R Te . »wmm

,3!*{
.".

, ‘T.Ere? -.efane.;.

Computer Sclence | O

i
(RN
[ERIE T

NN I

IS8 [

—

AD-A280 061 |
r

A Database for Analyzing
Sequential Behavioral Data and v
Their Associated Cognitive Models <;-;.-

Bonnie E. John

15 May 1994
CMU-CS-94-127

94—17

&
O

A Database for Analyzing ”
Sequential Behavioral Data and D Tl C

Their Associated Cognitive Models ELECTE
JUN 0 81994
Bonnie E. John
15 May 1994 F
CMU-C$-94-127

School of Computer Science
Camegie Mellon University
Pittsburgh, PA 15213

This report is a revised version of "Applying Cognitive Theory to the Evaluation
and Design of Human-Computer Interfaces,” i-inal Report to USWest Advanced
Technologies Sponsored Research Program, 14 Dec 1990.

Also appears as Human-Computer Interaction Institute Technical Report
CMU-HCII-94-101

Abstract

Sequential behavioral data, be it verbal protocols, automatically-recorded keystrokes, or
complete videotape protocols, can be analyzed at different levels of detail and from
different viewpoints. If raw behavioral data is stored in a powerful database, rather than a
simple text file, many domains will allow some automatic interpretation of that data. In
addition, the raw data can be compared with traces of an associated computational
cognitive model to assess how well the model accounts for the data and, conversely, how
much support the behavioral data provides for the components of the model. This report
describes a prototype database and user interface, called Trace& Transcription, that is
designed to facilitate protocol analysis and cognitive modeling.

This research was supported in part by a grant from U S West Advanced Technologies
Sponsored Research Program. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of U S West.

oAt

LR

o
e 1
LY ~ L
LT S L
B
K SN
A e ot

Keywords: Verbal protocols, protocol analysis, cognitive modeling, exploratory
sequential data analysis

1. Introduction

Sequential behavioral data, be it verbal protocols, automatically-recorded keystrokes, or
complete videotape protocols, can be analyzed at different levels of detail and from different
viewpoints. Behavior is often first described as observation of overt action: verbal
utterances, keystrokes, mouse movements, screen changes, etc. This level of description is
pure observation, with no interpretation added by the analyst, and is often compiled either
automatically (e.g., keystroke collection programs) or by clerical personnel skilled in
transcription. This description produces vast amounts of data. Sheer quantity makes
handling these data a difficult process. A long standing goal of researchers who use this type
of data has been to create a methodology for handling its quantity and complexity, but as yet,
no single method has emerged as a standard in the community. Our approach is to setup a
database that allows us to relate several different descriptions of the same behavior in an
attempt to meet this goal.

If raw behavioral data is stored in a powerful database, rather than a simple text file, many
domains will allow some automatic interpretation of that data. For instance, in studying a
programming environment with a programming window, an execution window and a help
window (e.g., Figures 1 and 2), a powerful database would be able to identify activity in
specific windows and segment the behavior into broad episodes. That is, mouse activity in
the help window, probably indicates a browsing episode where the user is looking for syntax
or semantics of a command; mouse or keyboard activity in the programming window
probably indicates a code-editing episode. These episodes might be further categorized by
their length, or by what episodes they follow or precede. For instance, long segments of
behavior with verbal utterances but no mouse or keyboard activity might indicate either a
program-planning episode or a reading episode, depending on whether they are preceded and
followed by programming episodes (for planning) or browsing episodes (for reading). This
second level of analysis, automatically generated by the database itself, could also be stored
in the database and allow the analyst to easily identify the behavior for more detailed study.

Protocols can also be coded for critical incidents, events where the user either makes a
mistake, has trouble understanding or using the interface, or makes some explicit remark
either praising or condemning the system. These critical incidents could also appear in the
database.

Another frequently used method of analyzing protocol data, is to code the behavior according
to a general model of an activity. For instance, in our work with browsing, we have
developed a model that decomposes a browsing activity into three sub-activities: defining
criteria for search and evaluation, performing the actual search, and evaluating the results of
the search. The protocol data automatically identified as browsing, could then be examined
and hand-coded for these sub-activities. This information could then be added to the
database.

Another way of looking at the data might be to perform a GOMS analysis of segments of
behavior (Card, Moran & Newell, 1983). The raw data is arranged chronologically and the
GOMS hierarchy of goals could also be associated with segments of behavior in the
database. This would allow identification of when a goal is begun, suspended, re-activated,
and completed. Patterns in goal-switching could be identified and quantified. Both
chronological and goal-hierarchic displays of behavior could be produced.

Finally, the most detailed level of analysis of protocol data usually undertaken is a computer

simulation of the behavior. For instance, we have a cognitive model of browsing that
produces much of the verbal utterances and mouse events for several segments of browsing

a1 |

behavior (John, Newell & Card, 1990; Peck & John, 1992). A powerful database would
allow traces of a computer simulation to be associated with individual behavioral events, and
facilitate examination of the goodness of fit of the computer simulation to the behavior.
Also, correspondence between the different analysis viewpoints could be obtained, and
comparison of their effectiveness could be performed.

2. The Data

For a prototype database, we chose to included the raw videotape protocol data and the most
detailed level of analysis, a trace of a cognitive simulation model. The prototype
demonstrates how these two levels of analysis, one the pure description of observed
behavior and the other a generalized model of that behavior, could be related usefully in a
single database system.

2.1 Protocol Data

We focused on the browser associated with the on-line reference manual for the ¢T
programming language.! cT provides a highly interactive programming environment where,
typically, code is entered into one window (the programming window) and the results of the
code are displayed in a second window (the execution window) (Figure 1). Changes in the
code produce changes in the display and, conversely, a graphic editor allows changes to be
made directly in the execution window which are immediately reflected in the code. In
addition to the programming and execution windows, a Help window can be brought up to
provide access to the on-line reference manual (an exact duplicate of the hard-copy reference
manual). This Help window, shown in Figure 2, is the browser of interest in our research.

