAX, recognizes a "connection request” frame from a new user, it informs the satellite
data transfer module. The data transfer module tells BAX whether to accept the
connection or not. If the connection is accepted, BAX sends the "accept connection”
frame to the ground user, and the data transfer module informs the packet transfer
module that a data link has been established. At this point, the satellite packet transfer
protocol calls for the transmission of a Login Response packet.

The purpose of the login_resp packet is to inform the user of the time onboard the
satellite when the data link is established. The login_resp packet also has a one byte
login flag. This flag indicates whether the user currently has an active selection list
(explained below) and whether the satellite requires Pacsat file headers. The Pacsat file

header was developed by Jeff Ward and Harold Price for use with their Pacsat Protocol

38

Suite, which inciudes FTLO [Ref. 8]. A PANSA'." file header has been developed which
does not match the Pacsat file header of Ward and Price, and so the login flag in the
login_resp packet will always indicate that Pacsat file headers are not required.
PANSAT file headers will always be required for files uploaded to PANSAT. T h e
information field of the login_resp packet includes a 4-byte unsigned integer indicating
the login time (the number of seconds since January 1, 1970), followed by a 1-byte login
flag. Thus, the information length indicated by the header must be 5. Bits 7-4 of the
login flag will be "0000’. Bit 3, the 's’ bit, will be ’1° if the client already has an active
selection list, and will be 0’ if not. Bit 2 will be *0’, indicating that Pacsat file headers
are not used. Bits 1 and 0 indicate the protocol version number. They will be '00’ in

the case of the protocol specified in Appendix A.

| TABLE 6.2C EXAMPLE OF A login_resp PACKET |

= [s

Interpretatlon 3

5 bytes logm resp | 4 byte logm time
mfo ﬁeld

logm flag s ='1 indnmtes actlve selectlon hst
E. THE UPLOAD COMMAND, UPLOAD GO RESPONSE, AND UPLOAD

ERROR RESPONSE PACKETS
Before uploading a file to the satellite, the client software must first determine

whether there is room in the mail box and if the satellite will accept the upload. To

39

i B i - e o
i T TRt T

N L A S L Sl e

* T, il

make this determination, the ground station transmits the upload_cmd. The satellite will

respond with the ul_go_resp if the upload will be allowed and with the ul_error_resp if
not.

The information field of the upload_cmd contains a 4-byte file number followed by
a 4-byte file length. If this is the first request to upload a particular file, the file number
must be "0x00000000°. The file length must be the actual length of the file which is
intended for upload, including the PANSAT file header, which must be prepended to
each file. When the satellite receives the upload_cmd, it will determine if there is room
for a file of the indicated lengtﬁ. If there is, the ul _éo_resp will include a file number
to be assigned to the file in the mail box aboard the satellite. When the client receives
this file number, it may be placed in the PANSAT file header before upload. If the
client does not place the proper file number in the PANSAT file header before upload,
then that field must contain all 0’s and the satellite will m.ake the correction once the file
has been successfully uploaded.

If the upload request is for the continuation of a previously interrupted upload, the
upload_cmd must contain the actual file number previously assigned by the satellite. The
file length must still indicate the full length of the file, regardless of how much of the
file was previously uploaded. If the satellite can accept this continued upload, the
ul_go_resp will include the offset at which the client should begin the transmission of
the file. To determine this offset, the satellite simply inspects its partial copy of the file
to see how many bytes it has previously received. The complete information field of the

ul_go_resp includes the 4-byte file number either newly or previously assigned to the

40

ﬁ

file, followed by the 4-byte file offset. If no part of the file has been previously
uploaded, then the indicated offset will be '0’.

If there is no room for the file, if the upload_cmd includes a non-zero file number
which does not correspond to any file onboard the satellite, or if the satellite determines
that upload of the indicated file has already been completed, then an wl_error_resp is
transmitted rather than an u/_go_resp. The ul_error_resp has a 1-byte information field
which simply indicates one of several possible error conditions. The possible errors
associated with an upload command and their corresponding bit patterns are indicated in

Table 6.3A.

TABLE 6.3A ERROR CODES
* ErorCose |

er_ill _fonned cmd
er_bad_continue
er_no_such_file_number
er_file_complete
er_no_room

The meanings of most of these error codes are obvious from their names. The
code er_bad_continue is issued when the file number in the upload_cmd is non-zero but
the file length in the upload_cmd does not agree with the file length stored in the

PANSAT header of the partially uploaded file.

41

New upload - unknown file number
4 byte file length

4 byte file number
4 byte file len

8 bytes in
info field

8 bytes in
‘ info field

TABLE 6.2E EXAMPLE OF AN ul_go_resp PACKET

00001000 000 00100 | nnnnnnan NNNNNNNN NANNONAN NNAOQNNNN
00000000 00000000 00000000 00000000 f

]

‘ Interpretation

8 bytesin | ul_go_resp | 4 byte file number 3
info field | packet 4 byte file offset at which to begin upload i

42

T M P
| Lbytein info fied | ul eror resp | 1 byte crror code

F. THE UPLOAD ACKNOWLEDGED RESPONSE AND UPLOAD NOT

ACKNOWLEDGED RESPONSE PACKETS

When the client software on the ground receives an ul_go_resp from the satellite,
it will commence to upload the file in a series of data packets, starting with the byte of
the file indicated by the offset in the ul_go_resp. Once the data packet containing the
last byte of the file has been transmitted, the data_end packet must be sent. After
receiving the data_end packet, the satellite will check the integrity of the file, as will be
explained in Chapter VIII. If the file passes all checks and is successfully stored aboard
the satellite, an ul_ack_resp will be transmitted to the user. If the file is found to be
defective, an ul_nak_resp is transmitted instead and the file is discarded. The satellite
will remember the file number, however, so that the user can later attempt another
upload of the same file.

The ul_ack_resp has no information field. The wl_nak_resp has a 1-byte

information field which consists of one of the error codes of Table 6.3B.

43

The er_bad_header code is sent when the PANSAT file header is missing, incomplete,

or incorrect. The code for ef_header_dleck is sent when the checksum on the header
fails and er_body_check is sent when the checksum on the file body fails.

An ul_nak_resp may also be sent by the satellite before a dara_end packet is
received if the satellite needs to terminate the upload for any reason. If the ground
station receives an ul_nak_resp, it should immediately stop sending data packets, and
transmit a data_end packet if it has not already done so.

om0 Jowwoo
e |
woien Jumiy |

YN M .
| Lbyeininfo fied | ul nak resp | 1 byte error code

G. THE DOWNLOAD COMMAND PACKET

Prior to using download_cmd packets to request files to be downloaded from
PANSAT, the client must establish an active selecﬁon list onboard the satellite. This is
achieved by using the select_cmd which is explained below. Once the client has used
the selection list to begin downloading a file or to obtain file directories (see Directory
Commands below), the selection list need not remain active to continue downloading, as
long as the client knows the file number for each file requested.

Each download_cmd packet is used to request a single file. The information field
of this packet contains the 4-byte file number for the file requested followed by the 4-
byte file offset from which transmission of the file should begin. In FTLO, a file number
of *0x00000000’ is used to indicate the next file in the active selection list, proceeding
from newer files toward older files, while *OXFFFFFFFF’ requests the next file in the
list proceeding from older files toward newer files. In the current packet transfer
specification for PANSAT, both '0x00000000° and ’'OxFFFFFFFF’ will result in
requesting the next file in the active selection list proceeding from older files toward
newer files. I' “he actual file number of the file requested is known, then this number

45

is placed in the download_cmd packet. The file offset should be 0’ if this is a new

download request, and should indicate the byte number from which to proceed if this is

a download continuation.

00001000

= P

000 01000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00001000

000 01000

11111111 11111111 11111111 11111111
00000000 00000000 00000000 00000000

8 bytes in
info field

nnnnannn anoannnn nanannan annannnn
00000000 00000000 00000000 00000000 -

requesting next file in select list
begin download at beginning of file

info field

8 bytes in | download_ | requesting next file in select list
info field | cmd begin download at beginning of file
8 bytes in | download_ | file number of requested file

file offset at which to begin download

When requesting the “next” file in the selection list, the offset should always be

’0’, since this should only be used to request a new file. Once a download has been

interrupted and subsequently continued, the file number should already be known, and

this information as well as the offset should be used in the download_cmd. If the file

offset indicated by the ground station is equal to or greater than the length of the file

stored on the satellite, no error is generated. Instead, the satellite transmits a dara_end

packet immediately, with no preceding dara packets.

46

ﬁ

H. THE DOWNLOAD ERROR RESPONSE PACKET

When the satellite receives a properly formatted download_cmd which it is able to
respond to, it immediately begins downloading the file in a series of data packets. Once
the last byte of the file has been transmitted, the satellite sends a data_end packet. If,
however, the satellite cannot service the download_cmd for any reason, it will transmit
a dl_error_resp packet.

The di_error_resp information field consists of a 1-byte error code. The possible
errors are shown in Table 6.3C.

TABLE 6.3C ERROR CODES

00000100 er_no_such_file_number
00000101

er_selection_empty

The code er_no_such_file_number is used if a specific file has been requested, the file
number of which is not found iit the mail box. The code er_selection_empty is used
when the "next” file is requested, but the user currently has no active selection list. The
specification for FTLO also includes error codes dealing with file forwarding capabilities
which are not implemented on PANSAT. These codes are included in the specification
of Appendix A for the sake of completion, to ensure they will not be used for any
PANSAT specific definitions. They will not be included in any dl_error_resp packets
from PANSAT, however. These FTLO error codes, unused by PANSAT, include

er_already_locked and er_no_such_destination.

47

M oo |
00000001 000 01001 ccccocce |
| 1 by info field | dl eror resp | 1 byte error code _

I. THE DOWNLOAD ACKNOWLEDGED COMMAND, DOWNLOAD
COMPLETED RESPONSE, DOWNLOAD NOT ACKNOWLEDGED
COMMAND, .AND DOWNLOAD ABORTED RESPONSE PACKETS
When the client software.receivm a data_end packet from the satellite, it knows

the downloaded file is complete. It performs any desired integrity checks on the file

(such as checking header and body check sums) to determine whether the download was

completed successfully. If the file has been received satisfactorily, the ground station

must transmit a dl_ack_cmd. The satellite responds to a dl_ack_cmd with a

dl_completed_resp to end the download process. If the ground software does not find

the downloaded file to be satisfactory, it transmits a dI_nak_cmd, to which the satellite
responds with a dl_aborted_resp.

In the FTLO specification, the information field of the d!_ack_cmd consists of a one
byte 'register_destination’. This information is used by a Pacsat to complete some of the
file forwarding operations which are not implemented by the current PANSAT software
specification. Therefore, the information field is not necessary in a dI_ack_cmd sent to

PANSAT, and it will be ignored if it is included. This single byte of information may

48

be adapted for use by PANSAT at a later date. The di_completed_resp transmitted by
the satellite has no information field. ‘The dI_nak_cmd and the dJ_aborted_resp likewise

have no information fields.

PN I T
oo [mwoiioo | oomee |

ETT I M
e Goerpreion]

om0 oworor |
 erea |
owons s]

49

o fw
oooooo0_______ Jowoosoro |
moinfofed | daomedrep |

J. THE DIRECTORY COMMAND PACKETS

FTLO specifies two directory commands, the dir_short_cmd and the dii_long_cmd.
For PANSAT, there is only one directory command, and either of these two packet types
will invoke it. The results of each command will be exactly the same. The information
field of a dir_cmd is a 4-byte file number. This number indicates the file for which a
directory entry is raquested. A directory entry consists of the PANSAT file header from
the file of interest. From this file header, the ground station software can determine any
necessary information about the file. The user can decide from this information whether
to request the file for download.

In FTLQO, a file number of '0x00000000’ is used to request the directory entries for
the next 10 files in the active selection list, proceeding from newer files toward older
files, while ’'OxFFFFFFFF’ requests the next 10 file directories proceeding from older
files toward newer files. In the current packet transfer specification for PANSAT, both
*0x00000000’ and 'OxFFFFFFFF’ will result in requesting entries for the next 10 files

in the active selection list proceeding from older files toward newer files. If the client

50

has no currently active selection list, then a directory entry can only be requested for a
file for which the file number is already known.

When the satellite receives a correctly formatted dir_cmd which it can respond to,
it sends the requested information down in a data packet. Since PANSAT file headers
are at most 200 bytes long, 10 of them will fit in a single packet. Thus, after one data
packet is transmitted, a data_end packet will immediately be sent. If the satellite is
unable to respond to the dir_cmd, it will send a dI_error_resp indicating the reason. The

error character contained in this packet will be either er_selection_empty or

er_no_such_file_number.

TABLE 6.20 EXAMPLES OF dir_cmd PACKETS

000 01110 | 00000000 00000000 00000000 00000000
00001111 | 11111111 11111111 11111111 11111111

000 01111 | nnnnnnnn nnnnNNnn NNARNNNN DANDAANN

4 bytes in { requesting directory entries for next 10 files in
info field select list

4 bytes in j requesting directory entries for next 10 files in
info field select list

4 bytes in ir_long_ | file number of file for which directory entry is
info field | cmd requested :

51

et R o b Sk e TS

K. THRE SELECT COMMAND AND SELECT RESPONSE PACKETS

The select_cmd is the means by which the user designates files to be placed in an
active selection list onboard the satellite. Once this list has been established, it can be
used to request file directories or files for download. The select_cmd specified by FTLO
assumes use of Pacsat file headers in its structure. A different select_cmd structure is
specified here, which is based upon the PANSAT file header. This structure is related
to, but not exactly the same as, the select_cmd specified by Price and Ward [Ref 1.).

Once a select_cmd is recognized, if it is not in the PANSAT structure specified
here, then a default selection list will be compiled. This list will be comprised of all
mail addressed to the requesting user which has not been previously downloaded, all
bulletins and user-accessible telemetry and messages addressed to "all". The satellite will
send a select_resp packet to the user. The information field of this packet consists of a
two byte integer which indicates the number of files in the selection list.

If the PANSAT select structure is used, the selection list will be assembled
according to the selection criteria contained in the select_cmd. If the satellite can
interpret the select_cmd and compile the corresponding selection list it will transmit the
select_resp packet. In this case, the two byte integer in the information field indicates
the number of files matching the selection criteria. An active list consisting of those file
numbers will be maintained aboard the satellite. If the select_cmd appears to be in the
PANSAT format but cannot be successfully parsed by the satellite software, then a

dl_error_resp is transmitted with the error code: 00001000 er_poorly_formed_sel.

52

The select_cmd has a variable length information field. The information contained
in the field consists of a PANSAT specific flag, the number of selection criteria present,
and the criteria themselves. The selection criteria are combined with each other using
the operators and and or, forming a restricted type of postfix logical equation. In thiz
postfix equation, each logical operator is preceded by its two operands. The first two
selection criteria are combined logically, according to the first operator, to form the
single operand true or false. This operand is then followed by another selection and
another operator. The second operator combines the two operands preceding it to form
a single operand. The process is continued until the last logical operator present, which
will be the last component of the equation, has been used to combine its two operands.
The result will be a single value of true or false. Each file for which the selection
equation yields a value of true will have its file number added to the active selection list
aboard the satellite.

The first byte of the select_cmd information field should be 'OxFF’, a flag
indicating that the select_cmd is in the PANSAT format. .pon recognizing this flag, the
satellite will attempt to translate the select_cmd into the appropriate logical equation. If
this flag is not present, the default selection list described above will be compiled and the
remainder of the select structure will be discarded.

The second byte in the information field is an unsigned integer indicating the
number of selection criteria contained in the remainder of the structure. The selection

criteria can be defined as follows:

53

selection = record
relop: uchar;
header_item: uchar;
item_len: uchar;
compare_item: array[item_len] of uchar;

end;

Bit *7’ of the one byte "relop’ (relational operator) must always = 0°. Bits *654°
have the interpretations shown in Table 6.4, and bits *3210° are translated as indicated
in Table 6.5. Th= ’header_item’ identifies which item in the PANSAT file header to
compare the ‘compare_item’ with. The one byte "header_item’ is decoded as Table 6.6

indicates.

TABLE 6.4 BITS 654’ OF THE RELATIONAL OPERATOR

equal to

001 greater than
less than
not equal to

100 greater than or equal to
less than or ual to

TABLE 6.5 BITS ’3210’ OF THE RELATIONAL OPERATOR
s 5310 otrpratin o ‘ompare e | Now |

0000 | Multi-byte unsigned integer

*item_len’ must equal 1,
2or4.

Valid only with Bits
'654° = *000’ or "011°

Array of characters, convert to lower
case before comparison

54

TABLE 6.6 HEADER ITEMS
'header_item’ Bit Pattern | Const | Name of Header Field
00000000 Flag

A
00000010 mn Mail Number (File Number)
00000110 ml Mail Length
00001010 S File Type
00001011 ct Compression Type
00001100 bo Body Offset
00001110 dc Download Count
00001111 sc Source Call Sign
00010101 pr Priority
00010110 ut Upload Time
00011010 et Expire Time
00011110 na PANSAT File Name
00100110 ex PANSAT File Extension
00101001 nd Number of Destinations
00101010 ds Destination Call Signs or Path
01010100] Title
01110100 Keywords

The short integers formed by the. *header_item’ bit patterns correspond to the
normal byte offsets within the PANSAT file header of the beginning of each of the listed
header fields. This is useful in other areas of the software specification.

The one byte integer ’item_len’ gives the byte length of the last item in the

’selection’, the *compare_item.’ The compare item is interpreted, as indicated by the

35

TR S e
AR Ry T e e

*relop’, as cither an unsigned one, two or four byte integer, or an array of characters.
The relational operation specified by the ‘relop’ is performed between the designated
header item and the compare item. If the relation 'header_item’ 'relop’ "compare_item’
is satisfied, then this selection equation is evaluated as true.

If the user has only one criteria for selection, the Select_Structure can end after just
one ’selection’. The user may, however, specify multiple selection criteria. For this

purpose, the bit patterns for logical operators are defined as in Table 6.7.

TABLE 6.7 LOGICAL OPERATORS
’logop’ Bit Pattern | Logical Operation |

10000000
11100000

and

A completed Select_Structure may appear as follows:

When equal to’ string compérisons are made between 'compare_items’ and certain
header fields, the comparison is defined as successful if the 'compare_item’ string is
found anywhere within the header item string. In these same fields, a "not equal to’
comparison is successful if the 'compare_item’ string is not found anywhere within the
header item string. Header fields for which this applies are the *Title” and "Keywords"
fields. This can also apply to the destination fields under certain circumstances, which

will be elaborated on below.

56

To indicate that a file is addressed to "all", the source places the number "0x00’
in the “Number of Destinations” field, and the following 7 "Destination” fields are left
out of the header completely. A one-byte integer comparison between the "Number of
Destinations” field and the number '0x00’ can determine that a file is addressed to all
users. When there are between 1 and 7 individual destination call signs, this number is
placed in the “"Number of Destinations” field, and the appropriate number of
*Destination” fields are included. To find files which are addmsed to a specific user,
a string comparison can be made between a 6-byte call sign as the compare_item’ and
the header item "Destination Call Signs or Path". This header item refers to all
*Destination” fields present. The satellite will compare the designated call sign to each
destination listed, and the comparison will be successful if a match is found with any of
them.

It may be that the user wishes to designate an audience for the file which is broader
than 7 individual call signs but narrower than "all" users in the world. In order to
achieve this, the user places the number '0x08’ or the number '0x09’ in the "Number of
Destinations" field, and all 7 "Destination" fields are then included as a single 42-byte
array. In this combined field can be placed information to further define the audience
for which the file is intended. If the "Number of Destinations" is '0x08’, then the file
is addressed to "all", and the source has included path, location or other information
about himself in the following "Path” field. If the "Number of Destinations” is *0x09’,
then the source has included further information about the intended audience in the

following "Path” field. Users may use this information in select_cmds, in which case

57

any ‘compare_item’ will be searched for anywhere within the “Path® field. The header
item to use within the ’selection’ will again be "Destination Call Signs or Path®, but this
time the satellite will look for any matching string, not simply matching 6-byte call signs.
Source or destination path information can probably better be used by ground software
as the result of dir_cmds, in which case the software can present the user with any

information which may help the user in choosing individual files to download.

TABLE 6.2P EXAMPLES OF select_cmd PACKETS

00001001 | 000 10000 | 11111111 00000001

0 001 0000

00010110
00000100 ttetteee tetttet teetteee teettete

11111111 00000011
0 000 0011
01110100

00000100

01000001 01010010 01001101 01011001
0 000 0011

01110100

00000100

01001110 01600001 01010110 01011001
11100000

0 001 0000

00010110

00000100 tetetttt tettttet eeteteet eetttete
10000000

58

PANSAT select_cmd flag, 1 ’selection’

‘relop’ - greater than a multibyte unsigned integer
*header_item’ - Upload Time

4 byte 'compare_item’ - last login time

(‘This command requests all files which were
uploaded after the user’s last login time.)

PANSAT select_cmd flag, 3 ’selections’
'relop’ - equal to an array of characters
*header_item’ - Keyword

4 characters in the 'compare_item’
‘compare_item’ - "ARMY"

'relop’ - equal to an array of characters
’header_item’ - Keyword

4 characters in the ’compare_item’
‘compare_item’ - "NAVY"

’logop’ - or

'relop’ - greater than a multibyte unsigned integer
*header_item’ - Upload Time

4 byte 'compare_item’ - last login time
"logop’ - and

(This command requests all files which were
uploaded after the user’s last login time and
which also have either "TARMY" or "NAVY" as
a keyword.)

TABLE 6.2Q EXAMPLE OF A select_resp PACKET

' Interpretation

Number of files placed in select list

59

[
{

L. THE DELETE COMMAND AND DELETE RESPONSE PACKETS

The specification for FTLO does not allow for a user-requested file deletion. It
assumes that files will simply remain aboard the satellite until their expiration dates are
exceeded, or until the satellite itself or the ground controllers cause the files to be
deleted. This del_cmd, therefore, has no equivalent in FTLO.

The information field of the del_cmd contains only the 4-byte file number of the
file to be deleted. The satellite responds to a del_cmd with a del_resp packet. The
information field of this packet merely contains one of the one-byte error codes of Table

6.3D.

TABLE 6.3D ERROR CODES
| Bitpattern | Ervor Code |
00000000

no_error

00000100 er_no_such_file_number
er_permission_denied

If the satellite indicates no_error in the del_resp, then the file has been successfully
deleted. A user may only delete files uploaded by him or addressed to him as the sole
destination. The sat-: '~ ensures these criteria are met by inspecting the appropriate
fields in the file’s hea:.: before any deletion is carried out. An attempt to delete any

other file will result in er_permission_denied.

P S T P
0000100 000 10| e e s s

o001 Joootsurs Joosseeee
| uepreston]
byt info field | delresp [tbywemorcode

61

VII. PACKET TRANSFER MODULE - STATE TRANSITIONS

A. TRIGGERS

The operation of the packet transfer module is based upon state transitions triggered
by the receipt of packets from the user and messages from other flight software modules.
When the user on the ground sends a cmd packet to the satellite, the response will
depend, in part, on what state the packet transfer module is in.

The architecture of the packet transfer state machine can easily be seen in the
Estelle specification of Appendix A. The trans section of the module definition clearly
shows all possible transitions from one state to another, along with what packet or
message triggers each transition, and what action is taken as a result. This textual
description can be translated into a more visual format by means of state transition

graphs, such as those included with the data flow diagrams of Appendix B.

B. INSTANTIATIONS

It is intended that multiple users should have access to the mail box onboard the
satellite "simultaneously”. This is achievable because all user transmissions to the
satellite are packetized. BAX, the AX.25 data transfer level software, can administer up
to 30 user links at once. As each AX.2S5 frame is received, BAX determines which user

it is from, and deals with it according to the AX.25 protocol and the state of the link
with that particular user.

62

-

In order for the packet transfer level to also be administered for many
“simultaneous” users, there must be a copy of the packet transfer module associated with
each virtual link. The fact that multiple copies of the packet transfer module are
initialized can be seen in the modvar section at the end of the Estelle software
specification. This says that one packet transfer module is created for each link. The
definition of "Link_Type", near the beginning of the specification, indicates that there
are between 0 and 30 links. When a packet transfer module receives messages from, or

sends messages to, another software module, the specific instantiation involved is

indicated by the initialization parameter 'link’. The packet transfer modules, as well as
the channels associated with them, are referenced as array elements; the 'link’ each is
associated with acts as the array index. For instance, in the module header definition of
the MAILBOX_CONTROL_TYPE, it is stated that this module has an array of 30
(maxlinks) Mailbox_Access_Channels. In the modvar section, each of these channels

is connected to a different copy of the packet transfer module.

C. TRANSITIONS

The state transitions for a particular instantiation of the packet transfer module are
affected only by packets from the user associated with the link being administered by that
module. The data transfer module, as explained in Chapter V, must assemble complete
packets from the frame data sent to it by BAX. Each packet is sent to the appropriate
packet transfer module, depending upon which BAX link it was received on. Likewise,

as the packet transfer modules send resp packets to the data transfer module for

63

transmission via BAX, the data transfer module must break each packet up into frames
and send them via the appropriate BAX link to reach the intended recipient.

While a packet transfer module is in any particular state, only certain packets from
the user will have meaning. An unexpected packet will cause any actions in progress
(such as uploading or downloading a file) to be aborted. FTLO defines unexpected or
incorrect packets as sufficient cause to terminate the link with a user. The specification
in Appendix A, however, only calls for the packet transfer module to return to a waiting
state after abandoning any action in progress. At this point, the module is ready to
accept any valid command from the user. The user will be informed of the problem via
an appropriate error_resp packet. After receipt of any error message, the user should

assume that the satellite is waiting for the ground station to initiate a new action.

D. STATES

FTLO was designed primarily for use with satellites with full duplex capabilities.
For this reason, it maintains two separate state machines, one for the uplink process and
the second for the downlink process. PANSAT is a half-duplex communications satellite.
The two state machines of FTLO have been combined into a single machine in the
specification of the PANSAT packet transfer module. The states are listed in Table 7.1.

Explanations are included in the following subsections.

TABLE 7.1 PACKET TRANSFER STATES
 State Identifer | ExplanationofState |

UL/DL_UNINIT Upload/Download Uninitiated

UL/DL_CMD_WAIT Waiting for an Upload or Download Command

WAIT MAILBOX Waiting for a Message from the Mailbox Control Module
UL_DATA_RX Ready to Uplink Data

UL_ABORT Upload Aborted
DL_FILE DATA Downloading a File

1. UL/DL_UNINIT

UL/DL_UNINIT is the state into which the packet transfer module is first
initialized, before a user link has been established with it. In this state, the module does
nothing but wait to be assigned a user. Upon receipt of the ’connection’ message from
the data transfer module, the packet transfer module asks the mailbox control module
whether or not the new user has an active selection list, and moves into the
WAIT_MAILBOX state to await a reply. When the reply message is received, the
module will enter the UL/DL_CMD_WAIT state. The packet transfer module returns
to the UL/DL_UNINIT state when it is sent a disconnect’ message by the data transfer

module, regardless of what state it is in when this message is received.

65

TABLE 7.2 STATE TRANSITIONS FROM UL/DL_UNINIT

-—

active_sl_req message
(Asks the mailbox control module if there is

an active selection list for this user.)

2. UL/DL_CMD_WAIT
In the UL/DL_CMD_WAIT state, the packet transfer module is waiting for
a packet from the user which will initiate either an upload process or a download
process. Packets which can be legally received while in this state are listed in Table 7.3,
along with the resultant actions and transitions. Any other, unexpected, packets will

result in an ul_error_resp packet with the error code er_ill_formed_cmd, and the module

will remain in the state UL/DL_CMD_WAIT.

TABLE 7.3 STATE TRANSITIONS FROM UL/DL_CMD_WAIT

Received Packet § Action Next State
or Message ‘ |

upload_cmd mail_num_req message WAIT_MAILBOX
(Request a new file number or a
current file offset from the mailbox
control module.)

| del_cmd mail_del_req message WAIT_MAILBOX
(Request that the mailbox contro}
module delete a file.)

select_cmd mselect_req message WAIT_MAILBOX
(Request the mailbox control module
form a selection list.)

TABLE 7.3 STATE TRANSITIONS FROM UL/DL_CMD_WAIT
Received Packet | Action Next State
or Message A

dir_req message
(Request directory information from
the mailbox control module.)

download_cmd | mail_req message DL _FILE DATA
(Request file data from mailbox
control module.)

dl_nak_cmd none UL/DL_CMD_WAIT
disconnect none UL/DL_UNINIT
UL/DL_CMD_WAIT

ul_error_resp packet

3. WAIT_MAILBOX

As can be seen in Table 7.3, most packets received while in the
UL/DL_CMD_WAIT state result in a transition to the WAIT_MAILBOX state, with no
immediate response packet to the user. This is because the packet transfer module
requires information from the mailbox control module before it can make a proper reply
to the user. The mailbox control module analyzes each information request message and
replies with an appropriate response message. The response of the mailbox control
module will determine which state the packet transfer module will enter when it leaves
the WAIT MAILBOX state, as well as what packet it sends to the user. The
WAIT_MAILBOX state may also be entered from the UL/DL_UNINIT state as shown
above, or the UL_DATA_RX state, as will be explained below. Table 7.4 summarizes

the. mailbox access channel messages just prior to a transition to the WAIT _MAILBOX

67

state, the possible reply messages from the mailbox control module, and the resulting

further actions and state transitions of the packet transfer module. No user command
packets are expected while in the WAIT_MAILBOX state, as the user should still be

waiting for a reply from the last packet sent to the satellite.

TABLE 7.4 STATE TRANSITIONS FROM WAIT MAILBOX

active_sl_resp login_resp UL/DL_CMD_
packet WAIT
mail_num_req | mail_num_resp, | ul_go_resp UL_DATA_RX
no errors packet |
mail_num_resp, | ul_error_resp UL/DL_CMD _
error packet WAIT
! mail_recv mail_recv_resp, | Change current | UL_DATA RX
nO errors upload offset
mail_recv_resp, | ul_nak_resp UL_ABORT
error packet
§ mail_close_req | mail_close_resp, | ul_ack_resp UL/DL_CMD_
no errors packet WAIT
mail_close_resp, | ul_nak_resp UL_ABORT
error packet
mail_del_req mail_del_resp del_resp packet | UL/DL_CMD_
WAIT
mselect_req mselect_resp, no | select_resp UL/DL_CMD_
€errors packet WAIT
mselect_resp, dl_error_resp UL/DL_CMD_
error packet WAIT i

68

TABLE 7.4 STATE TRANSITIONS FROM WAIT_MAILBOX
 Mesage | Reply Message | Action | NextState |

dir_req directory, no data pa.ket, UL/DL_CMD_
errors daita_end packet | WAIT
directory, error | dl_error_resp UUDL_;CMD_
packet WAIT
disconnect UL/DL_
UNINIT

4. UL DATA RX

The packet transfer module enters the UL_DATA_RX state after the user has
sent an upload_cmd and the mailbox control module has replied to the resulting inquiry
with the appropriate file number or offset. That is, this state is first entered from the
WAIT_MAILBOX state. When the module is in the UL_DATA_RX state, it is ready
to receive data packets from the user. As each packet it received, the packet transfer
module passes the file data on to the mailbox control module for storage, entering the
WAIT_MAILBOX state each time to await acknowledgement. When the data_end
packet is received, the packet transfer module requests that the mailbox control module
close the file and conduct integrity checks on it. The result of these checks will
determine whether the packet transfer module returns directly to the
UL/DL_CMD_WAIT state, or goes into the UL_ABORT state, as indicated in Table 7.4.
The state transitions out of UL_DATA_RX are summarized in Table 7.5. The only legal
user packets which can be received while in this state are dasa and data_end. If the

packet transfer module receives an unexpected packet while in this state, it will send a

69

'mail_close_req’ to the mailbox coatrol module, an ul_error_resp packet to the user, and
then retum to the UL/DL_CMD_WAIT state. If the user becomes disconnected while
the module is in the UL_DATA_RX state, it will send a 'mail_close_req’ message to the
mailbox control module and then return to the UL/DL_UNINIT state.

TABLE 7.5 STATE TRANSITIONS FROM UL_DATA_RX

e [[

data_end mail}close}req wm{mxwox

other packets mail_close_req, UL/DL_CMD_WAIT
ul_error_resp Packet

mail_close_req

S. UL_ABORT
The UL_ABORT state is entered whenever a problem is found with an
ongoing upload prior to receipt of the data_end packet. While the packet transfer
module is in the UL_ABORT state, all data packets are discarded. It will remain in this
state until a data_end packet is received, an unexpected packet is received, or the user

is disconnected. The state transitions out of UL_ABORT are summarized by Table 7.6.

70

TABLE 7.6 STATE TRANSITIONS FROM UL_ABORT

=l i

UL_ABORT
UL/DL_CMD_WAIT
UL/DL_CMD_WAIT
UL/DL_UNINIT

6. DL _FILE DATA

The state DL_FILE DATA is entered from the UL/DL_CMD_WAIT state
whenever a properly formatted download_cmd is received from the user. If a badly
formatted download_cmd is received, the user will be sent a dl_error_resp and the packet
transfer module will remain in the UL/DL_CMD_WAIT state.

Just prior to entering the DL_FILE_DATA state, the packet transfer module
sends a ’mail req’ message to the mailbox control module. While in the
DL_FILE DATA state, the packet transfer module simply waits for *mail_resp’ messages
from the mailbox module containing file data to be transmitted to the user. As each
piece of the file arrives, it is sent on to the user in a data packet. When the mailbox
control module indicates that the last byte of the file has been provided, a dara_end
packet is sent to the user. The packet transfer module remains in the DL_FILE_DATA
state until either a di_ack_cmd or a di_nak_cmd is received from the ground. Then it
returns to the UL/DL_CMD_WAIT state. The satellite takes no particular action upon

receipt of a dl_nak_cmd. It will be the responsibility of the ground station to request a

71

new download of the same file at a future time if the user 30 desires. If the file number
requested for download does not exist, a dl_error_resp packet will be transmitted and the
module will return immediately to the UL/DL_CMD_WAIT state. The state transitions
from DL_FILE_DATA are shown in Table 7.7.

TABLE 7.7 STATE TRANSITIONS FROM DL_FILE DATA

Received Message or Packet Sent Next State
Packet 4 _

dl_error_resp UL/DL_CMD_WAIT
mail_resp, no error data DL_FILE DATA
mail_resp, end of file data_end DL_FILE_DATA
dl_ack_cmd dl_completed_resp UL/DL_CMD_WAIT

dl_ack message
dl_nak_cmd dl_aborted_resp UL/DL_CMD_WAIT
other Packets dl_error_resp UL/DL_CMD_WAIT

disconnect UL/DL_UNINIT

VIII. MAILBOX CONTROL MODULE

A. FUNCTION

The primary role of the MAILBOX_CONTROL module is to keep track of the
mail files which have been uploaded to PANSAT from users on the ground. It also
keeps track of user-accessible telemetry files which have been prepared by the
TELEMETRY_GATHER module for downloading to interested users, and “bulletins”
which have been posted by the ground control station for the information of all PANSAT
clients. The users’ active selection lists are also maintained by the mailbox control
module.

The mailbox control module has only one state, WAIT. This state name
exemplifies the method employed by the module to carry out its duties. It “waits® until
it receives a request for information or a packet of file data from the packet transfer
module, or is notified of a file posted by the telemetry module or by the ground control
module. Most housekeeping functions within the "mailbox" are triggered by receipt of
these messages. The mailbox control module responds to the received message, carries
out any necessary activity, and then continues waiting until the next message arrives.
A few administrative functions, such as purging all mail, must be directed by special

command messages from the ground control or auto control modules.

3

B. SOURCE RECORDS

The method employed by the mailbox control module to keep track of all uploaded
files and all users’ active selection lists is a linked list of Source Records. The
Source_Record type is a data structure which contains information which links every
stored file with the source from which it was originally uploaded, as well as an active
selection list for any source (user) that has requested one. The fields of the

Source_Record are listed in Table 8.1, along with the function of each field.

TABLE 8.1 FIELDS OF THE SOURCE RECORD
_—

source_num Contains a unique integer assigned to each
ground user who has uploaded any files
currently stored onboard the satellite or has an
active selection list. Used as the first 2 bytes in
the file numbers assigned to each file uploaded
by this user.

call Calisign_Type | The call sign belonging to the client assigned
the above ’source_num’. The call sign will be
used as the DOS file name for all files uploaded
by this client. Each file will be assigned an
extension from "001" to 999",

The Select_List structure includes the fields
'num_sel’, a uint indicating the number of files
in the client’s selection list, and ’sel’, a
variable length array of the mail numbers of
those files. ’'num_sel’ must be <= max_mail,
the maximum number of files allowed in one
selection list. A 'num_sel’ equal to "0’ indicates
"no active selection list".

Select_List

74

TABLE 8.1 FIELDS OF THE SOURCE RECORD

EX I

next_mail

uint

Function

The index into the 'sel’ array which marks the
"next” mail file in the selection list not yet
downloaded by the client. When ’next_mail’
becomes > = ’num_sel’, the selection list is
"empty"” if another request to download the
"next” file arrives.

next_dir

The index into the 'sel’ array which marks the
"next” mail file in the selection list for which a
directory entry has not yet been downloaded by
the client. When 'next_dir’ becomes > =
'num_sel’, the selection list is "empty” if
another request to download directories for the
"next” 10 files arrives. When both *next_mail’
and 'next_dir’ are > = 'num_sel’, 'num_sel’
reverts to 0’ and the client no longer has an
active selection list.

next_ext

File_Ext

The next file extension to be used on a file
uploaded by this client. In binary form, the
*ext’ is used as the last 2 bytes in the file
number assigned to the file. In ascii form, it
forms the 3 character DOS file extension.

num_act

uchar

The number of files uploaded by this client
which are still being stored aboard the satellite.

next_num

“Source_Record

(pointer to

Source_Record)

Pointer to the next Source_Record, numerically
by ’source_num’.

next_call

“Source_Record

Pointer to the next Source_Record,
alphabetically by ’cail’.

75

C. RESPONSE TO MESSAGES FROM THE PACKET TRANSFER MODULE
By far the greatest number of messages received by the mailbox control module
originate from the packet transfer module, via the Mailbox_Access Channel. Chapter
VII lists many transitions of the packet transfer module to the WAIT_MAILBOX state.
These transitions indicate that the packet transfer module has requested information from
the mailbox control module and is awaiting a reply. The packet transfer module also
sends messages to the mailbox control module while remaining in the UL_DATA_RX
state. The activities of the mailbox control module triggered by each message type from
the packet transfer module, and the required reply messages, are addressed in the
following subsections.
1. The ’active_sl_req’ and ’active_sl_resp’ Messages
When the packet transfer module sends an ’active_sl_req’ message, it is
inquiring whether there is an active selection list for a particular user. The mailbox
control module must check the source records to see if the user has an active selection
list or not. An ’active_sl_resp’ message is returned to the packet module, indicating true
if the user does have an active list, and false otherwise.
2, The ’mail num_req’ and *mail_num_resp’ Messages
A 'mail_num_req’ message indicates that a user wants to upload a file. If

this is a new file, a file number is required for it. If it is an upload continuation, the

76

W»—

current file offset is needed. The mailbox module must ensure that there is enough room
in memory to store a file of the length indicated in the message. If the indicated file
pumber is '0x00000000°’, the mailbox will get the user’s source number and next
extension from the source records (or assign a new source number if necessary) and form
a new file number. If the file number in the ’'mail num_req’ message is not
*0x00000000", the mailbox module will find the current length of it’s partial copy of the
file. In the 'mail num_resp’ message, the mailbox module will supply the packet module
with the required file number or offset for the upload, or indicate that an error has
occurred (such as insufficient space or incorrect file number).
3. The ’mail_recv’ and 'mail recv_resp’ Messages
The 'mail_recv’ message passes file data which has been received from a user
to the mailbox module. The data must be appended to the appropriate file. The mailbox
module attempts to find and open the file to which the data belongs and append it. The
*mail_recv_resp’ will indicate whether the data has been stored successfully or whether

an error has occurred.
4. The ’mail_close_req’ and ’mail_close_resp’ Messages
The *mail_close_req’ message can indicate one of two situations. Either a
data_end packet has arrived, indicating that an upload has been completed, or an upload

has been interrupted due to user disconnect or an unexpected packet. If an upload has

g g e g Rt Th AN SR B i 4 ik T R R -
g kS ,’F". 5 oy e by Bataur i i Wv—-;:,wr P

been compileted, the packet module will indicate this by setting the 'req_resp’ parameter
of the message to true, requesting a response. In this case, the mailbox module will
check the integrity of the uploaded file and report the results in the 'mail_close_resp’
message. If 'req_resp’ is set to false, the upload has been interrupted and the mailbox
module will simply close the file and wait for the upload to be continued at a later time.
S. The ’mselect_req’ and ‘mselect_resp’ Messages
An ‘’mselect req’ message forwards to the mailbox module the
Select_Structure of a client requesting to form a new active selection list. The mailbox
module must parse the Select_Structure and either prepare the default selection list or
evaluate the selection equation with respect to each file in the mail box. The file number
of each matching (or default) file will be placed in the client’s selection list. There is
a maximum number of file numbers which can be placed in any selection list. When this
number is reached, further selection will be discontinued. The 'mselect_resp’ message
indicates how many files have been placed in the selection list, or if an error has
occurred. Any prior existing list will be discarded.
6. The ’mail req’ and 'mail resp’ Messages
The packet transfer module sends a *mail_req’ message in order to obtain file
data for download to a client. A file number and offset will be included in the message.

If the "next" file in the selection list is requested, the indicated file number will be

78

*0x00000000°, and the mailbox module must consult the client’s source record to
determine the actual file number of the next file in the list. The offset for the "next" file
will always be zero. When the next data set from that file is requested, the file number
and appropriate non-zero offset will be known, and included in the *'mail_req’ message.
The mailbox module will begin at the appropriate file offset and begin copying bytes into
the data buffer. It will copy either the number of bytes which will fit into one packet,
or the remaining bytes in the file, whichever is less. Either the data buffer or an error
indication will be sent back to the packet module in the *mail_resp’ message. When the
end of a file has been sent to the packet module, the mailbox module responds to the next
'mail_req’ with an empty data buffer and no error code. This indicates to the packet

buffer that it is time to send the data_end packet.

7. The *dl_ack’ Message

The packet transfer module will send a 'dl_ack’ message to the mailbox
control module after receiving a dl_ack_cmd packet from the user. Only if a *dl_ack’
message is received will the mailbox module change the 'nexi_mail’ field in the user’s
source record. The ’next_mail’ pointer is only advanced after the file * ‘ndicates has
been successfully downloaded to the client. The number of the file acknowledged will
be included in the ’dl_ack’ message along with the client’s call sign. The file number
must match that indicated by the *next_mail’ field of the client’s source record for the

field to be updated.

9

8. The ’dir_req’ and ’directory’ Messages
The 'dir_req’ message requests directory information for either the file
number indicated, or the "next" ten files in the client’s active selection list. Directory
information for a file is simply a copy of the PANSAT file header. If a file number is
indicated, the mailbox module places a copy of the appropriate header in the data buffer
which is send back with the directory’ message. If the "next" 10 entries are requested,
the mailbox module consults the source record to detzrmine whether there is an active
list, and if so, which is the "next" file for which a directory entry has not yet been sent.
The headers are copied for the next 10 files on the list, beginning with the one marked
by ’next_dir’. If there are less than 10 remaining on the list, they are all sent. There
is no downl.ad acknowledge associated with directories, and the ’next_dir’ counter is
automatically advanced when the directory’ message is sent back to the packet transfer
module.
9. The ’mail_del req’ and ’mail_del_resp’ Messages
The packet transfer module sends a 'mail_del req’ when a user wishes to
delete a file from the satellite’s mailbox. The mailbox module must first ensure that the
user in question is authorized to delete the indicated file. A user may only delete a file
which they have uploaded, or one which is addressed to them as the sole recipient. The
mailbox module knows who uploaded the file, since the file name is the same as the

source call sign. It can consult the destination fields of the file header to determine

80

whether the requesting user is the sole recipient. If the deletion is authorized, it will be
carried out, and a no_error indication returned to the packet module in the

'mail_del_resp’ message. Otherwise, the er_permission_denied code will be returned.

D. RESPONSE TO MESSAGES FROM OTHER MODULES

The mailbox control module may also be tasked to respond to messages from
modules other than the packet transfer module. These messages may come via one of
the Mailbox_Admin_Channels or via the Telemetry_Storage_Channel. The latter channel
is connected to the TELEMETRY_GATHER module, while one copy of the former is
connected to the AUTO_CONTROL module and another is connected to the
GROUND_CONTROL module. None of these three modules has been completely
specified, and the requirements for them are still evolving. Some possible functions for
them have been suggested, and those which impact upon the mailbox control module will
be discussed in the following subsections.

1. The ’list_mail’ and *mail_list’ Messages

The NPS ground control station personnel retain the right to inspect all
messages in the mailbox, regardless of the upload sources or the addressees. The ground
control station, when it is so desired, can request a iist of all files currently maintained
in the memory, or a partial list of only those files "from" or "to" a particular call sign.

This command is received by the GROUND_CONTROL module, which responds .