" & File Edit Search Stgles Foats Sptiens |-
R CO : | (1]
| oyerpord & Davidaty, 1909
SSAEL4BEAN Q‘..‘ >
(11 o oo $3 Iravs the areph
eram @,0;1000,1000
™ f ot 20
“ LebeDiAucio
™ PUtRTDete
t 3
ressreRRen 1500
onit FixedGraphSt off $3 putsia title, 0
merges,glodel: oveerved
ot 5,410 m
fort £erif, 10 taasec)
write Sraphes: <is.yeheaGrapdeds - cis,WaeGre i 1000
" 5,420 +
write Dets Entered: jo,whenDetaErioreds - <k il +
Duie: e ming Colsre:4s Fileeme]|
fork
wt 3.5
write s, ExpautMersi>, <is xpDate]> S00
”n 5,17
wrife cjo ExpTits}s
font
o 20,150
write Observed o4 } $
kY color BAY
(maac)
" zsuioo ohas hocot DT
ymie : gxperipeny
Guoghed: 4 Got 1999 - B.3.
Bee Ertrred; 17-151-09 -"-‘Lc.m - fue Wme:

Figure 1. The typical c¢T programming environment on the Apple Macintosh. The window on the
left is the programming window where code is entered. The window on the right is the execution

1¢T is a product of Falcon Software, Inc.

window where the results of the code are displayed. Changes to the code produce changes in the
execution window and changes made with a graphic editor in the execution window produce
immediate changes in the code.

" & Owtiess -
Nelp
Meking s Greph Keywerds
- Graphiag Conmende gilek k
grigin Setting the origin ot
e Dosori bing the Anes girew
bounds Souci fuing dems Lorgtie wres
Stalex 3MNNg e Scates ontiey
Tabetx PUTIIAG Labe's On 1he Axes om
Tocalax Serni-Logand Leg- Leg Seales Jobal vars
poler Polar Coordisetse greergin
[Breghing Commande
A1) 0T the OP@ BATY GHIB1OY COMININGS CAN 3¢ UBed WK qraphing cosreisetss. Tre srepming by
farnis prefixsd Wwith g”. X

s
In eddition, thees csmreends are for grephisg gerigia, eme, ecelex, seeley, Tecelex, g
Tscalny, lebebx, 1nbely, hbear, vier, paler. BN

Figure 2. The cT Help window. The window on the top left is a hierarchical menu similar to a
table of contents in a hard-copy reference manual. The window on the top right is an alphabetical
list of all cT commands. The bottom window dispiays the reference material for the commands.

There are three sub-windows in the help window: a hierarchical menu (top left), an
alphabetic list of cT commands (top right), and the help text (bottom). The two top windows
provide two access paths to the data, which is displayed in the bottom window. When a user
needs information about a cT command, he or she brings up the help window and searches
for that information either by selecting increasingly more specific items from the hierarchical
menu or selecting a particular command the alphabetical list. When the user selects items
from the hierarchical menu, the menu changes to increasingly more specific items until
specific, related commands are displayed in the menu. When the user selects a specific
command in the hierarchical menu, that command is highlighted in bold print and the
reference text for that command appears in the help text window. Selections in the
hierarchical menu do not change the alphabetic list. However, when a user selects a
command in the alphabetic list, several things happen. First, the selected command is
highlighted in bold and the alphabetic list is scrolled up so the selected command is at the top
of the list. Next the reference material for that command is displayed in the help text
window. Last, the hierarchical menu is changed so that the selected command (highlighted
in bold), and commands related to it, are displayed in the hierarchical menu.

A stated purpose of cT is to allow non-professional programmers to easily create highly
interactive graphic applications. A volunteer, non-professional but experienced programmer
(conversant in LISP, Pascal, FORTRAN, Basic, and assembly language) needed to create a
program to read psychological data from a spreadsheet file and plot it on x-y coordinates.
This person (hereafter called U1) had never used cT, but was willing to spend an afternoon
attempting to create her application with cT, while being videotaped. She was asked to use
only the on-line reference manual when she needed information about cT in the course of her
programming. Three and a half hours of programming were videotaped, during which time

U1 completed the graphing part of her application. An additional four hours, not videotaped,
was needed to complete the file input portion of the application.

We identified three types of behavior in the videotaped segment: the initial reading for general
information, coding, and browsing for specific information needed in the course of coding.
Of the 3.5 hours, 0.45 hours were spent on the initial reading, 1.80 hours were spent
coding, and 1.25 hours were spent browsing. These 1.25 hours of browsing represent 80
browsing sequences averaging 56 seconds apiece with a range of 1 to 270 seconds.

To date, all of the browsing sequences have been transcribed so that every verbal utterance,
every mouse-movement and button click, and every keystroke is recorded in a format
automatically readable by the eventual database system.

2.2 Trace Data

A single, 67 second browsing sequence was chosen for detailed examination and preliminary
modeling. Before this browsing sequence, U1 had produced code that displayed labeled
axes on the screen and she now needed to place specific data points on the graph. She was
looking for a ¢cT command that would produce a "filled circle". The transcription of this
browsing segment appears in Figure 3. We used this transcription as a guide for building a
preliminary model of this browsing incident.

The cognitive model was built on the Soar architecture of cognition. As succinctly described
in Lewis, et. al. (1990) and described in more detail elsewhere (Newell, 1990) the Soar
architecture formulates all tasks in problem spaces, in which operators are selectively applied
to the current state to attain desired states. Problem solving proceeds in a sequence of
decision cycles that select problem spaces, states and operators. Each decision cycle
accumulates knowledge from a long term recognition memory (realized as a production
system). This memory continually matches against working memory, elaborating the current
state and retrieving preferences that encode knowledge about the next step to take. Access of
recognition memory is involuntary, parallel, and rapid (assumed to take on the order of 10
milliseconds). The decision cycle accesses recognition memory repeatedly to quiescence, so
each decision cycle takes on the order of 100 milliseconds.

If Soar does not know how to proceed in a problem space, an impasse occur. Soars
responds to an impasse by creating a subgoal in which a new problem space can be used to
acquire the needed knowledge. If lack of knowledge prevents progress in a new space,
another subgoal is created and so on, creating a goal-subgoal hierarchy. Once an impasse is
resolved by problem solving, the chunking mechanism adds new productions to recognition
memory encoding the results of the problem solving, so the impasse is avoided in the future.
All incoming perception and outgoing motor commands flow through the state in the top
problem space.