81

requesting the appropriate file list from the mailbox control module using a ’list_mail’
message. The mailbox module responds with a *mail_list’ message which indicates the
number of files matching the criteria of the list_mail’ message and provides a list of all
of the appropriate file numbers. From this list, the ground control module or the ground
control station personnel can then choose files to download.
2. The ’post_bulletin’ and ’delete_bulletin’ Messages
The ground control module has the same access to the file handling facilities
of the Space Craft Operating System as does the mailbox control module. For this
reason, it does not need to go through the mailbox module in order to "post” a bulletin,
which really consists only of storing a file with the name "BULLETIN.xxx" in the mail
storage area. (File lists such as those discussed in the previous subsection are requested
from the mailbox module merely to take advantage of its enhanced association
capabilities using the source records it maintains.) The mailbox module should,
however, maintain a complete set of source records, including one for the ground control
station. When a bulletin is posted, the ground control modﬁle informs the mailbox
module using a 'post_bulletin’ message, so that an appropriate file number can be
assigned and the source record can be updated. Similarly, when a bulletin is deleted, the

mailbox module is informed by a ’delete_bulletin’ message.

82

3. The ’full_mailbox’ and ’purge_mail’ Messages

Whenever a user requests to upload a file, the mailbox module must first
determine whether there is room for it in the memory. If it finds that there is not enough
room, it does some "house-cleaning”, deleting all files which have passed their expiration
dates. This is the only time the mailbox module deletes files on its own, so that many
files may actually remain onboard the satellite for longer than the nominal time allowed.
After the mailbox module has deleted 2l files which have expired, it once again checks
to see if there is enough room to upload the new file as requested by the user. If there
is still not enough room, the mailbox module must deny the request to upload. At the
same time, it informs the AUTO_CONTROL module of the problem with a
*full_mailbox’ message.

Perhaps in response to a ’full_mailbox’ message, or perhaps in obedience to
a ground station command, or for some other pressins reason, the ground control or auto
contr!l module can direct the mailbox module to "purge” the mail box. The
’purge_mail’ message will indicate whether all mail files should be deleted, or all files
posted prior to some designated upload time, or all files "from" or "to" a particular call
sign. This purge is done via the mailbox module, so that it will have the chance to

update all affected source records.

83

4. The ’store_user_telem’ and ’delete_user_telem’ Messages
Like the ground control and auto control modules, the
TELEMETRY_GATHER module also has complete access to the SCOS file management
capabilities. When user-accessible telemetry data is to be posted, it merely saves a file
called "USRTELEM.xxx" in the mail storage area. These telemetry files can also be
deleted by the telemetry module when they become outdated. In the interest of
maintaining a complete set of source records, the mailbox control module is informed of

these actions via the store_user_telem’ and 'delete_user_telem’ messages.

IX. REMAINING MODULES

A. TELEMETRY GATHERING MODULE

In the current PANSAT flight software specification, 14 separate software modules
have been defined at the module header definition level. Of these, detailed module body
definitions have been developed for 4. The DATA_TRANSFER,
PACKET_TRANSFER, and MAILBOX_CONTROL modules are described in Chapters
V through VIII of this thesis. A preliminary module body definition for the
PASSWORD_CONTROL module has been written, but will not be released to the
general public. Two modules, PRIMITIVE_AX25 and PRIMITIVE_SW_LOADER, are
actually commercial software products, BAX and PHTX. The capabilities of these
programs will be accessed by various PANSAT modules, but no body definitions will be
written for them, because there is no need to specify existing software, only the
interfaces to it. The body definitions of the remaining 8 modules will be highly
dependant upon the actual hardware configuration of the satellite, which is still
undergoing daily design changes. Central to the operation of these remaining modules
will be the operation of the TELEMETRY_GATHER module.

The function of the telemetry gathering module is to collect data on the operation
of the satellite from which control decisions can be made, both by the automatic control
module (AUTO_CONTROL) and the ground control station personnel at NPS. In order
to obtain much of this data, the telemetry gathering module has direct control over the

85

A/D_DRIVER module which operates the analog-to-digital converters and associated
multiplexors in order to obtain relevant sensor data, such as battery voltages or solar
array temperatures. Other telemetry information will come from the BAX and SCOS
software, which maintain various statistics about the communications and operating
environments.

The hardware telemetry points which have been defined thus far are listed in Table
9.1. The best situation is for each point to stay within the expected or "nominal” range.
When a reading goes outside the nominal range, there is still no serious system
degradation unless it also goes outside the "operating range”. At this point, there may
be no immediate danger to the system, but a trend may have started which will soon lead
to operational difficulties. When a reading goes outside the "red alert” range, immediate
correctional actions must be initiated, if they have not been already. System failure
could be imminent. Many of the exact values for these ranges have not yet been
determined. The proper preventive and/or correctional steps to be taken in each situation
are also still under study. The values contained in Table 9.1 are the best estimates
available at this time, but are subject to change. Those readings for which no estimated
values have yet been determined are marked with "tbd". The "totals" listed are for the
sensors controlled by one Digital Control System (DCS) board, on which will be running
one copy of the flight software. The current design calls for the entire DCS to be
duplicated, and for each board to be attached to its own complete and separate set of

sensors.

Point

TABLE 9.1 HARDWARE TELEMETRY POINTS

87

Solar Array

Temperatures (17 total)

Battery Voltages 12V 13V 115V 135V J1oOV |15V
(2 total)

Battery Temperatures -1.1°C | 10°C | -6.7°C | 26.7°C | -15°C | 50° C
(4 total)

Battery Discharge tbd tbd tbd tbd tbd tbd
Currents (2 total)

Electrical Power tbd tbd tbd tbd tbd tbd
System (EPS) Bus

Voltage (1 total)

EPS Board 0C 40°C | -10°C | 50°C tbd tbd
Temperature (2 total)

Transmitter Current tbd tbd tbd tbd tbd tbd
(1 total)

Transmitter RF Power | tbd tbd tbd tbd tbd tbd
(2 total)

Transmitter 0C 40°C | -10°C | 50°C tbd tbd
Temperature (2 total)

Received Signal tbd tbd tbd tbd tbd tbd
Strength (2 total)

Receiver Temperature | 0°C 40°C | -10°C |50°C tbd tbd
(2 total)

Sense Relays for State | tbd tbd tbd tbd tbd tbd
of Communications

Hardware (total tbd)

DCS Board 0cC 40°C | -10°C | 50°C tbd tbd
Temperature (2 total)

The telemetry gathering module maintains a list of sensor points with timing
intervals and expected operating ranges for each. This list can be updated by commands
from the ground control station, which can cause points to be added or deleted, or can
change the timing intervals for obtaining readings from various points. Some timing
intervals may be changed dynamically by the automatic control module or the telemetry
gathering module itself, based upon trends in the readings or upon reading which are out
of the expected ranges.

Table 9.2 lists some "operating environment telemetry points" which can be
gathered by SCOS, and passed to the telemetry gathering module for inclusion in the
telemetry files. Table 9.3 lists some "communications environment telemetry points”
which can be gathered by BAX, and may be of interest to the ground station controllers.
BAX has the capability to maintain a file of this data itself and to download it directly
to the ground control station. Whether the information will be passed to the telemetry
gathering module to be included with the rest of the telemetry, or whether this separate
"BAX telemetry” file will be maintained and passed to the ground control station as the
result of a separate ground station command, has not yet been determined. Table 9.4
contains a list of other general system data which may be collected by the telemetry
gathering module directly from the satellite hardware or from the other software
modules. In some cases, such as the data points listed under "LOGIN" and
"MAILBOX", existing module specifications will have to be modified in order to require

the software to gather the data required by the telemetry module. Such modifications

88

will be postponed until it has been decided which of these data points will be of most

interest to the ground station controllers, and what sampling intervals will be required.

TABLE 9.2 SCOS TELEMETRY POINTS
DutsPoit Ivaatype | Deseripton |

Scheduler Events List of numbers Operating System multi-
tasking events (tasks

running & scheduled).
Timer Events List of numbers Operating System tasks
in queue.
SCOS Service Calls List of numbers General Operating

System information.

TABLE 9.3 BAX TELEMETRY POINTS

BAX Data Data | Description ‘
Point Type - :

smallct uint Count of received frames containing < 32 bits.

nonint uint Count of received frames with a bit length not evenly
divisible by 8

Count of received frames that exceed maximum size.
Count of received frames that are aborted.

Count of receiver overruns.

uint Count of receiver crc errors.

tx_aborted uint | Count of transmitted frames aborted or flushed.
tx_under uint | Count of transmitted frame underruns.
tx_abort_call uint Count of calls to gio_abort/flush.

giocurrx uint | Current number of frames in receiver queue.

qiomaxrx uint Maximum number of frames in receiver queue.

S

TABLE 9.3 BAX TELEMETRY POINTS

Current number of frames in transmitter queue.

qiomaxtx uint | Maximum number of frames in transmitter queue.
poolfail uint | Number of "pool gets” that failed.
retry_exceeded | uint | Count of times the maximum number of frame retires
has been exceeded.
quitottx ulong | Total number of transmitted frames.
quitotrx ulong | Total number of frames received with no errors.
tdatain ulong | Total number of data bytes received.
tdataout ulong | Total number of data bytes transmitted. I
tdigi ulong | Total number of digipeated frames. J
daytime ulong | Total number of SOmsec intervals that have expired
since system startup.
start_time ulong | Startup time in seconds. (UTC)

\

Following are counts of frames types defined in the AX.25 protocol [Ref. 2]. |

<I> in ulong | Number of "information" frames received.

<RR> in ulong | Number of "receive ready” frames received.

<RNR> in ulong | Number of “receive not ready” frames received.

<REJ> in ulong | Number of "reject” frames received.

<DM> in ulong | Number of "disconnect mode" frames received.

<SABM> in | ulong | Number of "set asynchronous balanced mode" (connect
request) frames received.

<DISC> in | ulong | Number of "disconnect request” frames received.

<UA> in ulong { Number of "unnumbered acknowledge” frames
received.

<FRMR> in | ulong | Number of "frame reject” frames received.

90

TABLE 9.3 BAX TELEMETRY POINTS

-I—

<INV> in Number of "invalid” frames received.
Number of “unnumbered information” frames received.
Number of "information® frames transmitted.
Number of "receive ready” frames transmitted.
<RNR> out | ulong | Number of "receive not ready" frames transmitted.
<REJ> out ulong | Number of "reject” frames transmitted.

<DM> out Number of "disconnect mode” frames transmitted.

<SABM>out | ulong | Number of "set asynchronous balanced mode” frames
transmitted.

<DISC> out | ulong | Number of "disconnect request” frames transmitted.

<UA> out ulong | Number of "unnumbered acknowledge" frames
transmitted.

] <FRMR>out | ulong | Number of "frame reject” frames transmitted. l

<INV> out Number of "invalid" frames transmitted.

Number of "unnumbered information" frames
transmitted.

 out

TABLE 9.4 GENERAL SYSTEM TELEMETRY POINTS

Logins uint Number of user logins.
Logouts uint Number of user logouts (requested
disconnects).
Alogins uint Number of authorized logins. J
91

TABLE 9.4 GENERAL SYSTEM TELEMETRY POINTS
| Data Point | Data Type | Description
UALogin uint

Number of unauthorized login attempts.

Unauthorized login attempt time stamp.
List of Undesirable Users.

Type

RMail uint Count of received mail.

SMail uint Count of sent mail.

StMail uint Count of stored mail.

Stor ulong Amount of storage used. 1
L CommuncationSysemData |
Receiver boolean Receiver A or B selected. l
Transmitter boolean Transmitter A or B selected.

Mode boolean | Spread Spectrum turned On or Off. |
Atten uint Attenuation Level 1 through 8 selected.

Digital Control System Data *

DCS boolean DCS A or B selected. }
SWver uint Software version in use.]
date UTC Current satellite date and time.

SEUc uint EDAC (error detection and correction) SEU E

(single event upset) count.

SEUt UTC Start time for EDAC SEU time. H
SEUIt UTC Time of latest EDAC SEU. |
RAMw ulong Address of next RAM cell to be "washed". %

As the telemetry gathering module completes each round of readings, it updates a
file of the "current telemetry® which is accessible to the automatic control module. The

automatic control module makes use of this data in its autonomous control of the satellite
hardware systems. The telemetry gathering module also stores telemetry data in a
telemetry history file, which will continue to grow and store past data until it is purged
by a command from the ground control station, or it reaches a pre-determined maximum
size. If the maximum file size is exceeded before the file can be downloaded and then
purged by the ground control station, the most recent entries for each data point will be
maintained, and older entries deleted, in order to control the size of the file. The ground
control station will use this larger telemetry file to analyze trends in satellite
performance, and to make control decisions beyond the scope of those made by the
automatic control module. The telemetry gathering module will also maintain shorter
telemetry files containing data which may be of interest to the amateur radio users who
access the satellite mail box system. These files are stored in the mail area with the file

name "USRTELEM.xxx".

B. AUTOMATIC CONTROL MODULE
The AUTO_CONTROL module carries out periodic functions, such as battery
conditioning, on a time scheduled basis. It also carries out aperiodic functions. As

indicated in the previous section, the AUTO_CONTROL module makes use of the data

93

collected by the telemetry gathering module to make decisions about the control of the
satellite hardware. It ﬂso maintains a “time_tagged" command buffer which lists
activities which should take place at a particular time in the future. This command
buffer is updated by the GROUND_CONTROL module as a result of ground control
station commands. The Digital Control System design includes hardware timers which
can be programmed by the automatic control module to interrupt the microprocessor at
designated time intervals to initiate periodic events or to produce a set of one-time-only
interrupts to initiate events controlled by the command buffer. Software timers may also
be used for some of the automatic control module functions.

Most of the control functions carried out by the automatic control module will
likely be based on a "table look-up" system. When a timer interrupt occurs, an interrupt
vector table will contain the address of the appropriate subroutine needed to carry out the
scheduled activity. Another table of subroutine addresses will be indexed based on
combinations of telemetry readings which call for some action to be taken. These
subroutines and tables will be developed as more is learned about the specific
requirements of the hardware as it is designed.

Table 9.5 lists some possible functions of the automatic control module which have
been identified thus far. The EPS_DRIVER, COMM_DRIVER and DCS_DRIVER
modules contain the software drivers required for direct digital control of the electric

power system, communications, and digital control system hardware. The services of

94

these modules will be accessed as necessary by the automatic control module in order to

carry out functions listed in Table 9.5.

Function

Electric Power Supply
Control

TABLE 9.5 AUTOMATIC CONTROL MODULE FUNCTIONS |

Turn hardware components off and on as
necessary to conserve power, allow battery
conditioning, etc.

Condition Batteries

Periodically discharge and recharge batteries in
order to prevent battery “memory".

Systems Test Management

Carry out periodic systems checks in addition to
normal telemetry gathering. Save test data for
download to ground control station.

Communications Control

Transmitter/Receiver component select.

Transmitter Output Power
Control

Set level of transmitter power.

Automatic Subsystem Select

Select alternate subsystem upon time-out waiting
for response of a primary subsystem.

Real Time Clock Control

Set and remove times for periodic interrupts.

Send Messages

Send periodic messages to the ground control
station via BAX.

Copy Vital Statistics

»

Transfer vital operating system information to
alternate processor.

RAM Wash

Periodic reading/writing of system RAM to enable
Error Detection and Correction functions.

Digital Control System
Health Check

Periodic signal to EPS to ensure proper operation
of active DCS. EPS will disable a malfunctioning
DCS board and "boot" the alternate when the
proper signal is not received on time.

95

TABLE 9.5 AUTOMATIC CONTROL MODULE FUNCTIONS

Descriptin |

Message to data transfer module locking out all or
new Users.

C. GROUND CONTROL MODULE

The GROUND_CONTROL module contains the command interpreter and the
functionality required to carry out commands transmitted by the ground control station
at NPS. Ground control packets will be passed directly to the ground control module by
'BAX, since they will be addressed specifically to the ssid (subsystem identification
‘number) for this module. All ground station commands will be subject to verification
by including a time varying password. The PASSWORD_CONTROL module will keep
track of the current password aboard the satellite, and will provide this information as
necessary to the ground control module. Similar software will track the current password
for:',the ground control station. There will be facilities for determining the current
password aboard the satellite, in case the two systems lose synchronization for any
rason The specification of the password control module contains proprietary

inforrhation, and will not be published for general release.
Once a command has been received from the ground control station, the password
has becn verified, and the command has been interpreted, the ground control module
either carries out the command directly, or communicates with other software modules

as necessary to utilize their capabilities. A ground command may involve updating the

96

time-tagged command list of the automatic contro! module, or varying the time intervals

for periodic events carried out by the automatic control or telemetry gathering modules.
It may initiate a one-time-only corrective action, or change a basic system parameter.
Some ground station commands simply involve the acquisition of information for use by
the ground control station software or personnel.

Some possible functions of the ground control module which have been identified
thus far are listed in Table 9.6. The PRIMITIVE_SW_LOADER module, which is
actually the commercial program "PHTX", is designed to work directly with BAX to
upload software. This module will be utilized by the ground control module when a
command is received to upload new software. In this way, the flight software can be

updated as necessary to correct errors or increase functionality.

TABLE 9.6 FUNCTIONS OF THE GROUND CONTK(: . MODULE |

Command Process a received ground station command.
Interpretation/Validation.

Update Time-Tagged Schedule events to be carried out at a future time
Command Buffer. by the automatic control module, or delete events
from the command buffer.

Set Control Rates. Update time intervals or list of periodic functions
of the automatic control module.

Set Telemetry Polling Rates. | Update time intervals used by the telemetry
gathering module for particular telemetry points.
Add or delete telemetry points.

97

TABLE 9.6 FUNCTIONS OF THE GROUND CONTROL MODULE

Software Upload.

Upload, and store new or updated software
modules.

Run Software.

Begin using newly uploaded or alternate software
module.

Delete Software.

Delete specified software module.

Copy Software.

Copy verified software to alternate processor.

Boot ROM.

Reboot PANSAT from ROM (read only memory).

Boot OS.

Load a new operating system and transfer cor.

Read OS Information.

Download the current operating system pointers
and parameters.

List Mail.

Download a list of all mail messages and bulletins
currently stored.

Dump Mail.

Download system bulletins and mail in bulk.

Post Bulletin.

Post a system bulletin in the mailbox area for all
users.

Remove Bulletin.

Remove a system bulletin.

Purge Mail.

Purge all or selected mail from the mailbox
storage.

Read Current Telemetry.

Download the current telemetry file maintained by
the telemetry gathering module.

Read Stored Telemetry.

Download the telemetry history file maintained by
the telemetry gathering module.

Purge Stored Telemetry.

Delete all or portions of the telemetry history file.

Read Data.

Download an arbitrary block of data, specified by
address pointer, from the file storage area or
system RAM.

Set Real Time Clock.

Set satellite’s real time clock to a specified time.

Read Real Time Clock.

Download current time on satellite’s real time
clock.

98

TABLE 9.6 FUNCTIONS OF THE GROUND CONTROL MODULE

Subsystem Power Control. Turn power on/off to a particular subsystem.

Condition Battery. Discharge/Recharge specified battery.

Trickle Charge Battery. Trickle charge specified battery.

Charge Battery. Quick charge of specified battery.

Select Battery. Select specified redundant battery.

Select Receiver. Select specified redundant receiver.

Select Transmitter. Select specified redundant transmitter.

Select Processor. Select specified redundant digital control system
board.

Set Mode. Select communications mode: spread spectrum or
BPSK.

Set Maximum Transmitter Set maximum allowable amplitude of transmitter

Power. power.

Set Attenuation. Set attenuation level of the active transmitter.

Switch to Super User Mode | Functions requiring super user mode are tbd.

Exit Super User Mode.

Read Event Log. Download Event Log maintained by the event
logging module.

Purge Event Log. Delete all or portions of the event log,.

Read Time-Tagged Download the time-tagged command buffer.

Command Buffer.

Purge Time-Tagged Delete the entire time-tagged command buffer.

Command Buffer.

User Lockout. Message to data transfer module locking out all or

NEw users.

D. EVENT LOGGING MODULE.

The purpose of the EVENT_LOGGING module is to maintain a history of all the
significant events which happen and commands which are carried out aboard the satellite.
It is hoped that this event log will be helpful in trouble shooting problems aboard the
satellite, or merely in studying its operation. The event logging module differs from the
telemetry gathering module in one major respect. The telemetry gathering module
periodically polls the hardware and other software modules, gathering a predetermined
list of specified data. The event logging module waits to receive event messages from
other modules, informing it of aperiodic events which are deemed significant in some
way.

A list of "significant” events will need to be determined, so that the exact nature
of the event messages can be defined in the software specification. Some possible events
include the occasion of a full mailbox, a telemetry reading beyond the "operating range”
(this will also be listed in the telemetry files, of course, but may stand out more here,
or be associated with some other event which will make trouble shooting and correction
easier), user connections lost because the transmitter has been shut down for power
reasons, etc. An event log entry will also be made each time an automatic command
function or a ground control command is carried out. The exact format of the event log
entries will be developed as the list of significant events and useful information is further

defined.

100

X. CONCLUSIONS AND RECOMMENDATIONS

A. THE USE OF ESTELLE

The formal description technique, Estelle, has proven to be a valuable tool in
creating a software specification. Its methods of defining state machine behavior and its
channel and message definitions have provided a unique way of visualizing a system, and
seeing how all of the pieces fit together. The various levels of abstraction greatly
facilitate the advancement of a project, even when all details are not yet known. When
details are known, Estelle provides ample means of specification at the lowest possible
levels, and the flexibility to define algorithms both simple and complex.

In order to make Estelle even more useful in this project, a few modifications have
been made to it. For instance, since "C" has already been chosen as the implementation
language, a few data types have been defined to more closely match familiar structures
in "C". Array indices start at O in this specification, as they do in "C". Multiple
dimension arrays are indexed by multiple sets of brackets, "var{i][j]", rather than by
multiple indices within one set of brackets, "varfi, j]". The names of the primitive data
types are borrowed from "C": “uchar”, "uint "and "ulong”. Many of the primitive
functions and procedures are functions familiar to "C" programmers. In addition,
various font modifications have been used to make elements of the Estelle and Pascal

syntax stand out, so that their meanings are more obvious in the context. Bold is used

101

to indicate reserved words, user-defined data types begin with Capital_Letters, constants
are written in izalics, eic.

Many of the more complex capabilities of Estelle are not utilized, since they are
somewhat confusing and are not needed to make clear the intended behavior of the
software being defined. The greatest drawback of Estelle is the specification of Estelle
itself, [Ref. 8). [Ref. 8] is very difficult to read and sometimes impossible to
understand. For those interested in using Estelle in future software specification projects,
it is recommended that only the Annexes be read. These contain all the information
needed, as well as adequate examples to provide understanding of how this language can
actually be used.