Figure 4 shows the structure of Soar when it is functioning in a highly interactive
environment. The decision cycle is unchanged; all available information is accumulated
about the acceptability and desirability of problem spaces, states, and operators for the total
current context, and the best alternative is chosen among those that are acceptable. However,
in a highly interactive environment, the outside world (in this case, the cT display on the
CRT screen) is an important source of the information being collected in working memory.
This influx of information influences the decision cycle both by directly depositing relevant
information into working memory and by triggering long-terrn memory to deposit other
general knowledge into working memory. The outcome of each decision cycle is to select a
problem space, state, or operator for application, or generate an impasse. In a highly

Time (sec) Verbal Behavior Mouse Behavior
05 oK

Scresn Changes

06 S0
08 80 | just want to
13 make a mark
185 | want to draw something
16 | want to circle something
18 guess | want to put a littie circle in
19 M to help screen
20 so, let's see C on help screen help window comes up
21 1 want a filled circle :
22 let's find... M to command menu
D on up scroliarrow command menu scrofls up
23 gcircle appears in the scrolling
command menu
24 ‘gcircle” U+Mtodownamow gcircle scrolis off the top
command menu stops scrolling
25 C on down amow command menu pages down
gcircle is not yet in the window
C on down arrow command menu pages down
geircle is on 2nd line of menu
26 *gcircle” M to gcircle + C geircle scrolis to top of menu, turns bold
geircle help text comes up
hierarchical menu
gdisk is visible below gcircle
29 1 think it's “gdisk"
30 actually M to gdisk
31 "gdisk” C on gdisk gdisk turns bold, help text comes up
(same as gcircie)
hierarchical menu changes
32 gonna give me the same thing
33 OK-so | really want to ook at...
M to above elevator
M | wonder what "dot” is
35 C above elevator command menu pages up
36 C above elevator command menu pages up
37 what's “dot"? Mtodot+C dot scrofis to top of menu, tums bold
dot help text comes up
hierarchical menu changes
39 making dots (start reading)
40 single dot
41 umm
42 oK
45 (reading) the dot command
45 with one point is
47 equivalent to a draw command
48 with a single position (end reading)
49 oh those are very little teeny
50 1 don't want those-1 want disk
51 M around command menu
52 where's disk? M to hierarchical menu
53 dot circle
54 draw disk
55 filled in circle Mtodisk+C disk turns bold, help text comes up
56 disk command
57 filled in circle
58 umm
60 disks, OK

Figure 3. Transcription of the videotape protocol segment used to construct the preliminary Soar
model of browsing. In the Mouse Behavior column, M = move mouse so cursor moves, D = press
down on the mouse button, U = release the mouse button, C = click the mouse button (rapid down
and up). Behavior in this protocol is referred to by its timestamp, e.g., t55 refers to Ul saying
*filled in circle", moving the mouse to put the cursor ion the word "disk" and clicking the mouse.

interactive environment, the application of operators often leads to changes in the external
environment (in this case, moving the mouse and pressing its button).

The preliminary Soar model of browsing for the cT coding task, Browser-Soar, uses the
Soar problem space structure to provide the goals, operators, methods and selection rules
found in traditional GOMS analyses. Browser-Soar consists of a set of problem spaces
(Figure 5) that provide the capability to search deliberately through the help windows, while
allowing recognition of new items to trigger knowledge at any time that may change the
search strategy. The top problem space in Browser-Soar (Browse) is entered when an
impasse arises in the task space for programming in the cT language. A browsing episode
involves bringing up the help window, finding the appropriate help, and applying the newly
found information to the problem at hand. Each of these activities corresponds to an operator
in the Browse space. Currently, Browser-Soar implements the find-appropriate-help
operator. Applying this operator results in an impasse because the operator cannot be
implemented by recognition. Soar responds by setting up another problem space, with
operators that define the search criteria (e.g., what labels to look for in the help windows),
define the evaluation criteria (how to decide that some piece of information will actually help
resolve the impasse in the task space), carry out the search, and evaluate the search results.
Each of these operators is also implemented in a problem space; for example, carrying out the
search for the defined criteria is accomplished in a space with operators that select among
search methods and execute them. At the bottom of the problem space hierarchy are motor
operators that control mouse and keyboard actions, and cognitive operators that can be

Long Term Recognition
Memory

eneral Procedural
owledge [Knowledge
uctions

-~ = operators -_—
Display termination Effect or
| “Input | control I Output :
i produc[ionq knowledge | pl'OdllCthﬂﬁ

W A 0
Display D | vaqv:xrxl;:f L

wait until
quiescence

Next decisions

apply operator
select problem
space
impasse--subgoal

[Mouse 19

[kewond

Decision
Procedure

Decision Cycle ~100 ms

Figure 4. Soar in a highly interactive environment.

applied with directly available knowledge. The operators in Browser-Soar can be viewed as
deliberate goals, and this organization is useful for modeling the goal-oriented component of
browsing as well as the mechanics of manipulating the windows used for browsing. Data-
driven, opportunistic behavior emerges because an additional operator, evaluate-new-
items, is proposed whenever new information is brought within the scope of attention
evaluate-new-items is available in every Browser-Soar problem space). The current
problem solving is thus interrupted so the new items may be considered, possibly suggesting
a more relevant path to pursue.

When given the necessary knowledge about the user's goals and the information visible on

the screen in the protocol of Figure 3 and the problem space structure in Figure 5, Browser-
Soar produces the trace in Figure 6.

Browse

=

Find-help

Evaluate-new-items

- -

<
Vs
4

Evaluate-help-text ~

Define-search-criterion

Y

Evaluate-help-text

Define-evaluation-criterion
Search-for-criterion Find-criterion
Find-criterion-pointer

Find-disconfirmation

Generate
Evaluate

Search-for-criterion

Generate

Define- -

search-criterion Evaluate Bring-up-help-text \
Define- Select-search-method
evaluation-criterion Execute-search-method

Choose-window
Evaluate-current-window
Choose-direction

Choose-method

Move-to-command
Click-button

Select-search-method Bring-up-help-text
Move-mouse
Press-button
Perceive-criterion
Release-button
Get-oomn_\and-locaton Change-direction
Click-button Choose-page
Execute-search-method Back-up

Figure 5. The problem space structure of Browser-Soar.