B. RECOMMENDATIONS FOR FURTHER WORK

This thesis provides a preliminary specification for the flight software of the Petite
Amateur Navy Satellite. As much information as is currently available concerning the
high-level operationa! requirements of the satellite has been included. A software
architecture has been provided which defines the individual software modules and their
interfaces. Detailed definitions for the bodies of the communications and file transfer
protocol modules have been developed.

There is obviously much work remaining to be done. The module body definitions
for the telemetry gathering, analog to digital conversion, automatic control, ground
control, electronic power system driver, communication driver, digital control system

driver, and event logging modules must be developed. The channel types and message

102

interfaces between these remaining modules and between them and the existing modules
must be defined in greater detail. Once the complete, detailed specification is available
for the entire flight software system, the actual code must be written and tested. The
ground software and the bootstrap software must be specified and coded, and the
interfaces between these programs and the flight software must be tested. Hardware
designs must be completed and tested before any software specifications can actually be
finalized. A start has been made, and the beginnings of a road map have been drawn.

Much more effort will be required before this project is completed.

103

(This Page Intentionally Left Blank)

104

APPENDIX A - ESTELLE SOFTWARE SPECIFICATION

specification Flight_Software;
type { Primitive Types

{ Note: the notation *Oxhh’ is used to refer to

{ hexadecimal numbers, with the h’s

{ representing the hex digits 0..F. The number

{ of bytes in each hex number is the number of

{ digits divided by 2.

{ 8 bits of binary data or 1 byte unsigned integer or
{ 1 ASCII character.

uchar = 0x00..0xFF;

uint = (x0000..0xFFFF; { 2 byte unsigned integer
ulong = 0x00000000..0xFFFFFFFF; { 4 byte unsigned integer
int = { Positive and Negative integers as defined on
{ implementation hardware.
const { ’Global’ Constant Declarations
max_file_length = any ulong; { Maximum length of a file onboard the satellite
max_mail = any uint; { Maximum pieces of mail in Select list
password_length = any uchar; { Number of characters in the password.
max_pdat = 2047, { Max number of bytes in the data field of a packet.
max_fdat = 256; { Maximum length of data field in a BAX frame.
maxlinks = 30; { Max channels allowed by BAX.
pansat_call = any Callsign_Type; { Pansat’s call sign
nps_call = any Callsign_Type; { NPS’ call sign.
no_error = 0x00; { Error Codes
er_ill_formed_cmd = 0x01; { Incorrect or unexpected command
er_bad_continue = 0x02;
er_server_f5ys = 0x03;
er_no_such_file_number = 0x04;
er_selection_empty = 0x05;
er_mandatory_field_missing = 0x06;
er_no_pfh = 0x07,
er_poorly_formed_sel = 0x08;
er_already_locked = 0x09;
er_no_such_destination = Ox0A;
er_file_complete = 0x0C; { OxOB was a repeat of 0x05
er_no_room = 0x0D;

105

[SUE N gt gl St gl N Sy Ny Syt gt o Wy Yoy My Smgar! e gt Nt g Smged \aya \gd

er_bad_header = Ox0E;
er_header_check = OxOF;
er_body_check = Ox10;
er_permission_denied = 0x90; { PANSAT specific; not in FTLO. }
type { Global Type Declarations }
Tpoint_Record = . {.. = 'To be determined’ }
Telem Data Type = ..;
EPS_Cmd_Type =,
EPS Resp Type = . ;
Comm Cmd Type = . .;
Comm _Resp Type = . .;
DCS_Cmd_Type = .
DCS_Resp Type = ..;
Sat_Cmd_Type =,
Sat_Resp_Type =..
Event_Report_Type = . .;
Callsign Type = array[6] of uchar;
Byte String = " array[] of uchar *; { Any even number of hex digits surrounded }
{ by double quotes. Refers to raw binary }
{ data matching the pattern of the hex digits}
{ and of the same length. }
Pdat_Len = 0..max_pdat; { Number of bytes of info in a packet. }
Fdat_Len = 0..max_fdat; { Number of bytes of info in a frame. }
Lockout_Type = (all, new); { Each member of an enumerated type is assumed}
{ to be associated with a distinct uchar. }
Frame_Type = (qgat_data, qat_state, qat_ui);
Link State = (gas_connect_pend, qgas_connected,
gas_connecting, qas_disconnected,
qas_disconnecting, qas_framereject);
Cause = (gac_local, gac_remote, gac_remotefrmr,
qac_timeows);
Password_Type = array[password_length] of uchar;
File Type = array[max_file_length] of uchar;
Pdata = array[max_pdar] of uchar; { Info field of a packet }
Fdata = array{max_fdai] of uchar; { Info field of a frame }
Num_Mail = 0..max_mail;
Direction = (left, right);
Packet ' = record
length_isb: uchar;
hi uchar;
info Pdata;
end;
Link Type = 0 .. maxlinks - 1;

Name_Type = array{12] of uchar; { DOS file name. Character in 9th
position must be °.’ }
{ Variable len array of file names. }

File List = array{] of Name_Type;
Bit_’ = 0..1;
Coatrol_Block = record { Includes only BAX fields which are used
link: uint; { 'channel’ in BAX manual
kind: Frame_Type; { 'type’ in BAX manual
1_state: Link_State; { ’state’ in BAX manual
why: Cause; { *cause’ in BAX manual

my_call: Callsign_Type
my_ssid: uchar;
his_call: Callsign_Type
his_ssid: uchar;

tl: uchar;

maxframe: uchar;

retry: uchar;

paclen: uint;
end;

’

{ AX25_ADDR or AX25_CALL

{ in BAX manual

{ Client’s Call sign

{ Client’s SSID - may not be needed

{ t1 frame ACK/NAK timeout timer value

{ frame sliding window size

{ maximum number of retries for an out frame
{ maximum size of info field in outgoing packet

107

et N Nyt S Nenyaf \mya! Nmad N S g/ gt gt gt

{ Channel Deflinitions }
channel Abstract_Bax_Channel(Bax_End, Data_Transfer_End);
by Bax_End:
gax_input(in_cb: Control_Block; idata: Fdata; datal: Fdat_Len);
by Data_Transfer_End:
gax_claim(out_cb: Control_Block; grab: uchar);
qax_data(link: Link_Type; out_cb: Control_Block; odata: Fdata; datal: Fdat_Len);
qax_busy(link: Link Type);
qax_con_acpt;
gax_con_rej;
qax_unbusy(link: Link_Type);
gax_connect(out_cb: Control_Block);
gax_ui(link: Link_Type; out_cb: Control_Block; odata: Fdata; datal: Fdat_Len);
qax_disconnect(link: Link Type; wait: boolean);

channel Abstract Packet_Channel(Data_Transfer_End, Packet_Transfer _End);
by Data_Transfer End:
connection(callsign: Callsign_Type);
disconnect;
command_packet(command: Packet_Type; datal: Pdat_Len);
by Packet_Transfer_End:
response_packet(response: Packet_Type);

channel Mailbox_Access_Channel(Packet_Transfer_End, Mailbox_End);

by Packet_Transfer_End:
active_sl_req(client_call: Callsign_Type); { Does client have an active select list? }
mail_num_req(client_call: Callsign_Type; mail_number, length: ulong);
mail_recv(mail_number, offset, length: ulong; mail: Pdata);
mail_close_req(mail_number, offset: ulong; req_resp: boolean);
mselect_req(client_call: Calisign_Type; select_struct: Pdata);
mail_req(client_call: Callsign_Type; mail_number, offset: ulong);
dl_ack(client_call: Callsign_Type; mail_number: ulong);
dir_req(client_call: Callsign_Type; mail_number: ulong);
mail_del_req(client_call: Callsign_Type; mail_number, length: ulong);

by Mailbox_End:
active_sl_resp(sl: boolean); { true if client has an active select list. }
mail_num_resp(mail_number, offset: ulong; error_code: uchar);
mail_recv_resp(error_code: uchar);
mail_close_resp(error_code: uchar);
mail_send(mail_number, length: ulong; mail: Pdata);
mselect_resp(num_sel: Num_Mail; error_code: uchar);
mail_resp(mail: Pcata; mail_number, length: ulong; no_al: boolean);
directory(len: Pdat_Len; dir: Pdata; no_al: boolean);
mail_del_resp(error_code: uchar);

108

chamnel Mailbox_Admin_Channel(Control_End, Mailbox_End);
by Control] End:
lntlrml(bulletms messages, from, to: boolean; callsign: Callsign_Type);
post_bulletin(bulletin: Name_Type);
delete_bulletin(bulletin_name: Name_Type);
purge_mail(all, from, to: boolean; callsign: Callsign_Type; post_time: ulong);
by Mailbox_End:
mail lut(num_files: uint; mail: File_List);
full_mailbox;

channel Telemetry Storage Channel(Telemetry_End, Mailbox_End);
by Telemetry End:
store_user_telem(telem: Name_Type),;
deletc user_telem(telem_file: Name_Type);

channel Password_Control_Channel(Control_End, Password_End);
by Control_End:
password_change_request;
request_current_password;
by Password_End:
password(pswd:Password_Type);

channel Data_Transfer_Control_Channel(Control_End, Data_Transfer_End);
by Control_End:
change params(out_cb: Control_Block);
lockout(1_kind: Lockout_Type);
unlock(1_kind: Lockout_Type);
transmitter(off: boolean);
by Controlled End:
acknowledge;

channel Telemetry Control_Channel(Control_End, Telemetry_Gather_End);
! by Control_End:
add_point(point: Tpoint_Record);
delete_point(point: Tpoint_Record);
change_timing(point: Tpoint_Record);
read_current_telem;
md stored_telem;
purge_ stored _telem;
by Telemetry_Gather_End:
ack _point_change(error: uchar);
current_telem(telem: Cur_Telem_Type);
stored_telem(telem: Full_Telem_Type);

109

m

channel A/D_Control_Channel(Command_End, A/D_Converter_End);
by Commnd End:
wmup(devwe num: uchar);
start_conversion(telem_point: uchar);
report_data(telem_point: uchar);
by A/D_Converter_End:
device _ready(devxce num: uchar);
data_ready(telem_point: uchar),
telem_data(t_data: Telem_Data_Type);

channel SW_Load_Control_Channel(Control_End, Loader_End);
by Contml End:
uploud(new software: Name Type sw_address: ulong);
by Loader End:
upload_begin(new_software: Name_Type);
upload_complete(new_software: Name_Type);

channel EPS_Control_Channel(Control_End, EPS_Driver_End);
by Control_End:
eps_cmd(cmd: EPS_Cmd_Type);
by EPS_Driver_End:
eps_resp(resp: EPS_Resp_Type);

channel Comm_Control_Channel(Control_‘.nd, Comm_Driver_End);
by Control_End:
comm_cmd(cmd: Comm_Cmd_Typx :,
by Comm_Driver_End:
comm_resp(resp: Comm_Resp_Type);

channel DCS_Control_Channel(Control_End, DCS_Driver_End);
by Control_End:
des_cmd(cmd: DCS_Cmd_Type);
by DSC_Driver_End;

des_resp(resp: DCS_Resp_Type);

channel Satellite_ Control_Channel(Ground_Control_End, Auto_Control_End);
by Ground_Control_End:
sat cmd(cmd: Sat_Cmd_Type);
by Auto_Control | End:

sat_resp(resp: Sat_Resp_Type);

channel Event_Log_Channel(Event_End, Log_End);
by Event_End:
event_report(report: Event_Report_Type);

110

{ Gilobal function declarations }
fanction GET_TIME: ulong; { Returns a 32-bit unsigned integer indicating the }
primitive; { number of seconds since January 1, 1970. }
function C_BIT_SHIFT(d: Direction; num: uchar; b: uchar): uchar;
primitive { Bit-wise shift of the byte specnﬁed by b’ in the }

{ direction specified by 'd’. 'num’ specifies the }

{ number of bit positions to shift. Returns a 1 }

{ byte answer. }
function I_BIT_SHIFT(d: Direction; num: uint; b: uint): uint;
primitive; { Bit-wise shift of the uint specified by b’ in the }

{ direction specified by 'd’. ’num’ specifies the }

{ number of bit positions to shift. Returnsa2 }

{ byte answer. }
function C_BIT_AND(a, b: uchar): uchar;
primitive; { Returns Bit-wise AND of the bytes 'a’ and ’b’. }
function I_BIT_AND(a, b: uint): uint;
primitive; { Returns the bit-wise AND of the uints ’a’ and 'b’. }
function GET_LSB(number: uint): uchar; { Receives a 16 bit number and returns the }
primitive; { least significant 8 bits. }
function GET_MSB(number: vint): uchar; { Rceives a 16 bit number and returns the }
primitive; { most significant 8 bits }
function INT(short: uchar): uint; { Receives an 8 bit unsigned number and extends it td
primitive; { 16 bit unsigned number by prepending 8 0’s. }

procedure QAX_CLEAN_CB(cb: Control_Block);
primitive; { Initializes all fields of the control block structure }
{ to 0. This is a procedure provided by BAX. }

function FORMAT_EVENT_REPORT(event: uint; time: ulong): Event_Report_Type;

external; { This function prepares an Event_Report to be sent }
to the EVENT_LOG module. This function is }
external since the structure of the }
Event_Report_Type has not yet been determined. }
The parameter list may have to be modified when}
this function is further defined. }

P puiny, g, gty g,

111

{ Module Header Definitions
module PRIMITIVE_AX25_TYPE systemprocess; { BAX.

bax: array{4] of Abstract Bax_Channel(Bax_End) individual queue;
end;

module DATA_TRANSFER_TYPE systemprocess; {Between BAX and FTLO
ip

array[maxlinks] of Abstract Packet Channel(Data_Transfer_End)

individual queue;

Abstract_Bax_Channel(Data_Transfer End) individual queue;

amy[Z] of Data_Transfer_Control_Channel(Data_Transfer_End)

common queue;

Event_Log_Channel(Event_End) common queue;

g"- 8 ¥

module PACKET_TRANSFER_TYPE systemprocess(link: Link Type); { FTLO

pc: Abstract_Packet Channel(Packet Transfer_End) individual queue;
mc: Mailbox_Access_Channel(Packet_Transfer_End) individual queue;
el: Event_Log_Channel(Event_End) common queue;

end;
module MAILBOX_CONTROL_TYPE systemprocess;

ip

mc: array(maxlinks] of Mailbox_Access_Channel(Mailbox_End)
individusal queue;

cc: array[2] of Mailbox_Admin_Channel(Mailbox_End) common queve;
ts: Telemetry_Stroage_Channel(Mailbox_End) individual queue;
el: Event_Log_Channel(Event_End) common queue;

end;

module PASSWORD_CONTROL_TYPE(first_password: Password_Type;
shuffle:Shuffle_Type); systemprocess;

ip
cc: array[2] of Password_Control_Channel(Password_End) common queue;
el: Event_Log_Channel(Event_End) common queue;

end;

112

L

w AUTO_CONTROL._TYPE systemprecess; { Automatic Housekeeping Functions }
?

ggggggggﬁgg

gggggﬁgﬁéﬁgg

ip
cC.
bax:

end;

module PRIMITIVE_SW_LOADER_TYPE systemprocess; { PHTX

Abstract_Bax_Channel(Data_Transfer_End) individual queue;
Data_Transfer_Control_Channel(Control_End) individual queue;
Telemetry_Control_Channel(Control_End) individual queue;
Password_Control_Channel(Control_End) individual queue;
Mailbox_Admin_Channel(Control_End) individual guene;
EPS_Control_Channel(Control_End) individual quene; -

:OommContxolChmncl(Omml |_End) individual queue;
: DCS_Control_Channel(Control_End) individual queue;

Satellite_Control_Channel(Auto_Control_End) individual quene;
Event I.og_Channel(Event_End) common queue;

module GROUND_CONTROL_TYPE systemprocess; { Command Functions }

Abstract_Bax_Channel(Data_Transfer_End) individual queue;
Data_’ Transfer Control Channel(Control_End) individual queue;
Telemetry Control _Channel(Control_End) individual queue;
Password_Control_Channel(Control_End) individual queue;
SW_ Load_ _Control_Channel(Control_End) individual queue;
Maxlbox Admin _Channel(Control_End) individual queue;
EPS_Control_Channel(Control_End) individual queue;

: Comm_Control_Channel(Control_End) individual queue;
: DCS_Control_Channel(Control_End) individual queue;

Satellite_Control Channel(Ground_Control_End) individual queue;
Event_Log_Channel(Event_End) common queue;

SW_Load_Control_Channel(Loader_End) individual queue;
Abstract Bax _Channel(Data_Transfer_End) individual queue;

module TELEMETRY_GATHER_TYPE systemprocess; { Automatic Telemetry Gathering }

ip

g-“f%;&. 8

array{2] of Telemetry_Control_Channel(Telemetry _Gather_End)
common queue;

A/D_Control_Channel(Command_End) individual queue;
Event_Log_Channel(Event_End) common queue;
Telemetry_Storage_Channel(Telemetry_End) individual queue;

113

module A/D_DRIVER _TYPE systemprocess; { Driver for Analog-Digital Conv HW }

ip
ad: A/D_Control_Channel(A/D_Converter_End) individual queue;
end;

module EVENT LOGGER_TYPE systemprocess;

el: array[maxlinks + 6] of Event_Log_Channel(Log_End) common queue;
end;

module EPS DRIVER_TYPE systemprocess;

:dcc: array(2] of EPS_Control_Channel(EPS_Driver_End) common queue;
H
module COMM_DRIVER _TYPE systemprocess;
» cc: array[2]) of Comm_Control_Channel(Comm_Driver_End) common queue;
end;
module DCS_DRIVER_TYPE systemprocess;
::dec: array[2] of DCS_Control_Channel(DCS_Driver_End) common queue;
H

{ Module Body Definitions }
body PRIMITIVE_AX25_BODY for PRIMITIVE_AX25_TYPE; external;

bedy DATA_TRANSFER_BODY for DATA_TRANSFER_TYPE;
{ AX.25 handler - uses resources of BAX
coast
mail_ssid = Ox01; { SSID of this module
maxclients = amy uchar; { the max number of ’active users at any time
t_timeout = any uchar; { number of seconds for frame time-out timer.
mﬁm = 0x07; { frame sliding-window size.
= any uchar; { max # of retries for outgoing frame
packakngth=max_pda+2; { max size of FTLO level packet

type
Client Num = 0..maxclients;
Client = pecord

callsign: Callsign_Type;
last comm_time: ulong;
data_in_progress: boolean;
end;
Pac_Data = array[packer_length) of uchar;
Client_Array = array[maxlinks) of Client;
Data_Record = record
running_length: uint;
final _length: uint;

data: Pac_Data;
end;
Data_Array = array[maxlinks] of Data_Record;
var
data: Pac_Data;
length: uint;
in_dat: Data_Array; { Array of incoming data on each link
clients: Client_Array,
cb: Control_Block;
num_clients: Client_Num;

new_user_lockout: boolean;
all_user_lockout: boolean;

packet: Packet_Type;
transmit_ok: boolean;
i uchar; { general purpose loop counter/ index
b: Bit_Type;
I Link_Type;
state NORMAL, BUSY; { States of DATA_TRANSFER_BODY

stateset EITHER = [NORMAL,BUSY];

115

Ayt ngt Nyt gt gt gt g’

function CONCAT(a, b: Pac_Data): Pac_Data;
primitive; { Concatenates the array ’'b’ to the end of array

{ ‘a’, and returns the combined array of uchars.

function PACKET _LEN(d: Pdata): uint;
PACKET _LEN :=] _BIT_SHIFT(left, 3, INT(C_BIT_AND(d[1), 0xEQ)));

PACKET_LEN := PACKET_LEN + INT(d[0]) + 2;
end;

procedure FILL_PACKET(data: Pac_Data; var packet: Packet_Type);

primitive; {Takutheucharsfmmamydataandplam
{ them, in order, into the record structure of
{ ’packet’.

initialize { DATA_TRANSFER_BODY

to NORMAL

begin

for i := 0 to maxlinks do clients{i].callsign := ’none’;
QAX_CLEAN_CB(cb);
cb.my_call := pansat_call,
cb.my_ssid : = mail_ssid,
cb.tl := ¢_timeous;
cb.maxframe : = max _frames;
cb.retry := max_tries;
cb.paclen := max_fdat;
num_clients := 0;
new_user_lockout : = false;
all_user_lockout : = false;
transmit_ok := true;
output bax.qax_claim(cb);
end;

trans
from EITHER to same
when bax.qax_input
provided in_cp.kind = gar_state and in_cb.]_state = gas_disconnected
begin
if in_cb.callsign < > nps_call then num_clients : = num_clients - 1;
clients{in_cb.link].callsign := 'none’;
output pclin_ch.link].disconnect;
end;

116

' oyt Nagad Vst

begin { No action required - discard frame

F new_user_lockout : = true;
end;

from NORMAL to same
when cc[b].unlock

provided 1_kind = new

i new_user_lockout : = false;
end;

117

F |

from EITHER to same
whnpe[l].mpopse_pccku
provided transmit_ok

begin
] length : = PACKET LEN(response) + 2;
i=0
while i < length do begin
while i < out_cb.paclen and i < length do begin
datafi] : = response{i);
i=i+1;
end;
output bax.qax_data(1, out_cb, data, i);
!engﬂ:):slﬂmh'i;
i:=0;
end;
end;

from NORMAL to same
_ when bax.gax_input
provided in_cb.kind = gat_state and in_cb.] _state = gas_connect_pend
begin
i in_cb.his_call = nps_call then begin
clientsfin_cb.link].callsign : = aps_call;
clientsfin_cb.link].last comm_time := GET_TIME();
output bax.qax_con_acyt;
output pcfin_cb.link).connection(nps_call);
]
else
if num_clients < maxclients and not new_user_lockout then begin
num_clients := num_clients + 1; -
clients{in_cb.link].callsign := in_cb.his_call;
clientsfin_cb.link].last comm_time := GET_TIME();
output bax.qax_con_acpt;
output pcfin_cb.link].connection(in_cb.his_call);

9
else output bax.qax_con_re;j;
end;

118

" frem NORMAL to BUSY
whea ccfb]. Jockout
provided 1 kind = all
begin

all_user_lockout : = true;

new uaatlockout = true;

for i = 1 to maxlinks do

if clients]i].callsign < > ’none’ and clients[i).callsign < > nps_call then

ed output qax_busy(i);

from BUSY to NORMAL
when cc[b].unlock
provided |_kind = all
begin

all_user_lockout : = false;

fori = 1 to max_links do

if clients[i].callsign < > ’none’ and clients[i].callsign < > nps_call then
output gax_unbusy(i);

end;

from BUSY to same
when bax.qax_input
provided in_cb.kind = gaz_siate and
in_cb.1_state = gas_connect_pend and
in_cb.his_call = nps_call
begin
clients[in_cb.link].callsign : = nps_call;
clientsfin_cb.link].last comm_time := GET_TIME();
output bax.qax_con_acpt;
output pclin_cb.link].connection(nps_call);
end;

119

from EITHER to same

when bax.gax.input

provided in_cb.kind = gas_data
begin

i:= in_cb.link;
clients{i).last_ comm_time : = GET_TIMEC();
¥ clients{i).data_in_progress then begin
data := in_dat{i).data;
length := in_dat{i].running_length;
in_datfi).data : = CONCAT(data[0..length], idata);
length : = length + datal;
if length < in_datfi).final length then
in_dat[i].running_length : = length;
eise begin
clientsfi).data_in_prograss : = false;
FILL_PACKET(in_datfi].data, packet);
output pcli].command_packet(packet, in_dat[i].final_length-2);
end;
else begin
length := PACKET_LEN(idata);
if datal < length thex: begin
clients(i].data_in_progress : = true;
in_dat{i}.data : = idata;
in_dat{i}.running_length := datal;
in_dat{i].final length := length;
else begin
FILL_PACKET(idata, packet);
output pclin_cb.link].command_packet(packet, length - 2);
end;
end;
end;

end; { of Data_Transfer_Body }

bedy PACKET_TRANSFER_BODY for PACKET_TRANSFER_TYPE;

const

var

del_resp

no_active_list
active_list

p:
client_callsign:
selection_active:
err_code:
current_ul_mail:
current_ul_offset:
current_d!_mail:
current_dl_offset:
data_length:
select:

{ Constants for PACKET _TRANSFER_BODY)}
= 0x00; { Packet Types }
= 0x01;
= 0x02;
= 0x03;
= Ox04;
= 0x05;
= 0x06;
= 0x07;
= 0x08;
= 0x09;
= O0x0A;
= Ox0B;
= 0x0C;
= 0x0D;
= Ox0E; { There is no difference between the short and long }
= 0xOF; { dir formats- both send complete headers.)
= 0x10;
= Ox11;
= Ox1E; { Delete a file... not provided for in FTLO.
{ For del_cmd, the following packet fields apply:
{ length_Isb := Ox04; hl := OxIE;
{ info[0..3] := mail_number: ulong.
= O0x1F; { Not provided for in FTLO.
{ Thefoliowing packet fields apply:
{ lenght_Isb := 0x01; hl := OxIF;
{ info[0] := error_code: uchar.
= 0x00; { These are the FTLO login flags, assuming
= 0x08; { PACSET File Headers are Not used

Packet_Type;

Callsign_Type;

uchar;

uchar;

ulong; { mail_number of file currently being uploaded. }
ulong; { Number of next byte to be uploaded in current file.}
ulong; { mail_number of file currently being downloaded. }
wlong; { Num of next byte to be downloaded in current file.}
Pdat_Len;

Pdata; { Raw select instruction. }

Sapt Nyl Nyt oyl Wal o Sl gt o oyl

121

_k

{ States of PACKET_TRANSFER_BODY }
statt UL/DL_UNINIT, WAIT_MAILBOX, UL/DL_CMD_WAIT, UL_DATA_RX,
UL_ABORT, DL_FILE_DATA;

stateset ANY = [UL/DL_UNINIT, WAIT_MAILBOX, UL/DL_CMD_WAIT,
UL_ABORT, DL_FILE_DATAJ;

{ Function Declarations for }
{ PACKET_TRANSFER_BODY }
function CURRENT_COMMAND(packet: Packet Type): uint;
CURRENT_COMMAND := C_BIT_AND(packet.hl, Ox1f);
end;
{ Procedure declarations for }
{ PACKET_TRANSFER_BODY }
procedure FORMAT_LOGIN_RESP(login_flag: uchar; var packet: Packet Type),
var login_time: ulong;
begin
packet.length_lIsb : = 0x05; { 5 byte information field }
packet.hl := login_resp; { login_resp Packet Type }
packet.info[0..3] := GET_TIME(),
packat.infof4] : = login_flag;
end;
procedure FORMAT _UPLOAD_GO_RESP(file_no, offset: ulong; var packet:
Packet_Type);
packet.length_Isb : = 0x08; { 8 byte information field }
packet.hl := UPLOAD_GO_RESP;
packet.info[0..4] : = file_no;
packet.info[5..7] : = offset;
end;
procedure FORMAT_NI_RESP(tag: uchar; var packet: Packet_Type);
packet.length_lIsb := 0x00; { No information }
packet.hl : = tag;
end;

122

 preseiere FORMAT UL_ERROR_RESP(error: uchar; var packet: Packet_Type);
begin

packet.length Isb := 0x01;

packet.hi := ul_error_resp;

packet.info[0] : = error;
end;

procedure FORMAT_UL_NAK_RESP(error: uchar; var packet: Packet Type);
begin

packet.length _Isb : = 0x01;

mhl V= ld__Mk_NSP.'
udminm 1= error;

procedure FORMAT_SELECT_RESP(num: uint; var packet: Packet_Type);

begin
packet.length_Isb := 0x02;
packet.hl : = select_resp;
packet.info{0..1] : = num;
end;

procedure FORMAT DL_ERROR_RESP(error: uchar; var packet: Packet_Type);
begin

packet.length_Isb : = 0x01;

packet.hl : = dl_error_resp;

packet.info{0] : = error;
end;

procedure FORMAT_DEL_RESP(error: uchar; var packet: Packet Type);
begin

packet.length_Isb := Ox01;

packet.hl : = del_resp;

packet.info[0] : = error;
end;

123

procedure FORMAT_DATA(len: Pdat_Len; dat: pdata; var packet: Packet_Type);

var high byte: uchar;
msb: uint;
begin
packet.length_lsb : = GET_LSB(len);

high_byte := GET_MSB(len);

msb := I_BIT_SHIFT(left, 5, INT(high_byte));
packet.hl := GET_LSB(msb);
packet.info[0..len-1] : = dat[0..len-1J;

initialize { PACKET_TRANSFER_BODY

trans ' {Transition Part of PACKET_TRANSFER_B0DY}

begin { Link has been terminated by client or satellite.
5 { No action required.

from UL/DL_UNINIT to WAIT_MAILBOX
when pc.connection
begin
client_callsign : = callsign;
output mc.active_sl_req(callsign);
end;

from WAIT MAILBOX to UL/DL_CMD_WAIT
when mc.active_sl_resp
begin
if sl then selection_active : = active_list;
else selection_active := no_active_ lm
FORMAT | LOGIN _RESP(“selection _active, p);

output pe.response_packet(p);
end;
from UL/DL_CMD_WAIT to same { Defaclt condition for unexpected packet or
when others { format.
begin

FORMAT_UL_ERROR_RESP(er_ill_formed_cmd, p);
output w-mnw_mm(pP);

124

on m_m_wm te WAIT_MAILBOX
when pe.commend_packet
provided CURRENT _COMMAND(command) = upload_cmd
begle
output mc.mail num_req(client_callsign, command[2..5], command[6..9]);
ead;

from WAIT_MAILBOX to UL/DL_CMD_WAIT
when mc.mail num_resp
provided error_code < > no_error
begin
FORMAT_UL_ERROR_RESP(error_code, p);

output pc.response_packet(p);
end;

from WAIT_MAILBOX to UL_DATA_RX

when mc.mail_num_resp

provided error_code = no_error

begin
current_ul_mail : = mail_number;
current_ul_offset : = offset;
FORMAT_UPLOAD_GO_RESP(mail_number, offset, p);
output pc.response_packet(p);

from UL_DATA_RX to UL/DL_UNINIT
when pc.disconnect { data link terminated by client or satellite.
begin
output mc.mail_close_req(current_ul_mail, current_ul_offset, false);
end;

from UL_DATA_RX to UL/DL_CMD_WAIT
when others { Default condition for unexpected packet or

begin { format.
output mc.mail_close_req(current_ul_mail, current_ul_offset, false);
FORMAT_UL_ERROR_RESP(er_ill_formed_cmd, p);

output pc.response_packet(p);
end;

125

m

from UL_DATA_RX to WAIT_MAILBOX
when fc.command_packet
provided CURRENT_COMMAND(command) = data_end
begin
output mc.mail_close_req(current_ul_mail, current_ul_offset, true);
end;

from WAIT_MAILBOX to UL/DL_CMD_WAIT

when mc.mail_close_resp

begin
if error_code = no_error then FORMAT_NI_RESP(ul_ack_resp, p);
eheFORMAT UL _ NAK _RESP(error_ code, p);

output pc.response_packet(p);
end;

from UL_DATA_RX to WAIT _MAILBOX
when pc.command_packet
provided CURRENT_COMMAND(command) = data
data_length : = datal;
output mc.mail_recv(current_ul_mail, current_ul_offset, lata_length, command.info);
end;

from WAIT_MAILBOX to UL_DATA_RX
when mc. maxl recv_resp
provided error_code = no_error
begin
current_ul_offset : = current_ul_offset + data_length;
end;

from WAIT_MAILBOX to UL_ABORT
when mc.mail_recv_resp
provided error_code < > no_error
begin
FORMAT_UL_NAK_RESP(error_code, p);
endoutput pc.response_packet(p);
9

from UL_ABORT to UL/DL_CMD_WAIT
when others { Default condition for unexpected packet or
] { format.
FORMAT_UL_ERROR_RESP(er_ill_formed_cmd, p);
doutwt pe.response_packet(p);
end;

S Syt

ABORT te UL/DL_CMD_WAIT

whim pc.command_packet _

provided CURRENT COMMAND(command) = data_end
begin { No action required
onds

froem UL_ABORT to same

whea pc.command_packet

provided CURRENT_COMMAND(command) = daia
begin { No action required
end; ’

from UL/DL_CMD_WAIT to WAIT_MAILBOX

when pc.command_packet

provided CURRENT_COMMAND(command) = del_cmd
begin

output mc.mail_del_req(client_callsign, command.info[0..3]);
end;

from WAIT_MAILBOX to UL/DL_CMD_WAIT
when mc.mail_del_resp

FORMAT_DEL_RESP(error_code, p);

output pc.response_packet(p);
end;

from UL/DL_CMD_WAIT to WAIT MAILBOX
when pc.command_packet
provided CURRENT_COMMAND(command) = select_cmd
begin
select : = command.infof0..datal-1];
output mc.mselect_req(client_callsign, select);
end;

127

frem WAIT_MAILBOX to UL/DL_CMD_WAIT
whes mc.mselect_resp
begin
¥ error_code = no_error them begin
:eleedon active ;= active_list;
FORMAT SELECT RBSP(num_sel, p);
end;
clse begin
selection_active := no_active_lisr;
FMAT DL_ERROR RBSP(error_code, p);
end;
e.d;mtlmlw-r!%clmm_lncm(p);

from UL/DL_CMD_WAIT to WAIT_MAILBOX
when pc.command_packet
provided (CURRENT_COMMAND(command) = dir_short_cmd
or CURRENT_COMMAND(command) = dir_long_cmd)
and (
(command.infof0..3} < > 0x00000000 and command.infof0..3] < >
OxFFFFFFFF)
or selection_active = active_list)
begin
it command.info{0..3] = 0x00000000 or command.info[0..3] = OXFFFFFFFF then
owtput me.dir_req(client_callsign, 0x00000000);
else
output mc.dir_req(client_callsign, command.info{0..3]);
end;

from UL/DL_CMD_WAIT to same
when pc.command_packet
provided (CURRENT_COMMAND(command) = dir_short_cmd
or CURRENT_COMMAND(command) = dir_long_cmd)
and not (
(command.info{0..3] < > 0x00000000 and command.info{0..3] < >
OxFFFFFFFF)

or selection_active = active_list)

FORMAT_DL_ERROR_RESP(er_selection_empty, p);

output pc.response_packet(p);
end;

ﬂ.wmm COMMANIX
X command) = dl_nak_cmd

begn { no action required }
end;

from WAIT_MAILBOX to UL/DL_CMD_WAIT

whea mc.directory

begin { Each Flle Header must = < 200 bytes }

¥ no_al then selection_active : = no_acrive_list;
flen < > 0 then bqh
FORMAT _DATAC(len, dir, p) { Assumes 10 file headers/DataPacket }
output pc.response_packet(p);
FORMAT_NI_RESP(data_end, p);
. output pc.response_packet(p);
end;
else begin
FORMAT_DL_ERROR_RESP(dir{0}, p)
output pc.response_packet(p);
end;
end;

from UL/DL_CMD_WAIT to same

when pc.command

provided CURRENT_COMMAND(command) = download_cmd and (
(command.infof0..3] = 0x00000000 or command.info{0..3] = OxXFFFFFFFF)
and selection_active = no_active_list)

FORMAT_DL_ERROR_RESP(er_selection_empty, p);
end,m pe.response_packet(p);

from UL/DL_CMD_WAIT to DL_FILE DATA

when pc.command

provided CURRENT_COMMAND(command) = download_cmd and (
(command.info{0..3] < > 0x00000000 and command.info{0..3] < >

OxFFFFFFFF)
or selection_active = active_list)

current_dl_offset : = command.info{4..7];

current_dl_mail : = command.info{0..3];

#f current_dl_mail : = OxXFFFFFFFF then current_dl_mail : = 0x00000000;

output mc.mail_req(client_callsign, current_dl_mail, current_dl_offset);
end;

129

frem DL_FILE DATA to UL/DL_CMD_WAIT

when mc.mail_resp

provided length = 0 and mail{0] < > 0 { Error flag from mailbox
begin

i no_al thea selection_active : = no_active_list;
FORMAT_DL_ERROR_RESP(mail{0}, p);
d‘m pe.response_packet(p);

frem DL _FILE DATA to same
whea mc.mail_resp

provided leagth < > 0 or (mailf0] = 0 and length = 0)
begin :

if no_al then selection_active : = no_active_list,
if length = O then begin
. FORMAT _NI_RESP(data_end, p);

output pc.response_packet(p);

else begin
FORMAT_DATA(length, mail, p);
output pc.response_packet(p);
current_dl_offset := current_dl_offset + length;
#f current_dl_mail = 0x00000000 then current_dl_mail : = mail_number;
output mc.mail_req(client_callsign, current_dl_mail, current_dl_offset);
end;
end;

from DL_FILE DATA to UL/DL_CMD_WAIT
when pc.command_packet
provided CURRENT_COMMAND(command) = dl_ack_cmd
begin
FORMAT_NI_PACKET(dI_completed_resp, p);
output pc.response_packet(p);
output mc.dl_ack(client_callsign, current_dl_mail);
end; .

from DL_FILE DATA to UL/DL_CMD_WAIT
when pc.command_packet
provided CURRENT_COMMAND(command) = DL NAK_DMD
begin
FORMAT_NI_PACKET(dl_aborted_resp, p);
d’m pe.response_packet(p);

130

e g e e

% DL FILE_DATA to UL/DL_CMD_WAIT
FORMAT_DL_ERROR_RESP(erv_ill_formed_cmd, p);
output pc.response_packet(p);

end; { of PACKET_TRANSFER_BODY

131

v

gt g8

body MAILBOX_CONTROL_BODY for MAILBOX_CONTROL_TYPE;

const
eof ..; { End Of File marker used by operating system. }
null =, .; { The null pointer. A pointer which is null points }
{ to nothing, and marks the end of a linked list. }
empty_string =..; { An empty string as defined by operating system. }
mailbox_full = any uint; { Parameter for FORMAT_EVENT_REPORT }
grab = 0x01; { A parameter needed by ’qax_claim’. }
mailbox_ssid = 0x01;
mail_flag = 0OxbbS5;
min_file_length = 0x00000029; { Min of 41 bytes in the initialized mail file. }
max_ext = O0x03E7; { Higest mail name extension = 999 dec. }
default_stay time = any ulong; { Default mail life, in seconds from upload. }
numtypes = any uchar; { Number of different file types allowed. }
numcomps = any uchar; { Number of different file compression }
methods allowed. }
{ Item numbers for fields in the PANSAT file }
{ header, for use in ’select’ statements. }
y/ = 0x00; { flag }
mn = 0x02; { mail_number }
ml = 0x06; { length }
S = 0x0A; { file_type }
ct = Ox0B; { compression_type }
bo = 0x0C; { body_offset }
dc = Ox0E; { download_count }
sc = 0xOF; { source }
pr = 0x15; { priority }
ut = 0x16; { upload_time }
et = Ox1A; { expire_time }
na = Ox1E; { mail_name }
ex = 0x26; { mail_extension }
nd = 0x29; { num_destinations }
ds = 0x2A; { destination callsigns or paths }
ti = 0x54; { title }
kw = 0x74; { keywords }
pan_sel = OxFF; {Relational operators in ’select_struct’ }
equal_int = 0x00; { equal to an unsigned 1,2 or 4 byte integer }
equal_str = 0x03; { equal to a string }
great_int = 0x10; { greater than an unsigned 1, 2 or 4 byte integer }
less_int = 0x20; { less than an unsigned 1, 2 or 4 byte integer }
not_equ_int = 0x30; { not equal to an unsigned 1, 2 or 4 byte integer }
not_equ_str = 0x33; { not equal to a string }
132

]

gr_oqu_im = 0x40; { greater than or equal to an unsigned integer }
le_equ_bu = 0x50; { less than or equal to an unsigned integer }
l_and = 0x80; { logical 'and’ }
Lor = OxE0; { logical 'or’ }
type { types for MAILBOX_CONTROL_BODY. }
File_Ext = 0..max_ext;
Ext_Type = array(3] of uchar;
Mail_Array = array[max_mail] of ulong; { Array of mail_numbers }
Select_Li = record
num_sel: Num_Mail;
sel Mail_Array;
end;
Source_Record = record
source_num uint;
call: Callsign_Type;
sclected: Select_List;
next_mail: Num_Mail;
next_dir: Num_Mail;
next_ext: File_Ext,
num_act: uchar;
next_num: “Source_Record; { Pointer to a source record. }
next_call: “Source_Record;
]
Letter_Array = array[26] of “Source_Record;
File_Desig_Array = array[numtypes] of uchar;
Compression_Array = array[numcomps) of uchar;
S_Name = array[8] of uchar;
File_Order = (date, name);
var
done: boolean;
filetype: File_Desig_Array;
comptype: Compression_Array;
next_source num: uint;
nsel: Num_Mail;
file name: Name_Type;
rfile, tfile: “File_Type;
first_Jet: Letter_Array;
mail_head: “Source_Record;
templ, temp2 “Source_Record;
mail_num ulong;
ext: Ext_Type;
133

time: ulong;
link: Link Type;
file_length: ulong;
file_offset: ulong;
body_offset: uint;
file_ervor: uchar;
sclectl: Select_List;
num_dest: uchar;
cs: Callsign_Type;
i uint; { loop counter}
ik uchar;
dir_dat: Pdata;
report: Event_Report_Type;
order: File_Order;
sname: S_Name;
d_file: File_Type;
state WAIT;
function STRING_COMPARE(strl, str2; “Byte_Array): boolean;
primitive; { Compares ’strl’ to sir2’ and returns true if they }
{ are the same, otherwise returns false. }

function STRING_FIND(strl, str2: “Byte_Array): boolean;

primitive; { Looks to see if ’strl’ is contained anywhere within }
{ ’str2’. Returns true if it is, and false if its not. }

function GET_LENGTH(file_name: Name_Type): ulong;

primitive; { Returns the length of the stored file 'file_name’ }

fonction GET_LSI(number: ulong): uint;

primitive; { Takes a 4 byte number and returns the least }
{ significant 2 bytes. }

function GET_MSI(number: ulong): uint;

primitive; { Takes a 4 byte number and returns the most }
{ significant 2 bytes. }

function MEM_SPACE(): ulong;

primitive; { Returns the number of bytes of available }

{ space in mail box memory. }

134

functisn SIZE_OF(type_indicator): uint;

primitive; { Takes as an argument any type and retums the }
{ number of bytes needed to store a variable of }
{ that type. }

function ALLOCATE(size: uint): pointer_type;

primitive; { Allocates a block of dynamic memory. The }
{ number of bytes in the block is indicated by }
{ ‘’size’. The function returns a pointer to the }
{ newly allocated block. }

function EXISTS(file_name: Name_Type): boolean;

primitive; { Takes a complete DOS file name as an argument }

{ and returns

{ true if an active file by that name currently exists}
{ in the mass storage memory, otherwise returns }
{ (false. -}

function GET_FIRST _FILE(order: File_Order; fn: S_Name): Name_Type;

primitive; { Returns the name of the first active (not deleted) }
mail file in the mass storage memory. “First" is }
defined as the oldest file (the one with the }
earliest creation date) if *order’ is date. If 'order}
is name then ’fn’ is a DOS file name minus the }
extension, and the file name returned is the one }
with the "first" alpha-numeric extension }
associated with the ’fn’ given. If no file matches}
the critria given, then empry_string is returned. }

A, i, g, g, i, i, putmy g,

function GET_NEXT_FILE(order: File_Order; prev_file: Name_Type): Name_Type;

primitive; { Starting at *prev_file’, searches the mail area of }
mass storage memory for the next active file. If }
‘order’ is date, the next file is the one with the }
next later creation date. If *order’ is name then }
the next file is the one with the same leading 8 }
characters and the next higher alpha-numeric }
extension. This function returns the complete file}
name, if found and returns empry_string if no file}
matching the criteria exists. }

o Y e Y e ¥ ants Yonten Lot X anten X anten

135

function OPEN_FILE(file_name: Name_Type): “File_Type;

primitive; { Opens the file designated by *file_name’ for }
reading or writing. Retumns a pointer to the }
beginning of the file. If the file does not already }
exist, it will be created, and will be empty except}
for an eof mark. }

PP, b, pny iy

function READ_FILE(qty, size: uvint; var file_ptr: “File_Type): Byte_ Array;

primitive; { Reads blocks of bytes from memory, starting at the}
location indicated by 'file_ptr’. The number of }
blocks is determined by ’qty’ and the number of }
bytes in each block is determined by ’size’. The }
bytes are placed in the (pre_allocated) variable or}
buffer space designated on the left side of an }
assignment statement of which this function call }
is the right side. After the read, *file_ptr’ will }
point to the byte following the last byte read. }

P, priam, g, g, puu, gty puie, gty

procedure WRITE_FILE(v: Byte_Array; num_bytes: uint; var file_ptr: “File_Type);
primitive; { Writes the number of bytes indicated by }
’num_bytes’ to memory starting at the location }
indicated by ’file_ptr’. The bytes are copied }
beginning from the first byte of *v’. 'v’ can be a}
variable, buffer name or file pointer. After the }
write, file_ptr’ will point to the byte following }
the last byte written. If there is already data in }
the file at the position indicated by ’file_ptr’, that}
data will be overwritten. If writing to the end of }
a file, the eof marker will be moved to indicate }
the new end of the file. }