WooJdoaunkxWwWwr o

Figure 6. Browser-Soar trace (continues for 3 pages)

: gl
s5

IIOU)'UQ

: p4 (top-space)

: 012 (browsing-task)
=>G: g36 (operator no-change)

P: pd42 (browsing)

S: s49

0: o51 (find-appropriate-help)
==>G: g53 (operator no-change)
P: pS9 (find-appropriate-help)

S: 872

0: 074 (define-search-criterion)
==>G: g78 (operator no-change)

s94

: 0100
0l12
: 0118
0128
0l34
ol42

o

I
v
OOO(I)'UOOOOOOOOO(I)'U

: gldas8
pisS4
: 8165
0l69
0ol77
olé4d

: p84 (define-search-criterion)

(generate-search-criterion)
(evaluate-search-criterion)
(generate-search-criterion)
(evaluate-search-criterion)
(generate-search-criterion)
(evaluate-search-criterion)

093 (final-state)
76 (define-evaluation-criterion)

(operator no-change)
(define-evaluation~-criterion)

(generate-evaluation-criterion)
(evaluate-evaluation-criterion)
(final-state)

0: 0185 (search-for-criterion)

==>G: gl87
P: pl93
S: s212
O: o214

(operator no-change)
(search-for-criterion)

(select-search-method)

==>G: g2l6 (operator no-change)

..

311

{2
v
1000000 NTWLOOO0OO0OOWMW

p222 (select-search-method)
s236

0238 (choose-window)

0244 (focus-on-current-window)
0255 (evaluate-current-window)
0289 (choose-method)

0295 (choose-direction)

0235 (final-state)

(execute-search-method)

g31l3 (operator no-change)

: p319 (execute-search-method)

s335

0337 (move-mouse~to-up-arrow)

0342 (press-mouse-button-scroll-up)
0351 (perceive-search-criterion)

: 0349 (release-mouse-button)

: 0371 (evaluate-new-items-nn)

: 0362 (get-location-of-command)

>G: g375 (operator no-change)

P: p381 (back-up)

[o]

[eNe

S: s394

O: 0396 (change-direction)
O: 0398 (change-method)

0O: 0393 (final-state)

: o04lé
: 0421
: 0438
: 0421
: 0453
: 0459
: 0463
0334

: g482
: p48s
: 5499
: 0501
: 0506
: 0498

O(DC)M'UG)O O(D()C)O(DC)O

: g560
p566
: 8577
: 0579
0584
: 0576

O(DC)M'vC)

(move-mouse-to-below-elevator)
(click-mouse-button)
(evaluate-new-items-nn)
(click-mouse-button)
(perceive-search-criterion)
{evaluate-new-items-nn)
(get-location-of-command)
(final-state)

80 (bring-up-help-text)

{(operator no-change)
(bring-up-help-text)

(move-mouse-to-item-location)
(click-mouse-button)
(final-state)

: 0544 (evaluate-new-items)
: 0558 (bring-up-help-text)

(operator no-change)
(bring-up-help-text)

{move-mouse-to-item-location)
(click-mouse-button)
(final-state)

O: 0606 (evaluate-new-items-nn)
0: 0211 (final-state)
O: 0615 (evaluate-help-text)
g6l7 (operator no-change)
p623 (evaluate-help-text)

==>G:
P:
S:
0O:
O:
o-

S:
0O:

o

s632

0634 (focus-on-help-text)
0638 (find-pointer-to-criterion)
0631 (final-state)
O: 0655 (search-for-criterion)
==>G: g657 (operator no-change)
P: p663 (search-for-criterion)

s682

0684 (select-search-method)

>G: g686

p692
: 8706
: 0708
: o716
: 0721
: 0755
: 0761
0705

: g779
: p785
: s801
0803
: o808
: 0825
: 0808

c>o<3c>m'vc)o O(DC)O(DC)M'U

{operator no-change)
(select-search-method)

(choose~-window)
(focus-on-current-window)
{evaluate-current-window)
(choose-method)
(choose-direction)
(final-state)

777 (execute-search-method)

{operator no-change)
(execute-search-method)

(move-mouse-to-above-elevator)
(click-mouse-button)
{evaluate-new-items-nn)
(click-mouse-button)

10

113 O: 0840 (perceive-search-criterion)
114 O: 0846 (evaluate-new-items-nn)
115 O: 0850 (get-location-of-command)
116 0: 0800 (final-state)

117 O: 0867 (bring-up-help-text)

118 ==>G: g869 (operator no-change)

119 P: p875 (bring-up-help-text)

i20 S: s8Bgé

121 0: 0888 (move-mouse-to-item-location)
122 O: 0893 (click-mouse-~-button)

123 O: 0885 (final-state)

124 O: 0915 (evaluate-new-items-nn)

125 O: 0681 (final-state)

126 O: 0924 (evaluate-help-text)

127 ==>G: g926 (operator no-change)

128 P: p932 (evaluate-help-text)

129 S: s941

130 O: 0943 (focus-on-help-text)

131 O: 0949 (find-disconfirmation)

132 O: 0940 (final-state)

133 0: 0972 (search-for-criterion)

134 ==>G: g974 (operator no-change)

135 P: p980 (search-for-criterion)

136 S: s999

137 0: 01001 (select-search-method)

138 ==>G: gl003 (operator no-change)

139 P: pl009 (select-search-method)
140 S: s1023

141 0: 01025 (choose-window)

142 O: 01031 (focus-on-current-window)
143 O: 01036 (evaluate-current-window)
144 0: 01022 (final-state)

145 O: 01126 (bring-up-help-text)

146 ==>G: gl038 (operator no-change)

147 P: pll28 (bring-up-help-text)

148 S: s1045

149 0O: 01139 (move-mouse-to-item-location)
150 O: 01144 {(click-mouse-button)

151 0: 01137 (final-state)

152 O: 01166 (evaluate-new-items-nn)

153 0O: 0998 (final-state)

154 0: 01175 {evaluate-help-text)

155 ==>G: gl050 (operator no-change)

156 P: pll77 (evaluate-help-text)

157 S: s1052

158 O: 01186 (focus-on-help-text)

159 O: 01190 (find-criterion)

160 O: 01184 (final-state)

161 O: 071 (final-state)
162 0: 048 (final-state)
163 O: o6 (halt)

(end of Figure 6. Browser-Soar trace)

11

3. The Database

As stated previously, the goals of the database are to relate several levels of protocol
analysis, from raw protocol transcription data through the most detailed cognitive simulation
traces, and to allow complex database manipulation to perform automatic classification of the
data. The prototype database relates a raw protocol transcription of a segment of browsing
behavior (Figure 3) to a trace of the Soar model of that behavior (Figure 6).

The prototype database application, called Trace& Transcription, was built in the Oracle
Relational Database Management System.2 We chose Oracle because it seemed to have the
best mix of power and performance with ease-of-use and standardization of the relational
databases. Oracle can be used either as a stand-alone application on a personal workstation
(the prototype works on an Apple Macintosh), or as a multi-user database on a central
processor with individual access through networked workstations. It provides the power of
the industry standard query language, SQL. On the Macintosh, Oracle provides a
HyperCard3 interface for loading data in many formats (SQL*Loader Utility), constructing
queries (Query Tool), and creating other HyperCard application interfaces (Application
Generator) (see Oracle for Macintosh User's Guide, Version 1.2, Oracle Corp, 1990).
Trace&Transcription was built using HyperCard and Oracle's HyperCard interface to the
database.

3.1 Organization of the Database

The database has one table for the raw protocol transcription data and one additional table for
each level of analysis performed on the protocol data; in the case of the prototype database,
there is only one additional table for Soar traces. These analysis tables can be created by
hand by the analyst, or they can be created automatically by sophisticated query techniques
provided by Oracle. This prototype uses only hand-created analysis tables.

Each record in the protocol transcription table represents a one second time period, during
which a verbal utterance has occurred, a mouse action has occurred (move, click, press-
button or release-button), neither, or both have occurred. Each record in the Soar trace table
represents a single decision cycle for Browser-Soar which terminated in the selection of a
goal, problem space, state, or operator. A useful relationship between the two tables is to
link a Soar decision cycle to the behavior that is direct evidence for the action produced by
that decision cycle, e.g., an observed mouse-button click would be direct evidence for the
selection of the Soar operator click-mouse-button. This is a symmetric relationship,
where the observed behavior is evidence for application of Soar operators, and the selection
of Soar operators provide a simulation of human behavior. Our database application,
Trace& Transcription, allows a user to explicitly create these links and the database records
them by creating a third table for pointers between the two user-provided tables.

2Trademark of the Oracle Corporation.
3HyperCard is a trademark of Apple Computer, Inc.

12

The TRANSCRIPTION table has six columns:
BEHAVIOR_NUMBER

Type:
Size:
Required?

Description:

CHAR

10

no

This is the unique number of the single behavior in one line of the
transcription of this segment of behavior. It ends with the character
"v" if it is a verbal utterance, or "m" if it is motor action like mouse
movement or button clicking.

NUMBER

12

yes

This is the time in milliseconds since the beginning of the tape. This
number appears in the bottom right-hand comer of the videotape.
Each new record starts one second (1000 msec) after the record
preceding it.

CHAR

100

no

This is the verbal utterance that happened during the one second (1000
msec) after the TAPE_TIME of this record, if any.

CHAR

100

no
This is the motor action that happened during the one second (1000
msec) after the TAPE_TIME of this record, if any.

TRANSCRIPTION_ID

Type:

CHAR

10

yes

This is the number of the transcription segment. In the prototype
database, this number is always 1 and the loading program provides
this constant.

CHAR

10

yes

This is the number of the videotape. In the prototype database, this
number is always 1 and the loading program provides this constant.

13

The SOAR table has four columns:
LINE_NUMB
Type: NUMBER
Size: 10

Required? yes
Description: This is the unique number for each line in this Soar trace. It is

provided by the loading program.
DECISION_CYCLE
Type: NUMBER
Size: 10

Required? yes
Description: This is the decision cycle of the Soar trace.

TEXT
Type: CHAR
Size: 200
Required? no

Description: This is the text of the Soar trace,
e.g., "O: 0342 (press-mouse-button)"

SOAR_ID
Type: CHAR
Size: 10

Required? yes

Description: This is the number of the Soar trace. If several variants of a Soar
model are being evaluated, there may be multiple traces that map to the
same protocol data. In the prototype database, this number is always
1 and the loading program provides this constant.

The POINTER table has seven columns, automatically created in the process of using
Trace& Transcription to explicitly provide links between transcription and trace:

TAPE_ID - taken from the transcription record (required)
TRANSCRIPTION_ID - taken from the transcription record (required)
TAPE_TIME - taken from the transcription record (required)
BEHAVIOR_NUMBER - taken from the transcription record (required)
(together the above four items point to a unique transcription record)

SOAR_ID - taken from the Soar trace record (required)
LINE_NUMBER - taken from the Soar trace record (required)
(together the above two items point to a unique Soar trace record)

FORCED_ALIGNMENT
: CHAR

Size: 1

Required? yes

Description: This is either "Y" or "N", where "Y" means that the unique
transcription record should be spatially aligned with the unique Soar
trace record when it is displayed in the database application, and "N”
means th.* the two are related but are not to be spatially aligned in the
display.

14

3.2 Operation of the Database Application Relating
Transcriptions to Traces

This section describes the operation of the Trace& Transcription database application written
for Oracle;4 it is not intended as an instruction manual for the operation of the Oracle
Relational Database Management System itself. Please refer to the Oracle for Macintosh
User's Guide Version 1.2 where referenced in this section. We assume that the reader is
familiar with the installation, logon procedure and use of Oracle and HyperCard.

32.1 Loading Protocol and Soar Trace Data

The protocol transcription data and Soar traces must be loaded into their respective t* * -
before the Trace&Transcription application can be used. Before loading data, the ta
described above must be created in the Oracle database on which Trace& Transcriptic J
be run. Refer to Oracle User's Guide Chapter 2, Managing Tables and Views, pages -9
through 2-15, for instructions for creating tables. Then refer to Chapter 2, Loading Data
with SQL*Loader, pages 2-30 through 2-36, for instructions for loading the data. The
following four files must be resident on the host computer to load the transcription and trace
data:

transcription.ctl, a file used by Oracle to control the loading of the transcription data. The
content of transcription.ctl is shown in Figure 7. The INFILE line must be edited to
conform to the names of the disk and file structure of the host computer.

transcription.dat, a text file with the transcription data in the format described by
transcription.ctl. An example of the protocol transcription data is shown in Figure 8.

soar.ctl, a file used by Oracle to control the loading of the Soar trace data. The content of
soar.ctl is shown in Figure 9. The INFILE line must be edited to conform to the names
of the disk and file structure of the host computer.

soar.dat, a text file with the Soar trace in the format described by soar.ctl. An example of
the Soar trace data is shown in Figure 10.