P, puian, g, in, Py, g, phm, pi puin, gty

procedure FILE_SEEK(num_bytes: int; var file_ptr: “File_Type);
primitive; { Moves the file pointer ’file_ptr’ the number of }
{ bytes designated by 'num_bytes’, without reading}

procedure FILE_SEEK_SET(num_bytes: int; var file_ptr: “File_Type);

primitive; { Same as "FILE_SEEK’, except that *file_ptr’ is firs}
{ moved to the beginning of the file, and then }
{ advanced the number of bytes indicated by }
{

'num_bytes’. }
procedure DELETE_FILE(file_name: Name_Type);
primitive; { Deletes the file designated by ’file_name’ }

136

precedure CLOSE_FILE(file_name: Name_Type);

primitive; { Closes the file designated by 'file_name’
procedure FREE(var node_ptr: pointer_type);
primitive; { Deallocates a dynamic memory node, and makes
{ the pointer null.
137

}
}

. P

procedure DECREMENT_MSG(tcall: Callsign Type; var m_head: “Source_Record;
letter: Letter Amy),
var templ, temp2, head, del_node: “Source Record;
index: uchar;
begin
del_node := null,
index := tcall[0] - Ox41;
head : = letter{index];
if head < > null then begin
if head -> call = tcall then begin
head -> num_act := head -> num_act - 1;
if head -> num_act < = 0 and head- > selected.num_sel <= 0 then begin
del_node := “head;
lettes{index] := head -> next_call;
end;
end;
else begin
temp2 := head,;
templ := head -> next_call;
while templ < > aull do begin
if templ -> call = tcall then begin
templ -> num_act := templ -> num_act - I;
if templ -> num_act <= 0 and templ-> selected.num_sel <=0
then begin
del_node := templ;
temp2 -> next_call := templ -> next_call;
end;
end;
else begin
temp2 := templ;
templ := templ -> next_call;
end;
end;
end;
if del_node < > null then begin
head := m_head;
if head = del node then begin
m_head := head -> next_num;
FREE(del_node);
end;
else begin
temp2 := head; .
templ := head -> next_num,
while templ < > mull do begin

138

if empl = del_node then begin
temp2 -> next_num := templ -> next_num;
FREE(del_node);

end;

else hegin
temp2 := templ;
templ := templ -> next_num;

fanction GET_EXT(num_ext: uint): Ext_Type;
var digit: uint;
begin
digit := num_ext/100;
GET_EXTI0] : = digit + 0x0030;
num_ext ;= num_ext - (digit * 100);
digit := num_ext/10;
GET_EXT[1] := digit + 0x0030;
num_ext := num_ext - (digit * 10);
GET_EXTJ2] := num_ext + 0x0030;

end;

139

procedure INCREMENT_MSG(tcall: Callsign Type; var next_sn: uint;
m_head: “Source_Record; letter: Letter_Array; mail_num: ulong; ext: Ext_Type);

var templ, tempz, new_node: “Source_Record;
index: uchar;

begin
index := tcallf0] - Ox41;
templ := letter{index];
while templ < > null and templ->call < > tcall do begin
temp2 := templ;
temp] := templ->next_call;
end;
if templ = null then begin
new_node := ALLOCATE(1, SIZE_OF(Source_Record));
node->soutce num := next_sn;
GET NEXT NUM(m head, next_sn);
new | ‘node->call : = tcall;
new_node-)selecwd.num_sel += 0x0000;
new_node- > next_ext := 0x0002;
new_node->num_act := 0x01;
new_node- > next_num := null;
new node->next call := nmull;
temp2~>next call := new _node;
mail_num := new_node- > source_num * 0x00010000 + 0x0001;
ext := "001";
templ := m_head;
if temp1-> source_num > new_node- > source_num then begin
new_node->next_num := m_head;
m_head := new_node;
end;
else begin
while templ-> source_num < new_node- > source_num and
templ->next_num < > null do begin

temp2 : = templ;
templ := templ->next_num;
end;

if templ->next_num = null then
templ->next_num := new_node;

else begin
new_node->next_num := templ;
temp2->next num := new_node;

end;

end;
end;

140

oloe begin
templ->num_act := templ->num_act + 1;
mail_num := templ-> source_num * 0x00010000 + templ-> next_ext;
ext := GET_EXT(templ- > next_ext);
ltcmpl->mt ext < max_ext then
templ->next_ext := anl->next__at +1;
else templ- > next_ext : = 0x0001;

end;
end;
procedure COMPACT MAIL(var mlist: “Source_Array; llist: Letter_Array);
begin { This function deletes mail files which are past their}
{ expiration dates. }
var this_file: Name_Type;
rfile: “File_ ;
now: ulong;
expire: ulong;
call: Callsign_Type;
now := GET_TIME();

this_file := GET_FIRST_FILE(date, empty_string);
while this file < > empty_string do begin
rfile : = OPEN_FILE(this_file);
FILE_SEEK(26, rfile);
expire := READ_FILE(1, 4, rfile);
if expire <= now then begin
FILE_SEEK(2, rfile);
call := READ_FILE(1, 6, rfile);
DELETE_FILE(this_file);
DECREMENT_MSG(call, mlist, llist)
end;
else CLOSE_FILE(this_file);
this_file : = GET_NEXT_FILE(date, this_file);

141

procsdure GET_NEXT_NUM(mlist: “Source_Record, var next_sn);

var { Finds the next unused source number.

temp: “Source_Record;
done: booclean;
begin
done : = false;
while not done do begin
if next_sn < OxFFFF then
next_sn ;= next sa + 1;
lhenut:n -Ox(lm
temp := mlist;
while temp < > null and temp- > source_num < next_sn do
temp : = temp-> next_num;
if temp- > source_num < > next_sn then
done := true;
end;
end;

fonction MAKE FILE_NAME(source: Callsign Type; ext: Ext_Type):
begin

MAKE FILE NAME[0..1} := " *

MAKE FILE NAME[2..7) := source;

MAKE_FILE_NAME[8] := '.";

MAKE_FILE_NAMED..11] : = ext;
end;

142

Name_Type;

, m_m miist: “Source_Record; maum: ulong): Name_Type;

ar s 6 uint;
node: “Source_Record;
ext: Ext_Type;
source: Callsign_Type;
begin

s := GET_MSI(mnum); { source
¢ := GET_LSI(mnum); { extension
ext := GET_EXT(¢);
pode : = mlist;
whille node < > null and node- > source_num < > s do
node := node->next_num;
i node : = null then
GET_NAME := empty_string;
clse begin
source : = node-> call;
GET_NAME := MAKE_FILE NAME(source, ext);
end;
end;

procedure INITIALIZE_MAIL_FILE(source: Callsign_Type; mnum: ulong);
ext: Ext_Type; length: ulong);

}
}

var new_file: Name_ '

f: “File_
begin
new_file := MAKE FILE_NAME(source, ext);
f := OPEN FILB(neW file);
WRITE_FILE(mail_flag, 2, f);
WRITE, FILE(mnum, 4, f);
WRITE_FILE(length, 4, f);
CLOSE_FILE(new_file);
end; { Of Procedure INITIALIZE MAIL FILE. }

143

precedure RE_INIT_FILE(file_name: Name_Type; mail_num: ulong);

var r_file: “File_Type;
f_length: ulong;

1_file := OPEN_FILE(file_name);

FILE_SEEK(A, r_file);

f length := READ_FILE(1, SIZE_OF(ulong), r_file);

DELETE_FILE(file_name);

INITIALIZE MAIL_FILE(file_name{2..7], mail_num, file_name{9..11], f length);
end;

function CRC_CHECKS_OUTY(file_name: Name_Type; start: vint; stop: ulong;
crc: uint): boolean;
{ This algorithm assumes the crc is a simple check }
{ sum. }
var num bytes, i: ulong;

r_file: “File_Type;

sum: uint;

next_char: uchar;

if crc = 0x00 then CRC_CHECKS_OUT : = true;
else begin
sum := 0x00;
r_file : = OPEN_FILE(file_name);
FILE_SEEK(start, r_file);
for i := 1 to (stop - start) do begin
next_char := READ_FILE(1, 1, r_file);
sum := sum <+ next_char;
end;
CLOSE_FILE(file_name);
CRC_CHECKS_OUT := (sum = crc);
end;
end;

function CHANGE_CASE(str: Byte_Array; len: uchar): Byte_ Array;
var i uchar; { Changes any ASCII upper case letters found within}
{ ’str’ to lower case. Returns the modified string. }

fori:= 0tolen-1 do
if strfi] > 0x40 and str{i] < OxSB then str{i] : = str{i] + 0x20;
CHANGE_CASE : = str;
end;

begin

mmm file_same: Neme_Type; mail_sum: ulong;
filatype: File_Desig_Arrsy; comptype: Compression_Array):

var good, ok: boolean;
r_file:

& “File_Type;
¢, d: uchar;
i, body_offset: uint;
lo: ulong;
call: Caiisign_Type;
ext: Ext_Type;
good := true;

r_file := OPEN_FILE(file_name);

i:= READ FILE(1, 2, r_file); { Read flag

#i < > mail_flag then good : = false;

lo := READ_FILE(1, 4, r_file); { Read mail_number

if lo < > mail num then good : = false;

lo := READ_FILE(1, 4, r_file); { Read length

¥ lo < > GET_LENGTH(file_name) then good : = false;

c := READ FILE(1, 1, r_file); { Read file_type

ok := false;

for i := 0 to monsypes - 1 do { Check file_type against all valid file_types
if ¢ = filetypefi] then ok : = true;

if not ok then good : = false; { HEADER_CHECK, continued.

c := READ FILE(1, 1, r_file); { Read compression_type
ok := false;

for i := 0 to muncomps - 1 do { Check compression_type against all valid
if ¢ = comptypefi] then ok := true; { compression_types

if not ok then good : = faise;

body_offset := READ FILE(1, 2, r_file); { Read body_offset

¢ := READ FILE(1, 1, r fil)); { Read download_count

call := READ_FILE(1, 6, r_file); { Read source

call := CHANGE_CASE(call, 6);

if call < > CHANGE_CASE(this_file[2..7], 6) then
good := false; { Check source vs file_name

¢ := READ FILE(1, 1, r_file); { Read priority. What to do with it is undefined.

lo := READ FILE(1, 4, r_file); { Read upload time

if lo > = GET_TIME() then good : = false;

lo := READ _FILE(1, 4, r_file); { Read expiration time

if lo < GET_TIME() then good : = false;

i := READ FILE(], 2, r_file); { Read leading spaces in file name.
ifi < > this_file[0..1] then good : = false;

call := READ_FILE(1, 6, r_file); { Read file name

if CHANGE_CASE(call, 6) < > CHANGE_CASE(this_file[2..7], 6) ibw

145

- e oy e et et gt e - L d nyut L

ot [~ L > et oyt gt

good := false; { Check vs known file_name
ext := READ_FILE(1, 3, r_file); { Read file extension
¥ CHANGE CASB(ext,G) < > CHANGE_CASE(file_name{9..11}, 6) then
good : = false; { Check vs known file ext
¢ := READ FILE(1, 1, r_file); { Read num_destin: tions
¥ ¢ > 0x09 then good : = false;
i€ good then begin
if ¢ > 0x07 thea c := 0x07;
fori:=1tocdo { Read past all destinations }
call ;= READ FILE(1, 6, r_file);
body_offset : = body_offset - min_file_length - c*6;

c := READ FILE(1, 1, r_file); { Read title_length }
fori:=1ltocdo { Read title }
d := READ_FILE(1, 1, r_file);
body_offset : = body_offset - 1 - ¢;
¢ := READ FILE(1, 1, r_file); { Read keyword_length }
fori:=1tocdo { Read keywords }
d := READ _FILE(], 1, r_file);
body_offset : = body_offset - 1 - c;
body_offset : = body_offset - 4; { Account for 2 checksum uints }
if body_offset < > 0 then good : = false;
end;
HEADER_CHECK := good;
end; { of HEADER_CHECK() }

function MSG_TO(file_name: Name_Type; call: Callsign_Type): boolean;

var f “File_Type;
num_dest, i: uchar;
dest: Callsign_Type;
begin

MSG_TO := false;
f := OPEN_FILE(file_name);
FILE_SEEK(nd, f);
num_dest := READ FILE(1, 1, f);
ifnum dest > 0 and num_dest < 0x08 then do
fori:= 1to num dmdobegin
dest := READ_FILE(1, SIZE_OF(Callsign_Type), f);
if dest : = call then MSG_TO := true;
end;
CLOSE_FILE(file_name);
end;

var .
file_name: Name_Type;

f: “File

templ, temp2: “Source_Record;
new_node: “Source_Record;

num_dest, i uchar;

dl_count, j: uchar; { download count

begin

: uint;
num_found: Num_Mail;
8| list: Mail_Array;
m_num, ul_time: ulong; { mail_number, upload_time
num_found : = 0;
index := 0;

file_name := GET_FIRST_FILE(dare, empty_string);
while file_ name < > empty_string do begin
f: -OPENFILE(ﬁlename)
FILE_SEEK(mn, f);
m_num := READ_FILE(1, 4, f); °
PILESEEK(dc mi, f);
dl_count := READ_FILE(1, 1, f);
FlLESEEK(ut sc, 1);
ul_time := READ_FILE(1, 4, f);
FILESEEK(nd er, f);
num_dest := READ_FILE(1, 1, f);
CLOSE _FILE(file_name);
if ul_time > O then { Only consider completely uploaded files.
lfnumdm 0x00 or num_dest > Ox07 then begin { to "ALL’
num_found := num_found + 1;
shst[mdex mdex+3] = m_num;
index := index + 4;
end;
else if di_count < num_dest then
if MSG _TO(file_ name, call) then begin
num_found := num_found + 1;
shst[mdex mdex+3] = m_num;
index := index + 4;
end;
file_name := GET_NEXT_FILE(date, file_name);
end;
j := callf0] - Ox41;
templ := cs_array(j];

147

e’ et

P——-_————_-—f

while templ < > aull and templ->call < > call do begin
temp2 := templ;
templ := templ->next_call;
end;
i temp] = null then begin
new_node := ALLOCATE(1, SIZE_OF(Source_Record));
new_| _node ;= source_num := next_sn;
GEI‘ NEXT_NUM(m_head, n2xt_sn);
new node->all = call;
new node-)selem num_sel := num_found;
new node->seleeted sel := g list;
new | node->next mail : = 0x0000;
new_| node->next " dir : = 0x0000;
new_| node—>nut ext := 0x0001;
new_nod&)num_act 1= 0x00;
new_node- > next_num := null;
new node->next “call := null;
templ =m lwad
if temp1-> source_num > new_node- > source_num then begin
new. node->next num := m_head;
m head = new | node;
end;
else begin
while templ-> source_ num < new_node- > source_num and
templ->next_num < > null do begin
temp2 := templ;
templ := templ-> next_num;
end;
if templ -> next_num = null then
templ->next_num := new_node;
else begin
new_node- > next_num := templ;
temp2- > next_num := new_node;
end;
end;
end;
else begin
templ1- > selected.num_sel : = num_found;
temp1- > selected.sel := s_list;
templ-> next_mail : = 0x0000;
temp1- > next_dir : = 0x0000;
end;
nsel : = num_found;
end;

148

pressdure PANSAT_SELECTION(s_struct: Pdata; call: Callsign Type;
var m_head: “Sowurce_Record; cs amy unu _Array; next_sn: uint; nsel: Num_Mail;
esror: ucher);
var file_name: Name_Type;

: “File_Type;

s_list: Select_List;

templ, temp2: “Source_Record;

new_node “Soruce_Record;

dest_call Callsign_Type;

list i: uint;

m_num: ulong;

abort, ok: boolean;

num_s, i: uchar;

struct_i: uint;

header_item: uchar;

first, second: boolean;

relop, logop, j: uchar;

item_len, h_len: uchar;

s_int, hs_int: uchar;

m_int, hm int: uint;

l_i.nt, hl_in-t: . ulong;

h_string: Byte_Array;
num_dest, t_len: ;
ul_time: ulong;
begin
abort : = false;

num_s := s struct[1);
s _list.num _sel := 0;
list i := 0;
file_ _name := GET_FIRST_FILE(date, empty_string);
whtleﬁlename < > empty_string and not abort do begin
f := OPEN _FILE(file_name);
FILE_SEEK(mn, f);
m_num := READ_FILE(1, 4, f);
FILE_SEEK(ut - mi, f);
ul_time := READ _FILE(1, 4, f);
if ul _time > O then begin
ok : = false;
FILE_SEEK(nd - e, f);
num_dest := READ _FILE(1, 1, f);
lfnum dest = 0x00 or num_dest > 0x07 then ok : = true;
else
for j := 1 to num_dest do begin

149

s

dest_call := READ_FILE(1, 6, f);
if CHANGE_CASE(dest_call, 6) = CHANGE_CASE(call, 6) then
ok := true;
end;
if ok then begin
struct_i : = 2;
first : = true;
second : = false;
i:=0
while i < num_s - 1 and not abort do begin
relop : = s_structfstruct_i];
struct i := struct i + 1;
h_item : = s_struct[struct_i];
struct_i := struct_i + 1;
item_len := s_struct[struct_i};
struct_i := struct_i + 1;
if relop = equal_str or relop = not_equ_str then begin
compare_item := s_struct[struct_i..(struct_i + item_len - I)];
compare_item := CHANGE_CASE(compare_item, item_len);
struct_i : = struct_i + item_len;
if h_item < ds then begin
FILE_SEEK_SET(h_item, f);
h_string := READ_FILE(item_len, 1, f);
h_string : = CHANGE_CASE(h_string, item_len);
second := STRING_ COMPARE(h_string, compare_item);
if relop = not_equ_str then second := not second;
end;
else begin
FILE SEEK_SET(nd, f);
num_dest := READ_FILE(1, 1, f);
if h_item = ds then begin
if num_dest > 0 and num_dest < 0x08 then
if item_len = 6 then begin
for j := 1 to num_dest do begin
h_string := READ_FILE(1, 6, f);
h_string := CHANGE_CASE(h_string, 6);
if not second then
second := STRING COMPARE(h_string,
compare_item);
end;
end;
else second : = false;
else if num_dest > 0x07 then begin
h_string := READ_FILE(42, 1, f);

150

h_string := CHANGE_CASE(h_string, 42);
second : = STRING_FIND(compare_item, h_string);
end;
else second : = false;
if relop = not_equ_str then second : = not second;
e

if h_item = 7i then begin
FILE_SEEK(ds + num_dest*6, f);
t_len := READ _FILE(], |, f);
hstnng = READ_FILE(t_len, 1, f);
h_string : = CHANGE_CASE(h_string, t_len);
second : = STRING_FIND(compare_item, h_string);
if relop = not_equ_str then second : = not second;
end;
else
if h_item = kw then begin
FILE_SEEK(ds + num_dest*6, f);
t_len := READ_FILE(1,1, 0;
FILE _SEEK(t_len, 1, f);
t len := FILE_READ(1, 1, f);
hstnng -READFILE(tlen,l f);
h_string := CHANGE_CASE(h_string, t_len);
second := STRING_FIND(compare_item, h_string);
if relop = not_equ_str then second : = not second;
end;
else abort : = true;
end;
end;
else
if h_item < na then begin
FILE_SEEK_SET(h_item, f);
if item_len = 1 then begin
s_int := s_struct[struct_i];
struct i := struct_i + 1;
hs_int := READ_FILE(1, 1, f);
hl_int : = 0x00000000 + hs_int;
1_int := 0x00000000 + s_int;
end;
else if item_len = 2 then begin
m_int := s_struct[struct_i..struct_i + 1];
struct_i := struct_i + 2;
hm_int := READ_FILE(1, 2, f);
hl_int : = 0x00000000 + hm_int;

151

1_int : = 0x00000000 + m_int;
end;
else if item_len = 4 then begin
Lint := s_struct[struct_i..struct_i + 3];
struct_i := struct i + 4;
hl_int := READ_FILE(1, 4, f);
end;
else abort : = true;
if not abort then
if relop = equal_int then
second := (hl_int = 1_int);
else if relop = great_int then
second := (hl_int > 1_int);
else if relop = less_int then
second := (hl_int < 1_int);
else if relop = not_equ_int then
second := (hl_int < > L_int);
else if relop = gr_equ_int then
second := (hL_int > = 1_int);
else if relop = le_equ_int then
second := (hL_int <= 1_int);
else abort : = true;
end;
else abort : = true;
if not abort then begin
ir=i+1;
logop : = s_struct[struct_i];
if logop = I_and then begin
struct_i := struct_i + 1;
first : = (first and second);
end;
else if logop = I_or then begin
struct_i := struct i + 1;
first : = (first or second);
end;
else first : = (first and second);
end;
end;
if first then begin
s_list.num_sel := s_list.num_sel + 1;
s_list.selflist_i..list_i + 3] := m_num;
list i := list i + 4;
end;
end;

152

]
CLOSE_FILE(file_name);
file_name := GET_NEXT_FILE(date, file_name),
end;
if abort then
error : = er_poorly_formed_sel;
else begin
eITOr 1= NO_error,
j = call{0] - Ox41;
temp1 := cs_array(j];
while templ < > null and templ->call < > call do begin
temp2 := templ;
templ := templ->next_call;
end;
if templ = null then begin
new_node := ALLOCATE(1, SIZE_OF(Source_Record));
new_node := source_num := next_sn;
GET_NEXT_NUM(m_head, next_sn);
new_node->call : = call;
new_node-> selected.num_sel := s_list.num_sel;
new_node- > selected.sel : = s_list.sel;
new_node- > next_mail : = 0x0000;
new_node- > next_dir : = 0x0000;
new_node->next_ext : = 0x0001;
new_node->num_act := 0x00;
new_node- > next_num := mdl;
new_node- > next_call := null;
templ := m_head;
if temp1-> source_num > new_node-> source_num then begin
new_node- > next_num := m_head;
m_head : = new_node;
end;
else begin
while templ- > source_num < new_node- > source_num and
templ->next_num < > null do begin
temp2 := templ;
templ := templ-> next_num;
end;
if templ -> next_num = null then
temp1- > next_num := new_node;
else begin
new_node- > next_num : = templ;
temp2-> next_num := new_node;
end;

153

m

end;

end;

else begin
templ- > selected.num_sel := s_list.num_sel;
templ- > selected.sel := s_list.sel;
templ->next_mail := 0x0000;
templ- > next_dir : = 0x0000;

end;
nsel := s list.num_sel;

end;
end;
procedure COPY_HEADER(file_name: Name_Type; var buffer: Byte_Array;
t*:? index: ulong);
var r_file: “File_Type;
body_offset: uint;

r_file := OPEN_FILE(file_name);
FILE _SEEK(bo, r_file);
body_offset : = READ_FILE(1, 2, r_file);
FILE_SEEK_SET(0, r_file);
buffer{index..index + body_offset - 1] := READ_FILE(body_offset, 1, r_file);
CLOSE_FILE(file_name);
index := index + body_offset;
end;

154

filetype{0] : = 0x00;
filetype{1] := 0x01;
filetype(2] : = 0x02;
filetype[3] : = 0x03;
filetype[4] : = 0x04;
filetype(S] : = 0x05;
filetype[6] : = 0x06;
filetype(7] : = 0x07;
filetype(8] : = 0x08;
filetype{9] : = 0x09;
filetype[10] : = Ox0A;

filetype[11] : = OxAOQ;
filetype[12] : = OxAl;
filetype[13] : = OxA2;
filetype[14] : = OxFE;

for i := 15 to numsypes - 1 do

filetype(i] : = 0x00;
comptype[0] : = 0x00;
comptype[1] := 0x01;
comptype[2] : = 0x02;

comptype[3] := OxFE;
for i := 4 to numcomps - 1 do
comptypeli] : = 0x00;
next_source_num := 0x0001;
fori:=0to25do
first_let[i] := mull;
mail_head := null;
end;

{ PACSAT File Types from H. Price
{ ascii
{ RLI/MBL message body. Single message.