LOAD DATA

INFILE "<disk name>:<folder>:<subfolder>:<filename>.dat" STREAM
INTO TABLE transcription replace

FIELDS TERMINATED BY ","

OPTIONALLY ENCLOSED BY '™

(behavior_number CHAR,
tape_time INTEGER EXTERNAL,
verbal CHAR,
pointing CHAR,
transcription_id CONSTANT 1, -- Constant only in prototype
tape_id CONSTANT 1

)

Figure 7. The file that allows Oracle to load protocol transcription data, transcription.ctl

4 At the initial writing of this report in the winter of 1990, Trace& Transcription was available as a
HyperCard stack. This prototype is no longer available, but a subsequent system has been built upon several
of the interface design ideas (Ritter, 1992; Ritter & Larkin, in press).

15

V1,15705000,0K ,""

V2,15706000,s0,""

,15707000,,""

V3,15708000,s0 I just want to,""
,15709000,,""

,15710000,,""

,15711000,,""

,15712000,,""

V4,15713000,make a mark,""
,15714000,,”"

V5,15715000,I want to draw something,""
V6,15716000,1 want to circle something,""
,15717000,,""

V7,15718000,.guess I want to put a little circle in,""
M8,15719000,,"M to help screen”

Figure 8. First 10 lines of the protocol transcription data file; example of the format

LOAD DATA

INFILE "<disk name>:<folder>:<subfolder>:<filename>.dat"
INTO TABLE soar replace

FIELDS TERMINATED BY ",”

OPTIONALLY ENCLOSED BY "

(Line_Number recnum,

Decision_Cycle INTEGER EXTERNAL,

Text CHAR(200),

Soar_id CONSTANT 1 -- Constant only in prototype
)

Figure 9. The file that allows Oracle to load Soar trace data, soar.ctl

"G:gl"
"P: p4 (top-space)"
s5"

"S

-

-

-

"0: 012 (browsing-task)"

"==>G: g36 (operator no-change)"
" P: p42 (browsing)"

S:s49 "

O: 051 (find-appropriate-help)”
==>G: g53 (operator no-change)"
P: pS9 (find-appropriate-help)”

S:s72°"

-

-

. -
2 = 2 x

-
2

--\ooo\)a\‘u..&.uto-—o

-

Figure 10. First 10 lines of the Soar trace data file; an example of the format

16

3.2.2 Running the Trace&Transcription Application

After the tables are created, the data are loaded, and Oracle is running, Trace&Transcription
can be run. To start Trace& Transcription from Oracle's Log On card, click on the Home
icon, and enter Trace& Transcription through the dialog box of the mystacks icon. Oracle
maintains security of the database by forcing the user to log on each time you enter the
database through any application, so you must log onto Oracle again at this point. The
Trace&Transcription card then appears (Figure 11).

be j6ig:T&'T database:trace&transcription
Transcription to Soar Matching

i

Applications
@® Transcription to Soar

O Load Transcription into DB
O Load Soar trace into 0B

Transcription Query Soar Query

Standard Transcription Query Standard Sosr Query

R R A R A S e R R

Figure llTrace&Transcnpon application card.

The top section of the Trace& Transcription card allows access to several related applications,
selected by clicking on the radio buttons to the left of their names. The first, Transcription
to Soar Trace is the application that allows the user to link observed behaviors to Soar
decision cycles (and is the only one implemented in the prototype). The others, Load
Transcriptions into DB and Load Seoar Trace in to DB, are future applications that
load data directly from the natural format of the data files rather than having to put them into a
format acceptable to Oracle, as must be done with the prototype (section 3.2.1 of this report).
That is, these applications will strip off standard file headers, provide correct indentation,
and do other formatting customized for the transcription and Soar trace files.

The middle section of the Trace&Transcription card, when the Transcription to Soar
Trace application is selected, allows access to pre-stored queries. Clicking on the boxes
below the Transcription Query or Soar Trace Query headings, causes a dialog box to
appear so that a different pre-stored query can be selected. Making and storing queries is
discussed in the next section (section 3.2.3).

The bottom section of the Trace&Transcription card provides button to Log On, Run
Application or Make Query. Log On allows another user to log on, if desired. Make

17

Query takes you to the card shown in Figure 16 and will be discussed in the next section.
Run Application performs the queries previously selected and displays the results of those
queries on the Trace& Transcription Information card, shown 1n Figure 12.

S be j6ig:T6T database:gap traceGtranscription HESE
< Trace&Transcription Information

€ recerds i selection [73 | tink_) § recerds in selection
trans cription id [1 | CunLink RAll) sowrid[1]

behavier tape Update DB decision
aswumber time verbal poiutu cycle Sear trace
Oly 15705000 OK 0 6: gl
02v 15706000 so 1 ?: p4 (top-space)
15707000 2 S: s
0dv 15708000 so I just went.. 3 0: 012 (browsing-task]
15709000 4 2256: 936 (operater no-change)
15710000 H ?: p42 (browsing)
15711000 é 3: 549
15712000 7 0: o51 (find-wppropriste-help
O4dv 15713000 meke » mark 8 ==>G: ¢S3 (operator no-change
15714000 9 P: p59 (£ind-oppropriate~.

[
o

S: 372
0: o074 (define-sewrch-cri.

0Sv 1S71S000 1 went to draw..
06y 15716000 I wont to cixe..

-
<

15717000 12 ==36: 978 (operator no-ch.
07v 15718000 guess 1 wont ¢.. 13 P: p84 (define-search-.
08m 15719000 M to help. 2 S: 394
09v 15720000 so let's see 15 0: 0100 {generate-senr.
10m 15720000 C on help. 16 0: 0112 (evalunte-seor.
11v 15721000 I went a fille.. 17 0: 0118 (generate-sear.
12v 15722000 let's find. .. = 18 0: 0128 (evoludote-seonr.

| 13w 15722000 \/ 19 0: 0134 (generate-sear..

o u n
Figure 12. Trace&Transcription Information card.

The Trace&Transcription Information card displays the results of the selected queries with
the protocol transcription data appearing on the left-hand side and the Soar trace data
appearing on the right-hand side. Initially, there are no links between the transcription
records and the trace records, so these windows are not yoked and they scroll separately.

The function of the Trace& Transcription application is to allow an analyst to create links
between the records of the protocol transcription table representing individual observed
behaviors and the records of the Soar trace table representing Soar decision cycles.

There are two types of links necessary to make the relationships between these tables
apparent to the analyst. An observed behavior might have a one-to-one mapping to a Soar
decision cycle, that is, the simulation of a particular behavior is performed by a single Soar
operator and the empirical evidence for that Soar operator is that particular operator. When
this relationship occurs, then it is often convenient to align the behavioral record with the
Soar decision cycle, allowing the analyst to see the one-to-one mapping. This type of link,
called a forced_alignment, is created by clicking the mouse on the desired behavioral record
(a black circle will appear on the far left of the transcription line), then clicking on the desired
Soar decision cycle (a black circle will appear on the far left of the Soar line), and then
clicking on the Link button. The displays will align accordingly and arrowheads facing each
other will appear in the center of the screen indicating the link (Figure 13). When a
forced_alignment link is created, the two screens become yoked, and scrolling one screen
will automatically scroll the other screen.

18

< Trace&Transcription Information

trecerdsinselection (7 | QUINITED) 8 recerds in selection [164 |
transcriptiondd [T](unLink All) soarid]

behavier tape ll ' date DB decision
asmber time wverbal cycle sear trace
0lv 15705000 OK 1] 6: gl
o2v 15706000 so 1 ?: p4 (top-spuce)
15707000 2 S: o8
03v 15703000 so I just want.. 3 0: 012 (browsing-task)
15709000 4 ==6: ¢g36 (operastor no-change)
15710000 S ?: p42 (browsing)
15711000 6 8: s49
15712000 ? 0: oS1 (find-opproprinte~balp
8 ==>6: ¢53 (operntor no-change
9 Y: pS9 (find-appropriate~

10 S: s72
11 0: 074 (define~seerch-eri
12 =2)8: ¢78 (operator no-ch
13 ?: p84 (define~seorch-
14 3: 594
O4y 15713000 make @ murk < 15 0: ¢100 (generste-sear
15714000 16 0: 0112 (eveluste-senr
® 05y 15715000 I wont to draw.. e 17 0: 0118 (generate-senr
06y 15716000 1 went to cirec.. 18 0: 0128 (evanlunte-sear. [
19 Q.

e e 15717000 2134 [gensrate-sez
Figure 13. Example of a forced_alignment link (04v & dc15). 05v and dc17 show the black dots
that indicate they will also be linked with a forced_alignment link after the Link process is complete.

The other type of link is needed when forced_alignment would cause conflict in aligning the
data. This can occur in two cases: when linked behaviors and decision cycles occur out of
order (i.e., a behavior linked to a later decision cycle occurs earlier in time than a behavior
linked to an earlier decision cycle) and when more than one behavioral record should be
linked to a single Soar decision cycle. To create a link that does not force alignment on the
screen, hold the shift key down when clicking on the behavior and the decision cycle
(dashes will appear next to the selected lines, rather than the black circles in the
forced_alignment selections) and then click on the Link button. Numbers will appear in the
center of the screen indicating the link (Figure 14). If more than one behavior in linked to a
single Soar decision cycle, the s: me number will appear on each line of the multi-line
behavior to indicate this many-to-one link (Figure 15).

These links are made in the Trace&Transcription card only until the analyst clicks on the
Update DB button. Then these links are sent to the POINTERS table of the database, and
will come back into Trace& Transcription whenever the linked behaviors or decision cycles
are accessed. It is good practice to update the database after every few links are created.

The UnLink All button removes all the links currently in Trace&Transcription, including
both the ones permanently in the database and those only in the card (not yet updated). This
is a powerful button, useful in a prototype with only a few links. However, it is probably
too powerful for routine use in a full-fledged database and a more local undo function should
be added to this card.

19

< Trace&Transcription Information

8 reverds in selestion [73 1C Link) S records in selection 164 |

transeription id |1] CunLink A1) soarid []

behavier Qtape Update DB decision
sumber time vearba) peinting cycle seer trace
108 0: o777 (execute-sesze..
106 =26: 9779 (operator n..
107 ?: p785 (execute-se
108 S: s801
30m 15733000 M to sevo. < 109 0: o803 (move-mouse
3lv 15734000 I wonder what ..
32m 15735000 C sbove s. < 110 0: o808 (click-mous
111 0: 0825 (evaluate-n
33m 18734000 C sbow s. ¢ 12 0: 0308 (click-mous
J4v 18737000 wiat's dot? 113 0: 0840 (perceive-s
1 114 0: o846 (evaluste-n
113 0: o850 i
116 0: o800 (£i
117 0: 0867 (bring-up~belp..| |
118 2236: 9869 (operster n
119 P: p875 (bring-up-b
120 S: 886
3% 18737000 M to dot ¢ 121 0: o888 (move-mouse
36m 185737000 ¢ < 122 0: 0393 (elich—nws..
0: 0385

e 2238000, i ;

Figure 14. Example of a link without forced alignment, necessary because the linked behavnors and
decision cycles are out of order with other links. In this example, decision cycle 114 in the Soar trace
window is linked to behavior number 31v in the transcription window, with the intervening links for
behavior 32m and dc110 and 33v and dc112 that would conflict if this were a forced_alignment link.

e Trace&Transcription information
€ recerds in selection [73 1C uink) 8 records in selection 164 |
transcription id |1 | CunLink Al) soerid (:j
behavior tape Update DB) gecision
13 3 s1023
141 0: 01025 (choose-wi..
142 0: 01031 (focus-on-.
49v 15753000 dot circle 7 143 0: 01036 (evuluste-.
SO0v 15754000 draw disk 144 0: 01022 (finnl-sta.
Sly 15755000 filled in cir.. 145 0: 01126 (bring-up-hel
146 ==>6: ¢gl038 {operator
147 ?: pll28 (bring-up-
148 3: 51045
S2m 15755000 M o disk < le9 0: 01139 (move-wous
53m 15755000 [+ < 150 0: 01144 (eclick-mou
S4vy 15756000 disk comwond 151 0: 01137 (final-ste
152 0: 01166 (evelunte—new
153 0: 0998 (finul-state)
154 0: 01175 (evoluate-help-t
188 =2>6: gl0S0 (operator no—
186 ?: pl177 (eveluste-hel.
157 3: 51052
1Ss 0: 01186 (focus-on-hel..
® 55y 15757000 filled in circle < ® 159 0: 01190 {find~criteri..