{ RLUMBL import/export file. Multiple message.

{ UoSAT Whole Orbdit Data.

{ Microsat Whole Orbit Data.

{ UoSAT CPE Data.

{ MS/PC-DOS .exe file.

{ MS/PC-DOS .com file.

{ Keplerian elements NASA 2-line format.

{ Keplerian elements "AMSAT" format.

{ Simple ASCII text file, but compressed.

{ PANSAT File Types.

{ PANSAT short telemetry file.

{ PANSAT long telemetry file.

{ PANSAT bax telemetry file.

{ User defined type. User must know. OxFF
{ 'ESCAPE ’ not implemented in PANSAT file
{ headers.

{ Extra space for types defined later.

{ PACSAT file compression types - H. Price.
{ No compression

{ Body compressed using PKARC.

{ Body compressed using PKZIP.

{ Other, user-known compression type.

{ Extra space for compression types defined later.

155

A gt Ny gt Nyt Nongad ot wwwwwwwwwwwwwwwuwwv

trans
from WAIT to same

when mcllink].mail num_req
begln

¥ mail_number{link] = 0x00000000 then begin
¥ length{link] > MEM_SPACE() then
COMPACT_MAIL(mail_head, first_let);
¥ lengthflink) < = MEM_SPACE()MMI:
INCREMENT_MSG(client_calilink], next_source_num, mail_head, first_let,
mail_num, ext);
INlTIAIJZE MAIL_FILE(client_call, mail num, ext, length{link]);
outputmc[lmk] mail_num_resp(mail _num, 0x00000000, no_error),
end;
else begin
output mc{link].mail_num_resp(0x00000000, 0x00000000, er_no_room);
time := GET_TIME();
report := FORMAT_EVENT_REPORT(mailbox_full, time);
output el.event_report(report);
output cc.full_mailbox;
end;
end;
else begin
file_name := GET_NAME(mail_head, mail_number{link]);
if ﬁle name = empty_string then
output mcllink]. mail num_resp(mail_numberflink], 0x00000000,
er_no_such_file_number);
else begin
rfile := OPEN_FILE(file_name);
FILE_SEEK(6, read_file);
file_length := READ FILE(1, SIZEOF(ulong), rfile);
if lengthllink] < > file_length then
output mc{link].mail_num_resp(mail_number, 0x00000000,
er_bad_continue),
else begin
file_ofi~=: = GET_LENGTH(file_name) + 1;
if file_offset > = length{link] then
output mcflink).mail num_resp(mail_numberflink}, 0x00000000,
er_file_complete),
else begin
if file_offset < 42 then file_offset : = 0;
output mcflink].mail_num_resp(mail_number(link], file_offset,
no_error);
end;

frem WAIT to same
whea mc{link].mail_close_req
begin
file_error := no_error;
lladercm -moooo
ﬁleume = GET_NAME(mail_head, mail_number{link]);
lﬁlemme-unptym:thuﬁlem = er_no_room;
else begin |
rfile := OPEN_FILE(file_name); T
FILE_SEEK(mn, rfile);
mail_num := READ_FILE(1, 4, rfile);
ﬁlelength := READ FILE(1, 4, rfile);
if GET_LENGTH(file_name) > = file_length then begin
Hf mail_ num = 0x00000000 then begin
FILE_SEEK_SET(mn, rfile);
WRITE ,_FILE(mail_number{link]}, 4, rfile);
fori:=0to3do
header_crc : = header_crc + mail_number{link](i];
end;
time := GET_TIME();
FILE_SEEK_SET(w, rfile);
WRITE _FILE(time, 4, rfile); { Write upload_time.
fori:=0to 3 do
header_crc : = header_crc + time[i];
time : -nme+defaultstayume
WRITE_FILE(time, 4, rfile); { Write expire_time.
fori:=0to3do
header_crc := header_crc + timefi);
WRl'I’EFILE(ﬁle name[0..7], 8, rfile);
fori:=0to7do
header_crc : = header_crc + file_name[i];
WRITEFILE(file_name[9..11}, 3, rfile);
fori:=9to 11 do
header_crc : = header_crc + file_name[i];
num_dest : =READFIIE(1 1, rfile);
lfnumdest>0mdnum dest < 8 then
FILE_SBEK(num_dect*6 rfile);
else if num_dest > 7 then
FILE_SEEK(42, rfile);
j := READ_FILE(1, 1, tfile); { Read title_length.

157

FILE_SEEK(j, rfile);

j := READ_FILE(], 1, rfile); { Read keyword_lenght. }
FILE_SEEK(j, rfile);
I-READFH.B(IZrﬁle),{de\eckm }

i > 0then begin
header_crc := header_crc + i;
FILB SBBK(-2, rﬁle),
WRITE_FILE(header_crc, 2, rfile);
end;
end;
CLOSE_FILE(file_name);
i req_resp{link] then begin
¥ not HEADER_CHECK(file_name, mail_numberflink], filetype, comptype)
then file_error : = er_bad_header,
elise begin
rfile : = OPEN_FILE(file_name);
FILE_SEEK(bo, rfile);
body_offset := READ_FILE(1, 2, rfile);
FILE_SEEK_SET(body_offset - 4, rfile);
header crc := READ_FILE(1, 2, rfile);
bodycm = READ _FILE(1, 2, rfile);
CLOSE_FILE(file_name);
if not CRC_CHECKS_OUT(file_name, 0, body_offset, header_crc) then
file_error : = er_header_check;
else if not CRC_ CHECKS _OUT(file_name, body_offset, file_length,
body_crc)
then file_error := er_body_check;
end;
output mcflink].mail_close_resp(file_error);
if file_error < > no_error then
RF. INIT_FILE(file _name, mail_numberflink]);

from WAIT to same
when mcflink].mail recv
begln
file_name := GET_NAME(mail_head, mail_number{link]);
| § lumh[lhk] > MEM_SPACE() then
COMPACT_MAIL(mail_head, first_let);
if length[link] <= MEM SPACE() and file_name < > empty_siring then begin
rfile : = OPEN_FILE(file_name);
FILE_SEEK(offset{link], hile);
WRITE_FILE(mailflink], length{link), rfile);
CLOSE_FILE(file_name);
output mc{link). mail_recv_resp(no_error);
end;
else
if file_name = empty_string then
output mc{link).mail_recv_resp(er_bad_continue);
else begin
output mc[link].mail_recv_resp(er_no_room);
time : = GET_TIMEC();
report := FORMAT_EVENT_REPORT(mailbox_full, time);
output cl.event_report(report);
output cc.full_mailbox;
end;
end;

from WAIT to same
when mcflink].mselect_req
begin
file_error : = no_error;
if select _struct[link}{0] = pan_sel then
PANSAT_SELECTION(select_struct(link], client_callflink], mail_head, first_let,
next_source_num, nsel, file_error);
else DEFAULT _SELECT(client_call[link], mail_head, first_let, next_source_num,
nsel);
output mc[link].mselect_resp(nsel, file_error);
end;

159

from WAIT to same
when mc{link].mail_del_req
begin
file error := er_permission_denied;
ﬂlcname-GBT ' NAME(mail_head, mail_number{link]);
| § ﬁle name = empey_siring then
ﬁle error ;= er_no_such_file_number;
elee if client cnll[hnk] = nps_call then
file_error := no_error;
clse begin
if file_name{2..7] < > client_call[link) then begin { A client may only delete 3
rfile := OPEN_FILE(file name); { file which he has uploaded or which is}
FILE_SEEK(nd, rfile); { addressed to him. }
num_dest := READ_FILE(1, 1, rfile);
if num_dest = 0x01 then begin
cs := READ FILE(1, SIZE_OF(Callsign_Type), rfile);
if cs = client_callflink] then file_error : = no_error;
end;
CLOSE_FILE(file_name),
end;
else file_error := no_error;
if file error = no_error then begin
DELETE_FILE(this_file);
DECREMENT_MSG(file_name[2..7], mail_head, first_let);
end;
output mc(link].mail_del_resp(file_error);
end;

160

 feems WAIT to same
when mc{link}.dir_req
begin

¥ mail_numberflink] < > 0x00000000 then begin
file_name := GET_NAME(mail_head, mail_number{link]);
4 file pame = empey_string then
Mpntmc[hnk]dumy(o er_no_such_file_number, false);
else begin
body_offset : = 0;
COPY_HEADER(file_name, dir_dat, body_offset);
output mc{link].directory(body_offset, dir_dat, false);
end;

end;
else begin
j := client_callflink][0] - Ox41;
templ := first letfj];
while templ < > null and temp->call < > client_callflink] do begin
temp2 := templ; templ := templ->next_call;
end;
if templ := null or templ- > selected.num_sel = 0x0000 then
output mcllink].directory(0, er_selection_empty, true);
else begin
j:=0; file length := 0;
while templ-> next_dir < = templ-> selected.num_sel and j < 10 do begin
mail_num := templ- > selected.sel{templ- > next_dir];
file_name := GET_NAME(mail_head, mail num);
if file name < > empty_string then begin
COPY_HEADER(file_name, dir_dat, file_length);

ji=j+ 1
end;
templ->next_dir : = templ->next_dir + 1;
end;
if templ->next_dir > templ-> selected.num_sel then begin
done : = true;

if temp- >next_mail > templ-> selected.num_sel then
temp1- > selected.num_sel := 0x0000;
end;
else done : = false;
if file_length = O then
output mcflink].directory(0, er_selection_empty, true);
else output mcflink].directory(file_length, dir_dat, done);

161

from WAIT to same
when mc{link). mail_req
if mail_numberflink] < > 0x00000000 then begin { Particular file requested. }
file_name := GET_NAME(mail_head, mail_number{link]);
i ﬁlc name = empty_string then
output mc{link].mail_resp(er_no_such_file_number, mail_number{link], O,
false);
end;
else begin { "Next" file in selection list requested. }
j := client_call[link][0] - Ox41;
templ : = first_let[j];
while templ < > null and temp->call < > client_callflink] do
templ := templ->next_call;
if (templ = null or templ- > selected.num_sel = 0x0000 or
templ->next_mail > templ-> selected.num_sel) then begin
if templ = null or templ- > selected.num_sel = 0x00 then
done : = true;
else done : = false;
output mc[link).mail_resp(er_selection_empty, 0, 0, done);
end;
else begin { Active selection list found }
mail_num := templ- > selected.sel{temp1- > next_mail}
file_name := GET_NAME(mail_head, mail_num);
if file_name := empty_string then begin
templ- > next_mail : = templ->next_mail + 1;
if templ->next_mail > templ- > selected.num _sel then
if templ->next_dir > templ-> selected.num_sel then begin
templ- > selected. num_sel := 0x0000;
output mcf[link).mail_resp(er_selection_empty, 0, 0, true);

end;
else output mc[link].mail_resp(er_selection_empty, 0, 0, false);
else
output mc[link).mail_resp(er_no_such_file_number, mail_num, 0,
false);
end;
else begin { Good file number found in select list. }

rfile : = OPEN_FILE(file_name);

FILE_SEEK(ml, rfile);

file_length := READ_FILE(1, 4, rfile),

if file_length < = offset[link] then begin
output mcflink].mail_resp(0, mail_num, O, false);
CLOSE_FILE(file_name);

end;

162

end;
end;
end;

ela: begin

FILE SEEK_SET(offset{link], rfile);
if file_length - offsetflink] > max_pdat then begin
dir_dat[0..max_pdar - 1] : = READ_FILE(max_pdat, 1, rfile);
output mcf{link].mail_resp(dir_dat, mail_num, max_pdat, false);
end;
else begin
file_offset : = file_length - offset{link];
dir_dat[0.. file_offset - 1] := READ_FILE(file_offset, 1, rfile);
output mc(link].mail _resp(dir_dat, mail_num, file_offset, false);
end;
CI,(;SE_FILE(file_name);

end;

163

from WAIT to same
when mcflink).dl_ack
begin

j := client_call{link][0} - Ox41;
templ := first_let[j];
while templ < > null and temp->call < > client_calllink] do
templ := templ->next_call;
if (templ < > null and templ- > selected.num_sel < > 0x0000 and
templ- > next_mail <= templ-> selected.num_sel) then
if templ- > selected. sel{templ- >next_mail] = mail_number{link] then begin
templ->next_mail := templ->next_mail + 1;
if temp1->next_mail > templ- > selected.num_sel then
if templ->next_dir > templ-> selected.num_sel then
templ-> selected.num_sel : = 0x0000;
end;
file_name := GET_NAME(mail_head, mail_number{link]);
if file_name < > empty_string then begin
rfile : = OPEN_FILE(file_name);
FILE SEEK_SET(dc, rfile);
k := READ_FILE(1, 1, rfile);
done : = false:
FILE_SEEK_SET(nd, tfile);
num_dest := READ _FILE(1, 1, rfile);
CLOSE_FILE(file_name);
if num_dest = 0x00 or num_dest > 0x07 then done : = true;
else if MSG_TO(file_name, client_callflink]) then done : = true;
if done and k < 255 then begin
rfile : = OPEN_FILE(file_name);
k:=k+ 1,
FIL.E_SEEK(dc, rfile);
WRITE_FILE(k, 1, rfile);
FILE_SEEK(ds - sc, rfile);
if num_dest < 0x08 then FILE_SEEK(num_dest*6, rfile);
else FILE_SEEK(42, rfile);
j := READ_FILE(1, 1, ffile); { Read title_length.
FILE_SEEK(j, tfile);
j := READ_FILE(1. 1, rfile); { Read keyword_length.
FILE_SEEK(j, rfilc
header_crc := READ_FILE(1, 2, rfile); { Read header check sum.
if header_crc > 0 then begin
header_crc := header_crc + 0x0001;
FILE_SEEK(-2, rfile);
WRITE_FILE(header_crc, 2, rfile);
end;

164

165

from WAIT to same
whea cc.list_mail

num_files := 0;
if bulletins then begin { List all bulletins
file name := GET_FIRST_FILE(name, "BULLETIN");
while file name < > empiy_string do begin
ma:l[num files] : = file_name;
num_files := num_files + 1;
file_name := GET_NEXT_FILE(name, file_name);
end;
end;
if messages then
if to then begin { List all messages 'to’ a certain callsign.
file_name := GET_FIRST_FILE(date, empty_string);
whileﬁle name < > empty_string do begin
if MSG _TO(callsign) then begin
mail[num_files] : = file_name;
num_files := num_files + 1;
end;
file_name := GET_NEXT_FILE(date, file_name);
end;
end;
else if from then begin { List all messages 'from’ a certain callsign.
sname{0..1] := " *; sname[2..7] := callsign;
file_name := GET_FIRST_FILE(name, sname);
while file name < > empty_string do begin
mail[num_files] : = file_name;
num_files := num_files + 1;
file name := GET_NEXT_FILE(name, file_name);
end;
end;
else begin { List all messages
file_name : = GET_FIRST_FILE(date, empty_string),
while file_name < > emptry_siring do begin
if file name[O .7] < > "BULLETIN" then begin
mail{num_files] : = file_name;
num_files := num_files + 1;
end;
file_name := GET_NEXT_FILE(date, file_name);
end;
end;
output cc.mail_list(num_files - 1, mail);
end;

166

from WAIT to same

when cc.post_bulletin

begin
INCREMENT_MSG(“BULLETIN", next_source_num, mail_head, first_let,
mail_num, ext);

rfile := OPEN_FILE(bulletin); { File has already been created and written by the}

FILE_SEEK(mn, rfile); { command module. Here, we just keep track
WRITE_FILE(mail_num, 4, rfile); { of how many bulletins are active, and
FILE_SEEK(nd - ml, rfile); { write appropriate mail_number into the file
num_dest := READ_FILE(1, 1, rfile); { header. In this case, the mail number
if num_dest > 0x07 then { will not accurately reflect the extension of the
FILE _SEEK(42, rfile); { file name, since this will be assigned by the
j := READ _FILE(1, 1, rfile); { writing module.
FILE_SEEK(j, rﬁle),
j := READ FILE(1, 1, tfile);
FILE_SEEK(j, rfile):
header_crc := READ_FILE(1, 2, rfile);
if header _crc > 0 then begin
fori:=0to3do
header_crc := header_crc + mail_num[i};
FILE SBEK(-2, rfile);
WRITE_FILE(header_crc, 2, rfile);
end;
CLOSE_FILK(file_name);
end;

from WAIT to same
when cc.delete_bulletin

begin
DECREMENT MSG("BULLETIN", mail_head, first_let);
end;

167

from WAIT to same
when cc.purge_mail
begin
if not all then begin
if to then begin { Purge all messages to’ a certain callsign.
file_name := GET_FIRST_FILE(date, empty_string);
whlleﬁlename< > empty_string do begin
if MSG _TO(callsign) then begin
if post_time > O then begin
rfile : = OPEN_FILE(file_name);
FILE_SEEK(w, rfile);
ul_time := READ_FILE(1, 4, rfile);
CLOSEFILE(ﬁlcname),
if ul_time < post_time then begin
DELETE_FILE(file_name);

DECREMENT_MSG(file_name[2..7}, mail_head, first_let);

end;
end;
else begin
DELETE_FILE(file_name);
DECREMENT_MSG(file_name{2..7], mail_head, first_let);

end;
end;
file_name := GET_NEXT_FILE(date, file_name);
end;
end;
else if from then begin { Purge all messages *from’ a certain callsign.
snamef0..1] :=" ",

snamef2..7] := callsign;
file name := GET_FIRST_FILE(name, sname);
while file_name < > empty_string do begin
if post_time > O then begin
rfile : = OPEN_FILE(file_name);
FILE_SEEK(w, rfile);
ul_time := READ_FILE(1, 4, rfile);
CLOSE . FILE(file_name);
if ul_time < post_time then begin
DELETB__FILE(file_name);
DECREMENT_MSG(callsign, mail_head, first_let);
end;
end;
else begin
DELETE_FILE(file_name);
DECREMENT_MSG(callsign, mail_head, first_let);

168

cloe begin {Purxeallmemees

>
file name{0..7) < > "BULLETIN"
and file_name{0..7] < > "USRTELEM" then begin
if post_time > O then begin
rfile : = OPEN_FILE(file_name);
FILE_SEEK(w, rfile);
ul_time := READ_FILE(1, 4, rfile);
CLOSE ,_FILE(file_name);
if ul_time < post_time then begin
DBLE'I'E_FILE(file_name);
DECREMENT_MSG(file_name[2..7], mail_head, first_let);
end;
end;
else begin
DELETE FILE(file_name);
DECREMENT_MSG(file_name{2..7], mail_head, first_let);
end;
end;
file name := GET_NEXT_FILE(date, file_name);

169

from WAIT to same
when ts.store_usr_telem
begin

INCREMENT_MSG("USRTELEM", next_source_num, mail_head, first_let,
mail_num, ext);
rfile := OPEN_FILE(telem); { File has already been created and written by the }
FILE_SEEK(mn, rfile); { telemetry module. Here, we just keep track }
WRITE_FILE(mail_num, 4, rfile); { of how many usr telem files are active, and }
FILE_SEEK(nd - ml, tfile); { write appropriate mail_number into the file }
num_dest := READ_FILE(1, 1, rfile); { header. In this case, the mail_number }
ir num_dest > 0x07 then { will not accurately reflect the extension of the}

FILE_SEEK(42, rfile); { file name, since this will be assigned by the }
j := READ_FILE(1, 1, rfile); { writing module. }
FILE_SEEK(j, rfile);
j := READ_FILK(1, 1, rfile);
FILE_SEEK(j, rfile);
header_crc := READ_FILE(1, 2, rfile);
if h&der crc > 0 then begin

fori:=0t0o3do

header_crc : = header_crc + mail_num(i];

FILE SF.EK(-2, rfile);

WRITE_FILE(header_crc, 2, tfile);
end;
CLOSE_FILE(telem);

end;
from WAIT to same
when ts.delete_user_telem { Telemetry module has already deleted the file and }
begin - { is only notifying the mail box module. }
DECREMENT_MSG("USRTELEM", mail_head, first_let);
end;
end; { of MAILBOX_CONTROL_BODY }
170

body PASSWORD_CONTROL_BODY for PASSWORD_CONTROL_TYPE; exterual;
bedy AUTO_CONTROL_BODY for AUTO_CONTROL_TYPE; exterual;
body GROUND_CONTROL_BODY for GROUND_CONTROL_TYPE; external;
body PRIMITIVE_SW_LOADER for PRIMITIVE_SW_LOADER TYPE; external;
body TELEMETRY_GATHER_BODY for TELEMETRY GATHER_TYPE; external;

body A/D_DRIVER_BODY for A/D_DRIVER_TYPE; external;
body EVENT_LOGGER_BODY for EVENT_LOGGER_TYPE; external;
body EPS_DRIVER_BODY for EPS_DRIVER_TYPE; external;
body COMM_DRIVER_BODY for COMM_DRIVER_TYPE; external;
body DCS_DRIVER_BODY for DCS_DRIVER_TYPE; external;

17

{Module instantiation and channel connection }
modvar { section for Flight Software Specification. }

Primitive_AX2S: PRIMITIVE_AX2S5_TYPE;
Primitive SW_Loader: PRIMITIVE_SW_LOADER_TYPE;
Data_Transfer: DATA_TRANSFER_TYPE;

Packet_Transfer: array{maxlinks] of PACKET_TRANSFER_TYPE;
Mailbox_Control: MAILBOX_CONTROL_TYPE;

Ground_Coatrol: GROUND_CONTROL_TYPE;

Auto_Control: AUTO_CONTROL_TYPE;

Event_Logger: EVENT LOGGER_TYPE;

Password_Control: PASSWORD CONTROL TYPE;
Telemetry Gather: TELEMEI'RY GATHER “TYPE;

A/D_Driver: A/D_DRIVER_TYPE;

EPS_Driver: EPS DRIVER TYPE;

Comm_Driver: COMM DRIVER TYPE;

DCS_Driver: DCS_DRIVER_TYPE;
initialize { Initialization Part of the Specification }
begin

init Primitive_AX2S with PRIMITIVE_AX25 BODY;

init Primitive_SW_Loader with PRIMITIVE_SW_LOADER_BODY;

init Data Transfer with DATA' TRANSFER BODY;

init Manlbox Control with MAILBOX CONTROL BODY;

init Gmund ‘Control with GROUND CONTROL BODY;

init Auto_ Control with AUTO CONTROL BODY;

init Event _Logger with EVENT LOGGER_ “BODY:

init Password_Control with PASSWORD CONTROL BODY;

init Telemetry Gather with TELEMETRY GATHER BODY;

init A/D_Driver with A/D_DRIVER BODY

init EPS “Driver with EPS DRIVER “BODY:

init Comm Driver with COMM DRIVER BODY;

init DCS_ Driver with DCS_ DRIVER BODY;

all link: Link . Type do begin
init Packet Transfer{link] with PACKET _TRANSFER_BODY;
connect Data_Transfer.pcflink] to Packet ' Transfer[hnk] Pc;
connect Mailbox_Control.mc[link] to Packet_Transfer{link]. mc;
connect Event_Logger.el(link] to Packet_Transfer{link].el;

end;

connect Primitive_AX25.bax[0] to Data_Transfer.bax;

connect Primitive_AX2S5.bax[1] to Ground_Control.bax;

connect Primitive_AX25.bax[2] to Auto_Control.bax;

connect Primitive_AX25.bax({3] to Primitive_SW_Loader.bax;

connect Ground_Control.ccd to Data_Transfer.cc[0];

connect Ground_Control.cct to Telemetry_Gather.cc[0);

172

F g kT

‘comment Grovad_Costrol.ccl te Primitive_ SW_Loader.cc{0];
commect Grownd_ |_Contral.ccp to Password_ Conud.ce[m
commect Ground_Control.ccm to Mailbox_Control.cc{0];
commect Gmuad Control.cce to EPS_| Driver. ccf0);
commect Gmnd_cmd.eeom to Comm_Dﬁver.ce[O];
commect Ground_Control.ccdc to DCS_Driver.cc{0);
commect Ground_Control.el to Event_Logger.el{maxlinks];
conmect Ground_Control.sc to Auto_Control.sc;
commect Auto_Control.acd to Data_Transfer.cc{1);
commect Auto | Control.act to Telemetry_Gather.cc{1];
connect Auto Coutrolwptohuwocd Control.ccf1);
commect Auto_Control.acm te Mailbox_Control.cc{1];
counect Alm_Contml.aoe to EPS_Driver.cc{1];
commect Auto_Control.acom to Comm_Driver.cc[1);
commect Auto_Control.acdc to DCS_Driver.cc[1];
connect Auto_Control.el to Event_Logger. el[maxlinks + 1];
connect Telemetry Gather.ad to A/D_Driver.ad;
connect Telemetry Gather.el to Event _Log.el{maxlinks + 2],
connect Telemetry Gather.ts to Mailbox_Control.ts;
comnect Mailbox_Control.el to Event Logger el[maxlinks + 3);
comnect Data Transfer.el to Event _Logger.el[maxlinks + 4],
connect Passwozd_Cmtrol.el to Event_Logger.el{maxlinks + 5];
end;

end. { of Flight Software Specification }

173

APPENDIX B - DATA FLOW DIAGRAMS

DFD: CONTEXT DIAGRAM

Amateur NPS g;:lt]::l
Radio Ground] GROUND ommandin
Station SW | STATION 8
Software

FLIGHT
SOFTWARE

Amateur | AMATEUR 00TSTRAP
adio Ground| RADIO
BStation SW | USERS SOFTWARE

174

DFD 0 - FLIGHT SOFTWARE

Amateur NPS chmtl;ld]
adio Ground] GROUND ontro

Station SW | STATIoN [commanding
Software

4.
Command
Interpretation &
Response to

round Contro

Communications
& File Transfer
Protocols

5 J.
Satellite
Telemetry
: Hardware
Gathering and
Control
Storage

Amateur AMATEUR BOOTSTRAP
adio Ground| RADIO
FStation SW | USERS SOFTWARE
175

E g A S Tanil
b 3 Dbl ot

DFD 1 - Communications &
File Transfer Software

Amateur | NPS ?°‘t‘;‘(g
Radio Ground| GROUND Com]";‘an o
Station SW | STATION ng
Software

Amateur AMATEUR Q

Radio Ground] RADIO
Station SW { USERS

176

DFD 2 - Telemetry Gathering &
Storage

2.1

Telemetry_
Gather

2.2

A/D_Driver

DFD 3 - Satellite Hardware Control

3.3
Comm_Driver

3.4
DCS_Driver

BOOTSTRAP
SOFTWARE

178

DFD 4 - Command Interpretation &
Response to Ground Control

Amateur NPS Ground

Radio Ground| GRoUND |, tontrol

' Commanding
Slation SV | STATION Software

el

SC

acp

42

Password_
Control

43

Primitive_SW_
Loader
(PHTX)

cc

179

DFD 1.2 - Data Transfer Module
State Transitions

INIT

¢b := cc.oulch |

cc.lockout(new)

new_user.Jockout := true-]

NORMAL

bax.gax-data | peresponse packet new_user_lockout := false

cc.unlock(new)

R
transmil_ok := false m Transmtero

num_clients+ 1}¢_as-connecLpend

transmil_ok := true Jereemrary

cclockout(all) build command packet g aldels
alluser_lockout := true all_user_lockout := false
nevw_user_lockout := tru
c.unlock(all)
~ num.clients-1 -
g as.conneclpend
g as-dconnecte 4 in_cb.his_call = nps_call
| | bax.gax_data C. bax_con_acpt
L transmilok := false h—-—m py
nsmilok := al_ds,
ransmitler{off -—Z—-"y'meld command packet i
1

c¢.change_params

transmitok = %n TiETon]

¢b := cc.oulch

180

DFD 1.3 - Packel_Transfer Mbdu]e

s intons State Transitions INT
d ownlosd_cmd j\l:]
poSomommer lren wy sl > pe.disconnect
L/DL-CMD_W
—z / aun_resp
mc.atNiye_sl resp
u pload.cmd me.ma
no €
me.mailn
d el ama P| me.mail_del req
5 mc.mselec
,_ et WAIT_MAILBOX
d als/dlerror- _,wkglc.din.:ctory
,d LI mc.mselec
T I error resshe RS- Mailnum._resp.error m4.mail_recv_resp,
mc.mail_num_resp, no error m m:?lfglo .
. | d Lerror_res, __mc.mail_recv_resp. no error , rrE oL
cmall-req mc.mail_resp,
error
¥
DL_FILE_DATA memaiLdosereq](I ABORT
d alaend , |
others |
aa) 1Ty — S folhers 7 btaend
— ' d als

me.mail-resp,
poerror b/ 0 h

181

DFD 1.4 — Mailbox_Control Module
Response to Messages

mc.aclive_sl_req
me.mail_num.-req

T mc.mail_recv

WAIT

.,l mc.aclive_s] resp
] memailum.Tesp ccfullmailbox
L] mecmailrecv_resp
3] mc.mailcl

‘ 3 mc.mselectresp
me.mailresp

___,r mc.directory
ts.store_user_telem 3| mc.maildel resp
{s.delete_usr_telem

0 4

» ccmaillist

182

Table C.1 contains the subset of Pascal syntax which was utilized in Appendix A.

Note that cells with double lines on top and bottom contain definitions somewhat
modified from those found in [Ref. 8]. A more complete lexicon and construction rules
can be found in Annex C of [Ref. 8].

Key:
1) Each definition ends with a period, *." .
2) The or symbol, "|", denotes a choice among options.
3) Components enclosed by square brackets, "[]", are optional.
4) Parentheses, "()", are used for grouping components in order to clarify definitions.
5) Components enclosed by curly brackets, "{ }", may be included zero or more times.
6) Symbols shown within quotes, " *, must be typed exactly as they appear. (They will
be found in bold-face type within the specification.)

TABLE C.1 PASCAL SYNTAX USED IN APPENDIX A

letter = "a" | "b" | ... | "z} "A" | "B" | ... | "Z".

w='0' I .1. | '2. I '3. | '4l | .5' I ﬂ6l | '7' | .8' | .9' ' IA. ‘ HBH

l ICI l .Dﬂ ' .E. ' CFH.

wiﬂ_symwlgﬂ'*_ﬂl:."I*Ilﬂ=l'ﬂ<l|l>ﬂ!l[ﬂlwlﬂI!("')ﬂ'
.;'l'.|.< >.Il<=lll>=~|.:=lll..il
word-symbol.

183

' TABLE C.1 PASCAL SYNTAX USED IN APPENDIX A

word-symbol = “"and" | “array” | "begin” | "case" | "const” | "do" | “downto"
| .el”. l 'm. ' Im”' ‘ Ifor. ‘ .fumﬁm' ' Iit‘ l .in. '
*not” | "null" | "of" | "or" | “"procedure” | “"record” |
UTQ | nﬂm' I .tou l lmu ' utyw- l L] unﬁln ' -wu '

*while".

identifier = letter { letter | digit }.

unsigned-integer = digit {digit} | "Ox" digit {digit}.

character-string = " * “ string-character { string-character } " * ".

comment = *"{" any-sequence-of-characters-and-separations-of-lines-not-
containing-right-brace "}".

block = constant-definition-part
type-definition-part
variable-declaration-part
procedure-and-function-declaration-part
statement-part.

constant-definition-part = { "const” constant-definition ;" { constant-definition
" 1)

type-definition-part = ["type" type-definition *;" { type-definition ";" }].

variable-declaration-part = ["var" variable-declaration ";" { variable-declaration
"))

procedure-and-function-declaration-part = { (procedure-declaration | function-
declaration) *;" }.

statement-part = compound-statement.

constant-definition = identifier "=" constant.

constant = [sign] (unsigned-integer | constant-identifier) | character-string.
constant-identifier = identifier.
type-definition = identifier "=" type-denoter.

type-denoter = ordinal-type | new-type. |

new-type = new-ordinal-type | new-structured-type | new-pointer-type.

184

TABLE C.1 PASCAL SYNTAX USED IN APPENDIX A

structured-type-identifier = type-identifier.
pointer-type-identifier = type-identifier.

type-identifier = identifier.

ordinal-type = new-ordinal-type | ordinal—type-idmtiﬁer
new-ordinal-type = enumerated-type

ordinal-type-identifier = ncharlmntlulonglxntlboolun

uchar = 8-bits-binary-data-or-1-byte-unsigned-integer-or-1-ascii-character.
uint = 2-byte-unsigned-integer

ulong = 4-byte-unsigned-integer.

int = [sign] unsigned-integer.

sign = "+° | -,

boolean = “true” | "false.

enumerated-type = "(" identifier-list *)".

identifier-list = identifier ("," identifier).

subrange-type = constant ".." constant.

structured-type = new-structured-type | structured-type-identifier.
new-structured-type = array-type | record-type.

array-type = "array” "[" number-components "]" { "[" number—eomponents "1" }
"of" component-type.

numbez-components = unsigned-integer.
component-type = type-denoter.

record-type = "record” field-list "end".
field-list = record-section { *;" record-section }.

185

| TABLE C.1 PASCAL SYNTAX USED IN APPENDIX A

record-section = identifier-list *:" type-denoter.
pointer-type = new-pointer-type | pointer-type-identifier.

variable-declaration = identifier-list ":* type-denoter.
variable-access = entire-variable | component-variable | identified-variable.
entire-variable = variable-identifier.
variable-identifier = identifier.
component-variable = indexed-variable | field-designator.
indexed-variable = ';a]rfa}y-variable *[* index-expression "]" { "[" index-expression
array-variable = variable-access.
index-expression = expression.
field-designator = record-variable "." field-specifier | field-identifier.
record-variable = variable-access.
field-specifier = field identifier.
| field-identifier = identifier.
identified-variable = "“" pointer-variable.

pointer-variable = variable-access.

procedure-declaration = procedure-heading ";" directive
| procedure-identification ";" procedure-block
| procedure-heading *;" procedure-block.

procedure-heading = "procedure” identifier [formal-parameter-list].
procedure-identification = "procedure” procedure-identifier.
procedure-identifier = identifier.

procedure-block = block.

186

TABLE C.1 PASCAL SYNTAX USED IN APPENDIX A

function-declaration = function-heading *;" directive
| function-identification ";" function-block
| function-heading *;" function-block.
function-heading = “function” identifier [formal-parameter-list] ":* result-type.
function-identification = “function” function-identifier.
function-identifier = identifier.
function-block = block.
result-type = type-denoter.

formal-parameter-list = "(* formal-parameter-section { “;" formal-parameter-
section } ")".

formal-parameter-section = value-parameter-specification
variable-parameter-specification.

value-parameter-specification = identifier-list ":* type-identifier.

variable-parameter-specification = "var" identifier-list ":" type-identifier.

expression = simple-expression [relational-operator simple-expression].

simple-expression = [sign] term { adding-operator term }.

term = factor { multiplying-operator factor }.

factor = variable-access | unsigned-constant | function-designator |
set-constructor | "(" expression ")" | "not" factor.

unsigned-constant = unsigned-number | character-string | constant-identifier |
“null”".

set-constructor = "[" [member-designator { *," member-designator } } "]".

member-designator = expression [".." expression].

multiplying-operator = "** | "and".

adding-operator = "+" | *-" | "or".

mﬁmalws u=n ' l< >' ' n<u I n>n | I<=l ‘ n>=n l winn.
boolean-expression = expression.

187

TABLE C.1 PASCAL SYNTAX USED IN APPENDIX A

function-designator = function-identifier [actual-parameter-list J.
actual-parameter-list = “(* actual-parameter { *," actual-parameter } *)".

actual-parameter = expression | variable-access | procedure-identifier |
function-identifier.

statement = (simple-statement | structured-statement).

simple-statement = empty-statement | assignment-statement |
procedure-statement.

empty-statement = .

assignment-statement = (variable-access | function identifier) ": =" expression.
procedure-statement = procedure-identifier ([actual-parameter-list]).

structured-statement = compound-statement | conditional-statement |
repetitive-statement.

statement-sequence = statement { ;" statement }.

compound-statement = "begin" statement-sequence "end".

conditional-statement = if-statement | case-statement.

if-statement = "if" boolean-expression "then" statement [else-part].

else-part = “else” statement.

case-statement = “case" case-index "of" case-list-element { ";" case-list-element }
['; L]] Iendw.

case-list-element = case-constant-list *:" statement.

case-constant-list = case-constant { "," case-constant }.

case-constant = constant.

case-index = expression.

repetitive-statement = repeat-statement | while-statement | for-statement.

repeat-statement = “repeat” statement-sequence "until” boolean-expression.

while-statement = "while” boolean-expression "do" statement.

188

TABLE C.1 PASCAL SYNTAX USED IN APPENDIX A

for-statement = “for" control-variable *:=" initial-value ("to" | "downto")
final-value "do" statement.

control-variable = entire-variable.

initial-value = expression.

final-value = expression.

The following table lists Estelle-specific reserved words which have been used in

Appendix A. The expected location and function associated with each is also indicated.

TABLE C.2 ESTELLE-SPECIFIC RESERVED WORDS

Reserved Location Function
Word .

3

specification | Beginning of entire Identifies the name of the
specification block. specification.
any In a constant declaration. | Declares that a value of the indicated
type must be chosen during
implementation.
By itself, on the right- Indicates that the actual internal
hand side of a type details of the type have not yet been
definition. determined. The final definition may
be implementation-dependant.
channel In the channel definition | Indicates the beginning of a channel
section, which definition. Followed by the channel
immediately follows the name, and then, within parentheses,
global constant, type and | the end-point names.
and variable declaration

sections.

189

TABLE C.2 ESTELLE-SPECIFIC RESERVED WORDS

Location
Word

Within a channel 'by is followed by one of the
definition. channel end point names and then by
a list of the messages which can be
sent from that end point. Following
each message name, in parentheses,
is a list of the parameters for that
message type.
module In the module header Indicates the beginning of a module
definition section, which | header definition. "module” is
follows the global followed by the name of the module
function and procedure type. The module header definition
declarations which follow | defines the interfaces with the module.
the channel definition

section.

In the module header Indicates that the module is an
process definition following the autonomous process, not a subprocess
name of the module type. | enclosed within another.

In the module header
definition.

Indicates the beginning of the list of
interface points for the module. It is
followed by the channel names, each
of which is given a channel type from
among those defined in the channel
definition section. In parentheses is
indicated which end point this module
plays the role of. That in turn,
defines the type of messages which
can be sent by this module.

| individual
queue

In an interface point
declaration within a
module header definition.

Indicates that all messages to or from
this module via the indicated channel
will be maintained in an individual
queue for that module alone.

190

TABLE C.2 ET'ELLE-SPECIFIC RESERVED WORDS

Location Function
Word

Inanmterfacepomt Indwatsthatthemodulewxllshm
queue declaration within a the queue for this channel with all
module header definition. | other “"common queue” modules
playing the role of the same kind of
end point for the same kind of
channel. Or, if a module has an
array of channels of the same type,
all of the channels may use a
common queue.
body In the module body Indicates the beginning of a module
definition section, which | body definition. This is where the
follows the module actual behavior of the module is

header definition section. | defined.

In the module body Indicates that the body definition for

definition section, this module is external to the current

following the body name | specification. It may not yet have

and the module type. been developed, may be under
development by another team, or it
may be completely external to the
system at hand, with only the
interface defined by the module
header definition being of any
importance.

state Within a module body Marks the beginning of the list of

definition, following the state names for this module.
local const, type and var
declaration sections.

TABLE C.2 B’I‘ELLE-SPECIFIC RESERVED WORDS

Laocation
Word

Wltlnnamodulebody Deﬂnuaeommonnametobeused
definition, following the for several states, when they have

list of state names. similar transitions. If the module
state machine reacts the same way to
a particular stimulus when in any one
of several different states, these states
may be grouped together by a stateset
so that the behavior need only be
written out once for all the affected
states.

In a function or procedure | Indicates that the algorithmic details
declaration. of the function or procedure are not
included in the present specification.
The function or procedure may be
deemed to be commonly understood
or readily available from the operating
system, or the details may simply not
be relevant to the aspect of the system
currently under consideration.

initialize Following the last local Indicates the initial state of the
function or procedure module state machine when it is
declaration within a instantiated. Statements between the
module body definition. "begin” and "end" keywords may be
used to set up initial variable values,
and to take any other automatic "start-

up" actions.
trans Following the Indicates the beginning of the state
initialization section in transition section of the module body.
the module body All possible state transitions will be
definition. listed within this section.
from In the transition section of | Indicates the state from which the
the module body transition takes place.

definition.

192

TABLE C.2 ESTELLE-SPECIFIC RESERVED WORDS

Erull e e

In the transition section of | Indicates the state in which the
the module body module will be, following the

definition. transition.
Following the *frem - Identifies the stimulus which may

to" clause of the trigger the transition. "when" is

transition statement. usually followed by the name of an
interface point, with a period, ".",
and the kind of message from that
channel which could trigger the

transition. Any parameters associated
with the incoming message may be
referenced directly by their value-
parameter names within the "begin -
end" block of the transition statement.

Following the "when" Indicates any further conditions for
clause of the transition the transition to occur. ’pre~*Aded’ is
statement. usually followed by an expre: .on in
which one of the parameters of the
"when message” is compared with a
necessary condition. The transition
only occurs when the module is in the
"from state”, the "when message"
arrives, and the message parameter
meets the necessary condition. When
the transition occurs, all of the
statements between "begin" and
"end" are executed before the module
enters the "to state” and waits for the
next stimulus.

193

TABLE C.2 ESTELLE-SPECIFIC RESERVED WORDS

=l N

Within the "begin - end"”

block of a transition
statement.

Indicates that a message is to be sent
out at the interface point indicated.
The interface point name is shown on
the left side of a period, with the type
of message on the right side. If there
are any message parameters, variables
of the appropriate types must be
prepared with the proper values, and
must be included in parentheses
following the message name.

modvar

Following all module
body definitions.

Indicates the beginning of the module
instantiation and channel connection
section of the specification.

initialize

In the modvar section.

Indicates the beginning of the module
instantiation section, which will define
exactly how many copies of each
module type will be created, using
which module bodies.

In the module
instantiation section.

"init" indicates initialize, but really
means instantiate. Use the module
body indicated by the "with" clause.
(there could be more than one module
body for a particular module type).

connect

In the modvar section,

following the module
instantiations.

194

Indicates that the interface points of
two modules will be connected
together. Further defines which
specific channels go between which

specific module instantiations.

LIST OF REFERENCES

Price, H. E., BekTek Spacecrqft Operating System SCOS Reference Manual, Bethel
Park, PA, March, 1992.

Fox, T., "AX.25 Level 2 Protocol,” Proceedings of the First ARRL Amateur
Radio Computer Networking Conference, pp. 2.4-2.14, ARRL, Newington, CT,
October, 1981.

Stallings, W., Data and Computer Communications, pp.326-335, Macmillan
Publishing Company, 1994.

Price, H. E., BekTek AX.25 Protocol System BAX Reference Manual, Bethel Park,
PA, March, 1992,

Price, H. E., Ward, J., "PACSAT Broadcast Protocol,” Proceedings of the ARRL
Amateur Radio 9th Computer Networking Conference, pp. 232-244, ARRL,
Newington, CT, September, 1990.

Price, H. E., Ward, J., "Pacsat Protocol: File Transfer Level 0," Proceedings of
the ARRL Amateur Radio 9th Computer Networking Conference, pp. 209-231,
ARRL, Newingtion, CT, September, 1990.

Price, H. E., Ward, J., "Pacsat File Header Definition," Proceedings of the ARRL
Amateur Radio 9th Computer Networking Conference, pp. 245-252, ARRL,
Newingtion, CT, September, 1990.

ISO/TC 97, Information Processing Systems - Open Systems Interconnection -

Estelle: A Formal Description Technique Based on an Extended State Transition
Model, 1SO 9074:1989(E), Gendve, Switzerland, July, 1989.

195

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey CA 93943-5101

Department Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Professor Douglas J. Fouts, Code EC/Fs
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Professor Frederick W. Terman, Code EC/Tz
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Professor Michael Ross, Code AA/Ro
PANSAT Project Lead

Naval Postgraduate School

Monterey, California 93943-5121

Mr. Jim Horning, Code SP/Jh
Space Systems Academic Group
Naval Postgraduate School
Monterey, California 93943-5121

Teresa O. Ford, LT, USN
2101 Crystal Plaza Arcade #258

Arlington, VA 22202

196