Figure 15. Example of a many-to-one link without forced alignment. Behaviors V49 and V50 are
linked to decision cycle 143.

20

3.2.3 Making Queries

Once the protocol transcription data are linked to the Soar trace data, an analyst may want to
make complex queries of the database to explore these relationships. For instance, in
evaluating the goodness of fit of a cognitive simulation like a Soar model, it is desirable to
know how many individual overt behaviors are explicitly simulated, and how many aren't.
More specific information about the goodness of fit can be had by looking at what percentage
of verbal behaviors are, and are not, explicitly simulated, vs. the same statistics for the motor
behaviors. More qualitative, but perhaps more useful in understanding the failings of a
model is to display those behaviors not simulated and some of the behavioral context leading
up to each unsimulated behavior. These questions can be answered with this Oracle database
through the power of SQL queries.

To build a query and store it in the database for repeated use, the analyst clicks the Make
Query button on the Trace& Transcription application card. This action brings the analyst to
a card with 3 choices; Construct New Query, Import Saved Query from Oracle Query Tool,
and View & Modify Query in DB.

To create a brand new query click on the button next to "Construct New Query". This brings
up the Oracle's Query Tool (Chapter 3 in the Oracle User's Guide). Once the query is built
using the tool, then store this query in an ascii file by clicking on the Report button, then on
the write-to-disk icon on the Report card (second one down on the far left of the card).5
Return to the Make Query card by going through HyperCard Home, and

Trace& Transcription. The stored file can then be imported into the Trace& Transcription
application by clicking on the button next to "Import Saved Query from Oracle Query Tool"
(see the next paragraph).

The button next to "Import Saved Query from Oracle Query Tool" puts up a dialog box that
requests the filename for a previously created ascii query (see previous paragraph). Once a
file is selected, the query is extracted and is shown in the scrolling field (Figure 16). The
name of the source file is displayed above the query. The query can be modified using all the
standard Macintosh text manipulation techniques. All the changes to this query are local to
this card, until the Update DB button is clicked. First, enter the name the query should be
stored under in the Save...As... field above the scrolling field. Then the Update DB
button puts the query in the scrolling field into the Trace&Transcription database, in a
QUERY table ,under that name (it does not change the original ascii file). At any time, the
query can be run in the Trace&Transcription application by clicking on the Run
Application button.

Queries can include either constants or variables. It is often easier to create a query with a
particular example in mind, putting constants into the query and testing it with this example.
Then the constants can be replaced by variables. Then, at run time, the user is asked for a
value for each variable in the query, making the query much more general. To make a
constant into a variable, select the constant in the scrolling field and click on the Make
Variable button. The selected constant will then be replaced with a variable of the form
%%V ARx%% , where x is a number between 1 and 10, and a dialog box will appear. The
dialog box will ask for a name to label the variable, to use to ask for the value of the variable
at run time. The original constant will become the default value of the variable. To make a
variable back into a constant, select the variable and click the Remove Variable button.
This replaces the variable with its default value and releases the variable

5 Do not use the Save Query button to store queries because that button saves them in a format unreadable by
Trace&Transcription.

21

be j6ig:T0T database:tracettranscription

& & [53‘ sa Fi'e] ﬁpdate nn] [Mnke llariable]
Source File Name MM____]
1

Save Query in DB as...

SELECT LINE.NUNBER,
BECISION_CYCLE,
TEXT,
SOAR-ID

FRON SORR

WHERE SORR_ID = 1

ORDER BY L INE_NUMBER

Figure 16. Import Saved Query from Oracle Query Tool

for use in other places in the query. (Trace&Transcription currently has a 10-variable limit
per query, so releasing the variable may be important.)

The last choice of action on the Make Query card is "View & Modify Query in DB". This
button presents the same interface to the user as the "Import Saved Query..." button.
However, it allows access to queries already stored in the Trace& Transcription database,
rather than queries externally created by the Oracle Query Tool. As before, the changes made
to the query are only local to the card until Update DB is clicked. As before, the query can
be run in the Trace& Transcription application directly from this card with the Run
Application button.

Acknowledgments

Special thanks to Gary Pelton and Anna Zacherl for their efforts in designing and
implementing this prototype database.

22

References

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer
interaction. Hillsdale, NJ: Lawrence Erlbaum.

John, B. E., Newell, A., & Card, S. K. (1990) Browser-Soar: A GOMS-like model of a
highly interactive task. Talk presented at the Human Computer Interaction Consortium
Winter Workshop, San Diego, CA, February 12, 1990.

Lewis, R. L., Huffman, S. B., John, B. E., Laird, J. E., Lehman, J. F., Newell, A.,
Rosenbloom, P. S., Simon, T., & Tessler, S. T. (1990) "Soar as a unified theory of
cognition: Spring 1990." Proceedings of the Twelfth Annual Conference of Cognitive
Science Society, July, 1990.

Peck, V. A. & John, B. E. Browser-Soar: A cognitive model of a highly interactive task.
In proceedings of CHI, 1992 (Monterey, California, May 3- May 7, 1992) ACM, New
York, 1992. pp. 165-172.

Ritter, F. E. (1992). "TBPA: A methodology and software environment for testing
process models' sequential predictions with protocols." Doctoral dissertation,
Dept. of Psychology, Carnegie Mellon University. Also available as School of
Computer Science Technical Report No. CMU-CS-93-101.

Ritter, F. E. & Larkin, J. H. (in press) "Developing process models as summaries of HCI
action sequences, Human-Computer Interaction.

Newell, A. (1990) Unified Theories of Cognition. Harvard University Press, Cambridge,
Mass.

